Parameterized Computational Complexity of
Dodgson and Young Elections'

Nadja Betzler, Jiong Guo, and Rolf Niedermeier

Institut fiir Informatik, Friedrich-Schiller- Universitdt Jena, Ernst-Abbe-Platz 2,
D-07743 Jena, Germany

Abstract

We show that the two NP-complete problems of DODGSON SCORE and YOUNG
SCORE have differing computational complexities when the winner is close to be-
ing a Condorcet winner. On the one hand, we present an efficient fixed-parameter
algorithm for determining a Condorcet winner in Dodgson elections by a minimum
number of switches in the votes. On the other hand, we prove that the correspond-
ing problem for Young elections, where one has to delete votes instead of perform-
ing switches, is W[2]-complete. In addition, we study Dodgson elections that allow
ties between the candidates and give fixed-parameter tractability as well as W|[2]-
completeness results depending on the cost model for switching ties.

Key words: computational social choice, voting systems, winner determination,
fixed-parameter tractability, W[2]-completeness

1 Introduction

Computational social choice and, more specifically, the computational com-
plexity of election systems has become an increasingly important field of inter-
disciplinary research [IT]. The analysis of election systems has applications

Email address: {nadja.betzler, jiong.guo,rolf.niedermeier}@uni-jena.de
(Nadja Betzler, Jiong Guo, and Rolf Niedermeier).
LA preliminary version of this paper appears in Proceedings of the 11th Scandi-
navian Workshop on Algorithm Theory (SWAT’08), Springer LNCS 5124, pp. 403-
412. Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research
group PIAF (fixed-parameter algorithms, NI 369/4), project DARE (data reduction
and problem kernels, GU 1023/1), and project PAWS (parameterized algorithmics
for voting systems, NI 369-10).

Preprint submitted to Elsevier 18 September 2009

in computational politics; for example, preference aggregation via various elec-
tion systems, and in multiagent systems when groups of software agents have
to make a joint decision. Election systems play a central role in planning (ar-
tificial intelligence in general) and page ranking systems for Internet search
engines.

We study the following classic scenario for election systems: a classic election
system consists of a set of candidates and a set of vote(r)s. Each voter chooses
an order of preference (total order) among the candidates. The well-known
Condorcet principle from 1785 [6] then requires that a winner of an election is
the candidate who is preferred to each other candidate in more than half of the
votes. Unfortunately, a Condorcet winner does not always exist. Hence, several
voting systems have been proposed which always choose the Condorcet winner
if one exists, and, otherwise, pick a candidate that is in some sense closest to
being a Condorcet winner. In other words, these election systems deal with
certain “editing problems”. In this work, we focus on two classic editing prob-
lems from social choice theory [22], one due to C. L. Dodgson? from 1876]
and one due to H. P. Young from 1977 [26]. In Dodgson elections, the editing
operation is to switch neighboring candidates in the voters’ preference lists
and the goal is to minimize the overall number of switches needed in order to
result in a Condorcet winner. In Young elections, the editing operation is to
remove a vote, trying to minimize the number of removals in order to end up
with a Condorcet winner.

In their seminal work, Bartholdi et al. [T] initiated the study of the computa-
tional complexity of election systemsl’] They showed that to decide whether
a distinguished candidate can be made a Condorcet winner by performing
no more than a given number of editing operations is NP-complete for both
Dodgson and Young elections. In a further breakthrough, for Dodgson elec-
tions Hemaspaandra et al. [I6] and later for Young elections Rothe et al. [25]
showed that the corresponding winner and ranking problems are even com-
plete for ©F, the class of problems that can be solved via parallel access to
NP. Faliszewski et al. [I1] concluded that “since checking whether a given
candidate has won should be in polynomial time in any system to be put into
actual use, these results show that Dodgson and Young elections are unlikely
to be useful in practice”. This conclusion is valid if analysis terminates once
a problem has been shown to be NP-complete. However, classical analysis is
only the beginning step for important computational problems. We propose
the framework of parameterized computational complexity theory [TOJT324]
for studying election systems, offering the next step towards finding an optimal

2 Also known as the writer Lewis Carroll.
3 In the meantime, there are many publications presenting classical complexity
results for election systems, for example, see [ATHITAZ327].

Table 1

Parameterized complexity of DODGSON SCORE and (DUAL) YOUNG SCORE with re-
spect to different parameters. In case of fixed-parameter tractability we also give in-
formation about the (exponential terms of the) corresponding running times. Herein,
“ILP” means that fixed-parameter tractability follows by an integer linear program
and a result of Lenstra [19] implying impractical running times. Bold-faced results
are new, the FPT-results for the parameter “number of candidates” can be directly
obtained from [126], and the FPT-results for the Young elections with respect to
the number of votes are trivial. Note that whereas the parameterized complexity
of DODGSON SCORE with respect to the number of votes is open, it is solvable in
polynomial time for a constant number of votes [I].

Parameter DODGSON SCORE DUAL YOUNG SCORE YOUNG SCORE

votes n ? FPT (2") FPT (2")

candidates m FPT (ILP) FPT (ILP) FPT (ILP)

steps k FPT (2F) W[2]-complete W|[2]-complete
solution [*]

For Dodgson and Young elections, we consider the question of whether the
NP-hard problems become fixed-parameter tractable (FPT) with respect to
the parameter “number of editing operations”. In parameterized complex-
ity [TOJT3l24] the solution size typically is the standard parameter. Thus,
we choose this standard parameterization as a natural first step towards a
systematic (future) study using further parameterizations. As we can show,
other than in the classical context, the parameterized complexity of Dodgson
and Young elections completely differs. Having n votes and m candidates, for
Dodgson elections we can determine in O(2*-nk +mnm) time whether a distin-
guished candidate can be made a Condorcet winner by performing at most &
switches, that is, the problem is fixed-parameter tractable with respect to
the parameter k. In contrast, for Young elections the corresponding problem
with the parameter denoting either the number of deleted votes or the num-
ber of remaining votes becomes W[2]-complete. Indeed, this “parameterized
tractability gap” between Dodgson and Young elections is not completely sur-
prising in the sense that in the case of Young the allowed editing operation
is much more powerful than in the case of Dodgson. Our results imply that
Dodgson elections can be put into actual use whenever the input instances are
close to having a Condorcet winner. This answers an open question of Chris-
tian et al. [’)] and refutes a parameterized hardness conjecture of McCabe-

4 We remark that in parallel work a parameterized complexity study has been
initiated for Kemeny elections as well [2]. Therein, a number of positive algorithmic
results are achieved.

° Fellows et al. independently showed that DODGSON SCORE is fixed-parameter
tractable, but with a higher running time [12].

Dansted [20]. Other natural parameters in the context of voting systems are
the “number of votes n” and the “number of candidates m”. Regarding the
parameter m, for both voting systems there are integer linear programs that
imply fixed-parameter tractability [1}26]. Concerning the parameter n there
is a trivial 2" - poly(m, n)-time algorithm for Young elections. An overview of
the parameterized complexity with respect to the different parameters is given
in Table [Ml Our results complement recent work on a simple greedy heuristic
for finding Dodgson winners with a guaranteed frequency of success [I§] and
some work on the polynomial-time approximability of Dodgson and Young
elections [B21]. In particular, Caragiannis et al. [B] gave (randomized) ap-
proximation algorithms for Dodgson elections and showed that it is hard to
approximate Young elections by any factor. Moreover, for Dodgson elections
we can show that allowing ties (that is, votes may remain undecided between
certain candidates), depending on the choice between two switching mecha-
nisms, we either obtain fixed-parameter tractability or W[2]-completeness.

2 Preliminaries

Throughout this work, an election (V,C') consists of a set V' of n votes and
a set C' of m candidates[f] A vote is a preference list of the candidates, that
is, for each voter the candidates are ordered by preference. For three candi-
dates a, b, ¢, the ordering ¢ > b > a means that candidate c is liked best and
candidate a is liked least by this voter. In an election (V, C'), a candidate ¢ € C'
is called the Condorcet winner if ¢ wins against every other candidate from C'.
That is, for each d € C\{c}, candidate c is better liked than d in at least
|n/2] + 1 votes. Observe that a Condorcet winner does not always exist. A
switch is defined to be the swapping of two neighboring candidates in a vote.
We now introduce the basic computational problems of this work:

DODGSON SCORE:

Given: An election (V, (), a distinguished candidate ¢ € C, and an inte-
ger k > 0.

Question: Can ¢ be made a Condorcet winner by at most k switches?

In other words, for DODGSON SCORE, we ask whether the Dodgson score of ¢
is at most k. The Young score is defined by the number of remaining votes:

YOUNG SCORE:

Given: An election (V,C), a distinguished candidate ¢ € C, and an inte-
ger [> 0.

Question: Is there a subset V' C V' of size at least [such that (V’,C) has

6 Note that we identify votes and voters.

the Condorcet winner ¢?
The dual Young score is defined by the number of removed votes:

DUAL YOUNG SCORE:

Given: An election (V, (), a distinguished candidate ¢ € C, and an inte-
ger k > 0.

Question: Is there a subset V' C V of size at most k such that (V\V’,C)
has the Condorcet winner ¢?

All three problems are NP-complete [125].

Finally, we briefly introduce the relevant notions of parameterized complexity
theory [TOIT324]. Parameterized algorithmics aims at a multivariate (at least
two-dimensional) complexity analysis of problems. This is done by studying
relevant problem parameters and their influence on the computational com-
plexity of problems. The hope lies in accepting the seemingly inevitable com-
binatorial explosion for NP-hard problems, but to confine it to a specific pa-
rameter. In our context, the studied parameters will be the numbers k& and [
of allowed edit operations. Hence, the decisive question is whether a given
parameterized problem is fized-parameter tractable (FPT) with respect to the
parameter, say k. In other words, here we ask for the existence of a solving
algorithm with running time f(k)-poly(n, m) for some computable function f.
Unfortunately, not all parameterized problems are fixed-parameter tractable.
Downey and Fellows [I0] developed a theory of parameterized intractability
by means of devising a completeness program with complexity classes. The
first two levels of (presumable) parameterized intractability are captured by
the complexity classes W[1] and W[2]. We will show several W[2]-completeness
results. It is commonly believed that the corresponding problems thus are not
fixed-parameter tractable. To this end, a reduction concept is needed. A pa-
rameterized reduction reduces a problem instance (I, k) in f(k)-poly(|I]) time
to an instance (I’, k') such that (I, k) is a yes-instance if and only if (', k') is
a yes-instance and &’ only depends on k but not on |I].

3 Dodgson Score

In this section, we describe an efficient fixed-parameter algorithm based on dy-
namic programming for the problem DODGSON SCORE parameterized by the
score. This answers an open question of Christian et al. [b]. The algorithm not
only decides whether a given DODGSON SCORE instance is a “yes”-instance,
but for a “yes”-instance also constructs a set of at most k switches which lead
to a modified input instance where the distinguished candidate ¢ becomes a
Condorcet winner.

An important tool to state the algorithms is the concept of the deficit of a
candidate d € C\{c} against the distinguished candidate c¢: Let Ny denote
the number of votes from V in which d defeats ¢, that is, in which d is better
positioned than c. Then, the deficit of d is | (Ng — (n — Ng))/2] + 1, that is,
the minimum number of votes in which the relative order of ¢ and d has to be
reversed such that ¢ defeats d in strictly more than half of the votes. We call
a candidate with a positive deficit dirty.

The following two observations are used for the design of the algorithm:

Observation 1. It is easy to see (McCabe-Dansted |20, Lemma 2.19]) that
there is always an optimal solution that considers only switches such that
every switch moves the distinguished c in a vote to a better position. Making
use of this, our algorithm only considers switches of such kind.

Observation 2. Since a switch never increases any deficit, we only consider
candidates with positive deficit (dirty candidates). With one switch, we can
decrease the deficit of exactly one candidate by one. Therefore, with at
most k switches allowed, in a yes-instance, the sum of the deficits of the
dirty candidates is upper-bounded by k. This fact is crucial for the analysis
of the algorithm when bounding the size of the dynamic programming table.

The basic idea of the algorithm is that a solution can be decomposed into sub-
solutions. In each subsolution the deficit of each dirty candidate is decreased
by a certain amount, the partial decrement. More precisely, our dynamic pro-
gramming considers a linear number of subsets of votes, beginning with the
subset that contains only one vote and then extending it by adding the other
votes one by one. For each of these vote subsets, we consider all possible com-
binations of partial decrements of deficits. For each such combination, the
computation of an optimal solution achieving the partial decrements is based
on the optimal solutions for the previously considered smaller subset. At the
last vote, we can then construct an overall optimal solution based on the
“partial” optimal solutions computed before.

In the following, we first describe a general version of the algorithm, which
we also use to solve a generalized version of DODGSON SCORE (see Subsec-
tion B3). Then we show how to further improve the running time of this
algorithm for DODGSON SCORE.

3.1 Definitions for the Algorithm

Let ¢ be the distinguished candidate and let Cy = (cq,¢a,. .., ¢,) denote the
list of candidates with positive deficit in an arbitrary but fixed order. Let
D = (dy,ds, ..., d,) be the corresponding deficit list.

The dynamic programming table is denoted by 7', each row corresponding to
avote v; fori = 1,...,n and each column corresponding to a partial deficit list
(dy,dy, ..., d,) with 0 < d; < dj for 1 < j < p. The entry T'(v;, (d}, ds, . . ., d}))
stores an integer equal to the minimum number of switches within the votes
{v; | 1 < j < i} such that in a resulting instance the deficits of the p dirty can-
didates are at most d,ds, . .., d;, respectively. If a deficit list (d}, dy, ..., d))
cannot be achieved by switching within the set of votes {v; | 0 < j < i}, we
set T'(vy, (dy, dy, ..., d))) := +o0.

Let switch(v;, ¢j) denote the minimum number of switches needed such that
in vote v; candidate ¢ defeats candidate ¢;. If ¢ already defeats c; in v;, then
switch(v;, ¢;) := 0. For a deficit list D' = (dy,dy,...,d,) and a subset of
indices S C {1,...,p}, we use D'+ S to denote a deficit list (ey, ..., e,) where
e :=d;+1forie S andd <d;, and e; := dj, otherwise. Analogously, for
the original deficit list D = (dy,...,d,), D — S denotes the list (fi,..., f,)
where f; :=d; — 1 ifi € S and f; := d;, otherwise. Let best(S,v;) denote the
candidate c; with j € S such that ¢; is liked better than each other candidate
in {c,. | r e S,r#j}in vote v;.

3.2 Algorithm

The dynamic programming algorithm for DODGSON SCORE is given in Fig-
ure [[l We assume that we already have the deficits of the candidates and that
the sum of the deficits of the dirty candidates is at most k as argued in Ob-
servation 2. In the initialization of the first row of the dynamic programming
table (Figure [lines 4-6), the algorithm considers all possible combinations
of deficit decrements that can be achieved by switches within the first vote,
and stores an integer equal to the minimum number of switches needed for
each of them. In the update (lines 7-11), the subset of votes {vy,...,v;—1} is
extended by a new vote v; and for the new subset {vy,...,v;} a solution for
all partial deficit lists is computed by combining a number of switches within
the new vote v; with information already stored in the table T'.

Lemma 1 The algorithm DodScore (Figure[d) is correct.

PROOF. Concerning the correctness of the initialization, note that the first
for-loop (lines 1-3) merely sets all table entries to “+o0c”. Hence it suffices to
show that DodScore assigns the correct number of switches to all entries of

7 Using “at most” in the definition of table entries, we do not have to consider
deficit lists (d},...,d),) where dj < 0 for some i. In this way, the case that an
optimal solution may decrease the deficit of a dirty candidate to a negative value is
also covered.

Algorithm DodScore

Input: Set of votes V' = {v,...,v,}, set of candidates C, set of dirty
candidates Cqy = {c1,...,¢,} C C, distinguished candidate ¢, deficit list
D = (dy,...,d,) of dirty candidates, positive integer k with Y>>0, d; <k
Output: Yes, if ¢ can become a Condorcet winner with at most k switches
Initialization:

01 foral]D’:(d’l,...,d;,) WithOSd;- <d;for0<j<p

02 fori=1,....n

03 T(v;, D) :== +00

04 for all S C{1,...,p}

05 if for each j € S candidate c¢; defeats c in v, then

06 T(vy, D — S) := switch(vy, best(S, v1))

Update:

07 fori=2,...,n

08 for all D' = (dy,...,d)) with 0 < dj < djfor 0 <j<p

09 forall S C {1,...,p}

10 if for each j € S candidate c; defeats ¢ in v; then
11 T(v;, D) := min{T (v;, D"), T(vi—1, D'+ S) + switch(v;, best(S, v;))}
Output:

12 if T(vy, (0,0,...,0)) < k then
18 return “Yes”

Fig. 1. Algorithm for DODGSON SCORE

the first row with partial deficit lists that can be achieved by switching within
the first vote v; (lines 4-6). Since in one vote the deficit of every candidate can
be reduced by at most one, it is sufficient to iterate over all possible subsets S
of {1,...,p} and to reduce the original deficits of the corresponding candidates
by one. Thereby, an entry can only become less than +oo if ¢ can be improved
upon all candidates with indices in S (line 5). Moreover, the minimum number
of switches is obviously the number of switches needed to improve ¢ upon the
candidate that is best in vote v; among the candidates ¢; with 57 € S, which
is given by switch (v, best(.S, v1)).

The computation of an entry T'(v;, D') with ¢ > 2 is based on the fact
that the decrement from D to D’ can be split into two parts. One part
needs to be achieved by switches in vote v; and the other one by switches
in votes wvq,...,v;—1. The minimum number of switches needed for the cor-
responding splitting possibilities is stored in T'(v;, D). Moreover, since the
switches in v; can decrease the deficit of one dirty candidate by at most one,
every possible way of splitting the deficit decrement can be represented by a
subset S of {1,...,p}. Each subset S has the meaning that, by the switches
in v;, the deficits of the dirty candidates with indices in .S should be decreased
by exactly one; the rest of the decrement from D to D’ has to be achieved
by switches in vy,...,v;_1. According to the definition of the table T, the
minimum number of switches to achieve the latter is stored in the already

computed (i — 1)th row of T', namely, in T'(v;—y, D’ + S5). As argued for the
initialization, switch(v;, best(S,v;)) returns the minimum number of switches
to decrease the deficit of the candidates with indices in S. Therefore, lines 9-11
of DodScore compute T'(v;, D) correctly.

Since DodScore computes the table T' correctly, we can conclude that a given
instance is a yes-instance if and only if 7'(vy,, (0,...,0)) < k (lines 12 and 13). O

Lemma 2 The algorithm DodScore (Figure) runs in O(4% - nk +nm) time.

PROOF. It is easy to see that the deficit list D can be computed in O(nm)
time by iterating over all votes and counting the deficits for all candidates.
Now, we consider the size of the dynamic programming table.

A deficit d; can have values ranging from 0 to d;. Hence, the number of partial
deficit lists, that is, the number of columns in the table, is [T%_;(d;+1). Clearly,
for a potential “yes”-instance, we have the constraints p < k and >¥_, d; <k
(see Observations 1 and 2). It is not hard to see that 2* is a tight upper bound
on [[?_;(d; + 1). Thus, the overall table size is n - 2.

For computing an entry T'(v;, D), the algorithm iterates over all 27 subsets
of {1,...,p}. For each such subset S, it computes the “distance” in v; between
the best of the dirty candidates with indices in .S and ¢, that is, the number of
switches needed to make ¢ better than this best dirty candidate. This distance
can be computed in O(k) time and, hence, the computation of T'(v;, D’) can
be done in O(2* - k) time. The initialization of T clearly needs O(2* - n) time.
Hence, table T can be computed in O(2F - n - 28 .k + 2% . n) = O(4* - nk)
time. 0O

By making use of a “monotonicity property” of the table, we can improve the
running time of DodScore as shown in the following theorem.

Theorem 1 DODGSON SCORE can be solved in O(2F - nk + nm) time.

PROOF. The improvement compared to Lemma [is achieved by replacing
the innermost for-loop (lines 9-11 in Figure[ll) of the update step which com-
putes a table entry and needs O(2* - k) time by an instruction running in time
linear in k.

For d € C\{c}, let S;(d) denote the set of the dirty candidates that are better
than the distinguished candidate ¢ but not better than the candidate d in

vote v;. Clearly, S;(d) is empty if d is worse than ¢ in v; and, otherwise, S;(d)
contains d. We replace lines 9-11 in Figure [ll by the recurrence

T(v;, D') := min {T(v, 1, D"+ Si(¢,)) + switch(v;, ¢,) }.

1<r<

To prove the correctness of the recurrence, on the one hand, observe that, for
every r with 1 < r < p, there exists a subset S C {1,...,p} satisfying the
if-condition in line 10 of DodScore such that S = S;(c,) and best(S,v;) = ¢,.
Thus,

min {T(vl 1, D'+ S) + switch(v;, best(S, v;))}

SC{1,...,p}
< min {T(vi_1, D" + Si(c,)) + switch(vs, ¢,) }
TSP

On the other hand, for every S C {1,...,p} satisfying the if-condition in
line 10, there exists an r with 1 < r < p such that S C S;(c.). For in-
stance, let r be the index of the candidate in S that is the best in v;; we
then have best(S,v;) = ¢, and, thus, switch(v;, best(S,v;)) = switch(v;, ¢,).
Moreover, from the definition of table entries, the following monotonicity of
the table T is easy to verify:

T(Ui,(dl,...,di,...,dp)) ZT(Ui,(dl,...,di—F1,...,dp))

Thus, from S C S;(c,) we conclude that T(v;, D' + S) > T(v;, D" + S;(c;)).
Clearly, S;(c,) € {1,...,p} and, by definition, S;(c,) satisfies the if-condition
in line 10. It follows that

min {T(v;_1, D' + Si(c,)) + switch(v;,) }

1<r<p

< Scr{mn {T(v;_1, D' + S) + switch(v;, best(S, v;))}.
..... D}

The time for computing a table entry in the improved version is clearly O(k):
Before looking for the minimum, we can compute S;(c,) for all 1 < r < p by
iterating one time over v;. Then, based on Lemma B, the overall running time
becomes O(2% - nk +nm). O

3.8 Allowing Ties

Sometimes it might be desirable to allow a voter to rank two or more candi-
dates equally. This leads to an election based on votes with ties. As noted by

10

Hemaspaandra et al. [T6], there are (at least) two different natural models on
how to generalize DODGSON SCORE to the case with ties. The models differ
in the “power” of one switch. In the first model, transforming a = b > ¢ into
¢ > a = b requires just one switch and in the second model this requires two
separate switches. The ranking and the winner versions remain ©5-complete
in both cases [16].

Formally, a vote with ties can be considered as a total order of disjoint sets of
candidates. To ease the presentation, we often write just “> ¢ >" instead of
((> {C} >77 .

Recall that in the case of ties a candidate c is a Condorcet winner if for every
other candidate d the number of votes in which c is strictly preferred to d is
higher than the number of votes in which d is strictly preferred to ¢. Hence,
the deficit of a candidate d # c is defined as Ny — N3+ 1, where N, is the
number of votes in which d defeats ¢ and N5 is the number of votes in which ¢
defeats d. In the following, we describe two switch operations, one for each
model. In both models a switch can now either break or build ties between
the distinguished candidate ¢ and other candidates.

For computing the Dodgson score only the relative order between the dis-
tinguished candidate ¢ and the other candidates is relevant. Hence, to keep
the models easy, we restrict them to the interesting case where each switch
involves the distinguished candidate.

In the first model the distinguished candidate can improve upon a whole subset
of candidates by one switch. More precisely, for an appropriate subset B C
C\{c}, we have one of the following two situations:

e “...>B>c>...": Such a vote can be transformed to “... > BU {c} >
...7 by applying one switch.
e “...>BU{c} > ...": Such a vote can be transformed to “... > ¢ > B >

... by applying one switch.

The problem of computing the Dodgson score for this model is denoted as
DobasoN TIE SCcore 1 (DTS1).

In the second model, the switch operation becomes less powerful, that is, the
distinguished candidate can only improve upon one candidate by one switch.
Here, one has to consider the following situations:

e “...> B >c¢>...": Such a vote can be transformed to “... > B\B’' >
B'U{c} > ...” by |B'| switches for any B’ C B.
o “...>BU{c}>...": Such a vote can be transformed to “... > (B\B’) U

{c} > B'...” by |B’| switches for any B’ C B.

11

The problem of computing the Dodgson score for this model is denoted as
DobpGSON TIE SCORE 2 (DTS2). The considered model is very general in
the sense that it allows to choose to improve the distinguished canidate only
upon a subset of equally ranked candidates and thus it is only “charged” to
pay for this subset. A reasonable special case of this model is to restrict B’ to
be idential with B, that is, to allow only to switch the distinguished candidate
with the whole subset. For this case, we can directly use the improved version
of the algorithm DodScore as described in the proof of Theorem [by treating
the whole set of tied candidates as one possibility. This yields an algorithm
with running time O(2% - nk + nm).

Note that for both models, a switch as defined for the case without ties can
be simulated by two switches.

Whereas DTS1 and DTS2 remain NP-complete (which easily follows from the
NP-completeness of the case without ties [I]), their parameterized complexity
differs. The problem DTS2 is fixed-parameter tractable while DTS1 is W[2]-
complete.

To show the fixed-parameter tractability of DTS2 one can use a slight modifi-
cation of algorithm DodScore from Figure [l However, for DTS2 we obtain a
slightly worse running time than for DODGSON SCORE without ties as given
in Theorem [I Since we do not have a total ordering of candidates in the votes,
we cannot make use of the monotonicity property employed in the proof of
Theorem [, thus, returning to the algorithm used for Lemma [II

Theorem 2 DODGSON TIE SCORE 2 can be solved in O(6* - nk +nm) time.

PROOF. We use a slight modification of algorithm DodScore (Figure [l) to
solve DTS2. In the DTS2 model, one switch can decrease the deficit of at
most one candidate by at most one. Thus, it holds that the sum of all deficits
is bounded by the number of total switches. In lines 05 and 10 of Figure [I],
we replace the phrase “c; defeats ¢” by “c does not defeat ¢;” to include
the possibility that ¢ and c; are tied. Next, we redefine the switch function
for the update and initialization steps (used in lines 06 and 11 of Figure [II).
Let v; = S1 > Sy > -+ > 5,1 > S, U{c} > ... denote an arbitrary vote
from V. Consider a non-empty subset S C {1,...,p} in the computation of the
entry T'(v;, D'). The set S has non-empty intersections with some of the can-
didate subsets S;,7 € {1,...,r}. Let S, denote the subset S;,7 € {1,...,r},
with smallest index such that U := S; NS is not empty. We distinguish two
cases. First, b = r. In this case, we only have to break the ties of ¢ with all
candidates from U. Hence, in this case, we can define

switch(v;, S) := |U]|

12

and do not need any further modifications. The second case is b < r. Here, we
also need to decrease the deficit of all candidates of .S by at least one. The way
to achieve this with a minimum number of switches is to switch ¢ so far that it
is tied with all candidates from U. This requires one switch for all candidates
in U U S, and two switches for all candidates from Uy.;., S;. Hence, in this
case, we set
switch(v;, S) .= [U| +|S:|+2-| |J Sjl-
b<j<r

Further, in this case we have to adapt the definition of D + S used in line 10
such that one adds two for all candidates from Uy, S;. For the initializa-
tion, one has to adapt the definition of D — S appropriately as well (used in
line 06). To have a sufficient initialization of the dynamic programming table,
here we initialize all table entries corresponding to candidates from Uy, S;
with decrease of the initial deficit by all combinations of one and two. It may
happen that in an optimal solution the distinguished candidate is further im-
proved upon a subset of S, in v;. This can be realized by trying all subsets
of S, and update the corresponding table entry. Altoghether, the computation
of an table entry T'(v;, D) can be done in O(3*k) time. Trying out all possible
subsets S C {1,...,p} and appropiate subsets S,, we obviously consider all
possible positionings of ¢ after some switches in a vote. Since we take the min-
imum number of switches over all these possibilities, the modified DodScore
algorithm works correctly. Since Observation 1 and Observation 2 still hold,
the running time bound follows similar to the proof of Lemma B taking into
account that an update step needs 3* - k time. O

In contrast to the fixed-parameter tractability of DTS2, DTS1 is W[2]-complete.
Intuitively, this may be explained by the fact that in case of DTS1 a single
edit operation can improve the distinguished candidate ¢ upon, in principle,
all other candidates.

Lemma 3 DoDGSON TIE SCORE 1 is W|2|-hard with respect to the param-
eter k.

PROOF. We employ a parameterized reduction from the W[2]-complete DOM-
INATING SET problem [I0]: Given an undirected graph G = (W, E) and a
positive integer k, the task is to decide whether there exists a dominating set
of size k, that is, a subset of vertices W/ C W with |W’'| < k such that every
vertex of W either belongs to W’ or has at least one neighbor in it.

The basic idea for the reduction is as follows. We associate a candidate with
every vertex of the graph. In a first set of votes, for every vertex i of the graph
we construct a vote such that the candidates that correspond to the vertices
of the closed neighborhood of ¢ are positioned better than the distinguished

13

candidate c; these vertices are ranked equally such that one can build a tie
between ¢ and all of them by one switch. Then, we add a second set of votes
of same size in which ¢ cannot improve upon any of the “vertex candidates”
with at most k switches. This is done by inserting dummy candidates. That
is, in total we achieve that for every vertex candidate the number of votes in
which it is worse than ¢ equals the number of votes in which it is better than c.
Then, the votes of the first set that are affected by switches correspond to the
vertices of a dominating set.

In the following, we give the formal construction. Given a DOMINATING SET
instance (G = (W, E), k), we construct a DTS1-instance (V, C, ¢, k) as follows:
The set of candidates consists of one candidate for every vertex, the distin-
guished candidate ¢, and 2k additional dummy candidates, that is, C' := {¢; |
1 <i <|W[}U{ctU{f;|1<j <2k} We denote the subset of candidates
that corresponds to the closed neighborhood of a vertex i by

Neli] = {c; [{i,j} € E} U{ai},
and, the set of remaining vertex candidates by
Neli] :== C\ (Neli U{c} U{f; [1<) <2k}).

We define the vote set V := V; U V4 as follows:

Vi:={Nc[i] > ¢> Ncli] > fox > -+ > fi | 1 <i < [W|} and
Vo= {Noli] > fi > - > fi > ¢> fo > - > fir1 > Noli] |
1<i<|W|-1}

UA{NC[IWI] > fox > -+ > foqa > > fie > --- > fi > Ne[[W]]}

Clearly, c already defeats all of the dummy candidates fi, ..., for. In addition,
consider an arbitrary vertex candidate ¢;. For every vote from V; in which ¢;
is better (worse) than c¢ there is a vote from V5 in which ¢; is worse (better)
than c. That is, we have to decrease the deficit of every vertex candidate by
at least one.

We show that the distinguished candidate ¢ can become the Condorcet winner
by k switches if and only if the DOMINATING SET instance has a solution of
size k.

“<": Given a dominating set W' of size k, we claim that applying exactly
one switch to each vote of V) that has its corresponding vertex in W’ is a
solution for the DTS1 instance. This claim is correct since W’ is a dominating
set and one switch in a vote v; € V] leads to a tie with ¢ and the whole closed
neighborhood of vertex i. Therefore, the deficits of all candidates are decreased
to at most zero after these switches.

14

“=": Given a solution S using k switches for the DTS1 instance, we can
assume that the votes in V5 are not affected by the switches in S. This as-
sumption is justified due to the fact that, by switching at most k times even
within one vote in V5, one can only improve upon dummy candidates. Further-
more, one switch within a vote in V] decreases the deficits of all candidates
that are better than c in this vote by one, since all these candidates are ranked
equally. Since in every vote from V; one can apply at most one switch, S af-
fects exactly k votes from V;. Since all vertex candidates have deficit 1, each of
them appears at least once better than c in the votes affected by S. Due to the
above construction, the set of vertices {i | v; € S} is obviously a dominating
set of size k in G. O

So far, we have proven the W/[2]-hardness of DTS1. It remains to show its
containment in W[2].

Lemma 4 DoODGSON TIE SCORE is contained in W[2] with respect to the
parameter k.

PROOF. By the fact that the number of switches is a lower bound for the
total switch cost, it suffices to show containment in W[2] with respect to the
number of switches as the parameter. More precisely, we show containment
in W[2] by giving a parameterized reduction to a variant of the k-WEIGHTED
CIRCUIT SATISFIABILITY (k-WCS) problem that defines W[2] [9]. The k-WCS
problem has as input a circuit and a positive integer k, and asks whether
it has a weight-k satisfying assignment (an assignment setting the values of
exactly k input gates to 1). Here, we use that a parameterized problem is in
W/[2] if it is parameterized reducible to k-WCS restricted to circuits satisfying
the following two conditions [9]:

(1) On every input-output path, the number of gates with unbounded fan-in
is at most two.

(2) The length of the longest input-output path is bounded by a function
only depending on the parameter.

Given an election (V, (), a distinguished candidate ¢, and a positive integer k,
we construct a corresponding Boolean expression E as follows. Intuitively,
the variables represent the positions that candidate ¢ can take by switching
within the set of votes. Let e; denote the number of switches needed such
that ¢ becomes the best ranked candidate in vote v;. Having a set of equally
ranked candidates, ¢ can improve with one switch upon all of them, and, in
this case, the “position” of ¢ is increased by one. In addition, we have k copies
of every variable that corresponds to a position in a vote. Thus, the set of
variables for E is

15

P=A{pli,j,s]|1<i<n, 1<j<e, and 1 <s <k}

A variable pli, j, s| is true means that the information that in vote v; one has
switched to position j is stored in copy s. For a vote v;, we use C(i,j) to
denote the set of candidates upon which ¢ improves with the jth switch in v;.

We construct £ = E; A Es A E3 A\ By as follows:

(1) The expression F; ensures that in each of the k copies of the positions
variables exactly one position variable is true in a satisfying assignment:

By = /\ A ((=pli, g, s) Apli', 37, 81) v (pli, 3, s) A =pli's 5, 8])).
s=14i or
J#5’
Herein, the second “A” quantifies over all 7,7/ € {1,...,n} and the
corresponding 7,7 € {1,...,¢;}.
(2) The expression Es ensures that at most one copy of a variable can be
true in a satisfying assignment:

E2 —/\ /\ 7' .]7 /\p[i,j,s'])
1,J s'#s
(3) To switch the distinguished candidate ¢ for the j-th time in vote v;, we
must have switched it 7 — 1 times in v; before. This is simulated by the
expression Fs as follows:

E3 = /\(_‘p[i>j>s]\/ \/ p[iuj_lasl])
7.] s SIE{L...,k}
i>1

(4) The most important part of the construction is to ensure that the deficit of
every candidate is decreased to zero or below zero. For any candidate ¢, €
C, let d, denote its deficit. Then, expression F, ensures that at least d,
variables pli, j, s| with ¢, € C(i,j) must be set to 1. Let S(k,r) denote
the set of all size-r subsets of {1,...,k}.

=NV AV plijsl

o €C S'€S(k,da) €S i,j with
c€C(4,5)

In FE,, the two innermost quantifications range over sets whose sizes are
bounded by functions depending only on k. Therefore, the Boolean expres-
sion E can be easily transformed into conjunctive normal form (as required
for the W[2]-characterization [9]), making use of the fact that the middle Or-
and And-quantifiers in E,; can be equivalently replaced by a Or- and And-
quantifiers with changed order.

16

Let the weight of a truth assignment denote the number of variables set to 1.
The following claim completes the proof.

Claim: Formula FE is satisfiable by a weight-k satisfying truth assignment if
and only if ¢ can be made a Condorcet winner by applying k switches.

“<": Given a set of k switches that make ¢ a Condorcet winner, construct a
weight-£ truth assignment as follows.

Number the switches from 1 to k and then set the “corresponding” variable
to true. That is, if the switch with number ¢ brings candidate ¢ in vote ¢ into
position j, then set pl[i, j, q| := true. The remaining variables with s = ¢ are
set to false.

As for every ¢ with 1 < ¢ < k we set exactly one variable pl[i, j, ¢ to true,
the expression Ej is true. Since every two distinct switches operate on distinct
votes or they move the distinguished candidate to distinct positions in the
same vote, the expression Ey is true. As the switches within one vote have
to be contiguous, Ej3 is true. Finally, for candidate ¢, we must have that c
improves upon ¢, in at least d, votes. For this reason, there must be a size-d,
subset of switches with ¢, € C(7,7), and Ej is true.

“=7": Given a weight-k satisfying truth assignment for E, construct a so-
lution for DTS1 by choosing the corresponding switches, that is, for every
variable pli, 7, s] that is true move ¢ in vote v; to position j. The expression F;
ensures that we apply exactly k switches, Ey ensures that every switch is
made only once, and FE3 ensures that in one vote all switches are contigu-
ous. Finally, E; makes sure that for every candidate the deficit is sufficiently
reduced. O

Combining Lemmas B and @ one arrives at the following.

Theorem 3 DoDGSON TIE SCORE 1 is W[2|-complete with respect to the
parameter k.

4 Young Score

In this section, we show that YOUNG SCORE and DUAL YOUNG SCORE
are W[2]-complete with respect to their corresponding solution size bounds I
and k, respectively. From a parameterized perspective DUAL YOUNG SCORE
appears to be more natural than YOUNG SCORE because for DUAL YOUNG
SCORE one may expect smaller parameter values.

17

For both problems, similar to DODGSON SCORE, it is helpful to consider a
deficit concept for a candidate d € C\{c} against the distinguished candi-
date ¢: Let Ny denote the number of votes from V' in which d defeats ¢, that
is, in which d is better positioned than c. Then, the Young deficit is defined
as Ng — (n — Ng).

We start with a W[2]-hardness-proof for DUAL YOUNG SCORE, giving two pa-
rameterized reductions: The first reduction is from the W[2]-hard RED BLUE
DoMmINATING SET (RBDS) [I0] to an intermediate problem, which is a vari-
ant of RED BLUE DOMINATING SET, and then the second one is from the
intermediate problem to DUAL YOUNG SCORE.

RED BLUE DOMINATING SET (RBDS)

Given: A bipartite graph G = (R U B, F), with R and B being the two
disjoint vertex sets, and an integer k£ > 0.

Question: Is there a subset D C R of size at most k& such that every vertex
in B has at least one neighbor in D?

The intermediate problem is defined as follows:

k/2-RED BLUE DOMINATING SET (k/2-RBDS)
Given: A bipartite graph G = (R U B, F), with R and B being the two
disjoint vertex sets, and an integer £ > 0.

Question: Is there a subset D C R of size at most k such that every vertex
in B has at least |k/2]| + 1 neighbors in D?

Lemma 5 k/2-RED BLUE DOMINATING SET is W/2/-hard.

PROOF. We give a parameterized reduction from RBDS. For an RBDS in-
stance (G = (BUR, E), k), the corresponding instance (G’ = (B'UR/, E'), k')
of k/2-RBDS is constructed as follows:

B':=BU/{b,},
R=RU{rj™ 1<) <k}u{r},
E=FEU{{br}*"}|be Band 1< j<k}

U{{bz, 72} } U {{bs, 7} } | 1 < j <k}, and
E =2k +1.

The following claim finishes the proof.

Claim: The considered RBDS-instance is a yes-instance if and only if the k/2-
RBDS-instance is a yes-instance.

“="": One can easily construct a solution for the k£/2-RBDS-instance by choos-

18

ing the corresponding vertices of the size-< k RBDS-solution D and addi-
tionally the k + 1 new red vertices. The size of the new solution then is at
most 2k + 1 and every blue vertex in B is dominated %k times by the new
red vertices and at least once by a vertex from D. The new blue vertex b, is
dominated by the k+1 new red vertices. Therefore, every vertex is dominated
at least k +1 = [£'/2] + 1 times.

“<”: Consider a size-< k' solution D of the k/2-RBDS-instance. Obviously, D
must contain r, and the other k new red vertices r°V,... 7" to domi-
nate b,. Therefore, all of the other blue vertices are dominated exactly k times
by ¢V, ..., rpe". Since every blue vertex has to be dominated at least | k'/2] +
1 = k + 1 times, the vertices in D \ {r,,rI*V, ..., 72"} dominate all other
blue vertices in B’ \ {b,} = B and, thus, the subset of R corresponding

to D\ {ry, mV, ..., "} is a size-< k solution of the RBDS-instance. O

Next, we give a parameterized reduction from k/2-RBDS to DUAL YOUNG
SCORE.

Lemma 6 DUAL YOUNG SCORE is W/2]-hard.

PROOF. Given a k/2-RBDS-instance (G = (BUR, E), k) with B = {by, ..., by, }
and R = {ry,...,r,}, we first consider the case that k is odd. The correspond-
ing DUAL YOUNG SCORE instance is constructed as follows. We set C' := {¢; |
b; € B} U{a,b,c}.

Let
Nc(Ti) = {Cj eC | {Ti,bj} € E}

and

Ne(ri) == C\ ({a,b,c¢} U Ne(ry)),
that is, the candidates in N¢(r;) correspond to the neighbors of r; in G
and N¢(r;) corresponds to the rest of the vertices in B. Construct three dis-
joint subsets of votes, Vi, V5, and Vj:

e The votes in V) correspond to the red vertices in R. For every red vertex r;,
add a vote v; to V; in which the candidates in N¢(r;) U {a,b} are better

than ¢ and the candidates in N¢(r;) are worse than ¢. More precisely,

Vi:i={b>a> Ng(r;) >c> Nc(r;) | 1 <i<n}.

Note that, here and in the following, if there is a set in a vote, then the
order of the elements in the set is irrelevant and can be fixed arbitrarily.

e The set V5 also contains n votes. These votes guarantee that in V; U V5 the
deficit of b is 2k — 2 whereas the deficit of each other candidate is zero.

19

Va:={Nc(r;) >c> Ne(r;)) >b>a|l1<i<n—k+1}

U{b> Ng(r;) >c> Neo(r)) >a|n—k+2<i<n}.

Later, it will become clear that the (2k — 2)-deficit of b will be used to argue
that all votes in a solution of a DUAL YOUNG SCORE instance have to come
from V.

e The set V3 consists of £ — 1 votes to adjust the deficits of @ and b so that
in V; UV, U V3 both a and b have a deficit of kK — 1 and all other candidates
have a deficit of 0. Let Cg := C'\{a, b, c}. The set V3 consists of |k/2] votes
with a > Cr > ¢ > b and |k/2] votes with a > ¢ > Cg > b.

Finally, the overall set V' of votes is V; U V5, U V3 and the upper bound for
the solution size of the DUAL YOUNG SCORE instance is set to k. The key
idea behind the above construction is that to reduce the (k — 1)-deficits of a
and b by deleting at most k votes, all solutions of the DUAL YOUNG SCORE
instance actually contain ezactly k votes from Vj. The reason for this is that
the votes in V] are the only votes whose deletion simultaneously reduces the
deficits of @ and b against c.

In the following, we show that ¢ can become the Condorcet winner by deleting
at most k votes if and only if there is a dominating set of size at most k for

the (G, k).

“=": Every solution V' of DUAL YOUNG SCORE must contain exactly k votes
from V; and, by the above construction, each vote in V; corresponds to a vertex
in R. Denote the corresponding subset of R by D. Since V' is a solution, every
candidate ¢; € (C'\ {a,b, c}) must be better than ¢ in at least |k/2] + 1 of
the votes in V. Therefore, choosing the corresponding red vertices to form a
dominating set implies that every blue vertex is dominated at least |k/2]| + 1
times.

“«<": Since every dominating set D C R of size at most & dominates each blue
vertex at least |k/2] 4 1 times, we can easily extend D to a dominating set D’
of size exactly k by adding k — | D| arbitrary red vertices to D. Since every red
vertex corresponds to a vote from Vi, we thus obtain a size-k subset V' of V
corresponding to D’. According to the above construction of V;, the removal
of V' results in a new vote set where the deficits of a and b are both —1 and
the deficits of all other candidates are < —1. Therefore, ¢ can become the
Condorcet winner by deleting exactly k& votes.

Recall that in the definition of V3 it is decisive that k is odd. Now, we consider
the case that k is even and give a reduction from DUAL YOUNG SCORE with an
odd k to DUAL YOUNG SCORE with an even k. Given a DUAL YOUNG SCORE
instance (V, C, ¢, k) with k£ being odd, we add a new vote v to V' that has the

20

form: “C'\ {c} > ¢” to get the new vote set V'. Then (V',C, ¢,k := k + 1)
is a DUAL YOUNG SCORE instance with k&’ being even. The correspondence
between the solutions is easy to achieve. O

To prove that DUAL YOUNG SCORE is W|[2]-complete, it remains to show
its containment in WI[2]. To this end, we construct a parameterized reduction
from DUAL YOUNG SCORE to the following W][2]-complete problem [5] also
arising in the context of election systems:

OPTIMAL LOBBYING

Given: An nxm 0/1-matrix M, a length-m 0/1-vector x, and an integer k >
0.

Question: Is there a choice of at most k& rows from M such that the selected
rows can be edited in a way that, in the resulting matrix, it holds that if z
has a 0 in its ¢th entry, then there are more 0’s than 1’s in the ¢th column,
and if z has a 1 in its ith entry, then there are more 1’s than 0’s in the ith
column?

By editing a row, we mean to change some 1’s in the row to 0’s and/or to
change some 0’s to 1’s. We call x the target vector.

Lemma 7 DUAL YOUNG SCORE is in W/[2].

PROOF. We give a parameterized reduction to OPTIMAL LOBBYING. We
focus on instances (V,C,c, k) of DUAL YOUNG SCORE with n — 3k > 0
where n := |V/|. The instances with n — 3k < 0 can be trivially solved by
enumerating all size-< k subsets of V', which can be done in O((?’kk) -|C|) time.
We rename the candidates such that C' = (¢q, ¢, ..., €1,) With ¢, = c.

The matrix of the OPTIMAL LOBBYING instance consists of two submatrices.
First, observe that in the DUAL YOUNG SCORE instance the exact ordering of
the candidates in a vote is irrelevant, the key point here concerns the relative
positions of the candidates compared to the distinguished candidate c¢. There-
fore, one can easily transform a vote into a length-(m — 1) 0/1-vector where
each candidate from C'\ {c} has an entry. If a candidate ¢; for 1 <i <m—11is
better than ¢ in the vote, then set the i¢th entry of the vector to 0; otherwise,
set it to 1. Putting all these binary vectors together, one obtains an n x (m—1)
0/1-matrix. Adding an all-0 column to this matrix as the mth column results
in the first submatrix M; of the OPTIMAL LOBBYING instance to be con-
structed.

Second, construct a size-(n — 2k + 1) x m matrix M, as follows. Set all entries
of the mth column of M, to 1’s. In each of the other m — 1 columns, set the
first [(n — 3k)/2] entries to 1’s and the rest to 0’s.

21

Finally, combine M; and M, by putting them on top of each other. The target
vector x is set to an all-1 vector. Moreover, set the solution size bound of the
OPTIMAL LOBBYING instance equal to k. It remains to show the equivalence
between the solutions of the original DUAL YOUNG SCORE instance and the
constructed OPTIMAL LOBBYING instance.

“=": Let S be a size-k solution of DUAL YOUNG SCORE. Choose the set S’
of corresponding rows from M;. The claim is that S’ is a solution of the
OpPTIMAL LOBBYING instance. This means that, after editing all 0’s in the
rows from S’ to 1’s, every column of the resulting matrix has more 1’s than 0’s,
“justifying” the target vector. Obviously, the claim is true for the mth column,
since the mth column has n — 2k + 1 1-entries in M5 and only 0-entries in Mj.
In particular, the rows from S’ have 0’s in the mth column. Therefore, after
editing the 0’s in the rows from S’, one gets exactly n —k+1 1’'s and n — k
0’s in the mth column.

Next, consider the ith column with 1 < ¢ < m — 1. For a submatrix M’
of M let #;(M'[i]) denote the number of 1’s in the ith column of M’ and
let #0(M'[i]) denote the number of 0’s in the ith column of M’. Let M;\S’
denote the submatrix M; without the rows of 5.

As the distinguished candidate c is a Condorcet winner after deleting S, it must
be better than ¢; in more than half of the votes of V\\S. Thus, by construction,
we have

(NS > {”g’fJ i1

Moreover, we additionally get k l-entries by the edited entries of S’ and in
M, we have [(n — 3k/2)] l-entries. Thus, for the total number of 1’s in the
matrix M” resulting from editing S’ in M, one gets that

n — 3k
2

n—=k

#1(M"[i])z{ J+1+k+{ —‘:n—k+1.

Since the number of rows of the matrix M” is 2n — 2k + 1, one gets that

#Ho(M"[i)) =2n—2k+1—(n—k+1)=n—k < #,(M[]).

Hence, the target vector (1,...,1) is realized and editing S’ in the considered
way gives a solution for the OPTIMAL LOBBYING instance.

“<": In order to validate the all-1 target vector for the mth column, all
size-k solutions S’ of the OPTIMAL LOBBYING instance contain only rows
from M;. Hence, one can easily construct a size-k subset S C V' by choosing
the corresponding votes. To show that S is a solution of the DUAL YOUNG

22

SCORE instance, one needs to show that for every candidate ¢; with 1 <1 <
m—1,in V' := V\S the distinguished candidate c is better than ¢; in at least
|(n—k)/2] + 1 votes, that is, in M;\ S’ there must be at least |(n—k)/2] +1
entries of the i’th column that are set to 1.

Assume that #,(M\S'[i]) < [(n — k)/2]. By editing the entries of S’, the
number of rows which contain 1’s can be increased at most by k. Thus, in
total,

—k — 3k
O < |2 e 225
where M" is the matrix resulting from editing S’ in M.

Since, there are 2n — 2k +1 rows in total, #o(M"[i]) must be at least n —k+1,
and, therefore, #o(M"[i]) > #1(M"[i]). As a consequence, S” cannot be a so-
lution for the OPTIMAL LOBBYING instance with target vector (1,...,1). O

Combining Lemmas [l and [, we arrive at the main result of this section.
Theorem 4 DUAL YOUNG SCORE is W/[2]-complete.

Using a similar reduction as the one in the proof of Lemma [(containment in
W[2]) and a parameterized version of the non-parameterized reduction from
the W[2]-hard SET PACKING problem to YOUNG SCORE as presented by
Rothe et al. [25, Theorem 2.3] (W[2]-hardness), we can also derive the following
theorem.

Theorem 5 YOUNG SCORE is W[2/-complete.

5 Conclusion and Outlook

Probably the most important general observation deriving from our work is
that Dodgson and Young elections behave differently with respect to the pa-
rameter “number of editing operations”. Whereas for Dodgson elections we
achieve fixed-parameter tractability, we experience parameterized intractabil-
ity in case of Young elections. This stands in sharp contrast to traditional com-
plexity analysis, where both election systems appear as equally hard [T/T6/25],
and complements results on polynomial-time approximability [3]. Further-
more, we found that the complexities of Dodgson elections allowing ties be-
tween the candidates strongly vary (fixed-parameter tractability vs W[2]-
completeness) depending on the cost model for switching ties. Again, in the
standard complexity framework these two cases cannot be differentiated be-
cause both lead to NP-completeness.

23

We conclude with some specific open questions directly arising from our work.
Regarding DODGSON SCORE, it would be interesting to investigate the power
of polynomial-time data reduction and the existence of (small) problem ker-
nels (see [I4] for a survey on problem kernels which play a key role in param-
eterized algorithmics). Moreover, there are open questions regarding other
parameterizations (see also Table [l): Bartholdi et al. [T] gave an integer linear
program which implies the fixed-parameter tractability of DODGSON SCORE
with respect to the parameter “number of candidates” (also see [20)] for further
results in this direction). Unfortunately, the corresponding running times are
extremely high and a more efficient combinatorial algorithm would be desir-
able; the same holds for YOUNG SCORE. The parameterized complexity of
DODGSON SCORE with respect to the parameter “number of votes” remains
open—we conjecture W|1]-hardness based on some preliminary evidence. Fi-
nally, it would be interesting to study typical values of Dodgson scores under
reasonable distributions for preference profiles. Thus, a subject of study could
be to find out what the probability of having a candidate with “low” Dodg-
son score is. This would help to better assess the practical potential of the
described fixed-parameter algorithm for DODGSON SCORE.

Acknowledgement. We thank Jorg Vogel (Jena) for various valuable point-
ers to the literature and inspiring discussions. Moreover, we are grateful to
three anonymous referees of Information and Computation whose careful and
insightful reports helped to significantly improve the presentation and clarify
inconsistencies.

References

[1] J. Bartholdi III, C. A. Tovey, and M. A. Trick. Voting schemes for which it can
be difficult to tell who won the election. Social Choice and Welfare, 6:157-165,

1989. B, B B B 02 23, 241

[2] N. Betzler, M. R. Fellows, J. Guo, R. Niedermeier, and F. A. Rosamond. Fixed-
parameter algorithms for Kemeny rankings. Theoretical Computer Science,
2009. To appear.

[3] I. Caragiannis, J. A. Covey, M. Feldmann, C. M. Homan, C. Kaklamanis,
N. Kramikolas, A. D. Procaccia, and J. S. Rosenschein. On the approximability
of Dodgson and Young elections. In Proc. of 20th SODA, pages 1058-1067.
SIAM, 2009. @

[4] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduction to

computational social choice (invited paper). In Proc. 33rd SOFSEM, volume
4362 of LNCS, pages 51-69. Springer, 2007. [

24

[5] R. Christian, M. R. Fellows, F. A. Rosamond, and A. M. Slinko. On complexity
of lobbying in multiple referenda. Review of Economic Design, 11(3):217-224,
2007. B, B 21

[6] M. Condorcet. Essai sur Papplication de ’analyse & la probabilité des décisions
rendues a la pluraliste des voix. Facsimile reprint of the original published in
Paris, 1785, by the Imprimerie Royale, 1972.

[7] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates
hard to manipulate? Journal of the ACM, 54(3):1-33, 2007.

[8] C. Dodgson. A method of taking votes on more than two issues. Pamphlet
printed by the Clarendon Press, Oxford, and headed “not yet published”, 1876.

[9] R. G. Downey and M. R. Fellows. Threshold dominating sets and an improved
version of W|2|. Theoretical Computer Science, 209:123-140, 1998. [[5]

[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
B 066D

[11] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. A richer
understanding of the complexity of election systems. In S. Ravi and S. Shukla,
editors, Fundamental Problems in Computing: Fssays in Honor of Professor
Daniel J. Rosenkrantz, chapter 14, pages 375-406. Springer, 2008. [I,

[12] M. R. Fellows. Personal communication, October 2007.

[13] J. Flum and M. Grohe. Parameterized Complezity Theory. Springer, 2006. 2
B

[14] J. Guo and R. Niedermeier. Invitation to data reduction and problem
kernelization. ACM SIGACT News, 38(1):31-45, 2007.

[15] E. Hemaspaandra and L. A. Hemaspaandra. Dichotomy for voting systems.
Journal of Computer and System Sciences, 73(1):73-83, 2007.

[16] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Exact analysis of
Dodgson elections: Lewis Caroll’s 1876 voting system is complete for parallel
access to NP. Journal of the ACM, 44(6):806-825, 1997. B, [0, [T,

[17] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Anyone but him: The
complexity of precluding an alternative. Artificial Intelligence, 171(5-6):255—
285, 2007.

[18] C. M. Homan and L. A. Hemaspaandra. Guarantees for the success frequency
of an algorithm for finding Dodgson-election winners. Journal of Heuristics,
2007. @

[19] H. W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8:538-548, 1983.

[20] J. C. McCabe-Dansted. Approximability and computational feasibility of
Dodgson’s rule. Master’s thesis, University of Auckland, 2006. Bl B,

25

[21] J. C. McCabe-Dansted, G. Pritchard, and A. Slinko. Approximability of
Dodgson’s rule. Social Choice and Welfare, 31(2):311-330, 2008. H

[22] I. McLean and A. Urken. Classics of Social Choice. University of Michigan
Press, Ann Arbor, Michigan, 1995.

[23] R. Meir, A. D. Procaccia, J. S. Rosenschein, and A. Zohar. The complexity of
strategic behavior in multi-winner elections. Journal of Artificial Intelligence
Research, 33:149-178, 2008.

[24] R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford University
Press, 2006. B B,

[25] J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the winner problem
for Young elections. Theory of Computing Systems, 36:375-386, 2003. B, B,

[26] H. P. Young. Extending Condorcet’s rule. Journal of Economic Theory, 16:335—
353, 1977. A B A

[27) M. Zuckerman, A. D. Procaccia, and J. S. Rosenschein. Algorithms for the
coalitional manipulation problem. Artificial Intelligence, 173(2):392-412, 2009.

26

	Introduction
	Preliminaries
	Dodgson Score
	Definitions for the Algorithm
	Algorithm
	Allowing Ties

	Young Score
	Conclusion and Outlook
	References

