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Abstract

We present empirical results on computing optimal dominating sets in networks by means
of data reduction through efficient preprocessing rules. Thus, we demonstrate the use-
fulness of so far only theoretically considered data reduction techniques for practically
solving one of the most important network problems in combinatorial optimization.
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1 Introduction

Domination in networks is one of the most important problems in combinatorial optimiza-
tion. The underlying NP-complete decision problem Dominating Set is defined as fol-
lows [Garey and Johnson, 1978]:

Input: An undirected graph (network) G = (V, E) and a positive integer k.

Question: Does G have a dominating set of size at most k, i.e., a subset V ′ ⊆ V of vertices
such that every vertex in V \ V ′ is adjacent to some vertex in V ′?

The corresponding optimization problem is to determine a dominating set of minimum size.
According to a 1998 survey [Kratsch, 1998], there were already more than 200 research pa-
pers published on the algorithmic complexity of domination and related network parame-
ters and this number continues to grow. A two-volume book has been published on dom-
ination in graphs [Haynes et al., 1998b, Haynes et al., 1998a]. The interest in domination
ranges from more fundamental research (e.g., [Alber et al., 2002, Fomin and Thilikos, 2003,
Haynes et al., 2002]) to more applied work (e.g., [Sanchis, 2002, Wan et al., 2003, Weihe, 1998]).
In many of the applications, variants of the above given problem are studied. The basic ap-
plication scenario for domination problems comes from facility location tasks. Intuitively, one
might think of the vertices of a minimum dominating set as the most central or most impor-
tant points of a given network. Besides communication and related networks, other applica-
tions arise from voting situations and biological and social network analysis [Roberts, 1979,
Valente et al., 2003].

In this piece of work, we empirically investigate the power of data reduction towards op-
timally1 solving the domination problem on various types of networks. To this end, we take
a closer look at and extend a recently introduced theoretical framework of data reduction
rules [Alber et al., 2004]. We implemented and further enriched these rules and we applied
them to several random network topologies and experimental data from the literature and
various web sites [Chen et al., 2002, Jin et al., 2001, Medina et al., 2001, Sanchis, 2002]. We
show that our data reduction framework in many cases leads efficiently to optimal solutions for
realistic networks with up to ten thousands of vertices and edges. As a general rule of thumb,
one might say that our data reduction rules usually perform well on sparse networks such as
those modeling Internet connectivity. Mostly, the original input instances were significantly
reduced to small “hard problem kernels.” These remaining networks, usually greatly reduced
in size, then can be the starting point for any other algorithmic approach, ranging from exact
over approximation to heuristic algorithms. Moreover, we show how our data reduction rules
can also be adapted in order to work for directed networks.

1We mention in passing that Dominating Set is hard to approximate. The best known approximation
factor achievable by a polynomial-time algorithm is Θ(log n) [Feige, 1998]. Moreover, observe that in fact our
reduction rules to be presented are suitable for solving the optimization problem, not only the decision version
as stated above.
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2 Algorithmic Approach: Data Reduction Rules

In what follows, we describe various polynomial-time data reduction rules for the Dominating
Set problem. The idea is to apply the reduction rules over and over again until no further rule
will apply. These reduction rules have in common that they explore the local structure of a
given network. Depending on this structure, we decide whether a rule is applicable and, if so,
the application of a reduction rule may have the following two effects:

1. Determine vertices that can be chosen for an optimal dominating set.

2. Reduce the network by removing edges or vertices.

It is important to note that whenever vertices or edges are removed from the current instance,
this will not affect the size of a minimum dominating set. Additionally, if we decide to choose a
vertex to belong to the optimal dominating set we seek for, we may as well remove this vertex
from the network and mark all neighbors as being already dominated. Hence, we are left with
an instance in which some vertices are already dominated (but still are possible candidates for
domination). This brings us to the following generalized problem Annotated Dominating
Set.

Input: A black-and-white network G = (B∪W, E), i.e., a network with a set of black vertices B

and white vertices W , and a positive integer k.

Question: Is there a V ′ ⊆ B ∪ W with |V ′| ≤ k such that all black vertices are dominated?

We can use this more general model to express an instance in which some vertices (more
precisely: the white vertices) are assumed to be already dominated. Initially, the input instance
of Dominating Set delivers all vertices set black.

2.1 Basic Data Reduction Rules

We revisit two basic reduction rules that were first used in [Alber et al., 2004] in order to show
that Dominating Set restricted to planar networks admits a so-called linear problem kernel.2

The presentation in [Alber et al., 2004], however, purely focuses on the theoretical aspect of
problem kernel reduction. Here, in contrast, we will adapt the reduction rules in order to make
them applicable for practical purposes. In particular, we will reformulate the rules such that
we can deal with the more general Annotated Dominating Set problem. The correctness
of the following reduction rules is not hard to prove (see [Alber et al., 2004]).

Neighborhood of a single vertex. Consider a vertex v ∈ B ∪ W of the given black and
white network G = (B ∪ W, E). We partition the vertices of the open neighborhood N(v) :=
{ u ∈ B ∪ W | {u, v} ∈ E } of v into three different sets:

2E.g., in [Alber et al., 2004] it is shown with the help of these reduction rules that every planar network G
can be transformed in polynomial time into an instance G′, such that G has a dominating set of size k if
and only if G′ has a dominating set of size k and the size of G′ is upper-bounded by c × ds(G′), where c is
some constant, and ds(G′) is the size of an optimal dominating set in G′. Further enhancements can be found
in [Chen et al., 2005].
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Figure 1: The left-hand side shows the partitioning of the neighborhood of a single vertex v into the

sets Nexit(v), Nguard(v), Nprison(v). Note that the “coloring” in this figure does not refer to the colors

black and white of the given network. The right-hand side shows the partitioning of the common

neighborhood of a pair of vertices v,w into the sets Nexit(v,w), Nguard(v,w), Nprison(v).

• the “exit vertices” Nexit(v), through which we can “leave” the closed neighborhood N [v] :=
N(v) ∪ {v},

• the “guard vertices” Nguard(v), which are neighbors of exit-vertices, and

• the “prisoner vertices” Nprison(v), which are not direct neighbors of an exit vertex.

More formally, using N [v] := N(v) ∪ {v}, we define

Nexit(v) := { u ∈ N(v) | N(u) \ N [v] 6= ∅ }, 3

Nguard(v) := { u ∈ N(v) \ Nexit(v) | N(u) ∩ Nexit(v) 6= ∅ },

Nprison(v) := N(v) \ (Nexit(v) ∪ Nguard(v)).

An example which illustrates the partitioning of N(v) into the subsets Nexit(v), Nguard(v),
and Nprison(v) can be seen in the left-hand diagram of Fig. 1.

It is clear that a black vertex in Nprison(v) can only be dominated by vertices from {v} ∪
Nguard(v)∪Nprison(v). Since v will dominate at least as many vertices as any other vertex from
Nguard(v) ∪ Nprison(v), it is safe to place v into the optimal dominating set we seek for.

Main Rule 1 If Nprison(v)∩B 6= ∅ for v ∈ B ∪W , then it is optimal to choose v to belong to
the dominating set:

• remove v from G and color all neighbors of v white, and

• remove Nguard(v) and Nprison(v) from G.

Neighborhood of a pair of vertices. Similar to Rule 1, we explore the union of the
neighborhoods N(v, w) := N(v) ∪ N(w) of two vertices v, w ∈ V . Analogously, we now par-
tition N(v, w) into three disjoint subsets Nexit(v, w), Nguard(v, w), and Nprison(v, w). Setting
N [v, w] := N [v] ∪ N [w], we define

Nexit(v, w) := { u ∈ N(v, w) | N(u) \ N [v, w] 6= ∅ },

Nguard(v, w) := { u ∈ N(v, w) \ Nexit(v, w) | N(u) ∩ Nexit(v, w) 6= ∅ },

Nprison(v, w) := N(v, w) \ (Nexit(v, w) ∪ Nguard(v, w)).

3For two sets X , Y , where Y is not necessarily a subset of X , we use the convention that X \ Y := {x ∈ X :
x /∈ Y }.
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The right-hand diagram of Fig. 1 shows an example which illustrates the partitioning
of N(v, w) into the subsets Nexit(v, w), Nguard(v, w), and Nprison(v, w).

Our second reduction rule—compared to Rule 1—is slightly more complicated, but it is
based on the same principle: We try to detect an optimal domination of the black prisoner
vertices Nprison(v, w) ∩ B in our local structure N(v, w). It is clear that a black vertex in
Nprison(v, w) can only be dominated by vertices from {v, w} ∪ Nguard(v, w) ∪ Nprison(v, w). The
following rule determines cases in which it is safe to choose one of the vertices v or w (or both)
to belong to the optimal dominating set we seek for. The correctness of this reduction rule is
not hard to prove (see [Alber et al., 2004]).

Main Rule 2 Consider v, w ∈ V (v 6= w) and suppose that Nprison(v, w) ∩ B 6= ∅. Suppose
that Nprison(v, w) ∩ B cannot be dominated by a single vertex from Nguard(v, w) ∪ Nprison(v, w).

Case 1 If Nprison(v, w) ∩ B can be dominated by a single vertex from {v, w}:

(1.1) If Nprison(v, w)∩B ⊆ N(v) as well as Nprison(v, w)∩B ⊆ N(w), then it is optimal
to choose v or w (or both), but the decision for one of these choices cannot yet be
made, hence:

• as a gadget we add three new black vertices z, z′, z′′ and six new edges {v, z}, {w, z},
{v, z′}, {w, z′}, {v, z′′}, {w, z′′} to G and

• remove Nprison(v, w) and Nguard(v, w) ∩ N(v) ∩ N(w) from G.

(1.2) If Nprison(v, w) ∩ B ⊆ N(v), but not Nprison(v, w) ∩ B ⊆ N(w), then it is optimal
to choose v:

• remove v from G and color all neighbors of v white and

• remove Nprison(v, w) and Nguard(v, w) ∩ N(v) from G.

(1.3) If Nprison(v, w) ∩ B ⊆ N(w), but not Nprison(v, w) ⊆ N(v), then it is optimal to
choose w: proceed as in (1.2) with roles of v and w interchanged.

Case 2 If Nprison(v, w) cannot be dominated by a single vertex from {v, w}, then it is optimal
to chose both v and w:

• remove v and w from G and color all their neighbors white and

• remove Nprison(v, w) and Nguard(v, w) from G.

It is not hard to see that Reduction Rules 1 and 2 lead to an optimal dominating set
and they can be carried out in polynomial time; more precisely, it can be shown that the
application of Rule 1 and Rule 2 takes O(|V |3) and O(|V |4) time in the worst case, respectively
(see [Alber et al., 2004]).4 Our basic reduction then processes the graph by choosing all possible
(pairs of) vertices until no rule is applicable any more. Observe that for efficiency reasons, one
prefers to apply Rule 1 as long as possible and afterwards continues with Rule 2. It may happen,
then, that after Rule 2 again Rule 1 applies due to the new graph structure caused by Rule 2.

4We remark that these running times are pure worst-case estimates and turn out to be much better on
average in our experimental studies. In particular, for practical purposes it is important to see that Rule 2 can
only be applied for vertex pairs that are at distance at most three. Also, using elaborate algorithmic techniques
an improvement of the worst-case complexity of the rules seems possible.
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Figure 2: Illustration of the settings in which Simple Rules 1, 2, 3, and 4 apply. Grey vertices may

be either black or white.

2.2 Further Data Reduction Rules

The original versions of the above two data reduction rules turned out to be sufficient for
theoretical purposes, i.e., they were sufficient for proving a linear problem kernel on planar
networks [Alber et al., 2004]. Note that, so far, a network which consists of white vertices
only will not be reduced any further. The following rules, which were basically introduced
in [Alber et al., 2001] as a tool in the theoretical analysis of a search tree algorithm for Dom-
inating Set on planar networks, will also cover some further, easy cases. Notably, they lead
to significant further improvements in our experimental analysis to follow.

Simple Rule 1 Delete edges between white vertices.

Simple Rule 2 Let u be a white vertex of degree at most 1. Then, delete u.

Simple Rule 3 Let u be a white vertex of degree 2, with two black neighbors u1 and u2.

(3.1) If u1 and u2 are connected by an edge, then delete u.

(3.2) If u1 and u2 are connected via a third (black or white) vertex u3, then delete u.

Simple Rule 4 Let u be a white vertex of degree 3, with three black neighbors u1, u2, and u3.
If the edges {u1, u2} and {u2, u3} are present in G (and possibly also {u1, u3}), then delete u.

Figure 2 illustrates the various settings where these rules apply. It is not hard to verify that
all four reduction rules are correct.

2.3 Dealing with Directed Dominating Set

In several applications we have to deal with directed networks. Here, a vertex v is dominated iff
it is in the dominating set or if there is an arc (u, v) (i.e., v is an outgoing neighbor of u) and u

is in the dominating set. In order to cope with such settings, we here describe a transformation
from Directed Dominating Set to (undirected) Annotated Dominating Set.

Let G = (V, A) be an instance of Directed Dominating Set. Then we construct an
undirected black-and-white network G′ = (B ∪ W, E) as follows:

B := {u′ | u ∈ V }, W := {u′′ | u ∈ V }, and

E :=
{

{u′, u′′} | u ∈ V
}

∪
{

{u′′, v′}, {u′′, v′′} | (u, v) ∈ A
}

.

In other words, every vertex u in G is duplicated with a black copy u′ (which enforces
that u needs to be dominated) and a white copy u′′ (which simulates the choice of u to belong
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to a dominating set). We add (undirected) edges connecting u′′ with u′ and with all outgoing
neighbors of u in the directed network.

It is easy to see that G admits an optimal directed dominating set of size k if and only
if G′ admits an optimal annotated dominating set of size k: Suppose that D is an optimal
dominating set in G, then D′′ := {u′′ | u ∈ V } is an optimal dominating set in G′. Conversely,
suppose that D′ is an optimal dominating set in G′. Since D′ is assumed to be optimal and
since in G′ we have N [u′] ⊆ N [u′′], we may assume that D′ ∩ {u′ | u ∈ V } = ∅ for all u ∈ V

(otherwise we might interchange u′ with u′′). But then D′ induces a directed dominating set
D := {u | u′ ∈ D′} for G.

Clearly, in order to find an optimal dominating set for a directed graph G, we can use
the above transformation5 and then apply our undirected reduction rules to the transformed
instance G′.

3 Experimental Results

We tested our data reduction framework on random planar networks and various network
data provided in the literature and publically available on the web. Among the publically
available networks, we firstly investigate networks obtained from (Internet) topology gener-
ators (Inet, BRITE) [Jin et al., 2001, Medina et al., 2001] and networks of autonomous sys-
tems [Chen et al., 2002]. Besides many others, one possible interest in computing small dom-
inating sets in Internet networks might be the placement of time servers (for NTP protocol
synchronization). Note that a dominating set in the Internet topology denotes a minimum
number of locations from which the whole network can be reached quickly by a single link (for
instance, to supply each node with the current time signal). Secondly, we turn our attention to
a network generated from the field of biochemistry: We consider a protein-protein interaction
network generated by using the database BIND [Bader et al., 2001]. And thirdly, we will have
a look at three examples of directed networks (an HTML network and two food web networks
from biology). All our experiments have been run on a 2.4 GHz Linux AMD Athlon 64 3400+
PC with 1 GB main memory. The code has been implemented in C++ using the algorithm
library LEDA [Mehlhorn and Näher, 1999].

Random planar networks. We start our experimental analysis with combinatorial random
planar networks. These networks have been generated with the standard function provided by
the algorithm library LEDA [Mehlhorn and Näher, 1999].6 More precisely, we created three
sample sets of 100 random planar networks each, containing instances with 500, 1500, and 4000
vertices. The main reason for restricting ourselves to planar networks (which might be of less
“real” practical interest than the other investigations to follow) is that the original reduction
rules were defined and analyzed for planar networks [Alber et al., 2001, Alber et al., 2004].
Observe that the afterwards considered network instances as provided by Internet topology

5We remark, however, that the given transformation is not planarity-preserving.
6For each instance with n vertices, first a “maximal planar network” with 3n−6 edges is randomly generated,

then a number m between n − 1 and 3n − 6 is randomly chosen and all but m edges are removed from
the network. We remark that this method does not generate graphs according to the uniform distribution
(see [Mehlhorn and Näher, 1999] for details).
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generators etc. clearly are non-planar. Our main goal here is to give a first impression of the
strength of the data reduction rules. We also demonstrate that adding the Simple Rules from
Section 2.2 to the Main Rules from Section 2.1 really pays off—from a purely theoretical point
of view the Simple Rules are superfluous. In addition, here we study the effects of each single
rule and their interplay which—by “cascading effects”—greatly improves the obtained results.

The potential of the aforementioned reduction rules was tested individually. We ran a series
of tests using Rule 1 only, using Rule 2 only, using a combination of Rule 1 and Rule 2, and,
finally, using Rules 1 and Rule 2 together with the four Simple Rules.

For each test run, we measured the following figures:

• # vertices removed: the number of vertices removed by the data reduction;

• # edges removed: the number of edges removed by the data reduction;

• # vertices for DS found: the number of vertices that could be determined to be in an
optimal dominating set;

• the time in seconds needed in order to reduce the network with respect to the given set
of rules.

The results of the tests are summarized in Table 1. Using the combination of Rules 1
and 2, as they were used to prove the linear problem kernel, we may say that, in average over
100 networks each time,

• more than 77% of the vertices and

• more than 87% of the edges

were removed from the network. Both rules together determined a very high percentage (in
average, more than 85%) of the vertices of an optimal dominating set—seemingly independent
of the size of the input networks. The overall running time for the reduction ranged from less
than one second (for small network instances with 500 vertices) to around 7 seconds (for larger
network instances with 4000 vertices). Surprisingly, using Rule 1 or Rule 2 alone already
resulted in a very powerful data reduction. In both cases, in average, more than 70% of
the vertices could be removed from the network. Clearly, reducing a network with respect to
Rule 1 is less time-consuming than reducing a network with respect to the more complex Rule 2.
Moreover, Rule 1 seemed to be stronger than Rule 2 in the detection of vertices of an optimal
dominating (in average, 78% compared to 69%). Conversely, we noticed a subtle tendency that
Rule 2 removes more edges compared to Rule 1 (in average, 87% compared to 80%).

Finally, enriching Rules 1 and 2 with the four Simple Rules led to an extremely powerful
data reduction on our set of random instances. Most interestingly, the combination of these
rules removed, on average,

• more than 99.2% of the vertices and

• more than 99.5% of the edges

of the original network. More than 99.1% of the vertices that belong to an optimal dominating
set have been detected. These percentages again seem to be independent of the size of the
input network. We observed that in this extended setting, in average the running times for the
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data reduction went down to less than 0.05 seconds (for networks of 500 vertices) and less than
two seconds (for networks of 4000 vertices). This is also due to the fact that we applied simple
reduction rules first before more complicated rules (such as Rule 2) were applied. Thus, the
time-consuming sophisticated steps usually had to be carried out on small networks only.

Autonomous systems networks. [Chen et al., 2002] provided network data concerning In-
ternet connectivity at the level of autonomous systems (AS). They report on “AS connectivity
maps” obtained from routing tables collected by the Oregon route server on many different
dates and they argue why these may provide an incomplete picture of the physical connectivity
that exists in the actual Internet. They finally present a network model and refined connec-
tivity maps that are supposed to provide a more complete picture of the Internet connectivity
(see [Chen et al., 2002] for any details). Thus, one arrives at two sets of network data supposed
to model the (time) varying Internet structure, the “Oregon data” and the more refined data
proposed in [Chen et al., 2002]. We took both data sets and applied our data reduction tech-
niques to compute minimum size dominating sets in these networks of more than 10000 vertices
and around 20000 (old model) and 30000 (new model) edges. For both cases, we either could
already compute an optimal dominating set or, in few cases, were left with a tremendously
reduced network where one could easily compute the remaining optimal domination vertices
by brute-force methods. Table 2 lists the results for the old model (here the computation per
network took about two seconds) and the new model (here the computation per network took
between three and four seconds ). Interestingly, the sizes of the optimal dominating sets seem
to be rather stable slightly below 1000 in all networks (old and new). The new model (with
almost 50% more edges) seems to yield only slightly smaller domination numbers.

Networks from topology generators. Here we report on results using network data pro-
duced by the Internet topology generators Inet [Jin et al., 2001] and BRITE [Medina et al., 2001].
We refer to the given papers for any details concerning the data generation process.

Table 3 gives our results and the parameter settings we used for generating the corresponding
networks from Inet 2.0. We only emphasize few of our experimental findings. It is striking that
except for one all networks could be completely resolved for up to 10000 vertices and usually
more than twice as many edges.7 The dominating set sizes were inbetween 801 and 2129. We
observed a decrease in the size of the optimal dominating set when considering networks of
higher density. Besides, for fixed density, the size of an optimal dominating set behaved almost
proportional to the number of vertices in the networks produced by the topology generators.

In contrast to the results for the Inet and AS networks, applied to BRITE networks our
data reduction rules in most cases had only little or no effect at all. We created five sample
sets using the BRITE generator with different combinations of the settings Node Placement
Strategy (NPS), Growth Type (GT), and Preference Connectivity (PC). Each set consists of
5 networks with 1000 vertices and 1997 edges. Only two of all instances could be reduced to
a size of less than 100 vertices by applying our reduction rules. In all other cases the number
of remaining vertices ranged between 765 and 1000. The running times were even higher than

7The running times grow with the number of vertices and the density of the networks from less than half a
second up to 2 seconds for the largest network. The exceptionally high running time of more than 8 seconds
for the instance with 5000 vertices and density parameter d = 0.001 is due to the fact that here the more
complicated data reduction rules had to be applied more often than for the other networks.
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for the Inet networks as the more sophisticated rules had to be applied more often to the full
network. Note that one of the instances that was largely reduced was created by settings which
are considered to model the Internet in a particularly realistic way.

Protein-protein interaction networks As a typical example for a biochemical relevant
network, we consider the protein-protein interaction network of yeast, which was generated by
the data from the database BIND [Bader et al., 2001]. The network consists of 4919 vertices
corresponding to the proteins and 17152 edges for the protein-protein interactions. In less
than three seconds we could determine an optimal dominating set consisting of 860 proteins.
Finding a dominating set in a protein-protein interaction network could be useful to infer its
functionality. The proteins belonging to a dominating set can be considered as important
vertices as they are able to interact with all proteins of the network. Therefore, it is likely that
the dominating set comprises proteins that perform important regulatory functions.

Some directed networks (HTML networks and food webs). Finally, to gain first in-
sights for directed networks, we also tested our rules on the proposed translation (see Sect. 2.3)
of directed networks into undirected ones. We describe results for three particular networks.
Firstly, we considered an HTML network which contained 739 vertices and 3447 arcs. This
network was created by taking the HTML document SELFHTML, Version 7.0 (an HTML
tutorial) available from http://selfaktuell.teamone.de. Pages have been translated into
vertices and links have been translated into arcs. Within 0.15 seconds our reduction rules com-
puted an optimal dominating set of size 137. Thus, this dominating set contains the minimum
amount of pages from which each other page of the HTML document can be reached following
only one link (i.e., by one click).

Secondly, we considered two food web networks from biology (from http://www.cosin.org/

network data sets), where an arc points from prey to predator. We considered the Silwood Park
food web with 308 vertices and 884 arcs. In less than a second an optimal dominating set of
only 24 preys was determined. The second food web we tested is from the Ythan Estuary
consisting of 270 vertices and 1286 arcs. In this case, after about 0.3 seconds we obtained
13 preys that are part of an optimal dominating set. We were left with a reduced network
of 25 vertices and 51 arcs where no more reduction rule applied. Within few more seconds,
using a tree decomposition based algorithm [Alber et al., 2002] we determined the remaining
vertices of an optimal dominating set such that the optimal dominating set of the whole food
web consisted of 17 preys. Interestingly, both food webs have fairly small domination numbers.
Here, for instance, an optimal dominating set can be interpreted as a minimum size set of preys
whose disappearance would affect the menu of all predators.

Further investigations on various directed networks (e.g., also on social networks as discussed
in [Valente et al., 2003]) remain to be conducted in future work.

4 Conclusion and Outlook

In this piece of work, we demonstrated the impressive potential of comparatively simple and
easy to efficiently implement data reduction rules in order to compute optimal dominating sets
in realistic networks up to sizes of ten thousands of vertices and edges. In many cases, the
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problem was completely solved, yielding dominating sets of minimum size. Otherwise, usually
a significant reduction of the size of the input data was achieved. Our main conclusion is
that data reduction should become a tool for everyone dealing with domination in networks.
A more comprehensive picture of the whole scenario (also showing irreducible graphs) can
be found in [Alber, 2003]. Data reduction rules can be easily be combined also with purely
heuristic or approximation approaches towards computing small dominating sets in networks.

On the “negative” side, our data reduction rules seem to behave poorly when applied to
dense networks with many edges. Sanchis [Sanchis, 2002] generates these sorts of data and
proposes heuristic algorithms to compute not necessarily optimal dominating sets in these set-
tings. However, for many “real-world” sparse networks our data reduction scenario performed
extremely well.

Since our data reduction rules evolved out of purely theoretical research [Alber et al., 2001,
Alber et al., 2004], our work also provides an excellent example for a fruitful link between
theoretical and practical computer science.

As to future work, we would like to further extend the range of networks which are amenable
to the data reduction rules. To this end, one needs to investigate network structures that so far
seem to be resistant to the given rules. For instance, whereas most sparse networks seem to be
no problem for our data reduction framework, grid-like networks still remain hard where little
data reduction seems achievable by the use of the presented rules. In addition, it remains to es-
tablish and investigate similar reduction rules for practically relevant variants of Dominating
Set such as Connected Dominating Set [Wan et al., 2003, Demaine and Hajiaghayi, 2005]
or Power Dominating Set [Haynes et al., 2002, Guo et al., 2005]. Although these problems
are computationally hard from a theoretical point of view (concerning exact as well as approxi-
mation solutions), data reduction rules seem to indicate a fruitful and theoretically well-founded
way towards attacking these important network optimization problems.
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duction rules and Britta Dorn for useful discussions on the directed version of dominating
set. Besides, we are grateful to the anonymous referees of INOC 2003 and Falk Hüffner for
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sample set PG500 PG1500 PG4000

# total vertices ‡ 479.1 1433.4 3840.9
# total edges 1005.1 2875.1 8075.2
size of optimal ds 99.7 311.5 791.8

Rule 1:

# vertices removed 336.4 998.0 2722.0
(percentage) 70.2 % 69.6% 70.9%
# edges removed 801.3 2281.9 6523.9
(percentage) 79.7 % 79.3 % 80.8 %
# vertices for DS found 77.6 243.7 620.0
(percentage)† 77.9% 78.2% 78.3%
time (sec) 0.052 0.42 2.04

Rule 2:

# vertices removed 351.8 1019.5 2750.0
(percentage) 73.4 % 71.1% 72.7 %
# edges removed 880.4 2483.0 7050.0
(percentage) 87.6 % 86.3 % 87.3 %
# vertices for DS found 70.2 212.6 547.8
(percentage)† 70.4% 68.3% 69.2%
time (sec) 0.129 1.07 5.26

Rule 1+2:

# vertices removed 377.8 1107.7 3015.9
(percentage) 78.9% 77.3% 78.5%
# edges removed 892.1 2521.6 7169.1
(percentage) 88.8% 87.7% 88.8%
# vertices for DS found 85.9 266.0 678.7
(percentage)† 86.2% 85.4% 85.7%
time (sec) 0.12 1.83 6.74

Rule 1+2 + Simple Rules 1, 2, 3, 4:

# vertices removed 475.6 1424.6 3814.3
(percentage) 99.2% 99.4% 99.3%
# edges removed 999.7 2863.25 8035.8
(percentage) 99.5% 99.6% 99.5%
# vertices for DS found 98.8 309.1 785.3
(percentage)† 99.1% 99.2% 99.2%
time (sec) 0.05 0.32 1.69

† percentage with respect to an optimal dominating set.
‡ number of vertices without degree 0.

Table 1: Summary of experimental results for combinatorial random planar network instances. The

numbers in the various rows are taken as the average over networks in PGn of the corresponding

column, where PGn stands for combinatorially random planar networks (created with the standard

LEDA function) with n vertices.
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AS model: Oregon enriched AS model: Oregon+

date vertices edges % reduced DS vertices edges % reduced DS
03/31/01 10670 22002 100% 956 10900 31180 100.00% 933
04/07/01 10729 21999 100% 968 10981 30855 100.00% 933
04/14/01 10790 22469 100% 977 11019 31761 >99.99% 946
04/21/01 10895 22747 100% 981 11080 31538 >99.99% 954
04/28/01 10886 22493 100% 990 11113 31434 100.00% 962
05/05/01 10943 22607 100% 988 11157 30943 >99.99% 959
05/12/01 11011 22677 100% 988 11260 31303 >99.99% 959
05/19/01 11051 22724 100% 978 11375 32287 >99.99% 965
05/26/01 11174 23409 100% 992 11461 32730 >99.99% 960

Table 2: Autonomous Systems Networks: Experimental results for the AS networks as obtained

from routing tables collected by the Oregon route server at different dates, using both models—

the standard model (“Oregon”) and the enriched model (“Oregon+”) from [Chen et al., 2002]. The

columns show the size of the different networks (i.e., number of vertices and number of edges), and the

amount by which our reduction rules reduced the given network. In addition, the last column reports

on the size of the minimum dominating set (DS) as computed by our method.

Inet: 5000 vertices Inet: 7500 vertices Inet: 10000 vertices

parameter edges time % reduced DS edges time % reduced DS edges time % reduced DS
d: 0.5 9121 0.35 100% 1085 13811 0.56 100% 1650 18532 0.74 100% 2129
d: 0.3 10434 0.43 100% 1062 15765 0.69 100% 1584 21145 0.93 100% 2101
d: 0.2 11084 0.65 100% 993 16758 0.97 100% 1483 22451 2.05 100% 1955
d: 0.1 11470 1.17 100% 900 17733 1.57 100% 1356 23764 3.44 100% 1802
d: 0.05 12066 1.48 100% 847 18225 1.94 100% 1265 24416 5.68 100% 1699
d: 0.001 12383 8.26 99.9% 801 18712 5.22 100% 1183 25045 7.00 100% 1541

Table 3: Inet 2.0 Topology Generator: The table summarizes the performance of the data reduc-

tion on various networks generated with the Inet topology generator [Jin et al., 2001]. We constructed

networks of 5000, 7500, and 10000 vertices using the default configuration and varying over the pa-

rameter d (expressing the fraction of low-degree vertices, see [Jin et al., 2001] for details) in order

to obtain networks with various numbers of edges. The columns show the performance of our data

reduction, reporting on the time needed, the amount by which the networks were reduced, and the

size of an optimal dominating set (DS) as computed by our method.
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