
On Explaining Integer Vectors
by Few Homogenous Segments

Robert Bredereck?, Jiehua Chen??, Sepp Hartung, Christian Komusiewicz,
Rolf Niedermeier, and Ondřej Suchý? ? ?

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin
{robert.bredereck, jiehua.chen, sepp.hartung, christian.komusiewicz,

rolf.niedermeier}@tu-berlin.de
Faculty of Information Technology, Czech Technical University in Prague

ondrej.suchy@fit.cvut.cz

Abstract. We extend previous studies on NP-hard problems dealing
with the decomposition of nonnegative integer vectors into sums of few ho-
mogeneous segments. These problems are motivated by radiation therapy
and database applications. If the segments may have only positive integer
entries, then the problem is called Vector Explanation+. If arbitrary
integer entries are allowed in the decomposition, then the problem is
called Vector Explanation. Considering several natural parameteri-
zations (including maximum vector entry, maximum difference between
consecutive vector entries, maximum segment length), we obtain a re-
fined picture of the computational (in-)tractability of these problems. In
particular, we show that in relevant cases Vector Explanation+ is
algorithmically harder than Vector Explanation.

1 Introduction

We study two variants of a “mathematically fundamental” [4], NP-hard combina-
torial problem occurring in cancer radiation therapy planning [10] and database
and data warehousing applications [1, 18]:

Vector Explanation (Vector Explanation+)
Input: A vector A ∈ Nn with A[1] > 0 and A[n] > 0 and an integer k.
Question: Can A be explained by at most k (positive) segments?

Herein, a segment is a 0/a-vector, a ∈ Z \ {0}, with n entries where all a-entries
occur consecutively, and it is positive if a is positive. An explanation is a set
of segments that sum up to the input vector. For instance, in case of Vector
Explanation (VE for short) the vector (4, 3, 3, 4) can be explained by the
segments (4, 4, 4, 4) and (0,−1,−1, 0), and in case of Vector Explanation+

(VE+ for short) it can be explained by (3, 3, 3, 3), (1, 0, 0, 0), and (0, 0, 0, 1).

? Supported by the DFG, research project PAWS, NI 369/10.
?? Supported by the Studienstiftung des Deutschen Volkes.

? ? ? The main work was done while O. Suchý was at TU Berlin, supported by the DFG,
research project AREG, NI 369/9.

To appear in Proceedings of the 13th Algorithms and Data Structures
Symposium - WADS’13, London, Ontario, Canada, August 2013. c© Springer.

Table 1. An overview of previous and new results.

Parameters Vector Explanation Vector Explanation+

max. value γ

fpt (Thm. 2(2))

2O(
√
γ) · γn [6]

no poly. kernel (Thm. 3)

max. difference δ of
O(nδ+1 · eπ

√
2δ/3) (Thm. 2(3))

two consecutive entries

(# of peaks p, δ) fpt (Thm. 2(1))

number k of segments
kO(k) + nO(1) (Thm. 4)

(2k − 1)-entry kernel (Thm. 4)

k′ = 2k − n k′O(k′) + nO(1) (Thm. 5(3)) kO(k′) + nO(1) (Thm. 5(1))

3k′-entry kernel (Thm. 5(3)) W[1]-hard (Thm. 5(2))

n− k NP-hard for (n− k) = 1 (Thm. 6(2))

max. segment length l
l ≥ 3 : NP-hard (Thm. 6(1))

l ≤ 2 : O(n2) (Thm. 6(2))

max. number o of o = 1: trivial

overlapping segments o = 2 (and l = 3 and n− k = 1): NP-hard (Thm. 6(1))

VE occurs in the database context and VE+ occurs in the radiation therapy
context. Motivated by previous work providing polynomial-time solvable special
cases [1, 4], polynomial-time approximation [5, 19] and fixed-parameter tractabil-
ity results [6, 8] (approximation and fixed-parameter algorithms both exploit
problem-specific structural parameters), we head on a systematic parameterized
and multivariate complexity analysis [13, 21] of both problems; see Table 1 for a
survey of parameterized complexity results.

Previous work. Agarwal et al. [1] studied a polynomial-time solvable variant
(“tree-ordered”) of VE relevant in data warehousing. Karloff et al. [18] initiated
a study of (special cases of) the two-dimensional (“matrix”) case of VE and
provided NP-hardness results as well as polynomial-time constant-factor ap-
proximations. Parameterized complexity aspects of VE and its two-dimensional
variant seem unstudied so far.

The literature on VE+ is richer. For a general account on the motivation from
radiation therapy refer to the survey by Ehrgott et al. [10]. Concerning computa-
tional complexity, VE+ is known to be strongly NP-hard [3] and APX-hard [4].
A significant amount of work has been done to achieve approximation algorithms
for minimizing the number of segments which improve on the straightforward
factor of two [4] (also see Biedl et al. [5]). Improving a previous fixed-parameter
tractability result for the parameter “maximum value γ of a vector entry” by
Cambazard et al. [8], Biedl et al. [6] developed a fixed-parameter algorithm solving
VE+ in polynomial time when γ = O((log n)2) with n being the number of entries
in the input vector. Moreover, the parameter “maximum difference between two
consecutive vector entries” has been exploited for developing polynomial-time

2

approximation algorithms [5, 19]. Finally, we remark that most of the previous
studies also looked at the two-dimensional (“matrix”) case, whereas we focus on
the one-dimensional (“vector”) case.

Our contributions. We observe that the combinatorial structure of the con-
sidered problems is extremely rich, opening the way to a more thorough study
of the computational complexity landscape under the perspective of problem
parameterization. We take a closer look at these parameterization aspects that
help in better understanding and exploiting problem-specific properties. To start
with, note that previous work [6, 8], motivated by the application in radiation
therapy, studied the parameterization by the maximum vector entry γ. They
showed fixed-parameter tractability for VE+ parameterized by γ, which we com-
plement by showing the non-existence (assuming a standard complexity-theoretic
assumption) of a corresponding polynomial-size problem kernel. Using an integer
linear program (ILP) formulation, we also show fixed-parameter tractability for
VE parameterized by γ. Moreover, for the perhaps most obvious parameter, the
number k of explaining segments, we show fixed-parameter tractability for both
problems. In addition, we study the following parameters:

Definition 1. For an input vector A ∈ Nn where, for notational convenience,
additionally A[0] = A[n+ 1] = 0 define:

– the maximum difference δ between two consecutive vector entries (δ =
max1≤i≤n+1 |A[i]−A[i− 1]|);

– the number p of peaks (a position 1 ≤ i ≤ n is a peak if A[i − 1] < A[i] >
A[i+ 1]);

– the maximum segment length l (number of a-entries);

– the maximum number o of segments having a non-zero entry at a particular
vector entry;

– “distance from triviality”-parameter n− k;

– “distance from triviality”-parameter k′ := 2k − n.

Concerning the parameters n− k and k′, a brief discussion is appropriate. As to
n−k, note that the problems have trivial solutions if k = n: just take n segments
with one non-zero entry each. In this sense, n − k is a parameterization by
“distance from triviality” [16, 21]. We show that, somewhat surprisingly, both
problems are already NP-hard for k = n − 1. As to k′, note that by a simple
preprocessing which will be explained later on, we can achieve that for every
resulting instance which is not already classified as no-instance, we have that
n ≤ 2k − 1.1 Moreover, if k = bn/2c+ 1, then the instances are polynomial-time
solvable, motivating the “distance from triviality-parameter” k′. Interestingly,
while we show that VE+ is W[1]-hard for parameter k′, we show that VE is
fixed-parameter tractable for k′. Finally, we show NP-hardness for l = 3 and
o = 2.

1 The definition of k′ refers to the number n of entries in the instance after the
preprocessing.

3

Table 1 summarizes our and previous results. Our work is organized as follows.
In Section 2, we present a number of useful combinatorial properties of vector
explanation problems which may be of independent interest and which are used
throughout our work. In Section 3, we study the “smoothness of input vector”
parameters γ, δ, and p. In Section 4, we present results for further parameters as
discussed above, and we conclude with some challenges for future research. Due
to the lack of space most proofs and details are deferred to a full version.

Parameterized complexity preliminaries. A parameterized problem is fixed-
parameter tractable (fpt) if all instances (I, k) consisting of the “classical” problem
instance I and the parameter k can be solved in f(k) · |I|O(1) time for any
function f solely depending on k. A kernelization algorithm is a polynomial-
time algorithm that transforms each instance (I, k) for a problem L into an
instance (I ′, k′) for L such that (I, k) ∈ L ⇔ (I ′, k′) ∈ L (equivalence) and
k′, |I ′| ≤ g(k) for some function g. The instance (I ′, k′) is called a (problem)
kernel of size g(k). A kernelization algorithm is often described by a set of
data reduction rules whose exhaustive application leads to a problem kernel.
An instance is called reduced with respect to a data reduction rule if a further
application would have no effect on the instance.

A problem that is shown to be W[1]-hard by means of a parameterized reduc-
tion from a W[1]-hard problem is not fpt, unless FPT = W[1]. A parameterized
reduction maps an instance (I, k) in f(k) · |I|O(1) time to an equivalent instance
(I ′, k′) with k′ ≤ g(k) for some functions f and g. See [20] for a more detailed
introduction to parameterized algorithmics. We assume the unit-cost RAM model
where arithmetic operations on numbers count as a single computation step.

2 Combinatorial Properties

Formally, for an input vector A ∈ Nn a segment I is a pair written as [l, r]
with l, r ∈ {1, 2, . . . , n + 1} and l < r. We say I starts at position l and ends
at positions r. A segment [l, r] covers position i whenever l ≤ i < r. A set of
segments I, together with a weight function w : I → Z\{0}, forms an explanation
for A ∈ Nn if

∀1 ≤ i ≤ n : A[i] =
∑

I∈I covers i

w(I),

where A[i] denotes the ith entry in A. We also say (I, w) explains A. In case of
VE+, we only allow positive weights, that is, w : I → N \{0}. We refer to |I| as
solution size. Segments with positive weight are called positive segments, those
with negative weight are called negative segments.

Definition 2. A position 1 ≤ i ≤ n + 1 with respect to a vector A ∈ Nn, is
called an uptick if A[i− 1] < A[i] and called downtick if A[i− 1] > A[i]. The size
of an uptick (resp. downtick) i equals |A[i]−A[i− 1]|.

By the following known data reduction rule [4], we may assume that each position
is either an uptick or a downtick.

4

Rule 1 If vector A has two consecutive equal entries, then remove one of them.

Rule 1 can be applied exhaustively in O(n) time. Afterwards, each position in A
is either an uptick or a downtick. By the following lemma, we can assume that
in solutions for VE+ the segments start in upticks and end in downticks.

Lemma 1 ([4, Lemma 1]). Let (A, k) be an instance of VE+. There is a
minimum-size explanation for vector A in which each segment starts at an uptick
and ends at a downtick.

For VE, we can generalize Lemma 1 to hold for negative and positive segments.
Actually, one can even “reorder” all consecutive up- and downticks. This implies
that for VE actually only the sizes of the upticks and downticks matter, not their
order. To formalize this, we introduce the notion of single-peakedness.

Definition 3. A vector is single-peaked if it contains only one peak. A single-
peaked instance is an instance with a single-peaked vector.

The following theorem summarizes combinatorial properties of VE and VE+

which are used throughout the paper and which may be of independent interest.

Theorem 1. Let (A, k) be an instance of VE. Then, the following holds.

1. There is a minimum-size explanation for (A, k) in which each positive segment
starts at an uptick and ends at a downtick, and each negative segment starts
at a downtick and ends at an uptick.

2. For any position 1 ≤ i ≤ n setting A[i]← A[i− 1] +A[i+ 1]−A[i] results in
an equivalent instance.

3. If (A, k) is single-peaked, then (A, k) is an equivalent VE+ instance.
4. The instance (A, k) can be reduced in O(n+ k2) time to an equivalent single-

peaked instance (A′, k) such that the maximum difference between consecutive
entries is the same in A and A′.

5. There is an equivalent instance (A′, k) with A′ ∈ {0, . . . , 2δ − 1}n where δ is
the maximum difference between consecutive entries of A.

Further, the following holds for VE+ and for single-peaked VE instances.

6. There is a minimum-size explanation such that
(a) there is only one segment, starting at an uptick, that covers the last entry

and
(b) there is only one segment, ending at a downtick, that covers the first entry.

7. If an instance (A, k) is a yes-instance, then A contains at most k upticks and
at most k downticks.

3 Parameterization by Input Smoothness

In this section, we examine how the computational complexity of VE and VE+

is influenced by parameters that measure how “smooth” the input vector A ∈ Nn
is. We assume that A is reduced with respect to Rule 1 and thus all consecutive

5

positions in A have different values. We consider the following three measurements:
the maximum difference δ between two consecutive values in A, the number p
of peaks, that is, the number of positions 1 ≤ i ≤ n in A such that A[i− 1] <
A[i] > A[i + 1], and the maximum value γ occurring in A. Our main results
are fixed-parameter algorithms for the combined parameter (p, δ) in the case
of VE+ and for the parameter δ in the case of VE. For the parameter maximum
value γ, we show that VE+ does not admit a polynomial-size problem kernel
unless NP ⊆ coNP/poly.

Theorem 2. 1. VE+ parameterized by the combined parameter number p of
peaks and maximum difference δ is fixed-parameter tractable.

2. VE parameterized by the maximum difference δ or the maximum value γ is
fixed-parameter tractable.

3. VE+ is solvable in O(nδ+1 · eπ
√

2δ/3) time.

Proof. We only prove the correctness of Theorem 2(1). This also implies Theo-
rem 2(2): By Theorem 1(3) and Theorem 1(4), we can transform input instances
of VE into single-peaked ones of VE+ without increasing the maximum differ-
ence δ. Furthermore, δ ≤ γ. Together with the above transformation this implies
fixed-parameter tractability for δ and for γ. The proof of Theorem 2(3) is based
on a dynamic programming algorithm, omitted from this extended abstract.

To show Theorem 2(1), we provide an integer linear program (ILP) formulation
for VE+ where the number of variables is a function of p and δ. This ILP
determines whether there is a size-k solution with the properties given by Lemma 1,
that is, a solution in which each segment starts at an uptick and ends at a downtick.
In such a solution, the multiset of weights of segments that start at an uptick sum
up to the uptick size. This analogously holds for segments ending at a downtick.
Motivated by this fact, we introduce the following notion: For a positive integer x,
we say that a multiset X = {x1, x2, . . . , xr} of positive integers partitions x if
x =

∑r
i=1 xi. Similarly, we say that X partitions an uptick (downtick) i of size x

if X partitions x. Let P(x) denote the set of all multisets that partition x.
In the ILP, we describe a solution by “fixing” for each i ∈ {1, . . . , n} a

multiset Xi of positive integers which partitions the uptick (downtick) at i. The
crucial observation for our ILP is that if a set of consecutive upticks contains
more than one uptick of size x, it is sufficient to fix how many of these upticks
were partitioned in which way. In other words, one does not need to know the
partition for each position; instead one can distribute freely the partitions of x
onto the upticks of size x. This also holds for consecutive downticks. Since each
peak is preceded by consecutive upticks and succeeded by consecutive downticks,
and since we introduce variables in the ILP formulation to “model” how many
upticks (downticks) exist between two consecutive peaks, the number of variables
in the formulation is bounded by a function of p and δ. We now give the details
of the formulation. Herein, we assume that the peaks are ordered from left to
right; we refer to the i-th peak in this order as peak i.

For an integer x ∈ {1, . . . , δ}, let occ(x, i) denote the number of upticks of
size x that directly precede peak i, that is, the number of upticks succeeding

6

peak i− 1 and preceding peak i. Similarly, let occ(−x, i) denote the number of
downticks of size x that directly succeed i. For two positive integers y and x with
y ≤ x and a multiset P ∈ P(x) let mult(y, P) denote how often y appears in P .
We use mult(y, P) to “model” how many segments of weight y start (end) at
some uptick (downtick) that is partitioned by P .

To formulate the ILP, we introduce for each peak i, each x ∈ {1, . . . , δ}, and
each P ∈ P(x) two nonnegative variables varx,P,i and var−x,P,i. The variables
correspond to the number of upticks directly preceding peak i and downticks
directly succeeding peak i of size x that are partitioned by P in a possible
explanation of A. To enforce that a particular assignment to these variables
corresponds to a valid explanation, we introduce the following constraints.

First, for each peak i and each 1 ≤ x ≤ δ we ensure that the number of directly
proceeding size-x upticks (succeeding size-x downticks) that are partitioned by
some P ∈ P(x) is equal to the number of directly proceeding size-x upticks
(succeeding size-x downticks):

∀i ∈ {1, . . . , p}, ∀x ∈ {−δ, . . . , δ} \ {0} :
∑

P∈P(x)

varx,P,i = occ(x, i). (1)

Second, we ensure that for each peak i and each value y ∈ {1, . . . , δ} the number
of segments of weight y that end directly after peak i is at most the number of
segments of weight y that start at positions (not necessarily directly) preceding
peak i minus the number of segments of weight y that end at positions succeeding
some peak j < i. Informally, this means that we only “use” the available number
of segments of weight y. To enforce this property, for each peak 1 ≤ i ≤ p and
each possible segment weight 1 ≤ y ≤ δ we add:

i∑
j=1

δ∑
x=y

∑
P∈P(x)

(mult(y, P) · varx,P,j︸ ︷︷ ︸
of opened weight-y segments

− mult(y, P) · var−x,P,j︸ ︷︷ ︸
of closed weight-y segments

) ≥ 0 (2)

Finally, we ensure that the total number of segments is at most k:

p∑
i=1

δ∑
x=1

∑
P∈P(x)

x∑
y=1

mult(y, P) · varx,P,i ≤ k. (3)

Correctness: The equivalence of the ILP instance and (A, k) can be seen as follows.
Assume that there is a size-at-most-k explanation S for (A, k). Recall that by
definition of P(x), for any uptick i of size x there is a partition in P(x) that
corresponds to the weights of the segments starting in i. For each peak i, for
any value 1 ≤ x ≤ δ and each P ∈ P(x), count how many upticks of size x
that directly precede peak i are explained by segments in S (segments that start
in this uptick) whose weights correspond to P(x) and set varx,P,i to this value.
Symmetrically, do the same for the downticks succeeding the peak i and set
var−x,P,i accordingly. It is straightforward to verify that eqs. (1) to (3) hold.

Reversely, assume that there is an assignment to the variables such that
eqs. (1) to (3) are fulfilled. We form a set of segments S as follows: For any

7

peak i and any value 1 ≤ x ≤ δ with occ(x, i) > 0 let Pi,x be the multiset of
partitions of P(x) that contains each P ∈ P(x) exactly varx,P,i times. By eq. (1),
|Pi,x| = occ(x, i). For an arbitrary ordering of Pi,x and the upticks of size x
directly preceding peak i, add to S for the jth element Pj of Pi,x exactly |Pj |
segments with weight corresponding to Pj and let them start at the jth uptick
with size x that directly precedes peak i. By eq. (3) we added at most k segments.
It remains to specify the end of the segments. Symmetrically to the upticks, for
each downtick directly succeeding peak i of size x let Pi,x be the multiset of
elements from P(x) containing each P ∈ P(x) exactly var−x,P,i times. For the jth
element Pj of Pi,x and the jth downtick directly succeeding peak i (again both
with respect to any ordering) and for each α ∈ Pj pick any weight-α segment
from S (so far without end) and let it end directly one position behind the jth
downtick. Observe that the existence of this segment is ensured by eq. (2). Finally,
it remains to argue that the of end of each segment in S is determined. This
follows from the fact that eqs. (1) and (2) together imply for each 1 ≤ y ≤ δ that

p∑
i=1

δ∑
x=y

∑
P∈P(x)

(mult(y, P) · varx,P,i−mult(y, P) · var−x,P,i) = 0,

and thus the total number of opened weight-y segments is equal to the number
of closed weight-y segments.

Running time: The ILP can be solved within the following time bound. The
number of variables in the constructed ILP instance is

p ·
∑

x∈{−δ,...,δ}\{0}

|P(|x|)| = 2p

δ∑
x=1

|P(x)| ≤ 2δp · |P(δ)| ≤ 2δp · eπ
√

2
3 δ =: f(δ, p),

where the last inequality is due to de Azevedo Pribitkin [2]. Thus, due to a deep
result in combinatorial optimization the feasibility of the ILP can decided in
O(f(δ, p)2.5f(δ,p)+o(f(δ,p)) · |L|) time, where |L| is the size of the instance [14, 17].

Moreover, as we have O(δp) inequalities, we also have |L| = O(δ2p2 · eπ
√

2
3 δ). ut

For the parameter maximum value γ, VE+ is known to be fixed-parameter
tractable [6]. We complement this result by showing a lower bound on the problem
kernel size, and thus demonstrate limitations on the power of preprocessing.

Theorem 3. Unless NP ⊆ coNP/poly, there is no polynomial-size problem kernel
for VE+ parameterized by the maximum value γ.

Proof. We provide a so-called AND-cross-composition [7, 9] from the 3-Par-
tition problem. Given a multiset S = {a1, . . . , a3m} of positive integers and

an integer bound B with m · B =
∑3m
i=1 ai and B/4 < ai < B/2 for every

i ∈ {1, . . . , 3m}, 3-Partition asks whether the set S can be partitioned into m
subsets P1, . . . , Pm with |Pj | = 3 and

∑
ai∈Pj ai = B for every j ∈ {1, . . . ,m}. 3-

Partition is NP-hard even if B (and thus all ai’s) is bounded by a polynomial in

8

m [15]. We show that this variant of 3-Partition AND-cross-composes to VE+

parameterized by the maximum value γ. Then, results of Bodlaender et al. [7]
and Drucker [9] imply that VE+ does not have a polynomial-size problem kernel
with respect to parameter γ, unless NP ⊆ coNP/poly.

First, let (S,B) be a single instance of 3-Partition. We show that it reduces
to an instance (A′, 3m) of VE+. This reduction is very similar to a previous
NP-hardness reduction for VE+ [4]. We define A′ as length-(4m− 1) vector:(

a1, a1 + a2, . . . ,

j∑
i=1

ai, . . . ,

3m∑
i=1

ai = mB, (m− 1)B, (m− 2)B, . . . , B

)
.

On the one hand, if a partition P1, . . . , Pm of S forms a solution, then the
set of segments {[i, 3m+ j] | ai ∈ Pj} each with weight w([i, 3m+ j]) = ai is an
explanation for the vector A′. On the other hand, let (I, w) be an explanation for
(A′, 3m). By Lemma 1 we may assume that every segment starts at an uptick and
ends at a downtick. Therefore, I contains 3m segments and the segment starting
at position i has weight ai. Since B/4 < ai < B/2 for each integer ai ∈ S, exactly
three segments end at a downtick whose size is exactly B. Thus, grouping the
segments according to the position they end at, we get the desired partition of S,
solving the instance of 3-Partition.

Now let (S1, B1), . . . , (St, Bt) be instances of 3-Partition such that Sr =
{ar1, . . . , ar3mr} and Br ≤ mr

c for every r ∈ {1, . . . , t} and some constant c.
We build an instance (A, k) of VE+ by first using the above reduction for each
(Sr, Br) separately to produce a vector A′r, and then concatenating the vectors A′r
one after another, leaving a single position of value 0 in between. The total length
of the vector A is 4(

∑t
r=1mr)− 1 and we set k := 3

∑t
r=1mr.

Due to the argumentation for the single instance case, on the one hand, if each
of the instances is a yes-instance, then there is an explanation using 3mr segments
per instance (Sr, Br), that is 3

∑t
r=1mr segments in total. On the other hand, we

need at least 3mr segments to explain A′r and there is an explanation with 3mr

segments if and only if (Sr, Br) is a yes-instance. Since all segments are positive
and the subvectors A′r’s are separated by a position with value zero, no segment
can span over two subvectors. In other words, no segment can be used to explain
more than one of the A′r’s. Therefore, an explanation for A with 3

∑t
r=1mr

segments implies that (Sr, Br) is a yes-instance for every r ∈ {1, . . . , t}.
Finally, observe that the maximum value γ in the vector A is equal to

maxtr=1mrBr ≤ maxtr=1mr
c+1. Since in each input 3-Partition instance the

maximum value mrBr is polynomially bounded in the instance size |Sr|, this
value is thus polynomially bounded in maxtr=1 |Sr|. Hence, 3-Partition AND-
cross-composes to VE+ parameterized by the maximum value γ, and there is no
polynomial-size problem kernel for this problem unless NP ⊆ coNP/poly. ut

4 Further Parameterizations

We now provide fixed-parameter tractability and (parameterized) hardness re-
sults for further natural parameters. Specifically, we consider the number k of

9

segments in the solution, so-called “above-guarantee” and “below-guarantee”
parameterizations (which are smaller than k), the maximum segment length l,
and the maximum number of segments covering a position.

For the parameter k we obtain fixed-parameter tractability by using Rule 1,
Theorem 1(6), and Theorem 1(7) to develop search tree algorithms for VE+ and
VE. The depth and the branching degree of the search tree are bounded by the
solution size k. The second part of Theorem 4 follows directly from exhaustively
applying Rule 1.

Theorem 4. VE+ and VE can be solved in O(k! · k + n) time. Any instance
of VE+ or VE can be reduced in O(n) time to an equivalent one with at most
(2k − 1) entries.

The second part of Theorem 4 implies that for a reduced instance every explana-
tion needs at least bn/2c+1 segments. Furthermore, instances with k = bn/2c+1
are solvable in polynomial time (below, we will state a generalization of this
fact). Hence, it is interesting to study parameters that measure how far we have
to exceed this lower bound for the solution size; notably, such above-guarantee
parameters can be significantly smaller than k. For this reason, we study a
parameter that measures k − bn/2c − 1. For ease of presentation, we define this
parameter as k′ := 2k−n. The concepts of “clean” and “messy” positions, which
are defined as follows, are crucial for the design of our algorithms.

Definition 4. Let (A, k) be an instance of VE or VE+ and let I be an explaining
segment set for vector A. A segment I = [i, j] ∈ I is clean if all other segments
start and end at positions different from i and j. A position i is clean with respect
to I if it is the start or endpoint of a clean segment in I. A position or segment
that is not clean is called messy.

We show that clean positions can always be covered by clean segments of “min-
imum length“: Iterate from left to right over all clean positions and for each
position i (still clean) find the first clean position j > i with −(A[i]−A[i− 1]) =
A[j]−A[j + 1] and add a segment of weight A[i]−A[i− 1] from i to j + 1.

For every yes-instance of VE, the number of messy positions is at most 3k′

and the number of messy segments used by an explanation is at most 2k′ with
k′ = 2k− n. Furthermore, if there are an uptick and a downtick of same size in a
single-peaked instance, then we may assume that the corresponding segment is
contained in the solution.

As the following theorem shows, using the properties concerning clean and
messy positions, we can replace the exponent k in the running time of Theorem 4
by the smaller k′. This also implies that VE+ is polynomial-time solvable for
constant k′. Unless W[1]=FPT, this result cannot be improved to fixed-parameter
tractability since we can give a parameterized reduction from the W[1]-hard
Subset Sum problem [11] to VE+. In contrast, VE+ for single-peaked instances
as well as VE in general are fixed-parameter tractable with respect to k′ and
can be efficiently reduced to equivalent instances with at most 3k′ positions.

Theorem 5. 1. VE+ can be solved in O((2k)3k
′ · (k2 + (2k′)! · k′) + n) time.

10

2. VE+ is W[1]-hard with respect to k′.
3. Any single-peaked instance of VE+ and any instance of VE can be reduced

in O(k2 +n) time to an equivalent one with most 3k′ entries. Moreover, VE+

and VE are solvable in O((2k′)! · k′ + k2 + n) time.

The previous parameter k′ measures how far the solution exceeds the lower
bound bn/2c+ 1. Another bound on the solution size is n: If k = n, then any
instance of VE+ or VE is a trivial yes-instance. Hence, it is interesting to consider
the parameter n − k. Furthermore, it is natural to consider explanations with
restricted segment length l or the maximum number o of segments overlapping
at some position. The following theorem shows that VE+ and VE are already
NP-hard even if k = n − 1, l ≥ 3, and o = 2. To this end, we reduce from the
NP-hard Partition problem [15]. In terms of parameterized complexity this
implies that, unless P=NP, VE+ is not fixed-parameter tractable with respect
to the “maximum segment length l”, the “maximum number o of segments
overlapping at some position”, and the “below guarantee parameter” n− k.

We also show that, in contrast to the NP-hardness for l ≥ 3, VE+ and VE
are polynomial-time solvable for l ≤ 2.

Theorem 6. 1. VE+ and VE are NP-hard even if k = n− 1 and every yes-
instance has an explanation of at most k segments where each position is
covered by at most two segments and each segment has length at most three.

2. Both VE+ and VE can be solved in O(n2) time for maximum segment
length l = 2.

5 Conclusion

It would be interesting to significantly improve on several of the running time
upper bounds of our (theoretical) tractability results (cf. Table 1 for an overview).
Moreover, we also left open a number of concrete problems. We conclude with
three of them:

– Is VE+ fixed-parameter tractable with respect to the maximum difference δ?
– Does VE parameterized by δ or parameterized by γ admit a polynomial-size

problem kernel?
– Is VE or VE+ fixed-parameter tractable with respect to the parameter

“number of different values in the input vector A”? This parameter would be
a natural version of “parameterization by the number of numbers” [12].

Acknowledgement: We are very grateful for the very detailed and constructive
feedback provided by the WADS reviewers.

Bibliography

[1] D. Agarwal, D. Barman, D. Gunopulos, N. Young, F. Korn, and D. Srivastava.
Efficient and effective explanation of change in hierarchical summaries. In Proc. 13th
KDD, pages 6–15. ACM, 2007.

11

[2] W. de Azevedo Pribitkin. Simple upper bounds for partition functions. The
Ramanujan Journal, 18:113–119, 2009.

[3] D. Baatar, H. W. Hamacher, M. Ehrgott, and G. J. Woeginger. Decomposition of
integer matrices and multileaf collimator sequencing. Discrete Appl. Math., 152
(1–3):6–34, 2005.

[4] N. Bansal, D. Z. Chen, D. Coppersmith, X. S. Hu, S. Luan, E. Misiolek, B. Schieber,
and C. Wang. Shape rectangularization problems in intensity-modulated radiation
therapy. Algorithmica, 60(2):421–450, 2011.

[5] T. C. Biedl, S. Durocher, H. H. Hoos, S. Luan, J. Saia, and M. Young. A note on
improving the performance of approximation algorithms for radiation therapy. Inf.
Process. Lett., 111(7):326–333, 2011.

[6] T. C. Biedl, S. Durocher, C. Engelbeen, S. Fiorini, and M. Young. Faster optimal
algorithms for segment minimization with small maximal value. Discrete Appl.
Math., 161(3):317–329, 2013.

[7] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Cross-composition: A new
technique for kernelization lower bounds. In Proc. 28th STACS, volume 9 of LIPIcs,
pages 165–176. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011.

[8] H. Cambazard, E. O’Mahony, and B. O’Sullivan. A shortest path-based approach
to the multileaf collimator sequencing problem. Discrete Appl. Math., 160(1–2):
81–99, 2012.

[9] A. Drucker. New limits to classical and quantum instance compression. In
Proc. 53rd IEEE FOCS, pages 609–618. IEEE Computer Society, 2012.

[10] M. Ehrgott, C. Güler, H. Hamacher, and L. Shao. Mathematical optimization in
intensity modulated radiation therapy. Ann. Oper. Res., 175:309–365, 2010.

[11] M. R. Fellows and N. Koblitz. Fixed-parameter complexity and cryptography. In
Proc. 10th AAECC, volume 673 of LNCS, pages 121–131. Springer, 1993.

[12] M. R. Fellows, S. Gaspers, and F. A. Rosamond. Parameterizing by the number of
numbers. Theory Comput. Syst., 50(4):675–693, 2012.

[13] M. R. Fellows, B. M. P. Jansen, and F. A. Rosamond. Towards fully multivariate al-
gorithmics: Parameter ecology and the deconstruction of computational complexity.
European J. Combin., 34(3):541–566, 2013.

[14] A. Frank and É. Tardos. An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[16] J. Guo, F. Hüffner, and R. Niedermeier. A structural view on parameterizing
problems: Distance from triviality. In Proc. 1st IWPEC, volume 3162 of LNCS,
pages 162–173. Springer, 2004.

[17] R. Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12:415–440, 1987.

[18] H. Karloff, F. Korn, K. Makarychev, and Y. Rabani. On parsimonious explanations
for 2-d tree- and linearly-ordered data. In Proc. 28th STACS, volume 9 of LIPIcs,
pages 332–343. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011.

[19] S. Luan, J. Saia, and M. Young. Approximation algorithms for minimizing segments
in radiation therapy. Inf. Process. Lett., 101(6):239–244, 2007.

[20] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[21] R. Niedermeier. Reflections on multivariate algorithmics and problem param-
eterization. In Proc. 27th STACS, volume 5 of LIPIcs, pages 17–32. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010.

12

A Appendix

A.1 Proof of Theorem 1

Theorem 1(1) Let (A, k) be an instance of VE. Then, there is a minimum-size
explanation in which each positive segment starts at an uptick and ends at a
downtick and each negative segment starts at a downtick and ends at an uptick.

Proof. Suppose that there is no minimum-size solution obeying the stated condi-
tions. We say that a segment I ∈ I has a wrong start if I is positive and starts
at a downtick or if it is negative and starts at an uptick. Otherwise, we say the
start is correct. We define wrong ends similarly. A segment is wrong if it has
either wrong start or wrong end.

Among all minimum-size explanations of A, let (I, w) be one without wrong
end, or, if there is no such explanation, then let (I, w) be such that its first wrong
end is on the leftmost position. Moreover, among these explanations, let (I, w)
be one without wrong start or one where the first wrong start is on the rightmost
position.

Assume now that there is a segment with a wrong start and let I be the
segment with the wrong start on the earliest position. We distinguish two cases.
First, let I = [i, i′] be positive and i be a downtick. Since i is a downtick, there is
a segment J such that either J is positive and ends at i, or J is negative and
starts at i.

Case 1: J is positive and ends at i. By the choice of I, the interval J has a
correct start, say at position j. If w(J) ≥ w(I), then we replace I by segment
I ′ = [j, i′], set w(I ′) = w(I), and decrease the weight of the segment J by w(I)
or remove J if w(J) = w(I). It is easy to see that the new set of segments still
explains A and, as I ′ has correct start, the total weight of segments with wrong
start at i is decreased. As the signs of the weights are kept and I ′ ends where I
ended, no new wrong end is introduced. If w(J) < w(I), then replace J by
J ′ = [j, i′] and decrease the weight of I by w(J). Again, A is still explained, no
new (position with a) wrong end is introduced and the total weight of segments
with wrong start at i is decreased.

Case 2: J is negative and starts at i. Let J = [i, j′]. If j′ < i′, then distinguish
three subcases. If −w(J) > w(I), then replace I by I ′ = [j′, i′] with weight
w(I ′) = w(I) and increase the weight of J by w(I). For −w(J) = w(I) use the
same replacement for I and remove J . Finally, if −w(J) < w(I), then replace J
by a positive segment J ′ = [j′, i′] with weight −w(J), and decrease the weight
of I by −w(J). If i′ = j′, then use the same replacements as above, just omit
the segments of zero length. If j′ > i′ and −w(J) > w(I) then replace I by
a negative segment I ′ with weight −w(I) starting at i′ and ending on j′ and
increase the weight of J by w(I). If −w(J) = w(I), then use the same replacement
for I and remove J . Finally, if −w(J) < w(I), then replace J by J ′ with weight
w(J ′) = w(J), which starts in i′ and ends in j′ and decrease the weight of I by
−w(J). It is easy to check that in all cases the modified segments still explain A,
and the total weight of segments with wrong start at i is decreased. Moreover,
none of the new segments starts before i and whenever a positive segment is

13

introduced, it ends where previously a positive segment ended, and a negative
segment ends where also previously a negative segment ended.

Since (I,−w) is an explanation for −A with the same properties as (I, w),
the case of I being negative and starting at an uptick, can be solved by applying
the above transformations to (I,−w).

Therefore, we can apply the above modifications as long as there is a segment
with wrong start at i, each time decreasing the total absolute value of weight of
segments with wrong start at i. Hence, after a finite number of modifications,
there is no segment with a wrong start at i. Since we never introduce a segment
with a wrong start before i or a new wrong end, this contradicts the choice
of (I, w). Hence we can assume that in (I, w) there is no segment with wrong
start.

Now let A′ be the vector obtained by reversing the vector A and I ′ the set of
segments obtained by reversing each segment in I. As I has no wrong start, I ′
has no wrong end. Applying the above argumentation to (I ′, w) we can show that
I ′ also has no wrong start. The property of having no wrong end is preserved
by the modifications. Therefore, also I has no wrong start, no wrong end, all
segments are correct and the claim follows. ut

Theorem 1(2) For any position i ∈ {2, . . . , n− 1} setting A[i]← A[i− 1] +A[i+
1]−A[i] results in an equivalent instance.

Proof. Let A′[j] = A[j] for every j 6= i and A′[i] = A[i− 1] +A[i+ 1]−A[i]. We
prove that (A′, k) is a yes-instance if and only if (A, k) is a yes-instance.

Note first that if we define A′′ as A′′[j] = A′[j] for every j 6= i and A′′[i] =
A′[i− 1] +A′[i+ 1]−A′[i], then we have A′′[i] = A[i− 1] +A[i+ 1]− (A[i− 1] +
A[i+1]−A[i]) = A[i] and A′′ = A. Hence, the second direction of the equivalence
is symmetric to the first one and it is thus sufficient to prove that if (A, k) is a
yes instance, then so is (A′, k).

Let (I, w) be a size-k solution for A. We construct (I ′, w′) by replacing some
segments in I. The general idea is that if a segment started or ended at position i,
then it should now start or end at i+ 1 and vice versa. The only exception are
the segments which start at i and end at i+ 1. Namely I ′ is defined as follows:

I ′ = I ′1 ∪ I ′2 ∪ I ′3 ∪ I ′4 ∪ I ′5 ∪ I ′6,where

I ′1 = {[a, b] ∈ I | a /∈ {i, i+ 1}, b /∈ {i, i+ 1}},
I ′2 = {[a, i+ 1] | [a, i] ∈ I},
I ′3 = {[a, i] | [a, i+ 1] ∈ I, a ≤ i− 1},
I ′4 = {[i+ 1, b] | [i, b] ∈ I, b ≥ i+ 2},
I ′5 = {[i, b] | [i+ 1, b] ∈ I},
I ′6 = {[i, i+ 1]} ∩ I.

We let w′([i, i+ 1]) = −w([i, i+ 1]) if [i, i+ 1] ∈ I, and for the other segments
of I ′ we set the weight w′ to be equal to the corresponding segment in I.

Obviously, |I ′| = |I| and, hence, it remains to show that (I ′, w′) explains A′.
As a segment of I ′ covers a position j 6= i of A′ if and only if the corresponding

14

segment of I of the same weight covers the position in A, it is clear that (I ′, w′)
explains every position A′[j] = A[j] with j 6= i.

Let I ′0 = {[a, b] | [a, b] ∈ I ′1, a ≤ i − 1, b ≥ i + 2}. Since (I, w) explains A,
and because of the way we defined I ′ and w′, we have A[i− 1] = s0 + s2 + s3,
A[i] = s0 +s3 +s4−s6, and A[i+1] = s0 +s4 +s5, where sx =

∑
I∈I′x

w′(I). The

sum of the weights of segments covering A′[i] is s0 + s2 + s5 + s6. In addition, we
have A′[i] = A[i−1]+A[i+1]−A[i] = s0+s2+s3+s0+s4+s5−(s0+s3+s4−s6) =
s0 + s2 + s5 + s6. Therefore, (I ′, w′) also explains A′[i]. ut

Theorem 1(3) Let A be a single-peaked vector. Then, (A, k) is a yes-instance for
VE if and only if (A, k) is also a yes-instance for VE+.

Proof. Let (A, k) be a single-peaked yes-instance of VE and consider the solution
provided by Theorem 1(1) (possibly using negative weights). As A is single-
peaked, no segment can start in a downtick and end in an uptick. Therefore all
segments are positive and (A, k) is a also a yes-instance of VE+. Clearly, in the
other direction, it is obvious that a solution for VE+ is also a valid solution for
VE. ut

Using the modification specified by Theorem 1(2), one can significantly
simplify the structure of VE instances.

Theorem 1(4) An instance (A, k) of VE can be reduced in O(n+ k2) time to
an equivalent single-peaked instance (A′, k) such that the maximum difference
between consecutive entries is the same in A and A′.

Proof. Assume that the instance is reduced with respect to Rule 1. The reduction
works as follows. If A is single-peaked, then nothing has to be done. Otherwise,
find the leftmost position i with A[i− 1] > A[i] < A[i+ 1] (call such a position
a dent) and perform the modification of Theorem 1(2). The running time of
exhaustively applying these modifications is O(k2): First, finding such a position
can be done in O(k) time. After the application of the modification, check whether
position A′[i− 1] is now a dent. If this is the case, then apply the modification
to A′[i− 1]. Otherwise, A′[i] is now the leftmost peak. That is, the position of
the leftmost peak has increased by one. Hence, in O(k) time one can apply the
modification such that the position of the leftmost peak has increased. After O(k)
repetitions of this procedure, the instance has to be single-peaked. The overall
running time follows.

Concerning the maximum difference δ, observe that after one application of the
modification in Theorem 1(2) we have A′[i]−A′[i−1] = A[i−1]+A[i+1]−A[i]−
A[i−1] = A[i+1]−A[i], while A′[i+1]−A′[i] = A[i+1]−A[i−1]−A[i+1]+A[i] =
A[i]−A[i−1]. Hence, the maximum of the differences between A[i] and its neighbor
positions remains the same. ut

Theorem 1(5) For every instance (A, k) of VE, there is an equivalent instance
(A′, k) with A′ ∈ {0, . . . , 2δ − 1}n where δ is the maximum difference between
consecutive values of A.

15

Proof. By Theorem 1(2), one obtains equivalent instances by arbitrarily reorder-
ing the upticks and downticks. We can compose A′ in such a way that if A[i] < δ,
then the position i + 1 is an uptick and otherwise it is a downtick. As the
size of each uptick and each downtick is at most δ, it follows that in this way
0 ≤ A′[i] ≤ 2δ − 1 for every i. ut

The following observation proves that in case of VE+ or in case of a single-
peaked instance of VE the solution can be assumed to be well-structured.

Theorem 1(6) For instances (A, k) of VE+ and for single-peaked instances of
VE there is a minimum-size explanation such that

(a) there is only one segment starting at an uptick that covers the last entry and
(b) there is only one segment ending at a downtick that covers the first entry.

Proof. The proofs of (a) and (b) work analogously. Hence, we only prove (a).
Note that we can assume w.l.o.g. that all segments start at an uptick, end at

a downtick, and are positive: For VE+, this follows directly from Lemma 1. In
VE instances with only one peak there is no i < j such that A[i] is a downtick
and A[j] is an uptick. Hence, by Theorem 1(1) there is a solution without
negative segments. Let I be a set of a most k segments explaining A and let
Z := {[s1, n+ 1], [s2, n+ 1], . . ., [sz, n+ 1]} with the upticks s1 ≤ s2 ≤ . . . ≤ sz
denote the set of segments from I covering the last entry A[n]. We define
x := [sz, n+1] with ω(x) =

∑z
i=1 ω ([si, n+ 1]) = A[n] and Y := {[si, sz] | i < z}

with ω ([si, sz]) = ω ([si, n+ 1]) , 1 ≤ i ≤ z − 1. Now, I∗ := (I ∪ {x} ∪ Y) \ Z
explains A and |I∗| = k + 1 + (z − 1)− z = k. ut

Theorem 1(7) It follows directly from Lemma 1 and Theorem 1(1).

A.2 The Remaining Proof of Theorem 2

It is open whether VE+ is fixed-parameter tractable with respect to δ. Note that
Theorem 2(1) and Theorem 2(2) cannot be transferred, since there may be more
than one peak in a given instance. However, the following theorem implies that
VE+ can be solved in polynomial time if the maximum difference δ is a constant.

Theorem 2(3) VE+ is solvable in O(nδ+1 · eπ
√

2
3 δ) time.

Proof. We describe a dynamic programming algorithm that finds a minimum-size
solution that has the properties given in Lemma 1. Every explanation for a
size-n vector A can be interpreted as an extension of an explanation for the same
vector without the last entry, where some segments that originally only covered
position n− 1 are stretched to also cover position n and some new segment of
length one may start at position n.

Our algorithm uses the above relation between explanations for the vec-
tor A[1, . . . , n] and explanations for the vector A[1, . . . , n− 1]. Due to Lemma 1,
it only considers explanations where each segment starts at an uptick and ends

16

at a downtick. Since all upticks and downticks have size at most δ, the algorithm
furthermore only considers solutions in which all segments have weight at most δ.

The dynamic programming table has entries of the type T (i, d1, . . . , dj , . . . , dδ)
where 0 ≤ i ≤ n, 0 ≤ dj ≤ n, and 1 ≤ j ≤ δ. An entry T (i, d1, . . . , dj , . . . , dδ)
contains the minimum number of segments explaining vector A[1, . . . , i] such that
dj segments of weight j cover position i. If no such explanation exists, then the
entry is set to ∞. By definition of the table entries, there is a solution for VE+

if and only if

min
(d1,...,dδ)∈{0,...,n}δ

T (n, d1, . . . , dδ) ≤ k.

Now, we show how to fill the table. As initialization, set T (0, d1, . . . , dδ)←∞
for all (d1, . . . , dδ) ∈ {0, . . . , n}δ with dj > 0 for any j ∈ {1, . . . , δ} and set
T (0, 0, . . . , 0)← 0.

For increasing i ≤ n, compute the table for each (d1, . . . , dδ) ∈ {0, . . . , n}δ as

follows. If A[i] =
∑δ
j=1 dj · j and A[i] > A[i− 1], then set

T (i, d1, . . . , dδ)← min
d′1≤d1,...,d

′
δ≤dδ

T (i− 1, d′1, . . . , d
′
δ) +

δ∑
j=1

dj − d′j

 . (4)

If A[i] =
∑δ
j=1 dj · j and A[i] < A[i− 1], then set

T (i, d1, . . . , dδ)← min
d′1≥d1,...,d

′
δ≥dδ

T (i− 1, d′1, . . . , d
′
δ). (5)

Otherwise, set

T (i, d1, . . . , dδ)←∞. (6)

The correctness of the initialization follows directly from the table definition.
For the remaining computation we can thus assume that there is some i such
that all entries T (i′, d1, . . . , dδ) with (d1, . . . , dδ) ∈ {0, . . . , n}δ and i′ < i were
computed correctly.

As discussed above, we interpret an explanation of A[1, . . . , i] as extension
of an explanation for A[1, . . . , i− 1]. There are exactly two groups of segments
covering position i: those also covering position i − 1 and those starting at
position i. Let the set of segments covering position i be described by (d1, . . . , dδ)

such that A[i] =
∑δ
j=1 dj · j and A[i] > A[i− 1]. Due to Lemma 1, no segment

ends at position i, but since A[i] > A[i− 1] at least one new segment has to start
at position i. By setting (d′1, . . . , d

′
δ) such that d′j ≤ dj , 1 ≤ j ≤ δ, one considers

all possible extensions for explanations of A[i− 1] such that no segment ends at

position i. Clearly,
∑δ
j=1 dj − d′j further segments have to start at position i to

explain A[i]. Hence, assignment (4) is correct.
Now, let the set of segments covering position i be described by (d1, . . . , dδ)

such that A[i] =
∑δ
j=1 dj · j and A[i] < A[i− 1]. By Lemma 1 no new segment

starts at position i. The algorithm considers all possible explanations where some

17

segments end at position i and the other segments survive to explain A[i]. Thus,
assignment (5) is correct.

For a given (d1, . . . , dδ) ∈ {0, . . . , δ}, to find an explanation for A[1, . . . , i]

such that A[i] 6=
∑δ
j=1 dj · j is impossible because such explanation does not

explain position i. Thus the assignment (6) is correct.
The table size is upper-bounded by nδ+1. The trivial upper bound of O(nδ) for

computing each table entry already leads to a running time of O(n2δ+1). However,
the number of entries that have to be considered is smaller. For assignment (4),
one only has to consider those entries of Table T that do not have value∞. Hence,∑δ
j=1 |dj − d′j | ≤ |A[i]−A[i− 1]| ≤ δ. This implies that for each table entry the

number of previous entries that have to be considered in the minimization is
upper-bounded by the number of different multisets that sum up to δ and thus

by O(eπ
√

2
3 δ) [2]. A similar argument applies for assignment (5). The overall

running time follows. ut

A.3 Proof of Theorem 4

Theorem 4 VE+ and VE can be solved in O(k! · k + n) time. Any instance of
VE+ or VE can be reduced in O(n) time to an equivalent one with at most
(2k − 1) entries.

Proof. We start with the algorithm for VE+ which works as follows. After
exhaustive application of Rule 1 branch over all possible segments covering the
last entry. Due to Theorem 1(6), it suffices to search for exactly one segment
starting at one of the upticks and ending at the last entry. For each branch assign
the value A[n] of the last entry as weight to the segment and solve the instance
consisting of the remaining entries recursively. To this end, decrease each of the
entries covered by the segment by A[n] each, and decrease k by one. Whenever
an entry gets negative discard the branch.

Clearly, the search tree produced by the algorithm has depth at most k. In
the i-th level of the search tree, one branches over at most k + 1 − i upticks
(Theorem 1(6)). After exhaustively applying Rule 1 once in O(n) time, the steps
performed in each search tree node take O(k) time. The overall running time
thus is O(k! · k + n).

For VE we first apply Theorem 1(4) to transform our instance into a single-
peaked instance (this is necessary to use Theorem 1(6)). The rest works analo-
gously to VE+. ut

A.4 Proof of Theorem 5

Towards proving Theorem 5 we briefly discuss some combinatorial properties of
clean and messy positions as defined in Definition 4.

Lemma 2. Let (A, k) be an instance of VE+ with explaining segment set I.
Further, let I = [i, j] ∈ I be a clean segment. If there is a clean position ` such
that i ≤ ` ≤ j and both ` as well as j have the same downtick size, then there is

18

an explanation with a segment set I ′ such that |I ′| = |I| and I ′ contains a clean
segment I ′ = [i, `] whose weight equals the weight of I.

Proof. The lemma trivially holds for ` = j, so assume ` < j in the following.
Since ` is clean, there is a clean segment H = [h, `] whose weight equals the
downtick size of ` and hence the weight of I. Consider a segment set I ′ obtained
from I by replacing I with I ′ = [i, `] and H with H ′ = [h, j]. The weights remain
unchanged. In particular, the weights of I and H are the same as the weights
of I ′ and H ′. In order to show that this is indeed an explanation, we consider
the following two cases.

Case 1: h < i. We show that in the new explanation for each position, the
sum of the weights of the segments covering this position are exactly the same as
in the old position. Clearly, we only need to consider positions that are covered
by either I or H or by both segments. For position p ∈ {h, . . . , i − 1}, if p is
only covered by segment set Sp ∪ {H} in the old explanation, then p is also only
covered by segment set Sp ∪ {H ′} in the new explanation. Hence, the sum of
weights of Sp ∪ {H ′} equals A[p]. Similarly, for position p ∈ {i, . . . , l − 1}, if p
is only covered by segment set Sp ∪ {H, I} in the old explanation then p is also
only covered by segment set Sp ∪ {H ′, I ′} in the new explanation. Finally, for
position p ∈ {l, . . . , j − 1}, if p is only covered by segment set Sp ∪ {I} in the
old explanation then p is also only covered by segment set Sp ∪ {H ′} in the
new explanation. The correctness follows, because I,I ′,H, and H ′ have the same
weight.

Case 2: h > i. The proof is similar to that of Case 1: A position p that was
only covered by Sp ∪ {I} with H /∈ Sp is now either only covered by Sp ∪ {I ′} or
only covered by Sp ∪ {H ′}; a position p that was previously covered by Sp ∪ {I}
and Sp ∪ {H} is now covered by Sp ∪ {I ′} and Sp ∪ {H ′}. ut

Lemma 3. Let (A, k) be a yes-instance of VE+ that is reduced with respect
to Rule 1. Then, every explanation of (A, k) has at most 2k′ messy segments and
at most 3k′ messy positions.

Proof. Let x denote the number of messy segments in some arbitrary explanation
for (A, k). Since (A, k) is reduced with respect to Rule 1, every position of A
is the starting point or endpoint of some segment. In particular, every messy
segment shares at least one endpoint with another messy segment. Hence, there
are at most 1.5x messy positions in the explanation. Furthermore, there are at
most 2(k − x) clean positions. Thus, n ≤ 2(k − x) + 1.5x which implies x ≤ 2k′,
and the number of messy positions is at most 1.5x ≤ 3k′. ut

Lemma 4. Let (A, k) be a single-peaked instance of VE+. If vector A has an
uptick i and a downtick j of the same size, then there is solution containing the
segment [i, j] with weight equal to the size of uptick i.

Proof. Since A is single-peaked, (A, k) is an equivalent VE instance, and therefore
by Theorem 1(2), it is enough to prove the lemma for the case j = i+ 1. Let s
be the size of uptick i. Consider an explanation (I, w) with at most k segments

19

as provided by Theorem 1(1). Let I1 = {[i, b] | b > i + 1, [i, b] ∈ I} and
I2 = {[a, i + 1] | a < i, [a, i + 1] ∈ I}. Note that s = w(I2) + w([i, i + 1]) =
w(I1) +w([i, i+ 1]). If [i, i+ 1] ∈ I, then increase its weight to the size of uptick i
and shorten the segments in I2 by making them start only at position i+ 1. We
claim that this modified set of segments still explains A. It is only necessary to
check this for A[i]. But, as the weight of [i, i+ 1] was increased by exactly w(I2),
while segments of total weight w(I2) were shortened not to span over i, this is
clear. In this case we have the same number of segments.

If [i, i + 1] /∈ I, then we introduce it with weight s and again shorten the
segments in I2 to start in i + 1. By the above argument, this modified set of
segments explains A. But it has one more segment than I. We want to show that
the vector formed by the sum of segments in I1 and the modified segments from
I2 can be explained using |I1| + |I2| − 1 segments. To be more precise, let A′

denote the vector formed by setting A′[j] =
∑

[a,i+1]∈I1;a≤j w([a, i+ 1]) for j < i,

A′[j] =
∑

[i,b]∈I2;b>j w([i, b]) for j > i and A′[i] =
∑

[a,i+1]∈I1 w([a, i + 1]) =∑
[i,b]∈I2 w([i, b]). We claim that (A′, |I1|+ |I2| − 1) is a yes-instance.

Observe that there are at most |I1| upticks and at most |I2| downticks in A′.
Hence, Rule 1 would reduce A′ to a vector of length at most |I1|+ |I2| − 1. Such
a vector can be trivially explained by |I1|+ |I2| − 1 segments. ut

Theorem 5(1) VE+ can be solved in O((2k)3k
′ · (k2 + (2k′)! · 2k′) + n) time.

Proof. The algorithm works as follows. First, exhaustively apply Rule 1 to reduce
the number of positions to at most 2k. Then, try all possibilities for choosing
messy positions. Now, consider the remaining positions (which are assumed to
be clean). Pick an arbitrary remaining uptick i and let x denote the size of the
uptick i. If the guess is correct, then there should be at least one clean downtick
with size x. Now, let j > i be the first remaining downtick j whose downtick size
also equals x. By Lemma 2, if there is a solution in which i and j are clean, then
there is also a solution which contains the clean segment [i, j]. Accordingly, one
can obtain an equivalent instance by setting A[`]← A[`]−x for each ` ∈ [i, j− 1]
and k ← k − 1. Since x is the size of uptick i as well as the size of downtick j,
A[i − 1] = A[i] after this reduction. Hence, we can apply Rule 1 in order to
“remove” the position i from A. A similar argument applies for position j. Hence,
after this reduction either all positions are messy, or some are clean and there is
currently no segment assigned to these positions. Repeat the above procedure
until all remaining positions are messy. There are at most 3k′ such positions. The
remaining instance is solved by the algorithm from Theorem 4.

The running time of this algorithm can be bounded as follows. First, by Lemma 3,
there are at most 3k′ messy positions in a yes-instance that is reduced with
respect to Rule 1. Therefore, there are O((2k)3k

′
) possibilities to select these

positions. For each such possibility, there are O(n) applications of the reduction
based on Lemma 2 and Rule 1; each time these can be performed in O(n) time.
Finally, by Theorem 4 the remaining instance can be solved in O((2k′)! ·2k′+3k′)
time. ut

20

Theorem 5(2) VE+ is W[1]-hard with respect to k′.

Proof. We present a parameterized reduction from the Subset Sum problem.

Subset Sum
Input: A multiset X := {x1, . . . x`} of positive integers and two positive
integers y and k.
Question: Is there a size-k subset X ′ of X such that

∑
xi∈X′ xi = y?

Subset Sum is W[1]-hard with respect to the solution size k [11]. In the
following, we use t :=

∑
1≤i≤` xi to denote the total sum of the integers in X. Note

that by modifying the xi’s we can assume that for every size-(k − 1) subset X ′

the sum
∑
xi∈X′ xi is less than y: adding t to each input integer, and k · t to y

results in an instance for which this holds. Next, we describe the parameterized
reduction.

The input vector A has length 2` + 1. For i ≤ `, we set A[i] :=
∑i
j=1 xj .

Let A[`+ 1] = t− y. For i ≥ `+ 1, we set A[i] = A[2`+ 2− i]. The number of
allowed segments is set to `+ k. Consequently, k′ = 2(`+ k)− (2`+ 1) = 2k − 1.

We complete the proof by showing that

(X, y, k) is a yes-instance of Subset Sum ⇔ (A, `+ k) is a yes-instance
of VE+.

“⇒”: Let X ′ be a size-k subset of X whose values sum up to y. Then, consider
the following set I of segments.

For each xi /∈ X ′, add the segment Ji = [i, 2`+ 3− i]. There are `− k such
segments. For each xi ∈ X ′, add two segments Ii = [i, `+ 1] and I ′i = [`+ 2, 2`+
3− i]. Each of these two types of segments is of size k. Hence, |I| = `+k. For each
1 ≤ i ≤ ` set the weights of the segments Ji, Ii and I ′i to xi. Now, I explains A:
First, for each i ≤ `, A[i] =

∑
j≤i xj is explained by {Jj | j ≤ i∧xj /∈ X ′}∪ {Ij |

j ≤ i∧xj ∈ X ′}. Second, A[`+ 1] = t−y is explained by exactly the segments Jj
with xj /∈ X ′. Finally, for i > ` + 1, A[i] = A[2` + 2 − i] =

∑
j≤2`+2−i xj is

explained by {Jj | j ≤ 2`+ 2− i ∧ xj /∈ X ′} ∪ {I ′j | j ≤ 2`+ 2− i ∧ xj ∈ X ′}.
“⇐”: Let I be a set of `+ k segments that explain A. By Lemma 1 we can

assume that every segment of I starts at an uptick and ends at a downtick.
First, note that for each position i ≤ `, there is at least one segment that starts
at i. Also, each of these segments has a weight of at most xj for some xj ∈ X.
Since

∑
xi∈X′ xi < y for |X ′| < k and the size of downtick `+ 1 is y, at least k

segments end at `+ 1. Similarly, for each i ≥ `+ 3 there is at least one segment
that ends at position i. Each of these segments has a weight of at most xj for
some xj ∈ X. Further, since the size of uptick ` + 2 is y, at least k segments
begin at ` + 2. This implies that there are exactly ` segments starting in the
first ` positions and exactly k segments ending at position `+ 1. Therefore, for
each i ≤ ` there is exactly one segment starting at i which has weight xi. Since k
of these segments end at position `+ 1, they correspond to a size-k set X ′ ⊆ X.
Finally, the sum

∑
xi∈X′ xi of the integers in this set is exactly y, since A[`] = t

and A[`+ 1] = t− y. ut

21

Theorem 5(3) Any single-peaked instance of VE+ and any instance of VE can
be reduced in O(k2 + n) time to an equivalent one with most 3k′ entries. Both
problems are solvable in O((2k′)! · 2k′ + 3k′ + k2 + n) time.

Proof. Due to Theorem 1(4), we can assume that the given instance of VE
is single-peaked. Also, because of Theorem 1(3), we only need to investigate
whether the given single-peaked instance is a yes-instance for VE+. Now, we first
apply Rule 1 exhaustively. After that, if there is an uptick and a downtick of the
same size, then by Lemma 4 there is an optimal solution containing a segment
starting at the uptick and ending at the downtick of weight equal to the size of
the uptick. Hence one can subtract such a segment from the vector, decrease k by
one, and again reduce the vector using Rule 1. Note that the length of the vector
is reduced by two, while k is reduced by one, so k′ stays the same. Repeat this
procedure until each uptick has size different from each downtick. Now, obviously
all positions are messy and by Lemma 3 there are at most 3k′ messy positions
and 2k′ messy segments explaining them. Thus, one ends up with a problem
kernel having at most 3k′ positions.

The initial applications of Rule 1 take O(n) time. Clearly, at most k upticks
and at most k downticks remain. Given an uptick, to find a downtick of the
same size and, if successful, subtracting a segment of the corresponding size
and applying Rule 1 twice takes O(k) time. Hence, computing the kernel takes
O(k2 + n) time. By Theorem 4, the remaining problem kernel can be solved
in O((2k′)! · 2k′ + 3k′) time. ut

A.5 Proof of Theorem 6

Theorem 6(1) VE+ and VE are NP-hard even if k = n−1 and every yes-instance
has an explanation of at most k segments where each position is covered by at
most two segments and each segment has length at most three.

Proof. We reduce from the NP-hard Partition problem [15].

Partition
Input: A multiset of positive integers S = {a1, . . . , an}.
Question: Is there a subset S′ ⊆ S such that

∑
ai∈S′ ai =

∑
ai∈S\S′ ai?

Given an instance S = {a1, . . . , an} of Partition, we create an instance
(A, k) of VE, where A is a vector of length n′ = 3n+ 1 and k = 3n. Namely, AT

22

is the vector

1
2
2 + (n+ 1)a1
3 + (n+ 1)a1
4 + (n+ 1)a1
4 + (n+ 1)(a1 + a2)

...

2j − 1 + (n+ 1)
∑j−1
i=1 ai

2j + (n+ 1)
∑j−1
i=1 ai

2j + (n+ 1)
∑j
i=1 ai

...

2n− 1 + (n+ 1)
∑n−1
i=1 ai

2n + (n+ 1)
∑n−1
i=1 ai

2n + (n+ 1)
∑n
i=1 ai

n + (n+ 1)/2 ·
∑n
i=1 ai

Obviously, the reduction runs in polynomial time. It remains to show that

S = {s1, . . . , sn} is a yes-instance of Partition ⇔ (A, k = 3n) is a
yes-instance of VE+ and VE.

“⇒”: Let S′ ⊆ S be a solution for the Partition instance with
∑
ai∈S′ ai =∑

ai∈S\S′ ai. Further, let S′j := S′ ∩ {a1, . . . , aj}, Sj := {a1, . . . , aj} \ S′ and

S′−1 = S′0 = S−1 = S0 := ∅. We construct the set of segments I consisting of six
subsets and their weights as follows:

I1 = {[3j − 2, 3j + 1] | aj /∈ S′}, with w([3j − 2, 3j + 1]) = j + (n+ 1) ·
∑

ai∈S′j−1

ai,

I2 = {[3j − 1, 3j] | aj /∈ S′}, with w([3j − 1, 3j]) = j + (n+ 1) ·
∑

ai∈Sj−1

ai,

I3 = {[3j, 3j + 2] | aj /∈ S′}, with w([3j, 3j + 2]) = j + (n+ 1) ·
∑
ai∈Sj

ai,

I4 = {[3j − 1, 3j + 2] | aj ∈ S′}, with w([3j − 1, 3j + 2]) = j + (n+ 1) ·
∑

ai∈Sj−1

ai,

I5 = {[3j − 2, 3j] | aj ∈ S′}, with w([3j − 2, 3j]) = j + (n+ 1) ·
∑

ai∈S′j−1

ai,

I6 = {[3j, 3j + 1] | aj ∈ S′}, with w([3j, 3j + 1]) = j + (n+ 1) ·
∑
ai∈S′j

ai.

As there are exactly three segments for each aj , there are 3n segments in
total.

23

Note that if aj /∈ S′, then S′j−1 = S′j . Otherwise aj /∈ S′ and Sj−1 = Sj .
Now, we show that I with weight function w explains the vector A. Let j ∈

{1, . . . , n}. At position 3j − 2 = 3(j − 1) + 1 we have A[3j − 2] = 2j − 1 + (n+

1)
∑j−1
i=1 ai. If aj /∈ S′, then segment [3j − 2, 3j + 1] from I1 covers 3j − 2 and

if aj ∈ S′, then segment [3j − 2, 3j] from I5 covers 3j − 2. Both segments have
weight (j + (n+ 1)

∑
ai∈S′j−1

ai). Additionally, if aj−1 /∈ S′, then segment [3(j −
1), 3(j − 1) + 2] from I3 also covers 3j − 2 and if aj−1 ∈ S′, then segment [3(j −
1) − 1, 3(j − 1) + 2] from I4 also covers 3j − 2. In both cases the weight of
the segment is ((j − 1) + (n + 1)

∑
ai∈Sj−1

ai). In the former case this holds

by definition. In the latter case, since aj−1 ∈ S′, it holds that aj−1 /∈ S′ and,
thus, S′j−2 = S′j−1. Summarizing, in each case the weights of the two segments
covering position 3j − 2 sum up toj + (n+ 1)

∑
ai∈S′j−1

ai

+

(j − 1) + (n+ 1)
∑

ai∈Sj−1

ai

 = 2j−1+(n+1)

j−1∑
i=1

ai = A[3j−2].

In the same way, at position 3j− 1, we have A[3j− 2] = 2j + (n+ 1)
∑j−1
i=1 ai.

If aj /∈ S′, then only segments [3j − 2, 3j + 1] from I1 and [3j − 1, 3j] from I2
cover and explain this position, sincej + (n+ 1)

∑
ai∈S′j−1

ai

+

j + (n+ 1)
∑

ai∈Sj−1

ai

 = 2j+(n+1)

j−1∑
i=1

ai = A[3j−1].

Otherwise, only segments [3j − 1, 3j + 2] from I4 and [3j − 2, 3j] from I5 cover
and explain this position, sincej + (n+ 1)

∑
ai∈Sj−1

ai

+

j + (n+ 1)
∑

ai∈S′j−1

ai

 = 2j+(n+1)

j−1∑
i=1

ai = A[3j−1].

Also, at position 3j, we have A[3j] = 2j +
∑j
i=1 ai. If aj /∈ S′, then only

segments [3j − 2, 3j + 1] from I1 and [3j, 3j + 2] from I3 cover and explain this
position since the sum of their weights equalsj + (n+ 1)

∑
ai∈S′j

ai

+

j + (n+ 1)
∑
ai∈Sj

ai

 = 2j + (n+ 1)

j∑
i=1

ai = A[3j].

This also holds for the case that aj ∈ S′. Finally, we have only one segment
covering the position 3n+ 1 with weight

n+ (n+ 1)
∑
ai∈Sn

ai = n+ (n+ 1)
∑

ai∈S\S′
ai = n+ (n+ 1)

1

2

n∑
i=1

ai = A[3n+ 1].

24

“⇐”: Let I with (possibly negative) weights w be an explanation for vector A
with at most k segments. Due to Theorem 1(1), we can assume that each negative
segment starts at a downtick and ends at an uptick and each positive segment
starts at an uptick and ends at a downtick. Since A has only upticks except
for position 3n + 1 and 3n + 2, a negative segment would have to start at
position 3n+ 1. However, in this case there is no uptick for it to end at. Hence,
I has no negative segment and at each uptick, a positive segment must start. As
there are exactly k = 3n upticks, exactly one positive segment starts at every
uptick and ends either at position 3n+ 1 or 3n+ 2.

We denote the segment of I starting at position 3i by Ii. Obviously, w(Ii) =
(n+ 1)ai. Furthermore, there are 2n segments of weight 1. Now let S′ := {ai |
Ii ends at position 3n + 2}. We show that S′ is a solution of the Partition
instance S: Let x ∈ {0, . . . , 2n} be the number of segments of weight 1 that cover
position 3n+1. We have x+(n+1)

∑
ai∈S′ ai = A[3n+1] = n+(n+1) 12

∑n
i=1 ai.

As |n− x| ≤ n, we have
∑
ai∈S′ ai = 1

2

∑n
i=1 ai. Hence, S′ is a solution for the

Partition instance S.
As we can see from the reduction, every yes-instance of Partition is reduced

to a yes-instance that can be explained by segments with l = 3 and o = 2 and
every no-instance is reduced to an instance that cannot be explained by segments
of any size. The statement of Theorem 6(1) follows. ut

Theorem 6 (2) Both VE+ and VE can be solved in O(n2) time for maximum
segment length l = 2.

Proof. We show a dynamic programming algorithm for VE+. Afterwards, we
show how to extend our algorithm to VE.

Let (A, k) be an input instance, where A is a vector of length n. The last
position is only covered by either one length-two segment or one length-one
segment, but not both, because then we can always transform it into two length-
one segments. Due to this, if we have an optimal solution for a vector of length x,
then we can find an optimal solution for a vector of length x+ 1 which contains
either an additional length-one segment or a length-two segment covering the
last position.

Based on this idea, we use dynamic programming with a table s indexed
by 1, . . . , n: For each j ≤ n, we store in s[j] the minimum number of segments
needed to explain the subvector A[1, . . . , j]. We let s[0] = 0 for simplicity. We
start with j = 1. For j = 1, we set s[1] = 1 which is obviously correct. Now
assume that for an index j ≤ n, s[i] was already computed for each i < j and we
now compute s[j]. We begin with i := j and aji := A[j]. We set

aji−1 := A[i− 1]− aji and i := i− 1

as long as
aji > 0 and i > 1. (*)

The idea behind this computation is that if we want to add some length-two
segment with weight aji covering position i and i− 1, then we should make sure

25

that after this the remaining value at position i− 1 is non-zero, since otherwise it
is better to just cover position i separately. If Condition (*) does not hold, then
there are two cases: If aji = 0, then let s[j] := min{s[j − 1] + 1, s[i− 1] + j − i};
otherwise let s[j] := s[j − 1] + 1. Finally, once the table is completed, we answer
yes if s[n] ≤ k, and no otherwise.

As the algorithm obviously works in O(n2) time, it remains to show that the
algorithm fills the table correctly. The proof is by induction on j. Obviously s[1]
is computed correctly. For j ≤ n, assume s[i] is optimal for all i < j. We show
that s[j] is also optimal.

Let us first show that there is an explanation for A[1, . . . , j] with s[j] segments.
We have two cases: If s[j] = s[j − 1] + 1, then we use the explanation for
A[1, . . . , j − 1] with s[j − 1] segments and add a single length-one segment to
explain A[j]. Otherwise, there is an i ∈ {1, j − 1} such that s[j] = s[i− 1] + j − i.
Let ajj := A[j], and ajx := A[x] − ajx+1, i ≤ x ≤ j − 1. Note that aji = 0
because of Condition (*). Then, we use the explanation for A[1, . . . , i− 1] with
s[i − 1] segments and add a set I of j − i segments of length two such that
for each z ∈ {i, . . . j − 1}, we have a segment Iz = [z, z + 2] with weight ajz+1.

Clearly, positions from 1 to i − 1 are already explained. Since aji equals zero,

we have A[i] = aji+1 which is also the weight of Ii. Thus, I explains A[i]. For

z ∈ {i + 1, . . . , j − 1}, we have A[z] = ajz + ajz+1 and A[j] = ajj . Hence, the
subvector A[i+ 1, . . . , j] is also explained by I.

Next, we show that s[j] is optimal. Assume that there is an explanation
(I, w) of A[1, . . . , j] with r segments. We will show that r ≥ s[j]. Without loss
of generality, we can assume that every length-one segment exclusively covers
a position, since otherwise, we can either merge two length-one segments or
split one length-two segment into two length-one segments and merge one of
them with the original length-one segment. Let i be the last position such
that all segments in I covering i start at i. If i = j, then I \ {[j, j + 1]} is
an explanation for A[1, . . . , j − 1], and r ≥ s[j − 1] + 1 ≥ s[j] as s[j − 1]
is optimal. If i < j, then I contains a chain of j − i overlapping length-two
segments Ii+1 = [i, i+ 2], . . . , Ij = [j − 1, j + 1] starting at i and ending at j + 1.
Since these are the only segments explaining positions i, . . . , j, their weights
are w(Ij) = A[j] and w(Iz) = A[z] − w(Iz+1), j − 1 ≥ z ≥ i + 1. Position i is
only explained by Ii+1, so we have A[i] = w(Ii+1) = A[i + 1] − w(Ii+2). Note
that applying the dynamic programming algorithm ajz = w(Iz), i + 1 ≤ z ≤ j.
This means the algorithm stops at position i with aji = w(Ii+1) − aji+1 = 0.
Thus, s[j] = min{s[j − 1] + 1, s[i − 1] + j − i} ≤ s[i − 1] + j − i. Furthermore,
I \ {Iz | z ∈ {i + 1, . . . j − 1}} is an explanation for A[1, . . . , i − 1]. Hence,
r ≥ s[i− 1] + j − i ≥ s[j] because s[i− 1] is optimal.

To solve VE, it is enough to change Condition (*) in the loop of the above
algorithm to “While aji 6= 0 and i > 1...” The rest of the proof remains the
same. ut

26

	On Explaining Integer Vectorsby Few Homogenous Segments

