
Proc. 4th AAIM, 2008

Fixed-Parameter Algorithms for Kemeny Scores

Nadja Betzler1,⋆, Michael R. Fellows2,⋆⋆, Jiong Guo1,⋆ ⋆ ⋆, Rolf Niedermeier1,
and Frances A. Rosamond2,⋆⋆

1 Institut für Informatik, Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany.
{betzler,guo,niedermr}@minet.uni-jena.de

2 PC Research Unit, Office of DVC (Research), University of Newcastle,
Callaghan, NSW 2308, Australia.

{michael.fellows,frances.rosamond}@newcastle.edu.au

Abstract. The Kemeny Score problem is central to many applications
in the context of rank aggregation. Given a set of permutations (votes)
over a set of candidates, one searches for a “consensus permutation”
that is “closest” to the given set of permutations. Computing an opti-
mal consensus permutation is NP-hard. We provide first, encouraging
fixed-parameter tractability results for computing optimal scores (that
is, the overall distance of an optimal consensus permutation). Our fixed-
parameter algorithms employ the parameters “score of the consensus”,
“maximum distance between two input permutations”, and “number of
candidates”. We extend our results to votes with ties and incomplete
votes, thus, in both cases having no longer permutations as input.

1 Introduction

To aggregate inconsistent information does not only appear in classical voting
scenarios but also in the context of meta search engines and many other applica-
tions [8, 6, 1, 5]. In some sense, herein one always deals with consensus problems
where one wants to find a solution to various “input demands” such that these
demands are met as well as possible. Naturally, contradicting demands cannot
be fulfilled at the same time. Hence, the consensus solution has to provide a
balance between opposing requirements. The concept of Kemeny consensus is
among the most classical and important research topics in this context. In this
paper, we study new algorithmic approaches based on parameterized complexity
analysis [7, 10, 13] for computing Kemeny scores and, thus, Kemeny consensus
solutions. To describe our results, we start with introducing Kemeny elections.

Kemeny’s voting scheme goes back to the year 1959. It can be described
as follows. An election (V, C) consists of a set V of n votes and a set C of

⋆ Supported by the DFG, research project DARE, GU 1023/1.
⋆⋆ Supported by the Australian Research Council. Work done while staying in Jena as

a recipient (MF) of the Humboldt Research Award of the Alexander von Humboldt
foundation, Bonn, Germany.

⋆ ⋆ ⋆ Supported by the DFG, Emmy Noether research group PIAF, NI 369/4.

Proc. 4th AAIM, 2008

m candidates. A vote is a preference list of the candidates, that is, for each
voter the candidates are ordered according to preference. For instance, in case
of three candidates a, b, c, the order c > b > a would mean that candidate c
is the best-liked one and candidate a is the least-liked one for this voter.3 A
“Kemeny consensus” is a preference list that is “closest” to the preference lists
of the voters: For each pair of votes p, q, the so-called Kendall-Tau distance (KT-
distance for short) between p and q, also known as the number of inversions
between two permutations, is defined as dist(p, q) =

∑

{c,d}⊆C dp,q(c, d), where

the sum is taken over all unordered pairs {c, d} of candidates, and dp,q(c, d) is 0
if p and q rank c and d in the same order, and 1 otherwise. Using divide and
conquer, the KT-distance can be computed in O(m · log m) time. The score of a
preference list l with respect to an election (V, C) is defined as

∑

v∈V dist(l, v). A
preference list l with the minimum score is called Kemeny consensus of (V, C) and
its score

∑

v∈V dist(l, v) is the Kemeny score of (V, C). The problem considered
in this work is as follows:

Kemeny Score

Input: An election (V, C) and a positive integer k.
Question: Is the Kemeny score of (V, C) at most k?

Clearly, in applications we are mostly interested in computing a Kemeny con-
sensus of a given election. All our algorithms that decide the Kemeny Score

problem actually provide a corresponding Kemeny consensus.
Known results. We summarize the state of the art concerning the computa-

tional complexity of Kemeny Score. Bartholdi et al. [2] showed that Kemeny

Score is NP-complete, and it remains so even when restricted to instances with
only four votes [8, 9]. Given the computational hardness of Kemeny Score

on the one side and its practical relevance on the other side, polynomial-time
approximation algorithms have been studied. Thus, the Kemeny score can be
approximated to a factor of 8/5 by a deterministic algorithm [16] and to a factor
of 11/7 by a randomized algorithm [1]. Recently, a (theoretical) PTAS result
has been obtained [12]. Conitzer, Davenport, and Kalagnanam [6, 5] performed
computational studies for the efficient exact computation of a Kemeny consen-
sus, using heuristic approaches such as greedy and branch and bound. Finally,
note that Hemaspaandra et al. [11] provided further, exact classifications of the
computational complexity of Kemeny elections.

Our results. As pointed out by Conitzer et al. [5], for obvious reasons ap-
proximate solutions for election problems such as Kemeny Score may be of
limited interest. Hence, exact solutions are of particular relevance in this con-
text. Given the NP-completeness of the problem, however, it seems inevitable
to live with exponential-time algorithms for solving Kemeny Score. Fortu-
nately, parameterized complexity analysis as pioneered by Downey and Fel-
lows [7, 10, 13] seems a fruitful approach here. This will be shown by positive
results based on three natural parameterizations. Before that, note that study-
ing the parameter “number of votes” is pointless because, as mentioned before,

3 Some definitions also allow ties between candidates—we deal with this later.

Proc. 4th AAIM, 2008

the problem is already NP-complete for only four votes. First of all, using the
Kemeny score k itself as the parameter, we derive an algorithm solving Kemeny

Score in O(1.53k +m2n) time, where n := |V | and m := |C|. This algorithm is
based on a problem kernelization and a depth-bounded search tree. Further, we
introduce a structural parameterization by studying the parameter “maximum
KT-distance d between any two input votes”. Note that in application scenarios
such as meta search engines small d-values may be plausible. We show that Ke-

meny Score can be solved in O((3d + 1)! · d · log d · m · n) time by a dynamic
programming approach. Eventually, note that by trying all possible permuta-
tions of the m candidates, we can trivially attain an efficient algorithm if m is
very small. The corresponding combinatorial explosion m! in the parameter m
is fairly large, though. Using dynamic programming, we can improve this to an
algorithm running in O(2m ·m2 · n) time. Finally, we extend our findings to the
cases where ties within votes are allowed and to incomplete votes where not all
candidates are ranked. Due to the lack of space, several proofs are deferred to
the full version.

2 Preliminaries

We refer to the introductory section for some basic definitions concerning (Ke-
meny) elections. Almost all further concepts are introduced where needed. Hence,
here we restrict ourselves to concepts of “general” importance. Let the position
of a candidate a in a vote v be the number of candidates that are better than a
in v. That is, the leftmost (and best) candidate in v has position 0 and the
rightmost has position m− 1. Then, posv(a) denotes the position of candidate a
in v. Moreover, we say that two candidates a and b form a dirty pair if in V
there is one vote with a > b and another vote with b > a.

We briefly introduce the relevant notions of parameterized complexity the-
ory [7, 10, 13]. Parameterized algorithmics aims at a multivariate complexity
analysis of problems. This is done by studying relevant problem parameters
and their influence on the computational complexity of problems. The hope lies
in accepting the seemingly inevitable combinatorial explosion for NP-hard prob-
lems, but confining it to the parameter. Hence, the decisive question is whether
a given parameterized problem is fixed-parameter tractable (FPT) with respect
to the parameter, say k. In other words, here we ask for the existence of a solving
algorithm with running time f(k)·poly(n, m) for some computational function f .
A core tool in the development of fixed-parameter algorithms is polynomial-time
preprocessing by data reduction rules, often yielding a kernelization. Herein, the
goal is, given any problem instance x with parameter k, to transform it in poly-
nomial time into a new instance x′ with parameter k′ such that the size of x′ is
bounded from above by some function only depending on k, k′ ≤ k, and (x, k)
is a yes-instance if and only if (x′, k′) is a yes-instance. We call a data reduction
rule sound if the new instance after an application of this rule is a yes-instance
iff the original instance is a yes-instance. We also employ search trees for our
fixed-parameter algorithms. Search tree algorithms work in a recursive manner.

Proc. 4th AAIM, 2008

The number of recursion calls is the number of nodes in the according tree. This
number is governed by linear recurrences with constant coefficients. It is well
known how to solve these [13]. If the algorithm solves a problem instance of
size s and calls itself recursively for problem instances of sizes s− d1, . . . , s− di,
then (d1, . . . , di) is called the branching vector of this recursion. It corresponds
to the recurrence Ts = Ts−d1

+ · · · + Ts−di
for the asymptotic size Ts of the

overall search tree.

3 Parameterization by the Kemeny Score

We present a kernelization and a search tree algorithm for Kemeny Score.
The following lemma, whose correctness follows directly from the Extended Con-
dorcet criterion [15], is used for deriving the problem kernel and the search tree.

Lemma 1. Let a and b be two candidates in C. If a > b in all votes v ∈ V , then
every Kemeny consensus has a > b.

3.1 Problem Kernel

When applied to an input instance of Kemeny Score, the following polynomial-
time executable data reduction rules yield an “equivalent” election with at
most 2k candidates and at most 2k votes with k being the Kemeny score. Note
that, if we use a preference list over a subset of the candidates to describe a
vote, then we mean that the remaining candidates are positioned arbitrarily in
this vote. We apply the following data reduction rule to shrink the number of
candidates in a given election (V, C).

Rule 1. Delete all candidates that are in no dirty pair.

Lemma 2. Rule 1 is sound and can be carried out in O(m2n) time.

Lemma 3. After having exhaustively applied Rule 1, in a yes-instance there are
at most 2k candidates.

Next, we apply a data reduction rule to get rid of too many identical votes.

Rule 2. If there are more than k votes in V identical to a preference list l, then
return “yes” if the score of l is at most k; otherwise, return “no”.

Lemma 4. Rule 2 is sound and works in O(mn) time.

Lemma 5. After having exhaustively applied Rule 1 and Rule 2, in a yes-
instance ((V, C), k) of Kemeny Score there are at most 2k votes.

In summary, we can state the following:

Theorem 1. Kemeny Score admits a problem kernel with at most 2k votes
over at most 2k candidates. It can be computed in O(m2 · n) time.

Proc. 4th AAIM, 2008

3.2 Search Tree Algorithm

It is trivial to achieve an algorithm with search tree size O(2k) by simply branch-
ing on dirty pairs. For the description of an improved search tree algorithm, we
need the following definition: Three candidates a, b, c form a dirty triple if they
occur in at least two dirty pairs. The search tree algorithm first enumerates all
dirty pairs of the given election (V, C) and then branches according to the dirty
triples. At a search tree node, in each case of the branching, an order of the
candidates involved in the dirty triples processed at this node is fixed and main-
tained in a set. This order represents the relative positioning of these candidates
in the Kemeny consensus sought for. Then, the parameter is decreased according
to this order. Since every order of two candidates in a dirty pair decreases the
parameter at least by one, the height of the search tree is upper-bounded by the
parameter.

Next, we describe the details of the branching. At each node of the search
tree, we store two types of information:

– The dirty pairs that have not been processed by ancestor nodes are stored
in a set D.

– The information about the orders of candidates that have already been de-
termined when reaching the node is stored in a set L. That is, for every pair
of candidates whose order is already fixed we store this order in L.

For any pair of candidates a and b, the order a > b is implied by L if there
is a subset of ordered pairs {(c1, c2), (c2, c3), . . . , (ci−1, ci)} in L which can be
concatenated such that we have a > c1 > · · · > ci > b. To add the order of
a “new” pair of candidates, for example a > b, to L, we must check if this is
consistent with L, that is, L does not already imply b > a.

At the root of the search tree, D contains all dirty pairs occurring in (V, C).
For each non-dirty pair, its relative order in an optimal Kemeny ranking can be
determined using Lemma 1. These orders are stored in L. At a search tree node,
we distinguish three cases:

Case 1. If there is a dirty triple {a, b, c} forming three dirty pairs contained
in D, namely, {a, b}, {b, c}, {a, c} ∈ D, then remove these three pairs from D.
Branch into all six possible orders of a, b, and c. In each subcase, if the cor-
responding order is not consistent with L, discard this subcase, otherwise, add
the corresponding order to L and decrease the parameter according to this sub-
case. The worst-case branching vector of this case is (3, 4, 4, 5, 5, 6), giving a
branching number 1.52. To see this, note that we only consider instances with
at least three votes, since Kemeny Score is polynomial-time solvable for only
two votes. Thus, for every dirty pair {c, c′}, if there is only one vote with c > c′

(or c′ > c), then there are at least two votes with c′ > c (or c > c′). A simple
calculation then gives the branching vector.

Case 2. If Case 1 does not apply and there is a dirty triple {a, b, c}, then a, b, c
form exactly two dirty pairs contained in D, say {a, b} ∈ D and {b, c} ∈ D.
Remove {a, b} and {b, c} from D. As {a, c} is not a dirty pair, its order is
determined by L. Hence, we have to distinguish the following two subcases.

Proc. 4th AAIM, 2008

If a > c is in L, then branch into three further subcases, namely,

– b > a > c,
– a > b > c, and
– a > c > b.

For each of these subcases, we add the pairwise orders induced by them into L
if they are consistent for all three pairs and discard the subcase, otherwise. The
worst-case branching vector here is (3, 3, 2), giving a branching number 1.53.

If c > a is in L, then we also get the branching vector (3, 3, 2) by branching
into the following three further subcases:

– b > c > a,
– c > b > a, and
– c > a > b.

Case 3. If there is no dirty triple but at least one dirty pair (a, b) in D, then
check whether there exists some relative order between a and b implied by L:
If L implies no order between a and b, then add an order between a and b to L
that occurs in at least half of the given votes; otherwise, we add the implied
order to L. Finally, decrease the parameter k according to the number of votes
having a and b oppositely ordered compared to the one added to L.

The search tree algorithm outputs “yes” if it arrives at a node with D = ∅
and a parameter value k ≥ 0; otherwise, it outputs “no”. Observe that a Kemeny
consensus is then the full order implied by L at a node with D = ∅.

Combining this search tree algorithm with the kernelization given in Sec-
tion 3.1, we arrive at the main theorem of this section.

Theorem 2. Kemeny Score can be solved in O(1.53k + m2n) time, where k
denotes the Kemeny score of the given election.

Observe that the search tree algorithm also works for instances in which
the votes are weighted by positive integers. If the votes have arbitrary positive
weights, we can use the dynamic programming algorithm that is described in
the following section.

4 Parameterization by the Maximum KT-distance

The Kemeny score of some instances might be quite large. So, we consider a fur-
ther parameterization, now with the maximum KT-distance d between any two
given votes as the parameter. Formally, d := maxp,q∈V {dist(p, q)}. We describe
a dynamic programming fixed-parameter algorithm for this parameterization.
To this end, we need the following definitions:

A block of size s with start position p denotes the set of candidates a satis-
fying p ≤ posv(a) ≤ p + s − 1 for at least one v ∈ V . By block(p) we denote a
block of size d+1 with start position p. With a subvote vC′ of a vote v restricted
to a subset C′ ⊆ C we mean the order of the candidates in C′ such that the

Proc. 4th AAIM, 2008

preferences of v with respect to the candidates in C′ are preserved. A subinstance
of (V, C) restricted to C′ ⊆ C consists of all vC′ with v ∈ V .

Now, we state two lemmas that are crucial for the algorithm.

Lemma 6. In an input instance with maximum KT-instance d, the positions of
a candidate in two votes differ by at most d.

Proof. Consider a candidate a and two votes v and w. Assume that posv(a) = p
and posw(a) ≥ p + d + 1. Then, in w there are at least p + d + 1 candidates
that are better than a, and in v there are p candidates that are better than a.
Therefore, there are at least d+1 candidates that are ranked higher than a in w
and lower than a in v. This means that the KT-distance between v and w is at
least d + 1, a contradiction. ⊓⊔

Lemma 7. In an input instance with maximum KT-instance d, every block of
size d + 1 contains at most 3d + 1 candidates.

Proof. Assume that there are 3d + 2 candidates c1, c2, . . . , c3d+2 in a block of
size d + 1 with start position p. Without loss of generality, assume that v1 :=
c1 > · · · > cd > cd+1 > · · · > c3d+2. Let ci be the candidate in position p in v1.
If i ≤ d + 1, then candidate c3d+2 is in v1 in position p + 2d + 1 or in a higher
position. However, since c3d+2 is in the block with start position p, it must occur
in position p+d or lower in some other vote, contradicting Lemma 6. If i > d+1,
then a similar argument applies to c1, again contradicting Lemma 6. ⊓⊔

Basic idea. For designing the algorithm we exploit that blocks of size d + 1
can be used to decompose an election when computing the Kemeny score. More
precisely, consider a block(i) of size d+1, then any candidate a with a /∈ block(i)
must fulfill either posv(a) < i for all v ∈ V or posv(a) > i + d + 1 for all v ∈ V .
Further, we can show that there is a Kemeny consensus in which a must have a
position in a range that is a function of d. This means that, if we iterate from
left to right over the votes and store the Kemeny score for all “partial orders”
of the candidates of a block, then we can forget all candidates that appear only
left of this block.

Roughly speaking, our algorithm works as follows: It iterates from left to right
over the votes and, in each iterative step, considers a block of size d + 1. That
is, in the first iterative step, the initialization, it considers all possible orders of
the candidates of block(0) and uses a table to store the scores of all such orders
with respect to the subinstance of (V, C) restricted to block(0). Then, in the
following iterations, it considers block(i) with i ≥ 1. The computation of the
score of the orders of block(i) is based on the table entries for block(i − 1). The
Kemeny score of (V, C) is the minimum of the entries for block(m − d − 1). For
the formal description of the algorithm we need some further definitions.

Definitions. For a subset of candidates C′, let π(C′) denote an order of C′. For
two candidate subsets C′ and C′′, the orders π′(C′) and π′′(C′′) are compatible if
the candidates of C′ ∩C′′ have the same order according to π′ and π′′. Further,

Proc. 4th AAIM, 2008

Initialization:

For all permutations π(block(0))

T (π(block(0)), 0) := S(π(block(0)))

Update:

For i = 1, . . . , m − d − 1

T (π(block(i)), i) := min
π′(block(i−1))∈Comp(i,π)

{T (π′(block(i − 1)), i − 1)}

+ S(π(block(i))) − S(πblock(i−1)(block(i)))

Output:

min
π(block(m−d−1))

{T (π(block(m − d − 1)), m − d − 1)}.

Fig. 1. Dynamic programming algorithm for Kemeny Score.

if C′ ⊆ C′′, let πC′(C′′) denote the suborder of π(C′′) restricted to C′. For an
order π(block(i)) the set Comp(i, π) contains all orders of candidates of block(i−
1) that are compatible with π(block(i)). For any fixed order π(C′) of C′ ⊆ C,
its score S(π(C′)) is the sum of its KT-distances between π(C′) and all subvotes
of votes in V restricted to C′.

Algorithmic details. Next, we define the table T used in the dynamic program-
ming algorithm. The columns of T one-to-one correspond to the candidate sub-
sets block(i) ⊆ C with 0 ≤ i ≤ m − d − 1. Each row corresponds to a possible
order of the candidates in block(i). By Lemma 7, the number of candidates of
each block is upper-bounded by 3d + 1. Thus, T has at most (3d + 1)! rows.
An entry in column block(i) and row π, where π is an order of the candidates
in block(i), stores the minimum score of the orders π′ of C′ :=

⋃

j≤i block(j)
under the condition that π′ is compatible with π.

The algorithm is given in Figure 1. In the following, we first state the cor-
rectness of the dynamic programming and then analyze its running time.

Lemma 8. The dynamic programming algorithm (see Figure 1) correctly de-
cides Kemeny Score.

Theorem 3. Kemeny Score can be solved in O((3d+1)! ·d · logd ·m ·n) time
with d being the maximum KT-distance between two input votes.

Proof. As argued above, the table size is bounded by O((3d + 1)! · m). For the
initialization, we compute the score of all orders of at most 3d + 1 candidates
and, for each order, the score is computable in O(d log d · n) time as argued in
the introductory section. Therefore, the initialization can be done in O((3d +
1)! · d log d · n) time.

At block(i) with i ≥ 1, we compute

min
π′(block(i−1))∈Comp(i,π)

{T (π′(block(i − 1)), i − 1)}

Proc. 4th AAIM, 2008

for all possible orders π(block(i)). Using a pointer data structure, this can be
done in (3d+1)! ·d log d time by going through the (i−1)th column once. Thus,
the entries of T (π(block(i)), i) can be computed in O((3d + 1)! · d log d ·n) time,
giving the running time of the algorithm. ⊓⊔

Note that it is easy to modify the dynamic programming to return a Kemeny
consensus within the same asymptotic running time. Furthermore, the algorithm
can be easily adapted to deal with weighted votes and/or weighted candidates.

5 Parameterization by the Number of Candidates

Theorem 4. Kemeny Score can be solved in O(2m · m2 · n) time.4

Proof. (Sketch) The algorithm goes like this: For each subset C′ ⊆ C compute
the Kemeny score of the given election system restricted to C′. The recurrence
for a given subset C′ is to consider every subset C′′ ⊆ C′ where C′′ is obtained
by deleting a single candidate c from C′. Let π′′ be a Kemeny consensus for the
election system restricted to C′′. Compute the score of the permutation π′ of C′

obtained from π′′ by putting c in first position. Take the minimum score over
all π′ obtained from subsets of C′. The correctness of this algorithm follows from
the following claim.
Claim: A permutation π′ of minimum score obtained in this way is a Kemeny
consensus of the election system restricted to C′.
Proof: Let σ′ be a Kemeny consensus of the election system restricted to C′, and
suppose that candidate c is on the first position of σ′. Consider C′′ = C′ \ {c},
and let σ′′ be the length-|C′′| tail of σ′. The score of σ′ is t + u, where u is the
score of σ′′ for the votes that are the restriction of V to C′′, and where t is the
“cost” of inserting c into the first position: Herein, the cost is the sum over the
votes (restricted to C′) of the distance of c from first position in each vote. Now
suppose that π′′ is a Kemeny consensus of the election system restricted to C′′.
Compared with the score of σ′, augmenting π′′ to π′ by putting c in the first
position increases the score of π′ by exactly t. The score of π′′ is at most u (since
it is a Kemeny consensus for the election system restricted to C′′), and so the
score of π′ is at most t + u, so it is a Kemeny consensus for the election system
restricted to C′. This completes the proof of the claim.

For each of the subsets of C, the algorithm computes a Kemeny score. Herein,
a minimum is taken from at most m values and the computation of each of these
values needs O(m·n) time. Therefore, the total running time is O(2m ·m2 ·n). ⊓⊔

6 Ties and Incomplete Votes

The algorithm from Section 5 also applies to the following generalizations; we
omit the respective technical details.

4 We give a direct proof here. Basically the same result also follows from a reduction to
Feedback Arc Set on Tournaments and a corresponding exact algorithm [14].

Proc. 4th AAIM, 2008

6.1 Kemeny Score with Ties

Introducing ties, we use the definition of Hemaspaandra et al. [11]: Each vote
consists of a ranking of candidates that can contain ties between candidates
and the Kemeny consensus can contain ties as well. In the definition of the
KT-distance, we then replace dp,q(c, d) by

tp,q(c, d) :=

0 if p and q agree on c and d,
1 if p (q) has a preference among c and d and q (p) does not ,
2 if p and q strictly disagree on c and d.

Additionally, we extend the KT-distance to candidate weights, that is, given
a weight function w : C → R+, the KT-distance dist(p, q) between two votes p, q
is defined as

dist(p, q) =
∑

{c,d}⊆C

w(c) · w(d) · tp,q(c, d).

By increasing the Kemeny score by two if two votes strictly disagree on two
candidates, the overall score becomes larger. It is not surprising that also in case
of ties we can get a linear problem kernel and a search tree with respect to the
parameter Kemeny score. To this end, we extend the notion of dirty pairs such
that a pair of candidates {a, b} is also dirty if we have a = b in one vote and a > b
or a < b in another vote. Then, we can obtain a linear problem kernel in complete
analogy to the case without ties. Concerning the search tree, by branching for
a dirty pair {a, b} into the three cases a > b, a = b, and a < b, we already
achieve the branching vector (1, 2, 4) and, hence, the branching number 1.76.
For example, having three votes in which candidates a and b are ranked equal
in two of the votes and we have a < b in the other vote, by branching into the
case “a = b” we have one inversion that counts one, branching into “a < b” we
have two inversions that count one, and branching into “a > b” we have two
inversions counting one and one inversion counting two.

With some more effort, we can also show that Kemeny Score with Ties is
fixed-parameter tractable with respect to the parameter maximum KT-distance.
To use the dynamic programming of Section 4, we need some bounds on the
positions a candidate can take and the size of a block in analogy to Lemma 6
and Lemma 7. In order to achieve this, we need a preprocessing step, which is
based on the following lemma:

Lemma 9. Let d denote the maximum KT-distance of an input instance. If
there is a vote in which at least d + 2 candidates c1, . . . , cd+2 are tied, then in a
yes-instance the candidates c1, . . . , cd+2 are tied in all votes.

Now, we can state the following data reduction rule:

Rule 3. If there are d + i candidates for any integer i ≥ 2 that are tied in all
votes, replace them by one candidate whose weight is the sum of the weights of
the replaced candidates.

The correctness of Rule 3 follows from Lemma 9. Further, note that the
dynamic programming procedure from Section 4 can be adapted to deal with
candidate weights. Now, similar to Lemmas 6 and 7 we can prove the following.

Proc. 4th AAIM, 2008

Lemma 10. In a candidate-weighted instance with maximum KT-instance d
obtained after exhaustively applying Rule 3, the positions of a candidate in two
votes differ by at most 2d + 1.

Lemma 11. In a reduced instance with maximum KT-instance d, every block
of size 2d contains at most 6d + 2 candidates.

Using Lemmas 10 and 11, we can show that with the dynamic programming
algorithm given in Section 4, the following running time can be obtained.

Theorem 5. Kemeny Score with Ties can be solved in O((6d+2)! ·d · log d ·
n · m) time with d being the maximum KT-distance between two input votes.

6.2 Incomplete Votes

We now consider Kemeny Score with Incomplete Votes, first introduced
by Dwork et al. [8]. Here, the given votes are not required to be permutations
of the entire candidate set, but only of candidate subsets, while the Kemeny
consensus sought for should be a permutation of all candidates. In the definition
of the KT-distance, we then replace dp,q(c, d) by

d′p,q(c, d) :=

{

0 if {c, d} 6⊆ Cp or {c, d} 6⊆ Cq or p and q agree on c and d,
1 otherwise,

where Cv contains the candidates occurring in vote v.
A simple reduction from Feedback Arc Set shows that, in contrast to

Kemeny Score with complete votes, the parameterization by the maximum
KT-distance does not lead to fixed-parameter tractability for Kemeny Score

with Incomplete Votes:

Theorem 6. Kemeny Score with Incomplete Votes is NP-hard even if
the maximum KT-distance between two input votes is zero.

By way of contrast, we now show that, parameterized by the Kemeny score k,
also Kemeny Score with Incomplete Votes is fixed-parameter tractable.

Theorem 7. Kemeny Score with Incomplete Votes is solvable in (1.48k)k·
p(n, m) time with k being the Kemeny score and p being a polynomial function
of n and m.

Proof. Let ((V, C), k) be the given Kemeny Score instance. The algorithm
consists of three steps. First, transform the given election system into one where
each vote contains only two candidates. For example, a vote a > b > c is replaced
by threes votes: a > b, b > c, and a > c. Second, find all dirty pairs and, for each
of them, remove the corresponding votes and branch into two cases, in each case
an order between the two candidates of this pair is fixed and the parameter k is
decreased accordingly. Third, after having processed all dirty pairs, we construct
an edge-weighted directed graph for each of the election systems generated by the

Proc. 4th AAIM, 2008

second step. The vertices of this graph one-to-one correspond to the candidates.
An arc (c, c′) from vertex c to vertex c′ is added if there is a vote of the form c > c′

and a weight equal to the number of the c > c′-votes is assigned to this arc. For
each pair of candidates c and c′ where the second step has already fixed an
order c > c′, add an arc (c, c′) and assign a weight equal to k + 1 to this arc.
Observe that solving Kemeny Score on the instances generated by the first
two steps is now equivalent to solving the Weighted Directed Feedback

Arc Set problems on the constructed edge-weighted directed graphs. Directed

Feedback Arc Set is the special case of Weighted Feedback Arc Set with
unit edge weight. The fixed-parameter algorithm by Chen et al. [4] for Directed

Feedback Arc Set can also handle Weighted Directed Feedback Arc

Set with integer edge weights [3]. Therefore, applying this algorithm in the third
step gives a total running time of (1.48k)k · p(n, m) for a polynomial function p.

⊓⊔

References

1. N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information:
Ranking and clustering. In Proc. 37th STOC, pages 684–693. ACM, 2005.

2. J. Bartholdi III, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare, 6:157–165, 1989.

3. J. Chen. Personal communication. December 2007.
4. J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm

for the directed feedback vertex set problem. In Proc. 40th STOC. ACM, 2008.
5. V. Conitzer, A. Davenport, and J. Kalagnanam. Improved bounds for computing

Kemeny rankings. In Proc. 21st AAAI, pages 620–626, 2006.
6. A. Davenport and J. Kalagnanam. A computational study of the Kemeny rule for

preference aggregation. In Proc. 19th AAAI, pages 697–702, 2004.
7. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
8. C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for

the Web. In Proc. WWW, pages 613–622, 2001.
9. C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation revisited,

2001. Manuscript.
10. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
11. E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny elec-

tions. Theoretical Computer Science, 349:382–391, 2005.
12. C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Proc. 39th

STOC, pages 95–103. ACM, 2007.
13. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006.
14. V. Raman and S. Saurabh. Improved fixed parameter tractable algorithms for

two “edge” problems: MAXCUT and MAXDAG. Information Processing Letters,
104(2):65–72, 2007.

15. M. Truchon. An extension of the Condorcet criterion and Kemeny orders. Technical
report, cahier 98-15 du Centre de Recherche en Économie et Finance Appliquées,
1998.

16. A. van Zuylen and D. P. Williamson. Deterministic algorithms for rank aggregation
and other ranking and clustering problems. In Proc. 5th WAOA, volume 4927 of
LNCS, pages 260–273. Springer, 2007.

