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Abstract

The POSSIBLE WINNER problem asks whether
some distinguished candidate may become the win-
ner of an election when the given incomplete votes
are extended into complete ones in a favorable
way. POSSIBLE WINNER is NP-complete for com-
mon voting rules such as Borda, many other posi-
tional scoring rules, Bucklin, Copeland etc. We in-
vestigate how three different parameterizations in-
fluence the computational complexity of POSSI-
BLE WINNER for a number of voting rules. We
show fixed-parameter tractability results with re-
spect to the parameter “number of candidates” but
intractability results with respect to the parame-
ter “number of votes”. Finally, we derive fixed-
parameter tractability results with respect to the pa-
rameter “total number of undetermined candidate
pairs” and identify an interesting polynomial-time
solvable special case for Borda.

1 Introduction
Voting plays a key role for decision making in modern soci-
eties and multiagent systems. Classically, a vote one-to-one
corresponds to a linear order of the given set of candidates.In
many situations, however, only partial information about the
voters’ preferences is available. For instance, in multiagent
systems the agents often must make a joint decision based on
their individual preferences concerning a (potentially large)
set of alternatives (synonymously, candidates). Sometimes,
however, an agent has not enough information or time to pro-
vide a linear order on all alternatives and thus only may pro-
vide a partial ordering of the alternatives. Then, a vote cor-
responds to a partial order of the set of candidates. In this
context, two central questions arise.
1. Given a set of partial orders, does a distinguished candi-
datec win for eachextension of the partial orders into linear
ones? This is the NECESSARYWINNER problem.
2. Given a set of partial orders, can a distinguished candi-
datec win for at least oneextension of the partial orders into
linear ones? This is the POSSIBLE WINNER problem.
In this paper, we focus on the POSSIBLE WINNER prob-
lem for several voting systems—in particular, we consider
the common voting rulesk-approval and, following Xia and

Conitzer [2008], Borda, Bucklin, Copeland, maximin, and
ranked pairs. Some of our results also hold for broader classes
of voting rules.

POSSIBLE WINNER is a well-studied problem[Konczak
and Lang, 2005; Langet al., 2007; Pini et al., 2007;
Walsh, 2007; Xia and Conitzer, 2008]. Correcting Kon-
czak and Lang[2005] claiming polynomial-time solvability
for scoring rules, it has been recently shown that POSSI-
BLE WINNER is NP-complete for Borda, many other scoring
rules, Bucklin, Copeland, maximin, and ranked pairs[Xia
and Conitzer, 2008]. In contrast, NECESSARY WINNER
is coNP-complete only for Copeland and ranked pairs but
polynomial-time solvable for Bucklin, maximin, and scor-
ing rules [Xia and Conitzer, 2008]. Interestingly, the NP-
completeness results for POSSIBLEWINNER even hold when
there is only a constant number of candidate pairs per vote
for which the relative order is open. In contrast, if the num-
ber of candidates is constant, then POSSIBLE WINNER can
be solved in polynomial time provided that the voting rule
can be executed in polynomial time[Walsh, 2007]. An exten-
sively studied special case of POSSIBLE WINNER is “con-
structive manipulation” (see, e.g.,[Conitzeret al., 2007]).
Here, the given set of partial orders consists of two sub-
sets; one subset contains linearly ordered votes and the other
one completely unordered votes. Refer to[Walsh, 2007;
Xia and Conitzer, 2008] for nice overviews.

The fundamental goal of parameterized algorithmics[Nie-
dermeier, 2006] is to find out whether the seemingly un-
avoidable combinatorial explosion occurring in algorithms to
solve NP-hard problems can be confined to certain problem-
specific parameters. The idea is that when such a parameter
has only small values in applications, then an algorithm with
a running time that is exponential exclusively with respect
to the parameter may be efficient and practical. Formally, a
given parameterized problem(I, p) with input instanceI and
parameterp is calledfixed-parameter tractable (FPT)with
respect to the parameterp if it can be solved within running
time f(p) · |I|O(1) for some computable functionf . In other
words, the running time is polynomial for constant parameter
values and the degree of the polynomial in the running time
is independent of the parameter.

The statement that POSSIBLE WINNER can be solved in
polynomial time when the number of candidates is bounded
by a constantk [Walsh, 2007] is a starting point for our work.
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The decisive question is howk influences the degree of the
polynomial that upper-bounds the running time. In the stated
polynomial-time algorithm,k determines the degree in the
way “nk”, wheren denotes the input size. Such algorithms
become impractical even for modest values ofk. We partially
answer this question by showing that POSSIBLE WINNER
is fixed-parameter tractable with respect to the parameterk
(number of candidates) for all of the above mentioned vot-
ing rules. Moreover, we initiate a broader algorithmic study
of POSSIBLE WINNER by pursuing a multivariate complex-
ity analysis based on further parameterizations. More specifi-
cally, we additionally analyze how the parameters “number of
votes” and “total number of undetermined pairs” influence the
problem complexity. We achieve (parameterized) intractabil-
ity results in the first case and fixed-parameter tractability re-
sults in the second case. More precisely, first we prove that
POSSIBLE WINNER for Borda, Bucklin, andk-approval re-
mains NP-complete even in case of a constant number of
votes (which excludes any hope for fixed-parameter tractabil-
ity with respect to this parameter). Second, we prove that with
respect to the parameter “total number of undetermined pairs”
POSSIBLE WINNER becomes fixed-parameter tractable for
all voting rules where in case of linearly ordered votes the
winner can be determined in polynomial time. For the spe-
cial case Borda, we further identify an interesting specialcase
that is solvable in polynomial time and that can be used to im-
prove the running time of the fixed-parameter algorithm.

Due to the lack of space, several details had to be deferred
to a full version of the paper.
Preliminaries. Let C = {c1, . . . , cm} be the set ofcandi-
dates. Classically, a vote is a linear order (a transitive, an-
tisymmetric, and total relation) onC. An n-voter profileP
onC consists ofn votes onC. The set of all profiles onC is
denoted byP (C).

A voting rule r is a function fromP (C) to 2C ; the re-
sulting image set is called the set ofco-winners. Throughout
this paper we cast our proofs for the case of uniquely deter-
mined co-winners (that is, one-element co-winner sets), just
referring to these as winners. All our results hold for the co-
winner case as well.

The most frequently used voting rules in this work
are Borda andk-approval. Both are(positional) scor-
ing rules. Scoring rules are defined by scoring vec-
tors (α0, α1, . . . , αm−1) with integersα0 ≥ α1 ≥ · · · ≥
αm−1 ≥ 0. More specifically, a scoring ruler consists of a
sequence of scoring vectorss1, s2, . . . such that for anyi ∈N there is a scoring vector fori candidates. For a votev and
a candidatec ∈ C, let the scores(v, c) := αj wherej is the
number of candidates that are better thanc in v. For any pro-
file P = {v1, . . . , vn}, let s(P, c) :=

∑n
i=1 s(vi, c). A scor-

ing rule will outputc as a co-winner if it maximizess(P, c).
For example, the following three voting rules with their cor-
responding scoring vectors are common:
- plurality with (1, 0, . . . ),
- Bordawith (m − 1, m− 2, . . . , 0), and
- k-approvalwith (1, 1, 1, . . . , 0, 0) starting withk 1’s.
Due to the lack of space, we refer to[Xia and Conitzer, 2008]
for the definitions and an overview of the other voting sys-
tems studied in this work.

MANIPULATION POSSIBLE WINNER

Copeland NP-c1 NP-c
Maximin NP-c2 NP-c
Ranked Pairs NP-c2 NP-c
Bucklin P2 NP-c
k-approval P NP-c
Borda ? NP-c

Table 1:Complexity of MANIPULATION for a constant-size coali-
tion and POSSIBLEWINNER for a constant number of partial votes.
Boldface results are new. The polynomial-time solvabilityof MA-
NIPULATION for k-approval is easy to observe. The other results are
from 1[Faliszewskiet al., 2008] (for specific tie-breaking) and2[Xia
and Conitzer, 2008]. The NP-completeness of POSSIBLEWINNER
directly follows from the NP-completeness of MANIPULATION .

A partial order is a transitive, antisymmetric, and reflex-
ive relation. Sometimes, a partial order specifies a whole
subset of candidates, e.g.,e ≻ D. This notation means
that e ≻ d for all d ∈ D and there is no specified order
among the candidates inD. A linear orderV extendsa par-
tial orderO if O ⊆ V , that is, for anyi, j ≤ m, one has
ci ≻O cj ⇒ ci ≻V cj . For a voting ruler and a profile of
partial ordersPO = (O1, . . . , On) on C, a candidatec ∈ C
is a possible winnerif there exists aP = (V1, . . . , Vn)
such that, for eachi, Vi extendsOi into a linear order and
c ∈ r(P ).
POSSIBLE WINNER
Input: A voting rule r, a set of candidatesC, a profile of
partial ordersPO = (O1, . . . , On) onC, and a distinguished
candidatec ∈ C.
Question: Is there an extension profileP = (V1, . . . , Vn)
whereVi extendsOi for all 1 ≤ i ≤ n andc ∈ r(P )?

2 Number of candidates
To assess the parameterized complexity with respect to the
parameter “number of candidates”, we employ Lenstra’s fa-
mous algorithm for bounded-variable-cardinality integerlin-
ear programming (see[Niedermeier, 2006, Chapter 11])
which has shown usefulness for proving fixed-parameter
tractability for control in elections as well[Faliszewskiet al.,
2007]. Lenstra’s result says that it is fixed-parameter tractable
with respect to the number of variables to check whether all
inequalities of an integer linear program can be fulfilled atthe
same time (the so-called feasibility problem). By expressing
POSSIBLE WINNER as the feasibility problem for an inte-
ger linear program with a number of variables bounded by a
function solely depending on the parameter “number of can-
didates”, one can obtain the following.

Theorem 1. For all positional scoring rules, Bucklin,
Copeland, ranked pairs, and maximinPOSSIBLE WINNER
is fixed-parameter tractable with respect to the parameter
“number of candidates”.

3 Number of votes
A well-studied scenario in voting systems is constructive
manipulation with a bounded number of unspecified votes,
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that is, bounded coalition size[Faliszewskiet al., 2008;
Xia et al., 2008]. Since constructive manipulation is a spe-
cial case of POSSIBLEWINNER, this motivates the considera-
tion of the parameter “number of partial votes”. An overview
of results for this parameterization is given in Table 1. In
the following, we show the NP-completeness of POSSIBLE
WINNER for a constanttotal number of votes fork-approval,
Bucklin, and Borda.

k-approval. The NP-complete INDEPENDENT SET (IS)
problem asks, given an undirected graphG = (V, E) and
a positive integert, whether there is a size-t vertex sub-
setV ′ ⊆ V such that there is no edge between any two ver-
tices ofV ′.

Theorem 2. For k-approval, POSSIBLE WINNER is NP-
complete for a partial profile that consists of two partial or-
ders whenk is part of the input.

Proof. (Sketch)We give a many-one reduction from INDE-
PENDENT SET to POSSIBLE WINNER for k-approval. Given
an IS-instance((V, E), t) with V = {v1, . . . , vn}, we con-
struct a 2-voter partial profilePO over a set of candidatesC in
which the distinguished candidatec ∈ C is a possible winner
according tok-approval withk := |n+

(

n
2

)

+|E|−tn+
(

t
2

)

+1|
iff (G, t) is a yes-instance. The set of candidates isC :=
CV ⊎ CE ⊎ {c} ⊎ D with a candidate for every vertex, that
is, CV := {ci | vi ∈ V }, and candidates that are related to
pairs of vertices, that is, for1 ≤ i < j ≤ n, if {vi, vj} ∈ E,
then there are two candidateseij ande′ij in CE ; otherwise,
there is one candidateeij in CE . Further,D consists of|d|
dummy candidates withd := n− t+

(

n
2

)

+ |E|− tn+
(

t
2

)

. In
the following, we describe the construction for the case that
d ≥ 0. The cased < 0 can be handled similarly. The two
partial ordersO1 andO2 of PO are specified as follows:

O1 : c ≻ D ≻ CV ≻ CE .
O2 : c ≻ CV ∪ CE ≻ D, and for1 ≤ i < j ≤ n,

if {vi, vj} ∈ E, thenci ≻ eij andcj ≻ e′ij ;
otherwise,ci ≻ eij andcj ≻ eij .

The distinguished candidatec has a total score of two. If
there is an extension in which all other candidates have a total
score of at most one, thenc is a possible winner. This is equiv-
alent to the demand that every other candidate must assume
at least one “zero-position”. Since we have1+ |CV |+ |CE |+
|D| = 1+n+

(

n
2

)

+|E|+n−t+
(

n
2

)

+|E|−tn+
(

t
2

)

candidates
and considerk-approval withk = n+

(

n
2

)

+|E|−tn+
(

t
2

)

+1,
there are

(

n
2

)

+ |E| + n − t zero-positions per vote.
In O1, the candidates ofCE are beaten by all other can-

didates, and thus assume zero-positions in every extension.
Hence,|CE | =

(

n
2

)

+|E| zero-positions are already occupied.
The remainingn − t zero-positions can only be assigned to
candidates ofCV . In an extension in whichc wins, thoset
candidates fromCV with a one-position inO1 must assume a
zero-position inO2. According to the definition ofO2, ev-
ery candidate fromCV is placed beforen − 1 candidates
from CE . Hence, placing a candidate fromCV at a zero-
position inO2 implies thatn − 1 candidates fromCE must
also assume zero-positions. Since every candidate ofCE has
a zero-position inO1, assigning zero-positions to candidates
from CE in an extension ofO2 is not necessary to makec the

possible winner. The basic idea of the construction is that two
candidatesci, cj ∈ CV that assume zero-positions inO2 can
“share” a candidate fromCE if {vi, vj} /∈ E. In this case,
both candidates enforce a zero-position for the same candi-
dateeij whereas otherwise the two candidateseij and e′ij
must assume zero-positions. As we argue in the following,
the construction ensures that for no pair of “selected” candi-
dates fromCV there are two corresponding candidates from
CE that are forced to a zero-position. Otherwise, the number
of remaining zero-positions would not be sufficient for the
selected candidates fromCV andc would not win.

Since all candidates fromD assume zero-positions inO2, it
is easy to verify that there are exactlytn−

(

t
2

)

zero-positions
left over (andc beats all candidates ofD). Now, suppose
that the candidates fromCV that must assume a zero-position
in O2 correspond to an independent set. Then, the number of
candidates ofCE that are forced to assume a zero-position is
t · (n − 1) minus the number of candidates that are counted
twice. For all pairs of candidates that correspond to non-
adjacent vertices a candidate ofCE is counted twice. Since
the t candidates correspond to an independent set, there are
(

t
2

)

such candidates and the number of zero-positions is suf-
ficient. Hence, extendingO2 by placing theCV -candidates
that correspond to an independent set (and all “enforced” can-
didates) to zero-positions and extendingO1 by placing the
remaining candidates ofCV to zero-positions yields an ex-
tension in whichc is the winner.

We omit the argument for the reverse direction.

Bucklin. TheBucklin scoreof a candidate is the smallest po-
sition s such that the candidate takes positions or smaller in
more than half of the votes. The candidate with the smallest
Bucklin score wins. The reduction from IS used in Theo-
rem 2 fork-approval can be adapted to work for Bucklin. We
sketch the basic idea: Additionally to the two partial orders,
the modified profile contains three linear orders ensuring the
following. The Bucklin score of the distinguished candidate
is set to a certain values. All other candidates have Bucklin
score at mosts if they do not assume a position greater thans
in one of the partial votes, and have Bucklin score higher
thans, otherwise. Now, a position higher thans is equiva-
lent to a “zero-position”, that is a position greater thank, in
the proof of Theorem 2. Hence, one can argue in analogy
to there. Regarding the construction of the linear votes, the
Bucklin score of the distinguished candidate can be fixed by
setting it to positions in all three linear votes. All other can-
didates are set to a position smaller thans in one of the linear
orders and to a position higher thans in the two other linear
orders. This idea can be used to show the following.

Theorem 3. For Bucklin, POSSIBLE WINNER is NP-
complete for a partial profile consisting of two partial and
three linear orders.

Borda. The 3-PARTITION problem is defined as follows.
Given a multi-setA = {a1, . . . , an} of positive integers
and B := (3/n) ·

∑

ai∈A ai, it asks whether there is a
partition of A into size-3 subsetsA1, . . . , An/3 such that
∑

ai∈Aj
ai = B for all j ∈ {1, . . . , n/3}. The 3-PARTITION

problem is strongly NP-complete[Garey and Johnson, 1979].
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Informally, this means that the NP-hardness still holds when
the integers ofA have values polynomially bounded inn. We
denote the special case that each integerai ∈ A must be a
multiple of n as3-n-PARTITION. It is not hard to verify that
the3-n-PARTITION problem is strongly NP-hard since every
3-PARTITION instance can be reduced to3-n-PARTITION by
multiplying all input integers withn.

Theorem 4. For Borda,POSSIBLEWINNER is NP-complete
for a partial profile consisting of three partial and three linear
orders.

Proof. Let A = {a1, . . . , an} denote a 3-n-PARTITION in-
stance withB := (3/n) ·

∑

ai∈A ai. To ease the presen-
tation, we assume thatai < ai+1 for i = 1, . . . , n − 1
anda1 = n. It is not hard to modify the following many-
one reduction to work for general instances. We construct
a partial profilePO over a setC of candidates in which the
distinguished candidatec ∈ C can become a winner iffA
is a yes-instance for 3-n-PARTITION. The set of candidates
is C := {c} ⊎ E ⊎ T ⊎ D, with one candidate for every
member ofA, that is, E := {ei | ai ∈ A}, candidates
representing the subsets resulting from the partition into3-
sets, that isT := {t1, . . . , tn/3}, and a set of dummy can-
didatesD :=

⊎n
i=1 Di only needed to “fill” positions (spec-

ified later). The partial profilePO consists of three linear
orders and three identical partial orders. Every partial or-
derOq, q ∈ {1, 2, 3}, of PO is given byc ≻ T and

c ≻ D1 ≻ e1 ≻ D2 ≻ · · · ≻ Di ≻ ei ≻ · · · ≻ Dn ≻ en

with |D1| = a1 − 1 and |Di| = ai − ai−1 − 1 for i ∈
{2, . . . , n}. This definition fixes the number of dummy can-
didates; more precisely,|D| =

∑

Di∈D |Di| = a1 − 1 +
∑n

i=2(ai − ai−1 − 1) = an − n. Thus, the total number of
candidates ism = 1+|E|+|T |+|D| = 1+n+n/3+an−n =
an+n/3+1. Since 3-n-PARTITION is stronglyNP-complete,
we can assume thatan and, thus,m is polynomial inn. This
also allows that the integers fromA are presented by the
candidates as follows. For every candidateei ∈ E, there
are exactlyai − 1 candidatess ∈ D ∪ E with c ≻ s and
s ≻ ei in Oq, q ∈ {1, 2, 3}. Further, note that the position
and thus the total score of the distinguished candidatec is al-
ready fixed. In contrast, every subset candidatetj ∈ T can be
“inserted” at any position behindc in the three partial votes.
The basic idea of this construction is that the “choice” of the
positions fortj in the three partial orders corresponds to the
choice of three numbers fromA into the corresponding sub-
setAj . For example, insertingtj directly before the candi-
dateei in one of the partial votes means thatai ∈ Aj . More
specifically, we would like to ensure the following two points
for every possible extension in whichc wins:
1. Every number ofA is selectedexactly once, that is, for
every candidateei ∈ E\{e1} there is exactly one candi-
datetj ∈ T with ei−1 ≻ tj andtj ≻ ei in one of the three
partial votes, and one candidatetj ∈ T with tj ≻ e1.
2. For alltj ∈ T , the sum corresponding to the three “number
candidates” fromE selected bytj is B.
The two points can be realized by setting the linear orders
of PO appropriately. To this end, forc′ ∈ C\{c} let themax-
imum partial scoresmax

p (c′) denote the maximum score that

c′ may get within the three partial votes without beatingc.
Then, it is not hard to construct three linear orders ofPO such
that the following conditions hold. (We defer the description
of the linear orders to the full version of this work.)

• smax
p (ei) = 3(m − 1) − 3ai − i for all ei ∈ E,

• smax
p (tj) = 3(m − 1) − B for all tj ∈ T , and

• smax
p (d) ≥ 3m for all d ∈ D.

By construction,c will make3(m−1) points in any exten-
sion. Hence, the last condition implies that a candidated ∈ D
can never beatc. Further, everyei ∈ E must “loose” at
least3ai + i points againstc and everytj ∈ T must loose
at leastB points againstc.

Now, we show that there is a solution for 3-n-PARTITION
iff there is an extension ofPO such thatc wins.

“⇒” Let {A1, . . . , An/3} with Aj = {aj1 , aj2 , aj3}
denote a solution of 3-n-PARTITION for A. Then, ex-
tendOq, q ∈ {1, 2, 3}, such thattj ≻ ejq

andDjq
≻ tj .

This extension is unambiguous since allajq
∈ A are pairwise

distinct. As explained before, in every partial vote, for ev-
ery ei ∈ E, there are exactlyai − 1 candidatess ∈ D ∪ E
with c ≻ s ands ≻ ei. Thus, without inserting anytj ∈ T
beforeei, ei “looses”3ai points againstc. Forq ∈ {1, 2, 3},
let τi,q denote the number of candidates fromT that are
inserted beforeei to extendOq. Then, for everyei, we
haveτi,1 + τi,2 + τi,3 = i since for allz ≤ i a candidate
from T is inserted directly beforeez in one of the three par-
tial votes. Thus,ei looses3ai + i points in this extension
and c beatsei. It remains to show thatc beatstj . Since
aj1 + aj2 + aj3 = B, due to the construction the number of
candidates that are “better” thantj in the three partial votes
is at least|{s ∈ (D ∪ E) : s ≻O1

ej1}| + |{s ∈ (D ∪ E) :
s ≻O2

ej2}|+ |{s ∈ (D ∪ E) : s ≻O3
ej3}| = B − 3. Thus,

smax
p (tj) ≤ 3(m − 1) − B andc will beat tj .
“⇐” Let V1, V2, V3 denote an extension ofPO in whichc is

a winner. As explained before, without inserting anyti ∈ T
beforeei, ei “looses” 3ai points againstc. Hence,ei must
loose furtheri points. This can only be achieved by inserting
candidates ofT . Hence, at leasti times a candidate ofT
must be inserted beforeei, that is,ti1 + ti2 + ti3 ≥ i. We
denote this as property (I). In the following, we show first
that for a candidatetj ∈ T that selectsej1 , ej2 , ej3 , one must
have

∑3
q=1 ajq

= B and, second that everyei ∈ E, that is,
every number ofA, is selected exactly once.

First, we show by contradiction that for a candidatetj ∈ T

that selectsej1 , ej2 , ej3 , one can neither have
∑3

q=1 ajq
<

B nor
∑3

q=1 ajq
> B. Assume that there is atj

with
∑3

q=1 ajq
< B. Then, the minimum number of

points thattj will make in any extension is as follows: In
Vq, q ∈ {1, 2, 3}, there are at mostajq

− 1 candidates of

D ∪ E with d > tj . Thus,tj can loose at most
∑3

q=1 ajq

points by candidates fromD ∪ E. Since |T | = n/3, in
every partial vote at mostn/3 − 1 candidates ofT can be
inserted beforetj . Thus, the score oftj in V1, V2, V3 is
at least3(m − 1) −

∑3
q=1 ajq

− n + 3. By assumption,
∑3

q=1 ajq
< B and since allajq

∈ A are multiples ofn,

4
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∑3

q=1 ajq
≤ B − n. Then, in totaltj will make at least

3(m− 1)−B + n−n + 3 = 3(m− 1)−B + 3 > smax
p (tj)

points in the partial votes, andtj thus beatsc.
Now, assume that there is atj with

∑3
q=1 ajq

> B.
We consider the amount of points all remaining candi-
dates ofT \{tj} together can loose againstc by candidates
fromD∪E. Recall thati candidates ofT must be inserted be-
fore anyei (property (I)). Clearly, inserting all candidates as
far right as possible maximizes the amount of points the can-
didates ofT \{tj} can loose. Due to property (I) this amount
is at most

∑n
i=1 ai −

∑3
q=1 ajq

= (n/3) · B −
∑3

q=1 ajq
<

(n/3 − 1) · B. Further, this amount can be “contributed” to
the candidates only in multiples ofn sinceai differs fromaj

at least byn. Then at least one candidatet ∈ T \{tj} can
only loose less than the average amount of points. More pre-
cisely,t must loose less thanB points and, thus, can loose at
mostB−n points by candidates fromD∪E. Again, we have
that t can loose at mostn − 3 additional points by inserting
candidates ofT . Thus, the minimum score thatt will make
in V1, V2, andV3 is 3(m − 1) − B + n − n + 3 > smax

p (t)
andt will beatc.

Second, it remains to show that every number inA is se-
lected exactly once. We cannot selecten twice without vio-
lating property (I). Fori < n, assume that a candidateei is
selected twice. Due to property (I), we must have selected
at leasti + 1 candidates corresponding toas, s ≤ i < n.
Hence, in total, the sum of the numbers corresponding to the
selected candidates is at most

∑i
s=1 ai + ai +

∑n
s=i+2 ai <

∑n
s=1 ai = (n/3)·B. Since we have shown before that every

candidatetj selects candidates that sum up exactly toB and
we have|T | = n/3, this is a contradiction.

Summarizing, in any extension wherec wins, the selected
candidates ofT correspond to a solution for 3-n-PARTITION.

4 Total number of undetermined pairs
Xia and Conitzer[2008] showed for five common voting rules
that the POSSIBLE WINNER problem is NP-complete even if
each partial order only contains a constant number of unde-
termined pairs of candidates. As a consequence, there is no
hope for showing fixed-parameter tractability with respectto
this parameter. To chart the border of tractability, we consider
the parameterk denoting the “total number of undetermined
pairs”. More precisely, letPO be a partial profile overC.
For O ∈ PO, let u(O) denote the number of undetermined
pairs inO, that is,u(O) := |{{c1, c2} ∈ C : (c1 ≻ c2) /∈
O and(c2 ≻ c1) /∈ O}|. Then,k :=

∑

O∈PO
u(O).

A general search tree approach. Consider a partial order
where the candidatesc1 andc2 form an undetermined pair.
To extend this partial order into a linear order, one has to de-
cide whether eitherc1 ≻ c2 or c2 ≻ c1. Clearly, it may hap-
pen that not each of these options is compatible with already
fixed pairwise rankings within the given partial orders. Then,
this option can be discarded. However, in the worst case,
one faces a branching into two valid cases, in each branch
decreasing the parameter denoting the total number of unde-
termined pairs by one. Clearly, this yields a search tree of size

O(2k). For an arbitrary voting ruler, let fr(n, m) denote the
running time needed to compute a winner when given linear
orders. Then, for every leaf one can check whetherc is a win-
ner for the corresponding extension infr(n, m) time, giving
the following theorem.

Theorem 5. For a partial n-voter profile overm candidates
and a voting ruler, POSSIBLE WINNER can be decided in
O(2k · (m + fr(n, m)) + nm2) time, wherek denotes the
total number of undetermined pairs.

Theorem 5 is based on a pure worst-case analysis. Signif-
icant practical improvements are conceivable. For instance,
it is promising to select the order in which the undetermined
pairs are processed in a more clever way. Subsequently, for
the Borda rule we demonstrate that a provable improvement
over the straightforward search tree size ofO(2k) is possible
by using a refined search strategy.

An improved search tree for Borda’s rule. A central obser-
vation concerning Borda for getting a search tree asymptoti-
cally smaller thanO(2k) lies in the detection of a polynomial-
time solvable special case. To this end, for a partial orderO,
we define anisolated undetermined pair of candidatesto be
an undetermined pair where both candidates do not form an
undetermined pair inO with any other candidate.

Theorem 6. For k being the total number of undetermined
pairs, in case of BordaPOSSIBLE WINNER can be decided
in O(nm2 + k2) time if all undetermined pairs are isolated.

Proof. If the distinguished candidatec is contained in an un-
determined pair, then, in the linear order,c is always placed
in front of the second candidate of the pair. After that, one
can assume that none of the undetermined pairs containsc.
For an isolated undetermined pair{c1, c2} of candidates, the
relative order ofc1 andc2 with respect to all other candidates
is already determined. More precisely, it is not hard to see
thatc1 andc2 must have the same relative order with respect
to each of the remaining candidates, and, thus, they must be
direct neighbors in the final linear order. Then, their scores in
this final order will differ by exactly one point. Thus, for ev-
ery candidatec′ 6= c being in at least one undetermined pair,
one can compute the minimum number of pointsl(c′) thatc′

will make in every possible extension. That is,l(c′) is the
sum over the scores forc′ obtained by choosingc′′ ≻ c′ in
all undetermined pairs{c′, c′′} that containc′. Note that the
scores(c) for the distinguished candidatec is already fixed.
Clearly, if l(c′) ≥ s(c) for somec′, thenc cannot become
possible winner. Otherwise, letb(c′) := s(c) − l(c′) − 1 ≥ 0
denote thebalanceof c′ with respect toc. The balance counts
the number of partial orders wherec′ may be placed better
than the other candidate in an undetermined pair without de-
featingc.

Using the balanceb(c′) for all candidatesc′ ∈ C\{c}, one
can decide POSSIBLE WINNER with the help of a maximum
flow computation as follows. Consider a four-level directed,
arc-weighteds-t-network with distinguished verticess andt
(see Figure 1). The first level only consists of vertexs. The
second level consists of vertices one-to-one representingall
undetermined pairs. Note that the same two candidates may
induce more than one undetermined pair because they may
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{c1, c2}Oi

c1

c2 ts

level 1
level 2 level 3

level 4

1

1

1

1
b(c1)

Figure 1:Flow network for Borda with isolated undetermined pairs

occur in more than one partial order. The vertexs is con-
nected by arcs of weight one to all level-two vertices. The
third level of vertices one-to-one represents all candidates oc-
curring in at least one undetermined pair. Every level-two
vertex representing an undetermined pair is connected by two
weight-one arcs to the two vertices corresponding to the two
candidates contained in the undetermined pair. The fourth
level only consists of vertext. Every level-three vertex rep-
resenting a candidatec′ is connected by one arc tot which is
assigned the weightb(c′).

The central claim now is as follows (proof omitted): The
constructed flow network allows for an integer flow of valuek
iff the distinguished candidatec is a possible winner of the
corresponding Borda instance withk undetermined pairs.

Altogether, we arrive at the overall running timeO(nm2 +
k2). To this end, note that the flow network can be con-
structed inO(nm2) time. Further, the number of arcs of the
flow network is linear ink. The Ford-Fulkerson algorithm can
compute a maximum integer flow inO(|A| · f) time, where
|A| denotes the number of arcs andf denotes the value of
a maximum flow. Since the value of the maximum flow is
bounded byk, the claimed running time follows.

The basic idea for an improved search tree algorithm for
Borda in the general case is as follows. Three candidates
{c1, c2, c3} ⊆ C form anundetermined triplewith respect
to some partial orderO ∈ PO if there are at least two unde-
termined pairs inO, each formed by two candidates from{c1,
c2, c3}. Now, one branches on undetermined triples instead of
undetermined pairs. This leads to a search tree of size1.82k.
Once there are no more undetermined triples, then one can
show that all remaining undetermined pairs must be isolated.
Hence, in the leaves of the refined search tree the algorithm
from Theorem 6 can be applied.

Theorem 7. For the Borda rule,POSSIBLE WINNER can be
decided inO(1.82k(nm2 + k2)) time, wherek denotes the
total number of undetermined pairs.

5 Conclusion
With our multivariate complexity analysis for the POSSIBLE
WINNER problem we complement previous work[Walsh,
2007; Xia and Conitzer, 2008]. We studied parameterizations
based on the number of candidates, the number of votes, and
the total number of undetermined candidate pairs. It is con-
ceivable that further parameterizations are worth investiga-

tion. Moreover, whereas we only dealt with two-dimensional
(that is, one parameter at a time) complexity analysis, it also
seems prospective to study the dependence on parameter pairs
(three-dimensional) or even higher-dimensional parameteri-
zations. All our results also hold for the possible co-winner
case. We conclude with a few concrete challenges for fu-
ture work: Make the fixed-parameter tractability results from
Section 2 more practical by replacing integer linear program-
ming with combinatorial algorithms. Concerning the efficient
enumeration of extensions, study in how many of all possible
extensions a distinguished candidate is a winner. Consider
the case where one does not allow all possible extensions of
partial orders but restricts these to “CP-nets”, see[Xia and
Conitzer, 2008].
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