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Abstract

The PRossiBLE WINNER problem asks whether
some distinguished candidate may become the win-
ner of an election when the given incomplete votes
are extended into complete ones in a favorable
way. PossIBLEWINNER is NP-complete for com-
mon voting rules such as Borda, many other posi-
tional scoring rules, Bucklin, Copeland etc. We in-
vestigate how three different parameterizations in-
fluence the computational complexity ofoBst
BLE WINNER for a number of voting rules. We
show fixed-parameter tractability results with re-
spect to the parameter “number of candidates” but
intractability results with respect to the parame-
ter “number of votes”. Finally, we derive fixed-
parameter tractability results with respect to the pa-
rameter “total number of undetermined candidate
pairs” and identify an interesting polynomial-time
solvable special case for Borda.
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Conitzer[200d, Borda, Bucklin, Copeland, maximin, and
ranked pairs. Some of our results also hold for broaderetass
of voting rules.

POsSSIBLE WINNERis a well-studied probleniKonczak
and Lang, 2005; Langt al, 2007; Piniet al, 2007,
Walsh, 2007; Xia and Conitzer, 20p8 Correcting Kon-
czak and Land2009 claiming polynomial-time solvability
for scoring rules, it has been recently shown thatsBr
BLE WINNER is NP-complete for Borda, many other scoring
rules, Bucklin, Copeland, maximin, and ranked paiXs
and Conitzer, 2008 In contrast, NCESSARY WINNER
is coNP-complete only for Copeland and ranked pairs but
polynomial-time solvable for Bucklin, maximin, and scor-
ing rules[Xia and Conitzer, 2008 Interestingly, the NP-
completeness results fooBsIBLEWINNER even hold when
there is only a constant number of candidate pairs per vote
for which the relative order is open. In contrast, if the num-
ber of candidates is constant, thea93IBLE WINNER can
be solved in polynomial time provided that the voting rule
can be executed in polynomial tinié/alsh, 2007. An exten-
sively studied special case oPbBsIBLE WINNER is “con-
structive manipulation” (see, e.dConitzeret al, 2007).

Voting plays a key role for decision making in modern soci-Here, the given set of partial orders consists of two sub-

eties and multiagent systems. Classically,
corresponds to a linear order of the given set of candidates.
many situations, however, only partial information abdé t
voters’ preferences is available. For instance, in mudteg

a vote onawo-o Sets; one subset contains linearly ordered votes and tkee oth

one completely unordered votes. Refer[Walsh, 2007;
Xia and Conitzer, 200gor nice overviews.
The fundamental goal of parameterized algorithrpidie-

systems the agents often must make a joint decision based ggrmeier, 200Bis to find out whether the seemingly un-

their individual preferences concerning a (potentialkgé

avoidable combinatorial explosion occurring in algorighio

set of alternatives (synonymously, candidates). SomstimeSolve NP-hard problems can be confined to certain problem-
however, an agent has not enough information or time to prospecific parameters. The idea is that when such a parameter
vide a linear order on all alternatives and thus only may prohas only small values in applications, then an algorithninwit
vide a partial ordering of the alternatives. Then, a vote cor@ running time that is exponential exclusively with respect
responds to a partial order of the set of candidates. In thif the parameter may be efficient and practical. Formally, a
context, two central questions arise. | ( .
1. Given a set of partial orders, does a distinguished candParametep is calledfixed-parameter tractable (FPTyith
datec win for eachextension of the partial orders into linear respect to the parameteiif it can be solved within running
ones? This is the ICESSARYWINNER problem.
2. Given a set of partial orders, can a distinguished candiwords, the running time is polynomial for constant paramete
datec win for at least oneextension of the partial orders into Vvalues and the degree of the polynomial in the running time
linear ones? This is thed3sIBLE WINNER problem.

In this paper, we focus on theoRsIBLE WINNER prob-
lem for several voting systems—in particular, we considerpolynomial time when the number of candidates is bounded
the common voting rules-approval and, following Xia and by a constant [Walsh, 2007 is a starting point for our work.

given parameterized problefd, p) with input instancd and
time f(p) - [I|°() for some computable functiofi In other

is independent of the parameter.
The statement thatdssIBLE WINNER can be solved in
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The decisive question is hoiwinfluences the degree of the MANIPULATION  POSSIBLEWINNER
polynomial that upper-bounds the running time. In the state

polynomial-time algorithm/ determines the degree in the COp.EIand NP'% NP-c
way “n*”, wheren denotes the input size. Such algorithms Maximin NP-c NP-c
become impractical even for modest values ofVe partially Ranked Pairs NF;'% NP-c
answer this question by showing thab$SIBLE WINNER Bucklin P NP-c
is fixed-parameter tractable with respect to the paramieter ]é'oar%grovm E “Eg

(number of candidates) for all of the above mentioned vot-
ing rules. Moreover, we initiate a broader algorithmic stud
of PossIBLE WINNER by pursuing a multivariate complex- Table 1:Complexity of MANIPULATION for a constant-size coali-
ity analysis based on further parameterizations. Moreifipec tion and RO SSIBLEWINNER for a constant nulmber of pa.rpal votes.
cally, we additionally analyze how the parameters “numlﬁeroBOIdface results are new. '_I'he polynomial-time solvabitifyM A-
votes” and “total number of undetermined pairs” influenee th NIPULATION for k-approval is easy to observe. The other results are

. . . . from ![Faliszewskiet al., 2008 (for specific tie-breaking) ant[Xia
problem complexity. We achieve (parameterized) intrabtab o0y conitzer, 2008]. The NP-completeness oEBIBLE WINNER

ity results in the first case and fixed-parameter tractghitit gjrectly follows from the NP-completeness ofAMIPULATION.
sults in the second case. More precisely, first we prove that

PossiBLE WINNER for Borda, Bucklin, and:-approval re- ) ) . ) )
mains NP-complete even in case of a constant number of A partial order is a transitive, antisymmetric, and reflex-
votes (which excludes any hope for fixed-parameter traletabi Ve relation. Sometimes, a partial order specifies a whole
ity with respect to this parameter). Second, we prove thétwi Subset of candidates, e.g., - D. This notation means
respect to the parameter “total number of undetermined’pair thate - d for all d € D and there is no specified order
POSSIBLE WINNER becomes fixed-parameter tractable for@mong the candidates in. A linear orderl” extendsa par-
all voting rules where in case of linearly ordered votes thetial orderO if O € V, that is, for anyi, j < m, one has
winner can be determined in polynomial time. For the spe<i =o ¢; = ¢i =v ¢;. For a voting rule- and a profile of
cial case Borda, we further identify an interesting spezaae  Partial ordersPy = (Oy,...,0,) onC, a candidate € C
that is solvable in polynomial time and that can be used to imiS & possible winnerif there exists aP = (Vi,...,V;)
prove the running time of the fixed-parameter algorithm. ~ such that, for each, V; extendsO; into a linear order and
Due to the lack of space, several details had to be deferred< r(P).
to a full version of the paper. POSSIBLEWINNER . .
Preliminaries. Let C = {c1,...,cm} be the set otandi- Input: A voting ruler, a set of candidate§', a profile of

dates Classically, a vote is a linear order (a transitive, an-p""rt"’?‘I orders’o = (O1,...,0,) onC, and a distinguished
tisymmetric, and total relation) o@'. An n-voter profile P candu;lat?: IE Oh . file — (v v
on C consists of: votes onC'. The set of all profiles o is Qﬁestlon. S tde;)e ?n e|>|<t1erls[oz pro Id - (Pl’,‘)' -5 Vn)
denoted byP(C). whereV; extendg); forall 1 < i < n andc € r(P)~

A voting ruler is a function fromP(C) to 2¢; the re- .
sulting image set is called the setaw-winners Throughout 2 Number of candidates
this paper we cast our proofs for the case of uniquely deterfo assess the parameterized complexity with respect to the
mined co-winners (that is, one-element co-winner sets}, ju parameter “number of candidates”, we employ Lenstra’s fa-
referring to these as winners. All our results hold for the co mous algorithm for bounded-variable-cardinality intetjer
winner case as well. ear programming (seéNiedermeier, 2006, Chapter 1

The most frequently used voting rules in this work which has shown usefulness for proving fixed-parameter
are Borda andk-approval. Both are(positional) scor-  tractability for control in elections as wedlFaliszewsket al.,
ing rules  Scoring rules are defined by scoring vec-2007. Lenstra’s result says that it is fixed-parameter tractable
tors (ag, a1, .. ., y—1) With integersay > a1 > --- > with respect to the number of variables to check whether all
an—1 > 0. More specifically, a scoring rule consists of a  inequalities of an integer linear program can be fulfillethat
sequence of scoring vectoss, s», ... such that for any € same time (the so-called feasibility problem). By expmegsi
N there is a scoring vector fercandidates. For a voteand  PossiBLE WINNER as the feasibility problem for an inte-
a candidate € C, let the scores(v, ¢) := «; wherej isthe  ger linear program with a number of variables bounded by a
number of candidates that are better tnamv. For any pro-  function solely depending on the parameter “number of can-
file P = {vi,...,vn}, lets(Pc) == Z?Zl s(vi, ). Ascor-  didates”, one can obtain the following.
Ilggr r:)l(zll’nv"lleoutthp;;iglf‘:w?ncot'mg‘:eggr:t ma}xmlz_tehs(tﬁ, ) Theorem 1. For all positional scoring rules, Bucklin,

P'e, 9 voling rules wi eir-cor Copeland, ranked pairs, and maximRosSsSIBLE WINNER

responding scoring vectors are common: is fixed-parameter tractable with respect to the parameter

- plurality with (1,0,...), p : -
-Bordawith (m — 1,m — 2,...,0), and number of candidates”.

- k-approvalwith (1,1,1,...,0,0) starting withk 1's.
Due to the lack of space, we refer[téia and Conitzer, 2008 3 Number of votes

for the definitions and an overview of the other voting sys-A well-studied scenario in voting systems is constructive
tems studied in this work. manipulation with a bounded number of unspecified votes,
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that is, bounded coalition sizEraliszewskiet al, 2008; possible winner. The basic idea of the construction is that t
Xia et al, 2008. Since constructive manipulation is a spe- candidates;, ¢; € Cy that assume zero-positions@h, can
cial case of BsSIBLEWINNER, this motivates the considera- “share” a candidate from's if {v;,v;} ¢ E. In this case,
tion of the parameter “number of partial votes”. An overview both candidates enforce a zero-position for the same candi-
of results for this parameterization is given in Table 1. Indatee;; whereas otherwise the two candidatgs and e;j
the following, we show the NP-completeness @fd3IBLE ~ must assume zero-positions. As we argue in the following,
WINNER for a constantotal number of votes fok-approval, the construction ensures that for no pair of “selected” éand
Bucklin, and Borda. dates fromCy there are two corresponding candidates from
k-approval. The NP-complete NDEPENDENT SET (IS)  Cr that are forced to a zero-position. Otherwise, the number
problem asks, given an undirected gragh= (V, E) and  Of remaining zero-positions would not be sufficient for the
a positive integer, whether there is a sizevertex sub- Selected candidates frof, andc would not win.

setV’ C V such that there is no edge between any two ver- Since all ca_ndidates fro assume zero-positions@, it
tices of V. is easy to verify that there are exactly— () zero-positions

. left over (andc beats all candidates dD). Now, suppose
Theorem 2. For k—_approv_al, POSSIBLE WINNER IS NP- 5t the candidates frofly that must assume a zero-position
complete for a partial profile that consists of two partiator ;, 05 correspond to an independent set. Then, the number of

ders wherk: is part of the input. candidates of’'y; that are forced to assume a zero-position is
Proof. (SketchWe give a many-one reduction fronube- 1 - (n — 1) minus the number of candidates that are counted
PENDENT SET to POSSIBLE WINNER for k-approval. Given  twice. For all pairs of candidates that correspond to non-
an IS-instancé(V, E),t) with V. = {v1,...,v,}, we con- adjacent vertices a candidate@f; is counted twice. Since

struct a 2-voter partial profil&, over a set of candidatésin  thet candidates correspond to an independent set, there are
which the distinguished candidates C is a possible winner  (») such candidates and the number of zero-positions is suf-
according tdi-approval withk := |n+(§)+|E|—tn+(;)+1| ficient. Hence, extengiln@Q by placing theCy -candidates

iff (G.t)is a yes-instance. The set of candidate€is= that correspond to an independent set (and all “enforced”’ ca
Cv & Cp @ {¢} & D with a candidate for every vertex, that didates) to zero-positions and extendifig by placing the

is, Cy := {c: | v; € V}, and candidates that are related to "€Maining candidates dfy to zero-positions yields an ex-
pairs of vertices, that is, for < i < j < n, if {v;,v;} € £,  (€nsion inwhichcis the winner.

then there are two candidates ande;j in Cp: otherwise, We omit the argument for the reverse direction. O

there is one candidate; in Cr. Further,D conS|ststoﬂd| Bucklin. TheBucklin scoreof a candidate is the smallest po-
dummy candidates with := n— ¢+ (3) +|E| —tn+(3). In sjtion s such that the candidate takes positioor smaller in

the following, we describe the construction for the case thamgre than half of the votes. The candidate with the smallest
d > 0. The casel < 0 can be handled similarly. The two Bycklin score wins. The reduction from IS used in Theo-

partial orderD; andO; of P are specified as follows: rem 2 fork-approval can be adapted to work for Bucklin. We
O1: ¢»D»Cy - Cg. o sketch the basic idea: Additionally to the two partial osjer

Oy: ¢>CyUCE > D, andforl <i<j<mn, the modified profile contains three linear orders ensurieg th

if {vi,v;} € E, thenc; - e;; andc; - ej;; following. The Bucklin score of the distinguished candalat
otherwiseg; > e;; andc; - e;;. is set to a certain value All other candidates have Bucklin

The distinguished candidatehas a total score of two. If score at most if they do not assume a position greater than
there is an extension in which all other candidates haveai totin one of the partial votes, and have Bucklin score higher
score of at most one, thetis a possible Winne_r. Thisis equiv- thans, otherwise. Now, a position higher tharis equiva-
alent to the demand that every other candidate must assumgnt to a “zero-position”, that is a position greater tharin
at least one “zero-position”. Since we have |Cv [+ |Cg|+  the proof of Theorem 2. Hence, one can argue in analogy
|D| = 14n+(5)+|E|+n—t+(5)+|E|—tn+(}) candidates  to there. Regarding the construction of the linear votes, th
and considek-approval withk = n+ (’21) +|E|—tn+ (;) +1, Buc_klin_score o_f_the Qisti[\%uishcle_d candidate'&:ﬁm tﬁe fixed by

n -~ _nAciti setting it to positiors in all three linear votes. All other can-
th?rzegfs(t%)etgﬁtlj:a:tes toétzroarpeosgggtnesnpbe; \écl)lt%ther can- didates are set to a position smaller than one of the linear
didates, and thus assume zero-positions in every extensiofifders and to a position higher thamn the two other linear
Hence|C| = (721)_|_|E| zero-positions are already occupied. orders. This idea can be used to show the following.

The remainingr — ¢ zero-positions can only be assigned to Theorem 3. For Bucklin, PossIBLE WINNER is NP-
candidates of”y,. In an extension in whichk wins, thosee ~ complete for a partial profile consisting of two partial and
candidates fron@’y, with a one-position irD; must assume a three linear orders.

zero-position inO,. According to the definition 0b,, ev-
ery candidate fronC\, is placed beforex — 1 candidates
from Cg. Hence, placing a candidate fro@, at a zero-

Borda. The 3-RARTITION problem is defined as follows.
Given a multi-setA = {a4,...,a,} of positive integers
position inO, implies thatn — 1 candidates fronC'z must and B := (3/n) - 3 ,.caai, it asks whether there is a
also assume zero-positions. Since every candidatgdias ~ Partition of A into size-3 subsetsl,, ..., 4,5 such that
a zero-position ir0;, assigning zero-positions to candidates>_a;ca, @ = B forall j € {1,...,n/3}. The 3-RRTITION
from Cg in an extension o0 is not necessary to makeghe  problem is strongly NP-complef&arey and Johnson, 1979
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Informally, this means that the NP-hardness still holdsmwhe
the integers ofd have values polynomially boundedin We
denote the special case that each integee A must be a
multiple of n as3-n-PARTITION. Itis not hard to verify that
the 3-n-PARTITION problem is strongly NP-hard since every
3-PARTITION instance can be reducedien-PARTITION by
multiplying all input integers with.
Theorem 4. For Borda,POSSIBLEWINNER is NP-complete
for a partial profile consisting of three partial and threedar
orders.

Proof. Let A = {ay,...,a,} denote a 3:-PARTITION in-
stance withB := (3/n) - >_, c, ai- To ease the presen-
tation, we assume that; < a;41 fori = 1,...,n — 1
anda; = n. Itis not hard to modify the following many-

JCAI 2009

¢’ may get within the three partial votes without beating
Then, it is not hard to construct three linear order&ofsuch

that the following conditions hold. (We defer the descopti
of the linear orders to the full version of this work.)

% (e;) =3(m —1) —3a; —iforalle; € E,
max(t;) =3(m—1)— Bforallt; € T, and
e 5,'%(d) > 3mforalld € D.

p
By construction¢ will make 3(m — 1) points in any exten-
sion. Hence, the last condition implies that a candidateD
can never beat. Further, every; € F must “loose” at
least3a; + 7 points against and everyt; € 7' must loose
at leastB points against.
Now, we show that there is a solution fon3PARTITION

® S

® S

one reduction to work for general instances. We construciff there is an extension aPp such that: wins.

a partial profilePy over a setC' of candidates in which the
distinguished candidate € C' can become a winner iffl
is a yes-instance for 8-PARTITION. The set of candidates
is C := {c¢} W EWTuW D, with one candidate for every
member ofA, that is, F := {e; | a; € A}, candidates
representing the subsets resulting from the partition 8ito
sets, that isI" := {ti,...,t,,3}, and a set of dummy can-
didatesD := |¢JI"_, D; only needed to “fill" positions (spec-
ified later). The partial profile?, consists of three linear
orders and three identical partial orders. Every partial or
derOg,q € {1,2,3}, of Py is given byc > T and

c>Dy>=e>=Dy>--->=D;>e;>--->Dy ey,

with |D1| = a3 — 1 and|Dl| = a; —aj—1 — 1 fori e
{2,...,n}. This definition fixes the number of dummy can-
didates; more preciselyD| = > ", cp|Di| = a1 — 1 +
S o(ai —ai—1 — 1) = a, — n. Thus, the total number of
candidates iy = 1+ |E|+|T|+|D| = 14+n+n/34a,—n =
an+n/3+1. Since 3n-PARTITION is stronglyNP-complete,
we can assume that, and, thusim is polynomial inn. This
also allows that the integers from are presented by the
candidates as follows. For every candidatec FE, there
are exactlya; — 1 candidatess € D U E with ¢ > s and

s = ¢e;in O4,q € {1,2,3}. Further, note that the position
and thus the total score of the distinguished candid&tel-
ready fixed. In contrast, every subset candidate 7" can be
“inserted” at any position behindin the three partial votes.
The basic idea of this construction is that the “choice” @& th

‘=" Let {Alv ) An/3} with Aj = {ajlvajwajs}
denote a solution of 3-PARTITION for A. Then, ex-
tendO,,q € {1,2,3}, such thatt; ~ e; andD;, > t;.
This extension is unambiguous sinceal] € A are pairwise
distinct. As explained before, in every partial vote, for ev
erye; € F, there are exactly; — 1 candidates € DU F
with ¢ > s ands > e;. Thus, without inserting ang; € T
beforee;, e; “looses”3a; points against. Forqg € {1, 2,3},
let 7; , denote the number of candidates fréfthat are
inserted before; to extendO,. Then, for everye;, we
haver; 1 + 7,2 + 7;,3 = ¢ since for allz < i a candidate
from T is inserted directly before, in one of the three par-
tial votes. Thusg; looses3a; + i points in this extension
and ¢ beatse;. It remains to show that beatst;. Since
aj, + aj, + a;j, = B, due to the construction the number of
candidates that are “better” thapin the three partial votes
isatleast{s € (DUE) :s >0, €j,}| +|{s € (DUE):
$>0, ot +{s € (DUE):s =0, e, }| = B—3. Thus,
sy (t;) < 3(m — 1) — B ande will beatt;.

“<"Let V1, Va, V3 denote an extension @, in whichcis
a winner. As explained before, without inserting apny 7'
beforee;, e; “looses” 3a; points against. Hence,e; must
loose furtheri points. This can only be achieved by inserting
candidates off’. Hence, at least times a candidate of’
must be inserted beforg, that is,t;, + t;, + ti, > i. We
denote this as property (I). In the following, we show first
that for a candidate; € 7' that selects;, , e;,, e;,, One must

havezgz1 a;j, = B and, second that every € E, that s,

positions fort; in the three partial orders corresponds to theevery number of4, is selected exactly once.

choice of three numbers from into the corresponding sub-
setA;. For example, inserting; directly before the candi-
datee; in one of the partial votes means thate A;. More
specifically, we would like to ensure the following two pant
for every possible extension in whietwins:

1. Every number ofd is selectedexactly once, that is, for
every candidate; € E\{e;:} there is exactly one candi-
datet; € T with e;_; > t; andt; > e; in one of the three
partial votes, and one candidatec T with ¢; > e;.

2. Forallt; € T, the sum corresponding to the three “number
candidates” from¥ selected by; is B.

The two points can be realized by setting the linear order
of Po appropriately. To this end, fef € C\{c} let themax-
imum partial scores;***(c’) denote the maximum score that

4

S

First, we show by contradiction that for a candidgte 7'
that selects;, , e;,,ej,, one can neither havgjzz1 aj, <
B nor 22:1 aj, > B. Assume that there is &;
with Zzzlajq < B. Then, the minimum number of

points thatt; will make in any extension is as follows: In
Vy,qa € {1,2,3}, there are at mosi;, — 1 candidates of

D U E with d > t;. Thus,t; can loose at mosEg:1 a;,

points by candidates fron® U E. Since|T| = n/3, in
every partial vote at mosi/3 — 1 candidates of" can be
inserted before;. Thus, the score of; in Vi, V5, V5 is
at least3(m — 1) — 22:1 aj, —n + 3. By assumption,

22:1 aj, < B and since all;, € A are multiples ofn,
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2221 a;, < B —n. Then, in totalt; will make at least O(2%). For an arbitrary voting rule, let f,(n, m) denote the

3(m—1)—B+n—n+3=3(m—1)—B+3> s™(t;) running time needed to compute a winner when given linear
points in the partial votes, artd thus beats. b orders. Then, for every leaf one can check whettisia win-
ner for the corresponding extensionfin(n, m) time, giving

Now, assume that there is g with 22:1 a;, > B. the following theorem

We consider the amount of points all remaining candi-
dates of7"\{¢,} together can loose againstoy candidates Theorem 5. For a partial n-voter profile ovenn candidates
from DUE. Recall that candidates of’ must be inserted be- and a voting ruler, POssIBLE WINNER can be decided in
fore anye; (property (1)). Clearly, inserting all candidates as O(2" - (m + f.(n,m)) + nm?) time, wherek denotes the
far right as possible maximizes the amount of points the cantotal number of undetermined pairs.

didates ofl"\{¢; } can loose. Due to property (I) this amount  Thegrem 5 is based on a pure worst-case analysis. Signif-
isatmosty " | a; — 2221 aj, = (n/3) - B — 22:1 aj, < icant practical improvements are conceivable. For inganc
(n/3 — 1) - B. Further, this amount can be “contributed” to it is promising to select the order in which the undetermined
the candidates only in multiples efsinceq; differs froma;  pairs are processed in a more clever way. Subsequently, for
at least byn. Then at least one candidates 7'\{¢;} can the Borda rule we demonstrate that a provable improvement
only loose less than the average amount of points. More predver the straightforward search tree sizexjp") is possible
cisely,t must loose less thaB points and, thus, can loose at by using a refined search strategy.
mostB —n points by candidates frof?U E. Again, we have  Animproved search treefor Borda'srule. A central obser-
that¢ can loose at most — 3 additional points by inserting vation concerning Borda for getting a search tree asymptoti
candidates of. Thus, the minimum score thawill make  cally smaller tharD(2*) lies in the detection of a polynomial-
in Vi, Vo, andVz is3(m — 1) = B+n—n+3 > s)™(t)  time solvable special case. To this end, for a partial o€der
andt will beatc. we define arisolated undetermined pair of candidatesbe
Second, it remains to show that every numberiis se-  an undetermined pair where both candidates do not form an
lected exactly once. We cannot selegttwice without vio-  undetermined pair i with any other candidate.
lating property (I). Fori < n, assume that a candidatgis
selected twice. Due to property (I), we must have selecte
at least; + 1 candidates corresponding iQ,s < i < n.
Hence, in total, the sum of the numbers corresponding to th

selected candidatesis atmost_, a; +a; + >, ,a; <  Proof. If the distinguished candidateis contained in an un-
>or_, a; = (n/3)-B. Since we have shown before that every determined pair, then, in the linear ordeiis always placed
candidate; selects candidates that sum up exactlytand in front of the second candidate of the pair. After that, one

a’heorem 6. For k being the total number of undetermined
pairs, in case of BorddossIBLE WINNER can be decided
in O(nm? + k?) time if all undetermined pairs are isolated.

we havelT| = n/3, this is a contradiction. can assume that none of the undetermined pairs contains
Summarizing, in any extension wherevins, the selected For an isolated undetermined p&ir, co } of candidates, the
candidates of " correspond to a solution for 3-PARTITION.  relative order ot:; andc, with respect to all other candidates

O is already determined. More precisely, it is not hard to see
thatc; andey must have the same relative order with respect
4 Total number of undetermined pairs to each of the remaining candidates, and, thus, they must be

) _ ) _ direct neighbors in the final linear order. Then, their ssadmne
Xia and Conitzef200d showed for five common voting rules - ihjs final order will differ by exactly one point. Thus, for-ev

that the PSSIBLEWINNER problem is NP-complete even if gry candidate’ # c being in at least one undetermined pair,
each partial order only contains a constant number of undesne can compute the minimum number of poiits) thatc’
termined pairs of candidates. As a consequence, there is RG|| make in every possible extension. That i) is the
hope for showing fixed-parameter tractability with resgect g ;m over the scores fof obtained by choosing’ > ¢ in

this parameter. To chart the border of tractability, we ad&s 5| undetermined pairéc’, ¢’} that contain’. Note that the

the parametek denoting the “total number of undetermined scores(c) for the distinguished candidateis already fixed.
pairs”. More precisely, le’, be a partial profile ove€. Clearly, if (') > s(c) for somec, thenc cannot become
ForO € Pp, letu(O) denote the number of undetermined possible winner. Otherwise, lotc’) := s(c) — (') —1 >0

pairs inO, thatis,u(0) := [{{c1,c2} € C' : (c1 > ¢2) denote thdvalanceof ¢’ with respect ta.. The balance counts
Oand(cy - c1) ¢ O}f. Thenk := 5 p, u(0). the number of partial orders whereé may be placed better

A general search tree approach. Consider a partial order than the other candidate in an undetermined pair without de-
where the candidates andc, form an undetermined pair. featingc.

To extend this partial order into a linear order, one has to de  Using the balancé(c’) for all candidates’ € C\{c}, one

cide whether either; >~ c; orcs = ¢p. Clearly, it may hap- can decide BssiBLE WINNER with the help of a maximum
pen that not each of these options is compatible with alreadffow computation as follows. Consider a four-level diregted
fixed pairwise rankings within the given partial orders. ithe arc-weighteds-¢-network with distinguished verticesandt

this option can be discarded. However, in the worst casesee Figure 1). The first level only consists of vertexThe

one faces a branching into two valid cases, in each branckecond level consists of vertices one-to-one represeating
decreasing the parameter denoting the total number of undendetermined pairs. Note that the same two candidates may
termined pairs by one. Clearly, this yields a search tre&efs induce more than one undetermined pair because they may
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tion. Moreover, whereas we only dealt with two-dimensional
(that is, one parameter at a time) complexity analysissib al
seems prospective to study the dependence on parameter pair
(three-dimensional) or even higher-dimensional parariete
zations. All our results also hold for the possible co-winne
case. We conclude with a few concrete challenges for fu-
ture work: Make the fixed-parameter tractability resultsir
Section 2 more practical by replacing integer linear progra
ming with combinatorial algorithms. Concerning the effitie
enumeration of extensions, study in how many of all possible
extensions a distinguished candidate is a winner. Consider
Figure 1:Flow network for Borda with isolated undetermined pairs the case where one does not allow all possible extensions of
partial orders but restricts these to “CP-nets”, B¢ and

occur in more than one partial order. The vertels con- Conitzer, 2008

nected by arcs of weight one to all level-two vertices. TheAcknowledgemengupported by the DFG (PIAF, NI 369/4).
third level of vertices one-to-one represents all canéislat-

curring in at least one undetermined pair. Every level-twoR€ferences

vertex representing an undetermined pair is connecteddy tW Conitzeret al, 2007 V. Conitzer, T. Sandholm, and

weight-one arcs to the two vertices corresponding to the two  J. Lang. When are elections with few candidates hard to
candidates contained in the undetermined pair. The fourth manipulate?Journal of the ACM54(3):1-33, 2007.

level only consists of vertex Every level-three vertex rep-

level 1 level 4

level 2 level 3

resenting a candidaté s connected by one arc tavhich is [Faliszewskiet al, 2007 P. Faliszewski, E. Hemaspaandra,
9 y L. A. Hemaspaandra, and J. Rothe. Llull and Copeland

assigned the weigh{¢’). . : ;
The central claim now is as follows (proof omitted): The X%X?O%r%?gg Sre752|2t_b7ré%er2yo%n7d control. Rroc. of 22nd

constructed flow network allows for an integer flow of vakue ] . ) .

iff the distinguished candidateis a possible winner of the [Faliszewskital, 200§ P. Faliszewski, E. Hemaspaandra,

corresponding Borda instance wittundetermined pairs. and H. Schnoor. Copeland voting: Ties matterPfoc. of
Altogether, we arrive at the overall running tirgnm? + 7th AAMAS 08pages 983-990, 2008.

k?). To this end, note that the flow network can be con-[Garey and Johnson, 197®ichael R. Garey and David S.

structed inO(nm?) time. Further, the number of arcs of the ~ Johnson. Computers and Intractability: A Guide to the

flow network s linear irk. The Ford-Fulkersonalgorithmcan  Theory of NP-Completenesd/. H. Freeman, 1979.

compute a maximum integer flow (| A| - f) time, where [y one7ak and Lang, 2005K. Konczak and J. Lang. Vot-
|A| denotes the number of arcs afiddenotes the value of ing procedures with incomplete preferences.Phoc. of

a maximum flow. Since the value of the maximum flow is | 3cA1-2005 Multidisciplinary Workshop on Advances in
bounded by, the claimed running time follows. O Preference Handling2005.

The basic idea for an improved search tree algorithm fofLanget al, 2007 J. Lang, M. S. Pini, F. Rossi, K. B. Ven-
Borda in the general case is as follows. Three candidates able, and T. Walsh. Winner determination in sequential
{c1,¢2,c3} C C form anundetermined triplevith respect majority voting. InProc. of 20th IJCAI '07 pages 1372—
to some partial orde® € Py if there are at least two unde- 1377, 2007.

termined pairs i, each formed by two candidates frdm, [fNiedermeier, 200BR. Niedermeier. Invitation to Fixed-
c2, cs}. Now, one branches on undetermined triples n&ead OF parameter AlgorithmsOxford University Press, 2006.
undetermined pairs. This leads to a search tree ofisgz=. Jﬁiniet al, 2007 M. S. Pini, F. Rossi, K. B. Venable, and

Once there are no more undetermined triples, then one c T. Walsh. Incompleteness and incomparability in prefer-
show that all remaining undetermined pairs must be isolated ence aggregation. IRroc. of 20th IJCAI ‘07 pages 1464—

Hence, in the leaves of the refined search tree the algorithm 1469, 2007,

from Theorem 6 can be applied. (Walsh y <h . I
Walsh, 2007 T. Walsh. Uncertainty in preference elicitation
Theorem 7. For the Borda rule POsSsIBLE WINNER can be and aggregation. IRroc. of 22nd AAAI '07 pages 3-8.

. . it ur
decided inO(1.82%(nm* + k*)) time, wherek denotes the AAAI Press, 2007.

total number of undetermined pairs. ) . ] ) .
[Xia and Conitzer, 2008L. Xia and V. Conitzer. Determin-

; ing possible and necessary winners under common voting
S ] Conduson_ . ) rules given partial orders. IAroc. of 23rd AAAI '08pages
With our multivariate complexity analysis for theoBsIBLE 196-201. AAAI Press, 2008.

WINNER problem we complement previous wofkvalsh,
2007; Xia and Conitzer, 2008We studied parameterizations
based on the number of candidates, the number of votes, and
the total number of undetermined candidate pairs. It is con-
ceivable that further parameterizations are worth ingesti

[Xia et al, 2009 L. Xia, V. Conitzer, A. D. Procaccia, and
J. S. Rosenschein. Complexity of unweighted coalitional
manipulation under some common voting rules.Phoc.
2nd COMSOC '08pages 427-435, 2008.



