
Submitted to Algorithms. Pages 1 - 23.
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

The Parameterized Complexity of the Rainbow
Subgraph Problem†

Falk Hüffner, Christian Komusiewicz*, Rolf Niedermeier, and Martin Rötzschke

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Ernst-Reuter-Platz 7,
D-10587 Berlin, Germany

† This paper is an extended version of our paper published in the Proceedings of the 40th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’14),
volume 8747 of Lecture Notes in Computer Science, pages 287–298, Springer, 2014.

* Author to whom correspondence should be addressed; Email:
christian.komusiewicz@tu-berlin.de; Tel.: +49 30 314-73137; Fax: +49 30 314-23516

Version February 16, 2015 submitted to Algorithms. Typeset by LATEX using class file mdpi.cls

Abstract: The NP-hard Rainbow Subgraph problem, motivated from1

bioinformatics, is to find in an edge-colored graph a subgraph that contains each2

edge color exactly once and has at most k vertices. We examine the parameterized3

complexity of Rainbow Subgraph for paths, trees, and general graphs. We show4

that Rainbow Subgraph is W[1]-hard with respect to the parameter k and also with5

respect to the dual parameter ` := n− k where n is the number of vertices. Hence, we6

examine parameter combinations and show, for example, a polynomial-size problem7

kernel for the combined parameter ` and “maximum number of colors incident with8

any vertex”. Additionally, we show APX-hardness even if the input graph is a properly9

edge-colored path in which every color occurs at most twice.10

Keywords: APX-hardness; multivariate complexity analysis; fixed-parameter11

tractability; parameterized hardness; problem kernel; haplotyping12

1. Introduction13

The Rainbow Subgraph problem is defined as follows.14



Version February 16, 2015 submitted to Algorithms 2 of 23

Figure 1. An edge-colored graph G with p = 4 edge colors. The subgraph G′ :=
G[{u, v, w, x}] is a rainbow cover. The graph obtained from G′ by removing the red
edge {u, v} is a solution.

u v

w x

y

Rainbow Subgraph
Instance: An undirected graph G = (V,E), an edge coloring χ : E → {1, . . . , p} for
some p ≥ 1, and an integer k ≥ 0.
Question: Is there a subgraph G′ of G that contains each edge color exactly once and
has at most k vertices?

15

We call a subgraph G′ with these properties a solution of order at most k. In the problem name,16

the term rainbow refers to the fact that all edges of G′ have a different color. For convenience, we17

define a rainbow cover as a subgraph where every color occurs at least once; these definitions are18

illustrated in Fig. 1. Note that every rainbow cover G′ of order at most k has a subgraph that is19

a solution: Simply remove any edge whose color appears more than once in G′. Repeating this20

operation as long as possible yields a solution of the same order as G′.21

Rainbow Subgraph arises in bioinformatics: there is a natural reduction from the22

(Population) Parsimony Haplotyping problem to Rainbow Subgraph [1,2]. In Parsimony23

Haplotyping, one aims to reconstruct a set of chromosome types, called haplotypes, from an24

observed set of genotypes. Each genotype consists of exactly two haplotypes; these haplotypes25

explain the observed genotype. There can be, however, more than one possibility of explaining26

a genotype by two haplotypes. In the reduction to Rainbow Subgraph, the approach is to27

first compute all possible explanations for each genotype. Then, each haplotype that occurs in28

at least one possible explanation becomes a vertex of the graph. Each pair of haplotypes that29

explains one of the input genotypes is connected by an edge, and this edge receives the label of the30

genotype as edge color. Selecting a minimum number of haplotypes that explains all genotypes is31

now equivalent to finding a minimum-size vertex set that induces a graph containing all edge colors.32

Note that in the worst case, this reduction might not produce a polynomial-size instance, as the33

number of possible explanations of each genotype may become exponential. Another bioinformatics34

application appears in the context of PCR primer set design [1,3].35

Related work. The optimization version of Rainbow Subgraph has been mostly studied in36

terms of polynomial-time approximability. Here the optimization goal is to minimize the number37

of vertices in the solution; we refer to this problem as Minimum Rainbow Subgraph. Minimum38

Rainbow Subgraph is APX-hard even on graphs with maximum vertex degree ∆ ≥ 2 in which39

every color occurs at most twice [4]. Moreover, Minimum Rainbow Subgraph cannot be40

approximated within a factor of c ln ∆ for some constant c unless NP has slightly superpolynomial41

time algorithms [5].42



Version February 16, 2015 submitted to Algorithms 3 of 23

Table 1. Complexity overview for Rainbow Subgraph. The O∗()-notation suppresses
factors polynomial in the input size; — ” — denotes that a result follows from the entry
above. Some results are inferred by parameter relations (1), (2), or (3) (see Section 2).

Par. Paths Trees General graphs

p O∗(2p) (Thm. 5) O∗(2p) (Thm. 5) W[1]-hard (Thm. 2)
p,∆ — ” — — ” — O∗((4∆− 4)p) (Thm. 3)

k O∗(2k) (Thm. 5+(2)) O∗(2k) (Thm. 5+(3)) W[1]-hard (Thm. 2+(1))
k,∆ — ” — — ” — O∗(2k∆/2) (Thm. 4)

` O∗(5`) (Thm. 9) W[1]-hard (Thm. 6) W[1]-hard (Thm. 6)
`,∆ — ” — O∗((2∆ + 1)`) (Thm. 9) O∗((2∆ + 1)`) (Thm. 9)

O(∆3`2)-vertex kernel (Thm. 7)
`,∆C — ” — O∗((2∆C + 1)`) (Thm. 9) O∗((2∆C + 1)`) (Thm. 9)

O(∆3
C`

4)-vertex kernel (Thm. 8)
`, q — ” — W[1]-hard (Thm. 6) W[1]-hard (Thm. 6)

q,∆ APX-hard (Thm. 1) APX-hard (Thm. 1) APX-hard [4]

The more general Minimum-Weight Multicolored Subgraph problem, where each vertex43

has a nonnegative weight and we minimize the total weight of the vertices chosen, has a randomized44
√
q log p-approximation algorithm, where q is the maximum number of times any color occurs45

in the input graph [1]. Minimum Rainbow Subgraph can be approximated within a ratio of46

(δ+lndδe+1)/2, where δ is the average vertex degree in the solution [6]. Katrenič and Schiermeyer47

[4] presented an exact algorithm for Rainbow Subgraph that has running time 2p ·∆2p · nO(1),48

where n is the order of the input graph and ∆ is the maximum vertex degree of the input graph.49

This is the only previous fixed-parameter algorithm for Minimum Rainbow Subgraph that we50

are aware of. There are, however, several results on the parameterized complexity of Parsimony51

Haplotyping [7–9]. Rainbow Subgraph is also a special case of Set Cover with Pairs [10]52

which, in graph-theoretic terms, corresponds to the case where the input is a multigraph with53

vertex weights and the aim is to find a minimum-cost rainbow cover.54

Our contributions. Since Rainbow Subgraph is NP-hard even on collections of paths and55

cycles [4], we perform a broad parameterized complexity analysis. Table 1 gives an overview on56

the complexity of Minimum Rainbow Subgraph on paths, trees, and general graphs, when57

parameterized by58

• p: number of colors;59

• k: number of vertices in the solution;60

• ` := n− k: number of vertex deletions to obtain a solution;61

• ∆: maximum vertex degree;62



Version February 16, 2015 submitted to Algorithms 4 of 23

• ∆C := maxv∈V |{c | ∃{u, v} ∈ E : χ({u, v}) = c}|: maximum color degree;63

• q: maximum number of times any color occurs in the input graph.64

For each parameter and some parameter combinations, we give either a fixed-parameter algorithm65

or show W[1]-hardness.66

Our main results are as follows: Rainbow Subgraph is APX-hard even if the input graph is a67

properly edge-colored path with q = 2; this strengthens a previous hardness result [4]. Rainbow68

Subgraph is W[1]-hard on general graphs for each of the considered parameters; this rules out69

fixed-parameter algorithms for most natural parameters. For the number of colors p, solution70

order k, and number ` of vertex deletions, the complexity seems to depend on the density of the71

graph as the problem is W[1]-hard for each of these parameters but it becomes tractable if any72

of these parameters is combined with the maximum degree ∆. Our algorithm for the parameter73

combination (∆, p) improves a previous algorithm for the same parameters [4]. For trees, we show74

a difference between the parameters p and `: in this case, Rainbow Subgraph is fixed-parameter75

tractable for the parameters k or p, but W[1]-hard for the parameter `.76

2. Preliminaries77

We use n and m to denote the number of vertices and edges in the input graph, respectively.78

The order of a graph G is the number n of vertices in G. We call a graph G′ = (V ′, E ′) induced79

subgraph of a graph G = (V,E) if V ′ ⊆ V and E ′ = {{u, v} | u, v ∈ V ′ and {u, v} ∈ E}. The80

graph induced by a vertex set V ′ in G is denoted G[V ′]. The degree of a vertex v is denoted deg(v).81

APX is the class of optimization problems that allow polynomial-time approximation algorithms82

with a constant approximation factor. If a problem is APX-hard, then it cannot be approximated83

in polynomial time to arbitrary constant factors, unless P = NP. To show that a problem is84

APX-hard, we can use an L-reduction from a known APX-hard problem. An L-reduction from a85

problem Π to a problem Π′ produces from an instance I of Π in polynomial time an instance I ′86

of Π′ such that for some constant a, OPT(I ′) < a · OPT(I); additionally, it must be possible in87

polynomial time to produce from a feasible solution of I ′ of value x′ a feasible solution of I of88

value x where |OPT(I)− x| ≤ b|OPT(I ′)− x′| for some constant b [11, Definition 16.4].89

An instance of a parameterized problem is a pair (I, x), where x is some problem-specific90

parameter, typically a nonnegative integer [12–14]. A problem is called fixed-parameter tractable91

(FPT) with respect to x if it can be solved in f(x) · |I|O(1) time, where f is an arbitrary computable92

function. A data reduction (rule) is a polynomial-time self-reduction for a parameterized problem,93

that is, it replaces in polynomial time an instance (I, x) with an instance (I ′, x′) such that I ′ has a94

solution with respect to the new parameter x′ if and only if I has a solution with respect to the95

original parameter x; we say that the rule is correct when this property holds. We say that an96

instance is reduced with respect to a reduction rule if the rule does not affect the instance. If the97

size of I ′ depends only on some function of x, we say that we have a problem kernel with respect98

to parameter x.99

Analogously to NP, the class W[1] captures parameterized hardness [12–14]. It is widely assumed100

that if a problem is W[1]-hard, then it is not fixed-parameter tractable. One can show W[1]-hardness101



Version February 16, 2015 submitted to Algorithms 5 of 23

by a parameterized reduction from a known W[1]-hard problem. This is a reduction that runs102

in f(x) · |I|O(1) time for some function f and maps the parameter x to a new parameter x′ that is103

bounded by some function of x.104

We will use the following simple observation several times.105

Observation 1. Let G′ = (V ′, E ′) be a solution for a Rainbow Subgraph instance with106

G = (V,E). If there are two vertices u, v in V ′ such that {u, v} ∈ E but {u, v} /∈ E ′, then there is107

a solution G′′ that does contain the edge {u, v} and has the same number of vertices.108

Observation 1 is true since replacing the edge in G′ that has the same color as {u, v} by {u, v}109

is a solution.110

Next, we list some basic observations regarding parameter bounds and relations between
parameters of Minimum Rainbow Subgraph. Let (G,χ) be an instance of Minimum Rainbow
Subgraph and let S be a solution to G. Since a graph with n vertices contains at most n(n− 1)/2
edges, we can assume for the order k of a solution and the number p of colors that

p ≤ k(k − 1)/2. (1)

A graph with n vertices and maximum vertex degree ∆ has at most n∆/2 edges; so if G has
maximum vertex degree ∆, then

p ≤ k∆/2. (2)

If the solution S contains no cycles, then p ≤ |V (S)| − 1, so if G is acyclic, then we can assume

p ≤ k − 1. (3)

3. Parameterization by Color Occurrences111

We now consider the complexity of Rainbow Subgraph parameterized by the maximum112

number q of color occurrences. Indeed, the value of q is bounded in some applications: For example113

in the graph formulation of Parsimony Haplotyping, q depends on the maximum number of114

ambiguous positions in a genotype, which can be assumed to be small.115

Katrenič and Schiermeyer [4] showed that Minimum Rainbow Subgraph is APX-hard for116

∆ = 2. The instances produced by their reduction contain precisely two edges of each color, so117

APX-hardness even holds for q = 2. However, the resulting graph contains cycles and is not118

properly edge-colored, so the complexity on acyclic graphs and on properly edge-colored graphs119

(like those resulting from Parsimony Haplotyping instances) remains to be explored. We show120

that neither restriction is helpful, as Rainbow Subgraph is APX-hard for properly edge-colored121

paths with q = 2. This strengthens the hardness result of Katrenič and Schiermeyer [4]. For this122

purpose, we develop an L-reduction (see Section 2) from the following special case of Minimum123

Vertex Cover:124

Minimum Vertex Cover in Cubic Graphs
Instance: An undirected graph H = (W,F ) in which every vertex has degree three.
Task: Find a minimum-cardinality vertex cover of G.

125



Version February 16, 2015 submitted to Algorithms 6 of 23

Minimum Vertex Cover in Cubic Graphs is APX-hard [15].126

Theorem 1. Minimum Rainbow Subgraph is APX-hard even when the input is a properly127

edge-colored path in which every color occurs at most twice.128

Proof. Given an instance H = (W = {w1, . . . , wn}, F ) of Minimum Vertex Cover in129

Cubic Graphs, construct an edge-colored path G = (V,E) as follows. The vertex set130

is V := {v1, . . . , v16n+2}. The edge set is E := {{vi, vi+1} | 1 ≤ i ≤ 16n+ 1}, that is, vertices with131

successive indices are adjacent. It remains to specify the edge colors. Herein, we use u∗ to denote132

unique colors, that is, if an edge is u∗-colored, then it receives an edge color that does not appear133

anywhere else in G. In addition to these unique colors, introduce five colors for each vertex of H,134

that is, for each wi ∈ W create edge colors ci, c′i, c′′i , xi, and yi. The colors ci, c′i, and c′′i are “filling”135

colors which are needed because G is connected. Furthermore, for each edge fi ∈ F introduce a136

unique edge color φi.137

Now, color the first 6n+ 1 edges of G by the following sequence.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14
· · ·

v6n−4 v6n−2 v6n v6n+2

u∗ c1 u∗ c′1 u∗ c′′1 u∗ c2 u∗ c′2 u∗ c′′2 u∗ cn u∗ c′n u∗ c′′n u∗

138

That is, the edge between v1 and v2 is u∗-colored, the edge between v2 and v3 is c1-colored, and139

so on. The u∗-colors are unique and thus occur only once in G. Consequently, both endpoints of140

these colors are contained in every solution.141

Now for each vertex wi in H color 10 edges in G according to the edges that are incident with wi.142

More precisely, for each wi color the edges from v6n+2+10(i−1) to v6n+2+10i. We call the subpath143

of G with these vertices the wi-part of G. Let {fr, fs, ft} denote the set of edges incident with wi.144

Then color the edges between v6n+2+10(i−1) and v6n+2+10i by the following sequence.145

v6n+2+10(i−1) v6n+2+10i
ci φr xi φs c′i yi φt c′′i xi yi

The resulting graph is a path with exactly 16n+ 1 edges and p = 8n+ |F |+ 1 colors.146

The idea of the construction is that we may use the vertices of the wi-part to “cover” the colors147

corresponding to the edges incident with wi. If we do so, then the solution has two connected148

components in the wi-part. Otherwise, it is sufficient to include one connected component from149

the wi-part. Since the solution graph is acyclic and the number of edges in a minimal solution150

is fixed, the number of connected components in the solution and its order are equal up to an151

additive constant.152

We now show formally that the reduction fulfills the two properties of L-reductions (see Section 2).153

Let S∗ be an optimal vertex cover for the Minimum Vertex Cover in Cubic Graphs instance154

and let G∗ be an optimal solution to the constructed Minimum Rainbow Subgraph instance.155

The first property we need to show is that |V (G∗)| = O(|S∗|). As observed above, the number156

of colors p in G is O(n + |F |) and thus |V (G∗)| ≤ 2p = O(n + |F |). Clearly, S∗ contains at157

least |F |/3 vertices, since every vertex in H covers at most three edges. Moreover, since H is cubic158

we have n < 2|F | and thus |S∗| = Θ(n+ |F |). Consequently, |V (G∗)| = O(|S∗|).159



Version February 16, 2015 submitted to Algorithms 7 of 23

The second property we need to show is the following: given a solution G′ to G, we can compute
in polynomial time a solution S ′ to H such that

|S ′| − |S∗| = O(|V (G′)| − |V (G∗)|). (4)

Let G′ be a solution to G. The proof outline is as follows. We show that G′ has order p+ n+160

1 + x, x ≥ 0, and that, given G′, we can compute in polynomial time a size-x vertex cover S ′161

of H. Then we show that, conversely, there is a solution of order at most p+ n+ 1 + |S∗|. Thus,162

the differences between the solution sizes in the Minimum Vertex Cover in Cubic Graphs163

instance and in the Minimum Rainbow Subgraph instance are essentially the same.164

We now show that G′ has order p+n+ 1 +x, x ≥ 0. Since G′ is a solution it contains each edge165

color exactly once. Thus, G′ has exactly p edges. We now apply a series of modifications to G′ that166

do not increase the order of G′. The aim of these modifications is to put all of the first 6n+ 1 edges167

of G into G′. This can be achieved as follows: If G′ contains an edge with a color ci, c′i, or c′′i such168

that its endpoints are not among the first 6n+ 2 vertices, then remove this edge from G′ and add169

the uniquely defined edge with the same color whose endpoints are among the first 6n+ 2 vertices.170

As observed above, each of these first vertices is contained in every solution and therefore also171

in G′. Due to Observation 1, this modification thus does not increase the order of G′ and maintains172

that G′ is a solution. Hence, we assume from now on that G′ contains all of the first 6n+ 1 edges173

of G and no other edges of color ci, c′i, or c′′i . This implies that each connected component of G′ is174

either fully contained in the first part or fully contained in some wi-part (since the first edge of175

each such part has a c-color). Moreover, every wi-part contains at least one connected component176

of G′, as the colors xi and yi occur only in this part. Therefore, G′ has n+ 1 + x components for177

some x ≥ 0. Since G′ is acyclic, the order of G′ thus is p+ n+ 1 + x.178

Now, construct S ′ in polynomial time as follows. Consider each wi-part of G. Let {fr, fs, ft}179

denote the edges of H that are incident with wi. If one of the connected components of G′ that is180

contained in the wi-part contains an edge with color φr, φs, or φt, then add wi to S ′.181

First, we show that |S ′| ≤ x. Consider a wi-part of G such that wi ∈ S ′. By the discussion182

above, the connected components of G′ that are contained in the wi-part of G do not contain edges183

with color ci, c′i, or c′′i . Hence, these connected components are subgraphs of the following graph184

that has three connected components:

φr xi φr yi φt xi yi

185

Every subgraph of this graph that contains the edge colors xi, yi, and one of the other three186

colors φr, φs, and φt has at least two connected components. Hence, for each wi ∈ S ′, G′ has at187

least two connected components in the wi-part. Further, for each other wi-part, G′ has at least188

one connected component. Finally, G′ has one further connected component consisting of the189

first 6n+ 1 edges. Altogether, the number of connected components thus is at least n+ 1 + |S ′|190

and thus |S ′| ≤ x.191

Second, we show that S ′ is a vertex cover of H: Since G′ contains an edge of every color, there192

is for each edge fj ∈ F at least one wi-part such that G′ contains an edge with color φj from this193



Version February 16, 2015 submitted to Algorithms 8 of 23

part. By the construction of S ′, we have wi ∈ S ′. Summarizing, we have shown that if there is a194

solution G′, then it has p + 1 + n + x vertices for some x ≥ 0 and from such a solution we can195

construct a vertex cover S ′ of size at most x.196

Now, let τ := |S ′|−|S∗|. We show that there is a solution Ĝ to G which needs at most |V (G′)|−τ
vertices. Construct Ĝ as follows. For each edge fi ∈ F select an arbitrary vertex of S∗ that is
incident with fi. Then, add the edge with color φi in the subpath of G that corresponds to wi and
its endpoints to Ĝ. For each subpath where at least one edge has been added in this way, add the
first x- and y-edge and its endpoints to Ĝ. For all other subpaths, add the second x- and y-edge
to Ĝ. Finally, add the first 6n+ 1 edges of G plus their endpoints to Ĝ . Then, Ĝ contains p edges,
one for each color. The number of connected components in Ĝ is 1 + 2|S∗|+ n− |S∗|, hence, the
number of vertices in Ĝ is p+ 1 + |S∗|+ n. Consequently, we have

|V (G′)| − |V (Ĝ)| = p+ 1 + x+ n− (p+ 1 + |S∗|+ n)
≥ |S ′| − |S∗| = τ.

Now an optimal solution G∗ has at most as many vertices as Ĝ, and thus

|V (G′)| − |V (G∗)| ≥ |V (G′)| − |V (Ĝ)| ≥ |S ′| − |S∗| = τ

which directly implies Equation (4).197

4. Parameterization by Number of Colors198

We now consider the parameter number of colors p. We show that Rainbow Subgraph is199

generally W[1]-hard with respect to p, but becomes fixed-parameter tractable if the input graph is200

sparse. Recall that we assume Inequality (1) which states that p ≤ k(k − 1)/2. Moreover, we can201

construct a solution by arbitrarily selecting one edge of each color, implying k ≤ 2p in nontrivial202

instances. Thus, the parameter p is polynomially upper- and lower-bounded by the solution203

order k. In consequence, while our main focus is on parameter p, every parameterized complexity204

classification for p also implies the corresponding parameterized complexity classification for k.205

4.1. Hardness on bipartite graphs206

A graph G is called d-degenerate if every subgraph of G has a vertex of degree at most d. We207

can show that even on 2-degenerate bipartite graphs, the decision problem Rainbow Subgraph208

is W[1]-hard for parameter p (and thus also for parameter k) by a parameterized reduction from209

the Multicolored Clique problem.210

Theorem 2. Minimum Rainbow Subgraph is W[1]-hard with respect to the number of colors p,211

even if the input graph is 2-degenerate and bipartite.212

Proof. We give a parameterized reduction from the following well-known problem:213

Multicolored Clique
Instance: An undirected graph G = (V,E) with proper vertex coloring χV : V →
{1, . . . , pV }.
Question: Does G have a clique of order pV ?

214



Version February 16, 2015 submitted to Algorithms 9 of 23

Here, proper means that {u, v} ∈ E ⇒ χV (u) 6= χV (v). Multicolored Clique is215

W[1]-complete with respect to parameter pV [16].216

Let (G = (V,E), χV ) be an instance of Multicolored Clique. We construct a bipartite217

edge-colored graph G′ with vertex set initialized with V as follows. First, for every edge {u, v}218

of G add to G′ a path of length two between u and v where the middle vertex of this path is a219

new vertex ω{u,v}. Call the union of all middle vertices VE. Then, for each pair of vertex colors i220

and j of G create two new edge colors ci,j and cj,i. For each edge {u, v} of G where χV (u) = i221

and χV (v) = j, color the edge {u, ω{u,v}} with color ci,j and the edge {v, ω{u,v}} with color cj,i.222

This completes the construction of G′. Note that G′ is 2-degenerate and that it has 2
(
pV
2

)
edge223

colors overall. We now show the equivalence of the instances.224

G has a clique of size pV ⇔ G′ has a rainbow subgraph with at most pV +
(
pV
2

)
vertices. (5)

“⇒”: Let S be a clique of size pV inG. Since χV is a proper coloring ofG, the vertices in S have pV225

pairwise different colors. Hence, the subgraph of G′ that is induced by S ∪ {ω{u,v} | {u, v} ⊆ S}226

has 2
(
pV
2

)
edges which have pairwise different colors.227

“⇐”: Let S ′ be the vertex set of a rainbow subgraph with at most pV +
(
pV
2

)
vertices in G′. We228

can assume that S ′ has exactly pV +
(
pV
2

)
vertices since adding isolated vertices does not destroy229

the property of being a solution. Since in particular every color ci,1 and c1,i is covered, S ′ has at230

least one vertex from V for each color i, together at least pv vertices. Moreover, S ′ has at least231 (
pV
2

)
vertices from VE: we need at least 2

(
pV
2

)
edges to collect all colors, each edge contains exactly232

one vertex from VE, and each vertex in VE occurs in at most two edges. Thus, there are exactly233

pv vertices from V and exactly
(
pV
2

)
vertices from VE in S ′. In order to cover the 2

(
pV
2

)
colors,234

each vertex in VE needs to have degree two in G′[S ′]; since such a vertex corresponds to an edge235

in G, we have
(
pV
2

)
edges in G[V ∩ S ′], and we have a clique of size pV .236

4.2. Degree-bounded graphs237

Replacing degeneracy by the larger parameter maximum degree ∆ of G yields fixed-parameter238

tractability: Katrenič and Schiermeyer [4] proposed an algorithm that solves Minimum Rainbow239

Subgraph in (2∆2)p · nO(1) time. We show an improved bound of O((4∆ − 4)p · ∆n2). The240

algorithm by Katrenič and Schiermeyer [4] works by enumerating all connected rainbow subgraphs241

in O(∆2p ·np) time and finding a solution via dynamic programming. We also employ enumeration242

followed by dynamic programming, but enumerate only connected induced subgraphs. For this, we243

use the following lemma.244

Lemma 1 ([17, Lemma 2]). Let G be a graph with maximum degree ∆ and let v be a vertex in G.245

There are at most (4∆− 4)k connected induced subgraphs of G that contain v and have order at246

most k. Furthermore, these subgraphs can be enumerated in O((4∆− 4)k · n) time.247

Obviously, we can enumerate all connected induced subgraphs of G of order at most k by248

applying Lemma 1 for each vertex v ∈ V (G). In the second step, we select from the computed249



Version February 16, 2015 submitted to Algorithms 10 of 23

set of connected subgraphs a subset with minimum total number of vertices that covers all colors.250

Clearly, those subgraphs correspond to the connected components of some optimal solution, which251

can be retrieved by stripping edges with redundant colors. This second step is a Minimum-Weight252

Set Cover instance.253

Minimum-Weight Set Cover
Instance: A set family C with weight function w : C → {0, . . . ,W}.
Task: Find a minimum-weight subfamily S ⊆ C such that each element of U := ⋃

Ci∈C Ci

occurs in at least one set in S.

254

The Minimum-Weight Set Cover instance is constructed by adding a set for each enumerated255

induced subgraph that contains the colors covered by this subgraph and is weighted by its order.256

Theorem 3. Let (G,χ) be an instance of Minimum Rainbow Subgraph with p colors and257

maximum vertex degree ∆. An optimal solution of (G,χ) can be computed in O((4∆−4)p ·∆n2) time.258

Proof. Let (G,χ) be an instance of Minimum Rainbow Subgraph and let k′ be the maximum259

order of a connected component of a solution. By Lemma 1, we can enumerate in O((4∆− 4)k′ ·n2)260

time all connected induced subgraphs of order at most k′, and in particular all subgraphs induced261

by the connected components of a solution to G. By interleaving the construction of the set262

of colors occurring in the current subgraph with the graph enumeration, we can generate the263

Minimum-Weight Set Cover instance in the same time bound.264

It is easy to see that Minimum-Weight Set Cover with |U | = p can be solved in O(2pp|C|)265

time and exponential space by dynamic programming. Since |C| may be as large as 2p, this yields a266

bound of O(4pp). Because connected components of a solution are rainbow, we can assume k′ ≤ p+1267

(a connected graph with m edges has at most m+ 1 vertices) and obtain O((4∆− 4)p+1n2 + 4pp)268

time. For ∆ ≥ 2, this running time is dominated by the enumeration step, yielding the desired269

bound.270

If we parameterize by ∆ and k instead of ∆ and p, the second step can dominate when k is271

small compared to p. Thus, a faster algorithm for Minimum-Weight Set Cover is desirable. To272

solve the problem in 2|U |(|U | ·W )O(1) time, we will employ a variant of fast subset convolution [18],273

using the following lemma due to Björklund et al. [19].274

Lemma 2 ([19]). Consider a set U and two mappings f, g : 2U → {0, . . . ,W}. The mapping
(f ∗ g) : 2U → {0, . . . , 2W} where for every U ′ ⊆ U

(f ∗ g)[U ′] := min
U ′′⊆U ′

(f [U ′′] + g[U ′ \ U ′′])

is called the convolution of f and g and can be computed in O(2|U | · |U |3W log2(|U | ·W )) time.275

Björklund et al. [19] did not give precise running time estimates, but Lemma 2 can be derived276

using their Theorem 1. (Here, to avoid complicated terms, we assume a bound of O(N log2N) on277

the running time of integer multiplication of two N -bit numbers. Better bounds are known [20].)278

We first use fast subset convolution to solve Minimum-Weight Exact Cover, a partitioning279

variant of Minimum-Weight Set Cover, and then show how Minimum-Weight Set Cover280

can be reduced to Minimum-Weight Exact Cover.281



Version February 16, 2015 submitted to Algorithms 11 of 23

Minimum-Weight Exact Cover
Instance: A set family C = {C1, . . . , Cm} with weight function w : C → {0, . . . ,W}.
Task: Find a minimum-weight subfamily S ⊆ C such that each element of U := ⋃

Ci∈C Ci

occurs in exactly one set in S.

282

Björklund et al. [18, Theorem 4] have given an inclusion–exclusion algorithm for the problem283

(although stated for the maximization version and k-covers). Their result hides some lower-order284

factors in the running time bound. We give an alternative algorithm and also show the lower-order285

factors.286

Lemma 3. Minimum-Weight Exact Cover can be solved in O(2|U |·|U |3·W log |U | log2(|U |·W ))287

time.288

Proof. We define an x-cover of a subset U ′ ⊆ U to be a minimum-weight subfamily C ′ ⊆ C289

containing at most x sets such that each element of U ′ occurs in exactly one set of C ′ and290 ⋃
Ci∈C′ Ci = U ′. In these terms, Minimum-Weight Exact Cover is to find a |U |-cover for U291

(since every exact cover contains at most |U | sets).292

Consider a mapping Q : 2U → {0, . . . ,W} and let initially Q[Ci] = w(Ci) for Ci ∈ C and293

Q[U ′] =∞ for the remaining U ′ ⊆ U . Now let Qx denote the mapping resulting from x consecutive294

convolutions of Q, that is, Q0 = Q and Qx+1 is the convolution of Qx. We prove by induction on x295

that for all U ′ ⊆ U and all x ≥ 0, Qx[U ′] is the minimum weight of a 2x-cover for U ′ if such a cover296

exists and Qx[U ′] =∞ otherwise. This implies in particular that Qdlog2 |U |e[U ] is the weight of an297

optimal solution to C, if a solution exists.298

Clearly the mapping Q0 = Q meets the claim. Now assume that Qx−1[U ′] is the minimum299

weight of a 2x−1-cover for U ′ ⊆ U if such a cover exists, and Qx−1[U ′] =∞ otherwise. Now let C ′300

be a 2x-cover for some U ′ ⊆ U . Let Cα, Cβ ⊆ C ′ be disjoint subfamilies such that Cα ∪ Cβ = C ′,301

|Cα| ≤ 2x−1, and |Cβ| ≤ 2x−1. (If |C ′| = 1, then Cα = C ′ and Cβ = ∅). Let Uα := ⋃
Ci∈Cα Ci and302

Uβ := ⋃
Ci∈Cβ Ci. Now Cα is a 2x−1-cover for Uα: it covers each element of Uα exactly once, and if303

there was an exact cover with lower weight, we could combine it with Cβ to get an exact cover304

for ⋃Ci∈C′ Ci with lower weight than C ′, contradicting that C ′ is a 2x-cover. The same holds for Cβ.305

Hence, Qx−1[Uα] = w(Cα) and Qx−1[Uβ] = w(Cβ), therefore w(C ′) = Q[Uα] +Q[Uβ], and due to the306

minimality of w(C ′) we obtain (by convolution) Qx[U ′] = minU ′′⊆U ′(Q[U ′′] +Q[U ′ \ U ′′]) = w(C ′).307

So Qx[U ′] is the weight of a 2x-cover for U ′. If no 2x-cover for U ′ exists, then there is no U ′′ ⊆ U ′308

such that Qx−1[U ′′] 6=∞ and Qx−1[U ′ \ U ′′] 6=∞, hence Qx[U ′] =∞.309

To retrieve the actual solution family, we search for some U ′ ⊆ U such that Qdlog2 |U |e[U ′] +310

Qdlog2 |U |e[U \ U ′] = Qdlog2 |U |e[U ]. We repeat this step for U ′ and U \ U ′ recursively, until we obtain311

subsets of U that have a 1-cover. The union of those 1-covers is the solution family.312

We now bound the running time. The initial mapping Q can be constructed within O(|U | ·313

|C|) = O(2|U ||U |) time. Next, we compute dlog2 |U |e convolutions of Q. Applying Lemma 2314

with f = g = Q, each convolution can be computed in O(2|U ||U |3 · W log2(|U | · W )) time.315

Retrieving the solution family takes O(2|U ||U |) time, so we obtain an overall running time of316

O(2|U | · |U |3 ·W log |U | log2(|U | ·W )).317



Version February 16, 2015 submitted to Algorithms 12 of 23

Lemma 4. Minimum-Weight Set Cover can be solved in O(|U |·|C|+2|U ||U |3·W log |U | log2(|U |·318

W )) time.319

Proof. We can reduce an instance (C, w) of Minimum-Weight Set Cover to an instance (C̄, w̄)
of Minimum-Weight Exact Cover by adding the power set of each set, that is, C̄ := ⋃

Ci∈C P(Ci)
and w̄ := C 7→ minCi∈C

C⊆Ci
w(Ci). However, applying this reduction explicitly would incur the 2|U ||C|

term we aim to avoid. Thus, we directly calculate from (C, w) the table Q0 that would result from
the input (C̄, w̄) in the Minimum-Weight Exact Cover algorithm from Lemma 3. Recall that
Q0[U ′] is the minimum weight of a 1-cover for U ′ if such a cover exists and Q0[U ′] =∞ otherwise;
here, a 1-cover is a set Ci ∈ C with U ′ ⊆ Ci. We can fill out Q0 by first setting Q0[Ci] := w(Ci)
for Ci ∈ C and then iterating over each set U ′ ⊆ U in decreasing order of size, updating an entry
Q0[U ′] by

Q0[U ′]← min(Q0[U ′],min
u∈U

Q0[U ′ ∪ {u}]). (6)

Afterwards, we continue with the algorithm as before. Inserting the values of each Ci ∈ C takes320

O(|U | · |C|) time, the running time for filling in the remaining values of Q0 is dominated by the321

running time of the remaining part of the algorithm.322

To retrieve the actual solution, we need to find for each set in the Minimum-Weight Exact323

Cover solution a minimum-weight set in C that is its superset. This can be done naively in324

O(|U | · |C| · |U |) time, which is also covered by the running time bound of the lemma, since325

|C| ≤ 2|U |.326

Theorem 4. Let (G,χ) be an instance of Minimum Rainbow Subgraph with p colors and327

maximum vertex degree ∆. An optimal solution can be computed in ((4∆− 4)k + 2k∆/2) ·nO(1) time.328

Proof. Let (G,χ) be an instance of Minimum Rainbow Subgraph and let k′ be the maximum329

order of a connected component of a solution. Again by Lemma 1, we can perform the enumeration330

step in O((4∆− 4)k′ · n2) time. Then we reduce to a Minimum-Weight Set Cover instance331

with U = {1, . . . , p}. By Lemma 4, this Minimum-Weight Set Cover instance can be solved332

in 2p · nO(1) time. Since k′ ≤ k and p ≤ k∆/2 (2), we obtain the claimed bound.333

4.3. Trees334

In Section 4.2, we discussed algorithms for Minimum Rainbow Subgraph parameterized with335

(∆, p) and (∆, k). Now we present an algorithm for trees that does not depend on the maximum336

vertex degree ∆, but only on the number of colors p (or, using (3), the maximum solution order k).337

Theorem 5. When the input graph is a tree, Minimum Rainbow Subgraph can be solved in338

O(2p · np3 log2(np)) time.339

Proof. We root the tree arbitrarily at a vertex r and use dynamic programming bottom-up from340

the leaves, utilizing fast subset convolution (Lemma 2) to get a speedup.341

We fill in a table T [v, C] for each v ∈ V and each subset of colors C ⊆ {1, . . . , p}. The idea342

is that T [v, C] holds the minimum number of vertices needed to cover the colors in C using343



Version February 16, 2015 submitted to Algorithms 13 of 23

only vertices from the subtree rooted at v. We can then find the value of the overall solution in344

T [r, {1, . . . , p}], and the vertex set realizing this can be found using standard dynamic programming345

traceback.346

We will need some additional tables. Let v1, . . . , vdeg(v) be the children of a vertex v ∈ V . Then347

Tj[v, C] holds the minimum number of vertices needed to cover the colors in C using only v and348

the vertices in the subtrees rooted at v1 to vj . Further, let T ∗[v, C] and T ∗j [v, C] be the versions of349

T [v, C] and Tj[v, C], respectively, where v is required to be in the cover. Clearly, we can equate350

T [v, C] = Tdeg(v)[v, C] and T ∗[v, C] = T ∗deg(v)[v, C].351

First, we initialize T and T ∗ for each leaf v with T [v, ∅] = 0 and T ∗[v, ∅] = 1 and T [v, C] =
T ∗[v, C] = ∞ for C 6= ∅. Then we use the following recurrences for each non-leaf v and each
C ⊆ {1, . . . , p} and 2 ≤ j ≤ deg(v):

T ∗1 [v, C] = 1 + min

T
∗[v1, C \ {χ({v, v1})}]

T [v1, C]
(7)

T1[v, C] = min

T
∗
1 [v, C]
T [v1, C]

(8)

T ∗j [v, C] = min

minC′⊆C\{χ({v,vj})}(T ∗j−1[v, C ′] + T ∗[vj, C \ (C ′ ∪ {χ({v, vj})})])
minC′⊆C(T ∗j−1[v, C ′] + T [vj, C \ C ′])

(9)

Tj[v, C] = min

T
∗
j [v, C]

minC′⊆C(Tj−1[v, C ′] + T [vj, C \ C ′])
(10)

Calculating T ∗1 [v, C] or T1[v, C] takes O(p) time per table entry; there are O(2pn) entries.352

Calculating T ∗j [v, C] or Tj [v, C] for all C ⊆ {1, . . . , p} at once can be done in O(2p·kp3 log2(kp)) time353

using fast subset convolution with a running time as provided by Lemma 2 (note that the maximum354

value that we need to store in table entries is k+ 1). Overall, we compute O(n) convolutions. Thus,355

the total running time is O(p · 2pn+ 2p · kp3 log2(kp) · n) = O(2p · np3 log2(np)).356

5. Parameterization by Number of Vertex Deletions357

In this section, we consider the dual parameter ` := n − k, that is, the number of vertices358

that are not part of a solution and thus are “deleted” from the input graph. Thus, an instance359

is a yes-instance if and only if one can delete at least ` vertices from the input graph without360

removing all edge colors. In Section 4, we showed that Rainbow Subgraph is W[1]-hard for the361

parameter k, but that it becomes fixed-parameter tractable for the parameter (∆, k). We show362

that both results also hold when replacing k by `. Hence, parameter ` is useful when we ask for363

the existence of relatively large solutions in low-degree graphs. For trees, however, we obtain a364

hardness result for parameter `.365

5.1. Hardness on trees366



Version February 16, 2015 submitted to Algorithms 14 of 23

In contrast to the parameter k, for which Rainbow Subgraph becomes fixed-parameter367

tractable on trees, we observe W[1]-hardness for parameter ` even on very restricted input trees.368

To achieve this hardness result, we describe a parameterized reduction from the following restricted369

variant of Independent Set.370

Independent Set with Perfect Matching
Instance: An undirected graph G = (V,E) with a perfect matching M ⊆ E, and an
integer κ ≥ 0.
Question: Is there a vertex set S ⊆ V with |S| = κ such that G[S] has no edges?

371

First, we show the parameterized hardness of Independent Set with Perfect Matching.372

Lemma 5. Independent Set with Perfect Matching is W[1]-hard with respect to the373

parameter κ.374

Proof. To show the claim, we give a parameterized reduction from the classic W[1]-hard375

Independent Set problem [12] which differs from Independent Set with Perfect Matching376

only in the fact that the input graph G may not have a perfect matching.377

Given an input instance (G = (V,E), κ) of Independent Set, the reduction works as follows.378

Compute a maximum-size matching M of G in polynomial time. If M is perfect, then (G,M, κ) is379

an equivalent instance of Independent Set with Perfect Matching. Otherwise, build a380

graph G∗ that contains for each vertex v ∈ V two adjacent vertices v1 and v2 and then add for each381

pair of vertices ui and vj in G∗ with i, j ∈ {1, 2} the edge {ui, vj} if u and v are adjacent in G. If G382

has an independent set of size κ, then G∗ has one since the subgraph G∗[{v1 | v ∈ V }] is isomorphic383

to G. If G∗ has an independent set S of size κ, then so does G: Since v1 and v2 are adjacent, the384

independent set can contain at most one of them and thus, without loss of generality it contains v1.385

Hence, G∗[S] is a subgraph of G∗[{v1 | v ∈ V }] which is isomorphic to G. Clearly, G∗ has a perfect386

matching M consisting of the edges {v1, v2} for v ∈ V . Thus, (G∗,M, κ) is an equivalent instance387

of Independent Set with Perfect Matching. The reduction runs in polynomial time and388

the parameter remains the same. Thus, it is a parameterized reduction.389

Now we can show the W[1]-hardness of Rainbow Subgraph for the parameter `. In390

our reduction, the existence of a perfect matching in the Independent Set with Perfect391

Matching instance allows us to construct instances in which every edge color occurs at most392

twice.393

Theorem 6. Rainbow Subgraph is W[1]-hard with respect to the dual parameter ` even when394

the input is a tree of height three and every color occurs at most twice.395

Proof. Let (G,M, κ) be an instance of Independent Set with Perfect Matching (which
is W[1]-hard with respect to κ by Lemma 5). We construct a Minimum Rainbow Subgraph
instance (G′ = (V ′, E ′), χ) as follows; an illustration is given in Fig. 2. First, set V ′ := V . Then do
the following for each edge {u, v} ∈ E. Add four vertices u1

v, u
2
v, v

1
u, v

2
u. Make u1

v and u2
v adjacent

and color the edge with some unique color. Analogously, make v1
u and v2

u adjacent and color the
edge with some other unique color. Now, add an edge between u and u1

v and an edge between v



Version February 16, 2015 submitted to Algorithms 15 of 23

Figure 2. The reduction for showing the W[1]-hardness of Rainbow Subgraph
for parameter `. The graph of the Independent Set with Perfect Matching
instance (shown on the left) has a perfect matching {{u, v}, {w, x}}. Accordingly, the
four edges from v∗ to V are colored with two colors. The unique colors between the
additional vertices which are not from V are shown in shades of gray.

u v

w x
v∗

u v w x

u1
v

u2
v

u1
w

u2
w

v1
u

v2
u

v1
w

v2
w

w1
u

w2
u

w1
v

w2
v

w1
x

w2
x

x1
w

x2
w

and v1
u. Color both edges with the new color c{u,v}. Finally, add another vertex v∗ and make v∗

adjacent to all vertices of V . To color the edges between v∗ and V , we use the perfect matching M .
For each edge {u, v} of M , we color the edges {v∗, u} and {v∗, v} with the same new color cM{u,v}.
The resulting tree has depth three, since every leaf has distance two to a vertex from V and these
vertices are all adjacent to v∗. Moreover, every color occurs at most twice. It remains to show the
following equivalence to obtain a parameterized reduction.

G has an independent set of size κ ⇔ G′ has a rainbow subgraph of order ` := n− κ. (11)

“⇒”: Let S be an independent set of size κ in G. We show that the subgraph G′′ obtained by396

removing S from G′ is rainbow. First, none of the vertices in V is incident with an edge with a397

unique color, so these edges remain in G′′. Moreover, for each edge incident with v ∈ S in G, there398

is another edge in G′ that has the same color. The endpoints of this edge are either not in V or399

they are adjacent to v in G, so they are not in S. This other edge thus remains in G′′.400

“⇐”: Let S ′ be a set such that |S| = κ and deleting S ′ from G′ results in a rainbow graph G′′.401

The set S has the following properties: First, v∗ is not in S, since otherwise an edge with color cM{u,v}402

is missing in G′′. Second, the leaves of G′ and their neighbors are also in G′′, since the edges403

between these vertices have unique colors. Hence, S ′ ⊆ V . Clearly, S ′ is an independent set in G:404

If S ′ contains two vertices u and v that are adjacent in G, then both edges with color c{u,v} are405

missing from G′′.406

5.2. Degree and color-degree407

By Theorem 6, parameterization by ` alone does not yield fixed-parameter tractability. Hence,408

we consider combinations of ` with two parameters. One is the maximum degree ∆, and the other409

one is the maximum color degree ∆C := maxv∈V |{c | ∃{u, v} ∈ E : χ({u, v}) = c}|, which is the410

maximum number of colors incident with any vertex in G. This parameter was also considered411

by Schiermeyer [21] for obtaining bounds on the size of minimum rainbow subgraphs. Note that412

the maximum color degree is upper-bounded by both the maximum degree and by the number of413

colors in G and that it may be much smaller than either parameter.414



Version February 16, 2015 submitted to Algorithms 16 of 23

First, we show that for the combined parameter (∆, `) the problem has a polynomial-size415

problem kernel. To our knowledge, this is the first non-trivial kernelization result for Rainbow416

Subgraph. As it is common for kernelizations, it is based on a set of polynomial-time executable417

data reduction rules. The main idea of the kernelization is as follows. We first remove edges whose418

colors appear very often compared to ∆ and `. Afterwards, deleting any vertex v “influences” only419

a bounded number of other vertices: at most ∆ edges are incident with v, and for each of these420

edges the number of other edges that have the same color depends only on ∆ and `. We then421

consider some vertices that are in every rainbow cover. To this end, we call a vertex v obligatory422

if there is some edge color such that all edges with this color are incident with v. In the data423

reduction rules, we remove those obligatory vertices that have only obligatory neighbors. Together424

with the previous reduction rules, we then obtain the kernel by the following argument: If there425

are many non-obligatory vertices, then we can greedily find a solution, since any vertex deletion426

has bounded “influence”. Otherwise, the overall instance size is bounded as every other vertex is a427

neighbor of some non-obligatory vertex and each non-obligatory vertex has at most ∆ neighbors.428

As mentioned above, the first rule removes edges whose color appears very often compared to ∆429

and `. Obviously, when we remove edges from the graph, we also remove their entry from χ.430

Rule 1. If there is an edge color c such that there are more than ∆` edges with color c, then431

remove all edges with color c from G.432

Proof of correctness. Deleting at most ` vertices from G may destroy at most ∆` edges. Hence,433

any subgraph of order n − ` of G contains an edge of color c. Consequently, removing edges of434

color c from G cannot transform a no-instance into a yes-instance.435

We now deal with obligatory vertices. The first simple rule identifies edge colors that are already436

covered by obligatory vertices.437

Rule 2. If G contains an edge {u, v} of color c such that u and v are obligatory, then remove all438

other edges with color c from G.439

Proof of correctness. An application of the rule cannot transform a no-instance into a440

yes-instance, since it removes edges from G without removing the color from G. Assume that the441

original instance is a yes-instance. Since u and v are obligatory, any rainbow cover contains u442

and v. Therefore, any rainbow cover of the original instance contains an edge with color c and443

thus it is also a rainbow cover in the new instance, since only edges of color c are deleted.444

We now work on instances that are reduced with respect to Rule 2. Observe that in such445

instances every edge between two obligatory vertices has a unique color. This observation is crucial446

for showing the correctness of the following rules. Their aim is to remove obligatory vertices that447

have only obligatory neighbors. When removing a vertex in these rules, we decrease k and n by448

one, thus the value of ` remains the same. The correctness of the first rule is obvious.449

Rule 3. Let (G,χ) be an instance that is reduced with respect to Rule 2. Then, remove all connected450

components of G that consist of obligatory vertices only.451

The next two rules remove edges between obligatory vertices.452



Version February 16, 2015 submitted to Algorithms 17 of 23

Rule 4. Let (G,χ) be an instance that is reduced with respect to Rule 2. If G contains three453

obligatory vertices u, v, and w such that {u, v}, {v, w} ∈ E and u has only obligatory neighbors,454

then remove {u, v} from G. If u has degree zero now, then remove u from G.455

Proof of correctness. Let (G′ = (V ′, E ′), χ′) denote the instance that is produced by an
application of the rule. We show that

G has a rainbow cover of order |V | − ` ⇔ G′ has a rainbow cover of order |V |′ − `. (12)

“⇒”: If u is not removed by the rule, then this holds trivially as we remove an edge which has456

a unique color. Otherwise, let S be a vertex set such that G[S] is a rainbow cover. Since u is457

obligatory, we have u ∈ S. The only color incident with u is χ({u, v}). This color is not present458

in G′, so the graph G′[S \ {u}] is a rainbow cover of G′. Since |V | − |V ′| = |S| − |S ′|, the claim459

holds also in this case.460

“⇐”: Let S ′ be a set such that G′[S ′] is a rainbow cover of G′. Since G is reduced with respect461

to Rule 2, v and w are connected by an edge whose color is unique. Hence, they are obligatory in G′.462

If the rule does not remove u from G, then u is also obligatory in G′ since all its neighbors in G′ are463

obligatory and thus all edges incident with u in G′ have a unique color. Hence, the subgraph G[S ′]464

of G contains all edge colors that are present in both G and G′ plus the color χ({u, v}). Thus, it is465

a rainbow cover of G. If the rule removes the vertex u, then the graph G[S] with S = S ′ ∪ {u} is a466

rainbow cover of G: The only color that is in G but not in G′ is χ({u, v}) which is present in G[S]467

as S contains u and v. Again, the claim follows from the fact that |S| − |S ′| = |V | − |V ′|.468

Rule 5. Let (G,χ) be an instance of Rainbow Subgraph that is reduced with respect to Rule 2.469

If G = (V,E) contains four obligatory vertices u, v, w, and x such that {u, v} ∈ E and {w, x} ∈ E470

and u and x have only obligatory neighbors, then do the following. Remove {w, x} from G. If v471

and w are not adjacent, then insert {v, w} and assign it a unique color. If x has now degree zero,472

then remove x from G.473

Proof of correctness. Let (G′ = (V ′, E ′), χ′) denote the instance that is produced by an
application of the rule. We show that

G has a rainbow cover of order |V | − ` ⇔ G′ has a rainbow cover of order |V |′ − `. (13)

“⇒”: Let S be a vertex set such that G[S] is a rainbow cover. Clearly, {u, v, w, x} ⊆ S. First,474

consider the case that the application of the rule does not remove x. Then, the graph G′[S] is clearly475

also a rainbow cover as it contains all edge colors that are in both G and G′ plus possibly the new476

edge color χ({v, w}). Now assume that the rule removes x. In this case, G′[S ′] with S ′ := S \ {x}477

is a rainbow cover by the same arguments. Since |V | − |V ′| = |S| − |S ′|, the claim holds also in478

this case.479

“⇐”: Let S ′ be a set such that G′[S ′] is a rainbow cover. If the rule does not remove x480

from G, then {u, v, w, x} ⊆ S as these four vertices are obligatory in G′ ({u, v} and {v, w} have481

unique colors and x has in G′ an obligatory neighbor, so the edge between them is obligatory).482

Therefore, G[S ′] is also a rainbow cover by similar arguments as above. Now assume that the rule483



Version February 16, 2015 submitted to Algorithms 18 of 23

removes x from G. In this case {u, v, w} ⊆ S ′ as all three vertices are obligatory in G′. Then, G[S]484

with S := S ′ ∪ {x} is a rainbow cover of G. First, the only color contained in G not in G′485

is χ({w, x}), and this color is contained in G[S]. Second, the only edge present in G′[S ′] not in G[S]486

is possibly {v, w}. If {v, w} is not in G[S], then there is also no other edge of color χ({v, w}) in G.487

Note that |V | − |V ′| = |S| − |S ′|, so the claim holds also in this case.488

Note that application of Rule 4 does not increase the maximum degree of the instance and489

decreases the degree of v and w. Furthermore, note that application of Rule 5 may increase the490

degree of v by one but directly triggers an application of Rule 4 which reduces the degree of v491

and u again by one. Hence, both rules can be exhaustively applied without increasing the overall492

maximum degree.493

We now show that after exhaustive application of the above data reduction rules, the instance494

has bounded size or otherwise can be solved immediately.495

Lemma 6. Let (G,χ) be an instance that is reduced with respect to Rules 1 to 5. Then, (G,χ) is496

a yes-instance or it contains at most 2∆ · (∆ + 1) ·∆C · `2 vertices.497

Proof. We consider a special type of vertex set that can be safely deleted. To this end, call a498

vertex set S a colorful packing if499

1. no vertex in S is obligatory, and500

2. for all u, v ∈ S the set of colors incident with u is disjoint from the set of colors incident501

with v.502

Assume that (G,χ) has a colorful packing of size `. Then, G− S is a rainbow cover of order k: For503

each color incident with some vertex v in S, there are two other vertices in V that are connected504

by an edge with this color (as v is not obligatory). By the second condition, these two vertices are505

not in S. Hence, this edge color is contained in G− S. Summarizing, if (G,χ) contains a colorful506

packing of size at least `, then (G,χ) is a yes-instance.507

Now, assume that a maximum-cardinality colorful packing S in G has size less than `. Each508

vertex in S is incident with at most ∆C colors. For each of these colors, the graph induced by509

the edges of this color has at most ∆` edges and thus at most 2∆` vertices, since the instance is510

reduced with respect to Rule 1.511

Let T denote the set of vertices in V \ S that are incident with at least one edge that has the
same color as as an edge incident with some vertex in S. By the above discussion,

|T | ≤ 2∆ ·∆C · ` · (`− 1). (14)

Note that T includes all neighbors of vertices in S. By the maximality of S, all vertices in V \(S∪T )
are obligatory. Now partition V \ (S ∪ T ) into the set X that has neighbors in T and the set Y
that has only neighbors in (X ∪ Y ). The set X has size at most (2∆C ·∆ · ` · (`− 1)) ·∆ since the
maximum degree in G is ∆. The set Y has size at most 1 since otherwise one of the Rules 3 to 5
applies: Every vertex in Y is obligatory and has only obligatory neighbors. If two vertices of Y
have a common neighbor, then Rule 4 applies. If G has a connected component consisting only of



Version February 16, 2015 submitted to Algorithms 19 of 23

vertices of Y , then Rule 3 applies. The only remaining case is that Y has two vertices u and x
that have different obligatory neighbors in X. In this case, Rule 5 applies. Since S has size at
most `− 1, G contains thus at most

`− 1 + 2∆ ·∆C · ` · (`− 1) + 2∆2 ·∆C · ` · (`− 1) + 1 < 2∆ · (∆ + 1) ·∆C · `2

vertices. Hence, if an instance contains more vertices, then it has a colorful packing of size at512

least `, which implies that it is a yes-instance.513

Using Lemma 6, we obtain the following theorem.514

Theorem 7. Rainbow Subgraph admits a problem kernel with at most 2∆ · (∆ + 1) ·∆C · `2
515

vertices that can be computed in O(m2 +mn) time.516

Proof. The kernelization algorithm exhaustively applies Rules 1 to 5 and then checks whether the517

instance contains more than 2∆ · (∆ + 1) ·∆C · `2 vertices. If this is the case, then the algorithm518

answers “yes” (or reduces to a yes-instance of size one) which is correct by Lemma 6 or the instance519

has bounded size. It remains to show the running time of the algorithm.520

Each rule removes at least one edge or, in the case of Rule 5, immediately triggers a rule that521

removes at least one edge. Hence the rules are applied at most m times. Moreover, the applicability522

of each rule can be tested in O(m+ n) time, which can be seen as follows. Herein, we only focus523

on the time needed to test the condition of the rules; the modifications can be clearly performed in524

linear time. For Rule 1, one needs only to count the number of occurrences of an edge color, which525

can be done by visiting each edge and using an array of size p to count the occurrences. For Rule 2,526

one must first determine the set of obligatory vertices in O(m+ n) time by comparing the number527

of incident edges for each color to the previously computed total number of edges with this color.528

Then, visiting each edge of G, one can check in constant time whether both endpoints are obligatory.529

Rule 3 can clearly be performed in linear time by computing the connected components of G.530

Rule 4 can be performed in linear time by checking for each obligatory vertex whether it has degree531

at least two and only obligatory neighbors. Finally, Rule 5 can be performed in linear time as532

follows. First, the set of obligatory vertices with only obligatory neighbors is already computed533

by the algorithm for Rule 4. Then, one can remove in linear time all edges that do not have at534

least one endpoint that is obligatory and has only obligatory neighbors. In the remaining graph,535

compute in linear time a matching of size two. This matching fulfills the requirements of Rule 5;536

if there is no such matching, then Rule 5 does not apply. Altogether, the running time of the537

kernelization algorithm is O(m2 +mn).538

We now consider parameterization by (∆C , `) (recall that the color degree ∆C can be much539

smaller than ∆). First, by performing the following additional data reduction rule, we can use the540

kernelization result for (∆, `) to obtain a polynomial problem kernel for (∆C , `).541

Rule 6. If G contains a vertex v such that at least ` + 2 edges incident with v have the same542

color c, then delete an arbitrary one of these edges.543



Version February 16, 2015 submitted to Algorithms 20 of 23

Proof of correctness. Clearly, we cannot transform a no-instance into a yes-instance, since the544

color c remains in the graph after application of the rule. If (G,χ) is a yes-instance, then there is545

an order-(n− `) rainbow cover of G that contains at least two vertices that are in G connected546

to v by an edge with color c. Hence, removing at most one of these two edges does not destroy the547

rainbow cover.548

Rule 6 can be exhaustively performed in linear time: For each vertex v, scan through its549

adjacency list, counting the number of incident edges of each color in an array of size p. When550

encountering an edge whose color counter is `+2, immediately delete the edge; otherwise increment551

the counter. Afterwards, reset the array to contain only zero entries; this can be done in O(deg(v))552

time by storing a list of edge colors that are incident with v (all other entries of the array have the553

value zero, so only these counters have to be reset). Finally, the rule does not change the value554

of `, so each vertex needs to be visited only once.555

After exhaustive application of the rule, the maximum degree ∆ of G is at most ∆C · (`+ 1). In556

combination with Theorem 7, this immediately implies the following.557

Theorem 8. Rainbow Subgraph has a problem kernel with at most 2(∆C +1)3`2(`+1)2 vertices558

that can be computed in O(m2 +mn) time.559

Finally, we describe a simple branching for the parameter (∆C , `). Herein, deleting a vertex560

means to remove it from G and to decrease ` by one; thus, a deleted vertex is not part of a rainbow561

cover of order k of the original instance.562

Branching Rule 1. If G contains a non-obligatory vertex u, then branch into the following cases.563

First, recursively solve the instance obtained from deleting u from G. Then, for each color c that is564

incident with u pick an edge {v, w} with color c. If v (w) is non-obligatory, then recursively solve565

the instance obtained from deleting v (w).566

Proof of correctness. We show that

(G,χ) is a yes-instance ⇔ one of the created instances is a yes-instance. (15)

“⇒”: Consider some maximum-cardinality set S such that |S| ≥ ` and G−S is a rainbow cover567

of G. If S contains any of the vertices v and w considered in the second part of the branching,568

then the claim holds. Otherwise, for each color c that is incident with u, there is an edge in G− S569

that has color c. In this case, we can assume u ∈ S since S has maximum cardinality, so the claim570

also holds in this case.571

“⇐”: Consider any instance (G′, χ′) created during the branching and let S denote a set of at572

least `− 1 vertices such that G′ − S is a rainbow cover of G′. Let v denote the vertex that is in G′573

but not in G. Since v is non-obligatory, all colors in G are also present in G′. Hence, G′− (S ∪{v})574

is also a rainbow cover of G. Hence, (G,χ) is also a yes-instance.575

Note that the parameter ` decreases by one in each branch. Exhaustively applying Branching576

Rule 1 until either every vertex is obligatory or ` ≤ 0 yields an algorithm with the following running577

time.578



Version February 16, 2015 submitted to Algorithms 21 of 23

Theorem 9. Rainbow Subgraph can be solved in O((2∆C + 1)` · (n+m)) time.579

Proof. The algorithm exhaustively applies Branching Rule 1 until either every vertex is obligatory580

or ` ≤ 0. By the correctness of Branching Rule 1 the original instance is a yes-instance if and only581

if at least one of the created instances is a yes-instance.582

If ` = 0, then the instance is a trivial yes-instance and the algorithm may correctly answer “yes”.583

Otherwise, ` > 0 but all vertices are obligatory. In this case, the instance is a trivial no-instance584

and the algorithm simply leaves the current branch. If the answer for none of the created instances585

is “yes”, then the algorithm correctly answers “no”.586

It remains to show the running time bound. The search tree created by Branching Rule 1 has587

depth ` and maximum degree (2∆C + 1), hence it has size O((2∆C + 1)`). In each node of the588

instance, we have to test for the applicability of Branching Rule 1, which can be performed in589

linear time.590

6. Outlook591

Considering its biological motivation, it would be interesting to gain further, potentially592

data-driven parameterizations of Minimum Rainbow Subgraph that may help identifying593

further practically relevant and tractable special cases. An interesting parameter which we have not594

investigated so far is the combination (∆C , k) of solution order and maximum color degree. From a595

more graph-theoretic point of view, we left open a deeper study of parameters measuring the degree596

of acyclicity of the underlying graph, such as treewidth or feedback set numbers. It also remains597

open whether there are polynomial-space fixed-parameter algorithms for the parameters (∆, k)598

and (∆, p).599

Acknowledgments600

We thank the anonymous reviewers of WG ’14 and of Algorithms for their thorough and601

valuable feedback. In particular, an anonymous reviewer of Algorithms pointed out a substantial602

simplification of Section 4.2. Falk Hüffner was supported by DFG project ALEPH (HU 2139/1),603

and Christian Komusiewicz was partially supported by a post-doctorial grant funded by the Région604

Pays de la Loire.605

Conflicts of Interest606

The authors declare no conflicts of interest.607

References608

1. Hajiaghayi, M.T.; Jain, K.; Lau, L.C.; Mandoiu, I.I.; Russell, A.; Vazirani, V.V. Minimum609

multicolored subgraph problem in multiplex PCR primer set selection and population610

haplotyping. Proc. 6th International Conference on Computational Science (ICCS ’06).611

Springer, 2006, Vol. 3992, LNCS, pp. 758–766.612



Version February 16, 2015 submitted to Algorithms 22 of 23

2. Matos Camacho, S.; Schiermeyer, I.; Tuza, Z. Approximation algorithms for the minimum613

rainbow subgraph problem. Discrete Mathematics 2010, 310, 2666–2670.614

3. Fernandes, R.; Skiena, S. Microarray synthesis through multiple-use PCR primer design.615

Bioinformatics 2002, 18, 128–135.616

4. Katrenič, J.; Schiermeyer, I. Improved approximation bounds for the minimum rainbow617

subgraph problem. Information Processing Letters 2011, 111, 110–114.618

5. Popa, A. Better lower and upper bounds for the minimum rainbow subgraph problem.619

Theoretical Computer Science 2014, 543, 1–8.620

6. Koch, M.; Matos Camacho, S.; Schiermeyer, I. Algorithmic approaches for the minimum621

rainbow subgraph problem. Electronic Notes in Discrete Mathematics 2011, 38, 765–770.622

7. Sharan, R.; Halldórsson, B.; Istrail, S. Islands of tractability for parsimony haplotyping.623

IEEE/ACM Transactions on Computational Biology and Bioinformatics 2006, 3, 303–311.624

8. Fleischer, R.; Guo, J.; Niedermeier, R.; Uhlmann, J.; Wang, Y.; Weller, M.; Wu, X.625

Extended islands of tractability for parsimony haplotyping. Proc. 21st Annual Symposium626

on Combinatorial Pattern Matching (CPM ’10). Springer, 2010, Vol. 6129, LNCS, pp.627

214–226.628

9. Fellows, M.; Hartman, T.; Hermelin, D.; Landau, G.; Rosamond, F.; Rozenberg, L.629

Haplotype inference constrained by plausible haplotype data. IEEE/ACM Transactions on630

Computational Biology and Bioinformatics 2011, 8, 1692–1699.631

10. Hassin, R.; Segev, D. The set cover with pairs problem. Proc. 25th International Conference632

on Foundations of Software Technology and Theoretical Computer Science (FSTTCS ’05).633

Springer, 2005, Vol. 3821, LNCS, pp. 164–176.634

11. Williamson, D.P.; Shmoys, D.B. The Design of Approximation Algorithms; Cambridge635

University Press, 2011.636

12. Downey, R.G.; Fellows, M.R. Fundamentals of Parameterized Complexity; Texts in Computer637

Science, Springer, 2013.638

13. Flum, J.; Grohe, M. Parameterized Complexity Theory; Springer, 2006.639

14. Niedermeier, R. Invitation to Fixed-Parameter Algorithms; Oxford University Press, 2006.640

15. Alimonti, P.; Kann, V. Some APX-completeness results for cubic graphs. Theoretical641

Computer Science 2000, 237, 123–134.642

16. Fellows, M.; Hermelin, D.; Rosamond, F.; Vialette, S. On the parameterized complexity of643

multiple-interval graph problems. Theoretical Computer Science 2009, 410, 53–61.644

17. Komusiewicz, C.; Sorge, M. Finding dense subgraphs of sparse graphs. Proc. 7th645

International Conference on Parameterized and Exact Computation (IPEC ’12). Springer,646

2012, Vol. 7535, LNCS, pp. 242–251.647

18. Björklund, A.; Husfeldt, T.; Koivisto, M. Set partitioning via inclusion-exclusion. SIAM648

Journal on Computing 2009, 39, 546–563.649

19. Björklund, A.; Husfeldt, T.; Kaski, P.; Koivisto, M. Fourier meets Möbius: Fast subset650

convolution. Proc. 39th Annual ACM Symposium on Theory of Computing (STOC ’07).651

ACM, 2007, pp. 67–74.652



Version February 16, 2015 submitted to Algorithms 23 of 23

20. Fürer, M. Faster integer multiplication. Proc. 39th Annual ACM Symposium on Theory of653

Computing (STOC ’07). ACM, 2007, pp. 57–66.654

21. Schiermeyer, I. On the minimum rainbow subgraph number of a graph. Ars Mathematica655

Contemporanea 2012, 6.656

c© February 16, 2015 by the authors; submitted to Algorithms for possible open access657

publication under the terms and conditions of the Creative Commons Attribution license658

http://creativecommons.org/licenses/by/3.0/.659


	Introduction
	Preliminaries
	Parameterization by Color Occurrences
	Parameterization by Number of Colors
	Hardness on bipartite graphs
	Degree-bounded graphs
	Trees

	Parameterization by Number of Vertex Deletions
	Hardness on trees
	Degree and color-degree

	Outlook

