
Journal of Combinatorial Optimization manuscript No.
(will be inserted by the editor)

Separator-Based Data Reduction for Signed Graph
Balancing
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Abstract Polynomial-time data reduction is a classical approach to hard graph prob-
lems. Typically, particular small subgraphs are replaced by smaller gadgets. We gen-
eralize this approach to handle any small subgraph that has asmall separator con-
necting it to the rest of the graph. The problem we study is theNP-hard BALANCED

SUBGRAPHproblem, which asks for a 2-coloring of a graph that minimizes the incon-
sistencies with given edge labels. It has applications in social networks, systems biol-
ogy, and integrated circuit design. The data reduction scheme unifies and generalizes
a number of previously known data reductions, and can be applied to a large number
of graph problems where a coloring or a subset of the verticesis sought. To solve the
instances that remain after reduction, we use a fixed-parameter algorithm based on it-
erative compression with a very effective heuristic speedup. Our implementation can
solve biological real-world instances exactly for which previously only approxima-
tions were known. In addition, we present experimental results for financial networks
and random networks.

Keywords Preprocessing·Exact algorithm·Parameterized algorithmics·Algorithm
engineering· Gene-regulatory network· Financial network

1 Introduction

1.1 Data Reduction

Polynomial-time data reduction is a classical way of dealing with hard problems: be-
fore starting the actual solving process, one tries to reduce the size of the instance by
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removing or simplifying parts. More precisely, adata reduction rulereduces in poly-
nomial time an instance to a smaller instance, without destroying the possibility of
finding an optimal solution. Data reduction has proven useful as a general technique
in coping with NP-hard problems (Guo and Niedermeier, 2007).

Many data reduction rules have been developed in a problem-specific and ad-hoc
way based on small fixed-size substructures. A typical example is the following one
from Wernicke (2003) for VERTEX BIPARTIZATION, a problem closely related to our
main study problem BALANCED SUBGRAPH (see Sect. 1.2). VERTEX BIPARTIZA-
TION asks to delete a minimum number of vertices from an undirected graph to make
it bipartite, or equivalently, to destroy all cycles of odd length.

Rule 1 Let G= (V,E) be aVERTEX BIPARTIZATION instance and let abcd be an
induced four-vertex cycle (C4) in G, where the two nonadjacent vertices b and d have
degree2 in G. Then remove b.

This rule is correct because without loss of generality we never need to deleteb,
since deletinga or c destroys at least as many odd-length cycles, and further there is
an odd cycle containingb iff there is an odd cycle containingd. In a similar way,
considering structures of a few vertices, Wernicke (2003) presented several more
data reduction rules. Another example is the “vertex folding” rule, which gets rid
of degree-2 vertices in VERTEX COVER instances (Chen et al., 2001).

When looking at the correctness proofs of these reduction rules, one notices that
they are often, implicitly or explicitly, based on a separator (that is, a set of vertices
whose deletion separates the graph into at least two connected components): we have
a small number of vertices (e. g.b andd in Rule 1) that are separated by a small
separator (e. g.a andc in Rule 1) from the rest of the graph. Similarly, in the case of
VERTEX COVER a degree-2 vertex forms a component of size 1 that is divided from
the rest of the graph by a separator of size 2. Our aim is to generalize this kind of data
reduction rule.

In Sect. 2, we present a scheme that can provide a data reduction for such struc-
tures in BALANCED SUBGRAPH instances in general, without the need to manually
derive and prove rules for each fixed structure as in Rule 1. The idea is to find a small
separatorS that cuts off a small componentC from the rest of the graph. Then, we
replaceS andC by a smaller gadget that exhibits the same behavior with respect to
the underlying graph problem.

A similar method has been suggested by Polzin and Vahdati Daneshmand (2006)
for the STEINER TREE problem. However, they do not employ gadgets and have
no formal characterization of reducible cases. Another similar method arecrown re-
duction rules (Abu-Khzam et al., 2007). Crown reductions also work by finding a
separatorS that cuts off a componentC, and impose additional demands onSandC
(for instance for VERTEX COVER, C must be an independent set and there must be a
matching betweenSandC that matches all vertices ofS (Abu-Khzam et al., 2004)).
The main difference to our approach is that we do not assume any particular proper-
ties ofSandC, except that they are small.

Another related technique are tree decompositions (Hicks et al., 2005; Bodlaender
and Koster, 2008). Here, the major difference is that they require the graph to be
“covered” with small separators; for example, a large clique thwarts the approach.
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In contrast, our approach can be applied profitably even whenonly some parts of
the graph have small separators, which commonly occurs withreal-world inputs like
those examined in Sect. 4.

1.2 Balanced Subgraph

The NP-hard BALANCED SUBGRAPH problem is defined onsigned graphs, which
are undirected graphs where each edge is annotated with an element of the sign group
(that is, the unique two-element group, which can for example be denoted by the two
elements 0 and 1 and the binary operationa◦b := (a+ b) mod 2). The concept of
signed graphs has been introduced first by Harary (1953) in the context of social
networks, and has been rediscovered frequently since, as itis a natural model for
many applications; see Zaslavsky (1998) for a bibliographyof signed graphs. The
central concept is that of abalancedsigned graph: A signed graphG = (V,E) with
edges labeled byh : E →{0,1} is balanced if there is a vertex coloringf : V →{0,1}
such that

∀{u,v} ∈ E : h({u,v})≡ ( f (u)+ f (v)) (mod 2). (1)

Put another way, a 0-edge demands that its endpoints have thesame color, and a
1-edge demands that they have different colors. Therefore,in the following we use
the notations “=-edge” and “6=-edge” instead. Let furtherE= be the set of=-edges
andE6= the set of6=-edges.

Balanced graphs generalize bipartite graphs, since bipartite graphs are balanced
graphs that contain only6=-edges. Kőnig (1936) proved the following characteriza-
tion of balanced graphs. For a graphG = (V,E), the following are equivalent:

1. V can be partitioned into two setsV1 andV2 calledsidessuch that there is no
6=-edge{v,w} ∈ E with both v,w ∈ V1 or bothv,w ∈ V2 and no=-edge{v,w}
with v∈V1 andw∈V2.

2. V can be colored with two colors such that for all{v,w} ∈ E6= the verticesv andw
have different colors, and for all{v,w} ∈ E= the verticesv andw have the same
color. The color classes correspond to the sides.

3. G does not contain cycles with an odd number of6=-edges.

Using the characterization by a coloring, it is easy to see that balance of a signed
graph can be checked in linear time by depth-first search. TheBALANCED SUB-
GRAPH problem is now defined as follows:

BALANCED SUBGRAPH

Instance: A signed graphG = (V,E) and an integerk≥ 0.
Question: CanG be transformed by up tok edge deletions into a balanced
graph?

EDGE BIPARTIZATION is the edge-deletion version of VERTEX BIPARTIZATION.
Since EDGE BIPARTIZATION is the special case of BALANCED SUBGRAPH where
there are only6=-edges, NP-hardness and approximation hardness results for EDGE

BIPARTIZATION carry over to BALANCED SUBGRAPH. In particular, BALANCED

SUBGRAPH remains NP-hard even in triangle-free graphs with maximum degree
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Fig. 1: Example for a yes-instance of BALANCED SUBGRAPH and an equivalent
yes-instance of EDGE BIPARTIZATION. Colors serve to indicate that the graph is
balanced (a) resp. bipartite (b).

three (Yannakakis, 1981). The problem is MaxSNP-hard (Papadimitriou and Yan-
nakakis, 1991), and assuming Khot’s Unique Games Conjecture, it is even NP-hard
to approximate within any constant factor (Khot, 2002).

There is a simple reduction from BALANCED SUBGRAPH to EDGE BIPARTIZA-
TION, which allows to transfer some tractability results from EDGE BIPARTIZATION.
For this, we subdivide each=-edge by one vertex (see Figure 1). After this, it is
easy to show that a BALANCED SUBGRAPH instance can be solved withk edge dele-
tions iff the transformed EDGE BIPARTIZATION instance can be solved withk edge
deletions. In particular, the above reduction implies thatBALANCED SUBGRAPH can
be solved in polynomial time onweakly bipartitegraphs, which comprise bipartite
graphs and planar graphs (Grötschel and Pulleyblank, 1981). Further, BALANCED

SUBGRAPH can be approximated to a factor ofO(
√

logn) in polynomial time (Agar-
wal et al., 2005), wheren is the number of vertices in the input. Another approxima-
tion algorithm finds in polynomial time a solution of sizeO(k logk), wherek is the
size of an optimal solution (Avidor and Langberg, 2007).

MAX CUT is EDGE BIPARTIZATION with the dual optimization objective of max-
imizing the number of undeleted edges. If we consider this objective for BALANCED

SUBGRAPH, we cannot directly obtain the same approximation factor of0.878 as
for MAX CUT (Goemans and Williamson, 1995), since the number of edges might
double in the reduction. However, it was shown by Thagard andVerbeurgt (1998)
and independently by DasGupta et al. (2007) that the semidefinite programming of
Goemans and Williamson (1995) can be adapted to BALANCED SUBGRAPH without
impairing the approximation factor. While these are much stronger guarantees than
for the minimization variant, minimizing the number of deleted edges is in many set-
tings the more natural model; for example, in the biologicalnetworks considered by
DasGupta et al. (2007), only few edges need to be deleted to make them balanced
(see Table 1 in Sect. 4).

Similar to EDGE BIPARTIZATION, polyhedral approaches have been used for
BALANCED SUBGRAPH (Barahona and Ridha Mahjoub, 1989; Boros and Hammer,
1991), which also cover the weighted case. Coleman et al. (2008) examine the practi-
cal performance of several approximation algorithms for BALANCED SUBGRAPH.

A different approach to BALANCED SUBGRAPH is parameterized algorithmics
(Downey and Fellows, 1999; Flum and Grohe, 2006; Niedermeier, 2006). The idea
is to confine the combinatorial explosion to a parameterk. A problem is calledfixed-
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parameter tractablewith respect to a parameterk if an instance of sizen can be
solved in f (k) · nO(1) time, wheref is an arbitrary computable function depending
only onk. EDGE BIPARTIZATION can be solved inO(2km2) time (Guo et al., 2006),
wherem is the number of edges in the input, and thus by the transformation described
above BALANCED SUBGRAPH can be solved in the same time bound, showing the
fixed-parameter tractability of BALANCED SUBGRAPH. Since in many applications
k is much smaller thanm, this is a promising approach.

Applications.BALANCED SUBGRAPH has a large number of applications. One of
the oldest is in modeling social networks (Harary, 1959). Here, an=-edge models a
positive or friendly connection, a6=-edge models a negative or unfriendly connection,
and a non-edge a neutral connection or lack of contact. The conjecture is that changes
in social networks can be explained by a striving towards balance in this signed graph.
The number of edge deletions required to obtain a balanced graph is then a measure
of the distance from stability. An example was given by Antalet al. (2006) for the
relations between nations prior to World War I.

The following application for gene regulatory networks will be central to some
of our experiments in Sect. 4. DasGupta et al. (2007) used balance in signed graphs
to model the concept of “monotone subsystems” under the nameof “sign-consistent
graphs”. They examined dynamical systems, where a gene is modeled as a vertex
and an activating connection is modeled as an=-edge and an inhibiting connection
is modeled as a6=-edge. The claim is that biological dynamical systems are close to
being balanced, and that finding a minimum set of edges to delete to make the graph
balanced can be used to decompose the graph into “monotone subsystems”, which
exhibit stable behavior and thus allow a better understanding of the dynamics of a
system.

Further applications of BALANCED SUBGRAPHappear in statistical physics (Bara-
hona, 1982), portfolio risk analysis (Harary et al., 2002),and VLSI design (Chiang
et al., 2007).

1.3 Contributions

We show a general scheme for data reduction for BALANCED SUBGRAPH by re-
placing small componentsC that can be cut off by a small separatorS with gadgets
(Sect. 2.1). In particular, all separators with|S| = 2 and|C| ≥ 1 and all separators
with |S| = 3 and|C| ≥ 2 allow to simplify the instance (Corollary 1). To solve the
instances that remain after data reduction, we adapt a fixed-parameter algorithm for
EDGE BIPARTIZATION yielding anO(2k ·m2) running time withmdenoting the num-
ber of edges. Further, we present a speed-up trick that oftenreduces the running time
of this algorithm in our experiments from days to few seconds(Sect. 4). We experi-
mented with the real-world biological instances provided by DasGupta et al. (2007).
Our program needs similar amounts of time (up to about 1 h), but can solve them
optimally. Moreover, we experimented with synthetic data and further real-world in-
stances (such as financial networks) to chart the border of feasibility of our algorithm.
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Fig. 2: Example forReduction Scheme 1

2 Data Reduction

In this section, we present polynomial-time executable data reduction rules for the
BALANCED SUBGRAPH problem. We assume thatG is amultigraph, which can have
multiple labeled edges between two vertices. This is usefulfor several applications
and actually makes the data reductions easier to formulate.

The data reduction scheme is based on finding small separators and a novel gadget
construction scheme. It unifies and generalizes a number of previously known data
reductions (Wernicke, 2003) and seems applicable to a widerrange of graph problems
where a coloring or a subset of the vertices is sought.

2.1 Data reduction scheme

In this section, we describe how to obtain data reduction forBALANCED SUBGRAPH

from a small separatorSthat cuts off a small componentC from the rest of the graph.
For this, we examine the effect ofS andC on optimal solutions and replace them
with an equivalent smaller gadget. As is standard with separator-based methods, the
behavior of an(S,C)-pair is examined by exhaustively enumerating possible states of
the separator and finding exact solutions to the small componentC. For BALANCED

SUBGRAPH, the states are possible colorings of the vertices in the separator in an
optimal solution. We now present the scheme more formally.

Reduction Scheme 1Let S be a separator and let C be a small component obtained
by deleting S from the given graph G. Then, determine for eachof the (up to symmetry)
2|S|−1 colorings of S the size of an optimal solution for the inducedsubgraph G[S∪C]
and replace in G the subgraph G[S∪C] by a gadget that contains the vertices of S
and possibly some new vertices.

The above scheme leaves open some details. Before filling them in, let us show a
simple example.

Example 1In Figure 2, the separatorScuts off the vertices inC from the rest of the
graph. Up to symmetry, there are only two possibilities how the vertices inS can
be colored: equal or unequal. If they are colored equal (a), the subgraphG[S∪C] is
balanced without edge deletions. Otherwise (b), one edge deletion is required (dashed
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line). We can simulate this behavior with a single=-edge between the two vertices
in S: it also incurs a cost of 0 when the two vertices ofSare colored equal, and a cost
of 1 otherwise. Therefore, we can replace the subgraphG[S∪C] by the gadget shown
on the right.

To fully describe the reduction scheme, four questions haveto be answered:

(a) The instancesG[S∪C] have some vertices (those of the separator) pre-colored.
How to solve these already partly colored instances?

(b) There is a combinatorial explosion with the sizes ofSandC affecting the running
time. Therefore, how do we restrict the choices ofSandC?

(c) How can we efficiently find useful(S,C)-combinations?
(d) If existing, how can we construct a gadget that is smallerthanG[S∪C] and cor-

rectly “simulates”G[S∪C]?

Regarding (a), we reduce the instance to an instance withoutpre-colored vertices,
and then solve the instance recursively. For this, we merge all vertices pre-colored
black into a single uncolored vertex and all vertices pre-colored white into a single
uncolored vertex. Here, tomergetwo verticesv andw means to deletev andw and
all incident edges, and add a new vertexx with edges fromx to each vertex that was
connected tov or w. We then add a sufficient number (e. g.|E|) of edges labeled6=
between the two new vertices, to ensure that no solution colors them equally. Any
solution for this instance will then color the two vertices differently, and we can
(possibly by flipping all colors) reconstruct a solution forthe pre-colored instance.

Regarding (b), this can be simply done by imposing a fixed limit. In the implemen-
tation used in our experiments, we restrict the size ofS to at most 4, mainly because
of difficulties with the gadget construction. The size ofC is (somewhat arbitrarily)
restricted by 32; however, due to the structure of our instances, this limit did not play
a role, because all components found were much smaller.

As to (c) and (d), we will answer these questions in the next two subsections. Fi-
nally, note that our approach obviously is only promising incase of graphs possessing
small separators. Clearly, this excludes “highly” connected graphs. Fortunately, many
real-word networks contain “enough” small separators.

2.2 Efficiently finding separators

To improve running time, we special-case the search for separators of size 0 (that
is, the graph consists of more than one connected component)and separators of
size 1 (that is, articulation points). They can be found in linear time using depth-first
search (Gabow, 2000). For these cases, the gadget construction can be omitted: the
2-connected components1 can be treated independently, and optimal colorings of two
components can always be merged (possibly by flipping all colors in one component),
since they overlap only in one vertex. Note that this phase inparticular removes all
degree-1 vertices.

1 A graph is 2-connected if there are at least two vertex-disjoint paths between any pair of vertices from
this graph.
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Separators of size 2 can also be found in linear time (Hopcroft and Tarjan, 1973).
However, we did not implement this algorithm, since it is quite complicated and error-
prone to implement (several errors in the original publication have been pointed out
(Gutwenger and Mutzel, 2000)).

Separators of sizek for smallk can be found efficiently by flow techniques (Hen-
zinger et al., 2000). However, after some experiments we settled for the subsequently
described heuristic instead, which is faster and produced no worse results in our
tests. For a vertex setX, let N(X) := {u | {u,v} ∈ E ∧ v ∈ X} \X. For each ver-
tex v, setC := {v} and iteratively enlargeC by a vertexv′ that minimizes the size of
S:= N(C∪{v′}) until |C| exceeds the size limit. The size ofScan grow and shrink
during this process; we record all combinations ofSandC with S≤ 4.

To get a heuristic speedup, it is useful to first treat separators that are easy to
deal with, but promise large reductions. Therefore, we sortthe (S,C)-combinations
primarily by increasing size ofS and secondarily by decreasing size ofC. In our
experiments, the finding of separators in the above way altogether never took more
than few seconds for graphs with up to about 1000 vertices.

2.3 Gadget construction

The goal is to show how the subgraphG[S∪C] induced by the separatorS and the
small componentC can be replaced by a smaller, “equivalent” subgraph (gadget). A
simple case has already been described in Example 1. Now, we describe a general
methodology, leading also to theoretically interesting problems that deserve further
investigation.

Let us call a separator of sizei simply i-cut. As mentioned before, it is easy to deal
with 0- and 1-cuts. Hence, we focus on larger separators, thereby describing construc-
tions delivering optimal gadgets in case of 2- and 3-cuts anda heuristic approach for
4-cuts. We also briefly discuss the mathematical and algorithmic challenges behind
constructing gadgets fori-cuts for generali.

By an optimalgadget we refer to one with a minimum number of vertices (the
alternative setting of minimizing the number of edges mightbe worth consideration as
well). When speaking of anequivalentgadget which replaces the subgraphG[S∪C],
we refer to a subgraphH with the following properties:

1. GadgetH contains all vertices fromS and possibly more; in particular,S forms
the “interface” whereH is plugged in instead ofG[S∪C].

2. The original graphG has a solution for BALANCED SUBGRAPH of sizek iff the
modified graph whereH replacesG[S∪C] has a solution of sizek′ ≤ k, where the
difference betweenk′ andk is determined by the gadget. Moreover, an optimal
solution forG can be reconstructed from an optimal solution for the modified
graph.

2.3.1 Gadget construction for 2-cuts

Example 1 shows a special case of 2-cuts. Up to symmetry, there are only two col-
orings of the two separator verticesu andv. In each of these two cases, we compute
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recursively an optimal solution forG[S∪C], which can be done quickly, since only
smallSandC are considered.

Let ne be the size of an optimal solution forG[S∪C] whereu andv have equal
colors, and letnd be the size of an optimal solution where they have distinct colors.
We perform the following gadget construction, where the gadget consists solely of
vertices fromS. If ne ≥ nd, then removeC and all edges withinS and addne− nd

edges labeled6= betweenu andv. Otherwise, removeC and all edges withinS and
addnd −ne edges labeled= betweenu andv. Note that reducing 2-cuts in particular
gets rid of all vertices of degree 2.

Lemma 1 Let G be the original graph and let G′ be the graph obtained from G by
performing the described gadget replacement. Then G has a solution of size k iff G′

has a solution of size k−min{ne,nd}.

Proof Consider first the casene ≥ nd. From a solution of sizek for G, we can con-
struct a solution of sizek− nd for G′ by using the same coloring restricted to the
remaining vertices and deleting all inconsistent edges. Ifthis solution colorsu andv
differently, we savend edges withinG[S∪C]; the 6=-edges do not incur any addi-
tional cost. If this solution colorsu andv equally, we savene edges withinG[S∪C],
but need to delete allne−nd 6=-edges betweenu andv, also resulting in a solution of
sizek−nd. In the same way, we can construct from a solution of sizek−nd for G′ a
solution of sizek for G. The casene < nd works in complete analogy. ⊓⊔

2.3.2 Gadget construction for 3-cuts

The basic approach is the same as for 2-cuts. The gadget construction, however, be-
comes more intricate. The idea is to construct the final gadget from atomic gadgets,
which can be added independently until in total they have thedesired effect. To char-
acterize the effect of an atomic gadget, we introduce the concept of acost vector. In
the case of 3-cuts, up to symmetry, we have four possibilities to color the vertices
from the separatorS. For each case, we compute the cost of an optimal BALANCED

SUBGRAPH solution ofG[S∪C]. For a fixed order of the colorings, these values build
the cost vector of the form(c1,c2,c3,c4). The goal is then to find atomic gadgets
such that their corresponding atomic cost vectors add up to the cost vector associated
with G[S∪C].

We show that it is sufficient to consider atomic gadgets that,besidesS, have at
most one additional vertex. The first type of atomic gadgets are gadgets exclusively
made of vertices fromS. More specifically, there are six possibilities to put exactly
one edge, either labeled= or 6=, between the three possible vertex pairings inS. Each
of these possibilities yields an atomic gadget. Moreover, each of these atomic gadgets
naturally one-to-one corresponds to a cost vector with 0/1-entries. For instance, let
{u,v,w} form the separator. Then, the atomic gadget with an=-edge betweenu andv
corresponds to the cost vector(0,1,1,0) (see Figure 3a): Ifu andv have the same
color (once white, once black), then the insertion of the=-edge does not cause an
inconsistency. Thus, we have an additional solution cost of0, justifying the two zero-
entries in the cost vector. Ifu andv have different colors, then the insertion of the=-
edge causes an inconsistency, generating an additional solution cost of 1, justifying
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Fig. 3: Examples for atomic gadgets for a size-3 separator{u,v,w}

the two one-entries in the cost vector. Generalizing this tothe five other possibilities
of putting exactly one labeled edge, we arrive at the following:

Lemma 2 By inserting exactly one edge labeled= or 6= between the vertices from S,
we obtain the six atomic cost vectors(0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1),
(1,0,1,0), and(1,1,0,0).

All cost vectors in Lemma 2 have even parity. Hence, we need a second type
of gadgets to be able to construct cost vectors with odd parity: gadgets that contain
all vertices fromS plus a new vertex connected to all vertices fromS. We derive
four atomic gadgets of this kind with different cost vectors, namely the cases that the
edges connectingS to the new vertex are labeled(6=, 6=, 6=), (=,=, 6=), (6=,=, 6=), or
(=, 6=, 6=) (an example is shown in Figure 3b).

Lemma 3 By inserting one new vertex and connecting it to all verticesfrom S and
assigning various edge labels, we obtain four atomic gadgets corresponding to the
atomic cost vectors(0,1,1,1), (1,0,1,1), (1,1,0,1), and(1,1,1,0).

The four atomic cost vectors from Lemma 3 all have odd parity.In this sense, we
now may speak ofevenor oddcost vectors.

Now, we can describe the general gadget construction. To do so, first note that
vectors where all entries have the same valuex are easy because this means that the
solution forG[S∪C] is independent of the coloring ofS and hence one can simply
removeC and all edges between vertices ofS and decrease the parameterk by x.
This means that if we are given a cost vector(c1,c2,c3,c4), then without loss of
generality we cannormalizeit by simply subtracting or adding the vector(1,1,1,1),
each time decreasing or increasing the parameter by one. Now, given a cost vec-
tor (c1,c2,c3,c4), the gadget construction task one-to-one corresponds to finding a
way to subtract atomic cost vectors from(c1,c2,c3,c4) such that one receives the
vector(0,0,0,0). If we arrive at a cost vector with at least two 0-entries thatcannot
be transformed into(0,0,0,0), then due to the above reasoning we may also add the
vector(1,1,1,1). Altogether, this results in the following algorithm:

1. Compute the cost vector for givenSandC.
2. Normalize the cost vector by subtracting the vector(1,1,1,1) until at least one

entry becomes 0.



11

uu

vv

ww
=

=

=
=

=

=

=
=

=

=

=
=

=

=

=
=

=

=

=
=

=

6=

6=6=

6=6=6=
6=6=

6=

6=

6=
6=6=

6=

6=

6=
6=

6=
6=

6=

6=

6=
6=6=

6=

6=

6=
6=

6=
6=

6=

6=

6=

4 333

Fig. 4: Example for the construction of a gadget with|S|= 3

3. If the cost vector has odd parity and has more than one 0-entry, then add(1,1,1,1).
4. If the cost vector has odd parity, then subtract a suitableodd atomic cost vector

(that is, one that does not produce negative entries).
5. While the vector is not(0,0,0,0), repeat:

(a) If the cost vector has three 0-entries, then add(1,1,1,1).
(b) Subtract a suitable even atomic cost vector that decreases the maximum entry.

Example 2In Figure 4, we start with the induced subgraphG[S∪C], whereS=
{u,v,w} is the separator. In the middle we show optimal solutions forthe (up to
symmetry) four possible colorings ofS and mark by a dashed line the edges that
have to be deleted. The number of edge deletions are displayed below these figures,
forming the cost vector(4,3,3,3). Normalization yields the vector(1,0,0,0). Since
this is an odd vector with more than one zero, it gets padded to(2,1,1,1). This is an
odd vector, so we need a gadget using an extra vertex and threeedges (Lemma 3).
From the three vectors whose subtraction decreases the maximum element 2, we
arbitrarily choose(1,1,1,0), corresponding to adding from a new vertex a6=-edge
to u, a 6=-edge tov, and an=-edge tow. The remaining cost vector(1,0,0,1) can
be covered by adding a6=-edge betweenu andv, leaving the all-zero vector. The
resulting gadget is shown on the right of Figure 4. We have subtracted the all-1 vector
twice and added it once, and therefore the parameter decreases by one.

Theorem 1 The above algorithm produces a gadget with the minimum number of
vertices for every pair(S,C) where S is a 3-cut.

Proof First of all, it is clear from the one-to-one correspondencebetween atomic
gadgets and atomic cost vectors that by “superimposing” theatomic gadgets cor-
responding to each (possibly multiple times) subtracted atomic cost vector, one di-
rectly arrives at an overall gadget (with possibly multipleedges). Concerning the
usage of the normalization vector(1,1,1,1), we have already argued before that this
does not affect the correctness of the gadget construction.Hence, in the remainder
we focus on showing that the algorithm always terminates with having generated
the vector(0,0,0,0) by subtracting atomic cost vectors and possibly subtracting or
adding(1,1,1,1).

Once subtracting a suitable odd atomic vector, we arrive at acost vector with even
parity (Steps 1–4). In the further process (Step 5), we will always have an even parity
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and it suffices to concentrate on the termination of the while-loop of the algorithm.
Since the six atomic cost vectors represent all possible vectors with exactly two 1-
entries, as long as we have at least two nonzero-entries in the cost vector, there is at
least one even atomic cost vector that we can subtract. Now, assume that we have
a cost vector with three zero-entries and one nonzero-entrye for an evene (this is
the only remaining possibility besides having the all nonzero-entry). Then, the algo-
rithm adds(1,1,1,1). Now, after this addition we can three times subtract an atomic
vector, decreasing the entrye by two before again all originally zero-entries become
zero again. Repeatedly proceeding this way, we thus always can arrive at the vec-
tor (0,0,0,0) in a finite number of steps. The construction is optimal because the
gadget has at most one additional vertex (besidesS), and this happens only for odd
cost vectors, where it is unavoidable. ⊓⊔

Note that the construction is not necessarily optimal with respect to the number of
edges introduced, nor with respect to the decrease ink. However, in our experiments
these objectives rarely had different optimal solutions.

As a consequence of the considerations so far, we obtain the following result,
illustrating the power of our approach.

Corollary 1 With the described data reduction scheme, all separators with |S| = 2
and|C| ≥ 1 and all separators with|S|= 3 and|C| ≥ 2 are subject to data reduction.

2.3.3 Gadget construction for larger cuts

The gadget construction for 3-cuts already has required quite some machinery. The
case of 4-cuts becomes still much more involved due to the increased combinatorial
complexity. A provably optimal gadget construction as for 3-cuts currently does not
seem practically feasible. Thus, we have chosen a heuristicapproach for finding and
constructing gadgets for 4-cuts.

We conjecture that atomic gadgets with at most two vertices in addition to the four
separator vertices suffice. Thus, we generated 26 atomic gadgets with no extra vertex
(corresponding to the choices of labels for the 6 edges within a 4-vertex separator),
24 atomic gadgets with one extra vertex (4 edges connecting a vertex in the separator
to the new vertex), and 29 atomic gadgets with two extra vertices (8 edges to the new
vertices, and one edge connecting the two new vertices). We then filtered out those
that can be obtained by combining cheaper ones, and arrived after about five minutes
of computation time on a standard PC at a set of 2948 atomic gadgets. They are stored
in a fixed lookup table.

Once given this toolbox of atomic gadgets, we again try to derive the all-zero
vector in a way analogous to the case of 3-cuts. This procedure is now realized by an
exhaustive branch & bound algorithm. We start with the normalized vector. Should
this fail, the vector(1,1,1,1) is added once and the procedure is repeated. Each gad-
get vector is associated with a cost corresponding to its number of extra vertices; this
number is minimized. In fact, it is not too hard to see that this algorithm produces for
3-cuts, when given the 10 atomic cost vectors, the same result as the algorithm given
for 3-cuts.
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The branch & bound algorithm works quite well for cost vectors with small en-
tries, but can become a bottleneck for vectors with high entries. We examine a simple
heuristic to mitigate this in Sect. 4. We close with a description of challenges for
further research that arise in our work with cost vectors. For this, we describe the
scenario in a more abstract way.

Given a setSof n vectors of lengthl with nonnegative integer components, let a
linear combinationbe a sum of some vectors ofS, where vectors can occur multiple
times (equivalently, have a positive integer scalar factor). Let a basisbe a set that
allows to obtain any vector of lengthl with nonnegative integer components as a
linear combination. (The terms are chosen in analogy to vector spaces, but because
of the nonnegative integer restriction, we do not have a vector space here.) We face
the following problems:

– How to recognize whether a vector set is a basis?
– Given a basis and a target vectort, how to find a linear combination that pro-

ducest?
– Given a large set of vectors, how can we find a smallest or minimal basis?

In our work, we actually have a small modification of this problem because as
single vector with negative components also the vector(−1,−1, . . . ,−1) is allowed.
Also, the vectors come at different costs (number of new vertices), and we would like
to find linear combinations of minimum cost.

This touches a deep and old subject in mathematics (see e. g. Barvinok and Woods
(2003); Sturmfels (1996)). Seemingly, our questions seem to be more special than
what is generally studied there, but this clearly deserves future theoretical studies.

3 Fixed-Parameter Tractability

While the data reduction rules presented in Sect. 2 can oftenmuch reduce the instance
size, there will typically remain a “core” that cannot be further reduced. To solve the
remaining instances exactly while getting a useful worst-case time bound, we use a
fixed-parameter algorithm.

As mentioned in the introductory section, EDGE BIPARTIZATION on anm-edge
graph can be solved inO(2km2) time (Guo et al., 2006), which together with the re-
duction from BALANCED SUBGRAPH to EDGE BIPARTIZATION shown there demon-
strates the fixed-parameter tractability of BALANCED SUBGRAPH.

Theorem 2 Given an m-edge graph with at most k edge deletions allowed,BAL -
ANCED SUBGRAPH can be solved in O(2k ·m2) time.

Theorem 2 improves anO(n2L · (nm)3) time exact algorithm by DasGupta et al.
(2007, Remark 1), whereL is the number of6=-edges (since clearlyk≤ L).

In our implementation, we do not use the reduction from EDGE BIPARTIZATION,
but directly modify the EDGE BIPARTIZATION algorithm to work for BALANCED

SUBGRAPH. Further, we employ a heuristic speedup trick similar to theone used
for an iterative compression algorithm for VERTEX BIPARTIZATION (Hüffner, 2005).
We inferred speedups with this trick up to a factor of about 1012.
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To give the basic idea of the algorithm and to be able to describe the speedup, we
briefly sketch how the iterative compression algorithm for EDGE BIPARTIZATION

works; we refer to the original work (Guo et al., 2006) for details and correctness
proofs. A presentation of both results can also be found in the first author’s doctoral
thesis (Hüffner, 2007), and a general survey on the iterative compression technique is
given by (Guo et al., 2008). The key idea is to use acompression routinethat, given
a size-(k+ 1) solution, either computes a size-k solution or proves that there is no
smaller solution. We then build up a solution for a graphG= (V,E) inductively: start
with E′ = /0 andX = /0; clearly,X is an optimal solution forG[E′] (the graph induced
by E′). Now add one edgee′ /∈ E′ from E to bothE′ andX. ThenX is still a solution
for G[E′], although possibly not a minimum one. We can, however, obtain a minimum
one by applying our compression routine. This process is repeated untilE′ = E.

The tricky part is to come up with a compression routine. For this, two additional
properties are imposed: the given solution is inclusion minimal, and the smaller so-
lution that is sought for is disjoint from the given one. The first property is easy to
ensure. The second property can be assumed without loss of generality by applying
a simple input transformation: we subdivide each edge that was part of the edge bi-
partization set by two vertices, and add the middle segment of each subdivided edge
into the new edge bipartization set. This ensures that no edge of the original solution
needs to be reused in a smaller solution, since one of the two neighboring edges is
always suitable as replacement.

After these prerequisites, one can show that all that the compression routine has
to do in order to compress a solutionX of sizek+1 to a solution of sizek is to find
an edge cut of sizek between the two halves of avalid partition (Guo et al., 2006).
Here, a valid partition is a partition of the endpoints of theedges inX into two halves
where each of the two endpoints of one edge is in a different half. All O(2k) valid
partitions are then simply tried by brute force.

It is easy to verify that a small tweak to the algorithm suffices to make it work for
BALANCED SUBGRAPH (Hüffner, 2007). The only required change is in the induc-
tive main loop: when adding an edge and ensuring the minimality of the new solution,
one has to take the edge labels into account.

Heuristic speedup.In our experiments, the plain iterative compression algorithm
turned out to be too slow in many cases. Hence, we developed a technique for speed-
ing up the algorithm. Although heuristic in nature (that is,without provable worst-
case running time improvement), this approach turned out tobe very effective and
it was decisive in order to optimally solve hard problem instances quickly. A similar
speed-up trick has been used (Hüffner, 2005) for an iterative compression algorithm
for the VERTEX BIPARTIZATION problem.

The idea is, in the transformation that ensures disjointness of a smaller solution,
to choose one of the two end edges into the solution instead ofthe middle edge. The
correctness arguments are still valid with this change. However, it can happen then
that two edges in the solution share an endpoint. This can be exploited: the number of
valid partitions halves, since it is no longer possible to place the coinciding endpoints
into different halves. To obtain the maximum gain from this,we have to choose the
side where we take the solution edge such that the number of incident solution edges
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is maximized. In other words, for the graph induced byX, we need to find a minimum
set of vertices such that each edge contains at least one of these vertices. This is
the well-known VERTEX COVER problem. While VERTEX COVER is NP-hard, the
resulting instances are small and sparse (e. g., 80 verticesand 80 edges), and can be
easily solved by a simple branching strategy.

Clearly, the above approach does not give any worst-case improvements, since
it is easy to construct examples where the solution setX has no incident edges at
all. In our experiments, however, we experienced significant speed-ups. For instance,
whereas without the above trick the iterative compression algorithm took days for
a yeast graph instance, with the heuristic it could be solvedin seconds. In an in-
stance where without the heuristic one would have checked 274 valid partitions of
the endpoints of the edges inX, due to the trick only 234 valid partitions had to be
considered. Thus, only due to the trick iterative compression became feasible, saving
a factor of 240 ≈ 1012 in the running time.

4 Implementation and experiments

We applied our data reduction for BALANCED SUBGRAPH (Sect. 2) combined with
the improved iterative compression routine (Sect. 3) to gene regulatory networks,
randomly generated graphs, and financial networks. Our implementation consists of
about 1600 lines of Objective Caml (Leroy et al., 1996) code and about 300 lines
of C code that implements the time-critical compression routine of the iterative com-
pression method. All experiments were run on an AMD Athlon 643400+ machine
with 2.4 GHz, 512 KB cache, and 1 GB main memory running under the Debian
GNU/Linux 3.1 operating system. The program was compiled with Objective Caml
3.08.3 and the GNU gcc 3.3.5 compiler using the options “-O3 -march=athlon”. For
the approximation algorithm by DasGupta et al. (2007), we used MATLAB version
7.0.1.24704 (R14). Our source code is available as free software under the GNU Gen-
eral Public License fromhttp://theinf1.informatik.uni-jena.de/bsg/.

Besides the data reduction rules described in Sect. 2, we additionally delete self
loops and pairs of edges sharing the same end vertices if the edges have different
signs. These reductions can be seen as special cases of our data reduction scheme
from Sect. 2 with|C| = 0, |S|= 1 and|C| = 0, |S| = 2, respectively. Furthermore, we
only replace a small component by a gadget if this leads to an improvement; that is,
either the number of vertices is reduced, or, in the case of anequal number of vertices,
the number of edges is reduced.

Additionally, we tested a heuristic running time improvement to circumvent a
problem with the data reduction based on 4-cuts: For some instances the running
time drastically increased because we encountered a cost vector with entries having
high values. This increased the number of possible linear combinations and therefore
the running time. An example appeared when the algorithm processed the regulatory
yeast network: it ran into the cost vector(2,8,8,0,31,39,39,31), and therefore the
instance could not be solved within several hours (whereas it could be solved with-
out 4-cut reduction within minutes). To take advantage of 4-cut reductions without
wasting hours of running time through such (rarely occurring) cases, based on ex-

http://theinf1.informatik.uni-jena.de/bsg/
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Table 1: Comparison of approximation (DasGupta et al., 2007) and our exact algo-
rithm. Here,t denotes the running time in minutes. For the approximation algorithm,
“k ≤” is the solution size, and “k ≥” is the lower bound gained from the approxima-
tion guarantee. The approximation algorithm was run with 500 randomizations.

Approximation Exact alg.

Data set n m k≥ k≤ t k t

EGFR 330 855 196 219 7 210 108
Yeast 690 1082 0 43 77 41 1
Macrophage 678 1582 218 383 44 374 1

perimental findings we introduced a new cut-off parameter. More precisely, we stop
the gadget construction if the sum of the entries of a cost vector is more than 25.
We experimentally show below that this cut-off value is sufficient for the considered
biological and random networks.

As a further comparison point, we implemented an integer linear programming
(ILP)-based approach based on the following simple ILP:

{ce | e∈ E} : binary variables (edge e deleted: yes or no)

{sv | v∈V} : binary variables (vertex v colored 0 or 1)

minimize∑
e∈E

ce

s. t.∀{v,w} ∈ E6= : sv +sw +cvw ≥ 1,

∀{v,w} ∈ E6= : sv +sw−cvw ≤ 1,

∀{v,w} ∈ E= : sv−sw +cvw ≥ 0,

∀{v,w} ∈ E= : sw−sv +cvw ≥ 0.

Here, a 1 ince models thate is deleted, and the variablessv model the coloring of the
balanced graph that remains when deleting all edgese with ce = 1. However, when
solved by GNU GLPK (Makhorin, 2004), the ILP was consistently outperformed by
the iterative compression approach as soon as the heuristicspeedup mentioned in
Sect. 3 was employed; therefore, we do not give details on itsperformance.

Gene regulatory networks.We started our experimental investigations with gene reg-
ulatory networks up to the size of about 700 vertices and morethan 7000 edges.
Unfortunately, it is still very costly to construct real-world instances from biological
data, and therefore currently only few instances are available.

We begin with comparing our algorithm to the randomized approximation algo-
rithm of DasGupta et al. (2007). The authors considered the regulatory networks
of yeast and human epidermal growth factor (EGFR). We additionally examined a
macrophage network (Oda et al., 2004). The three networks are graphically displayed
before and after data reduction in Figure 5 and Figure 6. The yeast network is larger
than the EGFR network, but one can immediately see applicability of data reduction
rules in form of many degree-1 and -2 vertices. The results ofboth algorithms are
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(c) Macrophage

Fig. 5: Example gene regulatory networks
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(c) Macrophage

Fig. 6: Gene regulatory networks after data reduction

given in Table 1. Apart from giving an optimal solution instead of an approximative
one, we could also decrease the running time for the yeast andmacrophage networks
from about one hour to less than a minute. Note, however, thatthe running time of
the approximation algorithm could probably be much improved by implementing it
in a more efficiently executed language, or simply by doing fewer randomized trials
at the cost of a possibly worse result. For the macrophage network, we could com-
pute an optimal solution of sizek = 374. This emphasizes the importance of our data
reduction rules, since for such high solution sizes the iterative compression algorithm
(Sect. 3) cannot be applied directly. Furthermore, here it is remarkable that the data
reduction breaks up the network into several smaller components of up to 70 vertices
that can be solved by iterative compression independently,whereas for the other two
networks only one large component remains after data reduction. As a further com-
parison point, the ILP-based approach was not able to solve the three instances even
after applying the data reduction.

To investigate the power of our data reduction rules for different sizess of the
separatorS, we investigated stepwise in terms ofs the results for the yeast, EGFR,
and macrophage networks. The results are given in Table 2, where settings to 4r
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Table 2: Size of the largest component remaining and overallrunning timet (includ-
ing solution by iterative compression) when reducing only separators up to sizes.

Yeast EGFR Macrophage

s n m t n m t n m t

0 690 1080 91 s 329 783 > 15 h 678 1582 > 1 day
1 321 709 77 s 290 727 > 15 h 535 1218 > 1 day
2 173 469 11 s 167 468 > 15 h 140 397 > 1 day
3 155 424 4 s 99 283 > 15 h 113 335 ≈ 1 day
4 ? ? > 5 h 89 259 108 min 70 228 4.5 h
4r 144 405 5.6 s 89 260 97 min 70 228 18 s

means that we use a cut-off of 25 for the sum of the entries of a cost vector in the case
of cut sets of size 4. We denote applying our data reduction toa separator of sizesby
s-reduction.

The yeast network can already be solved with improved iterative compression and
2-reduction. In contrast, the EGFR network cannot be solvedwithin reasonable time
without also using 3- and 4-reduction. For the macrophage network, the use of 4-cuts
reduces running time severely.

We now investigate 4-reduction with and without cut-off value. For all networks,
we could achieve the best data reduction results by using 4r-reduction: As mentioned
above, for the yeast network the “normal” 4-reduction does not return any results
within 5 hours. In contrast to the other entries for which we aborted the experiments
in Table 2, here the running time is caused by the data reduction itself and not due to
the iterative compression routine. Therefore, we cannot give the size of the reduced
graph. Setting the cut-off parameter to 25, we obtained an instance that is reduced
more than by applying 3-reduction alone. The reason that we still cannot achieve a
better overall running time is the running time for the 4r-reduction itself. For the
EGFR network, the size of the largest component barely changes going from 4- to
4r-reduction, indicating that we do not lose much by the cut-off; in fact, we achieve
a better overall running time for 4r. Applying 4r-reduction instead of 4-reduction to
the macrophage network does not change the size of the remaining largest component,
but decreases the running time from hours to seconds.

Altogether, we emphasize that we really need the combination of data reduction
and the improvements of iterative compression to solve the instances.

We also considered four small regulatory networks obtainedfrom the Panther path-
ways database (Mi et al., 2005), consisting of about 100 vertices and up to 200 edges.
With 3-reduction we could compute optimal solutions ranging in size from 20 to 28
in split seconds.

Finally, we describe our results for two larger networks that cannot yet be solved
optimally with our method. For the regulatory network for a toll-like receptor (Oda
and Kitano, 2006), we could reduce the number of vertices from 688 to 244 and the
number of edges from 2208 to 1159 within three minutes. For the regulatory network
of the archaeonMethanosarcina barkeri(Feist et al., 2006), we were less successful.
The number of vertices was decreased from 628 to 500 and the number of edges
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Table 3: Reduction effect for random networks. Average over5 instances for each
column. Here,n is the number of vertices in the original graph,n′ is the number of
vertices after data reduction,m′ is the number of edges after data reduction, andt is
the running time in seconds.

n 100 200 300 400 500 600 700 800 900 1000
m 172.6 336.8 492.4 640.2 791.2 970.6 1108.8 1286.6 1435.6 1585.6

n′ 29 48.8 75 95 119.8 153.2 169.2 193.4 211.6 239.6
m′ 102.3 165.8 252 324 398.4 518 565.8 672.4 734.6 815.8
t 1 7 6 5.5 6 8.5 8 15.5 18.5 15.5

from 7302 to 6845 in 25 minutes. This could be a hint that the dense structure of this
network is hard to attack by our data reduction.

Random networks.To further substantiate our experimental results, we generated a
test bed of random graphs with the algorithm described by Volz (2004). We tried to
model the yeast network by choosing the following settings:the cluster coefficient is
0.016, the distribution of vertex degrees follows power-law with α = −2.2, and the
probability to assign6= to an edge is 20.5%.

We generated five instances each for graph sizes ranging from100 to 1000 ver-
tices. The number of edges of the generated instances is slightly more than 1.5 times
of the number of vertices. We investigated the power of our data reduction by com-
puting the number of vertices and edges of the reduced instances. Table 3 shows the
average results for instances of each size. Independent of the instance size, about 75%
of the vertices are reduced. Note that this is also true for the yeast network that we try
to model.

The results given in Table 3 are obtained by setting the cut-off parameter again
to 25. Redoing the test with a higher threshold of 50 did in no case change the number
of reduced edges or vertices by more than one, but increased the running time for
some instances from seconds to several hours.

Considering the size of instances that can be solved optimally by improved itera-
tive compression after data reduction, here the threshold seems to be at graphs with
about 500 vertices. Three out of the five instances could be optimally solved in up
to 20 hours, where the sizes of the optimal solutions are betweenk = 76 andk = 91.
The solution sizes are higher than for the yeast network, which has more than 600
vertices and an optimal solution of size 41. Because of this,the random instances
seem to be somewhat more difficult than the yeast network itself, which is consistent
with observations by DasGupta et al. (2007).

Financial networks.A further real-world application of BALANCED SUBGRAPHarises
in the context of portfolio analysis in risk management (Harary et al., 2002). A port-
folio of securities can be represented as a signed graph withthe vertices denoting
the securities and the edges representing the correlation between the securities. The
balancedness of a subgraph then can be used to rate the predictability of the port-
folio. For details of using signed graphs in risk analysis werefer to (Harary et al.,
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2002). Here we show that our algorithms can be used to computethe balancedness of
financial networks of up to several hundred vertices.

Data and experimental setup.We used publicly available stock data fromfi-
nance.yahoo.comto generate market graphs. The stocks are represented by thever-
tices. For each pair of verticesu andv we compute the corresponding correlation coef-
ficientCuv based on the price fluctuations ofu andv in a time range of 90 days (started
at randomly chosen dates in the years 2003 and 2004).2 Informally, two stocks are
positively correlated if they show similar daily fluctuation in the prespecified time
range and two stocks are negatively correlated if their daily fluctuations behave oppo-
sitely. If Cuv is higher than some prespecified threshold we set an=-edge betweenu
andv and ifCuv is smaller than the negative threshold we set a6=-edge. We made test
runs with different threshold values between 0.3 and 0.4. Itturned out that labelling
the edges in that way led only to trivial instances with mostly =-edges. We think this
is due to a positive correlation of all pairs of stocks depending on the general market
situation. To circumvent this effect, we added an offset of 0.05 to all correlation co-
efficients, resulting in graphs with edges of both labels. Note that the choice of this
offset-value was motivated by a study of Boginski et al. (2006) who observed that the
mean of the distribution of the correlation coefficients between all pairs of stocks in
the market was close to 0.05 (for periods of 500 days).

Our test bed consists of subgraphs of a graph based on 5216 stocks for which
data was available at 2003 and 2004. More precisely, we randomly chose subgraphs
whose sizes range from 60 to 480 vertices in steps of 30. For each such number of
stocks (60, 90, . . . , 480), we generated ten graphs and restricted our experiments to
the largest connected component of each graph.

To compute solutions of BALANCED SUBGRAPH, in all experiments we used
4r-reduction in combination with the improved iterative compression routine.

Results.In the following, we present our results with respect to the success of the
data reduction rules, the solution sizes, and the corresponding running times. Further,
we discuss some general observations.

In Figure 7, we give the results of the performance of our datareduction for
the correlation threshold values 0.325, 0.35, and 0.375. Inall three settings, the data
reduction rules apply better for smaller graphs. We assume that this is because, due to
the construction, the density of the graphs seems to increase with increasing number
of vertices (e. g., 45 vertices/102 edges and 265 vertices/2538 edges). For the smallest
considered graphs we can reduce the number of vertices by more than 90 %; for
graphs up to 100–250 vertices (depending on the threshold) we can still reduce about
50 % of the vertices.

The size of the solution computed by the data reduction in combination with the
iterative compression routine is given in Figure 8. For all settings of the threshold
the size of the solution increases with an increasing numberof vertices. For a lower
threshold the size of the solution seems to grow faster (e. g., for a threshold of 0.325
there is an instance with 265 vertices and solution size 49 whereas for a threshold of
0.375 there is an instance with 393 vertices and solution size 37).

2 The computation of the correlation is based on the logarithmof the daily return. Further, we do not
take into account penny stocks.
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Fig. 7: Data reduction: Thex-axis denotes the number of vertices of the original graph,
and they-axis shows the percentage of remaining vertices after datareduction.
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Fig. 8: Solution size/balancedness: Thex-axis denotes the number of vertices of the
original graph, and they-axis gives the size of an optimal solution.
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Fig. 9: Running time: Thex-axis denotes the number of vertices of the original graph,
and they-axis denotes the running time in seconds.
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Table 4: Number of timeouts out of 10 graphs each. Here, the number of vertices re-
lates to the number of randomly chosen vertices in the graph construction and, there-
fore, slightly differ from the size of the largest connectedcomponents displayed in
the other figures.

#vertices 210 240 270 300 330 360 390 420 450 480

threshold 0.325 0 6 9 10 10 10 10 10 10 10
threshold 0.35 0 0 1 3 8 10 10 10 10 10
threshold 0.375 0 0 0 0 0 0 1 4 9 10

Information about the corresponding running times is displayed in Figure 9. In
our experiments, we set a timeout threshold of one hour. The number of timeouts is
given in Table 4. The smaller graphs can usually be solved in less than a second for
all thresholds. More precisely, for a threshold of 0.325 we can solve instances up to
180 vertices, for 0.35 up to 210 vertices, and for 0.375 up to 240 in up to one second.
In running times up to several minutes we can solve instancesup to 400 vertices for
the threshold value 0.375.

In the following, we describe some general observations regarding the financial
data that may help to explain some of our results.

First, regarding the ratio of=- and 6=-edges, we observed that it seems to be
independent from the graph size, but depends on the choice ofthe threshold value.
For a choice of 0.325 the ratio of= to 6= is about 5:1, for 0.35 about 6:1, and for 0.375
about 7:1. The rising number of=-edges could be an explanation for the decreasing
size of the solutions for increasing values of the threshold(see Figure 8). Thus, we
think that the better performance for instances generated with a higher threshold is
due to two effects. First, the smaller density due to the higher threshold results in a
stronger reduction of the instances. Second, the smaller solution size (probably due
to the increased ratio of=- and 6=-edges) makes the iterative compression routine
working more effectively.

Second, note that the number of edges for graphs of the same size strongly differs.
For example, for the threshold of 0.375 there is a graph with 260 vertices and 2542
edges and one with the same number of vertices and only 986 edges. This might be
an explanation for the variation of running times for graphswith the same number of
vertices (see Figure 9).

Finally, we like to mention some test results with thresholdvalues of 0.3 and 0.4.
Whereas for 0.3 the instances become more difficult to solve (we still could solve
instances up to 180 vertices) for 0.4 the instances became completely trivial due to
the fact that the ratio of= and 6=-edges increased and the graphs became very sparse.
(Note the threshold value that was suggested by Boginski et al. (2005) was even 0.5
for generating the full network. But, as we only consider small subnetworks, this
threshold seems to be too high to get significant connected components.)

Altogether, we showed that our algorithm can compute optimal solutions for non-
trivial financial networks with up to several hundreds of vertices in reasonable time.
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5 Outlook

There are numerous avenues for future research. DasGupta etal. (2007) also intro-
duced a directed version of the BALANCED SUBGRAPH problem. The approxima-
tion results are worse than for the undirected case(DasGupta et al., 2007), which is
probably why there is no implementation yet. Fortunately, the directed case can be
reduced to the VERTEX BIPARTIZATION problem, which can be solved inO(3k ·mn)
time (Reed et al., 2004; Hüffner, 2005). Again, this opens the route for experimental
studies. We conclude with some further research possibilities.

– For some applications, weighted edges are of interest. Integer weights are clearly
equivalent to multiple edges, which our approach already can handle. For the
iterative compression part, it might be possible to handle arbitrary weights in a
similar way as for CLUSTER VERTEX DELETION (Hüffner et al., 2008).

– An interesting question arising directly from our work, is to investigate how one
can minimize the number of edges instead the number of vertices in the gadget
construction.

– EDGE BIPARTIZATION and BALANCED SUBGRAPH still lack a problem kernel
(Guo and Niedermeier, 2007; Niedermeier, 2006) with a nontrivial size bound on
the problem kernel size. Perhaps our data reduction scheme can be a first step in
this direction.

– Chiang et al. (2007) used the fact that BALANCED SUBGRAPH is polynomial-
time solvable on planar graphs to obtain good results for their “nearly-planar”
instances. In the spirit of parameterizing according to “distance from triviality”
(Guo et al., 2004), it would be interesting here to have a fixed-parameter algo-
rithm where the parameter is the “distance from planarity”.It is NP-hard to solve
BALANCED SUBGRAPH for graphs that are planar with already a single vertex
added (Barahona, 1980); however, the number of edges added,or the minimum
number of crossings of a plane drawing might be a useful parameter.

– The theoretical problems in the construction of optimal gadgets (see Sect. 2.3.3)
deserve further investigation.

– In principle, our data reduction scheme is applicable to allgraph problems where
a coloring of the vertices is sought. This includes problemswhere a subset of the
vertices is sought, such as VERTEX COVER or DOMINATING SET. However, it
remains to find appropriate gadget constructions for problems other than BAL -
ANCED SUBGRAPH. It seems promising to extend our data reduction scheme to
practical solutions of other graph problems. A loosely related approach—also
based on graph separation but without the gadgeteering—hasbeen used for solv-
ing Steiner tree problems (Polzin and Vahdati Daneshmand, 2006).

– Estivill-Castro et al. (2006, Sect. 3.3) also sketch a general approach to data reduc-
tion rules. In particular, they suggest to use the algebraicMyhill–Nerode machin-
ery adapted to graph theory (Fellows and Langston, 1989; Downey and Fellows,
1999). It is possible that this approach can be adapted to thetask of computing
gadgets for arbitrary-sized separators. This might also lead to a formal character-
ization of graphs for which our separation-based data reduction scheme is useful.
This is clearly an interesting area of further research.
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– Using iterative compression Razgon and O’Sullivan (2008) have shown the prob-
lem of deleting the minimum number of clauses from a 2CNF-formula such that it
becomes satisfiable to be fixed-parameter tractable with respect to the parameter
“number of deleted clauses”. This problem is structurally similar to BALANCED

SUBGRAPH, and perhaps similar data reductions can be developed.
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