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Zusammenfassung

Aufbauend auf der Arbeit von [Sal9] und [Fr8] untersuchen wir Verbindungen zwischen
Graphparametern, um die Arbeit an der Graphparameterhierarchie weiterzufithren. Wir
tuen dies indem wir systematisch alle Parameter vergleichen fiir die bisher noch keine
gegenseitigen Einschrankungen entdeckt wurden. Dabei ist der hauptsachliche Beitrag
dieser Arbeit zur Graphparameterhierarchie, dass sie Beweise fiir die Unabhangigkeit fast
aller dieser Parameter anbringt. Ein wesentlicher Bestandteil davon ist das Sammeln
von verwandter Forschung und ihre Anwendung auf die Graphparameterhierarchie.

Abstract

Based on the work by [Sal9] as well as [Fr8], we investigate unknown connections between
graph parameters to continue the work on the graph parameter hierarchy. We do so by
systematically comparing all parameters for which no bounds have been discovered yet.
The main contribution of this thesis to the hierarchy lies in providing the proofs of
independence for close to all of these parameters. An essential component of this work
is the collection of related research and the application of this research to the hierarchy.
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1 Intro

With parameterized algorithms being a well-researched tool when facing NP-hard prob-
lems, it is important to detect when to apply them by recognizing when they will be
effective. As an example, if you tried to solve dominating set on instances with bounded
Feedback Vertex Set it might not be initially obvious that graphs with bounded
Feedback Vertex Set also have bounded Treewidth, which helps you to compute the
problem efficiently as Treewidth is a versatile parameter in parameterized complexity
since numerous problems including dominating set can be parameterized by it. This is
just one of many examples where understanding connections between graph parameters
can be helpful in solving problems on graphs. As a result of this [Jan13] stated that
”a thorough understanding of the interplay between parameters is crucial for a proper
grip on problem complexity” . Additionally, since the known ways of computing dif-
ferent graph parameters vary strongly in complexity with some like Minimum Degree
being linear-time computable and others like Minimum Vertex Cover being NP-hard
to compute, the knowledge about connections between parameters can be used to find
more easily computable higher or lower bounds for some parameters.

Following this notion a so-called graph parameter hierarchy was created to show which
parameters are bounded by others thus giving an overview of the relations between
different graph properties.

1.1 Related Work

Several attempts have been made to actually discover bounds between often used graph
parameters in the form of a graph parameter hierarchy. It has been approached by
[Sal9] who have accumulated a list of graph parameters that are used in different fields
of research in computer science and started to investigate the bounds between all those
parameters, numerous other researchers have independently researched bounds between
graph parameters and thus contributed to the known hierarchy. Additionally, this work
is based on [Fr8] which includes proofs for many individual bounds.

1.2 QOur Contribution

This thesis builds upon previous work on the graph parameter hierarchy and tries to
complete it by finding the last remaining undiscovered bounds between parameters and



1 Intro

proving for all pairs of parameters for which no bound has been discovered, that they
are indeed independent. We prove the independence of these parameters by traversing
the parameter hierarchy from top to bottom and showing for every parameter that
it does not upper-bound the parameters for which no bounds have been discovered.
This process is facilitated by the fact that, since we can choose every upper-bounding
function f to be monotone, if we prove that a parameter a does not upper-bound another
parameter b, it follows that every parameter a’ does not upper-bound any parameter b’ if
a upper-bounds a’ and b’ upper-bounds b, since in that case the function fy 0 fo iy © fora
would be a valid upper bound between a and b. The acummulated findings on the
graph parameter hierarchy can be observed in Figure 1.1. It is a Hasse diagramm with
the edges representing strict upper-bound relations. The results of the research in this
paper can be more clearly observed in Table 1.1 where for every pair of parameters it is
indicated whether one upper-bounds the other and if they are unbounded where to find
the proof for that in this thesis.



1.2 Our Contribution
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Figure 1.1: A Hasse graph displaying the graph parameter hierarchy
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Table 1.1: Table of all bounds between parameters and their proofs.
oGreen cells indicate that the row parameter strictly upper bounds the column parameter.

Yellow cells indicate that the column parameter strictly upper bounds the row parameter.

oRed cells indicate the row parameter being unbounded by the column parameter.
eBlue cells indicate that it is yet unknown whether the row parameter is bounded by the column parameter.



2 Preliminaries

Here we will explain the notation we will use as well as the definition of some expressions.
By a graph parameter we refer to a function f : G — R which maps a graph to a
real number. We say that a parameter p upper-bounds another parameter ¢ if there
exists a function f,, : R — R such that f,,(p(G)) > ¢(G) for all graphs G and we
say that p strictly upper-bounds q, if p upper-bounds ¢ and ¢ does not upper-bound p.
Furthermore, we say that a parameter p is unbounded by another parameter ¢, if ¢ does
not upper-bound p, and we call p and ¢ independent, if neither parameter upper-bounds
the other.

All parameters are used as defined on undirected graphs G = (V, E) in [Sal9)].

This thesis uses some regularly used notations in graph theory. We denote the comple-
ment graph G' = (V,(V x V) \ E) to a graph G = (V, E) as G. We also use specific
names to denote well-known graph classes.

e [, denotes the clique graph of size n,

e K, ., denotes the complete bipartite graph with n vertices in one partition and m
vertices in the other,

e (), denotes the circle graph with n vertices, and
e P, denotes a path with n vertices

Furthermore we use the function Ng(v) to denote the set of neighbors of the vertex v in
the graph G and the function degg(v) to denote the degree of v in the graph G. To make
the graph classes used in this paper easier to understand we also define the following
operators which can be used on both graphs and graph classes.

e - : N x G — G, such that n - G maps G to a graph which contains n disconnected
copies of G

e +:G x G — G, such that G; + G2 maps to a graph which contains disconnected
copies of G and Gy

e —: G xV — G, such that G — V' maps to the induced subgraph of G = (V| E)
on the vertex set V' \ V'

Furthermore, we denominate the parameters that are upper-bounding a parameter p in
Figure 1.1 as "the parameters above p” and the parameters that are upper-bounded by
p as "the parameters below p”. Both of these sets also include the parameter p itself.



2 Preliminaries

Moreover, we denominate the parameters that are below a parameter p; and are also
above another parameter p, as "the parameters between p; and p,”.
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3 Exploration of further connections

In this section we will present the result of our research. First we will go through the
bounds which had not yet been included by the prior work on the graph parameter
hierarchy. Then we will go through the graph to prove the unboundedness for the
remaining pairs of parameters by grouping the hierarchy into different parameter groups
and proving the unboundedness inside each group of parameters as well as the fact that
none of the parameters in the group upper-bound any additional parameters outside of
the group.

3.1 Dependencies

The bounds which we discovered in our work on the graph parameter hierarchy are that
Treedepth strictly upper-bounds Maximum Diameter of Components and that Dis-
tance to disjoint Paths strictly upper-bounds h-index. We also included that Chro-
matic Number upper-bounds Chordality, the proof for which can be found in [MS93].
The strictness of that bound follows from Proposition 3.7, since it shows that Distance
to Clique does not upper-bound Maximum Clique.

Proposition 3.1. Treedepth strictly upper-bounds Mazimum Diameter of Components

Proof. We denote the treedepth of a graph G as td(G) and the maximum diame-
ter of components of G as md(G). We will show that for each graph G it holds
that md(G) < 2% — 2. We assume towards a contradiction that there exists a
graph G = (V, E) such that md(G) > 2!4% — 2. Let m = md(G) and t = td(G).
We prove by induction that P, has Treedepth at least [loga(m + 1)].

Base case: td(Py) = 1 = [log2(2)]| = [loga(md(Py) + 2)].

Induction hypothesis: For some n € N, it holds that every P; with j < n has treedepth
at least [loga(j + 1)].

Induction step: Following the recursive definition of Treedepth, the graph P, ,; has
treedepth 1 + min,eytd(P,11 — v). It holds for every vertex v € V', that P, — v con-
tains Py, with k& > [n/2] as a subgraph since deleting a vertex from P, will divide P,
into at most two subgraphs P, und P; with h +¢ = n. It follows from the induction
hypothesis that min,cytd(P,11 —v) = td(Prn/21) > [loga(([n/2] 4+ 1)]. Thus, P41 has
treedepth at least

L+ [loga([n/2] + 1)] = [1 4 loga([n/2] + 1)] = [loga(2 - [n/2] +2)] = [loga(n + 2)].

11



3 Exploration of further connections

Since G' has maximum diameter of components m, it has P,,,; as a subgraph. This
means that G has treedepth at least [logs(m + 2)]. It follows that G has maximum di-
ameter of components at most 2/ — 2, a contradiction to the assumption that m > 2! —2.
Maximum Diameter of Components does not upper-bound Distance to disjoint
Paths since Proposition 3.7 proves that Distance to Clique does not upper-bound
Domatic Number. [

Proposition 3.2. Distance to disjoint Paths strictly upper-bounds h-index

Proof. We will show that for each graph G it holds that h-index(G) < Distance to
disjoint Paths(G) + 2. Assume towards a contradiction that there exists a
graph G = (V, E) such that h-index((G) > Distance to disjoint Paths(G) + 2.
Let p = Distance to disjoint Paths(G) and h = h-index(G). By definition there
exists a set S C V' with |S| = p such that G’ := G — S only consists of disjoint paths.
Since G contains h vertices v such that dg(v) > h and h > p, there exists a vertex v € V'
such that dg(v) > h. Since dg(v) > h, it follows that de(v) > h — p, as at most p of
the h neighbors of v in GG could have been in S and every other neighbor of v
in G remains a neighbor of v in G’. Since h > p + 2 and thus h — p > 2, if follows
that dg/(v) > 2. Since a collection of disjoint paths cannot contain a vertex with degree
higher than 2, it follows that Distance to disjoint Paths((G) # p, a contradiction.

h-index does not upper-bound Distance to disjoint Paths since Proposition 3.24
proves that Bandwidth does not upper-bound Distance to Perfect. O

12



3.2 Independencies

3.2 Independencies

In this segment, we will traverse specific subgraphs of the graph parameter hierarchy. We
will start by proving the independence of all independent parameters in the subgraph.
For each pair of independent parameters in different subgraphs the proof that the first
parameter does not upper-bound the second parameter can be found in the section of
the subgraph containing the first parameter and the proof that the second parameter
does not upper-bound the first parameter can be found in the section of the subgraph
containing the second parameter. Together these proofs will show the independence of
the pair. We will often prove the absence of several bounds in a single proposition. In
those cases we will reference the proposition at each point in the thesis for which they
are relevant.

3.2.1 Parameters between Distance to Clique and Girth

1.Distance to Clique
4 Minimum 5 Distance to 6 Distance to
* Clique Cover * Co-Cluster * Cluster

Maximum Distance to
" Independent Set Cograph

17 Minimum
" Dominating Set
99 Max Diameter
" of Components
Average
.

This section contains the subgraph of the graph parameter hierarchy between Distance

to Clique and Girth. It consists of three different paths between Distance to Clique

and Girth going through Minimum Clique Cover, Distance to Co-Cluster, and Distance
to Cluster respectively.

Distance to Co-Cluster and Distance to Cluster are independent because Distance

to Co-Cluster does not upper-bound Boxicity which is below Distance to Cluster,

and because Distance to Cluster does not upper-bound Distance to Co-Cluster
which we will prove directly.

Proposition 3.3. Distance to Cluster does not upper-bound Distance to Co-Clus-
ter.

13



3 Exploration of further connections

S

ST

Figure 3.1: The graph Ng as an example for the constructions in Proposition 3.4 and
3.31

Proof. Consider the graph class of n - P, for n € N. Every induced subgraph of n - Ps,
which contains at least three vertices and at least one edge, is not a co-cluster Graph,
since the complement of that graph would contain two vertices that are not connected but
have a connection to every other vertex in the graph. Thus, at least one vertex of each
P, has to be deleted to create a co-cluster graph meaning Distance to Co-Cluster
grows linearly in n while n - P, is a cluster graph meaning it has distance to cluster
zero. Since Distance to Cluster is bounded in this graph class and Distance to
Co-Cluster is unbounded, Distance to Cluster does not upper-bound Distance to
Co-Cluster. O

Proposition 3.4. Distance to Co-Cluster does not upper-bound Bozicity.

Proof. Consider the graph class of all cliques from which a perfect matching has been
removed N, for n = 2k and k € N as pictured in Figure 3.1. Since /N, contains
no universal vertices and has Minimum Degree n — 2, it follows from [MS93] that the
Boxicity of IV, grows at least linearly in n. The class N, is a subclass of all co-cluster
graphs because its cograph only contains the deleted matching and is thus k- Ky meaning
it has Distance to Co-Cluster zero. Since Distance to Co-Cluster is bounded in
this graph class and Boxicity is unbounded, Distance to Co-Cluster does not upper-
bound Boxicity. O

To fully prove all independencies within the parameters between Distance to Clique
and Girth we still have to prove the independencies of the parameters between Minimum
Clique Cover and Minimum Dominating Set to Distance to Co-Cluster, Distance
to Cluster, and Distance to Cograph. One side of these independencies follows from
the fact that these three parameters do not upper-bound any parameter above Minimum
Dominating Set, since Minimum Vertex Cover does not upper-bound Minimum Domi-
nating Set while the other side of these independencies follows from the fact that
Minimum Clique Cover does not upper-bound Distance to Perfect which is below
Distance to Cograph, Distance to Co-Cluster, and Distance to Cluster.

14



3.2 Independencies

Figure 3.2: The graph B, as an example for the construction in Proposition 3.6

Proposition 3.5. Minimum Vertex Cover does not upper-bound Minimum Dominating
Set.

Proof. Consider the graph class of all edgeless graphs I,, for n € N. Each dominating
set has to contain all vertices and hence the size of the minimum dominating set grows
linearly in n but the size of the Minimum Vertex Cover is zero for I, as the graphs
do not contain any edges. Since Minimum Vertex Cover is bounded in this graph class
and Minimum Dominating Set is unbounded, Minimum Vertex Cover does not upper-
bound Minimum Dominating Set. O

Proposition 3.6. Minimum Clique Cover does not upper-bound Distance to Per-
fect.

Proof. Consider the graph class of all graphs B,, = (V, E) such that V. =1V, UV, U V3 U
ViUVs and V; = {v;4]1 <7 <n} and £ = {{v;j, Vimods)+1,}|1 <1 <5A1 <5<
nt U {{vij,viphl <i<5A1<jk<nAj#k} for n € N(See Figure 3.2 as an
example of this construction). Further, consider the n disjunct induced subgraphs B;,
of B, from the vertex sets {v; ;|1 < j < n}. Each B;, is a C5 and because of that it
is a non-perfect graph. Thus, the Distance to Perfect for B, grows at least linearly
in n as at least one of the vertices of each B;, has to be deleted to obtain a perfect
graph while the Minimum Clique Cover for B, is at most five because each V; forms
a clique. Since Minimum Clique Cover is bounded in this graph class and Distance
to Perfect is unbounded, Minimum Clique Cover does not upper-bound Distance to
Perfect. O

We have now proven all independencies among the parameters between Distance to
Clique and Girth.

15



3 Exploration of further connections
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Figure 3.3: The graph )4 as an example for the construction in Proposition 3.8

In the next step, we will prove that no parameter between Distance to Clique and
Girth upper-bounds a parameter that isn’t below it in the hierarchy.

Since Distance to Clique does not upper-bound Maximum Clique, Domatic Number,
or Distance to Disconnected, no parameter above any of these three can be upper-
bounded by any parameters below Distance to Clique.

Proposition 3.7. Distance to Clique does not upper-bound Mazimum Clique or Do-
matic Number.

Proof. Consider the graph class of all cliques K, for n € N. Since every vertex is a
dominating set, the domatic number grows linearly in n and the size of a maximal clique
grows linearly in n but the Distance to Clique is zero for K,. Since Distance to
Clique is bounded in this graph class and Maximum Clique and Domatic Number are
unbounded, Distance to Clique does not upper-bound Maximum Clique or Domatic
Number. O

Proposition 3.8. Distance to Clique does not upper-bound Distance to Discon-—
nected.

Proof. Consider the graph class of all cliques with one missing edge @), for n € N. The
Distance to Disconnected grows linearly in n but the Distance to Clique is one
for ,,. Since Distance to Clique is bounded in this graph class and Distance to
Disconnected is unbounded, Distance to Clique does not upper-bound Distance
to Disconnected. O

To prove that Minimum Clique Cover only upper-bounds the parameters between itself
and Girth we have to prove that it does not upper-bound any other parameters be-
low Distance to Clique. This follows from the fact that Minimum Clique Cover does
not upper-bound Distance to Perfect, Chordality or Cliquewidth who are below
every vertex that is below Distance to Clique without being below Girth. In Propo-
sition 3.6 one of these bounds has already been proven.

Proposition 3.9. Minimum Clique Cover does not upper-bound Clique-width.

16



3.2 Independencies

Proof. This proof is heavily based on the proof of theorem 5 in the paper [Loz11] which
shows that F),, has Clique-width at least |n/2]. Consider the graph class of all
graphs F), ,, where F},, contains n? vertices arranged in n rows with n vertices each
such that each two consecutive rows induce a bipartite graph, where every vertex is
adjacent to every vertex in the other partition except for one, and choose the columns
such that two consecutive vertices in the same column are non-adjacent. Now consider
the graph class of all graphs F}, ,, where F},  is a modification of F,,, such that every
vertex v; ;, where ¢ is the row and j is the column of the vertex, is connected to every
other vertex vy j if i mod 2 = i’ mod 2 meaning that every vertex with an odd row
number is connected to every other vertex with an odd row number and the same goes
for vertices with even row numbers. The construction of F} , as well as how it differs
from F), ,, is illustrated in Figure 3.4. We now follow the proof described in the paper to
prove [} . has Clique-width at least [n/2] as well. Consider a minimal ¢-expression C'
which constructs F}, ,. We look at the lowest node a in C such that after this operation
the graph contains a full row of F} . We now color all vertices in the one subexpression
below a red, all nodes in the other subexpression blue and all other nodes yellow. Since a
is minimal, neither of its subexpressions contain a full row of F}, . But, by the definition
of a, it contains a full row of F} , meaning there is at least one non-yellow row which
we denote by r. Without loss of generality we assume that r < [n/2], since otherwise
we could choose to order the rows in reverse order, and r contains at least [n/2] red
vertices, since otherwise we could swap the colors red and blue. We will now show that
at the node a F), ,, contains at least [n/2] vertices with different labels by showing that
there are |n/2] red vertices in F) , for each pair of which there exists a non-red vertex
which has an edge to exactly one of them meaning that they must all have pairwise
different labels. We do this by using the following procedure:
Data: a graph F} ,
Result: a set U of at least |n/2] red vertices with different labels
Set i =7, U =0 and J = {j|v,; is red}.
Set K = {j € J|vi41; is non-red}.
If K # 0, add the vertices {v; x|k € K} to U. Remove members of K from .J.
If J = () terminate the procedure.
. Increase ¢ by 1. If i = n choose an arbitrary 5 € J, put

U=A{vp;lr <m<n-1} and terminate.
6. Go Back to Step 2.

Algorithm 1: Construction of a set of |n/2] vertices with different labels

Gl W=

If the procedure finishes in Step 5, we consider an arbitrary pair of vertices v; ; and vy, ;
in U, where [ < m. If m mod 2 = [ mod 2, then we can use the fact that v, ; is red
and choose any non-red vertex from row m + 1. This vertex is adjacent to vy, ;, since
every vertex in row m + 1 except for v,,41; is adjacent to v,,; and it is not adjacent
tov,as lm+1—1 >1and (m+ 1) mod 2 # [ mod 2. If m mod2 # [ mod 2, we
can distinguish them by choosing any non-red vertex from a row that is not adjacent
to [ or m, since every such vertex will be in either an odd or an even row and thus be
adjacent to exactly one of v;; and v,,;. There will also always exist such a row for

17



3 Exploration of further connections

The graph Fj 5 as an example for the construction in Proposition 3.9

Figure 3.4: black edges are also in Fj 3, red edges connect all vertices in odd rows and
green edges connect all vertices in even rows

sufficiently large n > 7. Since v;; and v,,; were chosen arbitrarily from U, this proves
that there are at least |n/2| vertices with different labels.

If the procedure finishes in Step 4, we consider an arbitrary pair of vertices v ; and v, &
in U, where [ < m. The procedure clearly guarantees that j # k and that vy
and vy,4+1 are non-red. If m € {l, 142}, we can use v;;1 ; to distinguish v; ; and vy, ;, since
it is adjacent to v, and non-adjacent to v ;. If m ¢ {l,1+ 2} and m mod 2 = [ mod 2,
we can use the fact that v,,_; is red, to choose any non-red vertex from row m — 1
to distinguish v;; and v, k, as vy, is adjacent to every vertex in row m — 1 except
for v,,—1, and v, ; is non-adjacent to every vertex in row m — 1 since |m — 1 —1{] > 1
and (m — 1) mod 2 # [ mod 2. If m mod 2 # [ mod 2 we can again distinguish them
by choosing any non-red vertex from a row that is not adjacent to [ or m, since every
such vertex will be in either an odd or an even row and thus be adjacent to exactly one
of v; ; and vy, ;. Since vy ; and vy, , were chosen arbitrarily from U, this proves that there
are at least |n/2| vertices with different labels.

Thus F}, has Clique-width at least [n/2]. Since all vertices in even rows and all
vertices in odd rows form a clique, F; ,, has Minimum Clique Cover two. Since Minimum
Clique Cover is bounded in this graph class and Clique-width is unbounded, Minimum
Clique Cover does not upper-bound Clique-width. O]

Lemma 3.10. Every graph in P, has Clique-width at most 3 for n € N.

Proof. We prove this by induction.

Base clause: The construction 1(v) is valid with cliquewidth one for P;.

The construction 1(v) @ 2(v) is valid with cliquewidth two for P,. Both of these also
fulfill the requirements that we formulate in the induction hypothesis by labeling the
last vertex of the path with the label 1 and the second to last vertex with the label 2.

18



3.2 Independencies

Figure 3.5: The graph Ps as an example for the constructions in Lemma 3.10 and Propo-
sition 3.11

Induction hypothesis: For some n > 2,n € N, there exists a construction ¢,, for P, with
clique-width at most three such that the all vertices on the path except for the last two
have the label 3, the second to last vertex has the label 2 and the last vertex has the
label 1.

Induction Step: Now we can use ¢, to derive a valid expression with cliquewidth
three for P,,; such that the first n — 1 vertices on the path have the label 3, the n'®
vertex has the label 2 and the n + 1™ vertex has the label 1. In order to change
the label of the n — 1" vertex to 3 we use the relabeling operation p and create the
expression pa 3(¢,). Following that we change the label of the n'" vertex to 2 by creat-
ing the expression p; 9(p23(¢n)). We then have to add the n + 1" vertex with label 1 to
the graph by extending the expression to 1(v) @ p1.2(p23(¢)). Finally, we have to connect
the n 4+ 1'® vertex to all vertices except for the n'" vertex which we can do by adding an
edge between all vertices with label 1 and 3 to the expression, since the n 4 1*® vertex is
the only vertex with the label 1 and the n'" vertex is the only other vertex with a label
other then 3. Thus, we have derived the expression 7 3(1(v) & p12(p23(¢))) which is a
valid expression for P,,; with clique-width three that fulfills the conditions set in the
induction hypothesis. O]

Proposition 3.11. Minimum Clique Cover, Distance to Perfect, and Clique-width
do not upper-bound Chordality.

Proof. Consider the graph class of the complements P, of all paths for n € N. The
Chordality for P, grows linearly in n [CR89] while the Minimum Clique Cover of P, is
at most two, as all vertices with even and all vertices with odd indices form a clique. P,
is perfect because every subgraph of P, with at least one edge has chromatic number and
maximum clique two and every subgraph of P, without edges has maximum clique and
chromatic number one. Since a graph is perfect, if and only if it’s complement is perfect,
it follows that P, is perfect. Thus, P, has Distance to Perfect zero. Lemma 3.10
shows that P, has clique-width at most three. Since Minimum Clique Cover, Distance
to Perfect, and Clique-width are bounded in this graph class and Chordality is un-
bounded, Minimum Clique Cover, Distance to Perfect, and Clique-width do not
upper-bound Chordality. O

19



3 Exploration of further connections

Lastly, Distance to Co-Cluster does not upper-bound any parameters that aren’t
below it while being below Distance to Clique, because it does not upper-bound
Boxicity or Distance to Chordal. The fact that Distance to Co-Cluster does not
upper-bound Boxicity has already been proven in Proposition 3.4.

Proposition 3.12. Distance to Co-Cluster and Distance to Bipartite do not
upper-bound Distance to Chordal, Distance to Discomnected, or Domatic Number.

Proof. Consider the graph class of all graphs K, , for n € N. Since K35 and conse-
quently every supergraph of it is not chordal, at least n — 1 vertices have to be deleted
from K, , to create a chordal graph, thus Distance to Chordal for K, , grows linearly
in n. Similarly, every K,, for p > 0 and ¢ > 0 is connected and thus Distance to
Disconnected grows linearly in n. Since any pair of one vertex from each of the par-
titions forms a dominating set and there is no dominating set of size one in K, ,, K,
has Domatic Number exactly n. The graph class K, , is a subclass of the class of all co-
cluster graphs because it’s complement contains exactly all edges within each partition
and is thus 2 - K,, meaning it has Distance to Co-Cluster zero. Also kK, , contains
by definition only bipartite graphs and thus has Distance to Bipartite zero. Since
Distance to Co-Cluster and Distance to Bipartite are bounded in this graph class
and Distance to Chordal, Distance to Disconnected, and Domatic Number are un-
bounded, Distance to Co-Cluster and Distance to Bipartite do not upper-bound
Distance to Chordal, Distance to Disconnected, or Domatic Number. ]
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3.2.2 Parameters between Minimum Vertex Cover and Acyclic
Chromatic Number
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This section contains all parameters in the hierarchy between Minimum Vertex Cover
and Acyclic Chromatic Number except for h-index. It also contains Clique-width
because it is also upper-bounded by several parameters above Acyclic Chromatic
Number. It consists of two main paths through Treedepth and Distance to disjoint
Paths that are closely intertwined.

The parameters between Distance to disjoint Paths and Distance to Planar are
independent of Treedepth because Max Leaf Number does not upper-bound Girth
which is upper-bounded by Treedepth and because Treedepth does not upper-bound
Distance to Planar.

Proposition 3.13. Bandwidth and Treedepth do not upper-bound Distance to Pla-
nar.

Proof. Consider the graph class of n - K5 for n € N. As Kj5 has distance to planar one,
the Distance to Planar of n- Kj grows linearly in n while it has bandwidth four and
treedepth five because K5 has bandwidth four and treedepth five. Since Bandwidth and
Treedepth are bounded in this graph class and Distance to Planar is unbounded,
Bandwidth and Treedepth do not upper-bound Distance to Planar. O

Proposition 3.14. Maz Leaf Number does not upper-bound Girth.
Proof. Consider the graph class of all circles C), for n € N. The girth of ), grows linearly
in n while the size of the leaf number of every spanning tree of C), is two. Since Max

Leaf Number is bounded in this graph class and Girth is unbounded, Max Leaf Number
does not upper-bound Girth. O
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3 Exploration of further connections

<

Figure 3.6: The graph K; as an example for the constructions in Proposition 3.13, 3.28,
3.33 and 3.35

Figure 3.7: Example of a complete ternary tree: 153 o

Feedback Vertex Set, Distance to Outerplanar, and Distance to Planar are in-
dependent of Pathwidth because Feedback Edge Set does not upper-bound Pathwidth
and because Bandwidth does not upper-bound Distance to Planar as proven in Propo-
sition 3.13.

Lemma 3.15. The complete ternary tree T3, of depth n has Pathwidth at least n.

Proof. We prove this by induction.

Base case: T3 ; has pathwidth one.

Induction hypothesis: For some n € N, T3, has pathwidth at least n.

Induction step: We prove this by contradiction. We assume there exists a path decom-
position of 75, ; with pathwidth less then n 4 1. Without loss of generality assume
that every bag contains at least two vertices. This path decomposition consists of any
number m of ordered bags. We define this order by assigning an index ¢ with 1 <7 < 'm
to each of the bags. Consider an arbitrary vertex v, other than the root r from the
bag with index 1. By A we refer to the child of r, in whose subtree v, lies. Consider
an arbitrary vertex v, other then r from the bag with index m. By C' we refer to the
child of r, in whose subtree v, lies. Since r and the subtrees below A and C' form a
connected subgraph G4 ¢ of 15,4, and both the bag with index 1 and the bag with
index m contain a vertex from that subgraph, we know that every bag contains at least
one vertex from that subgraph. There exists at least one child B of r such that B # C'
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3.2 Independencies

and B # A. Since the subtree G below B is a subgraph of 75,1, we know that any
path decomposition of 75,1 when restricted to the vertices of Gp has to be a path
decomposition of G'g. As G is isomorphic to T3, and T3, has pathwidth at least n, we
know that any path decomposition of GGz has to contain a bag M of size at least n + 1.
Furthermore, we know that every bag including M has to contain at least one vertex
from G4 ¢. Since G 4,¢ does not contain any vertices from G, we know that M contains
at least n 4+ 2 vertices meaning the path decomposition has pathwidth at least n + 1.
We have reached a contradiction. Thus, T3, has Pathwidth at least n 4 1 which shows
that Pathwidth is unbounded in T},,. O

Proposition 3.16. Feedback Edge Set does not upper-bound Pathwidth.

Proof. Consider the graph class of all complete ternary trees 75, of depth n for n € N.
The graph class T3, has unbounded pathwidth as proven in Lemma 3.15 and, since T3,
does not contain a cycle, it has Feedback Edge Set zero. Since Feedback Edge Set
is bounded in this graph class and Pathwidth is unbounded, Feedback Edge Set does
not upper-bound Pathwidth. ]

the fact Bandwidth does not upper-bound Distance to Planar can also be used to-
gether with the fact that Distance to Planar does not upper-bound Clique-width to
prove that Distance to Planar is independent of Treewidth.

Proposition 3.17. Genus and Distance to Planar do not upper-bound Clique-width.

Proof. Consider the graph class of all G,,,, for n € N. [GR99] shows that G, , has
clique-width exactly n 4 1 but since G,,,, is planar, it has genus and distance to pla-
nar zero. Since Genus and Distance to Planar are bounded in this graph class and
Clique-width is unbounded, Genus and Distance to Planar do not upper-bound
Clique-width. [

Clique-width and Acyclic Chromatic Number are independent because Genus does
not upper-bound Clique-width as proven in Proposition 3.17 and because Distance
to Clique does not upper-bound Domatic Number as proven in Proposition 3.7.

We have now proven all independencies within this section and will now proceed by
showing that the parameters in this section do not upper-bound any parameters that
are not below them in the hierarchy.

Minimum Vertex Cover does not upper-bound any parameters that aren’t below it in the
hierarchy because it does not upper-bound Minimum Dominating Set, Genus, Maximum
Degree, or Bisection Width. The fact that Minimum Vertex Cover does not upper-
bound Minimum Dominating Set has already been shown in Proposition 3.5.
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3 Exploration of further connections

Figure 3.8: The graph K35 as an example for the construction in Proposition 3.18

@
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Figure 3.9: The graph K 4 as an example for the constructions in Proposition 3.19, 3.20
and 3.22

Proposition 3.18. Minimum Vertexz Cover does not upper-bound Genus.

Proof. Consider the graph class of the complete bipartite graphs K3, for n € N. The
Genus of K3, grows linearly in n[Bou78] but the size of the Minimum Vertex Cover is
at most three in K3, as the smaller partition has size at most three and in a bipartite
graph either partition is a vertex cover. Since Minimum Vertex Cover is bounded in
this graph class and Genus is unbounded, Minimum Vertex Cover does not upper-bound
Genus. O

Proposition 3.19. Minimum Vertex Cover does not upper-bound Mazimum Degree.

Proof. Consider the graph class of the complete bipartite graphs K, for n € N. The
Maximum Degree for K, grows linearly in n while the size of the Minimum Vertex
Cover is at most one. Since Minimum Vertex Cover is bounded in this graph class and
Maximum Degree is unbounded, Minimum Vertex Cover does not upper-bound Maximum
Degree. [

Proposition 3.20. Minimum Vertexz Cover does not upper-bound Bisection Width.
Proof. Consider the graph class of the complete bipartite graphs K o, for n € N. There
exists a universal vertex in K »,. Because this vertex has an edge to each vertex in the

other bisection, the Bisection Width for K 9, grows linearly in n while the size of the
Minimum Vertex Cover is at most one. Since Minimum Vertex Cover is bounded in
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3.2 Independencies

Figure 3.10: The graph S 3 for the construction in Proposition 3.21

this graph class and Bisection Width is unbounded, Minimum Vertex Cover does not
upper-bound Bisection Width. O

Distance to disjoint Paths and all parameters below it do not upper-bound Girth
because Max Leaf Number does not upper-bound Girth as proven in Proposition 3.14.
Feedback Vertex Set doesnot upper-bound Distance to Interval because Feedback
Edge Set does not upper-bound Distance to Interval.

Proposition 3.21. Feedback Edge Set does not upper-bound Distance to Interval.

Proof. Consider the graph class of n - .Sy 3 for n € N, where Sy 5 is the graph depicted in
Figure 3.10. The graph S 3 is acyclic graph and has distance to interval one. As a result
the Distance to Interval of m - Sy3 grows linearly in n while n - Sy 3 has Feedback
Edge Set zero because it does not contain any cycles. Since Feedback Edge Set is
bounded in this graph class and Distance to Interval is unbounded, Feedback Edge
Set does not upper-bound Distance to Interval. O

Also Feedback Vertex Set, Treedepth and the parameters below them do not upper-
bound h-index because Feedback Edge Set and Treedepth do not upper-bound h-index.

Proposition 3.22. Treedepth and Feedback Edge Set do not upper-bound h-Indez.

Proof. Consider the graph class of n - K, for n € N. The h-Index for n - K;, grows
linearly in n while n - K, has feedback edge set zero because it does not contain any
cycles and K, has Treedepth two. Since Feedback Edge Set and Treedepth are
bounded in this graph class and h-Index is unbounded, Treedepth and Feedback Edge
Set do not upper-bound h-Index. O

Finally, we show directly that Distance to Outerplanar and Treedepth do not upper-
bound Distance to Perfect.
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3 Exploration of further connections

Proposition 3.23. Distance to Outerplanar does not upper-bound Distance to
Perfect.

Proof. Consider the graph class n - P, for n € N. The graph P, has distance to perfect
one and distance to outerplanar zero and thus n - P, has Distance to Perfect n and
Distance to Outerplanar zero. Since Distance to Outerplanar is bounded in this
graph class and Distance to Perfect is unbounded, Distance to Outerplanar does
not upper-bound Distance to Perfect. O

Proposition 3.24. Bandwidth, Genus, and Treedepth do not upper-bound Distance
to Perfect.

Proof. Consider the graph class of n - C5 for n € N. As (5 has distance to perfect one,
the Distance to Perfect of n- (5 grows linearly in n while it has Bandwidth two and
Treedepth four because C5 has bandwidth two and treedepth four. Because Cf is planar
each graph n-Cj is as well and thus they have genus zero. Since Bandwidth, Genus, and
Treedepth are bounded in this graph class and Distance to Perfect is unbounded,
Bandwidth, Genus, and Treedepth do not upper-bound Distance to Perfect. O
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3.2.3 Parameters below Distance to Interval
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This section contains all parameters in the hierarchy below Distance to Interval. It
also contains the parameters between Distance to Bipartite and Maximum Clique
because they are closely connected to the parameters below Distance to Interval.
It splits up in three different paths ending in three of the six parameters in the graph
parameter hierarchy who do not upper-bound any other parameters.

No parameter below Distance to Interval upper-bounds any parameter between Dis-
tance to Bipartite and Maximum Clique because Distance to Clique does not
upper-bound Maximum Clique as shown in Proposition 3.7. It follows that the pa-
rameters between Distance to Bipartite and Maximum Clique are independent of
Distance to Interval and Distance to Chordal because Distance to Bipartite
does not upper-bound Distance to Chordal as shown in Proposition 3.12. Since
[CFM11] has proven that Distance to Bipartite does not upper-bound Boxicity, it
also follows that the parameters between Distance to Bipartite and Maximum Clique
are independent of Boxicity.

Distance to Chordal and Distance to Perfect are independent of Boxicity be-
cause Distance to Chordal does not upper-bound Boxicity and because Distance
to Outerplanar does not upper-bound Distance to Perfect as shown in Proposi-
tion 3.23.

Proposition 3.25. Distance to Chordal does not upper-bound Bozicity.

Proof. Consider the graph class of all split graphs. [CR83] shows that the class of split
graphs has unbounded Boxicity. [FH77] shows that all split graphs are chordal and
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3 Exploration of further connections

thus have Distance to Chordal zero. Since Distance to Chordal is bounded in this
graph class and Boxicity is unbounded, Distance to Chordal does not upper-bound
Boxicity. [

The fact that Distance to Outerplanar does not upper-bound Distance to Perfect
also helps us to prove even more independencies. It proves in conjunction with the fact
that Distance to Perfect does not upper-bound Chordality, as shown in Proposi-
tion 3.11, that Distance to Perfect is also independent of Chordality.
Additionally, it proves that Chromatic Number and Maximum Clique are independent
of Distance to Perfect, since we already know that Chromatic Number and Maximum
Clique are not upper-bounded by any parameter below Distance to Clique.

The last unproven independence within this section is the independence between Chor-
dality and Maximum Clique. It is known that Chordality does not upper-bound
Maximum Clique as it is below Distance to Clique, but it is unknown whether Maximum
Clique upper-bounds Chordality. Thus, we have proven all independencies within this
subgraph.

We will now show that the parameters in this subgraph do not upper-bound any ver-
tices that are not below them. The only parameter which is below all parameters
that are above Distance to Interval without being below Distance to Interval is
Clique-width. [GR99] has shown that Distance to Interval does not upper-bound
Clique-width by constructing a class of interval graphs with unbounded Clique-width.
Distance to Bipartite does not upper-bound any parameters that are not below it be-
cause it does not upper-bound Domatic Number as shown in Proposition 3.12, Distance
to Disconnected as shown in Proposition 3.12, or Clique-width.

Proposition 3.26. Mazimum Degree and Distance to Bipartite do not upper-bound
Clique-width or Bisection Width.

Proof. Consider the graph class G, of all n x n-Grids for n € N. [GR99] shows
that G, , has Clique-width exactly n + 1 and [Efe08] shows that G, ,, has unbounded
Bisection Width. Moreover, each GG, , has maximum degree at most four and distance
to bipartite zero because {v,, ,|(n+m) mod 2 = 0} and {v, ,,|(n+m) mod 2 = 1} form
a valid bipartition. Since Maximum Degree and Distance to Bipartite are bounded
in this graph class and Clique-width and Bisection Width are unbounded, Maximum
Degree and Distance to Bipartite do not upper-bound Clique-width or Bisection
Width. O
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Figure 3.11: The graph G4 4 as an example for the construction in Proposition 3.26, 3.32
and 3.17

3.2.4 Parameters between Max Leaf Number and Distance to
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This section contains the remaining parameters of the graph parameter hierarchy. It does
not contain all parameters between Max Leaf Number and Distance to Disconnected,
since many of them are also between Minimum Vertex Cover and Acyclic Chromatic
Number, and it also contains Domatic Number since Domatic Number has many shared
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3 Exploration of further connections

Figure 3.12: The graph L, as an example for the construction in Proposition 3.27,
same colored vertices are contracted to create a supergraph of K3

upper bounds with Distance to Disconnected.

Feedback Edge Set and Genus are independent of Bandwidth, Maximum Degree, and
h-index because Feedback Edge Set doesnot upper-bound h-index as shown in Propo-
sition 3.22 and Bandwidth does not upper-bound Genus.

Proposition 3.27. Bandwidth does not upper-bound Genus.

Proof. Consider the graph class of all graphs L, = (V, E) with V = {v;|]1 < i < 4n}
and E = {{v;,v;}|0 < |i — j| < 4} for n € N. The Figure 3.12 shows an example of
this construction. By contracting the edges {{v;, v;+4}|i mod 4 # 0} we create three
universal vertices in a graph with n + 3 vertices, which shows that K3, is a minor
of L,. Since Kj,, is a minor of L,, its Genus grows at least linearly in n [Bou78] while
it has bandwidth four. Since Bandwidth is bounded in this graph class and Genus is
unbounded, Bandwidth does not upper-bound Genus. O

Bisection Width is independent of all parameters between Feedback Edge Set and
Domatic Number as well as all parameters between Maximum Degree and Domatic Num-
ber. This follows from the fact that Bisection Width does not upper-bound Domatic
Number and the fact that neither Feedback Edge Set nor Maximum Degree upper-
bounds Bisection Width. The fact that Maximum Degree does not upper-bound
Bisection Width is shown in Proposition 3.26.

Proposition 3.28. Bisection Width does not upper-bound Domatic Number.

Proof. Consider the graph class 2 - K,, for n € N. The Domatic Number of 2 - K,
is n, since any pair of one vertex each from the two cliques form a dominating set and
there is no dominating set of size one. Each graph 2 - K,, contains two unconnected
subgraphs of equal size meaning it has Bisection Width zero. Since Bisection Width
is bounded in this graph class and Domatic Number is unbounded, Bisection Width
does not upper-bound Domatic Number. O

Proposition 3.29. Feedback Edge Set does not upper-bound Bisection Width.
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Proof. Consider the graph class of K, for n € N. As K, contains a universal ver-
tex, any bisection would have to remove at least n/2 of its edges. Consequently, the
Bisection Width for K, grows linearly in n while K, has Feedback Edge Set zero
because it does not contain any cycles. Since Feedback Edge Set is bounded in this
graph class and Bisection Width is unbounded, Feedback Edge Set does not upper-
bound Bisection Width. O

The fact that Bisection Width does not upper-bound Domatic Number also combines
with the fact that Domatic Number does not upper-bound Distance to Disconnected
to show the independence of Distance to Disconnected and Domatic Number.

Proposition 3.30. Domatic Number does not upper-bound Distance to Disconnected.

Proof. Consider the graph class of all F,, = (V,E) for n > 3 and n € N,
where V' = V, NV and V,, contains 3n + 1 vertices v; for 1 < ¢ < 3n + 1 while V!
contains a vertex vg for each subset S C V,, with |S| = n. Each vg is connected to
all vertices v € S. As an example of this construction see Figure 3.13. [Zel83] shows
that the Domatic Number of this graph class is at most two. Furthermore, each pair of
vertices (v;, v;) has (3::21) > n common neighbors, since that is the number of subsets
of V), of size n that contain both v; and v;. Additionally, every vertex v representing
a subset has dg, (v) = n with each adjacent vertex w € N, (v) being in V,,. Thus, F,
has distance to disconnected n, since F,, — S with S C V and |S| < n is a connected
graph for every S because each vertex v representing a subset has dg, (v) = n and
thus dg,_s(v) > 1 with each w € Np,_s(v) being in V,, and each v; € V' is connected to
each v; € V,,, since they have more than n common neighbors. Since Domatic Number
is bounded in this graph class and Distance to Disconnected is unbounded, Domatic
Number does not upper-bound Distance to Disconnected. O

We have now proven all independencies within this subgraph and will prove next that
no parameter in this subgraph upper-bounds a parameter that isn’t below it in the hi-
erarchy.

Max Leaf Number does not upper-bound any parameters that aren’t below it because
Max Leaf Number does not upper-bound Girth as shown in Proposition 3.14. Proposi-
tion 3.21 shows that Feedback Edge Set does not upper-bound Distance to Interval.
Furthermore, Bandwidth does not upper-bound Distance to Planar or Distance to
Perfect. This is shown in Proposition 3.13 and Proposition 3.24 respectively.

Maximum Degree does not upper-bound Clique-width, or any parameter above it as
shown in Proposition 3.26. Bisection Width does not upper-bound any parameter be-
sides Distance to Disconnected because it does not upper-bound Chordality, Maximum
Clique, or Clique-width. We prove the absence of all of these bounds by considering
two disconnected subgraphs of the same size with high Chordality, Maximum Clique,
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or Clique-width respectively.

Proposition 3.31. Bisection Width does not upper-bound Chordality.

Proof. Consider the graph class 2 - N,, with N,, being a clique of size n with a perfect
matching removed for n € N. The Lemma 4.29 in [Sal9] shows that N,, has unbounded
Chordality meaning 2- N, also has unbounded Chordality. 2-N,, contains two uncon-
nected subgraphs of equal size meaning it has Bisection Width zero. Since Bisection
Width is bounded in this graph class and Chordality is unbounded, Bisection Width
does not upper-bound Chordality. O

Proposition 3.32. Bisection Width does not upper-bound Clique-width.

Proof. Consider the graph class 2 - G,,, for n € N. (on the clique-width of some perfect
graph classes) shows that G, , has Clique-width exactly n+ 1 meaning 2-G,,,, also has
Clique-width exactly n 4+ 1. Furthermore, the graph class 2 - G,,,, contains two uncon-
nected subgraphs of equal size meaning it has Bisection Width zero. Since Bisection
Width is bounded in this graph class and Clique-width is unbounded, Bisection Width
does not upper-bound Clique-width. O

Proposition 3.33. Bisection Width does not upper-bound Mazimum Clique.

Proof. Consider the graph class 2 - K,, for n € N. The graph class 2 - K,, has Maximum
Clique n and since 2 - K,, contains two unconnected subgraphs of equal size, it has
Bisection Width zero. Since Bisection Width is bounded in this graph class and

Maximum Clique is unbounded, Bisection Width does not upper-bound Maximum Clique.
O

Genus does not upper-bound anything that is not also below Acyclic Chromatic Number
because it does not upper-bound Clique-width as shown in Proposition 3.17, Distance
to Perfect as shown in Proposition 3.24, or Distance to Planar.

Proposition 3.34. Genus does not upper-bound Distance to Planar.

Proof. We assume towards a contradiction that there exists an upper bound such that
a graph G of genus one can have distance to planar at most m. Let Gu. = (V, E)
be any graph with genus one and distance to planar m. Without loss of generality we
assume that G,,., does not contain vertices of degree one or less, since these vertices do
not affect the distance to planar or the genus of a graph. Note that m > 0, since G4z
is not planar. Thus, there exists a minimal set S C V with |S| = m such that G — S is
planar. Since G, has genus one, there exists an embedding E,,,, of G, on a surface
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with genus one. We construct a graph following these steps:
Data: graph GG without vertices of degree less then three with an embedding €2
Result: graph G’ with an embedding 2’ of equal genus but higher distance to

planar
V=V,
E' =FE;
Q' =Q;

\\ ezpand allv € V:

forall v € V do

\\ Let R, be the order of the neighbors of v in ', such that for each consecutive
pair of vertices a and b in R, it holds that {v,a} and {v,b} aren’t separated by
another edge that is incident to v in €.

forall {v,u} € E' do

V=V Uy,

E = E"\ {{v,u}} U{{v,vou} {u, vout}s

add vy, {v, vy} and {u,v,,} to ' by replacing {v,u} with them in ¢

end

for a is the last verter in R and b is the first vertex in R, do
| B = B U {{a, 0}

end

forall a,b € V' with a is directly ahead of b in R, do

E =FE'U {{a7 Uv,b}a {Uv,m Uv,b}};

\\ these two edges can also be embedded in ', since a and b are by
definition of R, adjacent to the same face in Q) and thus the same is true
for a, v, ., v and v, after subdividing the edges such that {a,v,,} and
{Vya; Vup} are non-intersecting chords of that face of V.

end

end
return G' = (V', E');
Algorithm 2: Creating a graph G’

An example of how this algorithm works, can be seen in Figure 3.14. During the algo-
rithm €2 gets modified to €', such that ' is an embedding of G’ on the same surface
as the embedding €2 meaning G’ can still be embedded on any surface that G could be
embedded on. The comments in the algorithm explain why all new edges are between
vertices that are adjacent to the same face in ' and thus why they can be embedded
without crossings. It follows that G’ has the same genus as GG. To prove that G’ has
higher distance to planar then GG, we show that G’ — h has G as a minor independent of
the choice of h € V’. We can construct G as a minor of G’ — h by following these steps:
We denote the Set of the vertices who were created while expanding = and the vertex
x as W,. It holds for each vertex v that the induced subgraph G’ of the vertices W, in
G’ is 2-vertex-connected, since v is adjacent to every other vertex in W, and all other
vertices in W, are connected in a path with the edges of the form {v,q,v,}. Since G,
is 2-vertex-connected, we can contract it to a single vertex v’ even if h € W,,. For every
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Figure 3.14: An example for the algorithm from Proposition 3.34 running on a Cj

vertex w, that was adjacent to v before it was expanded, after the expansion there are
two vertices in W, such that they have an edge to w. Thus, even if h € W, w will be
adjacent to v’ after it was created by contracting the edges between vertices in W,,. It
follows that the graph that gets generated from G’ — h by contracting specific edges and
deleting specific vertices is isomorphic to G. Since G}, — h has G4, as a minor for
every h € V and G4, has distance to planar m, it follows that G, — h has distance to
planar at least m. Because h was chosen arbitrarily, this means that G,,,, has distance
to planar at least m + 1. We have reached a contradiction. Since there does not exist
an upper bound on Distance to Planar for graphs with Genus one, Genus does not

upper-bound Distance to Planar. O

To show that Degeneracy does not upper-bound any parameters that aren’t below it,
we would have to prove that Degeneracy does not upper-bound Clique-width but no
such proof is known.

Lastly, Average Degree does not upper-bound any additional parameters since it does
not upper-bound Maximum Clique or Chordality.

Proposition 3.35. dverage Degree does not upper-bound Mazimum Clique.

35



3 Exploration of further connections

Proof. Consider the graph class of all K, + I(,2_3,)/2 for n > 3 and n € N. Since
the graph K, + [(2_3,)/2 contains K,, it has Maximum Clique n. Furthermore, K,
contains (n* —n)/2 edges and I;2_3,)2 contains zero edges. Thus, K, + I2_3n)2
has (n* —n)/2 edges and as K, + I(;2_3,)/2 contains exactly (n* —n)/2 vertices, it has
Average Degree one. Since Average Degree is bounded in this graph class and Maximum
Clique is unbounded, Average Degree does not upper-bound Maximum Clique. O

Proposition 3.36. Adverage Degree does not upper-bound Chordality.

Proof. Consider the graph class of all P, + I(n2_5n49)/2 for n > 5 and n € N. Since the
graph P, + I(,2_5,49)/2 contains P,, its Chordality grows linearly in n[CR89]. Further-
more the two endpoints of P, have degree n — 2 and all other vertices in P, have degree
n— 3 meaning that P, contains a total of (n? —3n+2)/2 edges and [(,2_5,42)/2 contains
no edges. Thus, P, + Itn2—5n42)/2 has (n® — 3n + 2)/2 edges and as P, + In2_5n49)/2
contains exactly (n? — 3n + 2)/2 vertices, it has Average Degree one. Since Average
Degree is bounded in this graph class and Chordality is unbounded, Average Degree
does not upper-bound Chordality. O
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4 Conclusion

This thesis expands the graph parameter hierarchy by proving some bounds and showing
for nearly all combinations of parameters for which no bounds have been discovered, that
they are indeed independent. The only connections for which this thesis is unable to
provide a result are whether Degeneracy upper-bounds Boxicity and whether Maximum
Clique upper-bounds Chordality.

There are several ways to expand the work on the graph parameter hierarchy. The most
direct way to improve these results would be by finalizing the work on this hierarchy
and proving whether Degeneracy upper-bounds Boxicity as well as whether Maximum
Clique upper-bounds Chordality. With these two bounds the part of the graph pa-
rameter hierarchy on which this thesis is focused would be finished. Another way to
expand on the results of this thesis would be by proving the optimality of all bounds
and directly illustrating them in Figure 1.1 as there are many kinds of bounds from
linear to exponential in this hierarchy that are not distinguished in the illustration of
it. Furthermore, these results could be enhanced by expanding the scope of this hierar-
chy and including more graph parameters. As an example, it would be very helpful in
the future to include parameters on which research is being done to keep this hierarchy
up to date with state-of-the art graph theory. Finally, this hierarchy can be adapted
and expanded for specific graph properties to explore bounds with auxiliary constraints.
This could theoretically be done for any number of constraints but it would be especially
helpful for properties that are common in practice and on which there already exists a
lot of research to give an overview of the way common graph parameters are impacted
by those constraints. Good examples of such properties could be connectedness and
planarity of graphs.
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