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Zusammenfassung

Im Feld der Netzwerkanalyse ist es oft erwünscht, die relative Wichtigkeit eines Knoten
im Netzwerk zu quantifizieren. Ein Maß, das entwickelt wurde um dieses Problem anzu-
gehen, ist Betweenness Centrality. Grob gesagt, ist dieses Maß die normalisierte Anzahl
der kürzesten Pfade, die durch ein Knoten im Graphen gehen. Seit der ersten formellen
Betrachtung im Jahr 1977, blieb es weiterhin relevant und viel studiert. Ein sich gerade
herausbildendes Forschungsgebiet ist die Analyse der dynamischen Netzwerke. Ein Kon-
zept, das für diesen Zweck genutzt wird, ist das der temporalen Graphen – Graphen, in
denen Kanten mit der Zeit erscheinen und wieder verschwinden können. Im Gegensatz zu
dynamischen Graphen, wird im Model der temporalen Graphen angenommen, dass man
a priori ein totales Wissen über die Änderungen im Graphen hat. Daher liegt der Fo-
kus nicht auf der Aufrechterhaltung von einigen relevanten Statistiken wenn der Graph
sich ändert, sondern auf dem Ausnutzen der temporalen Dimension, um eine spezifische
Einsicht zu gewinnen. Aktuell wird viel Mühe in die Analyse von temporalen Graphen
investiert. In dieser Arbeit reflektieren wir frühere Ergebnisse über Betweenness Cen-
trality, auch im temporalen Model, um dann diese Ergebnisse weiter auszubauen. Wir
entwickeln ein Framework, das das Problem der Berechnung der Betweenness Centrality
für mehrere Varianten des Maßes in einer einheitlichen Weise anzugehen erlaubt. Schlus-
sendlich nutzen wir das Framework, um Algorithmen zu entwickeln, die einige noch nicht
studierte Varianten von Betweenness Centrality berechnen.

Abstract

In network analysis, it is often desirable to quantify the relative importance of vertices
that comprise the network. One measure devised to tackle this problem is betweenness
centrality. Roughly speaking, it is the normalized number of shortest paths going through
a vertex of a graph. First considered formally in 1977, it has stayed relevant and well-
studied ever since. Furthermore, an emerging field of study is the analysis of dynamic
networks. One concept used for this purpose is that of temporal graphs—graphs in
which edges can appear and disappear over time. In contrast to dynamic graphs, in the
temporal graph model we assume we have full knowledge about the changes in the graph
a priori. Therefore, the focus does not lie on “maintaining” some relevant statistics as
the graph changes, but rather on exploiting the temporal dimension to gain a unique
insight into the structure of the network. Currently, a significant amount of effort is
spent into the analysis of temporal graphs. In this work, we reflect on previous results
about betweenness centrality—also in the temporal setting—and proceed to build up on
them, creating a framework that allows us to tackle the task of computing betweenness
centrality on a temporal graph for a variety of different variants of the measure, all in
a unified manner. Using the framework, we devise algorithms for computing variants of
betweenness centrality that have not been studied before.
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Chapter 1

Introduction

In this chapter, we give a brief description and background on the main topics handled
in the thesis.

1.1 Motivation

Graphs are possibly the most successful and most studied structures in all of computer
science. Kickstarted in 1736 by none other than Leonhard Euler [Eul41], graph theory
has remained relevant ever since. However, this thesis will tackle problems in the tempo-
ral graph setting, which is a natural extension of the concept of a graph. Nevertheless,
since it may not be as familiar to the reader as traditional graph theory likely is, we
shall also give a short introduction to the concept.

In this work we put ourselves in the field of network analysis [Bar+16; Sco88; WF94].
Networks have been used to model a wide variety of situations. Social networks can be
used to model disease spread, while transportation networks are vital in urban planning.

However, we often see that in real life, networks and their structure evolve over
time. For example, in a transportation network, connections (edges) between stations
(vertices) appear and disappear as different trains, trams, or buses arrive and depart.
Similarly, in a social network we see that people meet different people at different times.
(For more cases in which the temporal aspect is important, see Holme and Saramäki
[HS12].) Sometimes, such temporal dependencies can be either safely ignored or lend
themselves to being modeled by a simple graph.

Other times, however, it may be desirable to model the dynamic aspect of a network
more directly [Kos09; Mic16]. The concept that emerged for handling such cases is that
of temporal graphs [HS12; Kos09; LVM18; Mic16]. Such graphs differ from the standard
concept of simple graphs in that an explicit time component is introduced. Namely,
edges within a graph are now allowed to appear and disappear as time passes. We
can interpret an edge between two vertices u and v appearing at time t as “there is a
connection running between u and v at time t” (in the case of transportation networks)
or “u and v meet at time t” (in the case of social networks). Note that in this model, we
assume that we have full knowledge of the temporal structure of the network a priori.
Depending on the use case, this can be a reasonable assumption, e.g., there may be a
fixed timetable (for a transportation network), or extrapolating historical data may yield
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Figure 1.1: An example of a temporal graph. Nodes are connected with edges that
appear at different times, e.g. v1 and v2 are connected at times 2 and 3, while v5 and v6
are connected only at time 5.

a good approximation. It is also worth noting that, as we shall see when discussing the
concept more formally, temporal graphs can be interpreted as generalizations of simple
(or static) graphs. For an example of a temporal graph, see Figure 1.1.

Moreover, whether a transportation-, social- or a flow network is considered, in many
cases a deeper understanding of the underlying structure is desired. One important part
of said structure is the connectivity of the graph and how it is affected by the individual
vertices therein.

Many ways of approaching the subject of vertex importance have been devised, de-
pending on one’s particular needs. One important measure that has found widespread
use in the static case is betweenness centrality [Fre77]. Roughly speaking, the between-
ness centrality of a vertex measures how many shortest paths go through that vertex.
Such vertices will often function as “hubs” of the network as a lot of traffic will go
through them. For an example (static) graph and the betweenness centrality of the
nodes within, see Figure 1.2. Due to its importance in the static case, many researchers
have also extended the idea to the temporal case [ARFG17; Buß+20; Tan+10; Tsa+20;
WM16].

Moreover, notice that measuring path length is not the only available way of deter-
mining the optimality of a path, which turns out to be even more true in the temporal
case. Often, what measure of optimality is used depends on the context. Consider a sit-
uation in which authorities are trying to limit the spread of an infectious disease. They
may then want to analyze the public transportation network. In this case, the measure
of path optimality that would be the most relevant is the “duration” of the path—an
average person will naturally take the fastest path from point A to point B. Hence, the
authorities may decide to enact additional safety measures on the most central (and
hence most crowded) stations, where the centrality is calculated based on fastest paths.

We may, however, be analyzing the situation from a different angle. For example,
instead of a transportation network, consider analyzing the big picture via a social
network in which the vertices correspond to people and edges correspond to a meeting
of two people at a given point in time. A path in such a graph would then correspond
to a “chain of spreading”: person A meets person B and (possibly) infects them, then
person B at a later point in time spreads the infection to person C, and so on. Hence,
in such a network it would be important to identify people on a lot of “paths,” who are
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(b) Same graph G with the size of each vertex scaled according to its betweenness centrality.

Figure 1.2: Example for betweenness centrality. The middle vertices (the vi’s) have the
highest value of the measure as they connect the left- and the right-hand side of the
graph (that is, they connect the ui’s with the wi’s). Note that v1 and v2 both have high
betweenness centrality even though they both have a low degree and neither of them is
a cut vertex.

both likely to get the disease and to spread it afterwards.

However, not every meeting may carry an equal risk. A person may show symptoms
and decide against further contact with others or may recover from the disease, in both
cases making it impossible for them to further spread the illness. Hence, we may only
be interested in paths where the time between each pair of meetings in a “chain of
spreading” is small enough as to make it probable that the disease can be transmitted.
We would then be interested in determining the “central nodes” of our network, that is,
people who are at the highest risk of spreading the disease.

We can therefore see that while the concept of using the number of “optimal” paths
going through a vertex as a measure of centrality is the same in both cases, the ideas
of optimality are very different. Hence, the algorithms devised for one measure of path
optimality may not work for another. Case in point: our first example with the trans-
portation network roughly corresponds to counting “fastest” paths. We shall success-
fully tackle this problem under a slight, but natural restriction—indeed, we provide a
polynomial-time algorithm that solves it. On the other hand, for the second example,
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the one where the “waiting time” has an upper limit, it has recently been shown that
even checking whether any such path exists is already NP-Hard [Cas+20].

Therefore, our goal in this work is to provide a framework that allows us to tackle
the task of computing the betweenness centrality measure for a variety of different path
optimality concepts in a systematic way. Indeed, we exhibit a property of a set of
paths that leads to a simplification of the problem, possibly allowing us to compute
betweenness centrality more efficiently. We then proceed to use the framework to solve
a few previously open questions.

1.2 Related work

All of the big concepts tackled in this work have been studied before. For general
treatment on network analysis, see for example the works of Scott [Sco88], Wasserman
and Faust [WF94], or Barabási et al. [Bar+16]. Although not called that at the time,
early mentions of betweenness centrality trace back to 1971, in notes by Anthonisse
[Ant71]. A more thorough treatment has later been given by Freeman [Fre77]. Since
then, much effort has been put into the study of the measure from different angles.

A big hurdle to the widespread use of betweenness on real-life graph instances had
been the difficulty of computing it in larger graphs. That situation has been changed
somewhat with the publication of the seminal1 work of Brandes [Bra01], where a new
algorithm was presented. If we use n and m to respectively denote the number of
vertices and edges in a graph, we can say that the new algorithm improved the time
complexity from O(n3) to O(nm) and O(nm + n2 log n) for unweighted and weighted
graphs, respectively. Just as importantly, it reduced the space complexity of the then
contemporary algorithms from O(n2) to O(n + m), making the algorithm significantly
more feasible to be run on larger sparse graphs. Moreover, a parallel algorithm for
solving the problem has been devised by Jamour, Skiadopoulos, and Kalnis [JSK18].

White and Borgatti [WB94] study the concept in directed graphs—something rele-
vant to temporal graphs since, as we shall see, even if all edges of a temporal graph are
symmetric, temporal paths have an inherent direction dictated by increasing timestamps;
a vertex u can be connected to v, but not vice versa.

The difficulty of computing betweenness centrality in spite of its high degree of use-
fulness in network analysis has motivated researchers in the area to turn their attention
to approximate algorithms—with some success, see for example the works of Bader et al.
[Bad+07], Bergamini and Meyerhenke [BM15], or Riondato and Upfal [RU16]. At the
same time, it has been shown that there are subcubic reductions between the all-pairs
shortest paths (APSP) and the betweenness centrality problems [AGW15]. This means
that a truly subcubic algorithm2 for computing the betweenness centrality of all vertices
in a graph is unlikely to exist.

Another aspect of the topic tackled by research in the area is that of computing
and maintaining the betweenness centrality in dynamic graphs, i.e., graphs, whose edges
and/or vertices are added or removed. Such incremental algorithms can be found, for
example, in the works of Pontecorvi and Ramachandran [PR15] or Kas, Carley, and

1At the time of writing this thesis, Brandes’ paper had been cited more than 4000 times.
2An algorithm with a running time O(n3−ε), for some ε > 0.
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Carley [KCC14]. Note that dynamic graphs, while a related concept, differ from temporal
graphs—in a temporal graph, a path between two vertices can use edges that appear at
different times, whereas in a dynamic graph all the edges in a path must exist at the
same time.

Temporal graphs are also a well-established concept. For a thorough introduction
to the subject, see Holme and Saramäki [HS12], Holme [Hol15], or Latapy, Viard, and
Magnien [LVM18]. The canonical concepts of temporal path optimality, that we should
also analyze in one of the chapters, have been presented by Wu et al. [Wu+14]. For
another concept of path (optimality), see the works of Casteigts et al. [Cas+20] and
Himmel et al. [Him+19]. The idea of extending the concept of betweenness centrality
to temporal graphs has also appeared in multiple previous sources [ARFG17; Buß+20;
Tan+10; Tsa+20; WM16].

Of particular interest is the work of Tsalouchidou et al. [Tsa+20], who consider an
arbitrary linear combination of a path’s length and duration as an optimality criterion
and compute the temporal betweenness centrality with respect to such paths. This is
very close to the problem we shall study in Section 4.3 and in fact, while formally showing
it is outside the scope of this work, we conjecture that our results from that section also
generalize those of Tsalouchidou et al. [Tsa+20], as will be discussed in the conclusions
at the end of the thesis.

Finally, this thesis is most directly related to the paper of Buß et al. [Buß+20], who
analyzed some combinations of optimality criteria, but using lexicographical tie-breaking
instead of linear combinations—Section 4.3 generalizes the results from that paper to
cover a wider range of possible combinations of criteria. Moreover, the framework we
develop in Chapter 3 can be seen as a generalization of the approach used to derive
the results of Buß et al. [Buß+20], that is, we work directly with the temporal graphs
themselves. In contrast, the aforementioned paper of Tsalouchidou et al. [Tsa+20], as
well as many others dealing with temporal graphs, deals with a “static expansion” of
the temporal graph, i.e., a static graph that captures some relevant properties of the
temporal graph. Such expansion can, however, lead to using more space than is necessary
and it may also take additional time if one needs to first compute the static expansion
from the original temporal graph. Hence, it is desirable to also devise approaches dealing
with a temporal graph in its direct representation.

1.3 Our contribution

The concept of temporal betweenness centrality has already been studied by Buß et al.
[Buß+20] (and others, see the previous section), where some variants have been proven
computationally intractable, while a polynomial-time algorithm has been provided for
several different ones. In this work, we notice a commonality between the results of
Brandes [Bra01] and those of Buß et al. [Buß+20] and try to use it to generalize their
insights, allowing us to solve the problem of computation of betweenness centrality on
more of the possible variants of the measure.

We start by describing the computation of betweenness centrality in more general
terms. We observe that, in essence, each concept of path optimality defines some sub-
set P of all possible temporal paths in a temporal graph G, e.g. the set of all shortest
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paths between the vertices in the graph, or the set of all fastest paths in the graph.
Then, to compute the betweenness centrality measure for some vertex v of our graph,
we need to somehow count the paths in P that go through v and those that do not.

Hence, our approach is to first generalize the notion of path optimality to arbitrary
path sets P and then provide a framework for simplifying the computation of the be-
tweenness values for a class of path sets that have a particular property.

Finally, we use the framework to simplify some proofs of results that have already
been shown previously, as well as solve open problems, including computing between-
ness centrality for combinations of the canonical path optimality measures under lexi-
cographic tie-breaking—some of the variants thereof have been analyzed by Buß et al.
[Buß+20], but, to the best of our knowledge, many of the others have first been analyzed
in this thesis.

Note that while our work focuses on temporal graphs, most of the notions and the-
orems described translate directly to static graphs, which can be seen as a special case
of temporal graphs. For example, the seminal result of Brandes [Bra01] can be seen as
a special case of the result derived in Section 4.3.

1.4 Organization of the work

In Chapter 1 we informally introduced the subject matter of this thesis. Chapter 2
provides definitions of (temporal) graphs and other basic concepts used throughout the
work. The main contribution is split between the following two chapters. In Chapter 3,
we generalize the concept of temporal betweenness centrality and then develop a frame-
work for solving the problem of computing betweenness centrality in temporal graphs.
Then, in Chapter 4, we proceed to use the framework on some practical examples. In
particular, we show how the results of Buß et al. [Buß+20] can be derived within our
framework. We then proceed to extend the results of Buß et al. [Buß+20] to further
concepts of path optimality. Finally, in Chapter 5 we summarize our results and describe
potential avenues for future research.



Chapter 2

Preliminaries

In this chapter, we define basic terms used throughout the work.

We write N for the set of non-negative integers, that is, N = {0, 1, 2, . . .}. Fur-
thermore, let n ∈ N. Then we use [n] to denote the set {1, . . . , n}. For example, we
have [0] = ∅ and [3] = {1, 2, 3}.

We shall use the following Iversonian notation (as described by Graham, Knuth, and
Patashnik [GKP94]): let P (x) be any logical statement, whose truth may depend on the
value of x. Then we denote by [P (x)]1 a quantity that is 1 precisely when P (x) is true and
0 otherwise. For an example, we can write the n-th Harmonic number Hn = 1

1+ 1
2+. . .+ 1

n
as1

Hn =
∑
k

1

k
[1 ≤ k ≤ n]1 ,

or similarly, if we want to describe the sum of reciprocals of primes up to n, then we
would write ∑

p

1

p
[p is prime]1 [p ≤ n]1 .

Furthermore, in this work, we will also briefly consider binary relations. One property
of those will be important to us, namely acyclicity (see, for example, Alcantud et al.
[Alc+18]).

Definition 2.1 (Acyclicity). Let R be a binary relation. We call R acyclic if its tran-
sitive closure is irreflexive.

2.1 Static and temporal graphs

Graph theory. For basic graph theory we shall mostly follow the notation of Diestel
[Die17]. Let G = (V,E) denote an undirected graph, where V denotes the set of vertices
and E ⊆

(
V
2

)
= {{v, w} | v, w ∈ V, v 6= w} denotes the set of edges. We shall generally

use n to refer to the number of vertices in the graph and m to refer to the number of
edges. Formally, we will have n := |V | and m := |E|.

1Note that by convention, when [·]
1

is zero, it “overpowers” undefined terms, so for example, in the
equation below we have for the term with k = 0 that 1

0
· [1 ≤ 0 ≤ n]

1
= 0.
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v0 v1 · · · vi · · · vj · · · v`−1 v`

P [•, vi]

P [vi, vj]

P [vj, •]

Figure 2.1: Subpaths of the path P = (v0, . . . , v`).

We denote by NG(v) the neighborhood of the vertex v, that is, the set NG(v) := {w |
{v, w} ∈ E}. If the graph G is clear from context, then we can simply write N(v).

Let P = (v0, v1, . . . , v`) be a path. For 0 ≤ i ≤ j ≤ `, we shall write:

P [vi, vj ] := (vi, vi+1, . . . , vj)

P [•, vi] := (v0, v1, . . . , vi)

P [vj , •] := (vj , vj+1, . . . , v`)

We shall denote the concatenation of two paths with the ⊕ operator: the concatenation
of two paths P [x, y] and the path Q [y, z] for appropriate x, y, z ∈ V will be written
as P [x, y]⊕Q [y, z]. Note that, in general, P [x, y]⊕Q [y, z] does not have to be a path
since it may be that y is not the only vertex that P and Q share.

Temporal graphs. We now present the notion of temporal graphs, that is, graphs
whose connectivity evolves over time. For a more comprehensive introduction to the
topic, see Holme and Saramäki [HS12] or Latapy, Viard, and Magnien [LVM18].

Let G = (V, E , T ) denote an (undirected) temporal graph, where V denotes the set of
vertices, T ∈ N denotes the timespan of the graph, and E ⊆

(
V
2

)
× [T ] = {({v, w}, t) |

v, w ∈ V, v 6= w, t ∈ [T ]} the set of temporal edges. For a v ∈ V and t ∈ [T ] we
shall call (v, t) a vertex appearance. For a temporal edge ({v, w}, t) or a vertex appear-
ance (v, t) we shall call t the timestamp of the edge (vertex appearance). Whenever we
want to stress the difference between temporal graphs and the standard, non-temporal
graphs, we shall call the latter static graphs.

Let G = (V, E , T ) be a temporal graph. We shall call G↓ = (V,E), with E := {{v, w} |
∃t ∈ [T ] : ({v, w}, t) ∈ E}, the underlying graph of G. Intuitively, G↓ corresponds to the
graph G with the timestamp information removed.

For temporal graphs, we define several notions of “neighborhood,” one for vertices
and two for vertex appearances. The neighborhood of a vertex v ∈ V , denoted NG(v)
is directly related to the static case: NG(v) := NG↓(v). For a vertex appearance (v, t) ∈
V × [T ], the temporal neighborhood is the set of directly reachable vertex appearances,
i.e., NG(v, t) = {(w, t′) | ({v, w}, t′) ∈ E , t′ ≥ t}. Sometimes we may, however, be
interested in the strict temporal neighborhood, which is defined analogously: N>

G (v, t) =
{(w, t′) | ({v, w}, t′) ∈ E , t′ > t}. If the temporal graph G is clear from the context, then
we can omit the subscript and write N(v), N(v, t), or N>(v, t).

Similarly as in the static case, we introduce generic variables that represent the size
of the graph. We will generally use n to be the number of vertices in our graph. For
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the edges, in the temporal case we have two quantities to consider. We use M to refer
to the number of temporal edges in the graph, while we let m refer to the number of
edges of the underlying graph. Formally, we have n := |V | for the number of vertices
and M := |E| and m := |E| for the variables referring to the edges.

Walks and paths. Let G be a temporal graph. We now define walks and paths on G.

Definition 2.2 (Temporal Walk). A temporal walk W is an alternating sequence of
vertices and timestamps W = (v0, t1, v1, . . . , t`−1, v`−1, t`, v`), such that for any 0 ≤ i < `,
we have ({vi, vi+1}, ti+1) ∈ E and for any i ≤ j ≤ ` we also have ti ≤ tj . A temporal
walk is called strict if additionally the timestamps are strictly monotonically increasing,
i.e., we have ti < tj for all 1 ≤ i < j ≤ `, and non-strict otherwise. A walk has
multiple parameters describing it. We call ` the length of the walk. We call t1 and t`
the departure- and arrival times of the walk, respectively. The duration of a walk is the
difference between its arrival and departure times, i.e. t` − t1. In the context of walks,
we also call the temporal edge ({vi, vi+1}, ti+1) a transition from vi to vi+1 at time ti+1

and denote it by vi
ti+1→ vi+1.

Note that we allow walks of length zero between a vertex and itself, however such
walks do not have a well-defined departure- and arrival time (and hence also no well-
defined duration).

If W = (v0, t1, v1, . . . , t`−1, v`−1, t`, v`) is a walk, then we shall also write v0
t1→ v1

t2→
· · · t`−1→ v`−1

t`→ v` to denote it and its transitions. We also write (vi
ti+1→ vi+1) ∈

W to express that the walk “uses” the transition vi
ti+1→ vi+1, i.e., that W has the

subsequence (vi, ti+1, vi+1). Alternatively, for two vertex appearances (u, tu) and (v, tv)

on the walk, we can also write (u, tu)
tv→ (v, tv) ∈W .

Moreover, a walk is said to go through the vertex appearance (v, t) if there exists

some vertex u such that (u
t→ v) ∈W . We can then also write (v, t) ∈W .

Next, we define temporal paths as special cases of temporal walks.

Definition 2.3 (Temporal Path). A temporal path P is a walk in which no vertex
appears more than once in the corresponding alternating sequence. As with walks, we
say that a path is strict if the corresponding walk is strict, and non-strict otherwise.
Analogously, we define the length, departure time, arrival time and duration of the path
as the respective value of the underlying walk.

Similarly to the static case, for a temporal path P = v0
t1→ v1

t2→ . . .
t`−1→ v`−1

t`→ v`
and 0 ≤ i ≤ j ≤ `, we shall write

P [vi, vj ] := vi
ti+1→ vi+1

ti+2→ . . .
tj→ vj

P [•, vi] := v0
t1→ v1

t2→ . . .
ti→ vi

P [vj , •] := vj
tj+1→ vj+1

tj+2→ . . .
t`→ v`

and write P [x, y]⊕Q [y, z] when concatenating the paths P [x, y] and Q [y, z] for appro-
priate x, y, z ∈ V such that the concatenation forms a valid walk, i.e., P arrives at y
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v0 v1 · · · vi · · · vj · · · v`−1 v`
t1 t2 ti ti+1 tj tj+1 t`−1 t`

P [•, vi] = P [•, (vi, ti)]

P [vi, vj]

P [vj, •] = P [(vj, tj), •]

Figure 2.2: Subpaths of the temporal path P .

no later than Q leaves y. (Or, in the strict case, P arrives at y before Q leaves it.) If
we want to be more explicit about the specific vertex appearance that is a part of the
temporal path, then we can write P [•, (v, t)] instead of P [•, v], etc. See Figure 2.2 for
reference.

Optimal paths in temporal graphs. Unlike in static graphs, in temporal graphs
there are several different natural ways of defining the optimality of a path between two
vertices s, z ∈ V .

• The first possibility is to consider the path length. This measure is the same as
in the static case, namely it is concerned with the number of edges. A path is
shortest if it has the least amount of edges among all s-z-paths.

• We may also be interested in paths which arrive as early as possible to our desti-
nation. Such paths are called foremost paths, that is, those paths, whose arrival
time is the smallest among all s-z-paths.

• Finally, we may want to consider the paths of least duration. We call those paths,
i.e., paths with the smallest duration among all s-z-paths, fastest paths.

Furthermore, we shall also speak about optimal paths with respect to a particular
vertex appearance (v, t). Every path arriving at v must arrive at precisely one time t2.
Hence, we can “partition” the set of paths arriving at v according to their arrival time.
Such partitioning will prove useful in showing some results in Chapter 3. We define those
optimal paths to an appearance analogously to optimal paths to vertices, the difference
being that we then only consider paths which arrive at exactly time t. For example, a
path is a shortest s-(v, t)-path if it is shortest among all s-v-paths that end exactly at
the appearance (v, t).

As an example, consider Figure 2.3. There exists exactly one optimal s-z-path for
each of the three optimality criteria. The top path is shortest, because it consists of
only two edges. However it is not foremost because it arrives later than the middle path
and is not fastest because it has a larger duration than the bottom path. Similarly, the
middle path is foremost as it is the only path that arrives to z at time 5. Finally, the
bottom path is the only fastest path, with a duration of 2. Also note that while the
middle path is not a shortest s-z-path, it is a shortest path to (z, 5), as no shorter path
that arrives to z at exactly time 5 exists (indeed, there exists no other path that arrives
to z at exactly time 5).

2Ignoring the path from v to itself that does not have well-defined arrival time.
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Figure 2.3: An example for different optimality concepts in a temporal graph. From top
to bottom: shortest, foremost and fastest.

2.2 Betweenness centrality in (temporal) graphs

For the sake of completeness we shall formally introduce the basic idea of betweenness
centrality. In this section we shall provide the typical definitions as seen in the literature.
In the later chapters, we will, however, find it convenient to write it out in a different,
but equivalent way.

As was already described in the introduction, betweenness centrality is the normal-
ized sum of the number of shortest paths going through the vertex.

Definition 2.4. Let G = (V,E) be an arbitrary graph and let s, v, z ∈ V be arbitrary
vertices. We then denote by

• σsz the number of shortest s-z-paths;

• σsz(v) the number of shortest s-z-paths that go through v.

With that in mind we can define betweenness centrality.

Definition 2.5. Let G = (V,E) be an arbitrary connected graph. Then, for every v ∈ V
we define

CB(v) =
∑
s 6=v 6=z

σsz(v)

σsz

as the betweenness centrality of v.

For an example, consider Figure 2.4. The graph has already appeared in Chapter 1
and has only been reproduced here for convenience.

In the temporal case, we define the betweenness analogously. We let σ?sz be the
number of optimal temporal s-z-paths (using some notion of optimality, e.g. shortest or
fastest) and σ?sz(v) be the number of optimal temporal s-z-paths going through v. We
then have

CB(v) =
∑
s 6=v 6=z
σsz>0

σ?sz(v)

σ?sz
.

Note that, unlike in the static case, we may have σ?sz 6= σ?zs: see Figure 2.3 for an
example. Even though all of our temporal edges are symmetric, there exist three different
s-z-paths, but no z-s-path.



20 CHAPTER 2. PRELIMINARIES

u0 u2

u1

u3

v0

v1

v2

v3

w0

w1

w2

w3

(a) Example (static) graph G.

u0 u2

u1

u3

v0

v1

v2

v3

w0

w1

w2

w3

(b) Same graph G with the size of each vertex scaled according to its betweenness centrality.

Figure 2.4: Example for betweenness centrality. The middle vertices (the vi’s) have the
highest value of the measure as they connect the left- and the right-hand side of the
graph (that is, they connect the ui’s with the wi’s). Note that v1 and v2 both have high
betweenness centrality even though they both have a low degree and neither of them is
a cut vertex.

2.3 Counting complexity: #P-hardness

As it is mentioned a few times throughout the thesis, we would like to give a brief and
mostly informal presentation of the concept of counting problems and the complexity
class #P, first introduced by Valiant [Val79b].

Many decision problems are of the form “does there exist a solution to the problem
P?”. Counting problems naturally extend the idea by asking, “how many solutions do
there exist to the problem P?”. For example, a decision problem may be, “are the
vertices s and z in the graph connected?”, that is, “does there exist an s-z-path?”,
while the corresponding counting problem could be, “how many s-z-paths are there?”.
Similarly, the SAT problem asks whether a satisfying variable assignment to a Boolean
formula exists, while its counting version asks how many such assignments there are.

Just like for decision problems, different complexity classes of counting problems
have been considered. We shall, however, limit ourselves to the complexity class #P.
Formally speaking, if we choose {0, 1} as our input alphabet, then #P is a subset of
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functions of the type {0, 1}∗ → N.

Definition 2.6. (Arora and Barak [AB09]) #P is the set of all functions f of the
type f : {0, 1}∗ → N such that there exists a polynomial-time non-deterministic Turing
machine M such that, for every x ∈ {0, 1}∗, we have that f(x) is equal to the number
of paths from the initial configuration of M with input x to an accepting configuration.

Intuitively speaking, this class is roughly the counting problem equivalent of the
well-known decision problem class of NP. Hence, for many problems in #P, polynomial-
time algorithms are unlikely to exist. Just like in the case of decision problems, some
problems can be considered “at least as hard as all other problems in #P,” that is,
all other problems in #P can be reduced to those (using an appropriate concept of
reduction). Such problems are called #P-hard.

Naturally, the counting version of the problem is at least as hard as the decision
version: we can always check whether the number of solutions to a problem is positive. In
some cases, if the decision problem is already computationally intractable, that fact may
be of little importance. However, sometimes the counting version may be significantly
harder. For example, while it is easy to determine whether two vertices in a graph are
connected, counting the number of paths between two vertices is #P-hard [Val79a].





Chapter 3

A framework for betweenness
computation

In this chapter, we shall tackle the main problem of this work, namely that of computing
temporal betweenness centrality in a general path optimality setting. In Section 3.1,
we define notions necessary for developing our framework. We then present our main
result about computation of the generalized betweenness centrality in Section 3.2. This
generalization will allow us to approach the task of computing the betweenness centrality
with respect to different possible optimality concepts in a unified manner, as we shall
see in Chapter 4.

See Table 3.1 (on page 24) for an overview of the notation used throughout the
chapter.

3.1 Generalized path optimality

We start by defining a general notion of betweenness centrality with respect to some
arbitrary set of temporal paths P. To this end, we shall generalize the concepts as
described in the static case by Brandes [Bra01], and in the temporal case by Buß et al.
[Buß+20].

First, it will be convenient to expand the set of possible timestamps in order to let
the starting point of a path have a well-defined appearance associated with it.

Definition 3.1 (Extended timespan set). Let G = (V, E , T ) be a temporal graph. We
write T := {0} ∪ [T ] to denote the extended timespan set.

Since no temporal edge can have a timestamp 0 associated with it, it can serve as
a sentinel value that we will associate with the beginning of a temporal path. That is,

if we have a path P = s
t1→ v1

t2→ · · · t`→ z, then we will associate the appearance (s, 0)
with s. Note, however, that for the purpose of computation of optimality criteria, the
definitions from Chapter 2 still apply: the duration of P is still equal to t` − t1.

We can now define variables counting the number of paths between vertices.

Definition 3.2 (Path counting). Let G be a temporal graph and P be a subset of its
temporal paths. Let s, v, z ∈ V and t ∈ T . We write:

23
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Table 3.1: A short overview of all the symbols defined and used throughout the chap-
ter. Note that while omitted in the descriptions for the purpose of avoiding excessive
redundancy, all the symbols refer only to paths in P, as signified by their superscripts.

Variable Meaning

σPsz number of s-z-paths

σPsz(v) number of s-z-paths going through v

σPsz(v, t) number of s-z-paths going through (v, t)

σ̃Ps(v,t) number of unique prefixes to (v, t) on s-z-paths

δPsz(v) pair dependency of s and z on v

δPsz(v, t) temporal pair dependency of s and z on (v, t)

δPsv(v, t) appearance dependency of s on (v, t)

δPs•(v) cumulative dependency of s on v

δPs•(v, t) temporal cumulative dependency of s on (v, t)

δPsz (v, t, ({v, w}, t′)) edge dependency

CPB (v) betweenness centrality of v

ĈPB (v) total betweenness centrality of v

PrePs (w, t′) set of predecessors of (w, t′) on paths starting in s

SuccPs (v, t) set of successors of (v, t) on paths starting in s

• σPsz for the number of s-z-paths in P that start in s and end in z. We have
that σPss = [P contains the trivial zero-length path from s to s]1;

• σPsz(v) for the number of s-z-paths in P that go through the vertex v. Again, for
the edge cases we have σPsz(z) = σPsz(s) = σPsz and σPss(s) = σPss;

• σPsz(v, t) for the number of s-z-paths in P that go through the vertex appear-
ance (v, t). Note that since the first vertex in a path has a special appearance (s, 0),
we have σPsz(s, 0) = σPsz(s) = σPsz and σPsz(s, t

′) = 0 for all t′ ∈ [T ].

We can use these path counts to now define the notions of dependency of vertices on
other vertices.

Definition 3.3 (Pair dependency, cumulative dependency). Let G be a temporal graph
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and P a subset of its temporal paths. We define

δPsz(v) :=

{
0, if σPsz = 0,
σPsz(v)
σPsz

, otherwise;

δPs•(v) :=
∑
z∈V

δPsz(v)

as the pair dependency of s and z on v and the cumulative dependency of s on v,
respectively.

In other words, δPsz(v) is the fraction of s-z paths that go through v. Intuitively, the
higher this fraction is, the more important v is to the connectivity of s and z in the graph.
Furthermore, δPs•(v) is the cumulative dependency of s on v for all possible destinations.
The natural extension of the idea would be to then ask how do all other vertices depend
on v for their connectivity? The graph measure that catches such dependency on v in
the whole graph is, of course, the betweenness centrality.

Definition 3.4 (Betweenness centrality). Let G be a temporal graph and P be a subset
of its temporal paths. Then, for any vertex v ∈ V , let

CPB (v) :=
∑
s 6=v 6=z

δPsz(v)

be the betweenness centrality of v (with respect to P). If the set of paths P in question
is clear from the context, then we shall simply write CB(v).

We note that there are two main differences between the definition above and the
one in Chapter 2: first, the definition above uses the path counts σPsz indirectly, via
the pair dependencies δPsz(v). This additional layer of abstraction allows us to define
betweenness with a simple formula, avoiding the need of adding more conditions to
the sum in Definition 3.4 or restricting our attention to (strongly) connected graphs.
The value of the measure itself, however, remains unchanged. The second, and more
important, difference is that we now allow the path set to be arbitrary and not just one
of few possible choices.

With betweenness centrality defined, we can now formally state the main problem
studied in this work.

P-Betweenness-Centrality
Input: A temporal graph G.
Task: Compute CPB (v) for every v ∈ V .

The generalization above is based on the standard concept of betweenness centrality.
However, we shall find that slightly relaxing the condition in the sum of Definition 3.4
yields a highly related notion of “total” betweenness that includes all vertex pairs in the
definition that is more convenient to use in our case.

Definition 3.5 (Total betweenness centrality). Let G be a temporal graph and P a
subset of its temporal paths. Then, for any vertex v ∈ V , we define

ĈPB (v) :=
∑
s,z∈V

δPsz(v)
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to be the total betweenness centrality of v (with respect to P). Again, if the set of
paths P in question is clear from the context, then we shall simply write ĈB(v).

The main reason behind using total betweenness centrality instead of the standard
betweenness is that it simplifies some of our proofs as it works well with our definition
of cumulative dependency:

Observation 3.6. For any vertex v ∈ G we have

ĈPB (v) =
∑
s∈V

δPs•(v).

As mentioned before, ĈB(v) and CB are highly related. The following lemma formally
expresses this relationship. Both the statement and the proof have already essentially
appeared in the work of Buß et al. [Buß+20], but we reproduce it for the purpose of
completeness and because the notation in this thesis is slightly different.

Lemma 3.7 (Lemma 2.8 in Buß et al. [Buß+20]). For any vertex v ∈ V it holds that

CB(v) = ĈB(v)−
∑
w∈V

([
σPvw > 0

]
1

+
[
σPwv > 0

]
1

)
+
[
σPvv > 0

]
1
. (3.1)

Proof. We can simply expand the sum to get the additional summands not present in
the definition of CB:

ĈB(v) =
∑
s,z∈V

δPsz(v)

=
∑
s6=v 6=z

δPsz(v) +
∑
z∈V

δPvz(v) +
∑
s∈V

δPsv(v)− δPvv(v)

= CB(v) +
∑
w∈V

(
δPvw(v) + δPwv(v)

)
−
[
σPvv > 0

]
1

= CB(v) +
∑
w∈V

([
σPvw > 0

]
1

+
[
σPwv > 0

]
1

)
−
[
σPvv > 0

]
1
,

from which the result immediately follows.

In other words, to relate the two quantities we only need to know for each pair of
vertices whether there is any path in P connecting them. As an example, consider the
graph in Figure 3.1a. In Figure 3.1b we list the appropriate values of betweenness and
total betweenness with respect to the set of shortest (non-strict) paths. For example,
the vertex v0 is connected to every other vertex (including itself), but only v1 and v2
are connected to it. We therefore have

∑
w∈V

([
σPv0w > 0

]
1

+
[
σPwv0 > 0

]
1

)
− 1 = 7 and

so ĈB(v0) = CB(v0) + 7 = 7.

Furthermore, to work with temporal graphs more easily, we shall make a straight-
forward generalization of Definition 3.3 to vertex appearances.
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(a) Temporal graph G.

Vertex CB ĈB
v0 0 7
v1 1 9
v2 1 9
v3 3 11
v4 0 6

(b) The CB and ĈB val-
ues for G.

Figure 3.1: Betweenness centrality vs. total betweenness centrality for the set of shortest
non-strict paths.

Definition 3.8 (Temporal pair dependency, temporal cumulative dependency). Let G
be a temporal graph and P be a subset of its paths. Let

δPsz(v, t) :=

{
0, if σPsz = 0
σPsz(v,t)
σPsz

, otherwise

δPs•(v, t) :=
∑
z∈V

δPsz(v, t)

be the temporal pair dependency of s and z on (v, t) and the temporal cumulative de-
pendency of s on (v, t), respectively. Additionally, we shall also call the special case
of δPsv(v, t) the appearance dependency of s on (v, t).

Note that the source vertex of any temporal path has the special appearance (s, 0)
associated with it, so for it the only timestamp t ∈ T where the values of δPsz(s, t)
and δPs•(s, t) can be non-zero is t = 0 (cf. Definition 3.2).

Since every path has a unique arrival time, there is a simple relation between depen-
dencies on vertices and dependencies on vertex appearances.

Observation 3.9. For any vertex v ∈ V we have that

δPsz(v) =
∑
t∈T

δPsz(v, t), and

δPs•(v) =
∑
t∈T

δPs•(v, t).

In our recursive formula for the computation of cumulative dependencies that we
shall derive later in this chapter, we will need to consider the successors (or dually, the
predecessors) of each vertex appearance on paths in P.

Definition 3.10 (Direct predecessor set, direct successor set). Fix a source vertex s ∈ V .
Let Ps ⊆ P be the set of paths in P that start in s. Now let (w, t′) ∈ V × T be any
vertex appearance. Then PrePs (w, t′) is the set of all direct predecessors of (w, t′) on
paths in Ps. Formally,

PrePs (w, t′) :=
{

(v, t) ∈ V × T | ∃P ∈ Ps : (v, t)
t′→ (w, t′) ∈ P

}
.
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Figure 3.2: An example of a non-acyclic path set: (u, 2) is a predecessor of (v, 2) on

the s
2→ u

2→ v
4→ z foremost s-z-path, but (v, 2) is also a predecessor of (u, 2)—on

the s
2→ v

2→ u
4→ z foremost s-z-path.

Analogously, we define the set SuccPs (v, t) of successors of a vertex appearance (v, t) as
the “inverse” of the predecessor relation. Formally,

SuccPs (v, t) :=
{

(w, t′) | (v, t) ∈ PrePs (w, t′)
}
.

Note that the predecessor sets naturally induce a relation R on vertex appearances:
we have (v, t)R(w, t′) if and only if (v, t) ∈ PrePs (w, t′). One property of such in-
duced relations that proves crucial in devising our algorithms for the P-Betweenness-
Centrality problem is that of acyclicity. Note that this induced relation is not con-
cerned with vertices, but rather only with vertex appearances. This makes the property
of acyclicity quite weak, and hence easy to fulfill. For example, if we only consider
strict paths, then all possible path sets will induce acyclic relations: we can then only
have that (v, t) is a predecessor of (w, t′) if we have t < t′. However, in that case we
clearly cannot have a path on which (w, t′) is a predecessor of (v, t). This observation,
although obvious, has some important consequences: for one of the examples that will
be described in detail in Chapter 4, namely that of prefix-foremost paths, this is the
crucial property differentiating the strict and non-strict case, allowing us to solve P-
Betweenness-Centrality in O(nM logM + n2) time in the strict case, while the
non-strict variant is #P-hard.

An example of an acyclic relation for non-strict paths would be the relation induced
by the set of all shortest paths starting at some source vertex s of a graph. On the other
hand, if we take P to be the set of foremost paths starting at some source vertex s, then
the relation will not necessarily be acyclic, since two appearances can be predecessors of
each other on such paths. Such situation is pictured in the graph in Figure 3.2.

3.2 Computation of betweenness centrality

With the basic definitions out of the way, in this section we set out to prove our main
result, a general dependency accumulation formula along with its implication about the
algorithmic complexity of P-Betweenness-Centrality.

The main insight of Brandes [Bra01] was that for the set of shortest paths, the
cumulative dependencies δPs• can be computed recursively. The same principle was used
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Figure 3.3: Prefix-compatibility condition. On the left we see two paths in P, both
starting in s and going through a common vertex appearance (v, t). The path P is
the wavy path, while Q is the path with a zigzag pattern. On the right we see what
prefix-compatibility stipulates: the path P [•, v]⊕Q [v, •] must also be in P.

to achieve the results of Buß et al. [Buß+20]. Our goal is to now generalize these insights
to yield a more universal result for multiple different path optimality concepts. This will
allow us to approach computing the betweenness centrality with respect to an arbitrary
concept of optimality (that has a certain property described below) in a unified manner.

First, we will need to count path prefixes which may not necessarily themselves be
paths in P (but can be extended into paths in P).

Definition 3.11 (Path prefix counting). Fix some source s ∈ V and a vertex appear-
ance (v, t) ∈ V ×T . We define σ̃Ps(v,t) to be the number of unique prefixes of paths starting

in s and going through (v, t). Formally, let Ps(v,t) ⊆ P be the set of all paths in P that

start in s and go through (v, t). We now have σ̃Ps(v,t) :=
∣∣{P [•, (v, t)] | P ∈ Ps(v,t)}

∣∣.
Note that since the source vertex s has a special appearance (s, 0) associated with

it, the definition above makes sense for all possible appearances (v, t) ∈ V × T ; we will
have σ̃Ps(s,0) = 11 and σ̃Ps(s,t) = 0 for all t ∈ [T ]. Of course, for any appearance (v, 0)

with v 6= s we will have Ps(v,0) = ∅ and therefore also σ̃Ps(v,0) = 0.
With the necessary definitions out of the way, we can move towards the main result

of this section, that is, the generalization of the recursive formula for the cumulative
dependencies for more general path sets than that of Brandes [Bra01]. The crucial
property of a path set that we shall use in our framework is that of prefix-compatibility.

Definition 3.12 (Prefix-compatibility). Let P be a subset of paths of G. Then P is
said to be prefix-compatible if, for an arbitrary vertex s ∈ V and an arbitrary vertex
appearance (v, t), we have for all pairs of paths P,Q ∈ P that both start in s and go
through (v, t) that P [•, v]⊕Q [v, •] ∈ P.

The situation is pictured in Figure 3.3. Intuitively, it only matters that we got to
the appearance (v, t) on some path in P, and not on which path precisely. Hence, we
can take parts of any two paths in P with a common vertex appearance and splice
them together at that vertex to get another path in P. Note that many natural path

1Again, there could be an edge case if P does not contain the trivial paths from a vertex to itself.
In that case, if there are also no other paths starting in s, then we will have σ̃Ps(s,0) = 0. Indeed, in the
example described in Section 4.1 of the next chapter it will be the case for some “unimportant” vertices.
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(a) A temporal graph for which the set of
foremost paths is not prefix-compatible: P =

(s
1→ u

2→ v
4→ z) and Q = (s

2→ v
3→

u
4→ z) are both foremost s-z-paths. However,

P [•, (v, 2)] ⊕ Q [(v, 2), •] is not a path (and in
particular, not a foremost path).
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(b) A temporal graph for which the set of fore-
most paths is prefix-compatible. This is easy
to see, as the only vertex appearance to which
we have multiple paths is (s, 1).

Figure 3.4: Prefix-compatibility of foremost paths. Note that both examples work the
same in both the strict- as well as the non-strict case.

optimality concepts will lead to prefix-compatible path sets. For example, the set of all
shortest paths is prefix-compatible.

Naturally, some other sets do not have this property in general, e.g. the set of all
foremost paths: see Figure 3.4a. Among all foremost s-z-paths there are a few that go

through (v, 2). Two of them are P = (s
1→ u

2→ v
4→ z) and Q = (s

2→ v
3→ u

4→ z).
However, the walk P [•, (v, 2)]⊕Q [(v, 2), •] is not a foremost s-z-path.

That being said, sets which are not prefix-compatible in general may still be prefix-
compatible on a specific graph, in which case the results below will still apply. An
example of a graph for which the set of foremost paths is prefix-compatible is provided
in Figure 3.4b.

Note also that an important part of the definition is that it only cares about pairs of
paths that start in the same vertex and puts no restrictions on any other pairs of paths.

An important property of all prefix-compatible sets is that the relation induced by
their predecessor sets for some arbitrary source s ∈ V is always acyclic. We will use
this property when designing an algorithm computing betweenness centrality for prefix-
compatible path sets.

Lemma 3.13. Let P be a prefix-compatible set of paths and Ps ⊆ P be the set of all
paths in P starting in some source vertex s ∈ V . Then the relation induced by the
corresponding predecessor sets PrePs is acyclic.

Proof. Assume for the purpose of contradiction that there exist two vertex appear-
ances (v, t) and (w, t′) which violate the condition of acyclicity. That means that there ex-
ists a sequence of paths P1, . . . , Pn ∈ Ps such that we have a valid walk P1 [(v, t), (v1, t1)]⊕
P2 [(v1, t1), (v2, t2)] ⊕ . . . ⊕ Pn [(vn−1, tn−1), (w, t

′)] and similarly, there also exists a se-
quence of paths Q1, . . . , Qm ∈ Ps such that we have a valid walk Q1 [(w, t′), (w1, t

′
1)] ⊕

Q2 [(w1, t
′
1), (w2, t

′
2)]⊕ . . .⊕Qm

[
(wm−1, t

′
m−1), (v, t)

]
.
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Prefix-compatibility applied on (v1, t1) implies that (P1 [•, (v1, t1)]⊕ P2 [(v1, t1), •]) ∈
Ps. We can keep applying prefix-compatibility to conclude that for R = P1 [•, (v1, t1)]⊕
P2 [(v1, t1), (v2, t2)] . . . ⊕ Pn [(vn−1, tn−1), •], we have R ∈ Ps. Analogously, we can
show that S =

(
Q1 [•, (w1, t

′
1)]⊕Q2 [(w1, t

′
1), (w2, t

′
2)] . . .⊕Qm

[
(wm−1, t

′
m−1), •

])
∈ Ps.

However, we can now apply prefix-compatibility on (w, t′) to conclude that we also
have (R [•, (w, t′)]⊕ S [(w, t′), •]) ∈ Ps. Yet (v, t) appears both in R as well as S,
so R [•, (w, t′)]⊕ S [(w, t′), •] is not a path, contradicting the fact that it is in Ps.

We can finally move on towards the lemma that underpins the main result of this
chapter. The proof is similar to Theorem 6 by Brandes [Bra01] and analogous to
Lemma 4.9 by Buß et al. [Buß+20]. Our contribution lies in the generalization of the
proof to a wider range of path sets. As we shall see, such a generalization will prove to
be of many uses in Chapter 4, where we shall solve P-Betweenness-Centrality for
multiple different path sets P.

We start by making one last definition, namely we define a special notion of edge
dependency that we will use in our proof.

Definition 3.14 (Edge dependency). We write δPsz(v, t, ({v, w}, t′)) to denote the frac-
tion of s-z-paths in P that go through the appearance (v, t) and use the temporal
edge ({v, w}, t′).

Using this definition we can now state and prove a lemma which is the core of our
proof of the result below.

Lemma 3.15. Let G be a temporal graph. Fix some source vertex s ∈ V . Let P be
a prefix-compatible subset of the temporal paths in G. If δPsz(v, t, ({v, w}, t′)) is positive,
then the following holds:

δPsz(v, t, ({v, w}, t′)) =
σ̃Ps(v,t)

σ̃Ps(w,t′)
· σ
P
sz(w, t

′)

σPsz
.

Proof. Let Ps ⊆ P be the set of paths in P that start in s. Let P ∈ Ps, be an
arbitrary s-z-path that goes through (w, t′). By prefix-compatibility, for any pathQ ∈ Ps
that also goes through (w, t′), we have that Q [•, (w, t′)]⊕P [(w, t′), •] is in P. Therefore
we can combine an arbitrary prefix that ends in (w, t′) with an arbitrary suffix that
starts in (w, t′) to get a valid s-z-path.

Let R ∈ Ps, be an arbitrary path that goes through (v, t). Finally, let S ∈ Ps
be any s-z path in Ps that goes through both (v, t) and (w, t′), making the direct

transition v
t′→ w. Then, by prefix-compatibility, R [•, (v, t)]⊕ S [(v, t), •] = R [•, (v, t)]⊕

(v
t′→ w)⊕S [(w, t′), •] is in Ps. Similarly, we can apply prefix-compatibility again, to get

that R [•, (v, t)]⊕(v
t′→ w)⊕P [(w, t′), •] is in P. Hence we can combine an arbitrary prefix

which ends in (v, t) with an arbitrary suffix which starts at (w, t′) to get a valid s-z-path
in P (see Figure 3.5). With all of that in mind, we can now make the following argument:

Of the σ̃Ps(w,t′) many path prefixes which end in (w, t′), exactly σ̃Ps(v,t) go through (v, t)

and use the transition v
t′→ w. Now, there are also σPsz(w,t

′)
σ̃P
s(w,t′)

many unique path suffixes

starting from the appearance (w, t′) and going to the vertex z. Therefore, there are σ̃Ps(v,t)·
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s (v, t) (w, t′) z
σ̃Ps(v,t)

σ̃Ps(w,t′)

σP
sz(w,t′)
σ̃P
s(w,t′)

Figure 3.5: Lemma 3.15: combining arbitrary suffix to (v, t) with an arbitrary suffix
from (w, t′).

σPsz(w,t
′)

σ̃P
s(w,t′)

many s-z-paths that go through (v, t) and use the transition v
t′→ w. Finally,

we divide by the total number of s-z-paths to get the expression in the statement of the
lemma.

The lemma above allows us to prove the following dependency accumulation formula
for arbitrary prefix-compatible path sets.

Lemma 3.16 (General dependency accumulation). Let G be a temporal graph and P be
a prefix-compatible subset of its temporal paths. Fix a source s ∈ V . Then the following
temporal dependency accumulation formula holds.

δPs•(v, t) = δPsv(v, t) +
∑

(w,t′)∈SuccPs (v,t)

σ̃Ps(v,t)

σ̃Ps(w,t′)
· δPs•(w, t′) (3.2)

Proof. We start by expanding the sum in the formula defining δPs•(v, t) (see Defini-
tion 3.8), considering its summands a bit more precisely.

δPs•(v, t) =
∑
z∈V

δPsz(v, t)

= δPsz(v, t) +
∑
z∈V

∑
(w,t′)∈SuccPs (v,t)

δPsz(v, t, ({v, w}, t)) (3.3)

Where δPsz(v, t, ({v, w}, t)) is as defined in Definition 3.14. Since (v, t) is not a direct
predecessor on any s-v path, we need to pull it out of the sum. Conversely, for any z ∈
V \ {v}, the vertex v may be contained at most once in any s-z-path. Hence the inner
sum of Equation (3.3) precisely captures δPsz(v, t).
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We can now use Lemma 3.15 to simplify the summation formula:∑
z∈V

∑
(w,t′)∈SuccPs (v,t)

δPsz(v, t, ({v, w}, t))

Lemma 3.15
=

∑
z∈V

∑
(w,t′)∈SuccPs (v,t)

σ̃Ps(v,t)

σ̃Ps(w,t′)
· σ
P
sz(w, t

′)

σPs
sz

=
∑

(w,t′)∈SuccPs (v,t)

∑
z∈V

σ̃Ps(v,t)

σ̃Ps(w,t′)
· σ
P
sz(w, t

′)

σPs
sz

=
∑

(w,t′)∈SuccPs (v,t)

σ̃Ps(v,t)

σ̃Ps(w,t′)

∑
z∈V

σPsz(w, t
′)

σPs
sz

Definition 3.8
=

∑
(w,t′)∈SuccPs (v,t)

σ̃Ps(v,t)

σ̃Ps(w,t′)
· δPs•(w, t′),

from which the result immediately follows.

Note that Equation (3.2) can often be transformed into a simpler form. For example,
in the case of shortest paths σ̃Ps(v,t) will simply be the number of shortest paths from s

to (v, t), so we will have σ̃Ps(v,t) = σPs(v,t). On the face of it, the simplification may
look minor, but it implies that the process of computing the betweenness centrality
with respect to the set of shortest paths will be simple (see Section 4.3). Indeed, in
the next chapter we shall provide an example where an even greater simplification of
Equation (3.2) is exhibited (see Section 4.2).

Lemma 3.16 allows us to finally prove the main theorem of this section by devising
an algorithm which uses Equation (3.2) to solve P-Betweenness-Centrality for any
prefix-compatible set P. To be able to prove a stronger result than would otherwise
be possible, we first observe that because of the structure of Equation (3.2), we can
immediately identify some appearances as “useless.”

Definition 3.17. Let G be a temporal graph. Fix a source s ∈ V . We call a vertex
appearance (v, t) ∈ V × T relevant if either the appearance dependency δPsv(v, t) or the
path prefix count σ̃Ps(v,t) is nonzero.

Observe that by Equation (3.2), for any irrelevant vertex appearance (v, t), the cu-
mulative dependency of s on (v, t), that is, δPs•(v, t), is equal to zero. Hence it cannot
contribute anything either to the other cumulative dependencies in the recursion, or to
the value of betweenness (see Observation 3.6 and Observation 3.9). It shall soon become
clear why the definition above allows us to prove a stronger result than would otherwise
be possible.

Theorem 3.1 (General betweenness computation). Let G be a temporal graph and P a
prefix-compatible subset of its temporal paths. Assume that for any source vertex s ∈ V
a set of vertex appearances R that includes all relevant vertex appearances, as well as

• the appearance dependencies δPsv(v, t);
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• the prefix counts σ̃Ps(v,t);

• the predecessor sets PrePs (v, t)

for all (v, t) ∈ R can be computed in O(f(n,M, T )) time. Then the betweenness values
CPB (v) can be computed for all vertices v ∈ V in O(nf(n,M, T ) + n3T 2) time.

Proof. Consider Algorithm 3.1. We assume that the function Count-Prefixes that
computes the necessary values in time f(n,M, T ) is given to us. We first prove the
correctness of the algorithm before analyzing its running time.

Correctness: The general idea of the algorithm is to use Lemma 3.16 to implicitly
compute the total betweenness centrality and use Lemma 3.7 to recover the CPB values.
As Equation (3.1) of Lemma 3.7 has the constant summand +1, in Line 2 we initialize
the betweenness values to 1.

The next step is to compute the cumulative dependencies δPs•(v, t) for each source
vertex s and appropriately update the betweenness values. We do this in the loop
starting on Line 3. We first initialize the array holding the cumulative dependencies
on Line 4. Note that the vertex appearances without any adjacent edges are certainly
unreachable and hence irrelevant, so we do not have to consider them. We then compute
the appropriate values for δPsv(v, t), σ̃

P
s(v,t), and PrePs (v, t) using the auxiliary function

that we assume we are given.
Finally, in the loop starting on Line 7 we compute the cumulative dependencies

using the recursive formula of Lemma 3.16. We proceed in reverse topological order,
that is, we start with vertices that have no successors (and hence for which the equation
in Lemma 3.16 is trivial to evaluate) as our base case and then proceed backwards.
This is possible as prefix-compatible sets always lead to acyclic predecessor graphs (see
Lemma 3.13).

Finally, on Line 12 we apply a “connectivity correction.” This term corresponds to
the

∑
w∈V

[
σPvw > 0

]
1

part of Equation (3.1) in Lemma 3.7. Notice that we do not

have to handle the term with
[
σPwv > 0

]
1

as on Line 11 we only ever add terms which

correspond the sum of Equation (3.2), and never the δPsv(v, t) terms. (We do, however,
add those terms to the δPs•(v, t) values which then propagate into the CB array, which is
why we need the correction on Line 12.)

Running time: We can easily see that for the loop on Line 4 we need O(M) =
O(n2T ) time overall. Line 6 takes O(f(n,M, T )) time by assumption. Before the execu-
tion of the for-loop on Line 7, we may first need to compute the topological order on the
predecessor graph. This graph has at most O(nT ) vertices and hence O((nT )2) edges,
so the topological ordering can be computed in O(n2T 2) time. We then note that the
for-loop on Line 7 goes over each edge of the predecessor graph exactly once, so once
again we get an O(n2T 2) bound for the overall execution time. Finally, Line 12 runs
in O(nT ) time (or in constant time, if we do some additional bookkeeping in the loop
of Line 11).

Overall, we get O
(
n ·
(
f(n,M, T ) + n2T 2

))
= O

(
nf(n,M, T ) + n3T 2

)
for the run-

ning time of the whole algorithm.

The significance of the theorem is as follows: let P be some path set of interest with
respect to which we want to compute the betweenness, e.g. the set of shortest paths (we
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Algorithm 3.1 General betweenness algorithm, see Theorem 3.1. It uses an auxiliary
function Count-Prefixes that returns a (super-) set of relevant vertex appearances R,
as well as the values of δPsv(v, t), σ̃

P
s(v,t),PrePs (v, t) for each of those appearances

Input: A temporal graph G = (V, E , T ).
Output: Betweenness CB(v) of all vertices v ∈ V (G).

1: for v ∈ V do
2: CB[v]← 1 . Initialize to 1 per Equation (3.1)

3: for s ∈ V do
4: for ({u, v}, t) ∈ E do
5: δPs•[v, t]← 0 . Reset the array

6: R, δPsv(v, t), σ̃
P
s(v,t),PrePs (v, t)← Count-Prefixes(G, s)

7: for (w, t′) ∈ R in topological order determined by PrePs do
8: δPs•(w, t

′)← δPs•(w, t
′) + δPsw(w, t′) . Appearance dependency on (w, t′)

9: for (v, t) ∈ PrePs (w, t′) do

10: δPs•[v, t]← δPs•[v, t] +
σ̃P
s(v,t)

σ̃P
s(w,t′)

· δPs•[w, t′] . Sum of Equation (3.2)

11: CB[v]← CB[v] +
σ̃P
s(v,t)

σ̃P
s(w,t′)

· δPs•[w, t′]

12: CB[s]← CB[s]− |{v | ∃t ∈ [T ] : δPsv(v, t) > 0}| . Connectivity correction

13: return CB

shall see more examples in Chapter 4). Then, if P is prefix-compatible, we can reduce
solving P-Betweenness-Centrality to computing the predecessor sets and the σ̃Ps(v,t)
values by supplying the function Count-Prefixes. For example, Buß et al. [Buß+20]
have effectively shown that for the set of shortest and the set of shortest-foremost paths
we have f = O(n2T 2), which using Theorem 3.1 yields O(n3T 2) running time.

Furthermore, we can now see why the definition of “relevant” vertices is important:
otherwise, the output of Count-Prefixes would always have to be O(nT ) in size.
This would, in turn, imply that our predecessor graph has O(nT ) vertices and so the
running time provided by Theorem 3.1 would also have a lower bound of Ω(n3T 2).
However, this bound can be unnecessarily tight. Indeed, in one of the examples that
we shall see in Chapter 4, we show a case where our predecessor graph has only O(n)
vertices and O(M) edges. Hence, to be able to use Algorithm 3.1 in its fullest, we only
require Count-Prefixes to consider the relevant appearances.

The considerations above lead us to a slightly stronger result. Indeed, the corollary
below merely quantifies the logic of our proof of Theorem 3.1 in a somewhat more precise
manner. We only separate those two statements to simplify the notation in Theorem 3.1.

Corollary 3.18. Let G be a temporal graph and P a prefix-compatible subset of its
temporal paths. Assume that for any source vertex s ∈ V a set of vertex appearances R
that includes all relevant vertex appearances R, as well as

• the appearance dependencies δPsv(v, t);

• the prefix counts σ̃Ps(v,t);
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• the predecessor sets PrePs (v, t)

for all (v, t) ∈ R can be computed in O(f(n,M, T )) time, possibly amortized across all n
vertices2. If the set R has size bounded by O(g(n,M, T )) and the predecessor graph
on R induced by PrePs has O(h(n,M, T )) edges, then the betweenness values CPB (v) can
be computed for all vertices v ∈ V in O (n [M + f(n,M, T ) + g(n,M, T ) + h(n,M, T )])
time.

Naturally, we always have g = O(nT ) and h = O(n2T 2), which is the property we
used in our proof of Theorem 3.1. Note that the theorems also apply to static graphs
(which can be regarded as temporal graphs with T = 1 and non-strict paths). For
such graphs we have g = O(n) and h = O(m). Therefore, Corollary 3.18 yields O(nm+
nf(n,M, T )) for any static graph, regardless of the path optimality concept used (as long
as it is prefix-compatible). In particular, Brandes [Bra01] showed that for the standard
betweenness centrality we have f = O(m) yielding the well-known O(nm) complexity
for computing betweenness centrality in a static graph.

2That is, the computation for all n vertices can be carried out in O(nf(n,M, T )) overall time.



Chapter 4

A case study of framework
applications

In the previous chapter, we presented a property of path sets that leads to the existence of
a recursive formula for calculating the cumulative dependencies, which in turn has some
algorithmic implications about P-Betweenness-Centrality. In this chapter, we use
the framework on some examples of increasing complexity in order to show how it can be
used to compute betweenness centrality with respect to a variety of different path sets.
In Section 4.1, we use of Theorem 3.1 to solve a simple problem yet one that, to the best
of our knowledge, has not been analyzed before. In Section 4.2, we show a case that has
already appeared in literature, allowing us to contextualize our framework and show how
it fits together with the previous results. Finally, in Section 4.3 we use the framework to
show a more complicated and more general result. Namely, extending the results of Buß
et al. [Buß+20], we present a polynomial-time algorithm that computes the betweenness
centrality with respect to any combination of the canonical optimality criteria (shortest,
fastest, foremost) with lexicographic tie-braking, except for the combinations that have
previously been shown to be #P-hard.

4.1 Subset betweenness

Consider the following scenario: a nation state has a set of critical hospitals offering
specialty care that are spread all throughout country and are connected with a rail net-
work. Naturally, there are also many train stations on the paths between the hospitals,
or even stations which are off to the side and do not lie on any paths connecting the
hospitals themselves. Now, for patient safety reasons, the government wants to analyze
the connectivity of those hospitals to determine what the critical (intermediate) train
stations are. Hence, betweenness centrality is a natural measure to consider. However,
notice that the situation is different than the standard scenario in which betweenness
centrality is used. We have two categories of vertices in our graph representing the
rail network: one, the hospitals, and two, all the other intermediate stations that the
trains go through. Yet we only care about the connectivity of the former and not the
latter—of course, the internal structure of the intermediate vertices does affect the con-
nectivity of the hospitals, but we are only interested in this indirect effect, while the

37
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direct connectivity of the intermediate stations with each other is immaterial for us.

The scenario above directly leads to a different measure of betweenness. In all gen-
erality, we may have two special sets of vertices S,Z ⊆ V , and are only interested in
shortest paths going from the set S to the set Z.1 We may have S = Z in which case we
effectively choose a special set of “terminal” vertices and the rest become “intermediate”
vertices whose connectedness interests us only insofar as it affects the connectivity of the
terminal vertices—exactly the scenario described above. Moreover, in particular we can
have S = Z = V , in which case all vertices are the “important vertices,” so we simply
get shortest betweenness. Hence, the subset betweenness as described above can be seen
as a generalization of the standard shortest betweenness.

To formalize the problem, let G be a temporal graph, S,Z ⊆ V be subsets of its
vertices, and P(SZ) be the set of shortest S-Z paths, that is,

P(SZ) := {P | P is a shortest s-z-path for some s ∈ S and z ∈ Z}.

Then the subset betweenness problem is simply the P(SZ)-Betweenness-Centrality
problem.

It is easy to see that P(SZ) is prefix-compatible. Moreover, we can also see that it is

easy to compute both the predecessor sets PreP
(SZ)

s and the prefix counts σ̃P
(SZ)

s(v,t) , since

they are both exactly the same as in the case of shortest betweenness (because prefixes
of shortest S-Z paths are themselves shortest paths). This computation can therefore be
done with an augmented BFS, in the same manner as described in Buß et al. [Buß+20],
in time f(n,M, T ) = O(n2T 2).

Putting it together, we can now use Theorem 3.1.

Proposition 4.1. P(SZ)-Betweenness-Centrality can be solved in O(n3T 2) time.

Notably, we can also see that for any vertex s ∈ S and any vertex v ∈ V \ (S ∪ Z)

we will have that δP
(SZ)

sv (v, t) = 0, so by Lemma 3.16 we see that ĈB(v) > 0 if and only
if v participates in some shortest S-Z paths, as expected from our intuitive description
at the beginning of this section.

Finally, it is also easy to see that the observations of this section can be generalized
in the following way:

Proposition 4.2. Let G be a temporal graph, P be a prefix-compatible subset of its paths,
and S,Z ⊆ V be arbitrary subsets of its vertices. Then the corresponding path subset

P(SZ) := {P ∈ P | P is an s-z-path for some s ∈ S and z ∈ Z}

is also prefix-compatible.

1Note that we have chosen shortest paths for simplicity of presentation. However, one can easily see
that all the results shown later in this chapter would analogously generalize to their respective variant
of subset betweenness.
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4.2 Prefix-foremost betweenness

In this section, we analyze the case of prefix-foremost paths. This path optimality
concept has already been studied by Buß et al. [Buß+20], so our focus shall lie mostly
on showing how our results interact with those of Buß et al. [Buß+20]. First, we apply
Lemma 3.16 to the case of prefix-foremost paths to recover a result from the paper and
to show how greatly Equation (3.2) of Lemma 3.16 can simplify in some cases. Second,
we show how the framework of Theorem 3.1 can be used on the case of prefix-foremost
paths.

The concept of foremost paths is probably one of the most natural concepts of path
optimality in temporal graphs. Hence, they have immediately appeared as an important
target of study. However, as was proven by Buß et al. [Buß+20], the P-Betweenness-
Centrality problem with respect to the set of foremost paths is #P-hard, both in the
case of non-strict, as well as the case of strict paths. In the following, we shall therefore
try to work around this computational difficulty. However, we shall only focus on the
strict case, as it turns out that the approach we describe below is insufficient in the
non-strict case, still leading to a #P-hard problem (for a proof of that last assertion, see
the paper of Buß et al. [Buß+20]).

One of the possible remedies to the difficulty of dealing with foremost paths involves
making the observation that on any such foremost path, the only restriction is arrival
time at the target vertex. Thus, on the way there we can make multiple detours and, in
some cases, move around the graph almost arbitrarily. We would therefore like to place
an additional requirement on the paths to limit such pathological behavior. Namely, we
add the condition that all the prefixes of the paths also be foremost paths. This proves to
be a powerful definition as, intuitively speaking, it forces paths to be “efficient enough”
as to allow the corresponding betweenness problem to be computationally tractable.

Definition 4.3 (Prefix-foremost path (-set)). Let G = (V, E , T ) be a temporal graph
and s, z ∈ V a pair of vertices. An s-z-path P is prefix-foremost if, for any v ∈ V on P ,
we have that P [•, v] is a foremost path. We denote the set of all strict prefix-foremost
paths in G by P(pfm).

It was shown by Wu et al. [Wu+16] that if there exists any (strict) s-z-path, then
there exists a (strict) prefix-foremost s-z-path.

Observation 4.4 (Prefix-foremost properties). Fix a source s ∈ V . For any vertex v ∈
V that s is connected to, define by tv the foremost arrival time from s to v. From the
definition of the set of prefix-foremost paths P(pfm) we can easily see the following:

• P(pfm) is prefix-compatible.

• σ̃P
(pfm)

s(v,tv)
= σP

(pfm)

sv and σ̃P
(pfm)

s(v,t) = 0 for any t ∈ T \ {tv}.

• All paths starting in s and going through v use the same appearance (v, tv).

• Since at most one appearance of v is ever used on paths in P(pfm), we can sim-

ply write SuccP
(pfm)

s (v) := SuccP
(pfm)

s (v, tv), as well as w ∈ SuccP
(pfm)

s (v) instead

of (w, tw) ∈ SuccP
(pfm)

s (v).
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With all of that in mind we can show how Equation (3.2) simplifies in the case
of P(pfm) and recover Lemma 4.13 of Buß et al. [Buß+20].

Proposition 4.5 (Lemma 4.13 in Buß et al. [Buß+20]). Let P(pfm) be the set of strict
prefix-foremost paths in a temporal graph G. Let s ∈ V be a source and v ∈ V a vertex
such that s is connected to v. Then the following holds:

δP
(pfm)

s• (v) = 1 +
∑

w∈SuccP(pfm)
s (v)

σP
(pfm)

sv

σP
(pfm)

sw

· δP(pfm)

s• (w).

Proof. The proof is mostly an exercise in notational rewriting. Since P(pfm) is prefix-
compatible, we can use Lemma 3.16 to get:

δP
(pfm)

s• (v)
Observation 3.9

=
∑
t∈T

δP
(pfm)

s• (v, t)

Lemma 3.16
=

∑
t∈T

δP(pfm)

sv (v, t) +
∑

(w,t′)∈SuccP(pfm)
s (v,t)

σ̃P
(pfm)

s(v,t)

σ̃P
(pfm)

s(w,t′)

· δP(pfm)

s• (w, t′)


=

∑
t∈T

δP
(pfm)

sv (v, t) +
∑
t∈T

∑
(w,t′)∈SuccP(pfm)

s (v,t)

σ̃P
(pfm)

s(v,t)

σ̃P
(pfm)

s(w,t′)

· δP(pfm)

s• (w, t′)

Observation 3.9
= 1 +

∑
t∈T

∑
(w,t′)∈SuccP(pfm)

s (v,t)

σ̃P
(pfm)

s(v,t)

σ̃P
(pfm)

s(w,t′)

· δP(pfm)

s• (w, t′)

Observation 4.4
= 1 +

∑
w∈SuccP(pfm)

s (v)

σ̃P
(pfm)

s(v,tv)

σ̃P
(pfm)

s(w,tw)

· δP(pfm)

s• (w, tw)

Observation 4.4
= 1 +

∑
w∈SuccP(pfm)

s (w)

σP
(pfm)

sv

σP
(pfm)

sw

· δPs•(w),

since
∑

t∈T δ
P(pfm)

sv (v, t) = δP
(pfm)

sv (v) = 1 for any vertex v that s is connected to.

For the second part of this section, we showcase a use of the framework of Theorem 3.1
(or, more precisely, Corollary 3.18) on the case of prefix-foremost paths. To do so,
we need to provide a Count-Prefixes function for the case of prefix-foremost paths.
Algorithm 4.1 does just that. Note that the algorithm is effectively a part of Algorithm 2
by Buß et al. [Buß+20]. Moreover, Algorithm 4.2 does the job of “translating” the output
of Algorithm 4.1 into the “interface” of Corollary 3.18. Using those algorithms together,
we recover another result from the paper:

Proposition 4.6 (See Table 1 in Buß et al. [Buß+20]). The P(pfm)-Betweenness-
Centrality problem can be solved in O(nM logM + n2) time.

Proof. Consider Algorithm 4.1. Its correctness follows from Observation 4.4. Since P(pfm)

is clearly prefix-compatible, we can now use the Corollary 3.18 for the running time.
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Algorithm 4.1 Count-Prefixes(G, s) for the strict prefix-foremost case, effectively a
part of Algorithm 2 in Buß et al. [Buß+20]

Input: A temporal graph G = (V, E , T ) and a source vertex s ∈ V .

Output: Set of relevant appearances R and δP
(pfm)

sv (v, t), σ̃P
(pfm)

s(v,tv)
, and PreP

(pfm)

s (v, t) for
those appearances.

1: for v ∈ V do . Initialization
2: σ[v]← 0
3: tmin[v]← −1
4: P [v]← ∅
5: Q← empty priority queue of edges, with their timestamps as keys

6: Q. enqueueAll({s t→ v | s t→ v ∈ E})
7: while Q not empty do

8: v
t→ w ← Q. extract-min()

9: if tmin[w] = −1 then . First and foremost arrival in w
10: tmin[w]← t

11: Q. enqueueAll({w t′→ x | w t′→ x ∈ E , t < t′})
12: if tmin[w] = t then . Foremost arrival in w
13: σ[w]← σ[w] + σ[v]
14: P [w]← P [w] ∪ v

return Transform(σ, tmin, P )

Since each edge can only be added at most once to the priority queue (on Line 11),
we have f(n,M, T ) = O(M logM). Furthermore, there is at most one relevant vertex
appearance per vertex in G (see Observation 4.4) and so the predecessor graph obviously
cannot have more than M edges. We therefore get g(n,M, T ) = O(n) and h(n,M, T ) =
O(M).

Overall, by Corollary 3.18, we get a running time of O(n [M +M logM + n+M ]) =
O(nM logM + n2).

As a final remark, notice that the first part of this section, the proof of Proposition 4.5
was not necessary at all in our consideration of P(pfm)-Betweenness-Centrality—it
was only presented to show another connection between this work and the paper of Buß
et al. [Buß+20]. Indeed, Proposition 4.5 is already “contained” in Corollary 3.18—this
is the power of the generalization made in Chapter 3. For the purpose of using Corol-
lary 3.18, we only needed Observation 4.4 (that was necessary to devise Algorithm 4.1).

4.3 Combinations of optimality criteria

There are three canonical concepts of path optimality in temporal graphs that are the
most studied: shortest, foremost, and fastest [Hol15; HS12; Wu+14]. Note that some
other optimality concepts have appeared previously, that we shall, however, not study
here, for example, latest-departure paths [Wu+16] (which for our purposes are compu-
tationally similar to foremost paths), or paths with waiting-time constraints (where the
time spent on a vertex in a path is bounded) [Cas+20; Him+19].
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Algorithm 4.2 An auxiliary function to translate the output of Algorithm 4.1 into the
framework of Corollary 3.18

1: function Transform(σ, tmin, P )
2: R← ∅
3: for v ∈ V do
4: R← R ∪ {(v, tmin[v])}
5: δP

(pfm)

sv (v, tmin[v])← 1

6: σ̃P
(pfm)

s(v,tv)
← σ[v]

7: PreP
(pfm)

s (v, tmin[v])← P [v]

return R, δP
(pfm)

sv (v, t), σ̃P
(pfm)

s(v,tv)
,PreP

(pfm)

s (v, t)

s z

1

1

1

1

5

5

7

6

2 3

2 3 4

2

2

Figure 4.1: Optimality criteria: the order in which they are combined matters. The top
path is the only shortest-fastest path, while the bottom one is the only fastest-shortest
path.

The aforementioned canonical path optimality concepts all correspond to minimizing
a certain quantity: path length, arrival time, duration. However, sometimes minimizing
only one of the quantities leads to undesirable results: consider a public rail transport
network. We might want to spend as little time as possible traveling, so we decide to use
duration as our metric. That being said, some fastest paths may be very long in terms of
the amount of edges, that is, we would have to switch trains many times on our journey.
This is obviously highly inconvenient, increases the risk of boarding the wrong train,
and so on. Hence, all else being equal, we would like to make as few changes as possible
on our fastest path. More formally speaking, we would like to combine some optimality
measures to obtain new ones. Towards that end, we shall construct new measures via
lexicographic tie-breaking. For example, a path is shortest-fastest if it is the shortest
path among all fastest paths.

Observe that the order matters: a shortest-fastest path will, in general, not be a
fastest-shortest path. For example, consider the graph in Figure 4.1. The upper two
paths are the only fastest paths. However, only the very top one is shortest-fastest, as it
has fewer edges than the upper-middle one. Similarly, the lower two paths are the only
shortest paths. However, only the bottom path is fastest-shortest, as the lower-middle
one has a larger duration. Hence we see that shortest-fastest and fastest-shortest paths
can be of a different duration or length.

Note that adding the same criterion twice has no effect: shortest-fastest-shortest
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Table 4.1: Tractability of different variants of P-Betweenness-Centrality, as shown
by Buß et al. [Buß+20]. For example, the first entry in the third column refers to
shortest-foremost betweenness, which was shown to be solvable in polynomial time.
Note that the diagonal of the table also corresponds to the optimality concepts which
are not combinations of multiple different ones. For example, shortest-shortest paths
are the same as shortest paths. Hence, the table implicitly contains all possible ways of
combining at most two path optimality concepts.

Shortest Fastest Foremost

Shortest P ? P
Fastest ? #P-hard #P-hard

Foremost ? #P-hard #P-hard

paths are exactly the same paths as fastest-shortest paths, since the latter already all
have the same length by definition. Therefore, it only makes sense to combine criteria
at most twice (using each of shortest, fastest and foremost at most once), as doing it
three or more times would yield a redundant measure.

This concept has already been studied by Buß et al. [Buß+20], where a few variants
have been proven #P-hard, while a polynomial-time algorithm has been provided for
some of the others. The results from the paper have been summarized in Table 4.1. To
the best of our knowledge, no algorithm has been provided for the variants not handled
in the paper. In this section, we shall use the framework of Theorem 3.1 to fill in those
remaining entries in the table as well as solve the problem for all remaining non-trivial
combinations of criteria, that is, those combining three measures of optimality, of which
there are 3! = 6 (since the ones which contain one of shortest, fastest, or foremost more
than once are equivalent to one of the entries in the table). Note that our results cover
both the strict as well as the non-strict case. Indeed, all of our proofs work in both of
those cases, so we will not specify whether strict or non-strict paths are meant in the
statements of lemmas and theorems.

We start by formalizing the notion of putting different optimality criteria together in
a way which allows us to cover all possible combinations in a unified manner. In order to
do that, we shall first define c = (c1, c2, c3), a “criterion function” that returns a tuple of
numbers that we shall then compare lexicographically. For example, (3, 5, 5) < (4, 2, 1)
and (2, 2, 2) < (2, 2, 3). Each entry of the tuple, ci, will be one of path length, duration
and arrival time.

Definition 4.7 (Criterion function). We call a criterion function a member of the
following family of functions:

c : N3 → N3

(`, d, t) 7→ (c1, c2, c3)

where for each ci we have ci ∈ {`, d, t, 1}.

By convention we shall always treat the first argument as the path-length, the second
as duration, and the third as the arrival time. Indeed, for convenience we also overload
the function for paths.
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Definition 4.8. For a path set P we overload a criterion function c to a function P → N3.
For a path P ∈ P of length `, duration d, and arrival time t, we write c(P ) := c(`, d, t).

Note that we allow the elements of the output tuple to be a constant, allowing us
to formalize the unrestricted path set with c(`, d, t) = (1, 1, 1). Also note that in some
cases we can encode a combination of the canonical optimality criteria as a criterion
function in multiple ways. For example, for fastest paths we could choose c(`, d, t) =
(d, 1, 1), but since fastest paths are the same as fastest-fastest-fastest paths, we could
also take c(`, d, t) = (d, d, d); if we want to consider shortest-foremost paths, then one
possible choice would be c(`, d, t) = (t, `, `), and another could be c(`, d, t) = (t, 1, `).

We shall adopt one more convention when dealing with criterion functions. For v ∈ V
and t ∈ T , if the source vertex and the respective values of distance, duration, and arrival
of the paths in question are clear from the context, then we shall simply write c(v)
or c(v, t), instead of directly referring to those values of our vertex or vertex appearance
in consideration. This convention will prove useful when writing down a generalized
algorithm later in this section.

Observe that each criterion function naturally determines the set of optimal paths
between any two vertices (or vertex appearances).

Definition 4.9 (c-optimal paths). Let c be a criterion function and P an arbitrary
set of paths in a temporal graph G. Finally, let s ∈ V be an arbitrary source ver-
tex. Then for every vertex v ∈ V we call an s-v-path P ∈ P c-optimal if for every
other s-v-path P ′ ∈ P we have c(P ) ≤ c(P ′). Similarly, for any vertex appearance (v, t),
we call an s-(v, t)-path c-optimal if it has a minimal value of c among all s-(v, t)-paths.

Taken further, we see that every criterion function c induces a whole path set of c-
optimal paths for every pair of vertices.

Definition 4.10 (Induced path sets). Let c be a criterion function. Let P be any set
of paths in a temporal graph G. Let P ′ ⊆ P be a set of paths such that for every
pair of vertices s, z ∈ V we have that P ′ contains all c-optimal s-z-paths. Formally, for
any s, z ∈ V , let Psz ⊆ P represent the set of all s-z-paths in P. Then

P ′ :=
⋃
s,z∈V

{P ∈ Psz | ∀P ′ ∈ Psz : c(P ) ≤ c(P ′)}.

We call P ′ the induced path set (of c).

With the concept of criterion functions defined, we can now turn our attention to-
wards the main objective of this section, namely providing a general solution to the
P-Betweenness-Centrality problem with respect to any set of paths induced by a
criterion function. We start by showing the following simple lemma.

Lemma 4.11 (Walk-to-path construction). Let W be an s-z walk, for some s, z ∈ V .
Then there exists a path P with length and arrival time no larger than-, and departure
time no smaller than that of W . Additionally, if W is not a path, then P is shorter
than W .
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Figure 4.2: Walk-to-path construction

Proof. If W is a path, then the statement is trivial. Otherwise, there exists some vertex
visited by W more than once. Let v ∈ V be the first such vertex. Let (v, t) be the first
appearance of v in W and let (v, t′) be the last appearance of v in W .

Then the walk W ′ = W [•, (v, t)] ⊕W [(v, t′), •], illustrated on Figure 4.2, is a path.
Since it is a concatenation of a prefix and a suffix of W , it cannot have a worse length,
departure, or arrival time. Finally, since W ′ visits (v, t) only once while W does so at
least twice, W ′ is also shorter than W .

We shall now restrict our attention to those criterion functions, whose output tuple
contains path length as (at least) one of its entries. That is, we will exclude the unre-
stricted path set as well as the ones based only on an optimal combination of duration
and arrival time. We know that computing the betweenness with respect to any such
optimality criterion that does not include path length is #P-hard [Buß+20].2 We shall
now prove that P-Betweenness-Centrality with respect to all remaining optimality
concepts can be solved in polynomial time. We first turn our attention to a few simple
lemmas that underpin the main result of this section.

Lemma 4.12. Let P be a subset of temporal paths in G induced by some criterion func-
tion c. Consider now the set P(fa) ⊆ P of paths in P that for each pair of vertices s, z ∈ V
contains the set of fastest s-z-paths among those in P.

Let P ∈ P(fa) be an arbitrary path. Let (v, t) be any appearance in P . Let Q be any
other path in P(fa) starting in the same source vertex s ∈ V and going through (v, t).
Then Q has the same departure time as P .

Proof. Let tP and tQ be the departure times of P and Q, respectively. Assume for the
purpose of contradiction that tP 6= tQ. In particular, assume without loss of generality
that tP < tQ.

Observe that the walk R = Q [•, (v, t)] ⊕ P [(v, t), •] is faster than P . If it is not a
path, then, by Lemma 4.11, we can make it into a path R′, without making it worse with

2Note that the case of fastest-foremost and foremost-fastest paths is not explicitly handled by Buß
et al. [Buß+20], however the same proof as that for the case of foremost and for the case of fastest paths,
using the exact same reduction, would also work on foremost-fastest and fastest-foremost paths.
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respect to c. This path is faster than P . Hence, the only reason why it is not in P(fa)

can be that it is not in P. However, it arrives no later than P . Therefore we can only
have that R′ /∈ P if R′, in spite of being faster, is longer than P . This implies that even
if duration is one of the criteria in c, length is of “higher priority.”

The fact that R′ is longer than P implies that Q [•, (v, t)] is longer than P [•, (v, t)].
However, then the walk S = P [•, (v, t)]⊕Q [(v, t), •] has the same arrival time as Q but
is shorter. Again, by Lemma 4.11, it can be made into a path S′. This path may be
slower than Q, but as we have already established, length has a higher priority in P.
Hence, Q cannot be optimal.

We have reached a contradiction, therefore we must have tP = tQ.

This lemma has the following obvious corollary that we will need in our proof of the
main result.

Corollary 4.13. Let P(fa) be as in Lemma 4.12. Let P ′ ⊆ P(fa) be an arbitrary subset
of P(fa). Then the property described in Lemma 4.12, i.e., that paths starting from the
same source and going through the same appearance have the same departure time, still
holds.

The corresponding lemma about shortest paths is also true.

Lemma 4.14. Let P be a subset of temporal paths in G induced by some criterion func-
tion c. Consider now the set P(sh) ⊆ P of paths in P that for each pair of vertices s, z ∈ V
contains the set of shortest s-z-paths among those in P.

Let P ∈ P(sh) be arbitrary. Let (v, t) be any appearance in P . Let Q be any
other path in P(sh) starting in the same source vertex s ∈ V and going through (v, t).
Then P [•, (v, t)] and Q [•, (v, t)] have the same length.

Proof. Assume for the purpose of contradiction that the two subpaths have a different
length. Without loss of generality, assume that P [•, (v, t)] is shorter than Q [•, (v, t)].
Then the walk R = P [•, (v, t)]⊕Q [(v, t), •] is shorter than Q and if it is not a path, then
it can easily be transformed into a path R′ (by Lemma 4.11).

We can use Corollary 4.13 to conclude that, if duration is among the optimality
criteria, then P and Q have the same departure time. That means that R′ has its
duration (if relevant) and arrival time no worse than Q and, as mentioned before, is
shorter than Q, contradicting the optimality of Q.

We also have the corresponding corollary.

Corollary 4.15. Let P(sh) be as in Lemma 4.14. Let P ′ ⊆ P(sh) be an arbitrary subset
of P(sh). Then the property described in Lemma 4.14, i.e., that prefixes of paths starting
from the same source and going through the same appearance have the same length, still
holds.

Note that the condition imposed by the lemmas above, namely that of P being
induced by a criterion function is only sufficient, but not necessary for the lemmas to
hold. For example, consider the set of “slowest” paths, i.e., paths with maximal duration.
This set is not induced by a criterion function, but, as can easily be checked, both of
the lemmas and their corollaries will still hold. At the same time, the lemmas do not
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Figure 4.3: Lemmas 4.12 and 4.14 do not hold for arbitrary sets P: the s-v-prefixes of
optimal paths in P(mod 2) from s to z1 and to z2 have different lengths and departure
times.

hold for arbitrary sets P, as might be one’s first intuition: for example, consider the
set P(mod 2), the set where the only restriction is that for any pair of vertices s, z ∈ V ,
paths of even length are strictly better than those with an odd length (we can think
of those as being shortest paths where their length is measured modulo two). Consider
now the graph in Figure 4.3. There is only one optimal path between s and any other
vertex. In particular, there is only one optimal path between s and each of z1 and z2,
call them P and P ′, respectively, each one going through (v, 3). However, we can see
that the paths P [•, (v, 3)] and P ′ [•, (v, 3)] have different lengths and departure times.

Now that we have shown the two lemmas as well as their respective corollaries, we
can prove the following theorem.

Theorem 4.1. Let c be a criterion function such that at least one entry of its output
tuple is path length. Then the corresponding induced set P(sh-gen) of optimal paths with
respect to c is prefix-compatible.

Proof. Let P ∈ P(sh-gen) be an arbitrary path in P(sh-gen). Let (v, t) be an arbitrary
vertex appearance in P . Now let Q ∈ P(sh-gen) be an arbitrary optimal path starting in
the same source vertex s as P and going through (v, t). Our goal is to prove that R =
Q [•, (v, t)]⊕ P [(v, t), •] is a member of P(sh-gen).

Consider the walk R. There are two possible reasons for why it may not be a an
optimal path:

R is not a path. This means that there is some vertex w that is both in Q [•, (v, t)]
and in P [(v, t), •]. Let (w, t′) be the first such appearance in Q [•, (v, t)]. We can then
say that Q [•, (w, t′)]⊕P [(w, t′), •] is a valid s-z-path such that, if duration is one of the
optimality criteria, has the same departure time as P (by Corollary 4.13) and therefore
the same duration. It also has an arrival time at most that of P . However, it is shorter
than P (by Corollary 4.15), contradicting its optimality. We can therefore conclude
that R is a path.

R is not optimal. We will now assume that R is a path. It arrives at the same
time as P . Furthermore, by Corollary 4.15, it has the same length as P . If duration is
one of the criteria, then by Corollary 4.13 R has the same departure time as both P ,
and so also the same duration as P . Hence R is an optimal s-z-path.

We have shown that neither of the two cases is possible and so we can see that R is
indeed an optimal path and is in P(sh-gen). We can now conclude that the set P(sh-gen)

is prefix-compatible.



48 CHAPTER 4. A CASE STUDY OF FRAMEWORK APPLICATIONS

Let us now consider solving the P(sh-gen)-Betweenness-Centrality problem. Since
we have proved that the set is prefix-compatible, we can use the framework of Theo-
rem 3.1. We need to compute the numbers of unique prefixes of optimal paths through
some appearance (v, t). Towards that end, we make the following observations, which
follow from Corollaries 4.13 and 4.15, respectively.

Observation 4.16. If duration is among the optimality criteria, then for all optimal
paths P ∈ P(sh-gen) starting from some source s ∈ V and going through some appear-
ance (v, t) ∈ V ×T , we have that P [•, (v, t)] is a fastest path to that particular appearance
among paths in P(sh-gen).

Since for P(sh-gen) we must have length among the optimality criteria by definition,
for the next observation the condition in the beginning is unnecessary.

Observation 4.17. For all optimal paths P ∈ P(sh-gen) starting from some source s ∈ V
and going through some appearance (v, t) ∈ V ×T , we have that P [•, (v, t)] is a shortest
path to that particular appearance among paths in P(sh-gen).

All paths to an appearance (v, t) arrive at the same time t by definition, so we also
trivially have the matching observation for the last relevant optimality criterion.

Observation 4.18. For all optimal paths P ∈ P(sh-gen) starting from some source s ∈ V
and going through some appearance (v, t) ∈ V ×T , we have that P [•, (v, t)] is a foremost
path to that particular appearance among paths in P(sh-gen).

Taken together, those observations mean that all prefixes of optimal paths are them-
selves optimal, with respect to vertex appearances.

Lemma 4.19. Let P ∈ P(sh-gen) be an arbitrary c-optimal path starting from some
source s ∈ V . Then, for any (v, t) ∈ V × T that P goes through, P [•, (v, t)] is a c-
optimal s-(v, t)-path.

We find that the (rough) converse of the lemma also holds.

Lemma 4.20. Let c be the criterion functionthat induces P(sh-gen). Let P be any c-
optimal s-z-path and (v, t) ∈ V × T any appearance that P goes through. Then any
optimal s-(v, t)-path can be extended into an optimal s-z-path.

Proof. Let Q be any optimal s-(v, t)-path. By Lemma 4.19, P [•, (v, t)] is optimal, hence
it has, by definition, the same optimality criteria as Q. Therefore, the only reason
why Q⊕ P [(v, t), •] could not be an optimal s-z-path is that it is not a path. However,
in that case we can use Lemma 4.11 on Q⊕ P [(v, t), •] to exhibit a path that is shorter
than P , with no worse arrival time and duration. That would contradict the optimality
of P . Therefore, every optimal s-(v, t)-path can be extended into an optimal s-z-path.

Lemma 4.19 and Lemma 4.20 taken together imply a crucial property for devising
an algorithm using the framework of Theorem 3.1.
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Algorithm 4.3 P(sh-gen) betweenness in temporal graphs.

Input: A temporal graph G = (V, E , T ), a source s ∈ V , and a criterion function c, with
path length as at least one entry of the output tuple.

Output: (Super-) Set of relevant appearances R and δP
(sh-gen)

sv (v, t), σ̃P
(sh-gen)

s(v,t) (v, t),

and PreP
(sh-gen)

s (v, t) for those appearances.
1: Q← Initialize(s)
2: while Q not empty do
3: (v, t)← Q. extract-min()
4: for (w, t′) ∈ NG(v, t) do . N>

G (v, t) for strict
5: if dist[w, t′] =∞ then . First arrival at (w, t′)
6: R← R ∪ {(w, t′)}
7: Q. enqueue(w, t′)

8: Relax((v, t), (w, t′))
9: Update-Path-Counts((v, t), (w, t′))

10: return Transform()

Corollary 4.21. For the set P(sh-gen), for any vertex s ∈ V and vertex appearance (v, t) ∈
V × T , we have σ̃P

(sh-gen)

s(v,t) = σP
(sh-gen)

s(v,t) . 3

Moreover, we know that prefix-compatibility implies acyclicity of the predecessor
graph (see Lemma 3.13). So for each source vertex, we can proceed with finding optimal
paths/counts to each appearance in a Dijkstra-like manner, as weighted by the criterion
function.

Below we provide the main part of an algorithm implementing our extended Dijkstra
approach. Because the full algorithm is quite lengthy and most of the work in all of
the auxiliary functions is nothing more than a vast amount of bookkeeping that is not
particularly enlightening to see, we defer it along with a more detailed analysis and a
formal proof of its correctness to Appendix A.

Be as it may, Algorithm 4.3 allows us to finally use Theorem 3.1 to make statements
about computational complexity of all combinations of path optimality concepts (that
are not #P-hard).

Theorem 4.2. Let P(sh-gen) be an induced path set of a criterion function c that has
path length as at least one entry of its output tuple. Then P(sh-gen)-Betweenness-
Centrality can be solved in O(n3T 2(log(n) + log(T ))) time.

Proof. Algorithm 4.3 provides us with the required Count-Prefixes function for the
case of P(sh-gen).

The correctness of Algorithm 4.3 follows from the observations above (for a more
detailed proof of correctness, see Appendix A). For the running time, we shall mention

3Strictly speaking, this is only true for (v, t) that appear on some path in P(sh-gen) and other-

wise σ̃P
(sh-gen)

s(v,t) is equal to zero. However, such appearances cannot be relevant, and the returned value

of σ̃P
(sh-gen)

s(v,t) for irrelevant vertices does not matter.



50 CHAPTER 4. A CASE STUDY OF FRAMEWORK APPLICATIONS

Table 4.2: Tractability of different variants of P-Betweenness-Centrality. For ex-
ample, the first entry in the third column refers to shortest-foremost betweenness, which
is solvable in polynomial time, as shown by Buß et al. [Buß+20]. New results shown in
bold.

Shortest Fastest Foremost

Shortest P P P
Fastest P #P-hard #P-hard

Foremost P #P-hard #P-hard

that Initialize takes O(n+M) = O(n2T ) time while also adding the complete neigh-
borhood NG(s) to the priority queue Q. Transform runs in O(nT ) time. The other
helper functions take constant time and do not otherwise affect the running time.

In the loop starting on Line 4, we see that the size of a temporal neighborhood of a
vertex appearance is upper bounded by O(nT ). Furthermore, every vertex appearance is
added to the queue at most once (on Line 7). Therefore, the total amount of time for the
while loop of Line 2 is upper bounded by the maximum size of a temporal neighborhood of
a vertex appearance times the number of possible vertex appearances, times a logarithmic
factor for the queue operations, that is, O(nT ·nT log(nT )) = O(n2T 2(log(n)+log(T ))).

Since, by Theorem 4.1, P(sh-gen) is prefix-compatible, we can now use Theorem 3.1
with f(n,M, T ) = O(n2T 2(log(n) + log(T ))) to conclude that P(sh-gen)-Betweenness-
Centrality can be solved in O(n3T 2(log(n) + log(T ))) time.

4.4 Summary

In this chapter, we have used our framework of Theorem 3.1 to solve the problem of
computing betweenness centrality for a variety of practically-motivated path optimality
concepts. We started with a simple warm-up example in Section 4.1, before moving to
Section 4.2, where we have shown connections between this and previous work.

Finally, in Section 4.3 we described a way of combining the canonical path optimality
concepts and then used the framework to show that all combinations of two optimality
criteria that had not been studied before yield a betweenness measure that is computable
in polynomial time, see Table 4.2. Moreover, we have also shown that all possible
combinations of the three criteria which are not redundant, i.e., those that yield a
measure different from the ones in Table 4.2, also lead to P-Betweenness-Centrality
problem that is solvable in polynomial time.

Remarkably, while we have only considered criterion functions that are based on the
three canonical measures of temporal paths, we could generalize the results of Section 4.3
to some other sets which have the necessary properties. For example, if we wanted to
consider slowest paths (i.e., paths of maximal duration), then we could easily show
that the corresponding results also hold. Therefore, we could solve P-Betweenness-
Centrality with respect to, e.g., shortest-slowest paths in polynomial time. It remains
an open question whether a simple property exists which would allow us to give a neces-
sary and sufficient condition on path sets for which the results from Section 4.3 to hold.
Such a property would allow a more streamlined approach to computing betweenness
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centrality using more new measures derived from real-world scenarios.
In his paper, Brandes [Bra01] also cites a few related measures of centrality—stress

centrality [Shi53], graph centrality [HH95], and closeness centrality [Sab66] that can
easily be computed with only a slightly modification to his algorithm. Notably, just
as in the case of Brandes’ algorithm, our algorithm from Section 4.3 can also be easily
tweaked to compute those other similar centrality measures.





Chapter 5

Conclusion

We have analyzed the problem of computing betweenness centrality in the temporal
setting. We generalized the insights seen in the previous work on the problem to devise a
uniform approach for computing the betweenness centrality in this general setting. More
specifically, we have first defined betweenness centrality with respect to an arbitrary set
of paths in a temporal graph. Then, we have presented a property of a path set—prefix-
compatibility—that allows us to simplify the process of computation of betweenness
centrality. Notably, while the condition is a sufficient one for our results to hold, it
is not known at the time whether said condition is also necessary. It remains an open
problem to determine whether that is the case and if not, to find a more general condition
that is both necessary and sufficient.

It is known that for some variants of betweenness centrality, like fastest or foremost
(or even the unrestricted variant, where every possible path needs to be considered),
the problem of computing the measure is #P-hard [Buß+20]. A question for further
research could be to see if the theoretical framework presented in this work could be
used to tackle those computationally intractable variants. For example, one could try
and develop parameterized algorithms for the problems, with the parameter being some
notion of distance of the path set to prefix-compatibility. Similarly, it might be of interest
to try and use the framework to devise approaches leading to approximate computation
of betweenness centrality.

In the second part of this work, we have shown practical uses of the framework,
motivated by some real-world scenarios. First, in Section 4.1, we have shown how to
compute the betweenness centrality in a scenario where only some vertices in the network
are important to us. In Section 4.2, we have shown how our framework is connected to
previous research in the area. Then, in Section 4.3 we have applied our framework to
solve multiple variants of betweenness at the same time (twenty-two, if we count the strict
and non-strict variants as separate). Some of the variants had already been studied in
literature, but to the best of our knowledge most have first been analyzed here. It is worth
to mention that for the problems for which a solution had been known, the previously
discovered algorithm runs in O(n3T 2) time, in contrast to O(n3T 2(log(n) + log(T ))) of
this work. While the former appears to be algorithmically tight with respect to our
framework, it remains an open problem to determine if the additional logarithmic factor
can be removed in the general case shown here.
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Figure 5.1: A graph showing how Pareto-optimal paths with respect to arrival time and
length are not simply the same as the union of shortest-foremost and foremost-shortest
paths. The only foremost (and so also the only foremost-shortest) s-z-path is the top
one, while the only shortest path is the bottom one. However, the middle path is also
Pareto-optimal: in comparison to the middle path, each of the top and bottom path has
one of arrival time or length that is worse than the respective value of the middle path.

Studying other path optimality concepts and their related betweenness remains a
natural avenue for further research. For example, one could try and compute betweenness
centrality with respect to the set of paths of bounded waiting time, i.e., paths such that
the difference between adjacent temporal edges is either at least ∆ or at most ∆, for
some constant ∆. Both problems are likely to be hard: the former problem is likely to
be reducible to the unrestricted betweenness (since we can stretch the timespan of the
graph by a factor of ∆), while for the latter, the problem of even finding such paths
has recently been shown to be NP-hard [Cas+20]. It is interesting to see what other
real-world-motivated concepts of path optimality might emerge and how the framework
developed here might apply to them.

Similarly, and perhaps more in the spirit of Section 4.3, we can also consider different
ways of combining path optimality measures. Instead of criterion functions outputting
tuples to be ordered lexicographically, we could consider criterion functions that output
an arbitrary convex combination of their arguments, effectively allowing us to have a
continuous balance between the optimality concepts. We conjecture that for any such
variant where the weight on path length is some ε > 0, the corresponding betweenness
measure can be computed efficiently. In fact, while a careful investigation of the topic
is outside the scope of this work, it is possible that Algorithm 4.3 would work for the
problem in its exact form, the only difference being in the criterion function outputting
a real number instead of a tuple.

Yet another way of combining optimality concepts that could prove of interest is
that of finding Pareto-optimal paths. In Pareto-optimal setting we would also consider
criterion functions, exactly like those already seen in Section 4.3. The only difference
being, instead of comparing the output tuples lexicographically, for tuples a and b, we
only have a < b if a is “strictly better” than b. More formally, we have a < b only if
all entries in a are less than or equal to the corresponding ones in b and at least one of
the entries in a is strictly less than the corresponding entry in b. A path is then Pareto-
optimal, if it has a minimal value according to the ordering described above. For a short
example showing how Pareto-optimal paths differ from the lexicographic ordering case,
consult Figure 5.1.

The last part, i.e., Section 4.3 also spawned another type of questions for further



55

work. An intuitive summary of the results from the section is that introducing shortness
into the optimality criteria yields a tractable betweenness centrality measure. However,
our results have only been proven with an approach that effectively amounted to brute
force. That being said, we have also presented an example showing that the results do not
hold in all generality—where introducing shortness into the optimality criteria does not
simplify the situation (enough). Hence it remains an interesting question whether there
exists a simple necessary and/or sufficient condition on a path set for which introducing
shortness will lead to a simple betweenness centrality measure.
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Appendix A

Section 4.3—full algorithm

In this appendix we provide the full version of the algorithm from Section 4.3. We
reproduce the main part of the algorithm, as seen in Section 4.3, as well as supply the
definitions of the auxiliary functions used therein. Our goal is to give a short overview
of the full algorithm and then provide a formal proof of its correctness. The running
time analysis has already been provided in Section 4.3, in Theorem 4.2.

The algorithm is pictured below, see Algorithm A.1. For convenience, we assume
that the input graph G and the criterion function c, as well as the arrays P , σ, dist, dur,
tmin, δ are all global variables, hence we do not need to constantly pass all of them around
functions. Also note that σ, dist, and dur are all overloaded: if the array is accessed
with two indices, it is a different one than if accessed with only one index. However,
they both represent the same concept. For example, σ[v, t] represents the number of
optimal paths to the appearance (v, t), whereas σ[v] represents the number of optimal
paths to v. Any invocations of the criterion function c are used with the current values
stored in the appropriate dist and dur array (and the tmin array if invoked on a vertex
instead of a vertex appearance).

The algorithm performs a Dijkstra-like search through the graph in order to find
optimal paths to each reachable vertex appearance as well as compute the necessary
auxiliary data. The main logic of the algorithm is a simple priority-queue-based walk
through the graph, while the helper functions initialize all the necessary data structures,
transform the data into the values expected by Theorem 3.1, as well as do the necessary
bookkeeping.

The function Initialize initializes all data structures to their default values; initially
all vertices (and vertex appearances) apart from the source s are considered unreachable
and the respective entries in the appropriate arrays are initalized in lines 2-8. The set R,
initialized on Line 9, will store the set of vertices reachable from s.

It is important to note that we also need to do the first round of search in the
initialization function and not in the main loop of Algorithm A.1, since we have to
treat (s, 0) differently to all appearances that come thereafter. That is because of the
duration: in the typical case, if we can get to the appearance (v, t) with duration d

and then make the transition v
t′→ w, then the resulting path to w will have a duration

of d + (t′ − t). However, when dealing with the source, it is not the case: we associate
the appearance (s, 0) with it, but by definition of path duration we can get to any
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62 APPENDIX A. SECTION 4.3—FULL ALGORITHM

Algorithm A.1 P(sh-gen) betweenness in temporal graphs.

Input: A temporal graph G = (V, E , T ), a source s ∈ V , and a criterion function c, with
path length as at least one entry of the output tuple.

Output: (Super-) Set of relevant appearances R and δP
(sh-gen)

sv (v, t), σ̃P
(sh-gen)

s(v,t) (v, t),

and PreP
(sh-gen)

s (v, t) for those appearances.
1: Q← Initialize(s)
2: while Q not empty do
3: (v, t)← Q. extract-min()
4: for (w, t′) ∈ NG(v, t) do . N>

G (v, t) for strict
5: if dist[w, t′] =∞ then . First arrival at (w, t′)
6: R← R ∪ {(w, t′)}
7: Q. enqueue(w, t′)

8: Relax((v, t), (w, t′))
9: Update-Path-Counts((v, t), (w, t′))

10: return Transform()

neighbor (v, t) of the source in duration zero, and not 0 + (t − 0) = t. However, after
that point, the departure times of all possible paths are set in stone and so all other
appearances can be handled in the main loop.

The function Relax, just like in standard SSSP problems, relaxes the transition
from (v, t) to (w, t′): it first checks if a better path to (w, t′) has been found. If so, it
updates the auxiliary data structures storing the parameters of optimal paths to (w, t′)
and then resets the data about predecessors and path counts. Additionally, we also need
to keep track of paths to the vertex w as a whole, which we do on Line 7.

The function Update-Path-Counts is responsible for the majority of bookkeeping.
It checks whether the currently analyzed transition yields an optimal path to the vertex
appearance (w, t′) (and possibly to the vertex w as a whole, as well). If so, then it
updates the necessary data structures.

Finally, Transform simply prepares the return values to fit those expected in Theo-
rem 3.1. Note that this function is mostly there for making the presentation a bit clearer
and an analysis of the algorithm a bit easier; we could just as easily have returned the
data structures directly.

We shall now prove the algorithm’s correctness. Broadly speaking, we can partition
the problem into two parts: first, we show that the algorithm correctly finds optimal
paths. Second, we show that the path counts and predecessor sets returned by the
algorithm are correct.

The proof of the former will broadly follow that of the standard Dijkstra algorithm
(for example, see Cormen et al. [Cor+09]). We start by making a few simple observations.
First, the algorithm does a (prioritized) breadth-first-search, so it puts no restrictions
on visited appearances. Hence, we get the following observation:

Observation A.1. A vertex apperance will be added to the queue by Algorithm A.1 if
and only if it is reachable from the source vertex s ∈ V .

Now, in the following analysis of the algorithm, we denote by c(v) or c(v, t) the
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Algorithm A.2 Initialization function for Algorithm A.1.

1: function Initialize(s)
2: for v ∈ V do . Optimal values for each vertex
3: dist[v]←∞; dur[v]←∞; tmin[v]←∞; σ[v]← 0

4: for (v, t) ∈ V × T do . Optimal values for each vertex appearance
5: σ[v, t]← 0; P [v, t]← ∅
6: dist[v, t]←∞; dur[v, t]←∞
7: dist[s]← 0; dist[s, 0]← 0; tmin[s]← 0 . s gets a special appearance
8: σ[s]← 1; σ[s, 0]← 1
9: R← {(s, 0)} . Relevant vertex appearances

10: Q← empty min-priority queue of vertex apperances, with c as the key
11: . Duration means the successors of s are a special case, handle them separately
12: for (w, t′) ∈ NG(s) do . Always first discovery of (w, t′)
13: dist[w, t′]← 1; dist[w]← 1
14: dur[w, t′]← 0; dur[w]← 0
15: σ[w, t′]← 1; σ[w]← σ[w] + 1
16: P [w, t′]← {(s, 0)}
17: if t′ < tmin[w] then
18: tmin[w]← t′

19: R← R ∪ {(w, t′)}
20: Q. enqueue(w, t′)

21: return Q

values of the criterion function with the appropriate entries of dist, dur, tmin fed into
the function. To refer to the optimal values, we make the following definition.

Definition A.2. Let G be a temporal graph and c a criterion function. Fix a source s ∈
V . Then for every vertex v ∈ V (vertex appearance (v, t)) we denote by c∗(v) (re-
spectively, c∗(v, t)) the optimal value of criterion function. That is, for every s-v-path P
(respectively, every s-(v, t)-path P ′) we have c∗(v) ≤ c(P ) (respectively, c∗(v, t) ≤ c(P ′)).

We have the following simple property of c∗:

Lemma A.3. Let (w, t′) be an arbitrary appearance and let (v, t) ∈ PreP
(sh-gen)

s (w, t′) be
a direct predecessor. Then c∗(v, t) < c∗(w, t′).

Proof. Let P ∈ P(sh-gen) be an arbitrary optimal path making the transition (v, t)
t′→

(w, t′). (Such a path must exist since (v, t) ∈ PreP
(sh-gen)

s (w, t′).) Then we have t ≤ t′,
so P [•, (v, t)] has duration and arrival time no more than that of P [•, (w, t′)], but is
shorter by one edge. Since path length is one of the criteria in c by definition of P(sh-gen),
we must have c∗(v, t) < c∗(w, t′).

Applying the lemma inductively yields the following:

Corollary A.4. Let (w, t′) be an arbitrary vertex appearance and let (v, t) 6= (w, t′) be an
arbitrary predecessor of (w, t′) on some path P ∈ P(sh-gen). Then c∗(v, t) < c∗(w, t′).
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Algorithm A.3 Function relaxing the transition from (v, t) to (w, t′), under the criteria
in c.

1: function Relax((v, t), (w, t′))
2: if c(dist[v, t] + 1, dur[v, t] + (t′ − t), t′) < c(w, t′) then . Better path to (w, t′)
3: dist[w, t′]← dist[v, t] + 1
4: dur[w, t′]← dur[v, t] + (t′ − t)
5: σ[w, t′] = 0
6: P [w, t′]← ∅
7: if c(w, t′) < c(w) then . Better path to w as a whole
8: dist[w]← dist[w, t′]
9: dur[w]← dur[w, t′]

10: σ[w]← 0
11: tmin[w]← t′ . t′ must be foremost among optimal paths

Algorithm A.4 Function doing the bookkeeping required for maintaining the path
count and predecessor arrays up-to-date.

1: function Update-Path-Counts((v, t), (w, t′))
2: if c(dist[v, t] + 1, dur[v, t] + (t′ − t), t′) = c(w, t′) then
3: σ[w, t′]← σ[w, t′] + σ[v, t]
4: P [w, t′]← P [w, t′] ∪ {(v, t)}
5: if c(w, t′) = c(w) then . Also found an optimal path to w
6: σ[w]← σ[w] + σ[v, t]
7: tmin[w]← min(tmin[w], t′) . t′ foremost among the optimal paths

One more important property of the algorithm is that for any vertex appearance (v, t),
the value c(v, t) is only affected in the function Relax and in fact, the value is only ever
decreased.

Observation A.5. Let (v, t) be any vertex appearance and d = c(v, t) be the value of
criterion function at some iteration of the main loop of Algorithm A.1 or before the call
to Initialize. Then at any later iteration of the loop, we have c(v, t) ≤ d. Since in the
beginning we have c(v, t) = ∞, this means that c is monotonically non-increasing with
each iteration.

Towards a formal proof of Algorithm A.1, we show that the following invariant holds:

Lemma A.6. At any iteration of the main loop of Algorithm A.1, let S be the set
of vertex appearances that have been processed (that is, (s, 0) and those that have been
removed from the queue). Then for every vertex appearance (v, t) ∈ S we have c(v, t) =
c∗(v, t).

Proof. We wish to show that on each iteration of the loop of Line 2, for the vertex
appearance (v, t) added to S, we have c(v, t) = c∗(v, t). For the purpose of contradiction,
assume that there exists a vertex appearance without this property. Let (w, t′) be the
first such appearance that is added to S. Since for (s, 0) we initialize the trivially
optimal values in Line 7 of Initialize, we cannot have (w, t′) = (s, 0). Similarly, (w, t′)
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Algorithm A.5 Translation function to the form of Theorem 3.1.

1: function Transform
2: for (v, t) ∈ R do
3: if c(v, t) = c(v) then

4: δP
(sh-gen)

sv (v, t)← σ[v,t]
σ[v]

5: σ̃P
(sh-gen)

s(v,t) ← σ

6: PreP
(sh-gen)

s ← P

7: return R, δP
(sh-gen)

sv (v, t), σ̃P
(sh-gen)

s(v,t) ,PreP
(sh-gen)

s

cannot be any of s’s direct neighbors since for them, the optimal path is that of duration
zero and length one, which are the values assigned on Line 12 of Initialize. (And by
Observation A.5, those values never change thereafter.)

Now, since all appearances added to S are reachable (by Observation A.1), there
must exist an optimal s-(w, t′)-path P . Let (v, t) be the first appearance on P that is
not an element of S. Therefore, we partition P into P [•, (v, t)] and P [(v, t), •] (with the
latter possibly having no edges, if (v, t) = (w, t′)).

We claim that c(v, t) = c∗(v, t) when (w, t′) is added to S. Why? Let (u, t′′) be the
predecessor of (v, t) on P . (Since (v, t) /∈ S, such a predecessor must exist). As (v, t)
is the first appearance that lies outside S, we must have (u, t′′) ∈ S. Furthermore,
by Lemma 4.19 and Lemma 4.20 we see that an optimal path to (v, t) can be found
through (u, t′′). Since (w, t′) is the first appearance violating our invariant, we must
also have that c(u, t′′) = c∗(u, t′′). Moreover, we know that (u, t′′) has been processed

and, in particular, that the transition u
t→ v has been relaxed, implying, together with

Observation A.5, that c(v, t) = c∗(v, t).

Since we have c(v, t) = c∗(v, t) and since (v, t) is a predecessor of (w, t′) (so we can
use Corollary A.4), we can derive the following inequality chain:

c(v, t) = c∗(v, t)
Corollary A.4

≤ c∗(w, t′)
Observation A.5

≤ c(w, t′).

Now, because c is the key in our priority queue and (w, t′) is being processed be-
fore (v, t), we must also have c(w, t′) ≤ c(v, t) and so all the inequalities must, in fact, be
equalities, yielding c(v, t) = c∗(v, t) = c∗(w, t′) = c(w, t′). However, c∗(w, t′) = c(w, t′)
contradicts our choice of (w, t′).

Thus we have effectively completed the first part of our task, namely showing that
Algorithm A.1 correctly finds optimal paths. Using the invariant above, we can show
another important property of the algorithm.

Corollary A.7. Let (w, t′) be an arbitrary vertex appearance. Then all its direct prede-
cessors (v, t) ∈ PrePs (w, t′) are processed by Algorithm A.1 before (w, t′) is itself processed.



66 APPENDIX A. SECTION 4.3—FULL ALGORITHM

Proof. Using Lemma A.3 as well as Corollary A.4 and Observation A.5, for any (v, t) ∈
PrePs (w, t′), we have c∗(v, t) < c∗(w, t′) ≤ c(w, t′) at any point in the algorithm. However,
Lemma A.6 implies that at the time of processing of (v, t), we have c(v, t) = c∗(v, t).
This then implies c(v, t) < c(w, t′) at the time of processing, and so (v, t) is processed
before (w, t′).

We are now in the final stretch. Only one major proof remains. Before we start,
however, we need to make the following simple observation.

Observation A.8. For any vertex appearance (w, t′) 6= (s, 0) we have

σP
(sh-gen)

s(w,t′) =
∑

(v,t)∈PrePs (w,t′)

σP
(sh-gen)

s(v,t)

Armed with all the previous results, we embark on our last journey.

Lemma A.9. Algorithm A.1 correctly computes the number of c-optimal paths to and
the predecessor set of each appearance (w, t′).

Proof. If (w, t′) is unreachable, then the statement is trivially correct. Otherwise, we
prove the statement by an inductive argument. Consider the following invariant: at each
iteration of the outermost loop of Algorithm A.1, let S be the set of processed vertices.
Then for every (w, t′) ∈ S, the optimal path count and the predecessor set is correct.

Initialization: The statement is obviously correct for (s, 0) and all its neighbors.

Maintenance: We prove that at the time (w, t′) is removed from the queue, it has the

correct value of path count and the correct predecessor set. Let (v, t) ∈ PreP
(sh-gen)

s (w, t′)
be the first direct predecessor of (w, t′) that gets processed. By Corollary A.7, it
gets processed before (w, t′). By Lemma A.6, at the time of processing of (v, t), we
have c(v, t) = c∗(v, t). This implies that at exactly this iteration of the main loop of the
algorithm, Relax will find a path to (w, t′) with the optimal cost c∗(w, t′). At this point
it will reset (w, t′)’s path count and predecessor set for the last time (since a path P
with c(P ) < c∗(w, t′) will never be found). Afterwards, Update-Path-Counts will
add (v, t) to the list of predecessors of (w, t′) and set the path count to the number of
paths to (v, t).

From that point on, Relax will not further affect the path count and predeces-
sor set of (w, t′). However, by Corollary A.7 we know that every other predeces-

sor (v′, t′′) ∈ PreP
(sh-gen)

s (w, t′) will be processed before (w, t′). From Lemma A.6 it
follows that, just as for (v, t), the optimal paths going through (v′, t′′) will be found.
Therefore, Update-Path-Counts will similarly add (v, t′′) to the appropriate prede-
cessor list and add the number of paths to (v, t′′) to the number of paths to (w, t′).
Therefore, by Observation A.8, the number of paths to (w, t′) will be correct by the time
it gets processed. Those values will then be similarly used for updating the successors
of (w, t′), if any are found.
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Termination: At termination we have Q = ∅ which, by Observation A.1, implies
that S is the set of all reachable vertices.

Now, since we obviously have σP
(sh-gen)

sv =
∑

t∈T [c∗(v, t) = c∗(v)]1 σ
P(sh-gen)

s(v,t) and the
functions Relax as well as Update-Path-Counts obviously handle the appropriate
arrays so that they compute the desired sum above, we also get the corresponding lemma
about vertices as a whole.

Lemma A.10. Algorithm A.1 correctly computes the number of optimal paths to each
vertex v ∈ V .

We can finally complete our proof.

Theorem A.1. Algorithm A.1 is correct.

Proof. The function Transform prepares the returns values of Algorithm A.1. We
shall consider their validity in turn.

First, by Observation A.1, at the end of the algorithm, R is equal to the set of all
reachable appearances. Since an unreachable appearance is certainly not relevant, R
definitely constitutes a superset of relevant appearances.

Second, we have δP
(sh-gen)

sv (v, t) = σP
(sh-gen)

sv (v,t)

σP
(sh-gen)

sv

(see Definition 3.8). By Lemmas A.9

and A.10 we know that Algorithm A.1 computes the correct values of σP
(sh-gen)

sv (v, t)

and σP
(sh-gen)

sv . Therefore, we see that Line 2 of Transform correctly computes the
appearance dependencies of all appearances in R.

Third, since our algorithm correctly computes the values of σP
(sh-gen)

sv (v, t) and σP
(sh-gen)

sv ,

we have by Corollary 4.21 that it returns the correct values σ̃P
(sh-gen)

s(v,t) for any appear-

ance (v, t).
Finally, the fact that our algorithm correctly computes the predecessor sets has

already been established by Lemma A.9.


	Introduction
	Motivation
	Related work
	Our contribution
	Organization of the work

	Preliminaries
	Static and temporal graphs
	Betweenness centrality in (temporal) graphs
	Counting complexity: #P-hardness

	A framework for betweenness computation
	Generalized path optimality
	Computation of betweenness centrality

	A case study of framework applications
	Subset betweenness
	Prefix-foremost betweenness
	Combinations of optimality criteria
	Summary

	Conclusion
	Literature
	Appendix Section 4.3—full algorithm

