Technische Universitat Berlin

Electrical Engineering and Computer Science
Institute of Software Engineering and Theoretical Computer Science '
Algorithmics and Computational Complexity (AKT)

Using Temporal Graph
Comparison for Sign Language
Recognition

Paula Natascha Ruf3

Thesis submitted in fulfillment of the requirements for the degree

“Bachelor of Science” (B. Sc.) in the field of Computer Science

November 2021

Supervisor and first reviewer: Prof. Dr. Rolf Niedermeier
Second reviewer: Prof. Dr. Markus Brill
Co-Supervisors:  Dr. Vincent Froese and Malte Renken






Hiermit erklére ich, dass ich die vorliegende Arbeit selbststdndig und eigenhéndig sowie
ohne unerlaubte fremde Hilfe und ausschliellich unter Verwendung der aufgefiihrten
Quellen und Hilfsmittel angefertigt habe.

Berlin, den

Datum Unterschrift






Zusammenfassung

Temporale Graphen sind niitzlich, um Daten aus der realen Welt zu modellieren, da
sie Anderungen iiber die Zeit nachbilden koénnen. In dieser Arbeit nutzen wir temporale
Graphen und Methoden zur Bestimmung der Ahnlichkeit zwischen temporalen Gra-
phen fiir automatisierte Gebédrdenspracherkennung auf Wortebene. Das Ziel der auto-
matisierten Interpretation von Gebédrdensprache ist die Kommunikation mit horenden
Menschen zu vereinfachen und die Erkennung von Gebédrden auf Wortebene ist dabei
ein wichtiger Schritt. Wir stellen ein temporales Graphmodell fiir Gebérden der ame-
rikanischen Gebé#rdensprache (ASL) vor, bei dem wir Kérperbezugspunkte als Knoten
verwenden und die Kanten zwischen den Knoten die rdumliche Ndhe der Bezugspunkte
anzeigen. Die z- und y-Koordinaten der Bezugspunkte wurden aus bestehenden Vi-
deoaufzeichnungen einer Gebérde extrahiert. Wir vergleichen dann die resultierenden
temporalen Graphen mit zwei verschiedenen Methoden, mit der dynamic temporal graph
warping distance [1] und mit einem temporalen Random Walk Kernel [2]. Basierend auf
den Ahnlichkeitswerten verwenden wir den K-Nearest Neighbor Algorithmus und eine
Support-Vector Maschine fiir die Klassifizierung von Gebédrden. Mit unserem Graph-
modell und mit dem temporalen 2-Schritte Random Walk Kernel konnen wir bei 100
verschiedenen Gebiérden bis zu 62 % der Gebérden des Testsatzes korrekt iibersetzen und
bis zu 47 % bei 300 verschiedenen Gebérden. Damit sind unsere Ergebnisse vergleichbar
mit denen eines 2D-Convolutional Networks und mit weiteren Verbesserungen koénnte es
ein alternativer Ansatz fiir die Gebérdenspracherkennung werden.

Abstract

Temporal graphs are useful to model real-world data since they can represent temporal
changes. In this thesis, we use temporal graphs and temporal graph proximity measure
methods for automated word-level sign language recognition. The goal of automated sign
language interpretation is to simplify the communication between hearing and hearing-
impaired people and word-level sign language recognition is one important step. We
propose a temporal graph model for American Sign Language (ASL) signs, where we
use body keypoints as vertices and the edges indicate the proximity of the keypoints.
The z- and y-coordinates of the keypoints are extracted from existing video recordings
of a sign. We measure the similarity of the resulting temporal graphs with two different
methods, with the dynamic temporal graph warping distance [1] and with a temporal
random walk kernel [2]. Based on the similarity values, we use k-nearest neighbor or
support-vector machines for the classification of signs. With our graph model and the
temporal 2-step random walk kernel, we can predict up to 62 % correctly the meaning
of the test signs on a dataset of 100 different signs and up to 47 % on 300 different signs.
Our results are comparable to those of a 2D-convolutional network and with further
improvements, it could be an alternative approach for sign language recognition.
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Chapter 1

Introduction

Temporal graphs can be used to model real-world data that change over time, such as
communication or transportation networks. The advantage compared to static graphs
is that time information can be covered, which also makes analyzing temporal graphs
challenging. In the last few years, the interest in temporal graphs increased and they
have become a major subject in algorithmic graph theory (e.g., [3, 4, 1, 2]).

A temporal graph (also called temporal network [5, 6], time-varying graph [7], link
stream [8, 9]) consists of a constant set of vertices, but the edges between the vertices
vary over time. Intuitively, a temporal graph is a sequence of static graphs with the
same vertices but with different edge-sets. Temporal graphs can also be represented
by labeling the edges with the layers in which they are present. An example of both
representations are given in Figure 1.1.

A sign usually consists of a movement, which changes the positions of the body
keypoints, especially the hands. Since the movement follows a certain pattern, the
positions are time-dependent and therefore we can convert signs to temporal graphs.
In this thesis, we use temporal graphs to model signs of the American Sign Language,
where the vertices represent the keypoints on the human body and the temporal edges
indicate whenever two points get close to each other.

Sign language is one of the most important communication tools for hearing im-
paired people. However, communicating with listeners is often difficult and needs to be
done in written form. Therefore, research is being done on automated sign language
interpretation to simplify communication. There are two main tasks, word-level, and
sentence-level sign language recognition, in this thesis we address automated word-level
recognition. Sign language recognition is challenging because a sign is expressed by
body and hand motions, facial expressions, and sometimes also the mouth movement
[10]. All sign languages have their characteristics and like in spoken languages, there are
dialects in sign languages. We use the American Sign Language (ASL), which is mostly
used by people in the United States of America and Anglophone Canada [11]. With the
recent developments in image recognition, movements can be automatically extracted
from existing video recordings and larger datasets were presented [12, 13].

The latest approaches in sign language recognition are from the field of machine
learning, such as convolutional networks [14, 15, 13, 12]. This thesis, however, presents
a different, more simple approach, where we represent signs as temporal graphs, and

9
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Figure 1.1: Example of two ways to represent a temporal graph with a lifetime of 3. The
top row shows the different layers of the temporal graph while in the bottom row the
edges are labeled with the layers in which they exist.

we use methods to measure the similarity of temporal graphs, the dtgw-distance [1] and
a temporal random walk kernel [2]. For classification, we use algorithms like k-nearest
neighbor [16] and support-vector machines [17].

Related work. There are two main approaches to recognize sign language, sensor-
based and vision-based.

For the sensor-based approaches, a signer needs special hardware to capture signs,
such as special gloves/markes for the hands and fingers [18, 19, 20, 21, 22, 23, 24] or
other sensors, like leap motion controllers or accelerometers [25, 26, 27, 28]. Further,
multiple cameras [29] or depth cameras like the Kinect camera [30, 31] have been used
to get 3D information. Using such sensors leads to a better tracking of movements,
however, special sensors pose an obstacle as not every signer has access to these.

Vision-based approaches try to track the movements relying only on 2D information
received from one RGB camera. This simplifies the acquisition of larger datasets, as
videos from the web can be collected. To extract features from videos, general approaches
for feature detection in images [32, 33| are used, or approaches, which are specifically
designed to recognize relevant features for a sign language [34, 35, 36]. Cao et al. [37]
use so-called part affinity fields to extract body, hand [38], and face keypoints and called
the method OpenPose. Two of the largest datasets, ML-ASL [13] with 1,000 signs and
WLASL [12] with over 3,000 signs, have been created using OpenPose [37, 38].
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To model temporal dependencies, dynamic time warping (DTW) [39, 40, 41, 42],
Hidden Markov Models (HMM) [39, 40] or extended HMM [43, 44, 45, 46] are used. Re-
current neural networks model the temporal dependencies [12, 13] for 2D-convolutional
networks. 3D convolutional networks are used to capture spatio-temporal features si-
multaneously [14, 15, 13, 12]. Elakkiya [47] gives a detailed overview of the approaches.

To the best of our knowledge, we are the first to study sign language recognition with
temporal graph comparison methods. An overview of temporal graphs can be found
in [48, 49, 4]. There are two approaches for the proximity measure on temporal graphs,
the dynamic temporal graph warping (dtgw) distance [1] and temporal graph kernels [2].
The dtgw-distance [1] combines dynamic time warping and vertex mapping, based on
assigned vertex signatures, to measure the similarity between two temporal graphs. The
temporal graph kernels [2] use static kernels like the random walk kernel [50, 51, 52] or
the Weisfeiler-Lehman graph kernel [53] on temporal graphs by mapping them to static
graphs which encode the temporal dependencies.

Our contributions. The goal of this thesis is to analyze how ASL signs can be mod-
elled as temporal graphs, and how well the similarity measure methods dtgw-distance [1]
and a temporal graph kernel [2] perform regarding classification of signs. We derive the
temporal graphs from the extracted body and hand keypoints from video recordings
of the signs, provided by the WLASL dataset [12]. The dataset is one of the largest
datasets of ASL signs on a word-level. We use the similarity measures between two
temporal graphs, to predict the English counterpart of a sign on the word-level.

We show that our temporal graph model with a temporal 2-step random walk kernel
achieves an accuracy of 62.79% when classifying between 100 different signs and 47.01%
on 300 different signs, which is an improvement compared to the results of the pose based
convolution network [12]. The dtgw-distance performs not as good as the temporal graph
kernel did, reaching only 26.74% on 100 different signs.

The results show that our approach achieves comparable results on the dataset and
with further improvements, it may be an alternative to convolutional network approaches
for sign language recognition.






Chapter 2

Preliminaries

In this chapter we will give basic notation and concepts used in this work For T' € N, we
write [T'] to refer to the set {1,2,...,T}.

Static Graphs. We use basic notation according to Diestel [54].

Let G = (V, E) denotes a static (undirected) graph, V denotes the set of vertices and
E < {{v,w} | v,w € V,v # w,} denotes a set of edges. A vertez-labeled static graph
G = (V, E,{) consists additionally of a vertex labeling function ¢ : V' — X that assigns
a label to each vertex, where ¥ denotes a finite alphabet. The number |E(v)| of edges
at a vertex v is called degree dg(v) = d(v) of v.

Undirected Temporal Graphs. We adapt the notation from Froese et al. [1]. An
undirected temporal graph is a (T + 1)-tuple G = (V,&1,&2,&3, ..., Er), where V denotes
a non-empty set of vertices, T" = 1 is called the lifetime of G and &1,&2,&3,...,E7 is a
sequence of edge-sets & < {{v,w} |v,weV, v # w,}, i€ [T]. A layer of G is the static
undirected graph G; = (V, &;) at timestep 7 € [T7].

A wvertex-labeled undirected temporal graph G = (V, &1, &2, ..., Er, £) consists addition-
ally of a labeling function ¢ : V x T' — ¥, which assigns a label to each vertex at each
timestep ¢ € [T].

Vertex Mapping. A vertex mapping between two vertex sets V' and W assigns to a
vertex in V' a vertex in W and vice versa [1]. If the vertex sets do not have the same
size, not all vertices of the larger vertex set are mapped. Formally, a vertex mapping
M <V x W is a set of tuples in which each vertex z € YV u W is in at most one tuple
and M contains min(|V|, |W|) tuples. M(V, W) indicates the set of all vertex mappings
between V and W. Vj; € V are the vertices that are mapped to vertices in W and
Wy € W are the vertices that are mapped to vertices in V.

Vertex Signature Graph Distance on Static Graphs. We define a graph distance

based on vertex signatures according to Jouili and Tabbone [55] and Froese et al. [1].
Given a vertex mapping between the vertices of two graphs, the vertex signature graph

distance is the sum of the distances between mapped vertices. The distance between
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14 CHAPTER 2. PRELIMINARIES

two mapped vertices is defined as the distance between their vertex signature, which is
assigned to the vertices by a vertex signature function.

Let G = (V,E) and H = (W, F) be two static graphs. A vertex signature function
fa : V — QF assigns to a vertex v € V a value, which encodes information about it, and
similarly for the vertices in H with fg : W — Q. Let n : Q¥ x Q¥ — Q be a metric.
The cost of a vertex mapping M between V and W is defined as

C(G7H’M): Z n(fG(u)fo(v))+ Z AG(U)+ Z AH(w)

(u,v)eM UEV\VM ”LUGW\WA{

The (predefined) cost for a vertex v € V that is not mapped to a vertex in W is
Ag(v) € Q, similar the cost of a not mapped vertex w € W to a vertex in V' is Agy(w).
One of the sums 3 ey, Ac(V), 2pewrw,, Ar{w) will always be zero.

The vertex signature graph distance between G and H is defined as

D(G,H)= min C(G,H,M).
MeM(V,W)

Dynamic Time Warping (DTW). Dynamic time warping is an algorithm that
aligns temporal sequences of different speeds and also different lengths to one another.
Each element of the sequences must be matched to at least one element in the other
sequence, this matching is called warping and the sequence of the warped elements is
called warping path [56]. The dynamic time warping distance [56, 1] between two tem-
poral graphs is based on the warping path between the layers of the temporal graphs
g = (V, 51,52, ...,5T) and H = (W,fl,fz, ...,.7:U).

A warping path of order T' x U is a set p = {p1,...,pr} of L = 1 pairs p; = (i1, 71),
where

® P11 = (17 1) and pr, = (T? U) and
® P € {(ll + 1,5 + 1), (il,jl + 1), (il + 1,jl)}V1 <Il< L.

All warping paths of order 7' x U are denoted by Pr .

Dynamic Temporal Graph Warping (dtgw) Distance. We adapt the notation
from Froese et al. [1].

The dynamic temporal graph warping (dtgw) distance [1] is a similarity measure
between two temporal graphs based on vertex signature mapping and dynamic time
warping. The vertex signature is specified by a function, which assigns to every vertex
one or more numbers. Then, the vertices of both graphs are mapped in order that
the cost of the mapping is minimized. As the graphs are temporal, the layers of the
graphs are warped by dynamic time warping and the cost of the mapping in each layer
is computed. The vertex mapping between the temporal graphs is constant over the
layers of the temporal graphs. The dtgw-distance is the sum of the costs of the optimal
mapping on the layers of the temporal graphs which are warped in the optimal warping
path.
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Figure 2.1: Example of the dtgw-distance between two temporal graphs G with lifetime
3 and H with lifetime 5. The vertex mapping M is represented by the letters in the
nodes and the dynamic warping path is p = {(1,1), (2,1),(3,1), (4,2),(5,3)}. The vertex
signature functions for G and H use the degree of the vertex as vertex signature. The
metric is the absolute value of the difference. The dtgw-distance is dtgw(#,G) = 1 +
1+40+24+1=5.

Formally, let G = (V, &1, &, ...
graphs.

The dtgw-distance between the temporal graphs G and H for the vertex signature
functions fg,,..., fg, : 'V — QF and frys oo fry 2V — QF is

J&r) and H = W, Fi, Fa, ..., Fy) be two temporal

G M) = 8 2B, 2 €O A

(i,5)€p

Figure 2.1 shows an example of the dtgw-distance between two temporal graphs with
5 vertices and a lifetime of 5 and 3.

Random Walk Kernel. We adapt the notation from Oettershagen et al. [2].

A random walk kernel is a similarity measure between two static labeled graphs [50,
51, 52, 2]. Tt counts the common walks of both graphs. Two walks are considered to be
common if the labels encountered on the walks are equal. A j-step random walk kernel
considers walks up to length j.






Chapter 3

Methods

In this chapter, we introduce our model to represent an ASL sign as a temporal graph
in detail. First, we will briefly outline the dataset, which consists of video recordings of
signs from the internet. In Section 3.2 we describe how the temporal graphs are derived
based on the z- and y-coordinates of body, face, and hand keypoints. Then, we present
the similarity measure methods that are used to compare the temporal graphs.

3.1 Dataset

We use the dataset of Word-Level American Sign Language (WLASL) curated by Li
et al. [12]'. It contains video recordings of more than 3,000 signs with on average 10
samples per sign and from 119 different signers. They collected the videos from different
online sources and annotated them with information about the meaning of the sign, the
dialect, and the signer seen in the video. Further, they normalized the frame rate of
every video to 25 frames per second.

For every frame, they extracted 55 keypoints, 13 body and 21 keypoints per hand,
with OpenPose [37, 38] (see Figure 3.1). As mostly the upper body is recorded in the
videos, the OpenPose keypoints for the legs (8-14) and the feet (20-23) were omitted.
The resulting data consist of the - and y-coordinates as well as a detection confidence
of the keypoints for each frame [37].

They also ranked the signs by the number of samples and created the subsets asl100,
asl300, asl1000, and asl2000. Asl100 contains the 100 signs with the most samples per
sign and has an average of 20 samples, whereas asl2000 contains 2000 signs and has only
10 samples on average (see Table 3.1). Every sign has at least 7 samples.

As there are different dialects in sign languages, not all samples per sign are in
the same dialect. The number of samples which represent the same movement may be
smaller, for example computer has in total 30 samples, but 3 different variations and
only 7, 11, and 12 samples per variation.

! Available at https://github.com/dx1i94/WLASL
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(b) Hand keypoints that are tracked by
OpenPose [58].

(a) Body keypoints that are tracked by
OpenPose [57].

Figure 3.1: Skeleton model of the body and hand keypoints obtained by OpenPose [37,
38]. The numbers are the IDs of the keypoints.

Table 3.1: Overview of the subsets of the dataset with the average number of samples
per sign and the minimum number of samples. The sign with the most samples is book
with 40 samples followed by drink with 35 samples.

Subset  Average number of samples (rounded down) Minimum number of samples

asl100 20 18
asl300 17 14
asl1000 13 10
asl2000 10 7

3.2 Temporal Graphs representing ASL signs

For every sign sample in the dataset, we construct a temporal graph. The vertices are the
55 keypoints detected by OpenPose. The lifetime of the graph is the number of frames
and for every timestep, we create an edge set. Our idea is to draw an edge between
vertices if we consider these vertices to be close.

There is an edge between two vertices if the Euclidean distance between these vertices,
computed between the x- and y-coordinates of the related keypoints, is in a predefined
range. These ranges vary, as finger points cannot be as distant to each other as a finger
point to a face point. Therefore, we specify different ranges for fingers, hands, and body
points.
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(a) ASL sign B [59, Figure 4] (b) ASL sign five [59, Figure 4]

Figure 3.2: ASL signs to measure the distance between the fingers

To determine the ranges, we considered the distances from one finger point to other
finger points. The lower bound for all distances is 3 px to sort out mismatched points;
for instance, if two keypoints were assigned to the same position. In order to distinguish
between splayed fingers and fingers touching each other, we use the ASL signs five and B
(see Figure 3.2) to measure the distance between the fingers. Accordingly, we define the
upper bound for the distance between two finger points on one hand as 10 px. Between
finger points on different hands the upper boundary is 20 px and between the finger
points and the body points the upper boundary is 30 px.

To summarize, given a video recording of a sign and the extracted coordinates by
OpenPose, we represent the sign sample as a temporal graph, where the number of
frames is the lifetime, the 55 keypoints are the vertices and there is an edge between two
vertices if the distance between the keypoints is in a specific range.

In addition, we defined a threshold to only consider the keypoints, which are impor-
tant in the sign. Especially in signs, where only one hand is used, the keypoints of the
other hand can be omitted. In particular, if the hands are not completely inside the
boundary box for OpenPose, errors may occur in detecting the keypoints. We define the
threshold as the maximum y value for the finger points, as the upper left corner is (0,0).
The distances to finger keypoints that are cut off by the threshold are not considered for
the temporal graph. In order to determine the y value of this threshold, we use a model
called the “eight-head model”, which is used by artists [60]. The model suggests that the
height of a human is about eight times the height of the head and the torso has about
three times the height of the head [61]. The eight-head model is a rough approximation
and we use it only as an indicator for the threshold. We choose the threshold to be a bit
lower than the elbows and the eight-head model suggests, that it is around 1.75 times
the size of the head below the neck [61, Figure 5]. We estimate the head size by using
the distance between the keypoints 0 and 1, i.e., between the nose and the neck (see
Figure 3.1a). The threshold is set to 1.75 times this nose-neck distance added to the y
value of the keypoint 1.

Figure 3.3 shows one frame of the sign drink, where the left hand is not used in the
sign but would create edges in the temporal graph, as the points are close together. With
the threshold, these points are not considered for the graph, as they are below the blue
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Figure 3.3: Example of the extracted keypoints by OpenPose [37, 38] and the defined
threshold on the sign drink. The connections between the keypoints indicate the anatom-
ical relation and do not belong to the temporal graph. The blue horizontal line indicates
the threshold. The hand points of the left hand would create unnecessary edges in the
graph, but with the threshold, they are omitted.

line indicating the threshold. A disadvantage of this threshold could be that important
points are cut off if it is set incorrectly. This is particularly likely in the case of children,
as the eight-head model is very imprecise for them.

3.3 Similarity Measure Methods for the Sign Temporal
Graphs

In order to measure the similarity of two signs, we construct the temporal graphs as
described in Section 3.2 and use temporal graph comparison methods. We use the dtgw-
distance (Chapter 2) and the random walk kernel on the directed line graph expansion
(see Section 3.3.2) to determine the similarity of two temporal graphs. As the computing
of dtgw is NP-hard in general [1, Theorem 4.1], we use the alternating minimization (AM)
heuristic presented by Froese et al. [1, Section 5.3], to estimate the dtgw-distance between
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the temporal graphs. First, we outline how the AM heuristic works and define three
vertex signature functions for the estimation of the dtgw-distance. Then, we describe
the directed line graph expansion for temporal graphs, presented by Oettershagen et al.
[2, Section 3.2].

3.3.1 Heuristic Computation of dtgw-Distance

Froese et al. [1] introduce the alternating minimization heuristic to estimate the dtgw-
distance. The AM heuristic is based on the observation [1, Observation 3.1] that for
a fixed vertex mapping the warping path can be computed in polynomial time. This
also applies to a fixed warping path, where the vertex mapping can be computed in
polynomial time. They presented four initializations for the heuristic, two for an initial
warping path and two for an initial vertex mapping [1]. We choose to initialize the
heuristic with the shortest warping path of length max(7,U), which is closest to the
diagonal, due to the short running time O(T + U) of this initialization, where T and U
denote the lifetimes of the temporal graphs.

Vertex Signature Functions

To compute the dtgw-distance, we need the vertex signature functions fg,, ..., fg, : V —
QF. We use the same vertex signature function for every layer. For our ASL sign
temporal graphs, we use the following three functions and compare their performance in
Section 4.1.1. The first one uses only the degree of a vertex as a signature. In the second
function, we combine the degree with a label, which indicates if the vertex belongs to
a body or hand keypoint, so that a hand keypoint is not mapped to a body keypoint.
The third function uses even more detailed information about the associated keypoint,
as it combines the degree with a label indicating the keypoint ID of the vertex. We
use the same keypoint IDs for the left hand as for the right hand, since left-handed
signers mirror the movement of a right-handed signer. Therefore, we do not force a
vertex mapping based on the keypoint IDs, since we would then have to decide on the
right- or left-handed version. Figure 3.4 shows an example graph layer with the vertex
signatures assigned by the different vertex signature functions. Let G = (V, &, ..., &)
be a temporal graph and let d¢(v) € N denote the degree of vertex v € V' at timestep t.

Degrees. This vertex signature function assigns the degree to each vertex v € V
and for each layer t € [T].

fai(v) = di(v)

Degrees combined with body/hands distinction This function assigns for
every vertex the degree of the vertex as well as an indication, if it is a body point or a
hand point, where 0 denotes body points and 1 denotes hand points. Let b(v) : V' — [0, 1]
be a function, which returns 0, if the related keypoint ID belongs to a body point and
1 if it belongs to a hand point.

fb,t(v) = (de(v), b(v))
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(b) Example for the
degrees combined with
body/hand distinction
function.  The vertex
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CHAPTER 3. METHODS

=y
-6
//

(¢) Example for the
degrees combined with
keypointID labels func-
tion. The vertex label is
the degree of the vertex
followed by the number
of the keypoint related

whether it is a body (0) to the vertex.

or a hand point (1).

Figure 3.4: Example of the vertex signature functions on one layer of a temporal graph
for the thumb and index finger on the right hand and the right shoulder. The gray edges
indicate the anatomical connection between the points and the red edges are the edges
of the temporal graph.

Degrees combined with keypoint ID labels This vertex signature function
uses the degree of a vertex and a label of the vertex, which is the keypoint ID. Let ¢(v) :
YV — N be a function, which returns the keypoint ID of a vertex v, except for the left
hand, where it returns the identifiers of the right hand to avoid distinguishing between
both hands.

Jfer(v) = (d(v), c(v))

3.3.2 Temporal Graph Kernel

A kernel is another method to measure the similarity of two graphs. Oettershagen et al.
[2] provide several graph kernels for temporal graphs. They devised different methods
to model a temporal graph as a static graph, so that conventional static graph kernels
can be applied.

Line Graph Expansion for Kernels We adapt the notation from Oettershagen et
al. [2].

This representation preserved the temporal information of a temporal graph. Let
G=(W&,E&,....Er,{) be a vertex-labeled temporal graph.

For every edge e = {u,v} € &,t € [T], two vertices are generated and called nb
uv

and n->. These vertex labels store the temporal information. There is a directed edge
vu

between the two vertices n-> and n-> if in the original temporal graph there are the
uv VW
edges {u,v} € & and {v,w} € &, with t < s,t,s € [T] and u,v,w e V.
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3 ea

(a) A temporal graph G, the number(s) (b) Generated vertices for every tem-
on the edges indicate the timestep(s) of poral edge for the line graph expansion
the edges. representation.
5 3
n— n—
be cd

4 4
n;; n— || n—
ed de
7
n—
db
3
n—
ae
3
n—
ea

(¢) Directed line graph expansion of
graph G.

Figure 3.5: Example of a transformation from a temporal graph G to the direct line graph
representation. The initial temporal graph is shown in (a). We generate two vertices for
every edge, each of them represents a direct edge and also encodes the timestep of the
edge, (b) shows the resulting vertices. Finally, the directed edges between the vertices
are drawn and we get the line graph representation (c) of (a).
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The labels for the new vertex n-> is E’(n—t>) = (l(u,t),f(v,t + 1)). The directed line

uv uv
graph is defined as DL(G) = (V', E', ().

Figure 3.5 shows an example of a transformation of a temporal graph to a directed line
graph. The size of the directed line graph expansion is in O(|€|*), where |£] = Zz’T=1 |Ei]
and T is the lifetime of the original temporal graph.

The classical static graph kernels can now be used on these graphs, which encode
temporal information. We use the j-step random walk kernel on the line graph expansion
(DL-RW) [2] and the vertex labels are set to the keypoint IDs.

3.4 Classification Methods

After we derived the pairwise similarities between the temporal graphs, we use differ-
ent classification methods to classify signs based on their temporal graph. For the sign
classification task, we use the k-Nearest Neighbor Classification algorithm [16] and a
C-Support Vector Machine (C-SVM) [17]. The k-nearest neighbor classifier takes the
computed distances as a distance metric for the classification of a test sample. For
the computed temporal graph kernel, we also use a C-SVM on the kernel for classifica-
tion. For the dtgw-distances, we further use a C-SVM in a featured-based dissimilarity
space [62], where the dtgw-distances to the other graphs are the features of the sample.
With a Principal Component Analysis (PCA) [63], we reduce the dimensionality of the
dissimilarity space to test how many features are necessary for the classification.

We use the k-nearest neighbor and PCA implementation from Scikit-learn [64] and
the C-SVM implementation from Scikit-learn [64] based on libSVM [65].



Chapter 4

Experiments

In this chapter, we analyze our graph representation using the dtgw-distance and the
temporal graph kernel DL-RW. For the dtgw-distance estimation, we also compare the
three vertex signature functions we defined. At the end, we compare our accuracies to the
results Li et al. [12] achieved on the WLASL dataset?. We implemented the construction
of our temporal graph and adapted the implementation of dtgw® [1] in Python. For the
temporal graph kernel, we used the implementation from Oettershagen et al. [2]*. As
some signs are quite similar, we consider in addition to the class label with the highest
probability (top-1), the five (top-5), and ten most probable (top-10) class labels, as the
correct meaning of the sign may be deduced from the context.

We ran the experiments on a 3.60 GHz Intel Xeon E5-1620 processor system single-
threaded, the operating system was Ubuntu 18.04.5 LTS.

4.1 Temporal Graph Representation of Signs

In this section, we test our graph model and investigate the impact of the threshold
under which the hand points are ignored. In Section 4.1.1 we evaluate the three vertex
signature functions defined in Section 3.3.1 for the dtgw-distance estimation and their
impact on the classification accuracy. Next, we test the temporal graph kernel DL-RW
on the graphs in Section 4.1.2. Further, we compare the results of the dtgw-distance
with the best vertex signature function to results of the temporal graph kernel DL-RW.

4.1.1 Results of the Vertex Signature Functions for the dtgw-Distance

In two separate experiments, we compared the three vertex signature functions on the
temporal graphs, which were constructed with and without threshold. In the first ex-
periment, we used k-nearest neighbor with the dtgw-distances as distance metric. For
the second experiment, we used a C-Support Vector Machine (C-SVM) with a linear
kernel on the dissimilarity space, where the dtgw-distances to the training samples are
the features of a sample.

2 Available at https://github.com/dx1i94/WLASL
3 Available at https://fpt.akt.tu-berlin.de/software/dtgw/
4 Available at https://gitlab.com/tgpublic/tgkernel
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Table 4.1: Results of the correctly classified signs in percent on the asl100 subset com-
puted by the AM heuristic for the graph with and without the threshold and for the
three vertex signature function. For all experiments, the same train and test split are
used with a train and test split ratio of 70:30.

Vertex signature

Graphs without

Graphs with threshold

function threshold

degrees 1347 % (k =4) 17.68 % (k =1,2,4)
degrees with 0/1 labels 14.14 % (k =1,2,3) 19.02 % (k = 1,2)
degrees with keypoint 22.05 % (k=1,2) 30.81 % (k=1,2,4)

ID labels

(a) Classification with k-nearest neighbor with k € [1,50]. k& was set individually
per vertex signature function and per graph model to reach the best possible

results.

Vertex signature
function

Graphs without
threshold

Graphs with threshold

degrees
degrees with 0/1 labels
degrees with keypoint

15.82 % (dim=20)
14.14 % (dim=90)
16.82 % (dim=90)

18.35 % (dim=30)
19.53 % (dim=40)
21.04 % (dim=50)

ID labels

(b) Classification with C-SVM with a linear kernel in the dissimilarity space with
dimension reduction by PCA. For every vertex signature function and both graph
models, the dimension was reduced from 100% down to 10% in steps of 10 to detect
the dimension that leads to the highest accuracy. The C-parameter was selected
from {1073,1072, ..., 102,103}, however, the C-parameter had hardly any influence
on the results.

The first function takes only the degree as vertex signature, the second one combines
the degree with a label, which indicates if the vertex is associated with a body or a
hand keypoint and the third one combines the degree with a label, which represents
the keypoint ID. The metric for all three functions is the Euclidean distance. The
average running time of the AM heuristic with the different vertex signature functions
was around 11 hours for the asl100 subset, which could be reduced by parallelism, as
the AM heuristic takes on average only 4 iterations to converge.

As can be seen in Table 4.1, the graph with threshold and the vertex signature
function degrees with keypoint ID labels achieved the highest accuracy with k-nearest
neighbor. The threshold leads to an improvement of the classification on all vertex sig-
nature functions. Using k-nearest neighbor for classification, the body/hand distinction
labels only led to a minor improvement compared to just the degree as vertex signa-
ture. However, the keypoint ID labels have significantly improved the accuracy, using
k-nearest neighbor for classification. For the classification with the C-SVM on the dis-
similarity space, the different vertex signature function had less of an impact on the
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accuracy.

Overall, the highest accuracy of the dtgw-distance on the asl100 subset was reached
by k-nearest neighbor on the temporal graphs, which were constructed with the threshold
that omits hand points below it. Nevertheless, the highest achieved accuracy is still low,
only around 30 % on the asl100 subset.

An example, where the classification was incorrect on the asl100 subset is study. None
of the five study test samples were correctly classified by k-nearest neighbor. Figure 4.1
shows three warped frames with the keypoints and the associated layers of the temporal
graphs of a training sample from study and clothes compared to a test sample of study.
Figure 4.1b is the test sample of study, which is classified as clothes. The temporal
graphs of both of these signs are very similar, as we only have 2D information and do
not use the orientation of the palm. The test sample has a lifetime of 41, where the
layers of the temporal graph did not change by much, as the person already has the
hands in position at the beginning of the video and only moves the right hand a bit
closer to the left hand for the sign study. Figure 4.1a is a training sample of study with
a lifetime of 77, where the person starts with the hands down and also ends the video
that way. The warping path needs to warp every layer of one graph to a layer of the
other and the warping of the “start” and “end” phase of the training sign to the test
sign increased the distance between the graphs. In the sample of the sign clothes, the
hands with finger splayed remain close to each other during the movement, even in the
“start” and “end” phases. Hence, the distance between the layers of clothes warped to
the test sign study tend to be smaller and it is classified as clothes.

Further, the time warping cannot handle situations where the movement of a sign is
repeated multiple times in a video sample, as the warping path needs to be monotonically
increasing. For example, the movement of the sign book is often executed twice, but only
once is possible and samples of both variants are in the dataset.

The average standard deviation of the videos within a sign class is 0.85 seconds [12,
Section 3.3], thus around 21 frames. The dynamic time warping can compensate for that
if the sign is signed at a different pace, as it can warp one layer of one graph to multiple
consecutive layers of the other graph.

4.1.2 Results of the Temporal Graph Kernel

In the following, we present the results achieved by the 2-step random walk kernel on
the directed line graph expansion (DL-RW) of the temporal graphs with and without
threshold and with keypoint IDs as the vertex labels. The average running time was
around 10 minutes. We also tried the Weisfeiler-Lehman kernel on the directed line
graph expansion on smaller subsets with only 50 signs, but it needed significantly more
RAM than the random walk kernel by achieving similar accuracies, which is why we
decided to use the random walk kernel. For classification, we used k-nearest neighbor
and a C-Support Vector Machine (C-SVM) on the computed kernel.

Table 4.2 reports the accuracies achieved on the same train and test split as in Sec-
tion 4.1.1. The threshold did improve the classification accuracies by more than 10 %
on both classifiers. The C-SVM was slightly better than the k-nearest neighbor classifi-
cation, it could predict the meaning of over 60 % of the test samples correctly.
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(a) Three frames (24, 34, (b) Three frames (6, 8, 38) (c) Three frames (20, 22,
74) of a training sign of of the test sign study. 40) of the training sign
study. clothes

Figure 4.1: Example of the dynamic time warping distance between the test sign study
in the middle, a training sample of study on the left, and a training sample of clothes.
The arrows indicate the warped frames. The dark blue lines illustrate the extracted
graph layer, and the light blue line is the threshold. The red lines do not belong to the
temporal graph, they only represent the anatomical connection between the keypoints.
In this example, the dtgw-distance, computed with the vertex signature function degrees
combined with the keypoint ID labels, is smaller between (b) and (c) than between (b)
and (a). Hence, the test sample in the middle of study is classified as clothes by k-nearest
neighbor and not as study. The temporal graphs between study and clothes are relatively
similar, as both hands are flat, close to each other, and in front of the chest.
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Table 4.2: Results of the correctly classified signs in percent on the asl100 subset com-
puted by the temporal graph kernel DL-RW (2-step random walk kernel on the directed
line graph expansion) for the graphs with and without threshold. For all experiments,
the same train and test split as for dtgw are used with a train and test split ratio of
70:30.

Graphs without Graphs with

Graphs without Graphs with

threshold threshold
4573 % (k = 4) 57.75 %
(k = 17 2)

(a) Classification with k-nearest neigh-
bor with k € [1,50]. k was set individu-
ally per graph model to reach the best
possible results.

threshold threshold
53.10 % 63.64 %
(C = 10" (C =10%)

(b) Classification with C-SVM on the
DL-RW  kernel. The C-parameter
was selected individually for the graph
models from {1073,1072, ..., 10%,103}.

Compared to the dtgw-distance, k-nearest neighbor on the similarity measures of the
DL-RW kernel classified almost twice as many signs from the test split correctly.

The distances between the temporal graphs are illustrated in Figure 4.2, it shows,
that the distances between different signs computed by the DL-RW kernel are often
greater than within one sign, as the dtgw-distance between different signs appear to be
more similar.

Regarding the example in Figure 4.1, the DL-RW kernel with k-nearest neighbor
could correctly classify the test sample Figure 4.1b as study. It seems that the DL-RW
kernel could handle the missing parts in the test sample better than the dtgw-distance,
as the most similar training sample was the training sign of study Figure 4.1a.

4.2 Performance Evaluation on the Sign Data Subsets

We compare the highest accuracies we achieved on the WLASL dataset [12] subsets
asl100 and asl300 by using our temporal graph model with the threshold to the accura-
cies Li et al. [12] achieved with Pose-TCGN and I3D on the same training and test split.
The pose-based Temporal Graph Convolution Network (TGCN) [12, Chapter 4.2.2] uses
a deep graph convolution network on the 2D keypoint coordinates extracted by Open-
Pose, representing the body as a fully-connected graph with weighted undirected edges
for every timestep. The I3D is a 3D convolutional network, trained on different datasets
[66] and fine-tuned on the WLASL videos [12, Chapter 4.1.2].

For this experiment, the vertex signature function for the dtgw-distance [1] estimation
is degrees with the keypoint ID labels. For the kernel, we used the implementation of the
directed line graph expansion with j step random walk kernel DL-RW [2] with j = 2 and
we used the keypoint IDs as labels. The left hand was labeled with the right-hand IDs, as
signs are not linked to a specific hand. The classification method for the dtgw-distance
was k-nearest neighbor and for the DL-RW kernel, we used a C-SVM on it.

As Table 4.3 shows, we can reach a top-1 accuracy of 62.79 % with the temporal graph
kernel DL-RW on the asl100 subset which is close to the accuracy that 13D achieved.
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(a) Heatmap of dtgw-distances computed by the AM heuristic
with degrees and keypoint ID labels as the vertex signature.

(b) Heatmap of the distances computed by the Random Walk
kernel on the line graph representation (DL-RW)

Figure 4.2: Heatmaps of the pairwise distances for the ten signs with the most samples
alphabetically sorted. The darker the area, the smaller the distance between the graphs.
It would be best if the distances within one sign are smaller than to other signs, so there
should be only darker squares on the diagonal. (a) shows, unfortunately, that this is
not for all signs the case with the dtgw-distance, for example, the distances within the
sign candy and between samples of candy to samples of cousin, drink, and who seem to
be similar. In heatmap (b), the distances computed by the DL-RW kernel seems to be

greater between different signs.
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Table 4.3: Results of the top-1, top-5, and top-10 accuracy in percent on the asl100
subset achieved by the dtgw-distance and the random walk kernel on the directed line
graph with random walk length 2 on our temporal graph model compared the accuracies
achieved by Li et al. [12, Table 3| on the Pose-TCGN and the I3D model on the same
training and test split. We could not run the dtgw-distance on the asl300 subset, due to
the long running time.

Method asl100 asl300
top-1 top-5 top-10 | top-1 top-5 top-10
dtgw-distance | 26.74 51.55 66.66
DL-RW Kernel | 62.79 86.05 90.70 | 47.01 73.35 81.74
Pose-TCGN 55.43 T78.68 87.60 | 38.32 67.51 79.64
13D 65.89 84.11 89.62 | 56.41 79.94 86.98

The dtgw-distance with the degree with the keypoint ID label function could only
achieve a top-1 accuracy of 26.74 %. Due to the long running time, we could not test
the dtgw-distance on the asl300 subset.

Nevertheless, the I3D model still shows the highest top-1 accuracy with over 56 %
on the asl300 dataset. 13D is advantageous here, as it has already been pre-trained on
other ASL sign data and uses the video recordings directly.

Compared to Pose-TCGN, which like ours uses the OpenPose data, we could achieve
better classification accuracies with our temporal graphs and the DL-RW kernel on the
asl100 and asl300 subsets.






Chapter 5

Conclusion

We proposed a model to represent American Sign Language signs as temporal graphs
by using 2D information of human body keypoints extracted from video recordings by
OpenPose [37, 38]. With the 2-step random walk kernel on a directed line graph ex-
pansion of the temporal graphs [2], we could predict the English meaning of a sign
correctly for 62 % of the test samples on the subset containing 100 different signs of the
WLASL [12] dataset.

Using the dtgw-distance to measure the similarity between the temporal graphs of
signs could only achieve an accuracy of 30 %, which may be due to the vertex signature
functions we used. We also tested other vertex signatures on smaller subsets, as the
size of the connected component or the closeness, but these did not perform better than
degrees either.

Our model is much simpler than the 3D convolutional network [12] but can achieve
similar results on 100 different signs. On the larger asl300 dataset, the top-1 accuracy
is less than 50 %. A disadvantage is that we do not use the videos directly like the 3D
convolutional network, but first need to extract keypoints, which can be another source
of error. Therefore, our approach is not sufficient for larger datasets, but with some
improvements, it could be an alternative approach for sign language recognition.

Future work It is a question of future research to investigate the performance of
the temporal graph model on more signs, such as the asl1000 or even asl2000 subset
of WLASL, which we could not test due to the large size of the directed line graph
expansion for the random walk kernel and the long running time of the AM heuristic.
Besides, more samples per sign could improve the classification, as some sign variations
have only 7 samples. Further, our temporal graph model could be improved, as at the
moment the boundaries for the ranges are fixed and with variable boundaries the size of
a person would be considered. The temporal graph could also include information of the
relative position of limbs, as the hands, so that the position of the hands to each other
is represented. Additionally, in some sign language families, for example, the German
Sign Language, the mouth movement is important to distinguish between signs, so the
temporal graph model needs to be extended for these sign languages. Also, other vertex
signature functions for the dtgw-distance computation could lead to an improvement of
the classification. For example, a function that uses the keypoint ID labels of not only
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the vertex but also from the neighborhood combined with a centrality measure.

In addition, unbounded dynamic time warping [67] could overcome the problem of
repetitions of a sign in a sample and other movements that do not belong to the sign,
as it does not have the start-end restriction like the classical dynamic time warping.
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