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Zusammenfassung

Proximity-Graphen werden von einer Menge von Punkten in der Ebene oder in ei-
ner höherdimensionalen Struktur induziert. Diese Graphen beschreiben, welche Paa-
re von Punkten einander nah sind und welche nicht. Es gibt etliche verschiedene
Proximity-Graphen, die unterschiedlichen Definitionen von Nähe entsprechen. Wir unter-
suchen drei Klassen von Proximity-Graphen: Relative-Neighborhood-Graphen (RNG),
Relatively-Closest-Graphen (RCG) und Gabriel-Graphen. Wir untersuchen klassische
NP-vollständige Probleme darauf, ob sie auch auf diesen Graphklassen NP-vollständig
bleiben. Wir kommen zu dem Ergebnis, dass sie dies mit wenigen Ausnahmen tun.
Wir betrachten dabei die algorithmischen Probleme Independent Set, Vertex Co-
ver, 3-Colorability, Dominating Set, Feedback Vertex Set und Hamilto-
nian Cycle.

Die Reduktionen, mithilfe derer wir beweisen, dass diese Probleme NP-schwer sind, ba-
sieren auf zweiseitigen Book Embeddings, die eine sehr strukturierte planare Einbettung
bestimmter Graphen vorgeben. Daher untersuchen wir auch kurz die Berechnung von
Book Embeddings der genannten Proximity-Graphen. Zudem betrachten wir Proximity-
Graphen, die sich mit der Zeit verändern und so Punktmengen modellieren, die sich be-
wegen. Wir zeigen, dass das Finden kleiner Separatoren in solchen temporalen Graphen
NP-schwer ist. Zum Schluss besprechen wir noch eine Reihe verwandter Fragen, die offen
bleiben.

Abstract

Proximity graphs are induced by sets of points in the plane or higher-dimensional struc-
tures. Such graphs describe which sets of points are close to one another and which
are not. There are many different kinds of proximity graphs, corresponding to different
definitions of when points are close. We will study three classes of proximity graphs: rel-
ative neighborhood graphs (RNG), relatively closest graphs (RCG), and Gabriel graphs.
We investigate which classic NP-complete problems remain NP-complete on these graph
classes. We show that with a few exceptions they do. We consider the algorithmic
problems Independent Set, Vertex Cover, 3-Colorability, Dominating Set,
Feedback Vertex Set, and Hamiltonian Cycle.

The reductions we use to prove these problems’ NP-hardness are based on two-page
book embeddings. Such book embeddings give very structured planar embeddings of cer-
tain graphs. We, therefore, also briefly consider the computation of book embeddings of
the aforementioned proximity graphs. We also consider proximity graphs that change
over time, modeling sets of points that are in motion. We show that finding small sepa-
rators in such temporal graphs is NP-hard. Finally, we discuss several related questions
that remain open.
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1 Introduction

Given a set of points in the plane, which pairs of points are close to one another and
which are far apart? Of course, the answer to this question depends on how one defines
“close”. Frequently, it is convenient to describe proximity relationships using graphs.
Such graphs are known as proximity graphs. In these graphs, points that are “close”
are connected by an edge. An example of a set of points along with a proximity graph
based on a purely intuitive notion of proximity is pictured in Figure 1.1.

Proximity graphs are mostly studied in computational geometry, but have a wide ar-
ray of applications. Describing the proximity relationships between points in the plane
or higher-dimensional structures is a problem that arises in several fields of science and
engineering, most obviously in geography, less obviously in data mining [GS15; Vri+16],
computer vision [Xu+19], the design of mobile ad-hoc networks [BCJ10; PKV16], the de-
sign of crowd-movement sensors [Chi+15], analyzing road traffic [Wat10], describing the
spread of a species of mold [Ada09]. and the analysis of electroencephalograms (EEGs)
for the extraction of information on the functionality of the human brain [Dim+18].

In order to illustrate proximity graphs’ usefulness more concretely we will give an
intuitive example. Such graphs could arise in the context of railway networks. If two
cities are close, then it makes sense to build a railway directly from one to the other,
but if they are too far apart, then one can expect passengers to take a train to some city
“in between” and transfer there. When defining what cities are close, we may wish to
ensure that the resulting network has certain properties:

1. We may want the network to be connected, since it should be possible to travel
between any two cities.

2. We may want to avoid crossings so that we are not forced to build bridges or
tunnels.

3. In order to save costs, we may want to minimize the total length of the tracks that
need to be built.

4. At the same time, we also want passengers’ trips to be as short as possible.

Generally, there is a trade-off between the last two criteria, since adding additional tracks
increases the total track length, but reduces some passengers’ trip lengths. If we only
consider the first three, then the resulting network is what is known as the minimum
spanning tree. If we only consider the fourth criterion, then the network is the complete
graph or the point visibility graph (see Himmel et al. [Him+19]). The proximity graphs
we will study will be somewhere between these two extremes, sacrificing some total track
length in order to reduce passengers’ travel times.
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1 Introduction

(a) Point set. (b) Corresponding proximity graph.

Figure 1.1: An intuitive example of a proximity graph: The vertices in the graph in (b)
correspond to points in the point set on the depicted in (a). They are con-
nected by edges if the corresponding points might intuitively be considered
“close”.

There are many different types of proximity graphs, corresponding to different ap-
proaches to defining when points are “close”. We will study three types of proximity
graphs:

• relative neighborhood graphs (RNGs),

• relatively closest graphs (RCGs), and

• Gabriel graphs.

All three are examples of what Cardinal, Collette, and Langerman [CCL09] called empty
region graphs. An empty region graph is constructed from a set of points by defining a
region of influence for every pair of points. Such a region of influence is a subset of the
plane, usually a connected neighborhood of the points. Two points are deemed to be
close if their region of influence does not contain any additional points. The proximity
graph corresponding to a set of points is then constructed by representing points as
vertices and connecting two vertices if the points they represent are close. We will limit
ourselves to the two-dimensional case and the Euclidean metric, but one might also be
interested in higher-dimensional spaces with different metrics.

Gabriel graphs were introduced by Gabriel and Sokal [GS69] in 1969. In a Gabriel
graph, two points’ region of influence is a circle whose center is midway between them
and whose diameter is the distance between them. Also in 1969, Lankford [Lan69]
defined relatively closest graphs. Their region of influence is the intersection of circles
centered on each of the two points with a radius equal to the distance between the
points. The closely related relative neighborhood graphs were introduced by Toussaint
[Tou80] in 1980. Figure 1.2 illustrates how Gabriel graphs and relative neighborhood
graphs are constructed using the region of influence of each pair of points. The regions
of influence for relatively closest graphs are nearly identical to relative neighborhood
graphs, differing only in that they include the regions’ boundaries, so they are omitted
from the example.

Most algorithmic research on proximity graphs has sought to devise algorithms that
efficiently compute the graph from a point set. We will consider a different question.
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1 Introduction

p1 = (0, 0) p2 = (3, 0)

p3 = (1, 1)

(a) A point set. (b) The same point set with the regions of
influence for Gabriel graphs marked.

(c) The same point set with the regions of
influence for RNGs marked.

v1 v2

v3

(d) The resulting Gabriel graph and RNG.

Figure 1.2: Constructing Gabriel graphs and RNGs: (a) depicts a point set. (b) and
(c) depict the same point set, but with the regions of influence for Gabriel
graphs and RNGs, respectively, for each pair of points marked. In both
cases, the regions of influence for p1 and p3 as well as for p2 and p3 do not
contain any additional points, but the region for p1 and p2 (the blue region)
contains p3. (d) depicts the resulting Gabriel graph and RNG as they are
identical. RCGs’ regions of influence are nearly identical to RNGs’.

We will ask what properties can be tested for quickly in proximity graphs that are hard
to test for in arbitrary graphs.

To illustrate what kind of properties we are interested in, we return to our railway
example. We might want to build maintenance facilities for the tracks. Because these
facilities are expensive, we wish to build them in as few cities as possible, but each
track must have a maintenance facility at one of its endpoints. This is an instance of
the Vertex Cover problem, which is well-known to be NP-hard to solve on arbitrary
graphs. One could expect that the problem might be easier if we assume that the railway
network is a proximity graph. Unfortunately, as we will show, it remains NP-hard to
decide whether k such facilities suffice in order to maintain the entire network even when
we consider only the proximity graphs we have described.

8



1 Introduction

1.1 Related work

Relative neighborhood graphs, Gabriel graphs, and relatively closest graphs were first
introduced by Toussaint [Tou80], Gabriel and Sokal [GS69], and Lankford [Lan69], re-
spectively. Urquhart [Urq83], Matula and Sokal [MS80], and Cimikowski [Cim92] proved
some basic combinatorial properties for each of the graph classes. Jaromczyk and Tou-
ssaint [JT92] surveyed early results on proximity graphs. Bose et al. [Bos+12] proved
several additional results. So-called proximity trees, proximity graphs that are also trees,
were analyzed by Bose, Lenhart, and Liotta [BLL96]. Lubiw and Sleumer [LS93] and
Lenhart and Liotta [LL97] showed that many outerplanar graphs are relative neighbor-
hood graphs and Gabriel graphs. Cardinal, Collette, and Langerman [CCL09] intro-
duced the term empty region graphs, which include the three proximity graph classes
under consideration, and studied what graph classes can be represented as empty region
graphs.

Proximity graphs created from points in the plane drawn from some probability dis-
tribution are of particular interest in the design and analysis of mobile ad-hoc networks.
Accordingly, the probabilistic combinatorial properties of such random proximity graphs
have been studied extensively by Devroye [Dev88], Milic and Malek [MM06], Wan and
Yi [WY07], Devroye, Gudmundsson, and Morin [DGM09], Yi et al. [Yi+10], Melchert
[Mel13], Norrenbrock [Nor16], and others.

Most algorithmic research on proximity graphs has focused on devising algorithms that
efficiently compute the proximity graph from a point set. Mitchell and Mulzer [MM17]
gave a survey of such algorithmic results. Supowit [Sup83], Jaromczyk and Kowaluk
[JK87], Katajainen, Nevalainen, and Teuhola [KNT87], Huang [Hua90], Lingas [Lin94],
and Lavergne et al. [Lav+07] have given algorithms for computing relative neighborhood
graphs. Matula and Sokal [MS80] have done so for Gabriel graphs. Lee [Lee85], Su and
Chang [SC91], and Agarwal and Matoušek [AM92] presented algorithms for comput-
ing relative neighborhoods in higher-dimensional or non-Euclidean spaces. Cimikowski
[Cim90] gave a heuristic for computing 4-colorings of Gabriel graphs. He also proposes
a linear-time algorithm for computing a 4-coloring of a relative neighborhood graph,
but, as we will discuss in Chapter 11, this algorithm is not correct and the question of
whether such an algorithm exists remains open. Sundar and Khurd [SK17] gave parallel
algorithms for computing cycle orders and cycle perimeters in relative neighborhood
graphs. Hoffmann and Wanke [HW12] showed that the Metric Dimension problem
is NP-complete when restricted to graphs that are both Gabriel graphs and unit disk
graphs. Di Battista, Lenhart, and Liotta [DBLL94] surveyed research on the realizability
of graphs as proximity graphs.

1.2 Our contributions

Our contributions are summarized in Table 1.1. We will analyze the restriction of eight
problems to relative neighborhood graphs, relatively closest graphs, and Gabriel graphs.
The first six problems, Dominating Set, Independent Set, Vertex Cover, 3-
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1 Introduction

Relative
neighborhood
graphs

Relatively closest
graphs

Gabriel graphs

Dominating Set
(Theorem 4.13, Corollary 4.15)

NP-hard
∆ ≤ 4

ETH ⇒ 2o(n
1
4 ) lb

NP-hard
∆ ≤ 4

ETH ⇒ 2o(n
1
4 ) lb

NP-hard
∆ ≤ 4

ETH ⇒ 2o(n
1
4 ) lb

Independent Set and
Vertex Cover
(Theorem 5.6, Corollaries 5.7, 5.10)

NP-hard
∆ ≤ 4

ETH ⇒ 2o(n
1
4 ) lb

NP-hard
∆ ≤ 4

ETH ⇒ 2o(n
1
4 ) lb

NP-hard
∆ ≤ 4

ETH ⇒ 2o(n
1
4 ) lb

3-Colorability
(Theorems 6.6, 6.8, Corollary 6.10)

NP-hard
∆ ≤ 7

ETH ⇒ 2o(n
1
4 ) lb

trivial

NP-hard
∆ ≤ 7

ETH ⇒ 2o(n
1
4 ) lb

Feedback Vertex Set
(Theorem 7.8, Corollary 7.10)

NP-hard
∆ ≤ 6

ETH ⇒ 2o(n
1
4 ) lb

NP-hard
∆ ≤ 6

ETH ⇒ 2o(n
1
4 ) lb

NP-hard
∆ ≤ 8

ETH ⇒ 2o(n
1
4 ) lb

Hamiltonian Cycle
(Theorem 8.10, Corollary 8.12)

NP-hard
∆ ≤ 4

ETH ⇒ 2o(n
1
4 ) lb

open

NP-hard
∆ ≤ 4

ETH ⇒ 2o(n
1
4 ) lb

(Strict) Temporal
(s, t)-Separation
layer-wise class definition

(Theorem 9.3, Corollaries 9.4, 9.5)

NP-hard
all layers are paths

ETH ⇒ 2o(n+
√
m) lb

NP-hard
all layers are paths

ETH ⇒ 2o(n+
√
m) lb

NP-hard
all layers are paths

ETH ⇒ 2o(n+
√
m) lb

Recognition
(Theorem 10.1)

∈ ∃R ∈ ∃R ∈ ∃R

Book thickness
(Observation 2.12)

linear time linear time linear time

Table 1.1: Summary of our results: The small text beneath each complexity classifica-
tion refers to additional constraints that may be placed on graphs where ∆
denotes the maximum vertex degree. “ETH ⇒” refers to lower bounds (lb)
on the running time for algorithms for the respective problem based on the
exponential time hypothesis. In the lower bounds, n refers to the number of
vertices in a graph and m to the number of edges. Each problem is defined
at the beginning of the chapter in which the results concerning this problem
appear.

Colorability, Feedback Vertex Set, and Hamiltonian Cycle, are classical NP-
complete problems. With two exceptions, namely 3-Colorability and Hamiltonian
Cycle on RCGs, we will show that each of them remain NP-complete when restricted
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1 Introduction

to these graph classes. In each case, we will also prove that if the exponential time

hypothesis holds, then the problem cannot be solved in time 2o(n
1
4 ). Our reductions

make heavy use of book embeddings, so we will also briefly discuss the complexity of
computing the book thickness of the proximity graphs in question. Finally, we will turn
to temporal proximity graphs. We will define temporal proximity graphs as temporal
graphs in which every layer is a proximity graph. Such graphs model objects that move
in the plane and whose proximity relationships therefore change over time. We will
show that Temporal (s, t)-Separation on these graph classes is also NP-hard. For
this problem an ETH-based lower bound of 2o(n+

√
m) holds. We will briefly discuss the

recognition problem for these graph classes. While we cannot give any tight bounds on
its complexity, we will show that it is in the complexity class known as the existential
theory of the reals (∃R). We will conclude by discussing several questions related to our
results that remain open.
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2 Preliminaries

2.1 Graphs

We will now define the basic concepts of graph theory we will use throughout this thesis
(see, for instance, Diestel [Die17]).

If S is a set and k ∈ N, then
(
S
k

)
is the set of all subsets of S containing exactly k

elements. A graph G = (V,E) is a pair consisting of any finite set V and E ⊆
(
V
2

)
. The

elements of V are called vertices and those of E are edges. Frequently, we will represent
graphs visually by drawing the vertices as points in the plane and the edges as line
segments or curves connecting them. Two vertices u, v ∈ V are adjacent or neighbors
if {u, v} ∈ E. If v ∈ V is a vertex, then N(v) := {u ∈ V | {u, v} ∈ E} is v’s open
neighborhood, the set of all vertices adjacent to v. The vertex v’s closed neighborhood
is N [v] := N(v) ∪ {v}. When we simply refer to a vertex’s neighborhood, we mean its
open neighborhood. The degree of a vertex v ∈ V is deg(v) := |N(v)|, the size of its
open neighborhood. A vertex v is isolated if deg(v) = 0. The maximum degree of a
graph G = (V,E) is ∆(G) := maxv∈V deg(v). A graph is k-regular if every vertex in G
has degree k.

The graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E ∩(
V ′

2

)
. It is an induced subgraph if E ′ = E ∩

(
V ′

2

)
. If V ′ ⊆ V , then G[V ′] := (V ′, E ∩(

V ′

2

)
) is the subgraph of G induced by V ′. We will use G − V ′ to denote G[V \ V ′].

Similarly, if G′ = (V ′, E ′) is a subgraph of G = (V,E), then we will use G − G′ as
a shorthand for G − V ′. If G = (V,E) is a graph and {u, v} ∈ E an edge, then
the graph obtained by subdividing {u, v} is the graph G′ := (V ∪̇{w}, (E \ {{u, v}}) ∪
{{u,w}, {v, w}}). Two graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic if they are
structurally identical, that is, if there is a bijective map ϕ : V → V ′ such that {u, v} ∈ E
if and only if {ϕ(u), ϕ(v)} ∈ E ′ for all u, v ∈ V . We will say that a graph G contains a
graph G′ or contains a copy of G′ if G has a subgraph that is isomorphic to G′.

The complete graph on n vertices is Kn := ({v1, . . . vn}, {{vi, vj} | 1 ≤ i < j ≤ n}). A
clique of size k in a graph G is a subgraph isomorphic to Kk. The path on n vertices is
the graph Pn := ({v1, . . . , vn}, {{vi, vi+1} | 1 ≤ i ≤ n − 1}). A path of length k − 1 in
a graph G is a subgraph isomorphic to Pk. We will also denote a path of length k − 1
as a sequence of vertices v1, . . . , vk such that vi 6= vj if i 6= j, and {vi, vi+1} ∈ E for
all i = 1, . . . , k− 1. A path’s endpoints are the two vertices of degree one. The distance
between two vertices is the length of the shortest path that contains both of them.
A graph G = (V,E) is connected if for any two vertices u, v ∈ V there is a path with
endpoints u and v. The cycle on n vertices, n ≥ 3, is Cn := ({v1, . . . , vn}, {{vi, vi+1} | 1 ≤
i ≤ n−1}∪{{v1, vn}}). A cycle of length k in a graph G is a subgraph isomorphic to Ck.

12



2 Preliminaries

Similarly to paths, we will also denote cycles of length k as sequences of vertices v1, . . . , vk
such that vi 6= vj if i 6= j, {vi, vi+1} ∈ E for all i = 1, . . . , k − 1, and {vk, v1} ∈ E. A
graph is acyclic if it does not contain any cycles. Note that paths and cycles are not
necessarily induced subgraphs. The complete bipartite graph with parts of size n1 and n2

is the graph Kn1,n2
:= ({u1, . . . , un1 , v1, . . . , vn2}, {{ui, vj} | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}).

The wheel graph on n vertices is the graph Wn := ({v1, . . . , vn}, {{vi, vi+1} | 1 ≤ i ≤
n − 2} ∪ {{vn, vi} | 1 ≤ i ≤ n − 1}). The (n1 × n2)-grid graph is Gn1,n2

:= ({vi,j | 1 ≤
i ≤ n1, 1 ≤ 2 ≤ n2}, {{vi,j, vi+1,j} | 1 ≤ i ≤ n1 − 1, 1 ≤ j ≤ n2} ∪ {{vi,j, vi,j+1} | 1 ≤ i ≤
n1, 1 ≤ j ≤ n2 − 1}).

An independent set in a graph G = (V,E) is a set of pairwise non-adjacent vertices I ⊆
V . The independence number α(G) of a graph G is the size of the largest independent
set in G. A set of vertices S ⊆ V in a graph G = (V,E) is a vertex cover if G−S does not
contain any edges. The vertex cover number τ(G) of a graph G is the size of the smallest
vertex cover in this graph. For any graph G containing n vertices, n = α(G) + τ(G). A
dominating set in a graphG = (V,E) is a set of verticesD ⊆ V such that

⋃
v∈DN [v] = V .

In other words, D is a dominating set if every vertex v ∈ V \ D has a neighbor in D.
The domination number γ(G) of a graph G is the size of the smallest dominating set
in G. A feedback vertex set in a graph G = (V,E) is a set F ⊆ V such that G − F is
acyclic. We will use ϕ(G) to denote the size of the smallest feedback vertex set in G. A
k-coloring of the graph G = (V,E) is a map c : V → {1, . . . , k} such that c(u) 6= c(v)
for all {u, v} ∈ E. A graph G is k-colorable if there is a k-coloring of G. A Hamiltonian
cycle in a graph G = (V,E) consisting of n = |V | vertices is a set of edges E ′ ⊆ E such
that (V,E ′) is isomorphic to the cycle graph Cn. Alternatively, if V = {v1, . . . , vn}, then
we will say that the sequence of vertices vi1 , . . . , vin is a Hamiltonian cycle, if ij 6= ij′ for
all j 6= j′, vij is adjacent to vij+1

for all j = 1, . . . , n − 1, and vin is adjacent to vi1 . A
graph is Hamiltonian if it contains a Hamiltonian cycle.

2.2 Planar graphs

Intuitively, a graph is planar if it may be drawn in the plane in a way that no two edges
intersect except possibly in their endpoints. A formal definition requires a few topological
concepts. We use d : R2 → R with d((x1, y1), (x2, y2)) :=

√
(x1 − x2)2 + (y1 − y2)2 to

denote the Euclidean distance between two points in the plane. If p ∈ Rk is a point in the
Euclidean k-dimensional space, then the open ball around p with radius r isBr(p) := {q ∈
Rk | d(p, q) < r}. The closed ball is Br(p) := {q ∈ Rk | d(p, q) ≤ r}. A set of points S ⊆
Rk is open if for every p ∈ S there is an ε > 0 such that Bε(p) ⊆ S. Let X ⊆ Rk and Y ⊆
R` . A function f : X → Y is continuous if the inverse image f−1(S) := {p ∈ X | f(p) ∈
S} of any open subset S ⊆ Y is open. A function f : X → Y is a homeomorphism if it
is bijective and continuous and f ’s inverse f−1 : Y → X is also continuous. The sets X
and Y are homeomorphic if there is a homeomorphism mapping X to Y . The straight
line segment between two points p, q ∈ Rk is {p + λ(q − p) | 0 ≤ λ ≤ 1}. An arc is
the union of finitely many straight line segments that is homeomorphic to [0, 1] ⊆ R.
(This is actually what is generally known as a polygonal arc, but defining arcs in general
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2 Preliminaries

requires more topological concepts and is unnecessary for our purpose.) A point p ∈ A
in an arc A is an endpoint of A if f(p) = 0 or f(p) = 1 where f is any homeomorphism
between A and [0, 1]. A plane graph is a pair G = (V,E) such that the vertex set V ⊆ R2

consists of finitely many points in the plane, every edge e ∈ E is an arc whose endpoints
are vertices, no two edges share both of their endpoints, and edges intersect only in their
endpoints. A graph G = (V,E) is planar if there is a plane graph G′ = (V ′, E ′) and a
bijective map f : V → V ′ such that there is an edge e = {u, v} ∈ E if and only if there
is an edge e′ ∈ E ′ with endpoints f(u) and f(v). The plane graph G′ and the function f
are called a planar embedding or a planar drawing of G.

Any cycle in a planar drawing of a graph divides the plane into two regions. One of
these regions is bounded and is known as the inside of the cycle. The other region is
unbounded and is known as the outside of the cycle. The disjoint components of the
plane created by the graph are the faces. There is one face, known as the outer face,
which is outside of every cycle. A graph is outerplanar if it admits a planar embedding
in which every vertex touches the outer face. A planar drawing of a graph is triangulated
if every face is bounded by a 3-cycle. Any planar drawing may be triangulated by adding
edges. It is well-known that K5 and K3,3 are not planar. It is also easy to see that if G
is planar, then so is every subgraph of G. A planar graph containing n ≥ 3 vertices
may contain at most 3n− 6 edges. Finally, by the celebrated four color theorem, every
planar graph is 4-colorable.

2.3 Proximity graphs

We will now describe the three classes of proximity graphs that we will investigate. They
may be characterized in several equivalent ways, which we will present. We will also
describe several previously known combinatorial results on these graphs.

Definition 2.1. A straight-line embedding is a plane graph in which every edge is a
straight line segment.

The following statement is known as Fáry’s theorem:

Theorem 2.2 ([Fár48]). Every planar graph admits a planar straight-line embedding.

We will now define the three graph classes in which we are primarily interested. Recall
that d is the Euclidean distance in the plane.

Definition 2.3. Let P = {p1, . . . , pn} ⊆ R2 be a finite set of points in the plane. We
define a set of vertices V := {v1, . . . , vn} corresponding to these points. The relative
neighborhood graph induced by P is RNG(P ) := (V,ERNG) with:

ERNG := {{vi, vj} | d(pi, pj) ≤ max{d(pi, pk), d(pj, pk)} for all k ∈ {1, . . . , n}}.

The relatively closest graph induced by P is RCG(P ) = (V,ERCG) with:

ERCG := {{vi, vj} | d(pi, pj) < max{d(pi, pk), d(pj, pk)} for all k ∈ {1, . . . , n}}.

14



2 Preliminaries

p1 = (0, 2)

p2 = (2, 0)

p3 = (2, 3)

p4 = (5, 3
2
)

(a) A point set P consisting of four points. (b) The relative neighborhood graph in-
duced by P .

(c) The relatively closest graph induced
by P .

(d) The Gabriel graph induced by P .

Figure 2.1: A point set P along with the relative neighborhood, relatively closest, and
Gabriel graph induced by P . Each of these graphs may be computed using
the distances listed in Table 2.1.

p1 p2 p3 p4

p1 2
√

2
√

5
√
101
2

p2 3
√
45
2

p3
√
45
2

Table 2.1: Pairwise distances between points in the set P pictured in Figure 2.1a.

The Gabriel graph induced by P is GAB(P ) = (V,EGAB) with:

EGAB := {{vi, vj} | d(pi, pj)
2 < d(pi, pk)

2 + d(pj, pk)
2 for all k ∈ {1, . . . , n}}.

A straight-line embedding emb: V → R2 is an RNG-embedding of G = (V,E)
if RNG(emb(V )) = G, a Gabriel-embedding of G if GAB(emb(V )) = G, and an RCG-
embedding of G if RCG(emb(V )) = G.

Let RNG denote the class of all graphs G which admit an RNG-embedding. Similarly,
let RCG denote the class of all graphs that admit an RCG-embedding and let GAB
denote the class of all those which admit a Gabriel-embedding.

These definitions directly imply the following:

Lemma 2.4. Relatively closest graphs, relative neighborhood graphs, and Gabriel graphs

15
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are planar and ERCG ⊆ ERNG ⊆ EGAB for any point set. RNGs and Gabriel graphs are
always connected. RCGs cannot contain any cliques of size three.

Figure 2.1 illustrates the definitions of RNGs, RCGs, and Gabriel graphs. The point
set P pictured in Figure 2.1a consists of four points. The pairwise distances between
points are listed in Table 2.1. These distances can be used to compute the RNG, RCG,
and Gabriel graph induced by the point set. Those graphs are pictured in Figures 2.1b
to 2.1d.

Given an RNG-embedding emb of G, we will say that v1 is an RNG-blocker
for v2 and v3 if d(emb(v1), emb(v2)) < d(emb(v2), emb(v3)) and d(emb(v1), emb(v3)) <
d(emb(v2), emb(v3)). Clearly, {vi, vj} ∈ ERNG if and only there is no RNG-blocker
for vi and vj. For an RCG-embedding emb of G, v1 is an RCG-blocker for v2
and v3 if d(emb(v1), emb(v2)) ≤ d(emb(v2), emb(v3)) and d(emb(v1), emb(v3)) ≤
d(emb(v2), emb(v3)). It follows that {vi, vj} ∈ ERCG if and only if emb does not have an
RCG-blocker for vi and vj. Similarly, if emb is a Gabriel-embedding of G, then we will
call v1 a Gabriel-blocker for v2 and v3 if d(emb(v2), emb(v3))

2 ≥ d(emb(v1), emb(v2))
2 +

d(emb(v1), emb(v3))
2. Again, vi and vj are adjacent in G if and only if there is no

Gabriel-blocker for vi an vj.
For three points p1, p2, p3 in the plane, we will use ]p1p2p3 to denote the angle at p2

formed by the vectors from p2 to p1 and p2 to p3. In the following, assume that emb(vi) =
pi.

RNGs can also be described in terms of angles rather than distances:

Lemma 2.5 ([Urq83]). The vertex v1 is an RNG-blocker for v2 and v3 if and only
if ]p1p2p3 < ]p2p1p3 and ]p1p3p2 < ]p2p1p3. In other words, v1 is a blocker if the
angle at p1 is the uniquely largest angle in the triangle formed by p1, p2, and p3.

Hence,

ERNG = {{vi, vj} |]pipkpj ≤ max{]pkpipj,]pipjpk} for all k ∈ {1, . . . , n}}.

Relatively closest graphs can be characterized in the same way:

Lemma 2.6 ([Cim92]). The vertex v1 is an RCG-blocker for v2 and v3 if and only
if ]p1p2p3 ≤ ]p2p1p3 and ]p1p3p2 ≤ ]p2p1p3. In other words, v1 is a blocker if the
angle at p1 is a largest angle in the triangle formed by p1, p2, and p3.

Hence,

ERNG = {{vi, vj} |]pipkpj < max{]pkpipj,]pipjpk} for all k ∈ {1, . . . , n}}.

Gabriel graphs can also be described in terms of angles:

Lemma 2.7 ([MS80]). The vertex v1 is a Gabriel-blocker for v2 and v3 if and only
if ]p2p1p3 ≥ 90◦.

Hence,

EGAB = {{vi, vj} |]pipkpj < 90◦ for all k ∈ {1, . . . , n}}.
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p1

p2

(a) The RNG-region of influence of the
points p1 = (1, 1) and p2 = (2, 3) is the
shaded area. It is the intersection of
the two circles bounded by the dashed
lines.

p1

p2

(b) The shaded area is the Gabriel-region of in-
fluence of the same points.

Figure 2.2: Regions of influence: The vertices corresponding to two points are adjacent
if the two points’ region of influence does not contain any additional points.

RNGs, RCGs, and Gabriel graphs are empty region graphs, that is, they can be de-
scribed in terms of areas surrounding an edge, known as regions of influence, which may
not contain any additional points. An example of an RNG-region of influence is pic-
tured in Figure 2.2a. For two points p1, p2 ∈ R2, the RNG-region of influence consists
of the intersection of the open balls with radius r = d(p1, p2) centered on p1 and p2.
Such an intersection of two balls is known as a lune. More formally, we will denote the
RNG-region of influence as:

roiRNG(p1, p2) := Br(p1) ∩Br(p2).

Similarly the RCG-region of influence consists of the intersection of two closed balls of
radius r = d(p1, p2), but does not contain the points p1 and p2 themselves:

roiRCG(p1, p2) := (Br(p1) ∩Br(p2)) \ {p1, p2}.

For two points p and q, let mid(p, q) denote the point halfway between p and q. That
is, if p = (x1, y1) and q = (x2, y2), then mid(p, q) = (x1−x2

2
, y1−y2

2
). An example of a

Gabriel-region of influence is depicted in Figure 2.2b. The Gabriel-region of influence is
simply the open ball with radius r := d(p1,p2)

2
centered on the point halfway between p1

and p2. That is:

roiGAB(p1, p2) := Br(mid(p1, p2)).

Then, the following lemma, which has been established in the literature, holds:

17
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Lemma 2.8 ([Urq83], [MS80]). Let C ∈ {RNG,RCG,GAB}. The vertex v1 is a C-
blocker for v2 and v3 if and only if emb(v1) ∈ roiC(emb(v2), emb(v3)).

Hence,

EC = {{vi, vj} | emb(V ) ∩ (roiC(emb(vi), emb(vj)) = ∅}.

The following lemma holds equally for relative neighborhood graphs, relatively closest
graphs, and Gabriel graphs. It follows directly from Lemmas 2.5 to 2.7.

Lemma 2.9 ([Urq83], [Cim92], and [MS80]). Let C ∈ {RNG,RCG,GAB}. Suppose
that G ∈ C with a fixed C-embedding emb, that u1, u2, and u3 form a 3-cycle, and
that v1, v2, v3, and v4 form a 4-cycle. Then, there is no w with emb(w) inside
the triangle formed by emb(u1), emb(u2), and emb(u3) or the quadrilateral generated
by emb(v1), emb(v2), emb(v3), emb(v4).

In other words, in an embedding of any of these proximity graphs 3-cycles and 4-cycles
are empty, in that their interiors do not contain any additionally vertices. This is a fairly
strong property. For instance, it can be used to show that no such proximity graphs
may contain K4 or K2,3 as subgraphs.

2.4 Book embeddings

We will use book embeddings extensively in our NP-hardness proofs since they give us
very structured representations of certain graphs. Book embeddings were first introduced
in 1979 by Bernhart and Kainen [BK79]. Intuitively, a book embedding places the
vertices of a graph on the spine of a book, while its edges are embedded in the pages.
Such embeddings are useful in a variety of applications, including VLSI design, parallel
computing, and the design of fault-tolerant systems [CLR87]. We will use them to
design polynomial-time reductions, similarly to the way they are used by Fluschnik et
al. [Flu+18].

Definition 2.10. A k-page book embedding of a graph G = (V,E) consists of:

• a partition of the edge set E = E1 ∪̇ . . . ∪̇ Ek into k pages,

• an embedding emb : V → R of the vertices onto the real line, and

• a planar embedding of each page (V,Ei) in the half-plane R × R≥0 which maps
every v ∈ V onto (emb(v), 0).

The book thickness of a graph G is the minimum number k such that G is k-page
book-embeddable.

Figure 2.3 pictures an example of a two-page book embedding of a graph G. A graph G
is pictured in Figure 2.3a and a book embedding of G is in Figure 2.3b.

A graph is subhamiltonian if it is a subgraph of a planar Hamiltonian graph. Graphs
with small book thickness are planar and were fully characterized by Bernhart and
Kainen [BK79] as follows:

18
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v1

v5

v3

v2

v4

(a) A graph G.

v1 v2 v3 v4 v5

(b) A two-page book embedding of G: The dashed line
represents the spine of the book. The edges drawn
above this line form E1. Those drawn below the line
form E2.

Figure 2.3: Example of a two-page book embedding.

Lemma 2.11 ([BK79]). A graph has:

• a book thickness of 0 if and only if it is edgeless,

• a book thickness of 1 if and only if it is outerplanar, and

• a book thickness of 2 if and only if it is subhamiltonian.

This lemma implies that the graph pictured in Figure 2.3 requires two pages, since it is
not outerplanar. Since we will be concerned with both book embeddings and proximity
graphs, we briefly note the following as an aside:

Observation 2.12. Relatively closest graphs, relative neighborhood graphs, and Gabriel
graphs have a book thickness of at most 2. Their book thickness can be computed in linear
time.

Proof. Kainen and Overbay [KO03] define nicely planar graphs as planar graphs which
admit an embedding in which every 3-cycle bounds a face and prove that nicely planar
graphs are subhamiltonian. By Lemma 2.9, RCGs, RNGs, and Gabriel graphs are nicely
planar. By Lemma 2.11, this implies that they have a book thickness of at most two.

As a result, their book thickness can be computed in linear time because it is possible
to check whether they are edgeless or outerplanar in linear time [Mit79].

Heath [Hea85] proved that two-page book embeddings exist for all planar graphs with
maximum degree at most 3 and can be computed in linear time. More recently, Bekos,
Gronemann, and Raftopoulou [BGR16] extended this result:

Theorem 2.13 ([BGR16]). Every planar graph with maximum degree at most 4 admits
a two-page book embedding. Such an embedding can be computed in quadratic time.
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2.5 Complexity

We will prove conditional lower bounds for the running time of algorithms for the re-
strictions of several graph problems to proximity graphs. We will primarily focus on
lower bounds derived from classical complexity theory and the theory of NP-hardness.
In other words, most of our results will be based on the conjecture that P 6= NP, that is,
the conjecture that there are no polynomial-time algorithms for NP-complete problems.
We assume that the reader is familiar with the theory of NP-hardness and will not define
its terminology and central results. The reader may consult Garey and Johnson [GJ79]
or Arora and Barak [AB09], for example.

Recently, newer paradigms have emerged within complexity theory that allow a more
fine-grained analysis of the complexity of computational problems based on stronger
conjectures than P 6= NP. One such approach is the exponential time hypothesis (ETH),
from which lower bounds for numerous problems may be derived.

In order to state the ETH, we must first define the 3-SAT problem. A clause over the
variables x1, . . . , xn is a subset of {x1, . . . , xn,¬x1, . . . ,¬xn} (x1, . . . , xn,¬x1, . . . ,¬xn
are called literals). A Boolean conjunctive formula over x1, . . . , xn is a set of
clauses C1, . . . , Cm. Such a formula is satisfiable if there is a truth assign-
ment α : {x1, . . . , xn} → {0, 1} such that for every clause Ci there is a variable xj such
that:

• xj ∈ Ci and α(xj) = 1 or

• ¬xj ∈ Ci and α(xj) = 0.

The 3-SAT problem is defined as follows:

3-SAT
Input: A Boolean conjunctive formula ϕ consisting of the clauses C1, . . . , Cm

over the variables x1, . . . , xn such that |Ci| ≤ 3 for all Ci.
Question: Is ϕ satisfiable?

The exponential time hypothesis was introduced in 2001 by Impagliazzo and Paturi
[IP01]. In a simplified form, it states:

Conjecture 2.14 ([IP01]). The 3-SAT problem does not admit an algorithm with run-
ning time 2o(n)(n+m)O(1).

Lokshtanov, Marx, and Saurabh [LMS11] give a very useful survey of lower bounds
that may be derived if one assumes the ETH.
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In the following, we will show that several well-known NP-complete problems remain
NP-complete when restricted to relative neighborhood graphs, relatively closest graphs,
and Gabriel graphs. We will do so by giving polynomial-time many-to-one reductions
from problems known to be NP-complete. We will consider the following problems:
Dominating Set, Independent Set, Vertex Cover, 3-Colorability, Feed-
back Vertex Set, and Hamiltonian Cycle. Finally, we will define a notion of
temporal proximity graphs and show that the Temporal (s, t)-Separation problem
is NP-complete on such temporal graphs. In each case, we will also discuss ETH-based
lower bounds that follow from the reduction.

We should be specific about what we mean when we refer to the restriction of a decision
problem to a class of proximity graphs. We assume that the input to the decision problem
consists only of the graph and, in some cases, a parameter k. The graph embedding is
not part of the input. Hence, we do not have to worry about computations involving real
numbers. One could suspect that the version of the computational problem where an
embedding is given to the algorithm as part of the input might be easier than the version
in which the embedding is not given. For the problems we consider, our reductions
actually prove that this is not the case, since an embedding for the graph generated by
the reduction is constructed along with the graph.

The reductions we will give for the first six problems follow the same general pattern.
Before we begin, we will define some terminology that will be useful in these reductions
and we will describe said pattern.

Consider a graph G = (V,E) and a two-page book embedding of G. Let v1, . . . , vn
be the vertices of the graph in the order in which they appear on the spine. The
book embedding induces a partition of G’s edges E = E1 ∪̇ E2. We will use N1(v) :=
{v′ | {v, v′} ∈ E1} to denote v’s E1-neighborhood and deg1(v) := |N1(v)| to denote v’s E1-
degree. We may define N2(v) and deg2(v) in the same way with edges from E2. For an
edge e = {vi, vj}, i < j, define its length as:

`(e) := j − i.

The interior of e is

int(e) := {e′ = {vr, vs} | i ≤ r < s ≤ j, e′ 6= e, and e and e′ are both in E1 or both in E2}.

The height of e is

h(e) :=

1 + max
e′∈int(e)

h(e′), if int(e) 6= ∅,

1, if int(e) = ∅.
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v1 v2 v3 v4

e1 e4

e3

e2

Figure 3.1: A two-page book embedding of a graph G: All edges are in E1.

The E1-height of a vertex vi is

h1(vi) :=

{
max{h(e) | e = {vi, vj} and e ∈ E1}, if N1(vi) 6= ∅,
0, if N1(vi) = ∅.

Similarly, define the E2-height h2(vi) by the maximum height of edges incident to vi
in E2. Let h1(G) := max{h1(vi) | i ∈ {1, . . . , n}}, h2(G) := max{h2(vi) | i ∈ {1, . . . , n}}.
Note that, because the height of any edge only depends on the height of shorter edges,
edge height is well-defined. The length and height of an edge are both in O(n).

We will now describe the general idea behind each of our reductions. Figure 3.1
pictures a two-page book embedding of a graph G. Note that `(e1) = `(e4) = 1, `(e2) =
3, `(e3) = 2, h(e1) = h(e4) = 1, h(e3) = 2, and h(e2) = 3. We will use this graph to
illustrate each of our reductions.

For each of the problems Independent Set, 3-Colorability, Dominating Set,
Feedback Vertex Set, and Hamiltonian Cycle we will give a many-to-one
polynomial-time reduction from the restriction of the problem to planar graphs with
maximum degree three or four to the restriction of the problem to proximity graphs.
Each reduction will start by computing a two-page book embedding in polynomial time.
This is possible by Theorem 2.13.

The design of reductions for proximity graphs involves dealing with combinatorial and
geometric issues. From a combinatorial perspective, the graph generated by the reduc-
tion must preserve the combinatorial properties that are relevant to the computational
problem in question. When dealing with Independent Set, for example, the generated
graph’s independence number must depend on the original graph’s independence num-
ber in a predictable way. Geometrically, we must insure that the generated graphs are,
in fact, RNGs, RCGs, or Gabriel graphs. As we describe the graph that the reduction
generates, we will also describe an embedding that induces this graph.

The reductions will employ three types of gadgets. There will be vertex gadgets rep-
resenting the vertices in the input graph. These vertex gadgets will depend on the E1

and E2-heights and E1 and E2-degrees of the vertex they represent. Secondly, there will
be edge gadgets representing the edges in the input graph. The edge gadgets will be
paths or path-like in that they can elongated in some fashion. The length of these paths
or like-gadgets will depend on the length and, in some cases, height of the edges they
represent. The embedding of the edge gadget starts at the vertex gadget representing
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(a) Addition of vertex gadgets and edge gadgets: The dark blue vertex gadgets represent
vertices in the original graph. The red edge gadgets represent edges in the original graph.
Their length and shape depends on the height and length of the edges they represent.

(b) Addition of filler gadgets: Filler gadgets must be added throughout the areas marked in
light green.

Figure 3.2: Illustration of the general idea behind our reductions: The input is the
graph G in Figure 3.1. Vertex gadgets are in blue, edge gadgets in red,
and areas with filler gadgets in green.

one of the edge’s endpoints. It begins with a vertical portion whose length depends on
the height of the edge. The vertical portion is followed by a horizontal portion. The
height at which the horizontal portion is embedded depends on the height of the edge.
The length of this portion depends on the length of the edge. Finally, there is a second
vertical portion that mirrors the first and goes from the end of the horizontal portion to
the vertex gadget representing the second endpoint of the edge.

The general idea behind our reductions in illustrated in Figure 3.2. The addition of
vertex gadgets and edge gadgets is shown in Figure 3.2a. Combinatorially, we could end
the reduction at this point, but geometric issues remain. The embedding generally does
not induce the graph as its proximity graph yet, because there are no blockers between
the vertices in the various gadgets. The proximity graphs induced by the embedding at
this point would contain additional edges which could affect the graph’s combinatorial
properties in unintended ways. This is why we introduce a third type of gadget, the
filler gadgets. Filler gadgets will be added throughout the areas between the various
gadgets. They must block edges between other gadgets while at the same time affecting
the relevant combinatorial properties in a predictable way. In Figure 3.2b, the areas
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which have to be covered by filler gadgets are marked in green.
In the following chapters, we will prove the NP-hardness of the aforementioned prob-

lems.
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We begin by considering the Dominating Set problem and proving that it is NP-hard
when restricted to RNGs, RCGs, and Gabriel graphs. Recall that a set of vertices D ⊆ V
in a graph G = (V,E) is a dominating set if every v ∈ V \ D has a neighbor in D and
that γ(G) denotes the size of the smallest dominating set in G. This gives rise to the
Dominating Set problem:

Dominating Set
Input: A graph G = (V,E) and a nonnegative integer k.
Question: Does G contain a dominating set of size at most k?

According to Garey and Johnson [GJ79] and Johnson [Joh84], Dominating Set re-
mains NP-complete when restricted to 3-regular planar graphs, although to our knowl-
edge no proof has been published. We will give a brief proof sketch at the end of this
chapter for the following slightly weaker claim:

Theorem 4.1 ([GJ79; Joh84]). Dominating Set on planar graphs with maximum
degree at most 3 is NP-hard.

4.1 Definitions and intermediate results

We will start by proving several lemmas that we will use to show that our reduction is
correct. First, we will show that, if we replace any vertex by a path consisting of four
vertices while connecting the neighbors of the replaced vertex to the endpoints of the
path, then we increase its domination number by exactly one. An example of such a
transformation is pictured in Figure 4.1.

Lemma 4.2. Let G be a graph. Suppose that G′ is obtained from G by replacing the ver-
tex v with a path consisting of the new vertices v1, v2, v3, v4 in that order and connecting
every neighbor of v to either v1 or v4. Then, γ(G′) = γ(G) + 1.

Proof. Suppose that D is a dominating set in G. If v ∈ D (the case highlighted in
blue in Figure 4.1), then D′ := (D \ {v}) ∪ {v1, v4} is a dominating set of size |D| + 1
in G′. If v 6∈ D (the case highlighted in red in Figure 4.1), then this vertex has a
neighbor u ∈ D. In G′, u must be adjacent to either v1 or v4. In the first case, D′ :=
D∪ {v3} is a dominating set of size |D|+ 1 in G′. In the second case, D′ := D∪ {v2} is.
Hence, γ(G′) ≤ γ(G) + 1.

Now suppose that D′ is a dominating set in G′. First, assume that D′ contains v1.
Then, D′ must also contain at least one of v2, v3, or v4 in order to dominate v3.
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v

(a) A graph G.

v1 v2 v3
v4

(b) The graph G′ obtained from G by
applying the the transformation.

Figure 4.1: An example for the transformation described in Lemma 4.2: The vertex v is
replaced by the path consisting of v1, v2, v3, and v4.

Then, D := (D′ \{v1, v2, v3, v4})∪{v} is a dominating set in G of size at most |D′|−1. If
we assume that D′ contains v4, then an analogous argument holds. So, assume that D′
contains neither v1 nor v4. It must then contain one of the following:

• v2 and a vertex u 6= v3 that is adjacent to v4,

• v3 and a vertex u 6= v2 that is adjacent to v1, or

• both v2 and v3.

In the first case, set D := D′ \ {v2}. In the second case, let D := D′ \ {v3}. In the third
case, choose D := (D′ \ {v2, v3}) ∪ {v}. In each case, D is a dominating set in G of size
at most |D′| − 1. Hence, γ(G′) ≥ γ(G) + 1.

The preceding lemma can be generalized to a path consisting of 3k + 1 vertices for
any k.

Lemma 4.3. Suppose the graph G′ is obtained from G by replacing the vertex v with a
path consisting of 3k+1 new vertices v1, v2, . . . , v3k+1 in that order and connecting every
neighbor of v to v3i+1 for some i. Then, γ(G′) = γ(G) + k.

Proof. By induction on k:
If k = 0, then G and G′ are isomorphic.
Suppose the claim holds for k and let G′ be the graph obtained from G by replacing v

with a path consisting of 3k+4 vertices. Let G′′ be obtained from G by replacing v with
the path v1, v2, v3, v4 and connecting every u to v1 if u is adjacent to v1 in G′ and to v4
if u is adjacent to a vi, i ≥ 4, in G′. Then, G′ may be obtained from G′′ by replacing v4
with a path containing 3k+ 1 vertices. By Lemma 4.2, γ(G′′) = γ(G) + 1. By induction
hypothesis, γ(G′) = γ(G′′) + k, implying that γ(G′) = γ(G) + k + 1.

This directly implies:

Corollary 4.4. If G′ is obtained from the graph G by subdividing an edge 3k times,
then γ(G′) = γ(G) + k.
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v1
u1

v2

u2

v3
u3

v4

u4

Figure 4.2: The graph G′ in Lemma 4.5.

Proof. Let {u, v} be the edge in G that is subdivided 3k times to obtain G′. This
subdivision is tantamount to replacing u with a path of length 3k+1, while connecting v
to the last vertex on this path and all of u’s other neighbors to the first vertex. By
Lemma 4.3, this implies that γ(G′) = γ(G) + k.

Lemma 4.3 and Corollary 4.4 are the basis for the vertex and edge gadgets we will
use. Next, we will consider how the addition of a certain subgraph consisting mainly of
a cycle of length twelve affects the domination number. This graph will be used as the
filler gadget.

Lemma 4.5. Let G be a graph. Consider the graph G′ depicted in Figure 4.2 and the
vertices marked v1, v2, v3, and v4. Suppose that G′ is an induced subgraph of G, that
in G the vertices v1, v2, v3, v4 each have at most one neighbor in G − G′, and that no
other vertex in G′ has a neighbor in G−G′. Then, γ(G) = γ(G−G′) + 4.

The same statement is also true if any subset of {v1, v2, v3, v4} is removed from G′.

Proof. Suppose that D is a dominating set in G − G′. Then, D′ := D ∪ {u1, u2, u3, u4}
(see Figure 4.2) is a dominating set of size |D|+ 4 in G. Hence, γ(G) ≤ γ(G−G′) + 4.

Suppose now that D′ is a dominating set in G. Then, D′ must contain at least four
vertices w1, w2, w3, w4 on the cycle in G′. We obtain D by removing all vertices in G′

from D′. If vi ∈ D′ and vi has a neighbor v′i in G−G′, then we add v′i to D. Then, D is a
dominating set of size at most |D′|−4 in G−G′. This implies that γ(G) ≥ γ(G−G′)+4.

The previous argument also applies if any subset of {v1, v2, v3, v4} is removed from G′.

Lemma 4.5 would also be correct if we replaced the 12-cycle in G′ with any cycle
whose length is divisible by 3 and added outer vertices vi to every third vertex in the
cycle. We will use 12-cycles in our reduction because this allows us to draw the vertices
on the boundary of a square with every third vertex lying on a corner.

The previous lemmas will be used to prove the correctness of our reduction. We will
now present several results that we will use to prove that the graph produced by the
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vi,j

vi′,j′vi,j′

(a) The vertex vi,j′ is a Gabriel-
blocker for vi,j and vi′,j′ , be-
cause ](i, j)(i, j′)(i′, j′) = 90◦.

vi,j

vi,j′

vi,j+1

(b) The vertex vi,j+1 is a Gabriel-blocker
for vi,j and vi,j′ , because it is on the
line segment between them.

Figure 4.3: Each pair of non-adjacent vertices in Gn1,n2 has a Gabriel-blocker. The red
vertices are not adjacent and the green vertices are their blockers.

reduction is a relative neighborhood graph, a relatively closest graph, and a Gabriel
graph.

Definition 4.6. The (n1 × n2)-grid point set is Pn1,n2
:= {1, . . . , n1} × {1, . . . , n2}.

Recall that in Section 2.1, we defined the (n1 × n2)-grid graph as Gn1,n2
:=

(Vn1,n2 , En1,n2) with:

Vn1,n2
:={vi,j | 1 ≤ i ≤ n1, 1 ≤ 2 ≤ n2},

En1,n2
:={{vi,j, vi+1,j} | 1 ≤ i ≤ n1 − 1, 1 ≤ j ≤ n2}
∪ {{vi,j, vi,j+1} | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 − 1}.

This is the graph induced by the Pn1,n2 as its RNG, RCG, and Gabriel graph, as we will
show.

Lemma 4.7. The relative neighborhood graph, relatively closest graph, and Gabriel graph
induced by the (n1 × n2)-grid point set is the (n1 × n2)-grid graph.

Proof. Since RCG(P ) ⊆ RNG(P ) ⊆ GAB(P ) for any P ⊆ R2, it suffices to prove
that GAB(Pn1,n2) ⊆ Gn1,n2 ⊆ RCG(Pn1,n2). Let emb: Vn1,n2 → R2 with vi,j 7→ (i, j).
Clearly, emb(Vn1,n2) = Pn1,n2 .

We begin by showing that GAB(Pn1,n2) ⊆ Gn1,n2 . To this end, we must prove that
every pair of non-adjacent vertices in Gn1,n2 has a Gabriel-blocker. Let vi,j and vi′,j′ be
distinct and non-adjacent vertices.

First, assume that i 6= i′ and j 6= j′. Then, vi,j′ is distinct from both of these vertices
and ] emb(vi,j) emb(vi,j′) emb(vi′,j′) = ](i, j)(i, j′)(i′, j′) = 90◦. As a result, vi,j′ is a
Gabriel-blocker for these two vertices. See Figure 4.3a.
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Now assume that i = i′. Since vi,j and vi′,j′ are not adjacent, it follows that |j−j′| > 1.
Without loss of generality, we may assume that j′ > j + 1. Then, vi,j+1 is on the line
segment between the two vertices and therefore a Gabriel-blocker. See Figure 4.3b. An
analogous argument applies if we assume that j = j′.

We must also show that Gn1,n2 ⊆ RCG(Pn1,n2), in other words that there is no RCG-
blocker for any edge in Gn1,n2 . This follows from the fact that the embeddings of adjacent
vertices have a distance of 1, but no third vertex has a distance of at most 1 to such
vertices.

Next, we will add points to an (n1 × n2)-grid point set. We will add them at the
position halfway between two existing points. Each added point will have one integer
and one half-integer coordinate. We will prove that, if we add enough of these points,
then the graph induced by the point set as its RNG, RCG, and Gabriel graph is a
subdivision of the (n1 × n2)-grid graph.

Definition 4.8. Let n1, n2 ∈ N.
A subdivision (S1, S2) is a pair of sets S1 ⊆ {1, . . . n1 − 1} × {1, . . . n2} and S2 ⊆
{1, . . . , n1} × {1, . . . , n2 − 1}. The subdivision (S1, S2) is valid if the following two
conditions hold for all 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2:

• if (i, j) /∈ S1, then (i+ 1, j) ∈ S1 and (i− 1, j) ∈ S1 and

• if (i, j) /∈ S2, then (i, j + 1) ∈ S2 and (i, j − 1) ∈ S2.

The (S1, S2)-subdivision of the graph Gn1,n2 is the graph obtained from Gn1,n2 by
subdividing each of the following edges exactly once:

• any edge {vi,j, vi+1,j} if (i, j) ∈ S1 and

• any edge {vi,j, vi,j+1} if (i, j) ∈ S2.

We will denote this graph as Gn1,n2 [S1, S2] = (Vn1,n2 [S1, S2], En1,n2 [S1, S2]). We will
use wi,j to refer to the vertex introduced by subdividing {vi,j, vi+1,j} and w̃i,j for the
vertex introduced by subdividing {vi,j, vi,j+1}. The vertices in Vn1,n2 will be called integer
vertices, while wi,j and w̃i,j will be called half-integer vertices.

The (S1, S2)-subdivision of the point set Pn1,n2 is the point set

Pn1,n2 [S1, S2] := Pn1,n2 ∪ {(i+
1

2
, j) | (i, j) ∈ S1} ∪ {(i, j +

1

2
) | (i, j) ∈ S2}.

The point (i, j) ∈ Pn1,n2 [S1, S2] will be called an integer point if i, j ∈ N, while (i+ 1
2
, j) ∈

Pn1,n2 [S1, S2] and (i, j + 1
2
) ∈ Pn1,n2 [S1, S2] with i, j ∈ N are half-integer points.

Intuitively, S1 tells us which horizontal edges are to be subdivided and S2 determines
which vertical edges have to be subdivided. Note that every point has at least one
integer coordinate. These definitions are useful due to the following:
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vi,j

wi′,j′vi,j′

(a) The vertex vi,j′ is a Gabriel-
blocker for vi,j and wi′,j′ , be-
cause ](i, j)(i, j′)(i′ + 1

2 , j
′) = 90◦.

vi,j

wi′,jvi+1,j

(b) The vertex vi+1,j is a Gabriel-blocker
for vi,j and wi′,j , because it is on the
line segment between them.

wi,j

wi′,j′vi+1,j′

(c) The vertex vi+1,j′ is a Gabriel-
blocker for wi,j and wi′,j′ , be-
cause ](i, j)(i, j′)(i′ + 1

2 , j
′) > 90◦.

wi,j

wi,j′

w̃i,j w̃i+1,j

(d) The graph contains w̃i,j or w̃i+1,j .
One of these vertices is a Gabriel-
blocker for wi,j and wi,j′ , because ](i+
1
2 , j)(i, j

′+ 1
2)(i′+ 1

2 , j
′) ≥ 90◦ and ](i+

1
2 , j)(i + 1, j′ + 1

2)(i′ + 1
2 , j
′) ≥ 90◦.

Figure 4.4: Each pair of non-adjacent vertices in Gn1,n2 [S1, S2] has a Gabriel-blocker.
The red vertices are not adjacent and the green vertices are their blockers.

Lemma 4.9. If the subdivision (S1, S2) is valid, then the (S1, S2)-subdivision of the point
set Pn1,n2 induces the (S1, S2)-subdivision of the graph Gn1,n2 as its relative neighborhood
graph, relatively closest graph, and Gabriel graph.

Proof. Again, it suffices to prove that GAB(Pn1,n2 [S1, S2]) ⊆ Gn1,n2 [S1, S2] ⊆
RCG(Pn1,n2 [S1, S2]). Let emb: Vn1,n2 [S1, S2] → R2 with vi,j 7→ (i, j), wi,j 7→ (i + 1

2
, j),

and w̃i,j 7→ (i, j + 1
2
). Of course, emb(Vn1,n2 [S1, S2]) = Pn1,n2 [S1, S2].

We begin by proving that GAB(Pn1,n2 [S1, S2]) ⊆ Gn1,n2 [S1, S2], that is, that all pairs of
non-adjacent vertices in Gn1,n2 [S1, S2] have Gabriel-blockers. Mostly, this follows along
the same lines as the proof of Lemma 4.7. The only pairs of non-adjacent vertices not
yet considered in that proof are pairs of integer vertices that are adjacent in Gn1,n2 , but
not in Gn1,n2 [S1, S2], as well as pairs of non-adjacent vertices that involve at least one
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(i, j + ε)

(i+ ε, j)

(i, j − ε)

(i− ε, j)

Figure 4.5: Embedding of a 12-cycle: The unlabeled vertices are spread equidistantly
between the vertices whose positions are given.

half-integer vertex.
The only edges between integer vertices that are are present in Gn1,n2 , but not

in Gn1,n2 [S1, S2], are those that were subdivided. Clearly, they have the vertices intro-
duced in the subdivision as Gabriel-blockers as these vertices are on the line segments
between them.

We turn our attention to pairs of non-adjacent vertices that involve at least one half-
integer vertex. This requires us to distinguish several cases.

First, assume that just one of the two vertices is a half-integer vertex. Suppose that vi,j
and wi′,j′ are not adjacent. Then, emb(vi,j) = (i, j) and emb(wi′,j′) = (i + 1

2
, j). If j 6=

j′, then the vertex vi,j′ is a Gabriel-blocker, since ] emb(vi,j) emb(vi,j′) emb(wi′,j′) =
](i, j)(i, j′)(i′+ 1

2
, j′) = 90◦. See Figure 4.4a. If j = j′, there is a third vertex on the line

segment between them. See Figure 4.4b. An analogous argument applies if we consider
two non-adjacent vertices vi,j and w̃i′,j′ .

Now consider two non-adjacent half-integer vertices. First, suppose one of them is
the result of subdividing a horizontal edge and the other the product of subdividing a
vertical edge, say the vertices wi,j and w̃i′,j′ . Then, vi′,j is a Gabriel-blocker by the same
reasoning as above. Next, we deal with two half-integer vertices that were both created
by subdividing a horizontal edge (for two products of a vertical edge the same argument
applies). Say, the two vertices are wi,j and wi′,j′ . If i 6= i′ and j 6= j′, we assume without
loss of generality that i < i′. Then, vi+1,j′ is a Gabriel-blocker. See Figure 4.4c. If i 6= i′

and j = j′, then there is again a vertex on the line segment between the two vertices.
The final case is when i = i′ and j 6= j′. Without loss of generality, j < j′. Because the
subdivision is valid, w̃i,j ∈ Vn1,n2 [S1, S2] or w̃i+1,j ∈ Vn1,n2 [S1, S2]. Whichever of these
two vertices is present in the graph is a Gabriel blocker. See Figure 4.4d.

We must also show that Gn1,n2 [S1, S2] ⊆ RCG(Pn1,n2 [S1, S2]), in other words, that no
adjacent points have an RCG-blocker. Given what we proved in Lemma 4.7, we only
have to show that half-integer vertices are not blockers for any edges and that the edges
incident to half-integer vertices are not blocked. This follows by the same argument used
in the proof of that lemma.

We will now further modify subdivided point sets and investigate the effect this has
on the proximity graphs they induce. In order to apply Lemma 4.5, we will replace

31



4 Dominating Set

Figure 4.6: Addition of a 12-cycle to a subdivided grid

some integer vertices with cycles of length twelve. In the following, fix 0 < ε < 1
4
. The

embedding of C12 we will use is pictured in Figure 4.5. We will refer to this point set
as P 12

i,j . The following observation follows from a similar argument to the one we used
to prove Lemma 4.9.

Observation 4.10. The point set P 12
i,j induces C12 as its RNG, RCG, and Gabriel graph.

Subdivided grids which have had some of their integer points replaced with 12-cycles
will be referred to as modified subdivided grids.

Definition 4.11. Let n1, n2 ∈ N.
A modified subdivision (S1, S2, S3) consists of sets S1 ⊆ {1, . . . n1 − 1} × {1, . . . n2},

S2 ⊆ {1, . . . , n1} × {1, . . . , n2 − 1}, and S3 ⊆ {1, . . . , n1} × {1, . . . , n2}. It is valid
if (S1, S2) is a valid subdivision and (i, j), (i − 1, j) ∈ S1 and (i, j), (i, j − 1) ∈ S2 for
all (i, j) ∈ S3. If i = 1, the condition (i − 1, j) ∈ S1 is dropped and, if j = 1, the
condition (i, j − 1) ∈ S2 is dropped.

If (S1, S2, S3) is a valid modified subdivision, the (S1, S2, S3)-modified subdivision of the
graph Gn1,n2 is the graph obtained from Gn1,n2 [S1, S2] by removing every vi,j with (i, j) ∈
S3 and adding a C12 in the following manner:

• add the vertices wi,j1 , . . . , w
i,j
12 with the edges {wi,jk , w

i,j
k+1} for k = 1, . . . , 11

and {wi,j12 , w
i,j
1 },

• connect the C12 to surrounding half-integer vertices by adding the
edges {wi,j1 , wi−1,j}, {w

i,j
4 , w̃i,j}, {w

i,j
7 , wi,j}, {w

i,j
11 , w̃i,j−1}.

Note that each of those half-integer vertices exist because (S1, S2, S3) is valid. An ex-
ample for the addition of a C12 is pictured in Figure 4.6.

The (S1, S2, S3) of the point set Pn1,n2 is the point set

Pn1,n2 [S1, S2, S3] := (Pn1,n2 [S1, S2] \ {(i, j) | (i, j) ∈ S3}) ∪
⋃

(i,j)∈S3

P 12
i,j .
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vi−1,j+1
wi−1,j+1 vi,j+1

w̃i,j

wi,j4

wi,j1
vi−1,j

(a) The vertex w̃i,j is a blocker

for {wi−1,j+1, w
i,j
1 }.

wi−1,j+1
9

vi,j+1

w̃i,j

wi,j2wi−1,jvi−1,j

(b) The vertex w̃i,j is a blocker

for {wi−1,j+1, w
i,j
1 }.

Figure 4.7: Two subgraphs of Gn1,n2 [S1, S2, S3] along with the Gabriel-blockers for two
pairs of non-adjacent vertices.

The graph produced by the reduction that we will use to prove the NP-hardness of
Dominating Set will be a modified subdivided grid graph. We will use the following
lemma to prove this graph is an RNG, an RCG, and a Gabriel graph.

Lemma 4.12. If (S1, S2, S3) is valid, then the (S1, S2, S3)-modified subdivision of the
point set Pn1,n2 induces the (S1, S2, S3)-modified subdivision of the graph Gn1,n2 as its
relative neighborhood graph, relatively closest graph, and Gabriel graph.

Proof sketch. The proof mostly follows along the same lines as the proof of Lemma 4.9,
so we will omit many of the details. For instance, if (i, j) ∈ S3 and (i, j) is a blocker
for a pair of non-adjacent vertices in Gn1,n2 [S1, S2], then we can choose a vertex in
the C12 which replaced (i, j) and show that it is a blocker for the same pair of vertices
in Gn1,n2 [S1, S2, S3].

In most instances, it is not hard to see that non-adjacent pairs of vertices have
Gabriel-blockers and that adjacent pairs do not have RCG-blockers. We will fo-
cus on a few cases where this may not be immediately clear. Consider the ex-
cerpt of Gn1,n2 [S1, S2, S3] pictured in Figure 4.7a. It occurs when (i, j) ∈ S3,
but (i − 1, j), (i, j − 1), (i − 1, j − 1) /∈ S3. The vertex w̃i,j is a Gabriel-blocker
for {wi−1,j+1, w

i,j
1 }, since ] emb(wi−1,j+1) emb(w̃i,j) emb(wi,j1 ) > 90◦. Also, consider

the excerpt depicted in Figure 4.7b, which occurs when (i, j), (i + 1, j + 1) ∈ S3, but
(i + 1, j), (i, j + 1) /∈ S3. The vertex wi−1,j is a Gabriel-blocker for wi,j2 and wi−1,j+1

9 ,
since emb(wi,j2 ) emb(wi−1,j) emb(wi−1,j+1

9 ) > 90◦.

33



4 Dominating Set

4.2 Reduction

We will now give a polynomial-time many-to-one reduction from Dominating Set on
planar graphs with maximum degree at most 3 to its restriction to relative neighborhood
graphs, Gabriel graphs, and relatively closest graphs.

Let G = (V,E) be a planar graph with maximum degree at most 3 and k a nonnegative
integer. We compute a two-page book embedding of G in polynomial time and assume
that v1, . . . , vn are the vertices of G in the order in which they appear on the spine of
the book embedding.

Construction

We will now construct a graph G′ = (V ′, E ′), which is an RNG, an RCG, and a Gabriel
graph, and an integer k′ such that G has a dominating set of size k if and only if G′ has a
dominating set of size k′. At the same time, we give an embedding emb: V ′ → R, which
we will subsequently use to prove that G′ is, indeed, an RCG, an RNG, and a Gabriel
graph by showing that RCG(emb(V ′)) = RNG(emb(V ′)) = GAB(emb(V ′)) = G′. The
reduction will follow the pattern described in Chapter 3 and use the terminology defined
there. The vertex and edge gadgets will be paths while the filler gadgets will be copies
of the graph pictured in Figure 4.2. In order to be able to describe edges between
gadgets as succinctly as possible, we will refer to certain vertices or groups of vertices
as (i, j)-corners for integers i and j. Every corner has up to four outlets: a top, a left,
a right, and a bottom outlet. In Figures 4.8 and 4.9, we will illustrate each step of the
construction using the same example graph, which is pictured in Figure 3.1.

Step 1: We start with G′ := G, k′ := k, and emb(vi) := (3i, 0). We will call vi
the (3i, 0)-corner. It is simultaneously the top, left, right, and bottom outlet of this
corner.

Step 2: For every i = 1, . . . , n, add a path consisting of 3h1(vi) new ver-
tices w1, . . . , w3h1(vi) starting in vi. This is vi’s up-path. We let emb(wj) := (3i, j).
Increase k′ by h1(vi). We will call the j-th vertex on the up-path the (3i, j)-corner. It is
also at the same time the top, left, right, and bottom outlet of the corner. Replace every
edge e = {vi, vj} with an edge from the 3h(e)-th vertex in vi’s up-path to the 3h(e)-th
vertex in vj’s up-path. This step is illustrated in Figure 4.8a.

Step 3: For every edge e = {vi, vj} ∈ E1 with i < j, replace the edge introduced in
the previous step in place of e with a path consisting of 3`(e) new vertices w̃1, . . . , w̃3`(e)

from the 3h(e)-th vertex in vi’s up-path to the 3h(e)-th vertex in vj’s up-path. This
is e’s edge path. We set emb(w̃1) := (3i + 1

2
, 3h(i)) and emb(w̃r) := (3i + r − 1, 3h(i))

for all r = 2, . . . , 3`(2). Increase k′ by `(e). For r = 2, . . . , 3`(e), we will call w̃r
the (3i + r − 1, 3h(e))-corner (the first vertex is not a corner). Once again, the corner
vertex is the top, left, right, and bottom outlet of the corner. This step is illustrated in
Figure 4.8b.

Step 4: For every i = 3, 4, . . . , 3n and j = 1, . . . , 3h1(G), do the following: if
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v1 = (3, 0)

w1

w2

w9 = (3, 9)

v2 v3 v4 = (12, 0)

(a) G′ after Step 2: Each vertex vi is re-
placed by a path consisting of 3h1(vi)+
1 vertices. As an example, some ver-
tices in v1’s up-path are labeled. Since,
as noted in Chapter 3, the highest edge
incident to v1 has height 3, the E1-
height of v1 is h1(v1) = 3. Hence, the
up-path consists of 9 vertices.

v1 v2 v3 v4

w9
w̃1w̃2 w̃3 w̃9

(b) G′ after Step 3: Each edge e is re-
placed by a path consisting of 3`(e)
vertices. The edge {v1, v4} has
height 3, so its edge path is connected
to the 9th vertex in v1’s up-path. It
has length 3, so the path consists of 9
vertices. Some of them are labeled.

Figure 4.8: Addition of vertex and edge gadgets in Steps 2 and 3. We omit the distinc-
tion between a vertex and the position it is embedded at.

• i is not divisible by 3 or 3h1(vi) < j (in other words (i, j) is not covered by an
up-path) and

• j is not divisible by 3 or there is no edge e = {vr, vs} with r ≤ i ≤ s and 3h(e) = j
(in other words (i, j) is not covered by edge path),

then add a cycle of length 12. Use the embedding pictured in Figure 4.5. Increase k′

by 4. This cycle is the (i, j)-corner. The vertex on the top is the top outlet, the one on
the left is the left outlet and so on. This step is illustrated in Figure 4.9a.

Step 5: Connect adjacent pairs of corners in the following manner: For every 3 ≤ i ≤
3n− 1 add a vertex u and connect it to the right outlet of the (i, j)-corner and the left
outlet of the (i+ 1, j)-corner. For every 0 ≤ j ≤ 3h1(G)− 1 add a vertex u and connect
it to the top outlet of the (i, j)-corner and the bottom outlet of the (i, j + 1)-corner. In
both cases, the added vertex is embedded at the midpoint of its two neighbors. This
step is illustrated in Figure 4.9b.

We have only taken edges in E1 into consideration. We must, therefore, repeat the
process described in Step 2 to 5 above for all edges in E2, creating down-paths corre-
sponding to the up-paths and proceeding accordingly.
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(a) G′ after Step 4: Each diamond rep-
resents a 12-cycle. Cycles are added
for point (i, j) in the area in which the
graph is embedded if it is not previ-
ously occupied by a vertex or edge gad-
get.

(b) G′ after Step 5: The 12-cycles added
in the previous step are connected
to surrounding vertices via intermedi-
ary vertices, thereby creating numer-
ous copies of the graph in Figure 4.2,
some of them overlapping.

Figure 4.9: Addition of filler gadgets.

Let A denote the total number of vertices on the up-paths, down-paths, and edge
paths and let B denote the number of C12s added. In total, k′ = k + A

3
+ 4B.

Running time

We must show that the reduction runs in polynomial time. The graph G′ contains:

• O(n) copies of the vertices in G,

• O(n) up-paths and down-paths containing O(n) vertices each, for a total of O(n2)
vertices,

• O(n) edge paths containing O(n) vertices each, for a total of O(n2) vertices, and

• O(n2) C12s containing a constant number of vertices each.

In total, G′ contains O(n2) vertices and can be computed in polynomial time by the
process described above.

Correctness

We must show that γ(G) ≤ k if and only if γ(G′) ≤ k′. This is true after every step in the
construction. For Steps 2 and 3, it is a consequence of Lemma 4.3 and Corollary 4.4.
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These steps replace vertices with paths of length 3`+ 1 for some integer ` or subdivide
existing edges 3` times. For Steps 4 and 5, it follows from Lemma 4.5. Together, the
steps add copies of the graph described in the lemma to the graph.

Graph induced by embedding

We will argue that the embedding emb given in the construction induces the graph
described therein as its RNG, RCG, and Gabriel graph. This follows from Lemma 4.12,
the fact that emb(V ′) is a modified subdivided grid point set, and the fact that G′

is a modified subdivided grid graph. One can easily check that (S1, S2, S3) is valid
where S1, S2 represent the half-integer positions occupied by points in emb(V ′) and S3

is the set of positions occupied by 12-cycles.

4.3 Conclusions

This concludes our reduction. Note that in the graphs generated by the reduction no
vertex has a degree greater than four. It proves the following theorem:

Theorem 4.13. Dominating Set is NP-hard when restricted to relative neighborhood
graphs, Gabriel graphs, or relatively closest graphs each with maximum degree at most
four.

For graphs with maximum degree two, Dominating Set is easy to solve. It remains
open whether this problem can be solved in polynomial time when restricted to proximity
graphs with maximum degree three.

We will show that our reduction also implies that Dominating Set cannot be solved

in time 2o(n
1
4 ) on each of our proximity graph classes (where n is the number of vertices

in a graph), unless the exponential time hypothesis fails (on the ETH, see Section 2.5).
We must first establish an ETH-based lower bound of 2o(

√
n) for Dominating Set

on planar graphs with maximum degree 3. As we mentioned at the beginning of this
chapter, no proof has been published for the claim that this problem is NP-hard. We
will briefly sketch a proof, which will also be the starting point for the ETH-based lower
bound.

We will discuss the Vertex Cover problem in Chapter 5. That chapter contains a
definition of this problem and Theorem 5.8, which states that the planar restriction of
Vertex Cover cannot be solved in time 2o(

√
n) unless the ETH fails. Planar Vertex

Cover can be reduced to planar Dominating Set in the following manner. Given
a graph G = (V,E) and a nonnegative integer k, first delete all isolated vertices and
then for every edge {u, v} ∈ E add a vertex w and edges {u,w} and {v, w}. Leave k
unchanged. One can easily check that this reduction is correct and that the resulting
graph is planar. Note that, if G contains n vertices and m edges, then the resulting
graph contains O(m+ n) = O(n) vertices and O(m) edges.

Planar Dominating Set can then be reduced to the restriction of planar Domi-
nating Set to planar graphs with maximum degree at most 3. Chen, Kanj, and Xia
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4 Dominating Set

[CKX09] show that if planar Dominating Set can be solved in time 2o(
√
k)p(n) for some

polynomial p, then the problem’s restriction to planar graphs with maximum degree at
most 3 can be solved in time 2o(

√
k)q(n) where q is another polynomial. Their proof

is based on what they call a vertex expansion operation, which may also be used for
this reduction. It produces a graph with maximum degree three and with a number of
vertices that is linear in the number of vertices of the original graph.

Taken together, these two reductions prove that Dominating Set restricted to planar
graphs with maximum degree 3 is NP-hard. Additionally, combined with Theorem 5.8
they also prove the following:

Theorem 4.14. Unless the ETH fails, Dominating Set restricted to planar graphs
with maximum degree 3 cannot be solved in time 2o(

√
n).

Our reduction from Dominating Set on planar graphs with maximum degree 3 to
its restriction to our classes of proximity graphs maps instances with m edges and n
vertices to graphs with O(n2) vertices and edges. This along with Theorem 4.14 implies:

Corollary 4.15. Unless the ETH fails, Dominating Set restricted to RNGs, RCGs,

or Gabriel graphs cannot be solved in time 2o(n
1
4 ).
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5 Independent Set and Vertex Cover

In the following, we will show that the Independent Set and Vertex Cover prob-
lems are NP-hard, when restricted to relative neighborhood graphs, relatively closest
graphs, or to Gabriel graphs. Recall that an independent set in a graph G is a set of ver-
tices that are pairwise non-adjacent and that α(G) denotes G’s independence number,
the size of the largest independent set in G. The Independent Set problem is:

Independent Set
Input: A graph G = (V,E) and a nonnegative integer k.
Question: Does G contain an independent set of size at least k?

Similarly, recall that a set S ⊆ V is a vertex cover if G − S does not contain any
edges and that τ(G) is the size of the smallest vertex cover in G. The Vertex Cover
problem is:

Vertex Cover
Input: A graph G = (V,E) and a nonnegative integer k.
Question: Does G contain a vertex cover of size at most k?

The Independent Set and Vertex Cover problems are very closely related. This
is because for any graph G containing n vertices, n = α(G)+τ(G). As a result, they can
each be easily reduced to one another by replacing k with n− k where n is the number
of vertices in a graph.

The polynomial-time many-to-one reduction, which we will use to prove that Inde-
pendent Set is NP-hard on the proximity graph classes we are concerned with, will be
from Independent Set restricted to planar graphs with maximum degree at most 3,
which Garey and Johnson [GJ76] proved to be NP-complete:

Theorem 5.1 ([GJ76]). Independent Set on planar graphs with maximum degree at
most 3 is NP-hard.

5.1 Definitions and intermediate results

Before we begin with our reduction, we prove several lemmas concerning independent sets
and define some terminology. The first lemma states that, if we partition a graph G into
subgraphs, then the independence number of G is at most the sum of the independence
numbers of the subgraphs.

Lemma 5.2. If H is a subgraph of a graph G, then α(G) ≤ α(G−H) + α(H).
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5 Independent Set and Vertex Cover

v

(a) G.

v1 v2 v3 v4 v5

(b) G′: The vertex v is replaced by the
path consisting of v1, v2, v3, v4, and v5.

Figure 5.1: The transformation described in Lemma 5.4. The circled vertices form a
maximum independent set in each graph.

Proof. Let G = (V,E) and H = (V ′, E ′) and suppose that I is an independent set in G.
We partition I into I1 := I∩V ′ and I2 := I\V ′. Then, |I1| ≤ α(H) and |I2| ≤ α(G−H).
As a result, |I| ≤ α(H) + α(G−H).

Our second lemma states that if G contains a cycle C of even length and every other
vertex in C has no neighbors outside of C, then any maximum independent set in G
contains exactly half of the vertices in C.

Lemma 5.3. Suppose that a graph G contains a cycle C consisting of the ver-
tices v1, v2, . . . , v2k and that deg(v2i) = 2 for all i = 1, . . . , k. Then, α(G) = k+α(G−C).

Proof. If I is an independent set of size α(G−C) inG−C, then the set I∪{v2, v4, . . . , v2k}
is an independent set in G of size k + α(G− C) in G. So, α(G) ≥ k + α(G− C). Con-
versely, α(G) ≤ α(G−C)+α(C) = α(G−C)+k, by Lemma 5.2 and because α(C2k) = k
for all k ≥ 2.

We will use cycles of even length as filler gadgets and Lemma 5.3 justifies this. We
will use paths as vertex and edge gagets. We will show that, if we replace a vertex by a
path of length 2k+ 1 connecting the vertex’s neighbors to the odd-numbered vertices of
the path, then we increase the graph’s independence number by exactly k. An example
of this transformation is depicted in Figure 5.1.

Lemma 5.4. Let G be a graph and G′ the graph obtained from G by replacing a vertex v
with a path consisting of the vertices v1, . . . , v2k+1 and connecting each neighbor of v
with v2i+1 for some i. Then α(G′) = α(G) + k.

Proof. Suppose I is an independent set in G. If v ∈ I, then I ′ := (I \ {v}) ∪
{v1, v3, v5, . . . , v2k+1} is an independent set in G′ with |I ′| = |I| + k. If v /∈ I,
then I ′ = I ∪ {v2, v4, v6, . . . , v2k} is an independent set in G′ with |I ′| = |I| + k.
Hence, α(G′) ≥ α(G) + k.

Now suppose that I ′ is an independent set in G′. It may contain at most k + 1
vertices from the introduced path. If I ′ contains k+1 vertices on the path, then it must
contain v1, v3, v5, . . . , v2k+1 and may not contain any vertex u that is adjacent to v in G.
Hence, I := (I ′\{v1, v3, v5, . . . , v2k+1})∪{v} is an independent set inG with |I|+k = |I ′|.
If I ′ contains at most k vertices on the introduced path, then I \ {v1, . . . , v2k+1} is an
independent set in G with |I|+ k ≥ |I ′|. Hence, α(G′) ≤ α(G) + k.
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5 Independent Set and Vertex Cover

This directly implies:

Corollary 5.5. If G′ is obtained from the graph G by subdividing an edge 2k times,
then α(G′) = α(G) + k.

Proof. Let {u, v} be the edge in G that is subdivided 2k times to obtain G′. This
subdivision is tantamount to replacing u with a path of length 2k+1, while connecting v
to the last vertex on this path and all of u’s other neighbors to the first vertex. By
Lemma 5.4, this implies that α(G′) = α(G) + k.

5.2 Reduction

We will now give a polynomial-time many-to-one reduction from Independent Set
on planar graphs with maximum degree at most 3 to Independent Set restricted to
both relative neighborhood graphs and Gabriel graphs, thereby proving that it remains
NP-complete on each of them. We will later discuss how the reduction can be modified
to take RCGs into account.

Let (G, k) be an instance of Independent Set on planar graphs with maximum
degree at most 3 consisting of the graph G = (V,E) and an integer k. We compute a
two-page book embedding of G in polynomial time and assume that v1, . . . , vn are the
vertices of G in the order in which they appear on the spine of the book embedding.

Construction

From G and k, we will now derive a graph G′ = (V ′, E ′) and an integer k′. At the
same time, we will construct an embedding emb: V ′ → R2 of G′ which we will later
use to show that G′ is an RNG and a Gabriel graph. The construction will follow the
general pattern we laid out in Chapter 3 and use the terminology we defined there. The
vertex and edge gadgets will consist of paths with lengths of the appropriate parity.
The filler gadgets will consists of multiple cycles of even length. In order to describe
edges between vertices in different gadgets we will refer to certain vertices or groups of
vertices as (i, j)-corners, for integers i and j. Every corner has four outlets: the top, the
left, the right, and the bottom outlet, but they may be identical. We will illustrate the
construction in Figures 5.2 and 5.3 using the example graph depicted in Figure 3.1.

Fix 0 < ε < 1
4
(
√

3− 1).
Step 1: Start with G′ := G and k′ := k. Set emb(vi) := (2i, 0). We will call vi

the (2i, 0)-corner vertex. The vertex vi is simultaneously the top, left, right, and bottom
outlet of this corner.

Step 2: For every i = 1, . . . , n, add a path consisting of 4h1(vi) new ver-
tices w1, . . . , w4h1(vi). Connect vi to w1. Increase k′ by 4h1(vi). We will call this path vi’s
up-path. We will call wj the j-th vertex on this up-path. Embed the new vertices as
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5 Independent Set and Vertex Cover

v1 v2 v3 v5

(a) G′ after Step 2: Every vertex vi is re-
placed by a path consisting of 4h1(vi))
vertices. Edges incident to vi are con-
nected to the 4h(e)-th vertex on this
path.

v1 v2 v3 v5

(b) G′ after Step 3: Every edge e is re-
placed by a path consisting of 4`(e)−2
new vertices.

Figure 5.2: Addition of vertex and edge gadgets.

follows:

emb(wj) :=


(2i, 2r + 1− ε), if j = 4r + 1,

(2i, 2r + 1), if j = 4r + 2,

(2i, 2r + 1 + ε), if j = 4r + 3,

(2i, 2r + 2), if j = 4r + 4.

For all j = 1, . . . , h1(vi), we will call w2j the (2i, j)-corner vertex and w2j is again
simultaneously the top, left, right, and bottom outlet of the corner. For every edge e =
{vi, vj}, delete e and replace it by connecting the 4h(e)-th vertex in vi’s up-path to
the 4h(e)-th vertex in vj’s up-path. This step is illustrated in Figure 5.2a.

Step 3: For every edge e = {vi, vj} ∈ E1, i < j, do the following: subdivide the
edge corresponding to e with the 4`(e) − 2 new vertices w1, . . . , w4`(e)−2. We will call
the resulting path e’s edge path and call wj the j-th vertex on the path. For every r =
1, . . . , `(e) − 1, we will refer to the pair (w2r−1, w2r) as the (2i + r, 2h(e))-corner pair.
The two vertices are simultaneously the top, left, right, and bottom outlet of the corner.
We set

emb(wr) :=

{
(2i+ 2s− ε, 2h(e)), if r = 2s− 1,

(2i+ 2s+ ε, 2h(e)), if r = 2s.

Increase k′ by `(e). This step is illustrated in Figure 5.2b.
Step 4: For every i = 2, . . . , 2n and j = 0, . . . , 2h1(G) such that:
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v1 v2 v3 v5

(a) G′ after Step 4: Every square rep-
resents an 8-cycle. Such cycles are
added for every (i, j) in the area of the
plane occupied by the graph if there
is no vertex or edge gadget passing
through (i, j).

v1 v2 v3 v5

(b) G′ after step 5: Every diamond repre-
sents a 4-cycle. These cycles are used
to connect 8-cycles to other 8-cycles or
vertices in the vertex or edge gadgets.

Figure 5.3: Addition of filler gadgets.

• i is odd or h1(v i
2
) < j (in other words, there is no (i, j)-corner in an up-path) and

• j is odd or there is no edge e = {vr, vs} with r < i < s and h(e) = j
2

(in other
words, there is no (i, j)-corner in an edge path,

do the following: Add a cycle consisting of eight new vertices. The coordinates of the
vertices in the embedding are given in Figure 5.4. We will call this cycle the (i, j)-corner
square. The top, right, bottom, and left outlets of this corner are the respective vertices
in the cycle. Increase k′ by 4. Note that for every i = 1, . . . , 2n and j = 0, . . . , 2h1(G) the
graph now contains either an (i, j)-corner vertex, an (i, j)-corner pair, or an (i, j)-corner
square. This step is illustrated in Figure 5.3a.

Step 5: For every i = 2, . . . , 2n and j = 0, . . . , 2h1(G), if the (i, j)-corner is a square,
then connect it to the surrounding corners in the following manner: If i > 2, then add
a cycle consisting of four new vertices. Embed this 4-cycle as depicted in Figure 5.5. In
the following, we refer to the top vertex as w1, to the right vertex as w2, to the bottom
vertex as w3, and to the left vertex as w4. Connect w2 to the left outlet of the (i, j)-corner
square and w4 to the right outlet of the (i−1, j)-corner. If i < 2n, then similarly connect
right outlet of the (i, j)-corner square to the left outlet of the (i, j + 1) corner (unless
they are already connected). If j > 0, then connect the bottom outlet in the (i, j)-corner
square to the top outlet in the (i, j − 1) corner in the same way. If j < 2h1(G), then
connect the top outlet in the (i, j)-corner square to the bottom outlet in the (i, j + 1)
corner in the same manner (unless they are already connected). This step is illustrated

43



5 Independent Set and Vertex Cover

(i, j + ε) (i+ ε, j + ε)

(i+ ε, j)

(i+ ε, j − ε)(i, j − ε)(i− ε, j − ε)

(i− ε, j)

(i− ε, j + ε)

Figure 5.4: Coordinates of the vertices in the embedding of the 8-cycle.

(i− 1
2
, j + ε)

(i− 1
2

+ ε, j)

(i− 1
2
, j − ε)

(i− 1
2
− ε, j)

Figure 5.5: Coordinates of the vertices in the embedding of the 4-cycle.

in Figure 5.3b.
We have only taken edges in E1 into consideration. We must, therefore, repeat the

process described in Steps 2 to 5 above for all edges in E2, creating down-paths corre-
sponding to the up-paths and proceeding accordingly.

Let A denote the number of 8-cycles, B the number of 4-cycles added, and C the sum
of the length of all paths added. Then k′ = k+ 4A+ 2B+ C

2
by the construction above.

This concludes the construction of G′ and k′.

Running time

We must show that the reduction runs in polynomial time. We have added the following
vertices:

• O(n) copies of the original vertices,

• each up-path and down-path contains O(n) vertices for a total of O(n2),

• O(n) edge paths (since G is planar it only has O(n) edges), each containing O(n)
vertices for a total of O(n2), and

• O(n2) squares each containing O(1) vertices.

In total, G′ contains O(n2) vertices and can be computed in polynomial time.
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u

w

v

Figure 5.6: The vertex w is a Gabriel-blocker for {u, v}, since ] emb(u) emb(w) emb(v) ≥
90◦.

Correctness

We must show that α(G) ≥ k if and only if α(G′) ≥ k′. This property holds after each
individual step. For Steps 2 and 3, this is a direct consequence of Lemma 5.4 and
Corollary 5.5, respectively. For Steps 4 and 5, it follows from Lemma 5.3.

Graph induced by embedding

Proving that the embedding emb given in the construction induces the graph described
therein as its RNG and Gabriel graph requires a similar analysis to the one given in
Chapter 4 for the reduction for Dominating Set. This reduction, like the one for
Dominating Set, generates a graph that is in a way grid-like. We will omit most of
the details of this analysis and focus on a few aspects that may not be immediately
obvious.

We only have to show that GAB(emb(V ′)) ⊆ G′ ⊆ RNG(emb(V ′)). Recall that 0 <
ε < 1

4
(
√

3− 1).
To show that GAB(emb(V ′)) ⊆ G′, we must prove that every pair of non-adjacent ver-

tices u, v has a Gabriel blocker. This would require checking every such pair, but in most
cases it is not hard to see. It may be less obvious in the case of a corner vertex of an 8-
cycle and the nearest vertex in a 4-cycle. An excerpt of G′ is pictured in Figure 5.6 with
the two vertices marked as u and v. Their Gabriel-blocker is marked as w. It is a Gabriel-
blocker, because ] emb(u) emb(w) emb(v) = 135◦− tan−1( ε

1
2
−2ε). Since ε < 1

4
(
√

3−1) <
1
6
, it is the case that tan−1( ε

1
2
−2ε) < 45◦ and therefore ] emb(u) emb(w) emb(v) > 90◦.

To prove that G′ ⊆ RNG(emb(V ′)), we must show that there is no RNG-blocker w for
any adjacent vertices u, v. Again, in most cases this is not difficult to see. The subgraph
pictured in Figure 5.7, which occurs along all edge paths, may be an exception. The
vertex marked as w is not a blocker for u and v. The distance between u and v is 2ε,

but the distance from w to both u and v is
√

(1
2
− ε)2 + ε2 > 2ε.

We will now briefly discuss relatively closest graphs. With one exception, the point set
given in the reduction induces the same graph as its relatively closest graph. This excep-
tion is the subgraph mentioned in the previous paragraph and depicted in Figure 5.7.
The vertex u is an RCG-blocker for {v, w} and v is also an RCG-blocker for {u,w}.
So, the relatively closest graph for this point set contains neither of the edges {u,w}
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w

u v

Figure 5.7: The vertex w is not an RNG-blocker for {u, v} since d(emb(u), emb(w)) =
d(emb(v), emb(w)) ≥ d(emb(u), emb(u)).

and {v, w}. However, our correctness argument based on Lemma 5.3 is not dependent
on the existence of these edges. Hence, this reduction must only be modified slightly to
produce RCGs.

5.3 Conclusions

This concludes our reduction. Note that the graphs produced by the reduction contain
only vertices with degree at most four. In all, this reduction proves:

Theorem 5.6. Independent Set is NP-hard when restricted to relative neighborhood
graphs, when restricted to Gabriel graphs, and when restricted to relatively closest graphs,
each with maximum degree at most four.

As we noted above, Independent Set and Vertex Cover can easily be reduced
to one another, implying that:

Corollary 5.7. Vertex Cover is NP-hard when restricted to relative neighborhood
graphs, when restricted to Gabriel graphs, and when restricted to relatively closest graphs,
each with maximum degree at most four.

For graphs with maximum degree two, Independent Set and Vertex Cover are
easy to solve. It remains open whether these problems can be solved in polynomial time
when restricted to proximity graphs with maximum degree three.

We will show that our reduction also implies that Independent Set and Vertex

Cover cannot be solved in time 2o(n
1
4 ) on each of our proximity graph classes (where n

is the number of vertices in a graph), unless the exponential time hypothesis fails (on
the ETH, see Section 2.5).

First, we must establish an ETH-based lower bound for these two problems on planar
graphs with maximum degree 3. As Lokshtanov, Marx, and Saurabh [LMS11] point out,
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Vertex Cover cannot be solved in 2o(
√
n) on planar graphs unless the ETH fails. This

follows from the NP-hardness proof given by Garey, Johnson, and Stockmeyer [GJS76].

Theorem 5.8 ([GJS76; LMS11]). Unless the ETH fails, planar Vertex Cover and
planar Independent Set cannot be solved in time 2o(

√
n).

Garey and Johnson [GJ76] give a reduction from planar Vertex Cover to Vertex
Cover restricted to planar graphs with maximum degree 3. The central step in this
reduction is replacing each vertex by a cycle of length 2n and one additional vertex.
This implies that the resulting graph contains O(n2) vertices. However, with a slight
modification we can devise a reduction that produces graphs containing O(n) vertices.
The cycle replacing each vertex only needs to contain vertices representing its neighbors
rather than all other vertices. Rather than replacing each vertex v with a cycle contain-
ing 2n vertices and an additional vertex, we replace it with a cycle containing 2 deg(v)
vertices and an additional vertex. Then, the resulting graph contains∑

v∈V

2 deg(v) + 1 = n+ 2
∑
v∈V

deg(v) = n+ 4|E| ∈ O(n)

vertices. Then, an algorithm for Vertex Cover or Independent Set restricted to
planar graphs with maximum degree 3 running in time 2o(

√
n) would imply an algorithm

with the same running time for the same problem on arbitrary planar graphs. Together
with Theorem 5.8 this proves:

Theorem 5.9. Unless the ETH fails, Vertex Cover and Independent Set re-
stricted to planar graphs with maximum degree 3 cannot be solved in time 2o(

√
n).

As we mentioned before, our reduction for Independent Set restricted to RNGs,
RCGs, and Gabriel graphs produces a graph containing O(n2) vertices. Hence, Theo-
rem 5.9 implies:

Corollary 5.10. Unless the ETH fails, Independent Set and Vertex Cover re-

stricted to RNGs, RCGs, or Gabriel graphs cannot be solved in time 2o(n
1
4 ).
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We will now prove that the 3-Colorability problem is also NP-hard when restricted
to relative neighborhood graphs or Gabriel graphs. Recall that a graph G = (V,E) is 3-
colorable if there is a function c : V → {1, 2, 3} such that c(u) 6= c(v) for all {u, v} ∈ E.
The 3-Colorability problem is:

3-Colorability
Input: A graph G = (V,E).
Question: Is G 3-colorable?

Our polynomial-time many-to-one reduction will be from 3-Colorability on pla-
nar graphs with maximum degree 4. Garey, Johnson, and Stockmeyer [GJS76] showed
that 3-Colorability remains NP-hard when restricted to planar graphs with maxi-
mum degree at most 4.

Theorem 6.1 ([GJS76]). 3-Colorability on planar graphs with maximum degree at
most four is NP-hard.

6.1 Definitions and intermediate results

We will make use of what we will call coloring paths. A coloring path essentially allows
us to copy the color of a vertex. This makes them useful as vertex and edge gadgets.

Definition 6.2. The coloring path of length k from u10 to u1k is the graph P̃k := (Vk, Ek)
with:

Vk :={u10} ∪ {u1i , u2i , u3i | i ∈ {1, . . . , k}} and

Ek :={{u1i−1, u2i }, {u1i−1, u3i }, {u2i , u3i }, {u2i , u1i }, {u3i , u1i } | i ∈ {1, . . . , k}}.

An example of a coloring path is pictured in Figure 6.1. We will call u1i the i-th center
vertex, u2i the i-th left vertex, and u3i the i-th right vertex. Coloring paths can be used
as vertex and edge gadgets due to the following:

Lemma 6.3. Any 3-coloring of a coloring path assigns the same color to all center
vertices.

Proof. Let P̃k = (Vk, Ek) be a coloring path and c : Vk → {1, 2, 3} a 3-coloring of P̃k.
Without loss of generality, c(u10) = 1. Then, {c(u21), c(u31)} = {2, 3}. Since u11 is

adjacent to u21 and u31, it follows that c(u11) = 1. By induction then, c(u1i ) = 1 for
all i = 1, . . . , k.
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u10

u21

u31
u11

u22

u32
u12

u23

u33
u13

Figure 6.1: A coloring path of length 3.

This directly implies:

Lemma 6.4. Suppose that G = (V,E) is a graph and G′ = (V ′, E ′) is obtained from G
by replacing a vertex v ∈ V with a coloring path of any length and connecting each
of v’s neighbors to one of the center vertices on the introduced coloring path. Then, G
is 3-colorable if and only if G′ is.

Proof. Suppose that c : V → {1, 2, 3} is a 3-coloring of G. Without loss of generality,
assume that c(v) = 1. Then, c′ : V ′ → {1, 2, 3}, with c′(u) := c(u) for all u ∈ V \
{v}, c′(u1) = 1 for all center vertices u1, c′(u2) := 2 for all left vertices u2, and c′(u3) := 3
for all right vertices u3, is a valid 3-coloring of G′.

Now suppose that c′ : V ′ → {1, 2, 3} is a 3-coloring of G′. By Lemma 6.3, c′ assigns
the same color to all center vertices in the coloring path, without loss of generality the
color 1. Hence, c′(u) 6= 1 for all vertices u ∈ V \ {v} that are adjacent to v in g,
since they are adjacent to a center vertex in G′. Then, c : V → {1, 2, 3} with c(v) := 1
and c(v) := c′(u) for all u ∈ V \ {v} is a valid 3-coloring of G.

Adding a high-degree vertex to a 3-colorable graph can make it non-3-colorable. How-
ever, if we additionally subdivide every edge incident to the new vertex, then its addition
does not affect the 3-colorability of the graph:

Lemma 6.5. Let G = (V,E) be a graph and v1, . . . , vk ∈ V vertices. Suppose that G′ is
obtained from G by adding k+ 1 vertices w, u1, . . . , uk and the edges {vi, ui} and {ui, w}
for every i = 1, . . . , k. Then, G is 3-colorable if and only if G′ is.

Proof. Suppose that c : V → {1, 2, 3} is a 3-coloring of G. Let c′ : V ′ → {1, 2, 3}
with c′(v) := c(v) for all v ∈ V , c(w) := 3, and:

c′(ui) :=

{
1, if c(vi) 6= 1,

2, if c(vi) = 1.

Then, c′ is a valid 3-coloring of G′.
If G′ is 3-colorable, then so is G, since G is a subgraph of G′.

Lemma 6.5 will be the justification for our using single vertices connected to the rest
of the graph via intermediate vertices of degree two as filler gadgets.
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6 3-Colorability

(a) G′ after Step 2: Each vertex vi
is replaced by a coloring coloring
path of length h1(vi). The edges
incident to vi are connected to the
center vertices of the path.

(b) G′ after Step 3: Each edge e
is replaced by a coloring path of
length `(e).

Figure 6.2: Addition of vertex and edge gadgets.

6.2 Reduction

We will now give a polynomial-time many-to-one reduction from 3-Colorability on
planar graphs with maximum degree at most four to 3-Colorability on relative neigh-
borhood graphs and Gabriel graphs, thereby proving that the problem is NP-complete
on both of these graph classes. We will subsequently discuss relatively closest graphs.

Let G = (V,E) be a planar graph of maximum degree at most 4. We again compute
a two-page book embedding of G in polynomial time and assume that v1, . . . , vn are the
vertices of G in the order in which they appear on the spine of the book embedding.

Construction

We will now give a graph G′ = (V ′, E ′), which is both an RNG and a Gabriel graph, such
that G is 3-colorable if and only if G′ is. We will also give an embedding emb: V ′ → R2,
which we will use to show that G′ is an RNG and a Gabriel graph. The reduction will
follow the general pattern we described in Chapter 3 and use the terminology defined
there. We will use coloring paths as vertex and edge gadgets and single vertices as filler
gadgets. In order to describe the edges between vertices in different gadgets we will
refer to certain vertices or groups of vertices as (i, j)-corners, for integers i and j. Every
corner has up to four outlets: a top, a left, a right, and a bottom outlet, but they may be
identical. As in the previous reduction, we will use the graph G pictured in Figure 3.1,
to illustrate the reduction in Figures 6.2a, 6.2b, and 6.3.

Let 0 < ε < 1
4
.
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6 3-Colorability

Figure 6.3: G′ after Step 4: Filler gadgets consisting of single vertices connected to the
rest of the graph via intermediate vertices of degree two are added to the
graph.

Step 1: Start with G′ := G.
Step 2: Replace every vertex vi with a coloring path of length h1(vi). We will call this

coloring path vi’s up-path. The vertices on the up-paths are embedded in the following
manner: Suppose u10, . . . , u

1
h1(vi)

are the center vertices, u21, . . . , u
2
h1(vi)

are the left vertices,

and u31, . . . , u
3
h1(vi)

are the right vertices on that path. Then, emb(u1j) := (2i, 2j) for

all j = 0, . . . , h1(vi) and emb(u2j) := (2i − ε, 2j − 1) and emb(u3j) := (2i + ε, 2j − 1)
for all j = 1, . . . , h1(vi). The center vertex u1j is the (2i, 2j)-corner. The left and right
vertices u2j and u3j jointly form the (2i, 2j−1)-corner, of which u2j is the left outlet and u3j
is the right outlet. Replace every edge e = {vi, vj} with an edge from the h(e)-th center
vertex on vi’s up-path to the h(e)-th vertex on vj’s up-path. This step is illustrated in
Figure 6.2a.

Step 3: Replace the edge introduced in the previous step to represent the edge e =
{vi, vj}, i < j, e ∈ E1, in the following manner: add a coloring path of length `(e)
from the h(e)-th center vertex in vi’s up-path to a new vertex u1`(e). We will call this

path e’s edge path. Again, suppose u10, . . . , u
1
`(e) are the center vertices, u21, . . . , u

2
`(e) are

the left vertices, and u31, . . . , u
3
`(e) are the right vertices on that path. Connect u1`(e) to

the h(e)-th center vertex of vj’s up-path. We embed the edge path with emb(u1r) :=
(2i + 2r, 2h(e)) for every r = 1, . . . , `(e) − 1, emb(u2r) := (2i + 2r − 1, 2h(e) + ε) and
emb(u3r) := (2i + 2r − 1, 2h(e) − ε) for all r = 1, . . . , `(e). The `(e)-th center vertex
is embedded with emb(u1`(e)) := (2j − 1

2
, 2h(e)). For r = 0, . . . , `(2) − 1, the center

vertex u1r is the (2i+ 2r, 2h(e))-corner. The left and right vertices u2r and u3r are jointly
the (2i + 2r − 1, 2h(e))-corner, with u2r the top outlet and u3r the bottom outlet. The
last center vertex u1`(e) is not a corner. This step is illustrated in Figure 6.2b.

Step 4: For every i = 2, . . . , 2n and j = 0, . . . , 2h1(G) add a vertex wi,j if there
is no (i, j)-corner. The position of this vertex is emb(wi,j) := (i, j). If i > 2, then
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6 3-Colorability

connect wi,j to the right outlet of the (i − 1, j)-corner in the following manner: add
a new intermediate vertex w̃ and edges from w̃ to both wi,j and to the right outlet of
the (i−1, j)-corner. The immediate vertex is embedded by emb(w̃) := (i− 1

2
, j). If i < 2n,

then connect wi,j to the left outlet of the (i+ 1, j)-corner in the same manner. If j > 0,
then wi,j is connected to the bottom outlet of the (i, j − 1)-corner, and if j < 2h1(G),
to the top outlet of the (i, j + 1)-corner. This step is illustrated in Figure 6.3.

We have only taken edges in E1 into consideration. We must, therefore, repeat the
process described in Steps 2 to 4 above for all edges in E2, creating down-paths corre-
sponding to the up-paths and proceeding accordingly.

Running time

We must show that the reduction runs in polynomial time. The graph G′ contains:

• O(n) up-paths and down-paths containing O(n) vertices each, for a total of O(n2)
vertices,

• O(n) edge paths containing O(n) vertices each, for a total of O(n2) vertices, and

• O(n2) vertices introduced in Step 4.

In total, G′ contains O(n2) vertices and can be computed in polynomial time.

Correctness

We must show that G is 3-colorable if and only if G′ is. This is true after each step. For
Step 2, it follows from Lemma 6.4, because in this step vertices are replaced by coloring
paths and their neighbors are connected to that path’s center vertices. For Step 3,
it is also a consequence of Lemma 6.4. In this step, an edge {u, v} is replaced with a
coloring path from u to a new vertex w and w is connected to v. This is tantamount
to replacing u with a coloring path from u to w. For step Step 4, our claim follows
from Lemma 6.5, since each new vertex added in this step is connected via intermediate
vertices of degree 2 to existing vertices.

Graph induced by embedding

Proving that the embedding emb given in the construction induces the graph described
therein as its RNG and Gabriel graph requires a similar analysis to the one given in
Chapter 4 for the reduction for Dominating Set. This reduction, like the one for
Dominating Set, generates a graph that is in a way grid-like. We will omit most of
the details of this analysis and focus on a few aspects that may not be immediately
obvious.

As in the previous section, we only have to argue that GAB(emb(V ′)) ⊆ G′ ⊆
RNG(emb(V ′)).

To show that GAB(emb(V ′)) ⊆ G′, we must prove that every pair of non-adjacent
vertices u, v has a Gabriel blocker. We will only consider the non-obvious cases. For
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6 3-Colorability

u

w

v

(a) The vertex w is a
Gabriel-blocker for {u, v},
since ] emb(u) embw emb(v) = 90◦.

u1

u2

v w1

w2

(b) The vertex v is not an RNG-blocker
for {u1, u2} or {w1, w2}.

Figure 6.4: The graph G′ is induced by emb.

instance, consider the vertices labeled u and v in the subgraph of G′ pictured in Fig-
ure 6.4a. This subgraph occurs as a result of the vertices added in Step 4. The blocker
for these vertices is the vertex labeled as w since ] emb(u) emb(w) emb(v) = 90◦

To prove that G′ ⊆ RNG(emb(V ′)), we have to show that there is no RNG-blocker for
any edge {u, v} ∈ E ′. Again, we restrict our attention to the potentially controversial
cases. Consider the subgraph pictured in Figure 6.4b, which occurs at the ends right
end of each edge path. We will show that the vertex marked v is not an RNG-blocker
for the edge {u1, u2}. We recall that 0 < ε < 1

4
. The distance between u1 and u2

is d(emb(u1), emb(u2)) = 2ε, while

d(emb(u1), emb(v))2 = d(emb(u2), emb(v))2

= ε2 +

(
1

2

)2

= 4ε2 +
1

4
− 3ε2

> 4ε2 +
1

4
− 3

16
> 4ε2 = d(emb(u1), emb(u2))

2.

This implies that d(emb(u1), emb(v)) > d(emb(u1), emb(u2)) and d(emb(u2), emb(v)) >
d(emb(u1), emb(u2)), so v does not block the edge {u1, u2}.

Now we will show that the vertex marked v is also not an RNG-blocker for the
edge {w1, w2}:

d(emb(v), emb(w2))
2 = (

1

2
− ε)2 + 1

=
1

4
− ε+ ε2 + 1

> ε2 + 1

= d(emb(w1), emb(w2))
2.

This implies that d(emb(v), emb(w2)) > d(emb(w1), emb(w2)), so v is also not an RNG-
blocker for {w1, w2}.
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6.3 Conclusions

This concludes the reduction. Note that in the graphs generated by the reduction no
vertex has a degree greater than seven. It proves the following:

Theorem 6.6. 3-Colorability is NP-complete both when restricted to relative neigh-
borhood graphs and when restricted to Gabriel graphs, each with maximum degree at most
seven.

This theorem confirms a conjecture by Cimikowski [Cim89].
The 3-Colorability problem is trivial when restricted to proximity graphs with

maximum degree at most three. This follows from Brooks’ theorem:

Theorem 6.7 (Brooks’ theorem [Lov75]). Any graph G with ∆(G) ≥ 3 that does not
contain a clique of size ∆(G) + 1 is ∆(G)-colorable.

As we mentioned in Section 2.3, RNGs, RCGs, and Gabriel graphs do not contain
cliques of size 4. So, by Brooks’ theorem, all RNGs, RCGs, and Gabriel graphs with max-
imum degree three are 3-colorable. Additionally, all graphs with maximum degree less
than three are, of course, also 3-colorable. It remains open whether 3-Colorability
can be solved in polynomial time when restricted to proximity graphs with maximum
degree between four and six.

As Cimikowski [Cim92] remarks, all relatively closest graphs are also 3-colorable. This
is because RCGs do not contain any 3-cycles and planar graphs without 3-cycles are 3-
colorable by Grötzsch’s theorem [Grü63].

Theorem 6.8 ([Cim92]). The 3-Colorability problem is trivial on relatively closest
graphs as well as on relative neighborhood graphs and Gabriel graphs with maximum
degree at most 3.

We will show that our reduction also implies that 3-Colorability cannot be solved

in time 2o(n
1
4 ) on each of our proximity graph classes (where n is the number of vertices

in a graph), unless the exponential time hypothesis fails (on the ETH, see Section 2.5).
We must first establish an ETH-based lower bound of 2o(

√
n) for 3-Colorability on

planar graphs with maximum degree 4. Garey, Johnson, and Stockmeyer [GJS76] prove
that this problem is NP-hard with a series of reductions. First, 3-SAT is reduced to 3-
Colorability on arbitrary graphs. This reduction maps formulas with m clauses and n
variables to graphs with O(m + n) vertices and O(m + n) edges. 3-Colorability on
on arbitrary graphs is then reduced to planar 3-Colorability, mapping graphs with n
vertices and m edges to graphs with O(n + m2) vertices and O(m2) edges. Then, 3-
Colorability on arbitrary planar graphs is reduced to 3-Colorability on planar
graphs with maximum degree 4. This reduction replaces each vertex v with a subgraph
containingO(deg(v)) vertices and edges. Hence, this reduction maps graphs containing n
vertices and m edges to graphs with O(m) vertices and edges. The composition of these
reductions yields a reduction from 3-SAT to 3-Colorability on planar graph with
maximum degree 4 that maps a formula with m clauses and n variables to a graph
containing O(m2 + n2) vertices and edges. Hence:
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6 3-Colorability

Theorem 6.9. Unless the ETH fails, 3-Colorability restricted to planar graphs with
maximum degree 4 cannot be solved in time 2o(

√
n).

Our reduction from 3-Colorability on planar graphs with maximum degree 4 to
its restriction to our classes of proximity graphs maps instances with m edges and n
vertices to graphs with O(n2) vertices and edges. This along with Theorem 6.9 implies:

Corollary 6.10. Unless the ETH fails, 3-Colorability restricted to RNGs or Gabriel

graphs cannot be solved in time 2o(n
1
4 ).
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7 Feedback Vertex Set

We now turn our attention to the Feedback Vertex Set problem in order to show
that it remains NP-complete when restricted to relative neighborhood graphs, relatively
closest graphs, or Gabriel graphs. Recall that a set of vertices F ⊆ V in a graph G =
(V,E) is a feedback vertex set if G−F is acyclic and ϕ(G) denotes the size of a smallest
feedback vertex set in G. The Feedback Vertex Set problem is defined as:

Feedback Vertex Set
Input: A graph G = (V,E) and a nonnegative integer k.
Question: Does G contain a feedback vertex set of size at most k?

We will initially describe a reduction only for RNGs and then discuss how it can be
adapted to the other two graph classes. Speckenmeyer [Spe83] proved that Feedback
Vertex Set is NP-hard when restricted to planar graphs with maximum degree at
most 4.

Theorem 7.1 ([Spe83]). Feedback Vertex Set on planar graphs with maximum
degree 4 is NP-hard.

7.1 Definitions and intermediate results

Before we begin with our reduction, we will prove several intermediate results and define
some terminology that will be useful in proving the correctness of the reduction.

Observation 7.2. Let G be a graph and C1, . . . , Ck pairwise vertex-disjoint cycles in G.
Then, ϕ(G) ≥ k.

Proof. Any feedback vertex set in G must contain at least one vertex from each Ci.

Lemma 7.3. Let G be graph and G1, . . . , Gk pairwise disjoint subgraphs in G.
Then, ϕ(G) ≥ ϕ(G1) + . . .+ϕ(Gk). Moreover, if every Gi contains a minimum feedback
vertex set Fi such that G−Fi contains no cycles that pass through a vertex in Gi −Fi,
then ϕ(G) = ϕ(G1) + . . .+ ϕ(Gk) + ϕ(G− (G1 ∪ . . . ∪Gk)).

Proof. For the first claim, any feedback vertex set in G must contain at least ϕ(Gi)
vertices from each Gi. For the second claim, if F is a minimum feedback vertex set
in G − (F1 ∪ . . . ∪ Fk), then F ∪ F1 ∪ . . . ∪ Fk is a minimum feedback vertex set in G
containing ϕ(G1) + . . .+ ϕ(Gk) + ϕ(G− (G1 ∪ . . . ∪Gk)) vertices.

Lemma 7.4. If G′ is obtained from G by subdividing edges, then ϕ(G) = ϕ(G′).
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(i, j − 4ε)

(i− 2ε, j)

(i− ε, j + ε)

(i− 3ε, j + ε)

(i− 4ε, j)

(i, j + 4ε)

(i + 4ε, j)

Figure 7.1: The buffer graph: The red vertices are outlets. The green vertices form a
minimal feedback vertex set. This feedback vertex set disconnects the outlets
from one another.

Proof. Every feedback vertex set in G is a feedback vertex set in G′. Any vertex in G′

that is not part of G is on a path of vertices with degree 2 and both endpoints of this
path are part of G. Replacing any such vertex in any feedback vertex set in G′ by one
of those endpoints yields a feedback vertex set in G containing no more vertices.

We will call the graph pictured in Figure 7.1 a buffer and we will use it as a filler gadget
and within vertex gadgets. The vertices marked in red are its outlets. Given i, j ∈ R
and ε > 0, the embeddings of several vertices are given in the picture. All other vertices’
positions may be deduced based on the graph’s symmetry. The point (i, j) is the center
of the cycle in the middle of the graph and ε scales the size of the embedding. The
following lemma states how a buffer affects the size of a feedback vertex set of a graph.

Lemma 7.5. Let G be a graph. Suppose that G contains a buffer B, the only vertices
in B that have neighbors outside of B are the outlets, and each outlet has at most one
neighbor outside of B. Then, ϕ(G) = ϕ(G−B) + 4.

Proof. The subgraph B contains four disjoint cycles, so ϕ(B) ≥ 4 by Observation 7.2.
Let F be the set containing the four vertices marked in green in Figure 7.1. Since F is
a feedback vertex set, ϕ(B) = 4. Removing F disconnects all outlets from one another,
so, by Lemma 7.3, ϕ(G) = ϕ(G−B) + ϕ(B) = ϕ(G−B) + 4.
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(i− 3ε− ε
tan(60◦)

, j)

(i− 3ε+ ε
tan(60◦)

, j)

(i− 3ε, j + ε)

(i− 2ε, j)

(i− ε, j) (i, j)

(i− ε, j + ε)

(i, j + 2ε)

(i− ε, j + 3ε)

(i, j + 4ε)

Figure 7.2: The half-buffer graph: The red vertices are the outlets. The green vertices
form a minimal feedback vertex set. This feedback vertex set disconnects
the outlets from one another.

The graph depicted in Figure 7.2 will be referred to as an upward-pointing half-buffer.
It has three outlets, marked in red in the picture. The positions of points corresponding
to the vertices are given in the image. The embedding may be rotated to create half-
buffers that point left, right, or downward.

Lemma 7.6. Suppose that G contains a half-buffer B′, the only vertices in B′ that have
neighbors outside of B′ are the outlets, and each outlet has at most one neighbor outside
of B′. Then, ϕ(G) = ϕ(G−B′) + 3.

Proof. Identical to the proof for Lemma 7.5.

Now we will describe the vertex gadgets. Suppose that deg1(v) = a and deg2(v) = b.
Then, we will use what we will call the (a, b)-vertex gadget. The (4, 0), (3, 1), and (2, 2)-
vertex gadgets are pictured in Figures 7.3 to 7.5. In these figures, every diamond rep-
resents a buffer and every triangle represents a half-buffer facing in the appropriate
direction. These gadgets each have several outlets, highlighted in red, and one central
vertex, highlighted in green. The outlets above the central vertex are top outlets and
those below are bottom outlets. We will refer to the leftmost top outlet as the first
top outlet, to the one immediately to its right as the second top outlet, and so on. We
have only given the gadgets for vertices of degree 4. Gadgets for vertices with a smaller
degree can be created by combining the top and bottom halves of the gadgets we have
given.

The vertex gadgets are designed to have the following property: If all buffers and
half-buffers are removed from any vertex gadget, then the remaining graph consists only
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(i, j)

(i− 4, j − 5)

(i− 2, j + 2)
(i− 5

2
,

j + 2)

(i− 5
3
, j + 3)

(i− 4
3
,

j + 4)

(i− 1, j + 5)
(i− 4, j + 5)

Figure 7.3: The (4, 0)-vertex gadget: Every diamond represents a buffer and every trian-
gle a half-buffer. The green vertex is the central vertex and the red vertices
are the outlets. Note that if all buffers and half-buffers are removed from
the graph, only the central vertex, the outlets, and pairwise vertex-disjoint
paths from the central vertex to each outlet remain.

of the central vertex, the outlets, and paths from the former to the latter. As a result,
the following holds:

Lemma 7.7. Let G be a graph and v a vertex in G with a + b = deg(v) ≤ 4 for
any a, b ∈ {0, . . . , 4}. Suppose G′ is obtained from G by replacing v with the (a, b)-vertex
gadget and connecting each of v’s neighbors to a different outlet in the vertex gadget.
Then, ϕ(G′) = ϕ(G) + 4F + 3F ′ where F is the number of buffers in the vertex gadget
and F ′ the number of half-buffers.

Proof. Follows from Lemmas 7.3 to 7.6.

59



7 Feedback Vertex Set

(i, j)(i− 2, j)

(i, j − 5)

(i, j + 5)

(i− 4, j)

(i− 4, j − 1)

(i− 4, j − 2)

(i− 4, j − 3)

(i− 4, j − 4)

(i− 4, j − 5)

Figure 7.4: The (3, 1)-vertex gadget.

7.2 Reduction

We will now describe our reduction from Feedback Vertex Set on planar graphs
with maximum degree at most 4 to the restriction of this problem to relative neigh-
borhood graphs. Let G = (V,E) be a planar graph with maximum degree at most 4
and k a nonnegative integer. As in our previous reductions, we compute a two-page
book embedding for G in polynomial time and assume that v1, . . . , vn are the ver-
tices of G in the order in which they appear on the spine of the book embedding.
In the reduction, we will need an ordering of the edges incident to a certain vertex vi.
Suppose that {vi, vj1}, . . . , {vi, vjr} ∈ E1, r = deg1(vi), with j1 < . . . < js < i <
js+1 < . . . < jr, are the edges in E1 incident to vi. Then, the edges are ordered as
follows: {vi, vj1}, . . . , {vi, vjs}, {vi, vjr}, . . . , {vi, vjs+1}.
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(i, j)

(i− 4, j)

(i− 3, j + 3)

(i− 4, j + 5)

Figure 7.5: The (2, 2)-vertex gadget.

Construction

We will construct a relative neighborhood graph G′ = (V ′, E ′) and an integer k′ such
that G has a feedback vertex set of size k if and only if G′ has a feedback vertex set of
size k′. At the same time, we give an embedding emb, which we will subsequently use to
prove that G′ is an RNG by showing that RNG(emb(V ′)) = G′. The reduction will follow
the general pattern described in Chapter 3 and use the terminology defined there. We
have already described the vertex gadgets. The edge gadgets will simply be paths and
the filler gadgets will be buffers. We will illustrate the construction in Figures 7.6 to 7.8
utilizing the same graph already used in previous sections and pictured in Figure 3.1.
In the figures, vertex gadgets are represented by shaded areas, but their outlets are
pictured.

Fix 0 < ε < 1
12

.
Step 1: Start with G′ := G and k′ := k.
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7 Feedback Vertex Set

Figure 7.6: The graph G′ after Step 2: Each vertex vi is replaced with a copy of
the (deg1(vi), deg2(vi))-vertex gadget.

Figure 7.7: The graph G′ after Step 3: Each edge {vi, vj} is replaced by a path of the
appropriate length from an outlet in vi’s vertex gadget to an outlet in vj’s
vertex gadget.

Step 2: Replace every vertex vi with the (deg1(vi), deg2(vi))-vertex gadget. Embed
this gadget centered on (9i, 0). Increase k′ by 4F + 3F ′ where F is the number of
buffers and F ′ the number of half-buffers in the (deg1(vi), deg2(vi))-vertex gadget. For
every i > 1, connect the left outlets of the buffers and half buffers on the left boundary
of vi’s vertex gadget with the right outlet of the buffer or half-buffer in vi−1’s vertex
gadget that is directly across from it. This step is illustrated in Figure 7.6.

Step 3: For every edge e = {vi, vj} ∈ E1, i < j do the following: If e is vi’s r-th edge
in E1 and vj’s s-th edge in E1, then replace it with an edge e′ from the r-th top outlet
of vi’s vertex gadget to the s-th outlet of vj’s vertex gadget. Let:

α :=


2r − 5, if deg1(vi) = 4,

3r − 6, if deg1(vi) = 3,

6r − 9, if deg1(vi) = 2,

0, if deg1(vi) = 1.

This value represents the difference between the horizontal position of the central vertex
of vi’s vertex gadget and r-th top outlet of the same gadget. Subdivide e′, the newly
created edge, 2h(e) times and let w1, . . . , w2h(e) be the vertices created by the subdivision.
Embed these vertices with emb(wt) := (9i + α, 6 + t). Define β in the same way as α
but for the s-th top outlet in vj’s vertex gadget. We subdivide e′ an additional 2h(e)
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7 Feedback Vertex Set

times embed the new vertices w′1, . . . , w
′
2h(e) with emb(w′t) := (9j+β, 6+ t). This creates

two vertical portions on the path representing e. Finally, we create a horizontal portion.
Subdivide the edge another γ := 9`(e)+α−β−1 times, creating the vertices w̃1, . . . , w̃γ.
The positions of the new vertices are emb(w̃t) := (9i − α + t, 5 + 2h(e)). There is,
however, one exception: Note that in the (4, 0)-vertex gadget there are two buffers with
non-integer positions on the upper boundary of the gadget. Vertices on edge paths
located above such a buffer must then also be shifted accordingly. More precisely, if
the vertex vi has deg1(vi) = 4, then the (4, 0)-vertex gadget representing vi, which is
embedded centered on (9i, 0), has vertex buffers whose embedding is centered on (9i−
5
2
, 5) and (9i+ 5

2
, 5) instead of (9i−2, 5) and (9i+2, 5). As a result, any vertex in an edge

path embedded at (9i− 2, s), s ≥ 6, must be shifted to (9i− 5
2
, s) and correspondingly

any such vertex embedded at (9i + 2, s) must be shifted to (9i + 5
2
, s). This step is

illustrated in Figure 7.7.
Step 4: For every i = 5, . . . , h1(G) and j = 5, . . . , 9n if G′ does not contain a

vertex w with emb(w) := (i, j) (and if it would not contain such a vertex but for the
aforementioned shift), add a buffer with its embedding centered on (i, j) and increase k′

by 4. If this buffer is above a (4, 0)-vertex gadget, then its position may also need to be
shifted. If G′ contains a buffer or an half-buffer B centered on (i, j − 1), then connect
the bottom outlet of the newly added buffer to the top outlet of B. If G′ contains a
vertex whose embedding is (i, j − 1), then connect this vertex to the bottom outlet of
the newly added buffer. Similarly, if G′ contains a buffer or a half-buffer B centered
on (i− 1, j), then connect the right outlet in B with the left outlet of the newly added
buffer. If G contains a vertex u with emb(u) := (i − 1, j), then add an edge from u to
the left outlet of the newly added buffer. This step is illustrated in Figure 7.8.

As in previous reductions, we have only discussed the edges in E1. The same steps
must be analogously performed for edges in E2.

Running time

We must show that the reduction runs in polynomial time. The graph G′ contains:

• O(n) vertex gadgets each containing a constant number of vertices,

• O(n) edge paths containing O(n) vertices each, for a total of O(n2) vertices, and

• O(n2) additional buffers each containing a constant number of vertices.

In total, G′ contains O(n2) vertices and can be computed in polynomial time.

Correctness

Let F denote the number of buffers that are part of the vertex gadgets inG′ or were added
in Step 4 and F ′ the number of half-buffers. Then, k′ = k+4F +3F ′. If G′′ is the graph
obtained from G′ by removing all buffers and half-buffers, then ϕ(G′) = ϕ(G′′)+4F+3F ′

as a result of Lemmas 7.5 to 7.7. The graph G′′ is a subdivision of G. Hence, by
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7 Feedback Vertex Set

vu

w

Figure 7.9: An excerpt of the graph G′ generated by the reduction, which occurs wher-
ever a buffer and a half-buffer are next to each other: The vertex w is an
RNG-blocker for {u, v}.

u

w

v

Figure 7.10: An excerpt of the graph G′ generated by the reduction, which occurs wher-
ever two half-buffers are beside one another: The vertex w is an RNG-
blocker for {u, v}.

Lemma 7.4, ϕ(G) = ϕ(G′′). So, ϕ(G′) = ϕ(G)+4F +3F ′. Hence, G contains a feedback
vertex set of size k if and only if G′ contains one of size k′ = k + 4F + 3F ′.

Graph induced by embedding

Proving that the embedding emb given in the construction induces the graph described
therein as its RNG requires a similar analysis to the one given in Chapter 4 for the
reduction for Dominating Set. This reduction generates a graph that, outside of the
vertex gadgets, is in a way grid-like. We will omit most of the details of this analysis
and focus on a few aspects that may not be immediately obvious.

That emb induces G′ as its relative neighborhood graph can be verified by checking
that there is no blocker for any edge and there is a blocker for every pair of non-adjacent
vertices. We will only discuss three cases in which it is not obvious that non-adjacent
vertices have a blocker. Recall that 0 < ε < 1

12
.

Consider u, the central vertex in a (4, 0)-vertex gadget, and v, the central vertex in
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7 Feedback Vertex Set

the half-buffer above it. Their positions are emb(u) = (i, j) and emb(v) = (i, j + 3).
Hence, d(emb(u), emb(v)) = 3. Their blocker is the vertex w with emb(i − 2, j + 2),
since d(emb(u), emb(w)) = 2

√
2 < 3 and d(emb(v), emb(w)) =

√
5 < 3. Now consider

the subgraph depicted in Figure 7.9 and the vertices marked u, v, and w. This subgraph
occurs wherever a buffer connects to the top outlet of a half-buffer. Then,

d(emb(u), emb(v))2 = (1− 2ε)2 = 1− 4ε+ 4ε2 > 1− 4ε >
1

2
,

d(emb(u), emb(w))2 = 8ε2 < ε <
1

2
< d(emb(u), emb(v))2, and

d(emb(v), emb(w))2 = 4ε2 + (1− 4ε)2

= 1− 8ε+ 20ε2

= 1− 4ε+ 4ε2 + ε(16ε− 4) < 1− 4ε+ 4ε2 = d(emb(u), emb(v))2.

So, w is a blocker for u and v. Next, consider the subgraph pictured in Figure 7.10 and
the vertices marked u, v, and w. The subgraph occurs wherever two half-buffers are
next to one another. We compare the distances again, noting that tan(60◦) =

√
3:

d(emb(u), emb(v))2 = (1− 6ε)2 = 1− 12ε+ 36ε2 > 36ε2,

d(emb(u), emb(w))2 = ε2 +
ε2

tan(60◦)2
=

4ε2

3
< 36ε2 < d(emb(u), emb(v))2, and

d(emb(v), emb(w))2 = (1− 6ε− ε

tan(60◦)
)2 + ε2

= 1− (12 +
2√
3

)ε+ (36 +
2√
3

+
1

3
)ε2 + ε2

= 1− 12ε+ 36ε2 + ε(
4 + 2

√
3

3
ε− 2

√
3

3
)

< 1− 12ε+ 36ε2 = d(emb(u), emb(v))2.

The vertex w is again a blocker for u and v.

Gabriel graphs and relatively closest graphs

The reduction above produces relative neighborhood graphs, but not Gabriel graphs or
relatively closest graphs. However, it can easily be adjusted for the latter graph classes.

We start with relatively closest graphs. Only the half-buffer must be adjusted. The
embedding that induces the half-buffer as its relative neighborhood graph induces the
graph pictured in Figure 7.11 as its relatively closest graph, since the two triangles on
each side are equilateral. Lemma 7.6 still holds for this modified half-buffer with the
following adjustment: It increases the feedback vertex number by 1 rather than 3. We
may, therefore, employ the modified half-buffer in the reduction for relatively closest
graphs, but the calculation of k′ must be adjusted accordingly.

For Gabriel graphs, the (4, 0) and (2, 2)-vertex gadgets must be adjusted. In the case
of (4, 0)-vertex gadgets, consider the vertices u, v, w discussed in the previous section.
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7 Feedback Vertex Set

Figure 7.11: The half-buffer graph for relatively closest graphs.

(a) The (4, 0)-vertex gadget for Gabriel
graphs.

(b) The (2, 2)-vertex gadget for Gabriel
graphs

Figure 7.12: Modified vertex gadgets for Gabriel graph: The modified parts of the graph
are highlighted in red.

We showed that w is an RNG-blocker for u and v. It is not, however, a Gabriel-blocker,
since: ] emb(u) emb(w) emb(v) = 45◦ + arctan(1

2
) < 90◦. Hence, we modify the (4, 0)-

vertex gadget and use the graph pictured in Figure 7.12a. There is a similar issue with
the (2, 2)-vertex gadget and we replace it with the graph in Figure 7.12b. Lemma 7.7
holds for these modified vertex gadgets. Showing that pairs of non-adjacent vertices
have Gabriel-blockers is slightly more involved than with RNG-blockers in the two other
cases we discussed before, but the same two vertices are also Gabriel-blockers. Hence,
the rest of the reduction can be adapted.
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7 Feedback Vertex Set

7.3 Conclusions

This concludes the reduction. Note that in the graphs generated by the reduction for
RNGs and RCGs no vertex has a degree greater than six, while the reduction for Gabriel
graphs does not produce any vertices with degree greater than eight. In all, we have
proved the following:

Theorem 7.8. Feedback Vertex Set is NP-hard when restricted to relative neigh-
borhood graphs with maximum degree six, relatively closest graphs with maximum degree
six, or Gabriel graphs with maximum degree eight.

Ueno, Kajitani, and Gotoh [UKG88] showed that Feedback Vertex Set can be
solved in polynomial time on planar graphs with maximum degree three. Whether the
problem can be solved in polynomial time on RNGs or RCGs with maximum degree
four or five or on Gabriel graphs with maximum degree between four and seven remains
open.

We will show that our reduction also implies that Feedback Vertex Set cannot

be solved in time 2o(n
1
4 ) on each of our proximity graph classes (where n is the number

of vertices in a graph), unless the exponential time hypothesis fails (on the ETH, see
Section 2.5).

We must first establish an ETH-based lower bound of 2o(
√
n) for Feedback Ver-

tex Set on planar graphs with maximum degree 4. Speckenmeyer [Spe83] proves this
problem is NP-hard with a series of reductions starting from Vertex Cover on planar
graphs with maximum degree 3. Each of these reductions changes the number of vertices
and edges only linearly. This along with Theorem 5.9 proves:

Theorem 7.9. Unless the ETH fails, Feedback Vertex Set restricted to planar
graphs with maximum degree 4 cannot be solved in time 2o(

√
n).

Our reduction from Feedback Vertex Set on planar graphs with maximum de-
gree 4 to its restriction to our classes of proximity graphs maps instances with m edges
and n vertices to graphs with O(n2) vertices and edges. This along with Theorem 7.9
implies:

Corollary 7.10. Unless the ETH fails, Feedback Vertex Set restricted to RNGs,

RCGs, or Gabriel graphs cannot be solved in time 2o(n
1
4 ).
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8 Hamiltonian Cycle

We will now consider the Hamiltonian Cycle problem. Recall that, as we defined
in Section 2.1, a Hamiltonian cycle in a graph G = (V,E) with |V | = n is a set of
edges E ′ ⊆ E such that (V,E ′) is isomorphic to the cycle graph Cn. Alternatively, we
will also denote a Hamiltonian cycle as a sequence of vertices vi, . . . , vn such that vi 6= vj
if i 6= j, vi is adjacent to vi+1 for all i = 1, . . . , n− 1, and vn is adjacent to v1. This gives
rise to the Hamiltonian Cycle problem:

Hamiltonian Cycle
Input: A graph G = (V,E).
Question: Does G contain a Hamiltonian cycle?

Garey, Johnson, and Tarjan [GJT76] prove that Hamiltonian Cycle is NP-hard
when restricted to 3-regular, 3-connected planar graphs:

Theorem 8.1 ([GJT76]). Hamiltonian Cycle on 3-regular planar graphs is NP-hard.

8.1 Definitions and intermediate results

Before we describe our polynomial-time many-to-one reduction, we will again define
some terminology and prove several lemmas that will simplify the description of the
reduction and the proof of its correctness.

Definition 8.2. An edge in a graph G is permissible if there is a Hamiltonian cycle in G
that passes through this edge.

Subdividing an edge only preserves Hamiltonicity if the edge is permissible:

Lemma 8.3. The graph G = (V,E) is Hamiltonian and the edge e ∈ E is permissible
if and only if the graph obtained from G by subdividing e is also Hamiltonian.

Proof. Suppose that G′ is the graph obtained by subdividing e = {v1, v2} and that w
is the vertex introduced in the subdivision. If {v1, v2} is permissible, then G contains
a Hamiltonian cycle v1, v2, v3, . . . , vn and as a result v1, w, v2, v3, . . . vn is a Hamiltonian
cycle in G′. Now suppose that G′ is Hamiltonian. Any Hamiltonian cycle in G′ must
visit w, so the cycle must contain v1, w, v2 or v2, w, v1. Replacing this segment of the
cycle by v1, v2 or v2, v1 respectively yields a Hamiltonian cycle in G.

The next two lemmas show that how we can easily determine that certain edges are
not permissible.
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u1 u2

v2 v1 v12 v11

v10

v9

v8v7v6v5

v4

v3

Figure 8.1: Illustration of Lemma 8.6 with a cycle C of length 12: The vertices v1 and v12
each have one neighbor outside of the cycle and they are adjacent to one an-
other. No two other consecutive vertices in the cycle have neighbors outside
of the cycle.

Lemma 8.4. Suppose v1, . . . , vn is a Hamiltonian cycle in G. Then, for any 1 ≤ i ≤
j ≤ n, the graph G − {vi, . . . , vj} cannot contain a vertex with a degree of zero or one,
except possibly vi−1 and vj+1.

Proof. Any vk, k 6∈ {i − 1, . . . , j + 1}, is adjacent to both v((k−1) mod n)+1

and v((k+1) mod n)+1, both of which are part of G− {vi, . . . , vj}.

Lemma 8.5. Suppose that G contains a vertex u which is adjacent to both u1 and u2
with deg(u1) = deg(u2) = 2. Then, no edge {u, v} with v /∈ {u1, u2} is permissible.

Proof. Suppose that {u, v} with v /∈ {u1, u2} is part of a Hamiltonian cycle. Then, u1
and u2 both have a degree of one in G−{u, v}. By Lemma 8.4, this implies that u1 that
the Hamiltonian cycle must contain u1, u, v, u2 or u2, u, v, u1. Without loss of generality,
it is the former. The vertex u1 cannot have any additional neighbors besides u and v,
so it cannot have a predecessor.

One can add a cycle with certain properties to a graph without affecting its Hamil-
tonicity, but only if a certain edge is known to be permissible if the graph is Hamiltonian,
as the next lemma states. The lemma is illustrated in Figure 8.1.

Lemma 8.6. Suppose that G contains a cycle C consisting of the vertices v1, . . . , vk in
that order with the following properties:

• k ≥ 4,

• v1 and vk have neighbors u1 and u2, respectively, which are not part of C,

• u1 and u2 are adjacent
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8 Hamiltonian Cycle

• v1 and vk have no neighbors outside of C besides u1 and u2,

• deg(v2) = deg(vk−1) = 2, and

• for all i = 3, 4, . . . , k − 2, if vi has a neighbor outside of C, then deg(vi−1) =
deg(vi+1) = 2.

Then, G is Hamiltonian if and only if the edge between u1 and u2 is permissible in G−C.
Moreover, if G is Hamiltonian, then all of the edges in C are permissible.

Proof. Suppose that G is Hamiltonian. By Lemma 8.5, none of the edges between C
and G − C except for {u1, v1} and {u2, vk} are permissible. This implies that any
Hamiltonian cycle in G, which we may assume to start in u1 without loss of generality,
enters C through v1 or vk, visits every other vertex in C, and then exits C through v1
or vk before visiting every other vertex in G in the order w1, w2, w3, . . . where w1 = u2.
Then, u1, u2, w2, w3, . . . is a Hamiltonian cycle in G−C which uses {u1, u2}. Hence, this
edge is permissible.

Now suppose that {u1, u2} is permissible in G−C. Then, there is some Hamiltonian
cycle in G− C which uses {u1, u2}. Replacing this edge with the vertices in C yields a
Hamiltonian cycle in G.

We will make use of what we call ladder paths to represent edges in the reduction.
For any k ≥ 1, we will refer to the grid graph G2,k as the simple k-ladder path and
denote it by Lk. As an example, the graph L5 is pictured in Figure 8.2a. We will
refer to the two pairs of adjacent vertices of degree two as the two ends of the sim-
ple ladder path. There are also ladder paths with bends Lk1,k2 . They consist of the
vertices u11, . . . , u

1
k1

, ũ11, . . . , ũ
1
k1−1, u

2
1, . . . , u

2
k2+1, and ũ22, . . . , ũ

2
k2+1. The indices in the

designations of the vertices may appear counter-intuitive, but they will simplify our
proofs. In lieu of a formal list of the edges in the ladder path with bends, we refer the
reader to Figure 8.2b, which pictures L4,4. The two pairs of adjacent vertices of degree
two are again called the ends.

We will also make use of complex ladder paths. The complex ladder path Lk1,k2,k3
consists of the disjoint union of two simple ladder paths with bends, Lk1,k2 and Lk1,k3 ,
and an additional vertex which is adjacent to the vertices u2k2+1 and ũ2k2+1 at one end of
the copy of Lk1,k2 and to the vertices u2k3+1 and ũ2k3+1 at one end of the copy of Lk1,k3 .
As an example L6,2,3 is pictured in Figure 8.2c. We will refer to the vertices in the
graph by the designations marked in the figure. The vertices in the copy of Lk1,k2 will
be referred to as the first half and the vertices in the copy of Lk1,k3 as the second half
of the complex ladder path. The vertex w that connects them is the transitional vertex.
As with simple ladder paths, we will refer to the two pairs of vertices of degree two as
the ends of the complex ladder path. That is, u11 and ũ11 form one end and u41 and ũ41
are the other. The edges {uij, ui

′

j′} will be called outside edges, while the edges {ũij, ũi
′

j′}
are inside edges. An edge {uij, uij+1} or {ũij, ũij+1} is called even if j is even.

We will now investigate ladder paths in Hamiltonian graphs. A traversal of a complex
ladder path is a path that begins in either vertex at one end of the ladder path, terminates
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(a) The simple ladder path L5 is isomor-
phic to the grid graph G2,5.

u11

u12

u13

u14

ũ11

ũ12

ũ13

u21 u22 u23

ũ22 ũ23

(b) The simple ladder path with a
bend L4,2.

u11 ũ11

u12 ũ12

u13 ũ13

u14 ũ14

u15
ũ15

u16
u21 u22

ũ22

u23

ũ23

w

u32

ũ32

u33

ũ33

u34

ũ34

u31

u41ũ41

u42ũ42

u43ũ43

u44ũ44

ũ45
u45

u46

(c) The complex ladder path L6,2,3.

Figure 8.2: Ladder paths will be used as gadgets to represent edges in the reduction.

in either vertex at the other end of the ladder path, and visits every vertex on the ladder
path and no other vertex. It is easy to see that complex ladder paths have exactly four
traversals, as they may begin in either vertex at one end and may terminate in either
vertex at the other end. An example of a traversal is pictured in Figure 8.3a. A partial
cover of one half of a complex ladder path is a path that begins in one of the two vertices
at the end of the half, terminates in the other vertex at that end, and visits every vertex
of that half, but no other vertex. A full cover of a half additionally visits the transitional
vertex. Examples of a partial cover and a full cover are pictured in Figures 8.3b and 8.3c,
respectively. By a simple case analysis, one can make the following observation:

Observation 8.7. Suppose that k1 and k2 are even. If a traversal of Lk1,k2,k3 begins
in u11, then it contains every even outside edge before the bend and every even inside
edge after the bend in the first half. If such a traversal begins in ũ11, then it contains
every even inside edge before the bend and every even outside edge after the bend in the
first half. In either case, it contains both an even inside and an even outside edge in the
first half. By the same reasoning, it also contains an even inside and even outside edge
in the second half. Furthermore, covers contain every inside and every outside edge.
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(a) A traversal of L6,2,3: A traversal of a
complex ladder path is a path that be-
gins in one end, visits every vertex in
the ladder path, and terminates in the
end of the other half.

(b) A partial cover of the first half of L6,2,3:
A partial cover of a half is a path that
begins and terminates in the end of
that half and visits every vertex in the
half, but no other vertex.

(c) A full cover of the second half of L6,2,3: A full cover of a half is a path that begins and
terminates in the end of that half and visits every vertex in the half as well as the transitional
vertex, but no other vertex.

Figure 8.3: Traversals and covers: The thick, red edges are part of the respective path.

The following lemma clarifies how Hamiltonian cycles relate to complex ladder paths:

Lemma 8.8. Suppose that the Hamiltonian graph G = (V,E) contains the complex
ladder path Lk1,k2,k3, that the only vertices on the ladder path with neighbors outside of
the ladder path are on its ends, and that the vertices on the ends each have no more than
one neighbor outside of the ladder path. Then, any Hamiltonian cycle in G contains
either:

• a traversal of the complex ladder path or

• a partial cover of one of its halves and a full cover of the other half.

Proof. Consider any Hamiltonian cycle in G. In this Hamiltonian cycle, the transitional
vertex w is succeeded by u2k1−1, ũ

2
k1−1, u

3
k1−1, or ũ3k1−1. By symmetry, we may assume

without loss of generality that the successor is u2k2−1 or ũ2k2−1. We will only deal with the
first of these two cases as the argument in the other case is very similar. The successor
of u2k2−1 is either ũ2k2−1 or u2k2−2.
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1ũ4

1

u4
2ũ4
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(a) The successor of u23 may be ũ23 or u22.
Here, we assume the former.
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(b) The Hamiltonian cycle must continue
to ũ2k2−2 and then u2k2−2.

Figure 8.4: The first case: The successor of u2k2−1 is ũ2k2−1. Then, the Hamiltonian cycle
contains a traversal of the ladder path.
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ũ45

u45

u46

(a) The successor of u23 may be ũ23 or u22.
Here, we assume the latter.
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ũ2
3

w

u3
2

ũ3
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ũ3
3

u3
4

ũ3
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(b) The path must continue until it
reaches u11.

Figure 8.5: The second case: The successor of u2k2−1 is ũ2k2−1. Then, the Hamiltonian
cycle contains a cover of each half of the ladder path.

First, assume that this successor is ũ2k2−1, as in Figure 8.4a. Since its only other
neighbor is w, ũ2k2−1 must be succeeded by ũ2k2−2. By Lemma 8.4, ũ2k2−2’s successor must
then be u2k2−2 (see Figure 8.4b). By iterating this argument, we can show that the
Hamiltonian cycle visits every vertex u2i and ũ2i until it reachesũ2k1−1 or u1k1 from where
it must proceed to u1k1 . Applying the same argument as before, the Hamiltonian cycle
must then visit every vertex u1i and ũ1i and finally reach u11 or ũ11, forming one half of
a traversal of the ladder path. The transitional vertex w is preceded by either u3k1−1
or ũ3k1−1. By the same argument employed above, the Hamiltonian cycle reaches w by
a path from u41 or ũ41 that visits every vertex in this half along the way. In all, this is a
traversal of the ladder path.

Now, we assume that u2k2−1’s successor is u2k2−2, as in Figure 8.5a. This vertex’s suc-
cessor must then be u2k2−3 because otherwise ũ2k2−1 would be unreachable. This argument
can be applied repeatedly until the Hamiltonian cycle reaches u11, as in Figure 8.5b. Also,

74
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(a) The (3, 0)-vertex gadget with the out-
let vertices enlarged and marked in red.

(b) The (2, 1)-vertex gadget with the out-
let vertices enlarged and marked in red.

Figure 8.6: There are four types of vertex gadgets, each with three pairs of distinguished
adjacent vertices we will call the outlets. The four vertex gadgets are struc-
turally identical, but have different outlets.

by Lemma 8.4, w’s predecessor must then be ũ2k2−1, which is then preceded by ũk2−2,
and so until ũ11 is reached. Together, these two paths then form a full cover of this half
of the ladder path. By a similar argument, the Hamiltonian cycle must also contain a
partial cover of the second half of the ladder path.

Complex ladder paths will be used to replace edges in our reduction. We will now
turn our attention to the gadgets we will use to replace vertices. In light of Theorem 8.1,
we will only consider 3-regular graphs. We will use copies of the simple ladder graph L10

as vertex gadgets. They will have particular vertex pairs designated as outlets to which
the complex ladder paths representing the edges will be connected. We will use two
different vertex gadgets (which one is used for a particular vertex will depend on the
book embedding). Two vertex gadgets, the (3, 0)-vertex gadget and the (2, 1)-vertex
gadget, are pictured in Figure 8.6 with the outlet vertices highlighted in red. We may
obtain (0, 3)-vertex gadgets and (1, 2)-vertex gadgets from the pictured gadgets by flip-
ping them. We will refer to an outlet as a top or bottom outlet depending on where the
vertices in the outlet are depicted in the figure. So, a (3, 0)-vertex gadget has three top
outlets and no bottom outlets, a (2, 1)-vertex gadget has two top outlets and one bottom
outlet, and so on. We will order the outlets from left to right. So, we may refer to an
outlet as the first top outlet or the third bottom outlet with the obvious meaning. The
two outlets that contain a vertex of degree two are outer outlets and the other outlet is
a middle outlet.

Our use of complex ladder paths and the given vertex gadgets is justified by the
following lemma:

Lemma 8.9. Suppose that G is a 3-regular graph and that G′ is obtained from G by the
following:

• Replace every vertex in G with a (3, 0), (2, 1), (1, 2), or (0, 3)-vertex gadget.

• Replace every edge in G with an arbitrary complex ladder path.

• Connect one end of the complex ladder path that represents the edge e = {u, v} to
an outlet of the vertex gadget representing u by adding an edge from each vertex in
the end of the ladder path to a different vertex in the outlet. Connect the other end
to an outlet of the vertex gadget representing v in the same way. No two distinct
ladder paths may be connected to the same outlet.
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8 Hamiltonian Cycle

(a) The first type of vertex gadget:
a (3, 0)-vertex gadget representing a
vertex that is entered and exited
through edges whose corresponding
ladder paths are connected to the outer
outlets.

(b) The second type of vertex gadget:
a (3, 0)-vertex gadget representing a
vertex that is entered and exited
through edges whose corresponding
ladder paths are connected to an outer
outlet and the central outlet.

(c) The third type of vertex gadget:
a (2, 1)-vertex gadget representing a
vertex that is entered and exited
through edges whose corresponding
ladder paths are connected to the outer
outlets.

(d) The second type of vertex gadget:
a (2, 1)-vertex gadget representing a
vertex that is entered and exited
through edges whose corresponding
ladder paths are connected to an outer
outlet and the central outlet.

Figure 8.7: Construction of the Hamiltonian cycle in G′: There are four types of ver-
tex gadgets, depending on which ladder paths are traversed and which are
covered. The edges added to the Hamiltonian cycle in G′ are thick and
highlighted in red.

Then, G is Hamiltonian if and only if G′ is.

Proof. First assume that G′ is Hamiltonian and consider any Hamiltonian cycle in G′.
By Lemma 8.8, the Hamiltonian cycle contains either a traversal or a partial cover and
a full cover of every complex ladder path in G′. We will say that a complex ladder path
is traversed if the Hamiltonian cycle contains a traversal of the path. We may construct
a Hamiltonian cycle in G by including every edge in G whose corresponding ladder path
is traversed.

Now assume that G is Hamiltonian and consider any Hamiltonian cycle in G. The
cycle contains exactly two of the three edges incident to any vertex. We will construct a
Hamiltonian cycle in G′. This Hamiltonian cycle contains a traversal of every ladder path
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representing an edge in G’s Hamiltonian cycle as well as a partial and a full cover of every
other ladder path. Which half of the ladder path is covered fully and which partially
is irrelevant. We will construct the Hamiltonian cycle in G′ by considering each vertex
gadget in G′ individually. We will distinguish four types of vertex gadgets depending on
which of our two vertex gadgets it is and through which of the corresponding edges the
vertex in G is entered and left.

First, consider a (3, 0)-vertex gadget representing a vertex that is entered and left
through edges whose corresponding edges are connected to the two outer outlets of the
vertex gadget. Then the vertex gadget is entered through a traversal of the ladder
path connected to one of the outer outlets. The Hamiltonian cycle then visits some of
the vertices in the vertex gadget followed by a full or partial cover of the ladder path
connected to the middle outlet. The Hamitlonian cycle then visits the rest of the vertices
in the vertex gadget and exits the vertex gadget by a traversal of the last ladder path
connected to it. In all, we add the edges marked in red in Figure 8.7a.

The second type is a (3, 0)-vertex gadget representing a vertex that is entered and
left through edges whose corresponding edges are connected to an outer outlet and the
central outlet of the vertex gadget. The edges used in this case are marked in Figure 8.7b.

Thirdly, there is a (2, 1)-vertex gadget representing a vertex that is entered and left
through edges whose corresponding edges are connected to the two outer outlets of the
vertex gadget. We add the edges marked in red in Figure 8.7c.

The fourth and final case involves a (2, 1)-vertex gadget representing a vertex, which
is entered and left through edges whose corresponding edges are connected to an outer
outlet and the lower outlet of the vertex gadget. We add the edges marked in red in
Figure 8.7d.

Other cases may be dealt with by symmetry using the given cases.
By adding these edges in the vertex gadgets as well as the aforementioned traversals

and covers in the complex ladder paths representing edges, we construct a Hamiltonian
cycle in G′, proving that G′ is Hamiltonian.

8.2 Reduction

We will now describe our reduction from Hamiltonian Cycle on 3-regular planar
graphs to the restriction of this problem to relative neighborhood graphs and Gabriel
graphs. Let G = (V,E) be a 3-planar graph. As in our previous reductions, we compute
a two-page book embedding for G in polynomial time and assume that v1, . . . , vn are the
vertices of G in the order in which they appear on the spine of the book embedding. The
vertices incident to a certain edge will be ordered in the same way as in the reduction
for Feedback Vertex Set in Chapter 7.

Construction

We will construct a relative neighborhood graph G′ = (V ′, E ′) such that G has a Hamil-
tonian cycle if and only if G′ does. At the same time, we give an embedding emb,
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Figure 8.8: The graph G′ after Step 3: Each vertex is replaced by a vertex gadget. Each
edge is replaced by a complex ladder path.

which we will subsequently use to prove that G′ is, in fact, an RNG by showing
that RNG(emb(V ′)) = G′. The construction will follow the general pattern we laid
out in Chapter 3 and use the terminology we defined there. The vertex gadgets will be
the (3, 0) and (2, 1)-vertex gadgets described above. The edge gadgets will be complex
ladder paths. We will use cycles that fulfill the conditions in Lemma 8.6 as filler gad-
gets. As with the previous problems, the reduction will be illustrated using the graph
pictured in Figure 3.1 (this graph is not 3-regular, but in order to have a sufficiently
simple example, we will disregard this or suppose that additional edges in E2 make the
graph 3-regular). In the description we will only take into account edges in the top
page E1. All steps but the first two must be repeated for edges in E2.

Step 1: Start with G′ := G.
Step 2: Replace every vertex vi with the (deg1(vi), deg2(vi))-vertex gadget. Suppose

that u0, . . . u9, u
′
0, . . . , u

′
9 are the vertices in the gadget. They are embedded as emb(ur) :=

(16i+ r, 0) and emb(u′r) := (16i+ r, 1) for r = 0, . . . , 9.
Step 3: Replace every edge e = {vi, vj} in G, i < j, with a complex ladder

path Lk1,k2,k3 connected to an outlet in vi’s vertex gadget and an outlet in vj’s ver-
tex gadget. Recall that we defined the ordering of the edges incident to a certain vertex
to be the same as in the reduction for Feedback Vertex Set in Chapter 7. The
ladder path is connected to the outlets as in Lemma 8.9. The lengths k1, k2, k3 are com-
puted in the following manner: First, k1 := 4h(e). The values k2 and k3 represent the
horizontal length of the edge in the embedding. We need values α and β which represent
the distances over vi’s and vj’s vertex gadget, respectively. These values depend on the
outlet in the vertex gadget to which the ladder path is connected. The first value α is
defined by:

α :=


4, if deg1(vi) = 1 or deg1(vi) = 3 and e is vi’s second edge in E1,

8, if deg1(vi) ≥ 2 and e is vi’s first edge in E1,

0, if deg1(vi) ≥ 2 and e is vi’s last edge in E1.

Similarly, β is:

β :=


4, if deg1(vj) = 1 or deg1(vj) = 3 and e is vj’s second edge in E1,

0, if deg1(vj) ≥ 2 and e is vj’s first edge in E1,

8, if deg1(vj) ≥ 2 and e is vj’s last edge in E1.
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Note that number of horizontal positions taken up by Lk1,k2,k3 is k2 + k3 + 5, since four
positions are taken up by the vertical portions of the ladder path and one position is taken
up by the transitional vertex. The actual number of positions between the outlets to be
connected is α+β+16(j−i−1)+10. Hence, we need k2+k3 = α+β+16(j−i−1)+5 =: γ.
So, we let k2 := dγ

2
e and k3 := bγ

2
c. Finally, we will give the positions of the added

vertices in the embedding. We will use the designations for the vertices introduced in
Figure 8.2c. The vertices’ embeddings are:

• emb(u1r) := (16i+ 8− α, r + 1) for r = 1, . . . , k1,

• emb(ũ1r) := (16i+ 9− α, r + 1) for r = 1, . . . , k1 − 1,

• emb(u2r) := (16i+ 8− α + r, k1 + 1) for r = 1, . . . , k2 − 1,

• emb(ũ2r) := (16i+ 8− α + r, k1) for r = 2, . . . , k2 − 1, and

• emb(w) := (16i+ 8− α + k2 + 1, k1 + 1
2
).

These values correspond to the position depicted in Figure 8.2c. The positions of the
vertices in the second half of the ladder path are analogous to the first half, so we will
omit them. This step is illustrated in Figure 8.8.

Step 4: The graph G′ resulting from the first three steps is not yet an RNG or a
Gabriel graph, because in the graph induced by the embedding we have described so far
there are additional edges between the vertices in the ladder paths and vertex gadgets.
Such edges would prevent us from applying Lemma 8.9. We will add cycles with the
properties described in Lemma 8.6 in order to block such edges while making sure the
resulting graph is Hamiltonian if and only if the original graph is.

Before describing the addition of the cycles in detail, we must consider the structure
of the graph G′ resulting from the first three steps. This graph has two types of faces.
There are faces within the ladder paths and vertex gadgets. All other faces correspond
to faces in the original graph G. In the following we will only consider the second type of
face when referring to faces in G′. By Lemma 8.9, G′ is Hamiltonian if and only if G is,
since the first three steps perform the transformation described in the lemma. We will
say that an edge in G′ is dockable if this edge is permissible or G′ is not Hamiltonian.
In other words, if G′ is Hamiltonian, then any dockable edge is permissible. We claim
that every face in G′ is bordered by an edge in a ladder path that is even and dockable.
We find this edge in the following manner: Choose any ladder path that borders the
face. By Observation 8.7, any traversal of a ladder path Lk1,k2,k3 with even k1 contains
an even inside and an even outside edge in the ladder path and any cover of either half
of the ladder path contains every inside and every outside edge. In the first case, this
edge may be found if we know at what vertex the traversal starts. In the second case, it
does not matter which edge is chosen, so the edge from the first case is sufficient. The
proof of Lemma 8.9, particularly Figure 8.7, shows that which vertex a traversal starts
at depends only on whether the vertex gadget is a (3, 0) or a (2, 1)-vertex gadget.

Cycles are added for every even r and even s such that (r, s) is in a face other than the
outside face of G′. The cycles will be embedded as squares with corners at (r, s), (r +
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(a) A docking side adjoined to an edge. (b) A docking side adjoined to a previously
existing non-docking side.

(c) A non-docking side adjoined to an
edge.

(d) A non-docking side adjoined to an
edge.

Figure 8.9: Construction of the sides of a cycle: The number and positions of the vertices
in a side depend on whether it is a docking side and what this side adjoins. In
each picture, a side of the newly added cycle is on the bottom and it adjoins
an edge or previously existing side on the top. The vertices and edges that
result from the addition of the cycle are marked in blue while previously
existing vertices and edges are in black.

1, s), (r+1, s+1), and (r, s+1). We will call the cycle with these corners, the (r, s)-cycle.
The cycles have four sides: one docking side and three non-docking sides. We will say
that sides adjoin existing sides of other cycles or edges in ladder paths or vertex gadgets.
For instance, the lower side of a cycle placed at (r, s) adjoins the edge or side running
from (r, s−1) to (r+1, s−1). In order for Lemma 8.6 to be applicable, the docking side
must adjoin a dockable edge. As we noted above, every face is adjacent to such an edge.
By Lemma 8.6, all edges on the cycles added are also permissible if G′ is Hamiltonian.
So, we may adjoin the docking side of the first cycle in a face to the edge found in the
ladder path in the manner described above and then adjoin the docking side of each new
cycle to an edge in a previously added cycle.

We add the cycles in any order, as long as the docking side of the newly added cycle
is adjoined to an existing edge that is dockable. The addition of the sides is illustrated
in Figure 8.9. The (r, s)-cycle is added as follows: Suppose that the upper side, which
goes from (r, s + 1) to (r + 1, s + 1), of the cycle is the docking side. The docking side
contains six vertices, including the corners. They are embedded at (r+δ, s+1) with δ ∈
{0, 1

6
, 1
3
, 1
2
, 3
4
, 1}. The docking side adjoins the edge or side which runs from (r, s + 2)
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Figure 8.10: If a non-docking side adjoins an edge to a transitional vertex, one of the
corners of that side is not adjacent to a vertex on that edge.

to (r + 1, s + 2). If this is an edge, then it must be subdivided twice with new vertices
introduced at (r+ 1

3
, s+2) and (r+ 1

2
, s+2). These new vertices are connected with edges

to the vertices at (r+ 1
3
, s+ 1) and (r+ 1

2
, s+ 1). This case is illustrated in Figure 8.9a.

If the docking side adjoins a side of a previously added cycle, then this must be a non-
docking side. It has a vertex at (r + 1

2
, s + 2) in addition to the corners at (r, s + 2)

and (r+1, s+2). The edge between (r, s+2) and (r+ 1
2
, s+2) must be subdivided once,

with the new vertex embedded at (r+ 1
3
, s+2). Edges are added between the new vertex

and the vertex at (r+ 1
3
, s+1) as well as between the existing vertex at (r+ 1

2
, s+2) and

the vertex at (r+ 1
2
, s+ 1). This case is illustrated in Figure 8.9b. If the docking side is

not the upper side, but one of the three others, then its embedding and its connections
to its adjoining side or edge are analogous. This concludes the description of the docking
side.

We will now describe the non-docking sides. When the cycle is added, the non-docking
sides may adjoin a non-docking side of an existing cycle, an edge in a ladder path or
a vertex gadget, or it may initially not adjoin anything. If it does not initially adjoin
anything, then the non-docking side contains three vertices: the two corners and third
vertex embedded halfway between them. If it adjoins an edge of a ladder path or a
vertex gadget, then it consists of the same three vertices, but edges must be added
between the two corners of the side and the endpoints of the edge (see Figure 8.9c).
If it adjoins a non-docking side of an existing cycle, then the new non-docking side
consists of five vertices, including the corners. Suppose the new non-docking side is
the upper side of the (r, s)-cycle. Then the five vertices are embedded at (r + δ, s + 1)
with δ ∈ {0, 1

4
, 1
2
, 3
4
, 1}. The existing side contains the vertices (r, s), (r+ 1

2
, s), (r+ 1, s),

since it had not previously adjoined anything. Edges are added between the vertices
at (r, s) and (r, s−1), at (r+ 1

2
, s) and (r+ 1

2
, s−1), as well as at (r+1, s) and (r+1, s−1).

This case is illustrated in Figure 8.9d.
There is a special case when a non-docking side of a cycle adjoins the edge between a

transitional vertex and one of the two final vertices of a half of a ladder path. Say the
upper side of the (r, s)-cycle, which goes from (r, s + 1) to (r + 1, s + 1), adjoins such
an edge running from (r, s+ 5

2
) to (r+ 1, s+ 2). Then, just as when it adjoins a regular
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(a) Excerpt of the graph pictured in Fig-
ure 8.8: The thicker edge marked in
red is dockable, so the docking side of
a cycle can be adjoined to it.

(b) Addition of a cycle: The left side is the
docking side. It adjoins an edge in the
ladder path, which is subdivided twice.
The lower side adjoins an edge in the
vertex gadget. The other two sides do
not adjoin anything.

(c) Addition of another cycle: Its lower side adjoins a side of the previously added cycle. Its
left side adjoins an edge in the ladder path. The other two sides do not adjoin anything.

Figure 8.11: Addition of cycles: Two cycles are added to a face in accordance with the
construction. The newly added cycle is highlighted in blue.

edge in a ladder path, the upper side of the cycle consists of three vertices embedded
at (r, s+ 1), (r + 1

2
, s+ 1), and (r + 1, s+ 1). The vertex at (r, s+ 1) is adjacent to the

vertex at (r, s+ 2), but the vertex at (r+ 1, s+ 1) does not have a neighbor in the edge
this side adjoins. This situation is pictured in Figure 8.10.

We will illustrate the addition of cycles with an example. Figure 8.11a pictures an
excerpt of the graph G′ produced by Step 2 and 3 (pictured in Figure 8.8). The
even edge highlighted in red is dockable. So, we may add a cycle with its docking side
adjoining this edge. This cycle is marked in blue in Figure 8.11b. Its left side is the
docking side. Its lower side adjoins an edge in the vertex gadget. Its other two sides do
not adjoin anything, but they are dockable, so the docking side of another cycle may
adjoin these sides. In Figure 8.11c, another cycle, highlighted in blue, is added. Its
docking side is the lower side and it adjoins the upper side of the previously added cycle.
Its left side adjoins an edge in the ladder path, while its right and upper side do not
adjoin anything.

An (r, s)-cycle must be added for every even r and s if (r, s) is located within a face
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u2

u1
v1

v2

Figure 8.12: An excerpt of the graph G′ produced by the reduction: The vertex v1 is not
an RNG-blocker for {u1, u2}, but u2 is an RNG-blocker for {v1, v2}.

not contained within a vertex gadget or a ladder path.

Running time

We must show that the reduction runs in polynomial time. The graph G′ contains:

• O(n) vertex gadgets each containing a constant number of vertices,

• O(n) ladder paths containing O(n) vertices each, for a total of O(n2) vertices,
and

• O(n2) cycles each containing O(1) vertices.

In total, G′ contains O(n2) vertices and can be computed in polynomial time.

Correctness

We show that G is Hamiltonian if and only if G′ is. This is true after every step of the
construction. Steps 2 and 3 perform the transformation described in Lemma 8.9, so
this claim is a consequence of that lemma for these steps. Step 4 involves subdividing
an edge which is permissible if the graph is Hamiltonian. This is correct by Lemma 8.3.
This step then adds a cycle fulfilling the conditions of Lemma 8.6. Note that, after
a cycle is added, this cycle may be modified during the addition of subsequent cycles.
However, each subdivision and each addition of a cycle preserve the Hamiltonicity of the
graph by the aforementioned lemmas. Hence, the graph after all cycles have been added
is Hamiltonian if and only if the original graph is.

Graph induced by embedding

Proving that the embedding emb given in the construction induces the graph described
therein as its RNG requires a similar analysis to the one given in Chapter 4 for the
reduction for Dominating Set. This reduction, like the one for Dominating Set,
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generates a graph that is in a way grid-like. We will omit most of the details of this
analysis and focus on a few aspects that may not be immediately obvious.

Figure 8.12 pictures an excerpt of the graph produced by the reduction with parts of
a ladder path, including the transitional vertex, and two cycles, which are highlighted
in blue and green. One edge is thicker and highlighted in red. We will argue it is not
blocked. Specifically, we will show that v1 is not a blocker for {u1, u2}. The distance

between u1 and u2 is d(emb(u1), emb(u2)) = 1, while d(emb(ui), emb(v1)) =
√
5
2
> 1

for i ∈ {1, 2}, so {u1, u2} is not blocked by v1. We also show that u2 is a blocker
for {v1, v2}. This is because d(emb(v1), emb(v2)) = 3

2
, while d(emb(u2), emb(v2)) =√

2 < 3
2

and d(emb(u2), emb(v1)) =
√
5
2
< 3

2
.

Gabriel graphs

We will now discuss Gabriel graphs. This reduction can, be adjusted to Gabriel graphs
with one minor modification. In the excerpt of G′ pictured in Figure 8.12, u2 is not a
Gabriel-blocker for {v1, v2} since ] emb(v1) emb(u2) emb(v2) < 90◦. As a result, Step 4
of the construction, specifically the special case for sides adjoining an edge to a tran-
sitional vertex, has to be adjusted. Say the upper side of the (r, s)-cycle, which goes
from (r, s+1) to (r+1, s+1), adjoins such an edge running from (r, s+2) to (r+1, s+ 5

2
).

Just as when it adjoins a regular edge in a ladder path, the upper side of the cycle con-
sists of three vertices embedded at (r, s+ 1), (r+ 1

2
, s+ 1), and (r+ 1, s+ 1). The vertex

at (r, s+ 1) is adjacent to the vertex at (r, s+ 2). In the reduction for RNGs the vertex
at (r + 1, s + 1) does not have a neighbor in the edge this side adjoins, in the case of
Gabriel graphs there is an edge from the vertex at (r+1, s+1) to the transitional vertex
at (r + 1, s + 5

2
). So, in the reduction for Gabriel graphs an edge must be added along

the dashed line in Figure 8.12. This does not affect the correctness of the reduction.
Lemma 8.6 can still be applied, since when adding this cycle, the vertex connected to the
transitional vertex is not adjacent to any other vertex on the cycle that has a neighbor
outside of the cycle.

8.3 Conclusions

This concludes the reduction. The approach above fails for relatively closest graphs. It
requires the use of 3-cycles to separate the two halves of ladder paths and RCGs cannot
contain 3-cycles. We will leave open whether Hamiltonian Cycle on RCGs can be
solved in polynomial time, but we suspect that the problem is probably also NP-hard
on RCGs.

While the problem remains open for RCGs, we have shown that it is NP-hard for
relative neighborhood graphs and Gabriel graphs. In fact, the reduction for RNGs and
Gabriel graphs only creates vertices with degree at most four.

Theorem 8.10. Hamiltonian cycle is NP-hard when restricted to relative neighbor-
hood graphs or Gabriel graphs, each with maximum degree at most four.
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For graphs with maximum degree two, Hamiltonian Cycle is easy to solve. How-
ever, it remains open whether this problem can be solved in polynomial time when
restricted to proximity graphs with maximum degree three.

We will show that our reduction also implies that Hamiltonian Cycle cannot be

solved in time 2o(n
1
4 ) on each of our proximity graph classes (where n is the number

of vertices in a graph), unless the exponential time hypothesis fails (on the ETH, see
Section 2.5).

We must first establish an ETH-based lower bound of 2o(
√
n) for Hamiltonian Cycle

on planar graphs with maximum degree 3. Lokshtanov, Marx, and Saurabh [LMS11]
prove this lower bound for planar Hamiltonian Cycle. Their proof is based on the
reduction given by Garey, Johnson, and Tarjan [GJT76]. This reduction produces graphs
with maximum degree 3. Thus:

Theorem 8.11. Unless the ETH fails, Hamiltonian Cycle restricted to planar graphs
with maximum degree 3 cannot be solved in time 2o(

√
n).

Our reduction from Hamiltonian Cycle on planar graphs with maximum degree 3
to its restriction to our classes of proximity graphs maps instances with m edges and n
vertices to graphs with O(n2) vertices and edges. This along with Theorem 8.11 implies:

Corollary 8.12. Unless the ETH fails, Hamiltonian Cycle restricted to RNGs or

Gabriel graphs cannot be solved in time 2o(n
1
4 ).
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Proximity graphs model objects in the plane. Their positions are assumed to be static.
In order to model objects in motion, we will use temporal proximity graphs. Temporal
graphs are graphs that change over time. They have found applications in modeling a
wide range of real-world phenomena. Kempe, Kleinberg, and Kumar [KKK02] showed
that finding small separators in such graphs, unlike the static variant of the problem, is
NP-hard. We will prove a similar result for temporal proximity graphs. Before formally
defining temporal graphs and this problem, however, we will describe a variant of 3-
SAT, which we will use to prove NP-hardness.

9.1 A 3-SAT variant

Recall the definition of the 3-SAT problem in Section 2.5. Given a variable xj and a
clause Ci, we will say that xj occurs in Ci if xj ∈ Ci or ¬xj ∈ Ci. It occurs positively
if xj ∈ Ci and negatively if ¬xj ∈ Ci. According to Garey and Johnson [GJ79], 3-SAT
remains NP-hard even when restricted to formulas in which each variable occurs at most
three times. We will briefly sketch a proof of this claim in order to be able to argue that
the ETH implies a lower bound of 2o(m+n) for this restriction of 3-SAT where m is the
number of clauses in a formula and n the number of variables.

Theorem 9.1. 3-SAT with the restriction that each variable occurs at most three times
is NP-hard. Unless the ETH fails, it cannot be solved in time 2o(m+n) where m is the
number of clauses in a formula and n the number of variables.

Proof. The general version of 3-SAT can be reduced in polynomial time to the restricted
version in the following manner. Suppose that the variable xi occurs k times in a
formula. Then, we may replace these k occurrences by the new variables x1i , . . . , x

k
i . We

additionally add the clauses {xi,¬xji} and {¬xi, xji} for j = 1, . . . , k. These additional
clauses ensure that any truth assignment that satisfies the formula must assign the same
value to xji for all j = 1, . . . , k. The resulting formula contains at most 7m clauses
since for each clause in the original formula we add two clauses for each of the at most
three variables that occur in the clause. Moreover, it contains at most n + 3m variable
since three new variables are added for each clause. As a result, any algorithm solving
the restricted form of 3-SAT in time 2o(m+n) could be used to solve general 3-SAT in
time 2o(n).

We will now prove the NP-hardness of a further restricted version of 3-SAT.
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Lemma 9.2. 3-SAT remains NP-hard when the following restrictions are imposed on
input instances:

• every variable occurs positively at most twice and negatively at most twice and

• for every variable xj one of the following holds true: Every positive occurrence of xj
precedes every negative occurrence of xj (in other words, if xj ∈ Ci and ¬xj ∈ Ci′,
then i < i′) or every negative occurrence of xj precedes every positive occurrence
(that is, if ¬xj ∈ Ci and xj ∈ Ci′, then i < i′).

Moreover, unless the ETH fails, this restricted version of 3-SAT cannot be solved in
time 2o(m+n) where m is the number clauses in a formula and n the number of variables.

Note that the second condition, of course, depends on a certain ordering of the clauses.
We will refer to this restriction as Restricted 3-SAT. To our knowledge, the NP-
hardness of this problem has not been established in the literature.

Proof. We will show that any 3-SAT instance in which every variable occurs
at most three times can be transformed in polynomial time into an equiva-
lent Restricted 3-SAT instance. Given a formula ϕ compute ψ by performing the
following modifications:

1. If there is a clause Ci and a variable xj such that xj ∈ Ci and ¬xj ∈ Ci, then
remove Ci.

2. If a variable occurs only positively or only negatively, then remove every clause in
which it occurs.

3. If a variable xj occurs negatively twice, then replace every positive occurrence of
this variable by ¬xj and every negative occurrence by xj.

4. If there are clauses Ci1 , Ci2 , Ci3 , with i1 < i2 < i3, and a variable xj such that xj ∈
Ci1 , ¬xj ∈ Ci2 , and xj ∈ Ci3 , then do the following:

• Replace xj with a new variable x′j in Ci3

• Add the clause {xj,¬x′j}, placing it immediately after Ci1

• Add the clause {¬xj, x′j}, placing it immediately before Ci3

It is easy to see that none of the previous steps changes the satisfiability of ϕ.
The first three steps do not increase the number of variables or clauses in the formula.

The final step of the transformation adds at most n variables and 2n clauses where n
is the number of variables in the original formula. This implies the ETH-based lower
bound.
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9 Temporal separators

9.2 Temporal graphs, paths, and separators

We now turn our attention to temporal graphs. A temporal graph G = (V, τ, E1, . . . , Eτ )
consists of a vertex set V , a lifespan τ ∈ N, and edge sets E1, . . . , Eτ . The static
graph (V,E1 ∪ . . .∪Eτ ) is its underlying graph and (V,Ei) is its i-th layer. The number
of edges in G is |E1|+ . . .+ |Eτ |. A path from v1 to vk in G is an alternating sequence
of vertices and timestamps v1, τ1, v2, τ2, . . . , τk−1, vk such that:

• {vi, vi+1} ∈ Eτi ,

• τi ≤ τi+1, and

• vj 6= vj′

for all i = 1, . . . , k − 1 and j, j′ = 1, . . . , k, j 6= j′. It is a strict path if τi < τi+1 for
all i = 1, . . . , k− 1. If s, t ∈ V and s 6= t, then S ⊆ V \ {s, t} is a (strict) (s, t)-separator
if every (strict) path from s to t passes through a vertex in S. This leads to the following
computational problem:

(Strict) Temporal (s, t)-Separation

Input: A temporal graph G = (V, τ, E1, . . . , Eτ ), a nonnegative integer k, and
vertices s, t ∈ V , s 6= t.

Question: Does G contain a (strict) (s, t)-separator S ⊆ V \ {s, t} with |S| ≤ k?

As we mentioned before, Kempe, Kleinberg, and Kumar [KKK02] showed that this
problem is NP-complete. Fluschnik et al. [Flu+20] and Zschoche et al. [Zsc+20] analyzed
it in more detail. They define planar temporal graphs in two different ways: A temporal
graph may be considered planar if its underlying graph is planar or it may be considered
planar if each of its layers is planar. Since subgraphs of planar graphs are planar,
planarity in the first sense implies planarity in the second sense. The same does not hold
for the classes of proximity graphs we have considered, if we define temporal proximity
graphs in the same two senses.

In the following, we will consider temporal proximity graphs only in the second sense.
Such graphs may be thought of as points that move in the plane and whose proximity
relationships therefore change over time. We will show that (Strict) Temporal (s, t)-
Separation remains NP-hard when restricted to temporal graphs all of whose layers are
path graphs. Path graphs are obviously Gabriel graphs, relative neighborhood graphs,
and relatively closest graphs: One may embed such graphs by placing all vertices in
the graph on a line segment in the same order in which they appear on the path. So,
this reduction implies that the problem is also NP-complete when restricted to temporal
graphs whose layers are proximity graphs.

Since all layers of the temporal graph produced by our reduction are paths, we will
describe the edge sets Ei by simply giving the order in which the vertices appear in this
path. To this end, let:

E(w1, . . . , w`) := {{wi, wi+1} | i = 1, . . . , `− 1}.

88



9 Temporal separators

We will denote the concatenation of two paths in the following manner:

E(w1, . . . , wr) · E(w′1, . . . , w
′
s) := E(w1, . . . , wr, w

′
1, . . . , w

′
s).

Finally, if A = {w1, . . . , wr} and B = {w′1, . . . , w′s} are two disjoint sets of vertices
and r ≤ s, then we will denote the path in which vertices from each set alternate (in
any order) followed by all remaining vertices in B (also in any order) as follows:

E(A,B) := E(w1, w
′
1, w2, w

′
2, . . . , w

′
r−1, wr, w

′
r) · E(w′r+1, . . . , w

′
s).

9.3 Reduction

We will now give a reduction from Restricted 3-SAT to Temporal (s, t)-
Separation on temporal graphs each of whose layers are paths.

Construction

Suppose that ϕ is a Boolean conjunctive formula over the variables x1, . . . , xn consisting
of the clauses C1, . . . , Cm with the aforementioned restrictions. We set τ := 8n+m+ 1
and let V1 := {vi, v′i, vi, vi′ | j = 1, . . . , n}, V2 := {uj | j = 1, . . . , 4n + 1}, and V :=
{s, t} ∪ V1 ∪ V2. Moreover, let k := 6n + 1. Intuitively, the vertices vj and v′j will
represent the at most two occurrences of xj and vj and vj

′ the at most two occurrences
of ¬xj. The vertices uj are blockers that will be used to separate the other vertices from
one another.

We will now describe the edge sets of the graph produced by the reduction. There
are three types of layers: one blocker layer for each blocker, four variable layers for
each variable, and one clause layer for each clause. The blocker layers ensure that every
blocker must be part of any (s, t)-separator. Let:

EB
i := E(V1, V2 \ {ui}) · E(s, ui, t)

for all i = 1, . . . , 4n + 1. The four variable layers ensure that for every variable xi
either both vi and v′i or both vi and vi

′ are part of any (s, t)-separator. In ϕ either every
positive occurrence of xi precedes every negative occurrence or every negative occurrence
precedes every positive occurrence. In the first case, we let:

Exi
1 := E(V1 \ {vi, vi}, V2) · E(s, vi, vi, t),

Exi
2 := E(V1 \ {vi, vi′}, V2) · E(s, vi, vi

′, t),

Exi
3 := E(V1 \ {v′i, vi}, V2) · E(s, v′i, vi, t), and

Exi
4 := E(V1 \ {v′i, vi′}, V2) · E(s, v′i, vi

′, t).
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9 Temporal separators

In the second case we switch the order of the vertices representing xi with those repre-
senting ¬xi and set:

Exi
1 := E(V1 \ {vi, vi}, V2) · E(s, vi, vi, t),

Exi
2 := E(V1 \ {vi, vi′}, V2) · E(s, vi

′, vi, t),

Exi
3 := E(V1 \ {v′i, vi}, V2) · E(s, vi, v

′
i, t), and

Exi
4 := E(V1 \ {v′i, vi′}, V2) · E(s, vi

′, v′i, t)

Finally, the clause layer for Ci ensures that a vertex corresponding to one of the literals
in Ci must be part of any (s, t)-separator. Suppose that Ci = {`1, `2, `3} where the `j
are literals. Let w1, w2, and w3 be the corresponding vertices. That is:

wj :=


vr, if `j = xr and this is the first positive occurrence of xr,

v′r, if `j = xr and this is the second positive occurrence of xr,

vr, if `j = ¬xr and this is the first negative occurrence of xr,

vr
′, if `j = ¬xr and this is the second negative occurrence of xr.

We then use the following as the clause layer for Ci:

ECi := E(V1 \ {w1, w2, w3}, V2) · E(s, w1, w2, w3, t).

To complete the description of the reduction, we must give the order in which the layers
appear. The blocker layers appear first, so the first 4n+1 layers are EB

1 , . . . , E
B
4n+1. They

are followed by the clause layers. We then intersperse the variable layers in the following
manner. If every positive occurrence of xi precedes every negative occurrence, then we
place xi’s variable layers between the clause layer of the last clause in which xi occurs
positively and the clause layer of the first clause in which it appears negatively. If every
negative occurrence of xi precedes every positive occurrence, then we place xi’s variable
layers between the clause layer of the last clause in which xi occurs negatively and the
clause layer of the first clause in which it appears positively.

Correctness

We must show that ϕ is satisfiable if and only if the temporal graph produced by the
reduction has an (s, t)-separator S of size at most k = 6n+ 1.

Suppose that α : {x1, . . . , xn} → {0, 1} is a satisfying assignment for ϕ. We let S :=
V2 ∪ {vi, v′i |α(xi) = 1} ∪ {vi, vi′ |α(xi) = 0}. Of course, |S| = 6n + 1. We must show
that S is an (s, t)-separator. Suppose towards a contradiction that w1, τ1, . . . , τr−1, wr
with s = w1 and t = wr is an (s, t)-path which does not pass through a vertex in S.
The layer Eτr−1 cannot be a blocker layer, since t’s only neighbor in a blocker layer is a
blocker and S contains all blockers. Suppose that Eτr−1 is a variable layer. Then wr−1
must be vi, v

′
i, vi, or vi

′ for some i. In all preceding layers, however, that vertex is only
adjacent to blockers. Hence, this is also not a possibility. Finally, suppose that Eτr−1 is
the clause layer for Ci. Without loss of generality, we may assume that Ci = {x1, x2, x3}.
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Since α satisfies ϕ, α(xj) = 1 for a j ∈ {1, 2, 3}. Hence, vj, v
′
j ∈ S. Then, wr−1 = vj′

or wr−1 = v′j′ with j′ > j. Again without loss of generality, assume that wr−1 = vj′ .
If every positive occurrence of xj′ precedes every negative occurrence, then in all layers
preceding this one vj′ is only adjacent to blockers. Hence, every positive occurrence
of xj′ precedes every negative occurrence. Then, the only layers preceding this one in
which vj′ is adjacent to vertex which is not a blocker are xj′ ’s variable layers. However,
in these layers vj′ is only adjacent to t, vj′ , vj′

′, and blockers. Since vj′ /∈ S, it follows
that vj′ , vj′

′ ∈ S. The same is true of all blockers. Hence, there is no possible vertex
that could be wr−2. So, Eτr−1 also cannot be a clause layer. the So, S is, in fact,
an (s, t)-separator.

Now suppose that S, |S| ≤ 6n + 1, is an (s, t)-separator. Because of the blocker
layers, S must contain all blockers. Because of the variable layers, S must contain
both vi and v′i or both vi and vi

′ for every variable xi. Because |S| ≤ 6n + 1, S cannot
contain any further vertices. Hence, the assignment α with:

α(xi) :=

{
1, if vi, v

′
i ∈ S,

0, if vi, vi
′ ∈ S,

is well-defined. Because of the clause layers, α must satisfy ϕ, making ϕ satisfiable.

9.4 Conclusions

This concludes our reduction. We have only discussed the non-strict version of Tempo-
ral (s, t)-Separation. However, the reduction described above can easily be adapted
to the strict case. One must only repeat layers sufficiently often, so that any path
becomes a strict path. We have proved the following:

Theorem 9.3. (Strict) Temporal (s, t)-Separation is NP-complete when re-
stricted to temporal graphs in which all layers are path graphs.

This implies:

Corollary 9.4. (Strict) Temporal (s, t)-Separation is NP-complete when re-
stricted to temporal graphs in which all layers are relative neighborhood graphs, relatively
closest graphs, or Gabriel graphs.

We leave open the question of whether Temporal (s, t)-Separation is polynomial-
time solvable on temporal graphs whose underlying graph is a proximity graph, but we
suspect that it is probably also NP-hard.

We will show that our reduction also implies that (Strict) Temporal (s, t)-
Separation cannot be solved in time 2o(n+

√
m) on the temporal versions of each of

our proximity graph classes (where n is the number of vertices in a graph and m the
total number of edges in all layers), unless the exponential time hypothesis fails (on the
ETH, see Section 2.5).
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9 Temporal separators

Our reduction from Restricted 3-SAT produces a temporal graph containing 5n+3
vertices, 8n + m + 1 layers, and (5n + 2)(8n + m + 1) ∈ O((n + m)2) edges. Due to
Lemma 9.2, this implies:

Corollary 9.5. Unless the ETH fails, (Strict) Temporal (s, t)-Separation cannot
be solved in time 2o(n+

√
m) on temporal graphs all of whose layers are path graphs where n

is the number of vertices in the temporal graph and m the total number of edges in the
graph. Accordingly, the same holds for temporal RNGs, RCGs, and Gabriel graphs.
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10 Recognition

The recognition problem for a graph class C asks whether G ∈ C for a given graph G.
In the context of geometric graphs, this problem is also frequently referred to as the
realizability or drawability problem and one is often also interested in constructing the
geometric structure that witnesses the graph’s membership in C.

The recognition problem has been shown to be NP-complete for several classes that
are closely related to the proximity graphs we have studied here. For example, Eades and
Whitesides proved NP-hardness for the recognition of nearest neighbor graphs [EW95]
and Euclidean minimum spanning trees [EW96]. Cardinal and Hoffmann [CH17] proved
that the recognition of point visibility graphs, which may be thought of as empty region
graphs with the line segment between two points as their region of influence, is complete
for the existential theory of the reals (∃R). Di Battista, Lenhart, and Liotta [DBLL94]
survey results on the recognition problem for geometric graph classes. Bose, Lenhart,
and Liotta [BLL96] showed that the recognition problem for RNGs, RCGs, and Gabriel
graphs can be decided in linear time when restricted to trees.

One typical approach to proving NP-hardness for such problems is the so-called logic
engine (see [EW95] for a detailed description). This approach utilizes “rigidity” in the
realizability of certain graphs, that is, that realizations of certain graphs are unique
up to rotation, scaling, translation, and reflection. The problem with this approach is
that RNGs, RCGs, and Gabriel graphs are typically very non-rigid. Fekete, Houle, and
Whitesides [FHW97] introduced the “wobbly” logic engine, which relaxes the rigidity
requirement to some extent, but it is unclear how it could be applied to the graph classes
we have studied.

The complexity of the recognition problem for RNGs, RCGs, and Gabriel graphs
remains open. It is not even clear whether the problem is in NP, let alone whether it is
polynomial-time solvable. The best we are able to prove is that this problem is in ∃R.

The existential theory of the reals is defined as the set of all problems that may
be reduced to the following problem: The input is an existential first-order for-
mula ∃x1 . . . ∃xkϕ(x1, . . . , xk) where ϕ is a quantifier-free formula using 0, 1, addi-
tion, multiplication, strict and non-strict comparison, Boolean operators, and the vari-
ables x1, . . . , xk. One is asked to decide whether this formula is true in the field of the
reals. It is known that NP ⊆ ∃R ⊆ PSPACE. Schaefer [Sch13] gives a survey on ∃R.

We will now briefly describe how the proximity graph realizability of a graph can
be expressed as an instance to the aforementioned ∃R-complete problem. Given three
points (x1, y1), (x2, y2), (x3, y3) ∈ R2, (x1, y1) is an RNG-blocker for (x2, y2) and (x3, y3)
if and only (x1− x2)2 + (y1− y2)2 < (x2− x3)2 + (y2− y3)2 and (x1− x3)2 + (y1− y3)2 <
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(x2 − x3)2 + (y2 − y3)2. Consequently, we use the formula

ψRNG
(x1,y1),(x2,y2),(x3,y3)

:=(x1 − x2)2 + (y1 − y2)2 < (x2 − x3)2 + (y2 − y3)2

∧ (x1 − x3)2 + (y1 − y3)2 < (x2 − x3)2 + (y2 − y3)2

to express that (x1, y1) is an RNG-blocker for (x2, y2) and (x3, y3). Strictly speaking,
taking the square is not allowed but may be expressed using multiplication in the obvious
manner. Similar formulas ψRCG

(x1,y1),(x2,y2),(x3,y3)
and ψGAB

(x1,y1),(x2,y2),(x3,y3)
exist to describe

RCG and Gabriel-blockers. Using these formulas, we may express that a given graphG =
(V,E) with V = {v1, . . . , vn} possesses a C-embedding for C ∈ {RNG,RCG,GAB} using
the following formula:

ϕCG := ∃x1 . . . ∃xn∃y1 . . . ∃yn
n∧
i=1

n∧
j=i+1

(xi 6= xj ∨ yi 6= yj)

∧
∧

{vi,vj}∈E

∧
vk∈V \{vi,vj}

¬ψC(xk,yk),(xi,yi),(xj ,yj)

∧
∧

{vi,vj}/∈E

 ∨
vk∈V \{vi,vj}

ψC(xk,yk),(xi,yi),(xj ,yj)

 .

The variables represent the coordinates of a possible embedding of each vertex. The first
part of the formula states that no two vertices may be embedded in the same point. The
second part expresses that no edge may be blocked. The third part states that there
must be a blocker for any two non-adjacent vertices. Note that the size this formula is
cubic and therefore polynomial in the number of vertices in G. This proves:

Theorem 10.1. The recognition problem for relative neighborhood graphs, relatively
closest graphs, and Gabriel graphs is a member of the existential theory of the reals.

Although this is the only bound on the complexity of the recognition problem for our
graph classes that we are able to prove, we are not convinced that it is ∃R-complete.
Without much conviction, we conjecture that it is in NP, if not polynomial-time solvable.
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11 Conclusion

We have investigated the computational complexity of several algorithmic problems when
restricted to three classes of proximity graphs: relative neighborhood graphs, relatively
closest graphs, and Gabriel graphs. We have found that the classical NP-complete
problems Independent Set, Vertex Cover, 3-Colorability, Dominating Set,
Feedback Vertex Set, and Hamiltonian Cycle remain NP-hard when restricted
to these graph classes (except for 3-Colorability and possibly Hamiltonian Cycle
on RCGs). Our reductions are based in large part on book embeddings that are useful
to enforce a certain uniform structure on input graphs. We have further studied the
Temporal (s, t)-Separation restricted to temporal graphs that are layer-wise prox-
imity graphs and proved that it, too, remains NP-hard. We have also shown that the
recognition problem for RNGs, RCGs, and Gabriel graphs is in the existential theory
of the reals (∃R). We will now conclude by describing interesting open questions that
could be the subject of further research.

Open questions In Chapter 8, we mentioned that the complexity of the Hamiltonian
Cycle problem on RCGs remains open. For the classical NP-complete problems we have

investigated, we have show an ETH-based lower bound of 2o(n
1
4 ) for their restrictions

to proximity graphs. This lower bound is not necessarily tight. In fact, we suspect
that it is probably not. The corresponding lower bounds for arbitrary planar graphs
are 2o(

√
n) and these are mostly tight [LMS11]. For these problems, we have shown that

that they remain NP-complete on proximity graphs even when their maximum degrees
are restricted to a value between 4 and 8. In each case, a gap remains between the
maximum degree restriction for which the problem has been shown to be NP-complete
and the maximum degree restriction for which polynomial-time algorithms are known.
As mentioned in Chapter 9, the question of whether temporal separators can be found
in polynomial time in temporal graphs whose underlying graph is an RNG, RCG, or
Gabriel graph also remains open. As discussed in Chapter 10, the precise complexity of
the recognition problem for these graph classes remains an open question. We will now
discuss two further open questions.

4-Coloring As we proved in Chapter 6, determining whether a Gabriel graph or
a relative neighborhood graph is 3-colorable is an NP-complete problem. By contrast,
every planar graph can be colored with four colors. This is the famous four color theorem.
The fastest known algorithm for actually computing a 4-coloring of a planar graph runs
in quadratic time and is due to Robertson et al. [Rob+96; Rob+97].

Cimikowski [Cim90] proposes an algorithm that computes a 4-coloring of any relative
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neighborhood graph in linear time. This algorithm is based on a similar algorithm
for computing 5-colorings of arbitrary planar graphs in linear time, which is due to
Williams [Wil85]. However, Cimikowski’s algorithm is based on an erroneous claim
made by Urquhart [Urq83].

Cimikowski’s algorithm is based on the fact that planar graphs are 5-degenerate. This
means that every planar graph contains a vertex of degree at most five. The core of the
algorithm consists in finding a vertex v of degree at most 5 and performing one of the
following three operations.

1. If deg(v) ≤ 3, then delete v and color the remaining graph. Color v with a color
not used on any of its three neighbors.

2. If deg(v) = 4, then v’s neighborhood must contain two nonadjacent vertices u1
and u2. Identify u1 and u2, creating a new vertex u that is adjacent to all vertices
that are adjacent to u1 or u2. Delete v. Color the remaining graph. Assign u’s
color to both u1 and u2 and assign a color to v that is not used in v’s neighborhood.

3. If deg(v) = 5, then v’s neighborhood must contain three pairwise nonadjacent
vertices u1, u2, and u3. Identify u1, u2, and u3 in the aforementioned manner and
delete v. Color the remaining graph. Assign u’s color to u1, u2, and u3 and assign
a color to v that is not used in v’s neighborhood.

The third operation is based on the claim that the wheel graph W6 cannot occur as a
subgraph of an RNG. This is Urquhart’s Lemma 4.2. However, as Bose et al. [Bos+12]
demonstrated, this claim is incorrect. Moreover, they also proved that there are, in fact,
RNGs with a minimum degree of five, implying that the third case may indeed occur.

Although we have shown that Cimikowski’s algorithm does not solve the problem
of computing a 4-coloring of relative neighborhood graph in linear time, we leave the
question of whether relative neighborhood graphs can be 4-colored more efficiently than
arbitrary planar graphs, that is in subquadratic time, open. It also remains open for
Gabriel graphs.

Treewidth Treewidth is a well-known graph parameter (for a definition, see Diestel
[Die17], for instance). In the Treewidth problem, one is given a graph G and an inte-
ger k, and one is asked to decide whether G’s treewidth is at most k. For the restriction
of this problem to planar graphs, no polynomial-time algorithm or NP-hardness proof
is known [Bod12], so the question of whether it can solved in polynomial time remains
open. This question has received considerable attention and is likely very difficult to
resolve.

We also leave open the question of whether the Treewidth problem can be solved in
polynomial time on the proximity graph classes we have considered here. Since an NP-
hardness proof for these classes would also prove hardness for planar graphs in general,
it would also probably be very difficult. A polynomial-time algorithm for these specific
classes, by contrast, would not resolve the more general problem, yet would still be of
independent interest.
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