
Technische Universität Berlin
Electrical Engineering and Computer Science
Institute of Software Engineering and Theoretical Computer Science
Algorithmics and Computational Complexity (AKT)

Parameterized Complexity of
Modifying Graphs to be

Biclique-free

Lito Julius Goldmann

Thesis submitted in fulfillment of the requirements for the degree

“Master of Science” (M. Sc.) in the field of Computer Science

September 2021

Supervisor and first reviewer: Prof. Dr. Rolf Niedermeier
Second reviewer: Prof. Dr. Markus Brill
Co-Supervisors: Leon Kellerhals and Tomohiro Koana

3

I hereby declare that the thesis submitted is my own, unaided work, completed without
any unpermitted external help. Only the sources and resources listed were used.

The independent and unaided completion of the thesis is affirmed by affidavit:

Berlin,
Date Signature

5

Abstract

We study the parameterized complexity of the two NP-hard graph modification problems
Biclique-Free Vertex Deletion and Biclique-Free Edge Deletion parameter-
ized by different structural graph parameters. The task in those two problems is to
determine if there exists a size-k subset of either vertices or, depending on the problem
variant, edges whose deletion from the input graph yields a graph that does not con-
tain any biclique with i vertices on one side and j vertices on the other side as a (not
necessarily induced) subgraph. Both variants generalize well-studied NP-hard problems,
e.g. Vertex Cover, Bounded-Degree Deletion and k-Biclique. We prove that
Biclique-Free Vertex Deletion and Biclique-Free Edge Deletion parameter-
ized by the vertex cover number are fixed-parameter tractable (FPT). Furthermore, we
provide a linear-size problem kernel for both problems parameterized by the feedback
edge set number. To the best of our knowledge, no polynomial- or linear-size problem
kernel for the special case Bounded-Degree Deletion parameterized by the feedback
edge set number was known until now. This was one of the few remaining open questions
regarding the parameterized complexity of Bounded-Degree Deletion with respect
to structural graph parameters. We also show that Biclique-Free Vertex Deletion
is FPT when parameterized by the distance to disjoint paths and that Biclique-Free
Edge Deletion is W[1]-hard when parameterized by the feedback vertex set number
or the treedepth. We conclude that the parameterized complexity of Biclique-Free
Vertex Deletion and Biclique-Free Edge Deletion is very similar with respect
to the studied structural graph parameters. While the parameterized complexity of
Biclique-Free Vertex Deletion with i = 1 does not differ from the parameterized
complexity of Biclique-Free Vertex Deletion with i ≥ 2 for the studied parame-
ters, the results for i = 1 are significantly more involved.

6

Zusammenfassung
Abstract in German Language

Wir untersuchen die parametrisierte Komplexität der NP-schweren Graphenprobleme
Biclique-Free Vertex Deletion und Biclique-Free Edge Deletion für ver-
schiedene strukturelle Graphparameter. Die Aufgabenstellung beider Probleme ist, zu
entscheiden, ob eine Teilmenge von höchstens k Knoten bzw. Kanten existiert, welche
nach ihrer Löschung vom Eingabegraphen einen Graphen hinterlässt, welcher keinen
vollständigen bipartiten Graphen mit Partitionen der Größe i und j als (beliebigen)
Teilgraphen enthält. Beide Probleme verallgemeinern bekannte NP-schwere Probleme,
wie zum Beispiel Vertex Cover, Bounded-Degree Deletion und k-Biclique. Wir
zeigen, dass Biclique-Free Vertex Deletion und Biclique-Free Edge Deleti-
on parametrisierbar (FPT) in der Vertex Cover-Größe sind. Außerdem präsentieren wir
einen Problemkern linearer Größe für beide Probleme mit dem Parameter Feedback
Edge Set-Größe. Nach unserem Kenntnisstand war bis jetzt kein Problemkern polyno-
mieller oder linearer Größe für den Spezialfall Bounded-Degree Deletion mit dem
Parameter Feedback Edge Set-Größe bekannt. Dies war eine der wenigen offenen Fra-
gen bezüglich der parametrisierten Komplexität von Bounded-Degree Deletion mit
strukturellen Graphparametern. Des Weiteren zeigen wir, dass Biclique-Free Ver-
tex Deletion parametrisierbar für den Parameter Distanz zu disjunkten Pfaden (di-
stance to disjoint paths) ist, und Biclique-Free Edge Deletion für die Parameter
Feedback Vertex Set-Größe und Baumtiefe (treedepth) W[1]-schwer ist. Wir schlussfol-
gern, dass die parametrisierte Komplexität von Biclique-Free Vertex Deletion
und Biclique-Free Edge Deletion, zumindest bei den untersuchten Parametern,
sehr ähnlich ist. Obwohl die parametrisierte Komplexität von Biclique-Free Vertex
Deletion mit i = 1 sich für die untersuchten Parameter nicht von der parametrisierten
Komplexität von Biclique-Free Vertex Deletion mit i ≥ 2 unterscheidet, sind die
Ergebnisse für i = 1 erheblich komplizierter.

Contents

1 Introduction 9

2 Preliminaries 13
2.1 Notation and Definitions . 13
2.2 Problem Definitions . 16
2.3 Finding Bicliques . 17

3 Biclique-Free Vertex Deletion 19
3.1 Parameterization by Vertex Cover Number 19
3.2 Parameterization by Feedback Edge Set Number 20

3.2.1 The Case of i ≥ 2 . 20
3.2.2 The Case of Bounded-Degree Deletion 22

3.3 Parameterization by Distance to Disjoint Paths 39

4 Biclique-Free Edge Deletion 43
4.1 Parameterization by Vertex Cover Number 44
4.2 Parameterization by Feedback Edge Set Number 47
4.3 Parameterization by Feedback Vertex Set Number 48

5 Conclusion 53

Literature 55

7

Chapter 1

Introduction

Graph modification problems received a lot of attention in the last decades, as many
practical problems can be transformed into some kind of graph modification problem.
The task in such a problem is to modify the input graph, for example by adding or
deleting vertices or edges, such that it fulfills some problem-specific property and was
modified as little as possible. The graph modification problems where one deletes vertices
and edges are known as vertex deletion problems and edge deletion problems, respec-
tively. Some of the most studied problems are in fact graph modification problems, e.g.
the NP-hard Vertex Cover asks to delete a minimum number of vertices to obtain an
edge-free graph.

In this thesis, we study the vertex and edge deletion problems where one wants to
obtain a biclique-free graph, that is, a graph that does not contain bicliques of given size
as a (not necessarily induced) subgraph. A biclique is a complete bipartite graph and
usually denoted by Ki,j , where i and j are the sizes of its two sides. An example instance
of the two problems Biclique-Free Vertex Deletion and Biclique-Free Edge
Deletion is shown in Figure 1.1. Note that the problem of adding vertices or edges
to obtain a biclique-free graph is not meaningful, because modifying the input graph by
adding vertices or edges will not yield a biclique-free graph. The class of biclique-free
graphs contains other important graph classes like the class of nowhere dense graphs
and the class of degenerate graphs [PRS12; TV19]. Utilizing the fact that a graph is
biclique-free brings certain benefits, e.g. Dominating Set can be approximated better
and solved more efficiently on biclique-free graphs than on general graphs [Sie19; TV19].

Both Biclique-Free Vertex Deletion and Biclique-Free Edge Deletion
are known to be NP-hard [LY80; Yan78]. Studying ways to obtain efficient algorithms
for NP-hard problems utilizing certain structures in the input lead to the topic of param-
eterized algorithmics and complexity. Hence it is rather natural to study the parameter-
ized complexity of the two Biclique-Free Deletion variants using well-established
methods from this area that were already successful for other problems. To the best
of our knowledge, however, graph modification into biclique-free graphs has not been
studied until now, even though it generalizes many other important and well-studied
graph modification problems like Vertex Cover, Bounded-Degree Deletion, and
C4-Free Deletion, and is very similar to e.g. Induced-Claw-Free Deletion and
Cluster Deletion. We will discuss related work including results regarding those

9

10 CHAPTER 1. INTRODUCTION

e f g

b
c

d

a

(a) Input graph containing
the K2,2 as a subgraph.

e f g

b d

a

(b) Optimal output graph for
vertex deletion.

e f g

b
c

d

a

(c) Optimal output graph for
edge deletion.

Figure 1.1: Example instance of K2,2-Free Deletion. The input graph in (a) con-
tains the K2,2 as a subgraph in the following four vertex subsets: {a, c, g, d}, {b, c, g, f},
{b, c, e, f} and {c, e, f, g}. In (b) the vertex c was deleted. In (c) the edges {b, c}
and {c, g} were deleted.

well-studied special cases in the next paragraph. We believe it is of strong theoretical
interest to find out which of those results also apply for the two more general Biclique-
Free Deletion variants or under which circumstances making graphs biclique-free is
a more complex problem.

Related work. There are many general results about graph modification problems
that also apply for the two variants of Biclique-Free Deletion. Lewis and Yan-
nakakis [LY80] showed that all nontrivial vertex deletion problems into graphs fulfilling
any hereditary property1 are NP-hard. Hence Biclique-Free Vertex Deletion is
NP-hard. Yannakakis [Yan78] showed that the problem of deleting edges such that the
resulting graph is without any cycles of fixed length `, with ` ≥ 3, is NP-complete. As
a cycle of length four C4 = K2,2, this special case of Biclique-Free Edge Deletion
is NP-complete. Cai [Cai96] showed that vertex and edge deletion into a graph fulfill-
ing a property with a finite forbidden set characterization is fixed-parameter tractable
(FPT) when parameterized by the budget of allowed vertex and edge deletions. Hence
both variants of Biclique-Free Deletion with a fixed biclique size are FPT when
parameterized by the budget. Some graph modification problems without finite forbid-
den set characterization are known to be FPT when parameterized by the budget, e.g.
Chordal Deletion [Mar10], but some are presumably not in FPT when parameter-
ized by the budget, e.g. Wheel-Free Deletion is W[2]-hard [Lok08]. A recent survey
by Crespelle et al. [Cre+20] overviews the parameterized complexity of many different
edge deletion problems when parameterized by the budget.

Existing work regarding bicliques mainly focuses on the detection of bicliques of cer-
tain sizes in graphs. Deciding whether a graph contains the biclique Kk,k as a subgraph
is W[1]-hard when parameterized by k [Lin18]. Testing if a bipartite graph contains a
biclique with at least k edges, known as the Maximum Edge Biclique Problem in
bipartite graphs, is NP-complete [Pee03]. Alexe et al. [Ale+04] presented algorithms for
generating all maximal bicliques in a graph and Alzahrani and Horadam [AH19] used
maximal bicliques in bipartite graphs to detect communities.

1A property is hereditary if all induced subgraphs of a graph satisfying the property also satisfy the
property [LY80].

11

Further research had been done regarding bicliques restricted in size. Cygan et al.
[Cyg+14] studied H-Free Vertex Deletion for fixed, general graphs H with respect
to treewidth and showed that K2,j-Free Vertex Deletion for fixed j can be solved

in O∗(2O(ω2 logω)) time2, where ω denotes the treewidth of the input graph. Various
related problems regarding the deletion of certain induced subgraphs have been studied.
To clearly distinguish those problems we add the prefix Induced to their names. Recall
that in Biclique-Free Deletion one is asked to delete all subgraphs that are bicliques,
i.e. not only the induced ones. Cygan et al. [Cyg+17] showed that Induced-{Claw,
Diamond}-Free Edge Deletion admits a polynomial-size problem kernel when pa-
rameterized by the budget. The claw is the K1,3 and the diamond contains the K1,3 as a
subgraph. Bonomo-Braberman et al. [BB+20] studied Induced-Claw-Free Vertex
Deletion and showed that it is FPT when parameterized by treewidth. Sau and Souza
[SS20] generalized this result by showing that Induced-H-Free Vertex Deletion for
any fixed graph H containing at least three vertices is FPT parameterized by treewidth.
Böcker and Damaschke [BD11] improved existing algorithms for Cluster Deletion,
that is, Induced-K1,2-Free Edge Deletion, parameterized by the budget.

The problem of deleting at most k vertices to obtain a graph where every vertex
has degree at most d is known as the Bounded-Degree Deletion (BDD) problem,
which is the special case K1,d+1-Free Vertex Deletion of Biclique-Free Vertex
Deletion. It is NP-complete in general [LY80], but FPT for fixed d when parame-
terized by k [Cai96]. If d is not a constant, then it is W[2]-complete when parameter-
ized by k [Fel+11]. Regarding structural graph parameters, it is known that BDD is
FPT when parameterized by the feedback edge set number [Bet+12], the vertex cover
number [GKO21], the combined parameter treewidth plus d [Cou90], or the combined
parameter treewidth plus k [Bet+12]. When parameterized by treewidth alone it is in
XP [DJL93] and W[1]-hard [Bet+12]. It is also W[1]-hard when parameterized by the
feedback vertex set number or the treedepth [GKO21].

Our contributions. We study the parameterized complexity for both variants of
Biclique-Free Deletion with respect to structural graph parameters. We start with
Biclique-Free Vertex Deletion. As we do not exclude the special case BDD, we
can only hope to find FPT algorithms for parameters that are larger than (or incompara-
ble to) the feedback vertex set number and the treedepth, because BDD parameterized
by these parameters is known to be W[1]-hard [GKO21]. Hence we analyze the pa-
rameterized complexity with respect to the vertex cover number and present an FPT
algorithm. Furthermore, we provide a linear-size problem kernel for the parameter feed-
back edge set number, which is also a parameter larger than the feedback vertex set
number. We thereby extend a result from Betzler et al. [Bet+12], who showed an FPT
algorithm for BDD parameterized by the feedback edge set number. Our problem kernel
for the special case BDD relies on a rather large case distinction. Due to its size we
prove the correctness of the problem kernel using a non-constructive argument. Inter-
estingly the problem kernel for the other cases of Biclique-Free Vertex Deletion
is relatively simple. We fill the “gap” between the fixed-parameter tractability for the
parameter vertex cover number and the W[1]-hardness for the parameter feedback ver-

2We use the O∗-notation to hide polynomial factors of the running time.

12 CHAPTER 1. INTRODUCTION

Vertex Cover

BFVD BFED

Distance to
Disjoint Paths

BFVD BFED

Feedback
Vertex Set

BFVD∗ BFED

Treewidth

BFVD∗ BFED

Feedback
Edge Set

BFVD BFED

Treedepth

BFVD∗ BFED

Pathwidth

BFVD∗ BFED

Figure 1.2: Overview of the parameterized complexity of Biclique-Free Vertex
Deletion (BFVD) and Biclique-Free Edge Deletion (BFED). An edge between
two parameters indicates that, based on well-known results, the lower parameter can be
upper-bounded by a function of the upper parameter. The color indicates the complex-
ity for the different parameters and the two variants. Green indicates fixed-parameter
tractability with dark green indicating the existence of a linear-size problem kernel, red
indicates W[1]-hardness with light red indicating that the W[1]-hardness is only known
for i = 1, i.e. BDD, and grey indicates that the complexity remains open. The results
marked with ∗ are from Ganian, Klute, and Ordyniak [GKO21].

tex set number by presenting an FPT algorithm for the parameter distance to disjoint
paths, which lies between the vertex cover number and the feedback vertex set number.

Regarding Biclique-Free Edge Deletion we prove W[1]-hardness with respect to
the feedback vertex set number and the treedepth by using the same underlying idea that
Ganian, Klute, and Ordyniak [GKO21] used for showing W[1]-hardness for BDD with
these parameters. In contrast to Biclique-Free Vertex Deletion, the special case
that one side of the biclique has size one of Biclique-Free Edge Deletion is solv-
able in polynomial time. Using this result we present a linear-size problem kernel with
respect to the feedback edge set number. Furthermore, we present an FPT algorithm
for the parameter vertex cover number using an integer linear programming formula-
tion. See Figure 1.2 for an overview of the complexity of Biclique-Free Deletion
parameterized by different structural graph parameters.

Structure of the work. In Chapter 2, we introduce the notation and concepts used in
the remaining thesis, formally define both variants of Biclique-Free Deletion, and
prove that finding bicliques is FPT when parameterized by treewidth. In Chapters 3
and 4, we study the parameterized complexity of Biclique-Free Vertex Deletion
and Biclique-Free Edge Deletion, respectively, parameterized by different struc-
tural graph parameters. We conclude our work in Chapter 5.

Chapter 2

Preliminaries

We introduce the notation and concepts used in the following chapters in Section 2.1,
and provide a formal definition of the problems of interest in Section 2.2. In Section 2.3
we present an algorithm parameterized by treewidth that finds bicliques in graphs. We
will use it later as a tool in our more sophisticated algorithms.

2.1 Notation and Definitions

In this section, we provide basic notations and definitions that will be used later in
this thesis. We include zero in the natural numbers, i.e. N := {0, 1, 2, . . . }. We denote
by N+ := N \ {0} all positive natural numbers. For a number x ∈ N+, let [x] :=
{1, 2, . . . , x}.

Graph Theory. We use the following well-known concepts and definitions from graph
theory as introduced by e.g. Diestel [Die17]. Let G = (V,E) denote an (undirected)
graph, where V denotes the set of vertices and E ⊆ {{v, w} | v, w ∈ V, v 6= w} denotes
the set of edges. For a graph G, we denote by

V (G) the vertex set of G;

E(G) the edge set of G with E(G) ⊆
(
V (G)
2

)
;

nG the number |V (G)| of vertices;

mG the number |E(G)| of edges;

NG(v) the (open) neighborhood of v, formally, NG(v) := {u ∈ V | {u, v} ∈ E(G)};

degG(v) the degree of v, formally, degG(v) := |NG(v)|;

G[V ′] the induced subgraph of G on V ′ ⊆ V , formally, G[V ′] :=
(
V ′, E(G) ∩

(
V ′

2

))
;

G− V ′ the graph obtained from G by deleting the vertices V ′ ⊆ V (G), formally,
G− V ′ := G[V (G) \ V ′];

13

14 CHAPTER 2. PRELIMINARIES

G− E′ the graph obtained from G by deleting the edges E′ ⊆ E(G), formally, G −
E′ := (V (G), E(G) \ E′).

We may omit the subscript G, if the graph G is clear from the context. For an edge e =
{u, v} ∈ E(G) the two vertices u and v are called endpoints of e. Two vertices v, w ∈
V (G) in a graph G are adjacent, or neighbors, if {v, w} ∈ E(G). An edge e ∈ E(G) and
a vertex v are incident, if v is an endpoint of e. A graph G′ = (V ′, E′) is a subgraph of
a graph G = (V,E), written as G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. We also say that G
contains G′. Note that a subgraph is not necessarily an induced subgraph. The common
neighborhood of a vertex subset V ′ ⊆ V in a graph G = (V,E) is

⋂
v∈V ′ NG(v).

A path is a graph P = (V,E) with n ≥ 1, the vertices V = {v1, v2, . . . , vn} and
the edges E = {{vi, vi+1} | i ∈ [n − 1]}. Sometimes we also denote a path only by
its vertex sequence, e.g. P = v1v2 . . . vn, and omit listing its edges explicitly. The two
vertices v1, vn ∈ V are the endpoints of the path and the vertices {v2, . . . , vn−1} ⊆ V
are its inner vertices. The length of the path is n − 1, i.e. the number of edges. In a
graph G = (V,E) two vertices v, w ∈ V are connected, if a path that contains both v
and w is a subgraph of G. A graph G = (V,E) is connected, if every pair of its vertices
is connected. A cycle is a graph C = (V,E) with n ≥ 3, the vertices V = {v1, v2, . . . , vn}
and the edges E = {{vi, vi+1} | i ∈ [n−1]}∪{{v1, vn}}. Sometimes we also denote a cycle
only by its vertex sequence, e.g. C = v1v2 . . . vnv1, and omit listing its edges explicitly.
A forest is a graph that does not contain any cycle. A tree is a connected graph that
does not contain any cycle. A biclique is a graph G = (L] R,E) with |L| , |R| ≥ 1
and E = {{v, w} | v ∈ L,w ∈ R}. The two sets L and R are the sides of the biclique G.
We denote by Ki,j with i, j ∈ N and i ≤ j the biclique with i vertices on one side and j
vertices on the other side. A connected component of a graph G = (V,E) is a connected
maximal subgraph of G. A rooted forest contains one vertex fixed as the root. The height
of a rooted forest is the length of a longest path between the root and some vertex plus
one. A vertex x is an ancestor of another vertex y in a rooted forest F , if x is on the
path between the root and y. The closure clos(F) of a rooted forest F = (V,E) is the
graph (V, {{u, v} | u 6= v, v is an ancestor of u in F}). For a graph H, we say a graph G
is H-free, if G does not contain H.

Furthermore, we denote the following structural graph parameters for a graph G =
(V,E) by

VCN(G) the vertex cover number of G, that is, the size of a minimum subset V ′ ⊆ V
such that G− V ′ is edge-free;

DDP(G) the distance to disjoint paths of G, that is, the size of a minimum subset V ′ ⊆ V
such that every connected component in G− V ′ is a path;

FVN(G) the feedback vertex set number of G, that is, the size of a minimum subset V ′ ⊆
V such that G− V ′ is cycle-free;

FEN(G) the feedback edge set number of G, that is, the size of a minimum subset E′ ⊆ E
such that G− E′ is cycle-free;

td(G) the treedepth of G, that is, the minimum height of a rooted forest F such
that G ⊆ clos(F) [NM06].

2.1. NOTATION AND DEFINITIONS 15

It holds that FVN(G) ≤ DDP(G) ≤ VCN(G), because in any edge-free graph every
connected component is a path of length zero and every graph where all connected
components are paths is cycle-free. Furthermore, it holds that FVN(G) ≤ FEN(G),
because if there exists a subset E′ ⊆ E(G) such that G−E′ is cycle-free, then one may
obtain a subset V ′ ⊆ V (G) with |V ′| ≤ |E′| such that G− V ′ is cycle-free by picking an
arbitrary endpoint of each edge in E′ into V ′.

We define for a given graph G = (V,E) the following vertex subsets: V≥3(G) := {v ∈
V (G) | deg(v) ≥ 3}; V2(G) := {v ∈ V (G) | deg(v) = 2}; V1(G) := {v ∈ V (G) | deg(v) =
1}; V0(G) := {v ∈ V (G) | deg(v) = 0}.

Parameterized Complexity. We use the following well-known concepts and defi-
nitions from parameterized algorithmics and complexity theory as introduced by e.g.
Cygan et al. [Cyg+15]. A parameterized problem is a language L ⊆ Σ∗ × N, where Σ
is a fixed and finite alphabet, e.g. Σ := {0, 1}. An instance (I, k) ∈ Σ∗ × N consists of
the problem input I and the parameter k. If (I, k) ∈ L, then (I, k) is a yes-instance,
otherwise it is a no-instance.

A parameterized problem L ⊆ Σ∗ × N is fixed-parameter tractable (FPT), if there
exists an algorithm A that takes an instance (I, k) ∈ Σ∗ × N as input and decides
whether (I, k) ∈ L in time bounded by f(k)·|(I, k)|c for some computable function f and
constant c. We say that A runs in FPT time and sometimes use the notation O∗(f(k))
to simplify the running time statement by hiding the polynomial |(I, k)|c of the running
time, e.g. f(k) · |(I, k)|c ∈ O∗(f(k)).

A parameterized problem L ⊆ Σ∗ × N admits a problem kernel, if there exists an
algorithm B that takes an instance (I, k) ∈ Σ∗ × N as input and outputs an equivalent
instance (I ′, k′) ∈ Σ∗ × N with |I ′|+ k′ ≤ g(k) in polynomial time for some computable
function g. If g is polynomial, then L admits a polynomial-size problem kernel. If g is
linear, then L admits a linear-size problem kernel. Algorithms that show the existence of
a problem kernel sometimes consist of data reduction rules, which e.g. solve subproblems
until the remaining instance is of bounded size.

Using parameterized reductions between different problems one can show that cer-
tain parameterized problems are at least as hard as other parameterized problems.
Let A,B ⊆ Σ∗ × N be two parameterized problems. A parameterized reduction from A
to B is an algorithm that takes an instance (I, k) ∈ Σ∗ × N as input and outputs an
equivalent instance (I ′, k′) ∈ Σ∗ × N with k′ ≤ g(k) in FPT time for some computable
function g.

If there is a parameterized reduction from a parameterized problem A to another
parameterized problem B that is FPT, then A is also FPT. It is conjectured and widely
believed that all W[1]-hard parameterized problems are not FPT. For example Clique
and Independent Set parameterized by the solution size are W[1]-hard. If there is a
parameterized reduction from a parameterized problem A that is W[1]-hard to another
parameterized problem B, then B is also W[1]-hard.

Integer Linear Programming. The following well-studied problem can be useful for
showing fixed-parameter tractability using parameterized reductions.

16 CHAPTER 2. PRELIMINARIES

Integer Linear Programming Feasibility (ILP Feasibility)

Input: The number of variables p ∈ N and inequalities m ∈ N, a matrix A ∈
Zm×p and a vector b ∈ Zm.

Question: Does there exist a vector x ∈ Zp such that Ax ≤ b?

It is known that ILP Feasibility with p ∈ N variables can be solved in O∗(pO(p))
time [FT87; Kan87; Len83] and is therefore FPT when parameterized by the number of
variables.

Tree Decompositions. Following Cygan et al. [Cyg+15], a tree decomposition of a
graph G = (V,E) is a pair (T = (I, F), {Xt ⊆ V | t ∈ I}) consisting of a tree T and a
set of bags containing vertices of G such that

⋃
t∈I Xt = V , for each {v, w} ∈ E there

exists a bag Xt 3 v, w, and for each vertex v ∈ V the subgraph T [{t ∈ I | v ∈ Xt}] is
still a tree. To better distinguish the vertices of G from the vertices of T we call the
vertices of T nodes. The width of a tree decomposition is the size of a largest bag minus
one. The treewidth of a graph G, denoted by tw(G), is the minimum width of a tree
decomposition of G. We can assume that any tree decomposition of width ω contains
at most O(ω · n) nodes. Note that tw(G) ≤ FVN(G) + 1 holds, because the treewidth
of a forest is at most one and adding all feedback vertices increases the treewidth by at
most FVN(G), e.g. by adding all feedback vertices to every bag of the tree decomposition
of the forest. There exist many different algorithms for computing a tree decomposition
of a graph G either of minimum width or with linear approximations, e.g. an algorithm
returning a tree decomposition of width 2 tw(G) + 1 in 2O(tw(G)) · n time by Korhonen
[Kor21]. Note that this is an FPT algorithm when parameterized by treewidth.

2.2 Problem Definitions

In this section, we formally define the problems studied in this thesis.

(i, j)-Biclique

Input: An undirected graph G = (V,E) and the size of the biclique i, j ∈ N+

with i ≤ j.
Question: Does G contain any Ki,j as a (not necessarily induced) subgraph?

The following problems can be viewed as generalizations of the (i, j)-Biclique problem.
For an example instance of the two problems, see again Figure 1.1.

Biclique-Free Vertex Deletion

Input: An undirected graph G = (V,E), the size of the bicliques i, j ∈ N+

with i ≤ j and a budget k ∈ N.
Question: Does there exist a subset V ′ ⊆ V with |V ′| ≤ k such that G− V ′ does

not contain any Ki,j as a (not necessarily induced) subgraph?

Biclique-Free Edge Deletion

Input: An undirected graph G = (V,E), the size of the bicliques i, j ∈ N+

with i ≤ j and a budget k ∈ N.
Question: Does there exist a subset E′ ⊆ E with |E′| ≤ k such that G− E′ does

not contain any Ki,j as a (not necessarily induced) subgraph?

2.3. FINDING BICLIQUES 17

The special case i = 1 of Biclique-Free Vertex Deletion is commonly known
as Bounded-Degree Deletion or Bounded-Degree Vertex Deletion. We define
it as follows.

Bounded-Degree Deletion (BDD)

Input: An undirected graph G = (V,E), a budget k ∈ N and a degree upper
bound d ∈ N.

Question: Does there exist a subset V ′ ⊆ V with |V ′| ≤ k such that each vertex
in G− V ′ has degree at most d?

Note that an instance (G, k, d) of Bounded-Degree Deletion is a yes-instance, if
and only if the instance (G, 1, d + 1, k) of Biclique-Free Vertex Deletion is a
yes-instance. Furthermore, note that the special case d = 0 of Bounded-Degree
Deletion, that is, Biclique-Free Vertex Deletion with i = j = 1, is Vertex
Cover.

2.3 Finding Bicliques

In this section, we show that (i, j)-Biclique is FPT when parameterized by treewidth.
Furthermore, we will discuss how this algorithm can be used to detect all vertices and
edges that are part of at least one biclique and turn it into a tool used later as a data
reduction rule in more sophisticated algorithms.

We assume that a tree decomposition T of G is given alongside the problem input
such that T is of width at most O(tw(G)c) and contains at most O(tw(G)c · n) nodes
for some constant c ∈ N. Such a tree decomposition can be computed using one of
many available algorithms, e.g. the algorithm from Korhonen [Kor21], in FPT time with
respect to the treewidth of the input graph. Our algorithm solving (i, j)-Biclique in
FPT time parameterized by treewidth is based on the following lemma.

Lemma 2.1. Let G = (V,E) be a graph and let (T = (I, F), {Xt | t ∈ I}) be a tree
decomposition of G. If G contains any biclique (L]R,E′ = {{u, v} | u ∈ L, v ∈ R}) as
a subgraph, then there is at least one bag Xt with L ⊆ Xt or R ⊆ Xt.

Proof. Assume towards contradiction that there is no bag Xt such that L ⊆ Xt or R ⊆
Xt. Then there exist two vertices r1, r2 ∈ R such that no bag contains both r1 and r2.
Note that otherwise there must exist a vertex r3 ∈ R and a bag Xt′ with r1, r2 ∈ Xt′

and r3 6∈ Xt′ , but there must exist at least one bag containing both r1 and r3, and at least
one bag containing both r2 and r3, which cannot occur in a correct tree decomposition.
So let Tr1 := T [{i ∈ I | r1 ∈ Xi}] and Tr2 := T [{i ∈ I | r2 ∈ Xi}] be the nonempty
subtree with all nodes where the corresponding bags contain r1 (but not r2) and r2
(but not r1), respectively. Analogously, let `1, `2 ∈ L be two vertices such that no bag
contains both `1 and `2, and let T`1 and T`2 be the corresponding nonempty subtrees.

For all i, j ∈ {1, 2}, there exists a bag X`i,rj 3 `i, rj , because {`i, rj} ∈ E′. There
must be a path in T`1 between the nodes corresponding to X`1,r1 and X`1,r2 , a path in T`2

between the nodes corresponding to X`2,r1 and X`2,r2 , and a path in Tr1 between the
nodes corresponding to X`1,r1 and X`2,r1 . Finally, there must be a path in Tr2 between
the nodes corresponding to X`1,r2 and X`2,r2 , but such a path cannot exist, because it
would destroy the tree decomposition by closing a cycle in T .

18 CHAPTER 2. PRELIMINARIES

Using this lemma we can now show that (i, j)-Biclique is FPT when parameterized
by treewidth by providing an algorithm.

Theorem 2.2. Given a tree decomposition of width at most ω of G with at most O(ω ·n)
nodes, (i, j)-Biclique can be solved in O(2ω · ω2 · n2) time.

Proof. Let (T = (I, F), {Xt | t ∈ I}) be a tree decomposition of width ω of G with O(ω ·
n) nodes. For each bag Xt and for each subset X ′t ⊆ Xt with |X ′t| = i or |X ′t| = j
check the size of its common neighborhood. If |X ′t| = i and the size of its common
neighborhood is at least j, or if |X ′t| = j and the size of its common neighborhood is at
least i, then output yes, because X ′t and the vertices in its common neighborhood form
a biclique. If each bag Xt was processed without finding any biclique, then output no.

This algorithm is correct, as it will find all bicliques contained in G as a subgraph,
because for each biclique there is at least one bag Xt such that a subset X ′t ⊆ Xt will
be exactly one side of the biclique, as shown in Lemma 2.1. Checking the common
neighborhood for O(2ω) many subsets of size at most ω requires O(2ω ·ω ·n) time. This
step is repeated for each of the O(ω · n) nodes. Hence the total running time of the
algorithm is O(2ω · ω2 · n2).

It is also possible to use this algorithm to detect which vertices and edges from the
input graph are part of at least one biclique. If the algorithm finds a subset X ′t ⊆ Xt

of size i, respectively j, with a common neighborhood of size at least j, respectively i,
then the vertices from X ′t and the common neighborhood, and the edges between these
vertices are part of at least one biclique. Moreover, it is possible to store such X ′t and its
common neighborhood as a pair to build a list of biclique parts that can later be used
to obtain a specific biclique: For a set X ′t of size i, respectively j, pick any subset of its
common neighborhood of size j, respectively i, to obtain a Ki,j .

We can use this extension of the algorithm from Theorem 2.2 to obtain the following
simple, general data reduction rule applicable in FPT time with respect to treewidth.

Reduction Rule 2.3.1. Let (G, i, j, k) be an instance of Biclique-Free Vertex
Deletion or Biclique-Free Edge Deletion. Delete all vertices and edges from G
that are not part of at least one Ki,j contained in G as a subgraph.

Lemma 2.3. Reduction Rule 2.3.1 is correct. Given a tree decomposition of width at
most ω of G and with at most O(ω·n) nodes, it can be applied exhaustively in O(2ω ·ω2·n2)
time.

Proof. The reduction rule is correct, as picking vertices or edges that are not part of any
biclique into the solution set does not resolve any existing bicliques and on the other
hand not picking them into the solution set does not lead to any bicliques that need to
be resolved.

Solve (i, j)-Biclique on G in O(2ω · ω2 · n2) time (see Theorem 2.2) to detect all
vertices and edges that are not part of at least one Ki,j contained in G as a subgraph and
then delete them. Deleting the found vertices and edges requires O(n+m) ⊆ O(n2) time,
as the deletion of all vertices and edges while maintaining a correct graph representation
is possible in this time. Hence the reduction rule can be applied in O(2ω ·ω2 ·n2) time.

Chapter 3

Biclique-Free Vertex Deletion

In this chapter, we analyze the parameterized complexity of the Biclique-Free Ver-
tex Deletion problem. It is known to be NP-hard [LY80] in general, and some spe-
cial cases are W[1]-hard for the natural parameters j and k [Fel+11; Lin18], and for
the structural graph parameters feedback vertex set number and treedepth [GKO21].
See Chapter 1 for detailed information on known results.

With little hope for FPT algorithms with respect to natural parameters or structural
graph parameters that are at most the feedback vertex set number or the treedepth, we
try to find FPT algorithms for structural graph parameters that are larger than the
feedback vertex set number or the treedepth. We show in Section 3.1 that Biclique-
Free Vertex Deletion is FPT when parameterized by the vertex cover number.
In Section 3.2 we show that it admits a linear-size problem kernel for the parameter
feedback edge set number, which is also larger than the feedback vertex set number. To
the best of our knowledge, it was not known before if BDD admits a linear-size problem
kernel when parameterized by the feedback edge set number. We answer this question
positively. In Section 3.3 we show that Biclique-Free Vertex Deletion is also FPT
when parameterized by a parameter lying directly in between the vertex cover number
and the feedback vertex set number, namely, the distance to disjoint paths.

3.1 Parameterization by Vertex Cover Number

In this section, we present an algorithm running in FPT time for solving Biclique-Free
Vertex Deletion parameterized by the size of the minimum vertex cover. We assume
that a minimum vertex cover S is given along with the problem input. Note that one
can compute a minimum vertex cover for any graph in FPT time with respect to the
size of a minimum vertex cover.

Theorem 3.1. Let S be a vertex cover of G. Then Biclique-Free Vertex Deletion
can be solved in O(22|S|+|S|

2

· |S| · n) time.

Proof. If the budget k ≥ |S|, then we can output yes and are done, because deleting all
vertices in S would be covered by the budget and the remaining independent set would
be biclique-free. Therefore we can assume k < |S| for the rest of the algorithm.

19

20 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

We first guess which vertices in the vertex cover should be deleted from the input
graph G. Let S∗ := S\S′ be the remaining vertex cover after we deleted the subset S′ ⊆ S
from G and let I := V \ S be the independent set corresponding to the vertex cover.
Two vertices in I are of the same type, if they have the same neighborhood. Because
all neighbors of the vertices in I are by definition part of S∗, there are at most 2|S

∗|

different types of vertices in I. As a second step, we guess for each type how many
vertices of this type we delete from G. We do not need to distinguish between vertices
of the same type, because if an instance of Biclique-Free Vertex Deletion has a
solution containing a specific subset of vertices all of the same type, then it also has a
solution that instead contains any other equally sized subset of vertices all of this type.
If the remaining graph does not contain the Ki,j as a subgraph and we deleted at most k
vertices, then output yes. Otherwise output no.

The algorithm is correct, because we guess which vertices from both S and I should
be deleted and only output yes, if the remaining graph is indeed Ki,j-free and the budget
is sufficient.

There are 2|S| possible subsets S′ and O(2|S|·k) ⊆ O(2|S|
2

) possible combinations of
picking the number of vertices to delete for each of the 2|S

∗| types, which is in total at
most k. Checking if the graph contains the Ki,j as a subgraph can be done inO(2|S|·|S|·n)
time by checking the size of the common neighborhood in O(|S| · n) time for all subsets

of S. This sums up in total to O(22|S|+|S|
2

· |S| · n), which is FPT time. Reading the
input and checking which types exist is also possible in this time.

3.2 Parameterization by Feedback Edge Set Number

After we settled that Biclique-Free Vertex Deletion is FPT when parameterized
by the vertex cover number in Section 3.1, we now show that Biclique-Free Ver-
tex Deletion admits a linear-size problem kernel computable in O(n+m) time when
parameterized by feedback edge set number. We base our problem kernel on the obser-
vation that the number of vertices with degree at least three in a graph with minimum
degree two can be bounded linearly by the feedback edge set number. We prove this and
provide the linear-size problem kernel for the case i ≥ 2 in Section 3.2.1 and then cover
the seemingly more complicated case of i = 1 commonly known as Bounded-Degree
Deletion in Section 3.2.2. It was already known before that BDD is FPT when param-
eterized by the feedback edge set number [Bet+12]. We extend this result by providing
a linear-size problem kernel.

3.2.1 The Case of i ≥ 2

In this subsection, we show that Biclique-Free Vertex Deletion with i ≥ 2 admits
a linear-size problem kernel computable in O(n + m) time when parameterized by the
feedback edge set number using the following data reduction rules and lemmata.

Reduction Rule 3.2.1. Let (G, i, j, k) be an instance of Biclique-Free Vertex
Deletion or Biclique-Free Edge Deletion. Delete all vertices with degree less
than i from G.

3.2. PARAMETERIZATION BY FEEDBACK EDGE SET NUMBER 21

Lemma 3.2. Reduction Rule 3.2.1 is correct and can be applied exhaustively in O(n+m)
time.

Proof. The reduction rule is correct, as vertices with degree less than i cannot be part
of any subgraph of G that is the Ki,j , because the minimum degree in the Ki,j is i.

The exhaustive application of the rule may delete all vertices of G, which takes O(n+
m) time. Note that if we deleted a vertex, then the rule might become applicable for
each of its neighbors. Therefore we have to check the degree for all vertices once and
repeat the check for all neighbors of deleted vertices. This can be done in O(n + m)
time by maintaining a list of vertices that still need to be tested. Hence the rule can be
applied in O(n + m) time in total.

The following two lemmata can be considered well-known and appear in a similar
manner for example in Epstein, Levin, and Woeginger [ELW15] and Kellerhals and
Koana [KK20]. For completeness we still provide a full proof.

Lemma 3.3. Let G = (V,E) be a graph with feedback edge set F ⊆ E. Then it holds
that |V≥3(G)| − |V1(G)| ≤ 2 |F |.

Proof. Removing all feedback edges from G would result by definition in a forest with c
connected components and n−c edges. Therefore m = n+|F |−c. Inserting 3 |V≥3(G)|+
2 |V2(G)|+|V1(G)| ≤

∑
v∈V deg(v) = 2m yields |V≥3(G)|−|V1(G)| ≤ 2 |F |−2c+2 |V0(G)|.

Since every degree-zero vertex is a connected component, it holds that |V0(G)| ≤ c and
we get |V≥3(G)| − |V1(G)| ≤ 2 |F |.

Lemma 3.4. Let G = (V,E) be a graph with feedback edge set F ⊆ E. Let c ∈ N be the
number of connected components in G[V2(G)]. If every vertex in G has degree at least
two, then c ≤ 3 |F | − 1.

Proof. Since every vertex in G has degree at least two, every degree-two vertex in G is
part of exactly one of the following three types of subgraphs of G: a cycle consisting only
of degree-two vertices, a path consisting only of degree-two vertices whose two endpoints
are adjacent to either the same vertex of higher degree or two distinct vertices of higher
degree. For each of those three types it holds, that the degree-two vertices in such a
subgraph form one connected component in G[V2(G)]. Note that subgraphs of one of
the first two types contain at least one edge of F . For the last type note that adding a
path between two vertices u, v ∈ V increases the feedback edge set number by one, if u
and v are already connected beforehand.

We know from Lemma 3.3 that |V≥3(G)| ≤ 2 |F | holds, as |V1(G)| = 0. Therefore
there can be at most 2 |F |−1 subgraphs of the last type without increasing the feedback
edge set number of G, because a forest with 2 |F | vertices contains at most 2 |F | − 1
edges. Every additional connected component in G[V2(G)] increases the feedback edge
set number of G by exactly one. This yields c ≤ |F |+ 2 |F | − 1 = 3 |F | − 1.

We now use the data reduction rules and lemmata to prove the existence of a linear-
size problem kernel computable in O(n + m) time for Biclique-Free Vertex Dele-
tion with i ≥ 2 parameterized by the feedback edge set number. It is based on the
observation that large subgraphs containing only degree-two vertices cannot contain any
biclique with i ≥ 2 and therefore can be deleted.

22 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

Theorem 3.5. Biclique-Free Vertex Deletion with i ≥ 2 admits a linear-size
problem kernel computable in O(n + m) time when parameterized by the feedback edge
set number.

Proof. Let F ⊆ E be a minimum feedback edge set for the input graph G computable
in O(n + m) time using depth-first search. If the budget k ≥ |F |, then we can output a
trivial yes-instance and are done. This is correct, because deleting an arbitrary endpoint
for each feedback edge is covered by the budget and results in a forest. Forests do not
contain any Ki,j with i, j ≥ 2 as a subgraph. We can therefore assume that k < |F |.

Apply Reduction Rule 3.2.1 exhaustively in O(n + m) time (see Lemma 3.2) to
remove all vertices with degree at most one. By Lemma 3.3 the remaining graph G
now contains at most 2 |F | vertices of degree at least three. Also delete all vertices
from G that are contained in a connected component of G[V2(G)] with more than four
vertices, because they cannot be contained in any biclique of sufficient size. This is also
possible in O(n + m) time using depth-first search. Then every connected component
in G[V2(G)] contains at most four vertices. Using Lemma 3.4 we can conclude that
there exist at most 12 |F | − 4 vertices of degree two in G. By combining both upper
bounds we achieve n ≤ 14 |F | − 4 in total. Using m ≤ n+ |F | − 1 yields m ≤ 15 |F | − 5.
If j ≥ n holds, then output a trivial yes-instance, as the graph cannot contain the Ki,j , so
assume i ≤ j < n. Now it holds that k < |F |, i ≤ j < n ≤ 14 |F |−4, and m ≤ 15 |F |−5.
Hence the size of the remaining instance is bounded linearly in |F |.

3.2.2 The Case of Bounded-Degree Deletion

In this subsection, we show the existence of a linear-size problem kernel computable
inO(n+m) time for the case i = 1 of Biclique-Free Vertex Deletion parameterized
by the feedback edge set number. See Section 2.2 for a formal problem definition of
this special case of Biclique-Free Vertex Deletion known as Bounded-Degree
Deletion.

It was already known that Bounded-Degree Deletion is FPT when parameter-
ized by the feedback edge set number [Bet+12], but to the best of our knowledge no
linear or polynomial-size problem kernel was known until now.

Recall that we denote by G[V2(G)] the subgraph induced by all degree-two vertices,
i.e. V2(G) := {v ∈ V (G) | deg(v) = 2}. We follow the same strategy we used in Sec-
tion 3.2.1 to show the existence of a problem kernel for the case i ≥ 2: We delete
vertices of degree at most one and upper-bound the number of degree-two vertices in
each connected component in G[V2(G)] by applying multiple data reduction rules. Then
the linear-size problem kernel follows from Lemmas 3.3 and 3.4. Since i = 1, in contrast
to Section 3.2.1 where i ≥ 2 was given, we cannot delete vertices with degree at most
one by using the relatively straightforward Reduction Rule 3.2.1 again. Instead we intro-
duce vertex weights representing additional degree-one neighbors that cannot be picked
into the solution set. We arrive at the following generalization of Bounded-Degree
Deletion.

3.2. PARAMETERIZATION BY FEEDBACK EDGE SET NUMBER 23

Weighted Bounded-Degree Deletion (WBDD)

Input: An undirected graph G = (V,E), a budget k ∈ N, a degree upper
bound d ∈ N and a weight wv ∈ N for each v ∈ V .

Question: Does there exist a subset V ′ ⊆ V with |V ′| ≤ k such that each vertex v ∈
V \ V ′ has degree at most d− wv in G− V ′?

There is a straightforward parameterized reduction from Bounded-Degree Dele-
tion to WBDD, where we set the weight of every vertex to zero.

Observation 3.6. There is a parameterized reduction from Bounded-Degree Dele-
tion parameterized by the feedback edge set number to WBDD parameterized by the
same parameter.

Proof. Let I = (G = (V,E), k, d) be an instance of Bounded-Degree Deletion.
Then construct an equivalent instance I ′ = (G′, k′, d′, w) of WBDD as follows. Set G′ :=
G, k′ := k and d′ := d. For each vertex v ∈ V set wv := 0. This reduction can
be computed in O(|I|) time, the instances are obviously equivalent, and FEN(G′) ≤
FEN(G) holds, as G′ = G. Hence this is a parameterized reduction.

We will now present the first data reduction rules for WBDD that lead towards
our linear-size problem kernel. Together they delete all vertices of degree at most one
and even some vertices of higher degree. The data reduction rules are based on the
observation that all vertices exceeding the degree bound even if all their neighbors are
deleted must be in every solution set, and that picking the neighbor of a degree-one
vertex in the solution set is at least as good as picking the degree-one vertex itself, if it
exceeds the degree bound by at most one.

Reduction Rule 3.2.2. Let I = (G = (V,E), k, d, w) be an instance of WBDD and
let v ∈ V be some vertex of G. If wv > d, then delete v and decrease k by one.

Observation 3.7. Reduction Rule 3.2.2 is correct.

Proof. If I is a yes-instance, then there exists a solution set S ⊆ V of size |S| ≤ k
such that degG−S(u) ≤ d − wu holds for each vertex u ∈ V \ S. If the vertex v 6∈ S,
then degG−S(v) ≤ d−wv < 0 must hold, as wv > d, but this is a contradiction. Hence v ∈
S. Then S′ = S \ {v} is a solution for the modified instance I ′ = (G− {v}, k − 1, d, w)
of size |S′| = |S| − 1 ≤ k − 1. Therefore I ′ is a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V \{v} of size |S′| ≤ k−1
such that degG−{v}−S′(u) ≤ d−wu holds for each vertex u ∈ (V \{v})\S′. Then S′∪{v}
is a solution set for I of size |S′|+ 1 ≤ k. Hence I is a yes-instance and both instances
are equivalent.

Reduction Rule 3.2.3. Let I = (G = (V,E), k, d, w) be an instance of WBDD and
let v ∈ V be some vertex of G with deg(v) = 0. If wv ≤ d, then delete v.

Observation 3.8. Reduction Rule 3.2.3 is correct.

Proof. If I is a yes-instance, then there exists a solution set S ⊆ V of size |S| ≤ k such
that degG−S(u) ≤ d − wu holds for each vertex u ∈ V \ S. Then the set S′ = S \ {v}

24 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

is a solution for the modified instance I ′ = (G − {v}, k, d, w) of size at most |S| ≤ k.
Therefore I ′ is a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V \ {v} of size |S′| ≤ k
such that degG−{v}−S′(u) ≤ d−wu holds for each vertex u ∈ (V \{v})\S′. Then S = S′

is a solution set for I of size |S| = |S′| ≤ k, as degG−S(v) = 0 ≤ d − wv. Hence I is a
yes-instance and both instances are equivalent.

Reduction Rule 3.2.4. Let I = (G = (V,E), k, d, w) be an instance of WBDD and
let v ∈ V be some vertex of G with N(v) = {u}. If wv = d, then delete both v and u,
and decrease k by one.

Observation 3.9. Reduction Rule 3.2.4 is correct.

Proof. If I is a yes-instance, then there exists a solution set S ⊆ V of size |S| ≤ k
such that degG−S(x) ≤ d − wx holds for each vertex x ∈ V \ S. As degG(v) = 1 >
d−wv = 0 holds, v or u must be in S. Then S′ = S \{u, v} is a solution for the modified
instance I ′ = (G − {u, v}, k − 1, d, w) of size |S′| ≤ |S| − 1 ≤ k − 1. Therefore I ′ is a
yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V \{u, v} of size |S′| ≤ k−1
such that degG−{u,v}−S′(x) ≤ d−wx holds for each vertex x ∈ (V \{u, v})\S′. Then S =
S′ ∪{u} is a solution set for I of size |S| = |S′|+ 1 ≤ k, as degG−S(v) = 0 ≤ d−wv = 0.
Hence I is a yes-instance and both instances are equivalent.

Reduction Rule 3.2.5. Let I = (G = (V,E), k, d, w) be an instance of WBDD and
let v ∈ V be some vertex of G with N(v) = {u}. If wv < d, then delete v and increase wu

by one.

Observation 3.10. Reduction Rule 3.2.5 is correct.

Proof. If I is a yes-instance, then there exists a solution set S ⊆ V of size |S| ≤ k
such that degG−S(x) ≤ d − wx holds for each vertex x ∈ V \ S. If v ∈ S, then the
set S′ = (S ∪ {u}) \ {v} is a solution for the modified instance I ′ = (G − {v}, k, d, w′)
with w′x = wx for each vertex x ∈ V \ {u, v} and w′u = wu + 1 of size |S′| ≤ |S| ≤ k.
If v 6∈ S, then the set S′ = S is a solution for I ′ of size |S′| = |S| ≤ k, as either u ∈ S′

or degG−{v}−S′(u) + w′u = degG−S(u) + wu ≤ d. Therefore I ′ is a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V \ {v} of size |S′| ≤ k
such that degG−{v}−S′(x) ≤ d−w′x holds for each vertex x ∈ (V \{v})\S′. Then S = S′

is a solution set for I of size |S| = |S′| ≤ k, as degG(v) = 1 ≤ d − wv and either u ∈ S
or degG−S(u) + wu = degG−{v}−S′(u) + w′u ≤ d. Hence I is a yes-instance and both
instances are equivalent.

We will now prove that we can apply Reduction Rules 3.2.2 to 3.2.5 exhaustively
in O(n + m) time to remove all vertices with degree at most one or weight greater
than d.

Lemma 3.11. Reduction Rules 3.2.2 to 3.2.5 can all be applied exhaustively in O(n+m)
time.

3.2. PARAMETERIZATION BY FEEDBACK EDGE SET NUMBER 25

Proof. To apply the reduction rules exhaustively, we have to test for each vertex if one of
the reduction rules can be applied and repeat this test for all vertices where at least one
neighbor got deleted by applying one of the rules. This can be done in O(n + m) time
by checking the weight and the degree of each vertex on a list of vertices that still need
to be tested. If a vertex gets deleted, then all neighbors that are not on the list already
need to be added again. Actually applying the rules wherever possible requires O(n+m)
time, since deleting all vertices while still maintaining a correct graph representation is
possible in this time. Combining the steps leads to O(n + m) time in total.

Observation 3.12. After applying Reduction Rules 3.2.2 to 3.2.5 exhaustively the graph
does not contain any vertices with degree at most one and all vertices have weight at
most d.

Proof. Let v ∈ V be a vertex of G. If wv > d, then Reduction Rule 3.2.2 can be applied
for v resulting in its deletion. Therefore all vertices remaining in G after applying the
reduction rule have weight at most d. Now consider the case deg(v) = 1. If wv = d,
then v can be deleted using Reduction Rule 3.2.4. On the other hand, if wv < d, then
applying Reduction Rule 3.2.5 on v results in its deletion. Hence all degree-one vertices
are deleted after applying the reduction rules exhaustively. Finally, suppose deg(v) = 0.
If wv ≤ d, then v can be deleted using Reduction Rule 3.2.3. Therefore also all degree-
zero vertices are deleted after applying the reduction rules exhaustively.

While the presented data reduction rules bring us closer towards our goal by suc-
cessfully removing vertices of degree at most one, it is still necessary for our approach
that we upper-bound the number of degree-two vertices linearly in |F |. So we will now
continue by showing how to obtain an equivalent instance where every connected compo-
nent in G[V2(G)] contains at most six degree-two vertices. By Lemma 3.4 the graph then
contains at most 18 |F | − 6 degree-two vertices and we obtain our linear-size problem
kernel.

We will start by resolving subgraphs that are cycles consisting only of degree-two
vertices. They are not adjacent to any vertices outside the cycle and therefore can be
solved independently from the rest of the input graph. We can choose some vertex of
the cycle, guess if it is in the solution set and alter the instance accordingly. Then
the remaining vertices form a path, which we can resolve rather quickly by applying
the already presented Reduction Rules 3.2.2 to 3.2.5 repeatedly until the whole cycle is
resolved. Either there is a minimum solution set for resolving the cycle that contains
the chosen vertex or there is one not containing the vertex. Hence rather than guessing
we can try both options, pick the smaller solution set and thereby obtain a minimum
solution set for resolving the cycle.

Reduction Rule 3.2.6. Let I = (G = (V,E), k, d, w) be an instance of WBDD.
Let C = v1v2 . . . vcv1 be a cycle of degree-two vertices in G. Then remove V (C) from G
and decrease k by the size of any minimum solution set for resolving C.

Lemma 3.13. Reduction Rule 3.2.6 is correct.

Proof. Let s be the size of any minimum solution set for resolving C. If I is a yes-
instance, then there exists a solution set S ⊆ V of size |S| ≤ k such that degG−S(u) ≤

26 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

d−wu holds for each vertex u ∈ V \S. Then |S ∩ V (C)| ≥ s holds, as s is the size of any
minimum solution set for resolving C. Then S′ = S \V (C) is a solution for the modified
instance I ′ = (G− V (C), k − s, d, w) of size |S′| ≤ k − |S ∩ V (C)| ≤ k − s. Hence I ′ is
a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V \V (C) of size |S′| ≤ k−s
such that degG−V (C)−S′(u) ≤ d − wu holds for each vertex u ∈ (V \ V (C)) \ S′. Then
there exists a subset C ′ ⊆ V (C) of size |C ′| = s such that S′ ∪ C ′ is a solution set for I
of size |S′ ∪ C ′| ≤ k − s + s = k, because any minimum solution set for resolving C is
of size s and the vertices in V (C) are not adjacent to any vertices outside of C in G.
Hence I is a yes-instance and both instances are equivalent.

Not all degree-two vertices are part of a cycle that consists only of other degree-two
vertices. In fact all subgraphs consisting only of degree-two vertices now remaining are
paths. The paths themselves could be resolved quickly using the same approach with
the Reduction Rules 3.2.2 to 3.2.5 again, but this is not immediately possible, because
the paths are adjacent to vertices from the rest of the graph.

Every path consisting only of degree-two vertices is adjacent to either one vertex, in
fact forming a cycle in G, or two distinct vertices. We will now present a data reduction
rule for the first case and afterwards rules for the latter. The general idea of this data
reduction rule is that we want to use as few vertex deletions as possible to resolve the
path, but use this budget as good as possible to shrink down the remaining graph, i.e.
the vertex adjacent to the degree-two vertices of the path. This essentially means that
we will always pick a minimum solution set for resolving the path that contains the
adjacent vertex or, if there is no such minimum solution set, contains as many neighbors
of the adjacent vertex as possible. Note that the data reduction rule works regardless
of the degree of the adjacent vertex, but if it has degree two, then Reduction Rule 3.2.6
could be used instead.

Reduction Rule 3.2.7. Let I = (G = (V,E), k, d, w) be an instance of WBDD.
Let C = v1v2 . . . vcv1 be a cycle in G with deg(v) = 2 for all v ∈ V (C) \ {v1}. Now
distinguish the following four cases:

1. If there exists a minimum solution set for resolving C with weight wv1 set to zero
that contains v1, then remove V (C) from G and decrease k by the size of the
solution set.

2. Otherwise, if there exists a minimum solution set for resolving C with weight wv1

set to zero that contains both v2 and vc, then remove V (C) \ {v1} from G and
decrease k by the size of the solution set.

3. Otherwise, if there exists a minimum solution set for resolving C with weight wv1

set to zero that contains either v2 or vc, then remove V (C)\{v1} from G, increase
the weight wv1 by one and decrease k by the size of the solution set.

4. Otherwise, remove V (C) \ {v1} from G, increase the weight wv1 by two and de-
crease k by the size of the solution set.

Lemma 3.14. Reduction Rule 3.2.7 is correct.

3.2. PARAMETERIZATION BY FEEDBACK EDGE SET NUMBER 27

Proof. Let s be the size of a minimum solution set for resolving C with weight wv1 set
to zero. We will now prove the correctness in four cases.

We first cover Case 1. If I is a yes-instance, then there exists a solution set S ⊆ V
of size |S| ≤ k such that degG−S(u) ≤ d − wu holds for each vertex u ∈ V \ S. Then
the set S \ V (C) is a solution for the modified instance I ′ = (G − V (C), k − s, d, w)
of size |S \ V (C)| ≤ k − |S ∩ V (C)| ≤ k − s, as |S ∩ V (C)| ≥ s holds. Hence I ′ is a
yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V \V (C) of size |S′| ≤ k−s
such that degG−V (C)−S′(u) ≤ d − wu holds for each vertex u ∈ (V \ V (C)) \ S′. Then
there exists a subset C ′ ⊆ V (C) of size |C ′| = s containing v1 such that S′ ∪ C ′ is a
solution set for I of size |S′ ∪ C ′| ≤ k− s+ s = k, because the minimum solution set for
resolving C containing v1 is of size s and v1 separates V \ V (C) from V (C) \ {v1} in G.
Hence I is a yes-instance and both instances are equivalent.

Now consider Case 2. If I is a yes-instance, then there exists a solution set S ⊆ V of
size |S| ≤ k such that degG−S(u) ≤ d−wu holds for each vertex u ∈ V \S. Then the set S\
(V (C) \ {v1}) is a solution for the modified instance I ′ = (G− (V (C) \ {v1}), k− s, d, w)
of size |S \ (V (C) \ {v1})| ≤ k − |S ∩ (V (C) \ {v1})| ≤ k − s, as |S ∩ (V (C) \ {v1})| ≥ s
holds. Hence I ′ is a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V ′ := V \ (V (C) \ {v1})
of size |S′| ≤ k − s such that degG[V ′]−S′(u) ≤ d− wu holds for each vertex u ∈ V ′ \ S′.
Then there exists a subset C ′ ⊆ (V (C) \ {v1}) of size |C ′| = s containing both v2 and vc
such that S′ ∪ C ′ is a solution set for I of size |S′ ∪ C ′| ≤ k − s + s = k, because the
minimum solution set for resolving C containing both v2 and vc is of size s, and {v2, vc}
separates V ′ from V (C) \ {v1, v2, vc} in G. Hence I is a yes-instance and both instances
are equivalent.

Now consider Case 3. Let I ′ = (G′ = G−(V (C)\{v1}), k−s, d, w′) with w′v1 = wv1+1
and w′v = wv for each v ∈ V \ V (C) be the modified instance. If I is a yes-instance,
then there exists a solution set S ⊆ V of size |S| ≤ k such that degG−S(u) ≤ d − wu

holds for each vertex u ∈ V \ S. If v1 ∈ S or {v2, vc} ⊆ S, then |S ∩ V (C)| ≥ s + 1
holds, because there does not exist a solution set for resolving C of size at most s that
contains v1 or both v2 and vc. Therefore the set (S \ V (C))∪ {v1} is a solution for I ′ of
size |(S \ V (C)) ∪ {v1}| ≤ k−|S ∩ V (C)|+1 ≤ k−s. Otherwise, that is, v2 6∈ S or vc 6∈ S,
and v1 6∈ S, the set S′ = S\V (C) is a solution for I ′ of size |S \ V (C)| ≤ k−|S ∩ V (C)| ≤
k − s, because |S ∩ V (C)| ≥ s and degG′−S′(v1) + w′v1 ≤ degG−S(v1) + wv1 ≤ d holds,
as |NG−S(v1) ∩ V (C)| ≥ 1, but |NG′−S′(v1) ∩ V (C)| = 0. Hence I ′ is a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V ′ := V \ (V (C)\{v1}) of
size |S′| ≤ k− s such that degG′−S′(u) ≤ d−w′u holds for each vertex u ∈ V ′ \S′. Then
there exists a subset C ′ ⊆ (V (C)\{v1}) of size |C ′| = s containing v2 or vc such that S =
S′∪C ′ is a solution set for I of size |S| = |S′ ∪ C ′| ≤ k−s+s = k, because there exists a
minimum solution set for resolving C containing v2 or vc of size s, v1 separates V \V (C)
from V (C) \ {v1} in G, and if v1 6∈ S, then degG−S(v1) + wv1 ≤ degG′−S′(v1) + w′v1 ≤ d,
as |S ∩ {v2, vc}| ≥ 1. Hence I is a yes-instance and both instances are equivalent.

Finally, consider Case 4. Let I ′ = (G′ = G− (V (C) \ {v1}), k − s, d, w′) with w′v1 =
wv1+2 and w′v = wv for each v ∈ V \V (C) be the modified instance. If I is a yes-instance,
then there exists a solution set S ⊆ V of size |S| ≤ k such that degG−S(u) ≤ d−wu holds

28 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

for each vertex u ∈ V \ S. If v1, v2 or vc are contained in S, then |S ∩ V (C)| ≥ s + 1
holds, because there does not exist a solution set for resolving C of size at most s
that contains v1, v2 or vc. Therefore the set (S \ V (C)) ∪ {v1} is a solution for I ′ of
size |(S \ V (C)) ∪ {v1}| ≤ k − |S ∩ V (C)|+ 1 ≤ k − s. Otherwise, that is, v1, v2, vc 6∈ S,
the set S′ = S \ V (C) is a solution for I ′ of size |S \ V (C)| ≤ k − |S ∩ V (C)| ≤ k − s,
because |S ∩ V (C)| ≥ s and degG′−S′(v1)+w′v1 = degG−S(v1)+wv1 ≤ d holds, as v2, vc ∈
NG−S(v1), but v2, vc 6∈ NG′−S′(v1). Hence I ′ is a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V ′ := V \ (V (C) \ {v1})
of size |S′| ≤ k − s such that degG′−S′(u) ≤ d − w′u holds for each vertex u ∈ V ′ \ S′.
Then there exists a subset C ′ ⊆ (V (C) \ {v1}) of size |C ′| = s such that S = S′ ∪ C ′ is
a solution set for I of size |S′ ∪ C ′| ≤ k − s + s = k, because there exists a minimum
solution set for resolving C containing neither v1, v2 nor vc of size s, v1 separates V \V (C)
from V (C) \ {v1} in G, and if v1 6∈ S, then degG−S(v1) + wv1 ≤ degG′−S′(v1) + w′v1 ≤ d,
as degG−S(v1) ≤ degG′−S′(v1) + 2. Hence I is a yes-instance and both instances are
equivalent.

As we have shown, I and I ′ are equivalent in all four cases. Thus the reduction rule
is correct.

After exhaustively applying the data reduction rules presented so far, all degree-two
vertices in the remaining graph are part of a path of degree-two vertices that is adjacent
to two distinct vertices of degree at least three.

We will now continue by presenting a data reduction rule that yields a graph where
every path of consecutive degree-two vertices contains a constant number of vertices and
thereby achieve our linear-size problem kernel. Again, the overall idea is that we want
to use as few vertex deletions as possible to resolve the path, and use this budget as
good as possible to shrink down the remaining graph, i.e. the two vertices adjacent to the
endpoints of the path, but there is an important difference compared to the previous data
reduction rule. It is not always clear which of the two endpoints should be shrunk more,
if it is not possible to shrink both completely, or if actually a non-minimum solution set
resolving the path might be optimal for the whole graph, as the solution set contains
both endpoints. Hence we do not try to decide this seemingly difficult problem, but
instead we replace every path with a path of bounded length whose minimum solution
sets contain the same vertices near the endpoints and therefore behaves equally towards
the rest of the graph. As there are many different cases and it is not immediately clear
how a replacement path for each case looks, we will now provide a non-constructive proof
for this data reduction rule in a first step.

Lemma 3.15. There exists a reduction rule exhaustively applicable in O(n) time that
yields a graph where every path of consecutive degree-two vertices contains at most `
vertices where ` ≥ 1 is some constant.

Proof. We start by describing the reduction rule. Let I = (G = (V,E), k, d, w) be an
instance of WBDD. Let P = v1v2 . . . vp be a path in G with p > `+ 2 vertices and inner
vertices of degree two. Our goal is to replace P with a path P ′ containing at most `
degree-two vertices and to adjust the budget to obtain an equivalent instance.

Let us introduce some notation. For a given path P ′ = v′1v
′
2 . . . v

′
p′ with p′ ≥ 3 vertices

and vertex weights w′ let s(P ′) be the size of a minimum solution set for resolving P ′

3.2. PARAMETERIZATION BY FEEDBACK EDGE SET NUMBER 29

with weights w′v′1
and w′v′

p′
set to zero. Furthermore, for each a ∈ {1, 2, 3} and for

each b ∈ {−2,−1, 0} let sa,b(P
′) be the size of a minimum solution set S ⊆ V (P ′) for

resolving P ′ with weights w′v′1
and w′v′

p′
set to zero, and with v′1 ∈ S, if a = 1, or if a = 2,

then v′2 ∈ S and v′1 6∈ S, or otherwise S ∩ {v′1, v′2} = ∅, and with v′p′ ∈ S, if b = 0, or
if b = −1, then v′p′−1 ∈ S and v′p 6∈ S, or otherwise S ∩ {v′p′−1, v′p′} = ∅.

Remove P − {v1, vp} from G, add the inner vertices of a path P ′ = v′1v
′
2 . . . v

′
p′

with 3 ≤ p′ ≤ ` + 2 vertices, vertex weights w′ and sa,b(P
′) − s(P ′) = sa,b(P) − s(P)

for each a ∈ {1, 2, 3} and b ∈ {−2,−1, 0}, connect v1 with v′2 and vp with v′p′−1, and
decrease k by s(P)− s(P ′). Such a path P ′ must exist, because otherwise set ` = p− 2
and for any longer path P ′′ with sa,b(P

′′)− s(P ′′) = sa,b(P)− s(P) for each a ∈ {1, 2, 3}
and b ∈ {−2,−1, 0} that may exist, P can be used as a replacement.

We now prove that the reduction rule is correct. Let I ′ = (G′ = (V ′, E′), k −
s(P) + s(P ′), d, w′′) with vertex set V ′ = V \ (V (P) \ {v1, vp})∪ (V (P ′) \ {v′1, v′p}), edge
set E′ = E(G− (V (P)\{v1, vp}))∪{{v1, v′2}, {v′p′−1, vp}}∪{{v′a, v′a+1} | 2 ≤ a ≤ p′−2},
and weights w′′a = wa for each a ∈ V \ (V (P) \ {v1, vp}) and w′′b = w′b for each b ∈
V (P ′) \ {v′1, v′p′} be the modified instance.

If I is a yes-instance, then there exists a solution set S ⊆ V of size |S| ≤ k such
that degG−S(x) ≤ d− wx holds for each vertex x ∈ V \ S. Let

a =

1 if v1 ∈ S,

2 if v2 ∈ S, v1 6∈ S,

3 if v1, v2 6∈ S,

and b =

0 if vp ∈ S,

−1 if vp−1 ∈ S, vp 6∈ S,

−2 if vp, vp−1 6∈ S.

Then |S ∩ V (P)| ≥ sa,b(P) holds by definition. Further there exists a vertex subset S′′ ⊆
V (P ′) with v′1 ∈ S′′, if v1 ∈ S, and v′p′ ∈ S′′, if vp ∈ S, of size at most sa,b(P

′) =
sa,b(P)−s(P)+s(P ′) such that S′ = (S \ (V (P)\{v1, vp}))∪ (S′′ \{v′1, v′p′}) is a solution
set for the modified instance I ′ of size |S′| ≤ |S|− |S ∩ V (P)|+ sa,b(P)− s(P) + s(P ′) ≤
k− s(P) + s(P ′), because S′′ can be chosen such that v1 and also vp are either in both S
and S′ or their degree in both the original and the modified graph are equal. Hence I ′
is a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V ′ of size |S′| ≤ k −
s(P) + s(P ′) such that degG′−S′(u) ≤ d− w′′u holds for each vertex u ∈ V ′ \ S′. Let

a =

1 if v′1 ∈ S′,

2 if v′2 ∈ S′, v′1 6∈ S′,

3 if v′1, v
′
2 6∈ S′,

and b =

0 if v′p′ ∈ S′,

−1 if v′p′−1 ∈ S′, v′p 6∈ S′,

−2 if v′p′ , v
′
p′−1 6∈ S′.

Then |S′ ∩ V (P ′)| ≥ sa,b(P
′) holds by definition. Further there exists a vertex sub-

set S′′ ⊆ V (P) of size at most sa,b(P) = sa,b(P
′) − s(P ′) + s(P) such that S =

(S′\V (P ′))∪S′′ is a solution set for I of size |S′|−|S′ ∩ V (P ′)|+sa,b(P
′)−s(P ′)+s(P) ≤

k − |S′ ∩ V (P ′)| + sa,b(P
′) ≤ k, because S′′ can be chosen such that v1 and also vp are

either in both S and S′ or their degree in both the original and the modified graph are
equal. Hence I is a yes-instance and both instances are equivalent.

To apply the reduction rule exhaustively find all paths with more than ` vertices
consisting only of degree-two vertices in O(n) time by traversing along degree-two paths

30 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

v1, vp ∈ S v2, vp ∈ S, v1 6∈ S vp ∈ S, v1, v2 6∈ S

v1, vp−1 ∈ S, vp 6∈ S
v2, vp−1 ∈ S,
v1, vp 6∈ S

vp−1 ∈ S,
v1, v2, vp 6∈ S

v1 ∈ S, vp−1, vp 6∈ S
v2 ∈ S,

v1, vp−1, vp 6∈ S
v1, v2, vp−1, vp 6∈ S

Figure 3.1: Relationship between different types of solutions for resolving the
path v1v2 . . . vp with weights wv1 and wvp set to zero. The arrows point to solutions
that are called better. Two solutions are incomparable, if there is no directed path
between them.

and marking the visited vertices along the way. For each detected path P compute the
value sa,b(P) for each a ∈ {1, 2, 3} and b ∈ {−2,−1, 0} in O(n) time using Reduction
Rules 3.2.2 to 3.2.5, as the paths always contain some vertex of degree at most one, once
the containment of v1 and vp is fixed. Then replace the paths with matching paths of
constant length in O(n) time. Combining all steps leads to O(n) time in total.

We claim that the constant ` from Lemma 3.15 is six. To support this claim we will
now state such a data reduction rule explicitly split in 21 different cases that together
resolve every path containing more than six consecutive degree-two vertices. We will
provide a proof of correctness for some exemplary cases and omit it for the remaining
ones, as they can be proven analogously and the overall correctness is already given
by Lemma 3.15.

To simplify notation we fix the following for the upcoming data reduction rules.
Let I = (G = (V,E), k, d, w) be an instance of WBDD. Let P = v1v2 . . . vp be a
path in G with p ≥ 9 vertices and inner vertices of degree two. Now consider different
solution sets for resolving P with weights wv1 and wvp set to zero. Given two solution
sets S1, S2 ⊆ V (P) we say S1 is better than S2, if v1 ∈ S1 and v1 6∈ S2, or v2 ∈ S1

and v1, v2 6∈ S2, or vp ∈ S1 and vp 6∈ S2, or vp−1 ∈ S1 and vp, vp−1 6∈ S2. See Figure 3.1
for an overview of the different relevant solution types and their relationship. An optimal
solution set is of minimum size and no other solution set of minimum size is better.
We also imply here that an optimal solution set is a solution set for resolving P with
weights wv1 and wvp set to zero.

We start with the case that there exists a solution set of minimum size containing
both v1 and vp. This solution set is clearly optimal.

Reduction Rule 3.2.8. If all optimal solution sets contain v1 and vp, then delete V (P)
and decrease k by the size of the solution set.

Observation 3.16. Reduction Rule 3.2.8 is correct.

Proof. Let s be the size of an optimal solution set. If I is a yes-instance, then there
exists a solution set S ⊆ V of size |S| ≤ k such that degG−S(u) ≤ d−wu holds for each

3.2. PARAMETERIZATION BY FEEDBACK EDGE SET NUMBER 31

vertex u ∈ V \ S. Then the set S \ V (P) is a solution for the modified instance I ′ =
(G − V (P), k − s, d, w) of size |S \ V (P)| ≤ k − |S ∩ V (P)| ≤ k − s, as |S ∩ V (P)| ≥ s
holds. Therefore I ′ is also a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V ′ := V \ V (P) of
size |S′| ≤ k − s such that degG−V (P)−S′(u) ≤ d− wu holds for each vertex u ∈ V ′ \ S′.
Then there exists a subset P ′ ⊆ V (P) of size |P ′| = s containing both v1 and vp such
that S′ ∪ P ′ is a solution set for I of size |S′ ∪ P ′| ≤ k − s + s = k, because the
minimum solution set for resolving P containing both v1 and vp is of size s and {v1, vp}
separates V \V (P) and V (P)\{v1, vp} in G. Hence I is a yes-instance and both instances
are equivalent.

We will continue with the case that there does not exist an optimal solution set
containing both v1 and vp, rather every minimum solution set containing both v1 and vp
is one vertex larger than any optimal solution set.

Reduction Rule 3.2.9. If every minimum solution set that contains both v1 and vp is
one vertex larger than any optimal solution set, and

1. all optimal solution sets contain neither v1, v2, vp−1 nor vp, then replace V (P) \
{v1, vp} by the path shown in Figure 3.2a and decrease k by the size of the solution
set minus two.

2. all optimal solution sets contain v2, but not vp or vp−1, then replace V (P)\{v1, vp}
by the path shown in Figure 3.2b and decrease k by the size of the solution set minus
two.

3. all optimal solution sets contain either v2, but not vp or vp−1, or vp−1, but not v1
or v2, then replace V (P)\{v1, vp} by the path shown in Figure 3.2c and decrease k
by the size of the solution set minus one.

4. all optimal solution sets contain v1, but not vp or vp−1, then delete V (P) \ {vp},
increase the weight wp by one, and decrease k by the size of the solution set.

5. all optimal solution sets contain either v1, but not vp or vp−1, or vp−1, but not v1
or v2, then replace V (P)\{v1, vp} by the path shown in Figure 3.2d and decrease k
by the size of the solution set minus two.

6. all optimal solution sets contain either v1, but not vp or vp−1, or vp, but not v1
or v2, then replace V (P)\{v1, vp} by the path shown in Figure 3.2e and decrease k
by the size of the solution set minus three.

7. all optimal solution sets contain either v1, but not vp or vp−1, or vp, but not v1
or v2, or both v2 and vp−1, then replace V (P) \ {v1, vp} by the path shown in Fig-
ure 3.2f and decrease k by the size of the solution set minus two.

8. all optimal solution sets contain both v2 and vp−1, then replace V (P) \ {v1, vp} by
the path shown in Figure 3.2g and decrease k by the size of the solution set minus
two.

32 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

v1 v′2 v′3 v′4 v′5 v′6 vp

(a) Replacement path with minimum so-
lution size two for Case 1 of Reduction
Rule 3.2.9.

v1 v′2 v′3 v′4 v′5 v′6 v′7 vp

(b) Replacement path with minimum so-
lution size two for Case 2 of Reduction
Rule 3.2.9.

v1 v′2 v′3 vp

(c) Replacement path with minimum so-
lution size one for Case 3 of Reduction
Rule 3.2.9.

v1 v′2 v′3 v′4 v′5 vp

(d) Replacement path with minimum so-
lution size two for Case 5 of Reduction
Rule 3.2.9.

v1 v′2 v′3 v′4 v′5 v′6 v′7 vp

(e) Replacement path with minimum so-
lution size three for Case 6 of Reduction
Rule 3.2.9.

v1 v′2 v′3 v′4 v′5 vp

(f) Replacement path with minimum so-
lution size two for Case 7 of Reduction
Rule 3.2.9.

v1 v′2 v′3 v′4 v′5 v′6 vp

(g) Replacement path with minimum so-
lution size two for Case 8 of Reduction
Rule 3.2.9.

v1 v′2 v′3 v′4 v′5 v′6 v′7 vp

(h) Replacement path with minimum so-
lution size three for Case 9 of Reduction
Rule 3.2.9.

v1 v′2 v′3 v′4 vp

(i) Replacement path with minimum so-
lution size two for Case 11 of Reduction
Rule 3.2.9.

v1 v′2 v′3 vp

(j) Replacement path with minimum so-
lution size two for Case 12 of Reduction
Rule 3.2.9.

v1 v′2 v′3 v′4 vp

(k) Replacement path with minimum so-
lution size one for Case 1 of Reduction
Rule 3.2.10.

v1 v′2 v′3 v′4 v′5 v′6 vp

(l) Replacement path with minimum so-
lution size two for Case 2 of Reduction
Rule 3.2.10.

v1 v′2 v′3 v′4 v′5 vp

(m) Replacement path with minimum so-
lution size two for Case 3 of Reduction
Rule 3.2.10.

v1 v′2 v′3 v′4 v′5 v′6 vp

(n) Replacement path with minimum so-
lution size two for Case 1 of Reduction
Rule 3.2.11.

v1 v′2 v′3 v′4 vp

(o) Replacement path with minimum solu-
tion size one for Reduction Rule 3.2.12.

Figure 3.2: Paths that are used in the data reduction rules as short replacements for
long paths. Vertices with weight d, d − 1, and at most d − 2 are marked with a bold,
normal, and dashed border, respectively.

3.2. PARAMETERIZATION BY FEEDBACK EDGE SET NUMBER 33

9. all optimal solution sets contain either v1, but not vp or vp−1, or both v2 and vp−1,
then replace V (P) \ {v1, vp} by the path shown in Figure 3.2h and decrease k by
the size of the solution set minus three.

10. all optimal solution sets contain both v1 and vp−1, then delete V (P) \ {vp} and
decrease k by the size of the solution set.

11. all optimal solution sets contain either both v1 and vp−1, or vp, but not v1 or v2,
then replace V (P)\{v1, vp} by the path shown in Figure 3.2i and decrease k by the
size of the solution set minus two.

12. all optimal solution sets contain either both v1 and vp−1, or both vp and v2, then
replace V (P) \ {v1, vp} by the path shown in Figure 3.2j and decrease k by the size
of the solution set minus two.

Observation 3.17. Case 1 of Reduction Rule 3.2.9 is correct.

Proof. Let s be the size of an optimal solution set. Let I ′ = (G′ = (V ′, E′), k−s+2, d, w′)
with vertex set V ′ = V \ (V (P) \ {v1, vp}) ∪ {v′2, . . . , v′6}, edge set E′ = E(G− (V (P) \
{v1, vp})) ∪ {{v1, v′2}, {v′6, vp}} ∪ {{v′a, v′a+1} | 2 ≤ a ≤ 5}, and weights w′v′2

= w′v′3
=

w′v′5
= w′v′6

= d − 1 and w′v′4
= d and w′a = wa for each a ∈ V \ (V (P) \ {v1, vp}) be the

modified instance.

If I is a yes-instance, then there exists a solution set S ⊆ V of size |S| ≤ k such
that degG−S(u) ≤ d − wu holds for each vertex u ∈ V \ S. Also |S ∩ V (P)| ≥ s holds,
as the minimum solution set for resolving P is of size s. If v1, v2, vp−1, vp 6∈ S, then the
set S′ = (S \V (P))∪{v′3, v′5} is a solution set for I ′ of size |S′| = |S| − |S ∩ V (P)|+ 2 ≤
k − s + 2, because S′ resolves the replacement path v′2v

′
3 . . . v

′
6 and both degG′−S′(v1) =

degG−S(v1) and degG′−S′(vp) = degG−S(vp), as v2, vp−1 6∈ S and v′2, v
′
6 6∈ S′.

If {v1, v2, vp−1, vp} ∩ S 6= ∅, then |S ∩ V (P)| ≥ s + 1 holds, as all minimum solution
sets are of size s and contain neither v1, v2, vp−1 nor vp. Construct a solution set S′

for I ′ as follows. Initially S′ = (S \ (V (P) \ {v1, vp})) ∪ {v′4}. If v1 6∈ S, then add v′2
to S′. If vp 6∈ S, then add v′6 to S′. Now S′ is a solution set for I ′, since S′ resolves the
replacement path v′2v

′
3 . . . v

′
6, it holds that {v1, vp}∩S = {v1, vp}∩S′, and if v1 and vp are

not in S, then degG′−S′(v1) ≤ degG−S(v1) and degG′−S′(vp) ≤ degG−S(vp), respectively.
It is of size |S′| = |S| − |S ∩ V (P)|+ 3 ≤ k − (s + 1) + 3 = k − s + 2, because either v1
or v′2 ∈ S′ and either vp or v′6 ∈ S′. Hence I ′ is a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V ′ of size |S′| ≤ k− s+ 2
such that degG′−S′(u) ≤ d−w′u holds for each vertex u ∈ V ′\S′. Also |S′ ∩ {v′2, . . . , v′6}| ≥
2 holds, as the minimum solution set for resolving the path v′2v

′
3 . . . v

′
6 is of size two.

If v1, v
′
2, v
′
6, vp 6∈ S′, then there exists a subset P ′ ⊆ V (P) of size |P ′| = s such that S =

S′ \ {v′2, . . . , v′6}∪P ′ is a solution set for I of size |S| = |S′| − |S′ ∩ {v′2, . . . , v′6}|+ s ≤ k,
because the minimum solution set for resolving P is of size s, and if v1 and vp are not
in P ′, then degG−S(v1) ≤ degG′−S′(v1) and degG−S(vp) ≤ degG′−S′(vp), respectively,
as v′2, v

′
6 6∈ S′.

If {v1, v′2, v′6, vp} ∩ S′ 6= ∅, then |S′ ∩ {v1, v′2, . . . , v′6, vp}| ≥ 3 holds, as all minimum
solution sets for resolving the path v1v

′
2 . . . v

′
6vp, even with weights wv1 and wvp set

to zero, are of size two, but do not contain v1, v
′
2, v
′
6 or vp. Therefore there exists a

34 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

subset P ′ ⊆ V (P) of size |P ′| = s + 1 containing both v1 and vp such that S = S′ \
{v1, v′2, . . . , v′6, vp}∪P ′ is a solution set for I of size |S| ≤ |S′|−|S′ ∩ {v1, v′2, . . . , v′6, vp}|+
s + 1 ≤ k + 3 − |S′ ∩ {v1, v′2, . . . , v′6, vp}| ≤ k, because the minimum solution set con-
taining v1 and vp for resolving P is of size s + 1. Hence I is a yes-instance and both
instances are equivalent.

Observation 3.18. Case 4 of Reduction Rule 3.2.9 is correct.

Proof. Let s be the size of an optimal solution set. Let I ′ = (G−(V (P)\{vp}), k−s, d, w′)
with weights w′vp = wvp +1 and w′a = wa for each a ∈ V \V (P) be the modified instance.

If I is a yes-instance, then there exists a solution set S ⊆ V of size |S| ≤ k such
that degG−S(u) ≤ d − wu holds for each vertex u ∈ V \ S. Also |S ∩ V (P)| ≥ s
holds, as the minimum solution set for resolving P is of size s. If vp, vp−1 6∈ S,
then the set S′ = S \ V (P) is a solution set for I ′ of size |S′| = |S| − |S ∩ V (P)| ≤
k − s, because degG−(V (P)\{vp})−S′(vp) + w′vp = degG−S(vp) + wvp ≤ d, as vp−1 ∈
NG−S(vp), but vp−1 6∈ NG−(V (P)\{vp})−S′(vp). If vp ∈ S or both vp 6∈ S and vp−1 ∈ S,
then |S ∩ V (P)| ≥ s+ 1 holds, as all minimum solution set for resolving P are of size s,
but do not contain vp or vp−1. Then the set S′ = (S \ V (P)) ∪ {vp} is a solution set
for I ′ of size |S′| = |S| − |S ∩ V (P)|+ 1 ≤ k − s. Hence I ′ is a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V ′ := V \ (V (P) \ {vp})
of size |S′| ≤ k − s such that degG−(V (P)\{vp})−S′(u) ≤ d− w′u holds for each vertex v ∈
V ′\S′. Then there exists a subset P ′ ⊆ V (P) of size |P ′| = s containing v1 such that S =
S′ ∪ P ′ is a solution set for I of size |S′ ∪ P ′| ≤ k − s + s = k, because the minimum
solution set for resolving P containing v1 is of size s, it holds that degG−S(vp) + wvp ≤
degG−(V (P)\{vp})−S′(vp)+w′vp ≤ d, as |NG−S(vp) ∩ V (P)| ≤ 1, and {v1, vp} separates V \
V (P) from V (P) \ {v1, vp} in G. Hence I is a yes-instance and both instances are
equivalent.

This concludes the rule for the case that every minimum solution set containing
both v1 and vp is one vertex larger than any optimal solution set. We will continue with
the case that every minimum solution set containing both v1 and vp is two vertices larger
than any optimal solution set and every minimum solution set containing either both v1
and vp−1 or both v2 and vp is one vertex larger than any optimal solution set.

Reduction Rule 3.2.10. If every minimum solution set that contains both v1 and vp is
two vertices larger than any optimal solution set, and every minimum solution set that
contains either both v1 and vp−1 or both v2 and vp is one vertex larger than any optimal
solution set, and

1. all optimal solution sets contain neither v1, v2, vp−1 nor vp, then replace V (P) \
{v1, vp} by the path shown in Figure 3.2k and decrease k by the size of the solution
set minus one.

2. all optimal solution sets contain v2, but not vp or vp−1, then replace V (P)\{v1, vp}
by the path shown in Figure 3.2l and decrease k by the size of the solution set minus
two.

3.2. PARAMETERIZATION BY FEEDBACK EDGE SET NUMBER 35

3. all optimal solution sets contain either v2, but not vp or vp−1, or vp−1, but not v1
or v2, then replace V (P)\{v1, vp} by the path shown in Figure 3.2m and decrease k
by the size of the solution set minus two.

4. all optimal solution sets contain both v2 and vp−1, then delete V (P) \ {v1, vp}, and
decrease k by the size of the solution set.

Observation 3.19. Case 1 of Reduction Rule 3.2.10 is correct.

Proof. Let s be the size of an optimal solution set. Let I ′ = (G′ = (V ′, E′), k−s+1, d, w′)
with vertex set V ′ = V \ (V (P) \ {v1, vp}) ∪ {v′2, v′3, v′4}, edge set E′ = E(G − (V (P) \
{v1, vp})) ∪ {{v1, v′2}, {v′4, vp}} ∪ {{v′a, v′a+1} | 2 ≤ a ≤ 3}, and weights w′v′2

= w′v′3
=

w′v′4
= d− 1 and w′a = wa for each a ∈ V \ (V (P) \ {v1, vp}) be the modified instance.

If I is a yes-instance, then there exists a solution set S ⊆ V of size |S| ≤ k such
that degG−S(u) ≤ d − wu holds for each vertex u ∈ V \ S. Also |S ∩ V (P)| ≥ s holds,
as the minimum solution set for resolving P is of size s. If v1, v2, vp−1, vp 6∈ S, then the
set S′ = (S\V (P))∪{v′3} is a solution set for I ′ of size |S′| = |S|−|S ∩ V (P)|+1 ≤ k−s+
1, because S′ resolves the replacement path v′2v

′
3v
′
4 and both degG−S(v1) = degG′−S′(v1)

and degG−S(vp) = degG′−S′(vp), as v2, vp−1 6∈ S and v′2, v
′
4 6∈ S′.

If {v1, v2, vp−1, vp} ∩ S 6= ∅, but v1 6∈ S or vp 6∈ S, then |S ∩ V (P)| ≥ s + 1 holds, as
all minimum solution sets are of size s and contain neither v1, v2, vp−1 nor vp. Construct
a solution set S′ for I ′ as follows. Initially S′ = S \ (V (P) \ {v1, vp}). If v1 6∈ S, then
add v′2 to S′. If vp 6∈ S, then add v′4 to S′. Now S′ is a solution set for I ′, since S′

resolves the replacement path v′2v
′
3v
′
4, it holds that {v1, vp} ∩S = {v1, vp} ∩S′, and if v1

and vp are not in S, then degG′−S′(v1) ≤ degG−S(v1) and degG′−S′(vp) ≤ degG−S(vp),
respectively. It is of size |S′| = |S| − |S ∩ V (P)|+ 2 ≤ |S| − s + 1 ≤ k − s + 1, because
either v1 or v′2 ∈ S′, and either vp or v′4 ∈ S′.

If v1, vp ∈ S, then |S ∩ V (P)| ≥ s + 2 holds, as every minimum solution set that
contains both v1 and vp is of size s+2. Therefore the set S′ = (S\(V (P)\{v1, vp}))∪{v′3}
is a solution set for I ′ of size |S′| = |S| − |S ∩ V (P)|+ 3 ≤ |S| − s+ 1 = k− s+ 1, as S′

resolves the replacement path v′2v
′
3v
′
4. Hence I ′ is a yes-instance.

If I ′ is a yes-instance, then there exists a solution set S′ ⊆ V ′ of size |S′| ≤ k− s+ 1
such that degG′−S′(u) ≤ d−w′u holds for each vertex u ∈ V ′\S′. Also |S′ ∩ {v′2, v′3, v′4}| ≥
1 holds, as the minimum solution set for resolving the path v′2v

′
3v
′
4 is of size one.

If v1, v
′
2, v
′
4, vp 6∈ S′, then there exists a subset P ′ ⊆ V (P) of size |P ′| = s such that S =

S′ \ {v′2, v′3, v′4} ∪ P ′ is a solution set for I of size |S| = |S′| − |S′ ∩ {v′2, v′3, v′4}|+ s ≤ k,
because the minimum solution set for resolving P is of size s, and if v1 and vp are not
in P ′, then degG−S(v1) ≤ degG′−S′(v1) and degG−S(vp) ≤ degG′−S′(vp), respectively,
as v′2, v

′
4 6∈ S′.

If {v1, v′2, v′4, vp} ∩ S′ 6= ∅, but v1 6∈ S′ or vp 6∈ S′, then |S′ ∩ {v1, v′2, v′3, v′4, vp}| ≥
2 holds, as all minimum solution sets for resolving the path v1v

′
2v
′
3v
′
4vp, even with

weights wv1 and wvp set to zero, are of size one, but do not contain v1, v
′
2, v
′
4 or vp.

If v1 ∈ S′, then there exists a subset P ′ ⊆ V (P) of size |P ′| = s + 1 containing both v1
and vp−1 such that S = S′ \ {v1, v′2, v′3, v′4, vp} ∪ P ′ is a solution set for I of size |S| ≤
|S′|−|S′ ∩ {v1, v′2, v′3, v′4, vp}|+s+1 ≤ k, because the minimum solution set containing v1
and vp−1 for resolving P is of size s+ 1. If vp ∈ S′, then there exists a subset P ′ ⊆ V (P)

36 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

of size |P ′| = s + 1 containing both v2 and vp such that S = S′ \ {v1, v′2, v′3, v′4, vp} ∪ P ′

is a solution set for I of size |S| ≤ |S′| − |S′ ∩ {v1, v′2, v′3, v′4, vp}| + s + 1 ≤ k, be-
cause the minimum solution set containing v2 and vp for resolving P is of size s + 1.
If v1, vp 6∈ S′, then there exists a subset P ′ ⊆ V (P) of size |P ′| = s + 1 containing
both v2 and vp−1 such that S = S′ \ {v1, v′2, v′3, v′4, vp} ∪ P ′ is a solution set for I of
size |S| ≤ |S′| − |S′ ∩ {v1, v′2, v′3, v′4, vp}| + s + 1 ≤ k, because the minimum solution
set containing v2 and vp−1 for resolving P is of size s + 1. Furthermore, in all three
sub cases it holds that if v1 and vp are not in S, then degG−S(v1) = degG′−S′(v1)
and degG−S(vp) = degG′−S′(vp), respectively.

If v1, vp ∈ S′, then |S′ ∩ {v1, v′2, v′3, v′4, vp}| ≥ 3 holds, as the minimum solution set
containing both v1 and vp for resolving the path v1v

′
2v
′
3v
′
4vp, even with weights wv1

and wvp set to zero, is of size three. Therefore there exists a subset P ′ ⊆ V (P) of
size |P ′| = s + 2 containing both v1 and vp such that S = S′ \ {v′2, v′3, v′4} ∪ P ′ is a
solution set for I of size |S| ≤ |S′| − |S′ ∩ {v′2, v′3, v′4}|+ s+ 2 ≤ k, because the minimum
solution set containing both v1 and vp for resolving P is of size s + 2. Hence I is a
yes-instance and both instances are equivalent.

This concludes the rule for the case that every minimum solution set containing
both v1 and vp is two vertices larger than any optimal solution set and every minimum
solution set containing either both v1 and vp−1 or both v2 and vp is one vertex larger than
any optimal solution set. We will continue with the case that every minimum solution
set containing both v1 and vp−1 is two vertices larger than any optimal solution set and
every minimum solution set containing either v1, but not vp or vp−1, or both v2 and vp
is one vertex larger than any optimal solution set.

Reduction Rule 3.2.11. If every minimum solution set that contains both v1 and vp−1
is two vertices larger than any optimal solution set, and every minimum solution set that
contains either v1, but not vp or vp−1, or both v2 and vp is one vertex larger than any
optimal solution set, and

1. all optimal solution sets contain neither v1, v2, vp−1 nor vp, then replace V (P) \
{v1, vp} by the path shown in Figure 3.2n and decrease k by the size of the solution
set minus two.

2. all optimal solution sets contain v2, but not vp or vp−1, then delete V (P)\{v1, vp},
increase wvp by one, and decrease k by the size of the solution set.

We will continue with the case that every minimum solution set containing both v2
and vp, or both v1 and vp−1 is two vertices larger than any optimal solution set and every
minimum solution set containing either v1, but not vp or vp−1, or both v2 and vp−1, or vp,
but not v1 or v2 is one vertex larger than any optimal solution set.

Reduction Rule 3.2.12. If every minimum solution set that contains both v2 and vp or
both v1 and vp−1 is two vertices larger than any optimal solution set, and every minimum
solution set that contains either v1, but not vp or vp−1, or both v2 and vp−1, or vp, but
not v1 or v2 is one vertex larger than any optimal solution set, then replace V (P)\{v1, vp}
by the path shown in Figure 3.2o and decrease k by the size of the solution set minus
one.

3.2. PARAMETERIZATION BY FEEDBACK EDGE SET NUMBER 37

The next rule will cover the final case that every minimum solution set containing
both v2 and vp−1 is two vertices larger than any optimal solution set. Note that this
implies that every minimum solution set containing v1, v2, vp−1 or vp is at least one vertex
larger than any optimal solution set.

Reduction Rule 3.2.13. If every minimum solution set that contains both v2 and vp−1
is two vertices larger than any optimal solution set, then delete V (P) \ {v1, vp}, increase
both wv1 and wvp by one, and decrease k by the size of the solution set.

This concludes all data reduction rules necessary to resolve all connected components
in G[V2(G)] that contain more than six degree-two vertices. We will now prove that this
is indeed the case and that we can apply them exhaustively in O(n + m) time.

Lemma 3.20. After applying Reduction Rules 3.2.6 to 3.2.13 exhaustively, each con-
nected component in G[V2(G)] contains at most six vertices.

Proof. Every cycle and every path adjacent to only one vertex, respectively, is deleted
from G by applying Reduction Rules 3.2.6 and 3.2.7 exhaustively, if they consist only
of degree-two vertices. Then all remaining degree-two vertices are part of paths that
consist only of degree-two vertices and are adjacent to two distinct neighbors. We will
now show that such a path, if it contains more than six vertices, is resolved by applying
the Reduction Rules 3.2.8 to 3.2.13 exhaustively. Then every connected component
in G[V2(G)] contains at most six vertices and we are done. See again Figure 3.1 for an
overview over different types of solutions.

Let P = v1v2 . . . vp be some path in G with p ≥ 9 vertices and inner vertices of degree
two. If there exists some minimum solution set containing both v1 and vp, then Reduction
Rule 3.2.8 is applicable and results in the deletion of P . Otherwise every solution set
for resolving P that contains both v1 and vp is larger than any minimum solution set
by one or two vertices, because a solution set containing both v1 and vp can always be
created by adding v1 and vp to any minimum solution set.

We now cover the cases that every minimum solution set containing both v1 and vp
is one vertex larger than any optimal solution set. There can occur eight different types
of optimal solutions. The case that all optimal solution sets have the same type, that is,
for every pair of optimal solutions S1, S2 ⊆ V (P) it holds that S1 ∩ {v1, v2, vp−1, vp} =
S2 ∩ {v1, v2, vp−1, vp}, is covered by Cases 1, 2, 4, 8 and 10 of Reduction Rule 3.2.9.
Note that Cases 2, 4 and 10 each cover two cases due to symmetry and therefore all
eight cases are covered. The case that different types of optimal solution sets that are
incomparable to each other appear simultaneously is covered by Cases 3, 5 to 7, 9, 11
and 12 of Reduction Rule 3.2.9. Due to symmetry Cases 5, 9 and 11 each cover two
cases. As a result all ten cases are covered.

We now cover the cases that every minimum solution set that contains both v1 and vp
is two vertices larger than any minimum solution set and every minimum solution set
that contains either both v1 and vp−1 or both v2 and vp is one vertex larger than any
minimum solution set. Then no optimal solution set contains v1 or vp, otherwise there
exists a solution set containing both v1 and vp that is only one vertex larger than this
optimal solution set. Therefore only four different types of optimal solutions can occur.
The four cases that all optimal solutions are of the same type are covered by Cases 1, 2

38 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

and 4 of Reduction Rule 3.2.10 with Case 2 covering two cases due to symmetry. There
are two types of optimal solutions that are incomparable and the case that both appear
simultaneously is covered by Case 3 of Reduction Rule 3.2.10.

We now cover the cases that every minimum solution set that contains both v1
and vp−1 is two vertices larger than any minimum solution set and every minimum
solution set that contains either v1, but not vp−1 or vp, or both v2 and vp is one vertex
larger than any minimum solution set. Note that due to symmetry this also covers the
case that every minimum solution set that contains both v2 and vp is two vertices larger
than any minimum solution set and every minimum solution set that contains either vp,
but not v1 or v2, or both v1 and vp−1 is one vertex larger than any minimum solution set.
No optimal solution set can contain v1, vp−1 or vp, as otherwise there exists a solution
set containing both v1 and vp−1 that is only one vertex larger than this optimal solution
set. Therefore only two different types of optimal solutions can occur. The two cases
that all optimal solutions are of the same type are covered by Cases 1 and 2 of Reduction
Rule 3.2.11. Since the two types of optimal solutions that can occur are comparable to
each other, there cannot occur optimal solutions of different types simultaneously.

We now cover the case that every minimum solution set that contains both v2 and vp,
or both v1 and vp−1 is two vertices larger than any minimum solution set, and every
minimum solution set that contains either v1, but not vp or vp−1, or both v2 and vp−1,
or vp, but not v1 or v2 is one vertex larger than any minimum solution set. All optimal
solution sets must contain neither v1, v2, vp−1 nor vp, as otherwise there exists a solution
set containing both v2 and vp or both v1 and vp−1 that is only one vertex larger than
this optimal solution set. Hence Reduction Rule 3.2.12 covers this case completely.

Finally, we cover the case that every minimum solution set that contains both v2
and vp−1 is two vertices larger than any minimum solution set. All optimal solution
sets must contain neither v1, v2, vp−1 nor vp, as otherwise there exists a solution set
containing both v2 and vp−1 that is only one vertex larger than this optimal solution
set. Hence Reduction Rule 3.2.13 covers this case completely.

Because every minimum solution set that contains neither v1 nor v2 or neither vp
nor vp−1 is at most one vertex larger than any minimum solution set, the discussed cases
are exhaustive and we are done.

Lemma 3.21. Reduction Rules 3.2.2 to 3.2.13 can all be applied exhaustively in O(n+m)
time.

Proof. Check the degree and weight of each vertex in O(n) time to find all vertices
where one of the Reduction Rules 3.2.2 to 3.2.5 can be applied. Furthermore, test for
each degree-two vertex if it is part of a subgraph where one of the other reduction rules
can be applied, that is, the vertex is part of a cycle consisting only of degree-two vertices,
or a path consisting only of degree-two vertices that is either adjacent to only one vertex
or contains at least seven vertices. This can also be done in O(n) time by traversing
along degree-two paths and marking the visited vertices along the way. By applying the
reduction rules the graph may be modified in a way such that a rule becomes applicable
where it was not applicable before. Hence we have to repeat the test for vertices where
we increase the weight above d, or decrease its degree to at most two. Since this only
happens if at least one neighbor gets deleted, this is possible in O(m) time by adding

3.3. PARAMETERIZATION BY DISTANCE TO DISJOINT PATHS 39

all neighbors of the deleted vertices to a list of vertices that still need to be tested.

It is necessary to compute the size of two, five and nine different minimum solution
sets for resolving certain subgraphs to apply Reduction Rules 3.2.6 and 3.2.7 and Reduc-
tion Rules 3.2.8 to 3.2.13, respectively. This can be done in O(n) time using Reduction
Rules 3.2.2 to 3.2.5, as the subgraphs are paths that always contain some vertex of degree
at most one. Modifying the graph according to the reduction rules requires O(n + m)
time, because deletion of every vertex while maintaining a correct graph representa-
tion is possible in this time and apart from deleting vertices the rules only add shorter,
constant-length replacement paths. Combining every step leads to a total running time
of O(n + m).

We can now use the presented data reduction rules and lemmata to obtain a linear-
size problem kernel.

Theorem 3.22. Weighted Bounded-Degree Deletion admits a linear-size prob-
lem kernel computable in O(n + m) time when parameterized by the feedback edge set
number.

Proof. Let (G, k, d, w) be the instance of WBDD. Let F ⊆ E be a minimum feedback
edge set for G computable in O(n + m) time using depth-first search. Apply Reduction
Rules 3.2.2 to 3.2.13 exhaustively in O(n + m) time (see Lemma 3.21) to remove all
vertices with degree at most one (see Observation 3.12) and to upper-bound the size
of each connected component in G[V2(G)] by six vertices (see Lemma 3.20). Then
the remaining graph contains at most 2 |F | vertices of degree at least three and at
most 18 |F | − 6 vertices of degree two, using Lemmas 3.3 and 3.4 respectively. If the
budget k ≥ n or d ≥ n, then output a trivial yes-instance, so assume k, d < n. Now it
holds that k, d < n ≤ 20 |F | − 6 and m ≤ 21 |F | − 7. Hence the size of the remaining
instance is bounded linearly in |F |.

3.3 Parameterization by Distance to Disjoint Paths

In this section, we show that Biclique-Free Vertex Deletion is FPT when param-
eterized by the distance to disjoint paths. This parameter is at most the vertex cover
number for which we already established that Biclique-Free Vertex Deletion is
FPT, but at least the feedback vertex set number for which we know that the special
case BDD is W[1]-hard. By providing an FPT algorithm when parameterized by the
distance to disjoint paths we fill the “gap” between the known complexities with respect
to the vertex cover number and the feedback vertex set number.

The distance to disjoint paths of a graph G = (V,E) is the size of a minimum
set D ⊆ V such that every connected component in G −D is a path. We assume that
such a set D is given along with the problem input, but one can compute it in FPT time
with respect to the distance to disjoint paths of the graph [KS21, Lemma 1].

We again split our algorithm in different cases. We start by presenting an algorithm
for the case i ≥ 2 or j ≥ 3 and continue with the case i = 1, j = 2 after that. The
remaining case of i = j = 1 known as Vertex Cover can be solved in FPT time
with respect to the distance to disjoint paths using a well-known algorithm for Vertex

40 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

Cover parameterized by treewidth. See for example the version in the textbook of Cy-
gan et al. [Cyg+15, Corollary 7.6] running in O(2|D| · |D|2 · n) time. Hence we can use
this algorithm to solve the last case i = j = 1.

The following algorithm uses a depth-bounded search tree to resolve all bicliques
based on the observation that each biclique containing at least one edge with both
endpoints not in D contains at most three vertices that are not in D.

Theorem 3.23. Let D ⊆ V be a set such that every connected component in G−D is
a path. Then Biclique-Free Vertex Deletion with i ≥ 2 or j ≥ 3 can be solved
in O(2|D|+|D|

2

· |D|2 · n2) time.

Proof. If the budget k ≥ |D|, then output yes, because deleting all vertices in D would be
covered by the budget and the remaining paths cannot contain any bicliques with i ≥ 2
or j ≥ 3. So assume k < |D| for the rest of this algorithm. Use the extension of
the algorithm presented in Theorem 2.2 as discussed in Section 2.3 to obtain a set of
parts of all bicliques in G in O(2ω · ω2 · n2) time where ω denotes the treewidth of G.
This also includes the time required for computing the necessary tree decomposition
of G (see Section 2.1). Based on this set delete all vertices and edges that are not part
of at least one Ki,j (see Reduction Rule 2.3.1).

Let P := V \D be the set of vertices that form the disjoint paths that remain if one
would delete D from G. Two vertices in P with a neighborhood that is a subset of D
are of the same type, if they have the same neighborhood.

Now pick an arbitrary biclique that contains at least one edge from E(G[P]) and
resolve it by deleting one of its vertices contained in D or P , or, if such a biclique does
not exist, pick any remaining biclique and resolve it by deleting one of its vertices that is
either contained in D or of some neighborhood type. Delete all edges and vertices that
are no longer part of some biclique and update the list of parts of bicliques. Decrease k by
one. Then repeat this procedure with any remaining bicliques, if possible one containing
at least one edge from E(G[P]), until the budget is used up or the graph is biclique-free.
Output yes, if the graph becomes biclique-free with a nonnegative budget remaining,
otherwise output no. This concludes the description of the algorithm.

We now show two properties central for achieving the stated running time and for
the correctness. If there does not exist any biclique that contains at least one edge
from E(G[P]), then |E(G[P])| = ∅ holds, because all edges that are not part of at least
one biclique are deleted. Therefore all vertices in P have a neighborhood that is a subset
of D.

A biclique containing at least one edge from E(G[P]) contains at least one vertex
from P on either side. Then the biclique contains at most three vertices from P in total,
because the edges from the biclique between at least four of its vertices from P would
not form a path.

This algorithm yields a depth-bounded search tree with at most |D|+2|D|+3 options

and at most k < |D| choices. It runs in O(2|D|+|D|
2

· |D|2 · n2) time (using |D| + 1 ≥
ω), including the time required for applying Reduction Rule 2.3.1 exhaustively and
maintaining necessary data structures, e.g. a list of parts of the remaining bicliques.

We do not need to distinguish between vertices of the same type, because if an
instance of Biclique-Free Vertex Deletion has a solution containing a specific

3.3. PARAMETERIZATION BY DISTANCE TO DISJOINT PATHS 41

subset of vertices all of the same type, then it also has a solution that instead contains
any other equally sized subset of vertices all of this type. Then this algorithm is correct,
as the search tree will always find a solution of size at most k, if such a solution exists.

We will now solve the remaining case of i = 1, j = 2 using dynamic programming.
Its running time is actually a bit shorter than the previous algorithm.

Theorem 3.24. Let D ⊆ V be a set such that every connected component in G−D is
a path. Then Biclique-Free Vertex Deletion with i = 1 and j = 2 can be solved
in O(22|D| · |D| · (n + m)) time.

Proof. In order to decide which vertices from D should be in the solution set, guess D′ ⊆
D, delete D′ and decrease k by |D′|. Now it remains to be determined which vertices
from V \D are in the solution set. To do so let us introduce some notation. Let D∗ :=
D \ D′ = {d1, d2, . . . , d|D∗|} be the remaining vertices from D. Furthermore, let P :=
{v1, v2, . . . , v|P |} = V \D be the vertices in the disjoint paths such that for each a, b ∈ [|P |]
it holds that if {va, vb} ∈ E, then |a− b| = 1. Also, let Pa := {vp ∈ P | p ≤ a} be the
subset of the first a ∈ [|P |] vertices in the disjoint paths.

We define for each p ∈ [|P |], for each mdc ∈ {0, 1} with dc ∈ D∗, for each x ∈ {>,⊥},
and for each ` ∈ {0, 1} the table entry tp[md1 ,md2 , . . . ,md|D∗| , x, `] as the minimum
possible size of a subset S ⊆ Pp such that every vertex dc ∈ D∗ has degG[D∗∪Pp]−S(dc) =
mdc , the vertex vp ∈ S, if and only if x = >, and if x = ⊥, then the vertex vp is part of
a path of length ` in G[Pp \ S]. Note that if x = >, then ` does not bear any meaning
and can be ignored. If there is no such subset, then we define the table entry as infinity.

We compute the table entries using recursion starting with the base case p = 1. For
each mdc ∈ {0, 1} with dc ∈ D∗, for each x ∈ {>,⊥}, and for each ` ∈ {0, 1}

t1[md1 , . . . ,md|D∗| , x, `] =

0 if x = ⊥, ` = 0 and degG[D∗∪{v1}](dc) = mdc ∀dc ∈ D,

1 if x = > and degG[D∗](dc) = mdc ∀dc ∈ D,

∞ else.

For the correctness of this formula observe that P1 = {v1} holds. If x = ⊥, then v1 6∈ S =
∅. Therefore the vertex v1 must be part of a path of length zero in G[P1−S]. Hence the
table entry is infinity or ` = 0 holds. Furthermore, if x = ⊥, then D∗∪P1\S = D∗∪{v1}.
On the other hand, if x = >, then v1 ∈ S = P1 and D∗ ∪ P1 \ S = D∗.

For every p ≥ 2 we compute the table entries as follows, once the table entries for p−1
are known. For each mdc ∈ {0, 1} with dc ∈ D∗ let m′dc = mdc − 1, if {dc, vp} ∈ E,
otherwise m′dc = mdc , and

tp[md1 , . . . ,md|D∗| ,>] = min
x∈{>,⊥}
`∈{0,1}

{
tp−1[md1 , . . . ,md|D∗| , x, `]

}
+ 1;

tp[md1 , . . . ,md|D∗| ,⊥, 0] =
∞ if ∃dc ∈ D∗ s.t. m′dc = −1,

min
x∈{>,⊥}
`∈{0,1}

{
tp−1[m

′
d1 , . . . ,m

′
d|D∗|

, x, `]
}

else if {vp, vp−1} 6∈ E,

tp−1[m
′
d1
, . . . ,m′d|D∗| ,>] else;

42 CHAPTER 3. BICLIQUE-FREE VERTEX DELETION

tp[md1 , . . . ,md|D∗| ,⊥, 1] =

∞ if ∃dc ∈ D∗ s.t. m′dc = −1,

tp−1[m
′
d1
, . . . ,m′d|D∗| ,⊥, 0] else if {vp, vp−1} ∈ E,

∞ else.

If x = >, then Pp\S = Pp−1\S, so for each vertex dc ∈ D∗ with degG[D∗∪Pp\S](dc) = mdc

also degG[D∗∪Pp−1\S](dc) = mdc holds. Therefore the minimum subset is exactly one
vertex larger than any minimum subset for p− 1 with md1 , . . . ,md|D∗| .

If x = ⊥, then vp 6∈ S and Pp \ S = (Pp−1 ∪ {vp}) \ S. Thus if {dc, vp} ∈ E,
then degG[D∗∪Pp\S](dc) = mdc = m′dc + 1 = degG[D∗∪Pp−1\S](dc) + 1, and if {dc, vp} 6∈ E,
then degG[D∗∪Pp\S](dc) = mdc = m′dc = degG[D∗∪Pp−1\S](dc). Therefore the table entry
must be infinity, when m′dc = −1 for some vertex dc ∈ D∗. If ` = 0, then the vertex vp
is part of a length-zero path in G[Pp \S]. Therefore the minimum subset is of same size
as any minimum subset for p − 1 with {vp, vp−1} 6∈ E or vp−1 ∈ S. If ` = 1, then vp is
part of a length-one path in G[Pp \ S]. Thus both {vp, vp−1} ∈ E and vp−1 6∈ S must
hold and the minimum subset is of same size as this minimum subset for p − 1. Hence
we can conclude that the formulas are correct.

The size of a minimum solution set resolving every K1,2 in G is the minimum of all
table entries for the vertex v|P |. Output yes, if it is at most k, otherwise output no.

The algorithm computes O(2|D
∗| ·n · 3) table entries. To compute the entries for the

base case, check the containment in D∗ of all vertices in O(|D∗| ·n) time, and both count
the number of neighbors in D∗ for every vertex d ∈ D∗ and check if the edge {d, p1} exists
in O(|D∗| ·m). Use this information to compute all 3 ·2|D∗| entries in O(2|D

∗| · |D∗|) time.
Thus the entries for the base case can be computed inO(2|D

∗|·|D∗|+|D∗|·(n+m)) time in
total. The entries for the other cases can be computed in O(2|D

∗| · |D∗| ·n+ |D∗| ·m) time
by checking if the edge {vp, vp−1} exists and testing for edges between D∗ and vp ∈ P
in O(|D∗| ·m) time. Finding the minimum table entry with p = |P | and comparing it
with k requires O(2|D

∗|) time. As the guessing of D′ ⊆ D requires 2|D| runs of the rest
of the algorithm, the algorithm runs in total in O(22|D| · |D| · (n + m)) time.

By combining the running time of all three cases, we arrive at the following result
for the general case.

Corollary 3.25. Let D ⊆ V be a set such that every connected component in G−D is a
path. Then Biclique-Free Vertex Deletion can be solved in O(2|D|+|D|

2

· |D|2 ·n2)
time.

Chapter 4

Biclique-Free Edge Deletion

In this chapter, we will analyze the parameterized complexity of the Biclique-Free
Edge Deletion problem. It is known to be NP-complete in the special case i = j = 2,
because in this case the forbidden subgraph is the K2,2 = C4 and the problem of deleting
edges such that the resulting graph does not contain cycles of specified length `, for
any ` ≥ 3, is NP-complete [Yan78]. The special case k = 0 is W[1]-hard with respect to
the natural parameter j [Lin18].

We study Biclique-Free Edge Deletion with respect to the same parameters for
which we studied the parameterized complexity of Biclique-Free Vertex Deletion
in Chapter 3. This enables us to find similarities and differences in the complexity
between the two variants of Biclique-Free Deletion. It turns out that the results
are in fact similar. We show in Section 4.1 that Biclique-Free Edge Deletion is
FPT when parameterized by the vertex cover number and in Section 4.2 that it admits
a linear-size problem kernel when parameterized by the feedback edge set number. We
prove in Section 4.3 that it is unlikely to find FPT algorithms for two parameters upper-
bounded by the vertex cover number or the feedback edge set number, that is, we
show that Biclique-Free Edge Deletion is W[1]-hard when parameterized by the
feedback vertex set number or the treedepth. Again, this results resembles what is
known for Biclique-Free Vertex Deletion, but the parameterized complexity of
Biclique-Free Edge Deletion with parameter distance to disjoint paths remains
open.

Let us consider the special case i = 1. Biclique-Free Vertex Deletion is
NP-hard even in this case (this is Bounded-Degree Deletion), but in contrast
Biclique-Free Edge Deletion becomes polynomial-time solvable. We show this
using a reduction to the polynomial-time solvable Degree-Constraint Subgraph
problem [Gab83], also known as (g, f)−Factor [KFN21].

Degree-Constraint Subgraph
Input: An undirected graph G = (V,E), degree bounds `v, uv ∈ N for each v ∈

V , and a size lower bound m′ ∈ N of the subgraph.
Question: Does G contain a subgraph G′ = (V,E′) such that |E′| ≥ m′ and `v ≤

degG′(v) ≤ uv for all v ∈ V ?

Lemma 4.1. Biclique-Free Edge Deletion with i = 1 can be solved in O(m ·n · j)
time.

43

44 CHAPTER 4. BICLIQUE-FREE EDGE DELETION

Proof. Let I = (G = (V,E), 1, j, k) be an instance of Biclique-Free Edge Deletion
with i = 1. Then an equivalent instance I ′ = (G′, `, u,m′) of Degree-Constraint
Subgraph can be computed in O(n + m) time as follows: Set G′ := G, `v := 0 and
uv := j − 1 for all v ∈ V and m′ := m− k.

If I is a yes-instance, then there exists a solution set S ⊆ E of size |S| ≤ k such
that G−S is K1,j-free. The subgraph G−S is a solution for I ′, because it contains m−
|S| ≥ m − k edges and has maximum degree j − 1, as a K1,j-free graph has maximum
degree j − 1. Hence I ′ is a yes-instance.

Conversely, if I ′ is a yes-instance, then G = (V,E) contains a subgraph G′ =
(V,E′) ⊆ G with maximum degree at most j − 1 such that |E′| ≥ m − k. Then E \ E′
is of size m− |E′| ≤ k and G− (E \ E′) is K1,j-free. Hence I is a yes-instance.

The Degree-Constraint Subgraph problem can be solved in O(m ·
∑

v∈V uv)
time [Gab83]. Since

∑
v∈V uv = n · j−n, the total running time for first computing and

then solving I ′ is O(m · n · j).

4.1 Parameterization by Vertex Cover Number

In this section, we show that Biclique-Free Edge Deletion is FPT when param-
eterized by the vertex cover number by providing an algorithm using integer linear
programming (ILP). We assume that a minimum vertex cover S is given along with the
problem input. Note that one can compute a minimum vertex cover for any graph in
FPT time with respect to the size of the minimum vertex cover. Let I := V \ S be the
independent set corresponding to the minimum vertex cover S.

Designing an algorithm that guesses which edges to delete analogous to the algo-
rithm for Biclique-Free Vertex Deletion parameterized by the vertex cover num-
ber (see Section 3.1) turned out to be difficult, as it would have been necessary to
upper-bound the budget k by some function of |S|. In our algorithm for Biclique-
Free Vertex Deletion we argue that deleting all vertices in S leaves a biclique-free
independent set and therefore we can assume k ≤ |S|, but deleting all edges with both
endpoints in S does not remove any bicliques that are contained between S and I. The
number of edges between S and I is at most |S| · (n − |S|) and therefore not bounded
by any function of |S| alone. Without an upper bound for k we cannot upper-bound the
size of our guessed edge subset to delete from the graph.

We resort to the following ILP-based approach. We first guess a subset E′ ⊆ E(G[S])
of edges with both endpoints in S, delete it and decrease the budget k by |E′|. After
this step it remains to be determined if at most k edges with one endpoint in S and
the other endpoint in I can be deleted to make G biclique-free. We solve this restricted
variant of Biclique-Free Edge Deletion using an equivalent ILP formulation with
the number of variables bounded only by a function of |S|.

Our goal is to create an ILP formulation such that every variable assignment corre-
sponds to a subset E∗ ⊆ {{u, v} ∈ E | u ∈ S, v ∈ I} of edges to delete from G to obtain
some G′ := G − E∗. We then add additional constraints to ensure that E∗ contains at
most k edges and that G′ is biclique-free.

We introduce a variable xT,T ′ ∈ N for each neighborhood type T ⊆ S and for
each T ′ ⊆ T . Herein, xT,T ′ is intended to denote the number of vertices from I whose

4.1. PARAMETERIZATION BY VERTEX COVER NUMBER 45

neighborhood is T in G and will become T \ T ′ in G′ due to edge deletions. Note that
we do not distinguish between individual vertices in I with the same neighborhood type
in G (or G′).

Since the number of vertices from I with some neighborhood T in G is given as input
and cannot be changed, we add the following constraint to ensure that each solution for
the ILP instance correctly represents this initial state of G.∑

T ′⊆T
xT,T ′ = |{u ∈ I | N(u) = T}| ∀T ⊆ S (4.1)

For each neighborhood T ⊆ S the number of vertices in I with neighborhood T is equal
to
∑

T ′⊆T xT,T ′ .

If a vertex v ∈ I with neighborhood T in G is supposed to have a neighborhood T \T ′
in G′, we have to delete T ′ edges. In fact we have to delete exactly the edges in {{u, v} ∈
E(G) | u ∈ T ′}. In total we want to delete at most k edges to obtain G′ from G, which
we express in the following constraint.∑

T⊆S

∑
T ′⊆T

(
∣∣T ′∣∣ · xT,T ′) ≤ k (4.2)

This constraint allows us to omit an objective function (e.g. minimize the total number
of edges deleted) and therefore the ILP formulation leads to an instance of the ILP
Feasibility problem instead of the more extensive ILP Optimization problem.

Now we add further constraints to guarantee that G′ is biclique-free. We utilize the
fact that at least one side of every biclique contained in G is a subset of S. If the size
of the common neighborhood of every subset S′ ⊆ S with size i, respectively j, is less
than j, respectively i, then G′ is biclique-free. We formalize any required decrement in
the size of common neighborhoods using the following two constraints.

∑
S′⊆T⊆S

∑
T ′⊆T

with T ′∩S′ 6=∅

xT,T ′ ≥

∣∣∣∣∣ ⋂
v∈S′

N(v)

∣∣∣∣∣− j + 1 ∀S′ ⊆ S with
∣∣S′∣∣ = i (4.3)

∑
S′⊆T⊆S

∑
T ′⊆T

with T ′∩S′ 6=∅

xT,T ′ ≥

∣∣∣∣∣ ⋂
v∈S′

N(v)

∣∣∣∣∣− i + 1 ∀S′ ⊆ S with
∣∣S′∣∣ = j (4.4)

This concludes our ILP formulation for solving the restricted variant of Biclique-
Free Edge Deletion. We now prove that the ILP formulation and the restricted
variant of Biclique-Free Edge Deletion are equivalent.

Lemma 4.2. Let S be a vertex cover for G = (V,E) and let I = V \S be the correspond-
ing independent set. Let I = (G = (V,E), i, j, k) be an instance of Biclique-Free
Edge Deletion with the restriction that only edges from the set {{u, v} ∈ E | u ∈
S, v ∈ I} may be deleted. Let I ′ be an ILP Feasibility instance consisting of Con-
straints (4.1) to (4.4) and the matching variables. Then I is a yes-instance, if and only
if I ′ is a yes-instance.

46 CHAPTER 4. BICLIQUE-FREE EDGE DELETION

Proof. We first prove that if I is a yes-instance, then I ′ is a yes-instance. So let E′′ ⊆
{{u, v} ∈ E | u ∈ S, v ∈ I} be a solution set for I of size |E′′| ≤ k. Let G′ :=
G − E′′ be the graph that is obtained by deleting E′′ from G. For each T ⊆ S and
for each T ′ ⊆ T set the variable xT,T ′ = 0 initially. Then, for each vertex v ∈ I,
increase xNG(v),NG(v)\NG′ (v)

by one. This satisfies Constraint (4.1), as NG(v) \NG′(v) ⊆
NG(v) ⊆ S holds. Also Constraint (4.2) is fulfilled, because G′ is obtained from G
by deleting |E′′| ≤ k edges and E′′ contains exactly |NG(v) \NG′(v)| edges for each
vertex v ∈ I.

For each S′ ⊆ S with |S′| = i it holds that
∣∣⋂

v∈S′ NG′(v)
∣∣ < j, as G′ is Ki,j-free.

If
∣∣⋂

v∈S′ NG(v)
∣∣ ≥ j, then at least

∣∣⋂
v∈S′ NG(v)

∣∣−j+1 edges between vertices in S′ and
the common neighborhood of S′ must be deleted to make G′ Ki,j-free and are therefore
contained in E′′. Hence there exist at least

∣∣⋂
v∈S′ NG(v)

∣∣− j + 1 vertices v ∈ I with a
neighborhood NG(v) ⊇ S′ in G, but |NG(v) ∩ S′| > |NG′(v) ∩ S′|. Consequently, Con-
straint (4.3) and analogously also Constraint (4.4) must hold. Hence I ′ is a yes-instance.

Now we prove that if I ′ is a yes-instance, then I is a yes-instance. So let the
variables from I ′ be assigned to values, such that all constraints are satisfied. Con-
struct a solution set E′′ ⊆ {{u, v} ∈ E | u ∈ S, v ∈ I} for I as follows to obtain the
graph G′ := G−E′′. For each T ⊆ S and for each T ′ ⊆ T choose a subset of xT,T ′ many
vertices X ⊆ {u ∈ I | N(u) = T} that were not chosen before and add all edges between
the vertices in T ′ and X to E′′. The edges exist, because T ′ ⊆ T and N(u) = T for
all u ∈ X. There are sufficiently many vertices in {u ∈ I | N(u) = T} that were not cho-
sen before, because Constraint (4.1) ensures that

∑
T ′⊆T xT,T ′ = |{u ∈ I | N(u) = T}|

holds. We add |T ′| · xT,T ′ many edges to E′′ for each T ⊆ S and for each T ′ ⊆ T .
Since Constraint (4.2) is fulfilled, this leads to at most k edges in total and |E′′| ≤ k
holds.

We continue by showing that G′ is Ki,j-free. At least one side of every Ki,j con-
tained in G is a subset of S since vertices in an independent set are by definition not
neighbors. If the size of the common neighborhood of every subset S′ ⊆ S with size i,
respectively j, is less than j, respectively i, then G′ is Ki,j-free. Hence we have to
prove that

∣∣⋂
v∈S′ NG′(v)

∣∣ < j for all S′ ⊆ S with |S′| = i and
∣∣⋂

v∈S′ NG′(v)
∣∣ < i for

all S′ ⊆ S with |S′| = j. Assume towards contradiction that there exists a subset S′ ⊆ S
with |S′| = i such that

∣∣⋂
v∈S′ NG′(v)

∣∣ ≥ j or a subset S′′ ⊆ S with |S′′| = j such
that

∣∣⋂
v∈S′′ NG′(v)

∣∣ ≥ i. We continue by covering only the first case, as the other case is
analogous. Since Constraint (4.3) is fulfilled, at least

∣∣⋂
v∈S′ NG(v)

∣∣− j + 1 ≥ 1 vertices
contained in I and the common neighborhood of S′ in G, that is, they have the neighbor-
hood T in G for some S′ ⊆ T ⊆ S, are not in the common neighborhood of S′ in G′, that
is, they have the neighborhood T \T ′ in G′ for some T ′ ⊆ T with T ′∩S′ 6= ∅. This yields
the contradiction j ≤

∣∣⋂
v∈S′ NG′(v)

∣∣ ≤ ∣∣⋂v∈S′ NG(v)
∣∣− ∣∣⋂v∈S′ NG(v)

∣∣+ j − 1 = j − 1.
Hence I is a yes-instance.

We now provide an FPT algorithm for Biclique-Free Edge Deletion parame-
terized by vertex cover number as the main result of this section. The algorithm uses
the ILP Feasibility formulation to solve the restricted variant of Biclique-Free
Edge Deletion parameterized by the vertex cover number in FPT time.

4.2. PARAMETERIZATION BY FEEDBACK EDGE SET NUMBER 47

Theorem 4.3. Let S be a vertex cover of G. Then Biclique-Free Edge Deletion
can be solved in O∗(22O(|S|)

) time.

Proof. Guess a subset E′ ⊆ {{u, v} ∈ E | u, v ∈ S} of edges with both endpoints in S,
delete it from G and decrease the budget k by |E′|. Then construct an instance of ILP
Feasibility as described above consisting of Constraints (4.1) to (4.4) and the matching
variables. Solve it to obtain an answer for the remaining instance of Biclique-Free
Edge Deletion now restricted to the deletion of edges with one endpoint in S and the
other endpoint in I.

The algorithm is correct, because the ILP Feasibility instance is equivalent to the
instance of the restricted variant of Biclique-Free Edge Deletion we obtained after
we deleted the subset E′ (see Lemma 4.2).

The algorithm tries all possible subsets of edges with both endpoints in S resulting
in 2O(|S|

2) different ILP instances to construct and solve. Adding Constraints (4.3)
and (4.4) to an instance requires O(23|S| · |S| · n) time. The remaining constraints can
be added quicker. Hence in total each ILP instance can be constructed in O(23|S| ·
|S| · n) time. It uses 2O(|S|) many variables and can therefore be solved in O∗(22O(|S|)

)

time [FT87; Kan87; Len83]. Combining every step sums up in total to O∗(22O(|S|)
)

time.

4.2 Parameterization by Feedback Edge Set Number

We will now show that Biclique-Free Edge Deletion admits a linear-size prob-
lem kernel when parameterized by the feedback edge set number. This is another pa-
rameter for which we also studied Biclique-Free Vertex Deletion. In fact we
use the same idea we used to achieve the linear-size problem kernel for the case i ≥ 2
of Biclique-Free Vertex Deletion (see Section 3.2.1) with only minor adjustments,
but since Biclique-Free Edge Deletion with i = 1 is solvable in polynomial time
this approach is not limited to i ≥ 2. Recall that V2(G) := {v ∈ V (G) | deg(v) = 2} for
a graph G.

Theorem 4.4. Biclique-Free Edge Deletion admits a linear-size problem kernel
computable in O(n ·m · j) time when parameterized by the feedback edge set number.

Proof. If i = 1, then solve the instance in O(n · m · j) time (see Lemma 4.1) and
output a trivial yes- or no-instance accordingly. For the remaining case i ≥ 2 we can
reduce Biclique-Free Edge Deletion to the following linear-size problem kernel
that is very similar to the problem kernel we provided for Biclique-Free Vertex
Deletion (see Theorem 3.5).

Assume i, j ≥ 2 and let F ⊆ E be a feedback edge set for the input graph G
computable in O(n + m) time using depth-first search. If the budget k ≥ |F |, then
we can output a trivial yes-instance and are done. This is correct, because deleting all
feedback edges is covered by the budget and results in a forest, which does not contain
any Ki,j with i, j ≥ 2 as a subgraph. We can therefore assume that k < |F |.

Apply Reduction Rule 3.2.1 exhaustively in O(n + m) time (see Lemma 3.2) to
remove all vertices with degree at most one. By Lemma 3.3 the remaining graph G

48 CHAPTER 4. BICLIQUE-FREE EDGE DELETION

now contains at most 2 |F | vertices of degree at least three. Also delete all vertices
from G that are contained in a connected component of G[V2(G)] with more than four
vertices, because they cannot be contained in any biclique of sufficient size. This is also
possible in O(n + m) time using depth-first search. Then every connected component
in G[V2(G)] contains at most four vertices. Using Lemma 3.4 we can conclude that there
exist at most 12 |F | − 4 vertices of degree two in G. By combining both upper bounds
we achieve n ≤ 14 |F |−4 in total. Using m ≤ n+ |F |−1 yields m ≤ 15 |F |−5. If j ≥ n,
then output a trivial yes-instance, as the graph cannot contain any Ki,j in this case.
Now it holds that k < |F |, i ≤ j < n ≤ 14 |F | − 4, and m ≤ 15 |F | − 5. Hence the size
of the remaining instance is bounded linearly in |F |.

4.3 Parameterization by Feedback Vertex Set Number

In this section, we show that Biclique-Free Edge Deletion parameterized by the
feedback vertex set number is W[1]-hard. As a corollary, we also show that it is W[1]-
hard for the parameter treedepth. Thereby we provide a result analogous to the known
W[1]-hardness of Bounded-Degree Deletion [GKO21], and give evidence that the
parameter feedback edge set number, for which we achieved fixed-parameter tractability
earlier, is most likely the smallest established “tree-like” parameter for which we can
hope to prove fixed-parameter tractability.

We provide a parameterized reduction from the same problem and based on the same
underlying idea that Ganian, Klute, and Ordyniak [GKO21, Theorem 2] used for their
parameterized reduction to show that Bounded-Degree Deletion parameterized by
the feedback vertex set number or the treedepth is W[1]-hard. Nonetheless, the actual
construction of an equivalent instance differs fundamentally, especially since Biclique-
Free Edge Deletion works with edge deletions, but Bounded-Degree Deletion
works with vertex deletions.

Let us introduce some notation. For a vector b ∈ Nk with k ∈ N rows we denote the
value in the x’th row of b by b[x]. We write a ≥ b for two vectors a, b ∈ Nk with k ∈ N
rows, if a[x] ≥ b[x] for each row x ∈ [k]. Furthermore, for a given vector s ∈ Nk

with k ∈ N rows let max(s) := max{s[x] | x ∈ [k]} be the largest value in s.
We show the W[1]-hardness using a parameterized reduction from the following prob-

lem.

Multidimensional Relaxed Subset Sum (MRSS) [GKO21]

Input: The number of rows k ∈ N, a set S = {s1, . . . , sn} of vectors with si ∈ Nk

for each i ∈ [n], a target vector t ∈ Nk and the budget k′ ∈ N.
Question: Is there a subset S′ ⊆ S with |S′| ≤ k′ such that

∑
s∈S′ s ≥ t?

It is known that MRSS parameterized by (k + k′) is W[1]-hard.

Lemma 4.5 ([GKO21, Lemma 4]). Multidimensional Relaxed Subset Sum pa-
rameterized by (k + k′) is W[1]-hard even if all numbers in the input are given in unary.

Given an instance of MRSS we will now present the construction of an equivalent in-
stance of Biclique-Free Edge Deletion, then we will prove that we can assume that
solutions for the constructed instances have some property and using this observation
prove the correctness of the overall parameterized reduction.

4.3. PARAMETERIZATION BY FEEDBACK VERTEX SET NUMBER 49

.

d11 d12 d1k′+1
. dk1 dk2 dkk′+1

. . .

rr

`̀

ĉs11̂c
s1
1

cs11c
s1
1

ĉs12̂c
s1
2

cs12c
s1
2

ĉs1max(s)ĉs1max(s)

cs1max(s)cs1max(s)

rs1rs1

ĉsn1̂c
sn
1 ĉsn2̂c

sn
2

ĉsnmax(s)ĉsnmax(s)

csn1c
sn
1 csn2c

sn
2

csnmax(s)csnmax(s)

rsnrsn

`sn1`
sn
1 `sn2`

sn
2

`snmax(s)`snmax(s)`s11`
s1
1 `s12`

s1
2

`s1max(s)`s1max(s)

Figure 4.1: Example of a graph constructed by Construction 4.6 in the parameterized re-
duction from MRSS to Biclique-Free Edge Deletion parameterized by the feedback
vertex set number. The blue vertices are feedback vertices. Every red vertex with either
the vertex r or the vertex ` forms one side of a K2,j . Also for each x ∈ [k], y ∈ [k′ + 1]
the vertex dxy with the vertex ` forms one side of a K2,j . If there is a solution for the
constructed instance, then there is a solution only containing a subset of the bold edges.

Construction 4.6. Let I = (k, S, t, k′) be an instance of MRSS. We construct an
equivalent instance I ′ = (G = (V,E), 2, j, k′′) of Biclique-Free Edge Deletion as
follows. See Figure 4.1 for an example of a constructed graph.

Add two feedback vertices r, ` to V . For each s ∈ S add the gadget Gs to G consisting
of

� the vertices `s1, `
s
2, . . . , `

s
max(s), each with an edge to `,

� the vertex rs with an edge to r,

� the vertices csy, ĉ
s
y and the edge {csy, ĉsy} for each y ∈ [max(s)],

� the edges {cs1, `s1}, {cs2, `s2}, . . . , {csmax(s), `
s
max(s)},

� the edges {cs1, rs}, {cs2, rs}, . . . , {csmax(s), r
s},

� the edges {ĉs1, `}, {ĉs2, `}, . . . , {ĉsmax(s), `} and

� the edges {ĉs1, r}, {ĉs2, r}, . . . , {ĉsmax(s), r}.

Set the budget k′′ := k′ +
∑

s∈S max(s). For each row x ∈ [k] add (k′ + 1) feedback
vertices dx1 , d

x
2 , . . . , d

x
k′+1 to V . Now add edges such that for each row x ∈ [k], for

each y ∈ [k′ + 1] and for each s ∈ S the vertex dxy has exactly s[x] neighbors among the
vertices `s1, `

s
2, . . . , `

s
max(s). Set j := 2 + max{

∑
s∈S s[x] | x ∈ [k]} such that G currently

50 CHAPTER 4. BICLIQUE-FREE EDGE DELETION

contains no K2,j′ as a subgraph for all j′ > j. For each s ∈ S and for each y ∈ [max(s)]
add new additional vertices to the common neighborhood of csy and ` such that the size
of the common neighborhood becomes j. More precisely, add a new vertex to G with
edges to csy and ` repeatedly until

∣∣N(csy) ∩N(`)
∣∣ = j holds. Analogously, add new

additional vertices to the common neighborhood of csy and r to increase the size of the
common neighborhood to j. For each row x ∈ [k] and for each y ∈ [k′ + 1] add new
additional vertices to the common neighborhood of dxy and ` such that the size of the
common neighborhood becomes j + t[x]− 1.

This finishes the construction of I ′. Note that for each y ∈ [max(s)] the vertices csy
and ` have a common neighborhood of size j, which includes the vertices ĉsy and `sy. Also
the vertices csy and r have a common neighborhood of size j. It includes the vertices ĉsy
and rs. Hence Gs contains (2 ·max(s)) different bicliques Ki,j that need to be resolved.
There are many different possibilities to do so, but the following two options are the
most relevant. In fact we will later show that we can assume that a solution only uses
these two options to resolve all bicliques in the whole graph. The bicliques in Gs can
be resolved by deleting the edges {{cs1, ĉs1}, {cs2, ĉs2}, . . . , {csmax(s), ĉ

s
max(s)}} ⊆ E(Gs) or

alternatively by deleting both the edge {rs, r} ∈ E(Gs) and the edges between the
vertices `s1, `

s
2, . . . , `

s
max(s) and `. The first option requires max(s) edge deletions and

is the optimum for each individual gadget. Choosing the second option requires one
more edge deletion, but may help to resolve other bicliques intersecting Gs that will be
discussed shortly and corresponds to picking the vector s in the solution set S′ of I. As
the budget is k′′ = k′ +

∑
s∈S max(s), we can pick the second option up to k′ times,

therefore limiting the size of the corresponding solution set of I.

Note that for each row x ∈ [k] and for each y ∈ [k′ + 1] the vertices dxy and `
have a common neighborhood of size j + t[x] − 1. Therefore dxy and ` are part of a
biclique K2,j+t[x]−1 contained in G as a subgraph that needs to be resolved by deleting
at least t[x] edges. Picking the second of the discussed two options to resolve the bicliques
contained in the gadget Gs for all s ∈ S′ ⊆ S deletes

∑
s∈S′ s[x] of those edges. Hence the

resulting graph is biclique-free, if and only if
∑

s∈S′ s[x] ≥ t[x] holds for each row x ∈ [k].

We will now prove that we can indeed assume that a solution for I ′ contains exactly
one of two fixed subsets of edges from each gadget.

Observation 4.7. If I ′ is a yes-instance, then there is a solution E′′ ⊆ E such that for
each s ∈ S we have either

E′′ ∩ E(Gs) = {{cs1, ĉs1}, {cs2, ĉs2}, . . . , {csmax(s), ĉ
s
max(s)}} or (4.5)

E′′ ∩ E(Gs) = {{`s1, `}, {`s2, `}, . . . , {`smax(s), `}, {r
s, r}}. (4.6)

Proof. Let E′ ⊆ E be a solution for I ′ and let s ∈ S. If |E′ ∩ E(Gs)| ≤ max(s),
then Equation (4.5) must hold, because this is the only optimal solution set for resolving
all bicliques in Gs and all other solutions are larger than max(s). If |E′ ∩ E(Gs)| >
max(s), then E′′ = (E′ \ E(Gs)) ∪ {{rs, r}} ∪ {{`sy, `} | y ∈ [max(s)]} is also a solution
for I ′, because |E′′| = |E′| − |E′ ∩ E(Gs)| + max(s) + 1 ≤ |E′| and E′′ resolves all
bicliques in Gs and decreases the size of the common neighborhood of dxy and ` for each
row x ∈ [k] and for each y ∈ [k′ + 1] at least equally.

4.3. PARAMETERIZATION BY FEEDBACK VERTEX SET NUMBER 51

We will now show that Construction 4.6 produces a parameterized reduction and
allows us to conclude that Biclique-Free Edge Deletion parameterized by the feed-
back vertex set number is W[1]-hard.

Theorem 4.8. Biclique-Free Edge Deletion parameterized by the feedback vertex
set number is W[1]-hard.

Proof. Given an instance I of MRSS parameterized by (k + k′) construct an equivalent
instance I ′ of Biclique-Free Edge Deletion parameterized by the feedback vertex
set number according to Construction 4.6.

The budget k′′ and the size j can be computed in O(n ·k) time, as there are n vectors
with k rows in S. Adding the gadgets including the enlarged common neighborhoods re-
quires O(n·‖S‖max ·‖S‖∞) many vertices and edges and therefore also time, where ‖·‖max

is the maximum norm and ‖·‖∞ is the maximum row sum norm. Adding the remaining
feedback vertices with their incident edges is possible in O(k ·k′ · (‖S‖∞+max(t))) time,
as there are O(k ·k′) of those vertices each with O(‖S‖∞+max(t)) edges. These running
times add up to O(n ·k+n ·‖S‖max ·‖S‖∞+k ·k′ ·(‖S‖∞+max(t))) time for constructing
the equivalent instance, which is a polynomial considering that we can assume that the
numbers in the input are given in unary (see Lemma 4.5).

Deleting the vertices r, ` and {dxy | x ∈ [k], y ∈ [k′ + 1]} from G results in a forest
of height three. Hence the parameter FVN(G) ≤ k · (k′ + 1) + 2 is bounded by the old
parameter (k + k′).

We now prove that I and I ′ are equivalent and thereby finish the parameterized
reduction. We start by showing that, given the MRSS instance I is a yes-instance,
the modified instance I ′ is a yes-instance. So let S′ ⊆ S be a solution for I. Then
we construct a solution E′ for I ′ as follows. For each s ∈ S′ add the edges between
the vertices `s1, `

s
2, . . . , `

s
max(s) ∈ V and ` ∈ V , and the edge {rs, r} ∈ E to E′. For

each s ∈ S \ S′ add the edges {{cs1, ĉs1}, {cs2, ĉs2}, . . . , {csmax(s), ĉ
s
max(s)}} ⊆ E to E′. This

resolves all bicliques K2,j in the gadget Gs for all s ∈ S and decreases the size of
the common neighborhood of dxy and ` by

∑
s∈S′ s[x] for each row x ∈ [k] and for

each y ∈ [k′ + 1]. This and the fact that
∑

s∈S′ s ≥ t holds yields that the size of
the common neighborhood of dxy and ` becomes j + t[x] − 1 −

∑
s∈S′ s[x] ≤ j − 1 < j,

meaning that all bicliques K2,j are resolved in G − E′. Since |S′| ≤ k′, there are at
most k′ +

∑
s∈S max(s) edges in E′. Hence I ′ is a yes-instance.

We now show that the MRSS instance I is a yes-instance, if I ′ is a yes-instance. So
let E′ ⊆ E be a solution for I ′. By Observation 4.7 we may assume that, for each s ∈ S,
either Equation (4.5) or Equation (4.6) holds. Then S′ constructed as follows is a
solution to I. For each s ∈ S, if {{`s1, `}, {`s2, `}, . . . , {`smax(s), `}, {r

s, r}} ⊆ E′, then

add s to S′. It holds that |S′| ≤ k′, because every s ∈ S such that Equation (4.6)
holds adds 1 + max(s) edges to E′, but |E′| ≤ k′ +

∑
s∈S max(s). Furthermore, it

holds that
∣∣E′ \⋃s∈S E(Gs)

∣∣ ≤ k′, because, for each s ∈ S, the gadget Gs requires at
least max(s) edge deletions to make it biclique-free. Therefore for every row x ∈ [k]
there exists a y ∈ [k′ + 1] such that E′ ∩ {{dxy , v} | v ∈ V } = ∅. The size of the
common neighborhood of dxy and ` is per construction j + t[x] − 1, so E′ must contain
at least t[x] edges from

⋃
s∈S E(Gs) with one endpoint being ` and the other endpoint

being a neighbor of dxy . Only the gadgets in {Gs | s ∈ S′} contain such edges, each

52 CHAPTER 4. BICLIQUE-FREE EDGE DELETION

gadget Gs exactly s[x] many, so
∑

s∈S′ s[x] ≥ t[x] must hold for every row and therefore
also

∑
s∈S′ s ≥ t holds. Hence I is a yes-instance and the two instances are equivalent.

The problem Biclique-Free Edge Deletion parameterized by the feedback ver-
tex set number is W[1]-hard, since there is a parameterized reduction from the W[1]-hard
problem MRSS parameterized by (k + k′) to it.

Because deleting the feedback vertices results in a forest of constant height, i.e.
three, the treedepth of G is also bounded by (k + k′). Hence Theorem 4.8 also proves
that Biclique-Free Edge Deletion is W[1]-hard when parameterized by treedepth.

Corollary 4.9. Biclique-Free Edge Deletion parameterized by the treedepth is
W[1]-hard.

Chapter 5

Conclusion

We studied the parameterized complexity of Biclique-Free Vertex Deletion and
Biclique-Free Edge Deletion with respect to the structural graph parameters ver-
tex cover number, distance to disjoint paths, feedback edge set number and feedback
vertex set number.

We conclude that the parameterized complexity of Biclique-Free Vertex Dele-
tion and Biclique-Free Edge Deletion is similar in many aspects, e.g. both are
FPT for the parameter vertex cover number and admit a linear-size problem kernel with
respect to the feedback edge set number. The special case i = 1 of Biclique-Free Ver-
tex Deletion, i.e BDD, is W[1]-hard when parameterized by the feedback vertex set
number or the treedepth [GKO21], while Biclique-Free Edge Deletion is W[1]-hard
for the same parameters in general. However, Biclique-Free Edge Deletion appears
to be simpler in some cases, e.g. Biclique-Free Edge Deletion with i = 1 can be
solved in polynomial time and the linear-size problem kernel for the parameter feedback
edge set number does not use a huge case distinction, but also Biclique-Free Vertex
Deletion is simpler in some sense, e.g. the FPT algorithm for the parameter vertex
cover number does not use ILP Feasibility and we also proved that Biclique-Free
Vertex Deletion is FPT when parameterized by the distance to disjoint paths while
the complexity for the edge deletion variant remains open for this parameter. Answering
the following open question could help comparing the complexity of the two variants of
Biclique-Free Deletion: Is Biclique-Free Edge Deletion with respect to the
distance to disjoint paths FPT?

Taking a closer look it seems that Biclique-Free Vertex Deletion with i =
1, i.e. BDD, is actually significantly more involved than with i ≥ 2. Our linear-size
problem kernel for i = 1 and the parameter feedback edge set number requires a huge
case distinction, while our linear-size problem kernel for i ≥ 2 is simpler, although not
faster computable. Our FPT algorithm for the parameter distance to disjoint paths
handles the cases i = j = 1 and i = 1, j = 2 separately. Interestingly these cases
actually have a slightly better running time bound compared to the case i ≥ 2 or j ≥
3, and BDD is W[1]-hard when parameterized by the feedback vertex set number or
the treedepth [GKO21], but the complexity of Biclique-Free Vertex Deletion
with i ≥ 2 regarding these two parameters remains open. Furthermore, BDD is in
XP for the parameter treewidth [DJL93], but we could not find out if Biclique-Free

53

54 CHAPTER 5. CONCLUSION

Vertex Deletion with i ≥ 2 is also in XP for treewidth. So while BDD appears
to be significantly more involved than Biclique-Free Vertex Deletion with i ≥ 2
for some cases, the relationship between BDD and Biclique-Free Vertex Deletion
with i ≥ 2 is mostly open. Future work could analyze this relationship in more depth
and answer questions left open: Is Biclique-Free Vertex Deletion with i ≥ 2
W[1]-hard when parameterized by the feedback vertex set number? Is Biclique-Free
Vertex Deletion with i ≥ 2 in XP when parameterized by the treewidth?

We found two “FPT-borders” regarding structural graph parameters for Bounded-
Degree Deletion and Biclique-Free Edge Deletion. Bounded-Degree Dele-
tion is W[1]-hard for the parameter feedback vertex set number [GKO21], that is, the
“distance to disjoint trees”, but FPT for the parameter distance to disjoint paths, which
is, based on the well-known hierarchy of established graph parameters, one of the next
larger parameters. Apparently, Bounded-Degree Deletion is not easy to solve when
the graph has a small feedback vertex set number, but it can be solved efficiently, if the
graph has a small distance to disjoint paths. Biclique-Free Edge Deletion is W[1]-
hard when parameterized by the feedback vertex set number, but FPT for the parameter
feedback edge set number, which is also one of the next larger established parameters.
Also Biclique-Free Edge Deletion appears to be difficult to solve when the graph
has a small feedback vertex set number, but it can be solved efficiently, if the graph has
a small feedback edge set number.

We would like to point out the following further results, which we believe are par-
ticularly interesting. We provide a non-constructive proof for a data reduction rule in
our linear-size problem kernel for BDD when parameterized by the feedback edge set
number (see Lemma 3.15). By arguing that there must exist a certain equivalent in-
stance of constant size for each case that can occur, we avoid listing all cases and all
equivalent instances each with a proof of correctness explicitly. We also showed an FPT
algorithm solving the (i, j)-Biclique problem parameterized by treewidth, and showed
how this algorithm can be used as a basis for a data reduction rule for Biclique-free
Deletion, which deletes all vertices and edges that are not part of at least one biclique.

In addition to the questions raised so far, the following questions regarding the
parameterized complexity of Biclique-free Deletion remain open for future research.
Are the algorithms and kernels presented in this work optimal from a theoretical point of
view and are they effective in practice? Finding even faster algorithms or proving that
the presented ones are optimal may lead to new insight regarding the parameterized
complexity of Biclique-free Deletion. Restricting a problem to a certain class of
graphs can help finding efficient algorithm. What is the parameterized complexity of
Biclique-free Deletion when restricted to a certain class of graphs, e.g. bipartite or
line graphs?

Literature

[AH19] T. Alzahrani and K. Horadam. Finding Maximal Bicliques in Bipartite Net-
works Using Node Similarity . In: Applied Network Science 4.1 (2019), 21:1–
21:25 (cit. on p. 10).

[Ale+04] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and B. Simeone.
Consensus Algorithms for the Generation of all Maximal Bicliques. In: Dis-
crete Applied Mathematics 145.1 (2004), pp. 11–21 (cit. on p. 10).

[BB+20] F. Bonomo-Braberman, J. R. Nascimento, F. S. Oliveira, U. S. Souza, and
J. L. Szwarcfiter. Linear-Time Algorithms for Eliminating Claws in Graphs.
In: Proceedings of the 26th International Computing and Combinatorics Con-
ference (COCOON 2020). LNCS 12273. Springer, 2020, pp. 14–26 (cit. on
p. 11).

[BD11] S. Böcker and P. Damaschke. Even Faster Parameterized Cluster Dele-
tion and Cluster Editing . In: Information Processing Letters 111.14 (2011),
pp. 717–721 (cit. on p. 11).

[Bet+12] N. Betzler, R. Bredereck, R. Niedermeier, and J. Uhlmann. On Bounded-
Degree Vertex Deletion Parameterized by Treewidth. In: Discrete Applied
Mathematics 160.1 (2012), pp. 53–60 (cit. on pp. 11, 20, 22).

[Cai96] L. Cai. Fixed-Parameter Tractability of Graph Modification Problems for
Hereditary Properties. In: Information Processing Letters 58.4 (1996),
pp. 171–176 (cit. on pp. 10, 11).

[Cou90] B. Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable
Sets of Finite Graphs. In: Information and Computation 85.1 (1990), pp. 12–
75 (cit. on p. 11).

[Cre+20] C. Crespelle, P. G. Drange, F. V. Fomin, and P. A. Golovach. A Survey of
Parameterized Algorithms and the Complexity of Edge Modification. 2020.
arXiv: 2001.06867v2 [cs.DS] (cit. on p. 10).

[Cyg+14] M. Cygan, D. Marx, M. Pilipczuk, and M. Pilipczuk. Hitting Forbidden
Subgraphs in Graphs of Bounded Treewidth. In: Proceedings of the 39th In-
ternational Symposium on Mathematical Foundations of Computer Science
(MFCS 2014). LNCS 8635. Springer, 2014, pp. 189–200 (cit. on p. 11).

[Cyg+15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015 (cit.
on pp. 15, 16, 40).

55

http://dx.doi.org/10.1007/s41109-019-0123-6
http://dx.doi.org/10.1007/s41109-019-0123-6
http://dx.doi.org/10.1016/j.dam.2003.09.004
http://dx.doi.org/10.1007/978-3-030-58150-3_2
http://dx.doi.org/10.1016/j.ipl.2011.05.003
http://dx.doi.org/10.1016/j.ipl.2011.05.003
http://dx.doi.org/10.1016/j.dam.2011.08.013
http://dx.doi.org/10.1016/j.dam.2011.08.013
http://dx.doi.org/10.1016/0020-0190(96)00050-6
http://dx.doi.org/10.1016/0020-0190(96)00050-6
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/0890-5401(90)90043-H
https://arxiv.org/abs/2001.06867v2
https://arxiv.org/abs/2001.06867v2
https://arxiv.org/abs/2001.06867v2
http://dx.doi.org/10.1007/978-3-662-44465-8_17
http://dx.doi.org/10.1007/978-3-662-44465-8_17
http://dx.doi.org/10.1007/978-3-319-21275-3

56 LITERATURE

[Cyg+17] M. Cygan, M. Pilipczuk, M. Pilipczuk, E. J. van Leeuwen, and M. Wrochna.
Polynomial Kernelization for Removing Induced Claws and Diamonds. In:
Theory of Computing Systems 60.4 (2017), pp. 615–636 (cit. on p. 11).

[Die17] R. Diestel. Graph Theory . 5th ed. Graduate Texts in Mathematics 173.
Springer, 2017 (cit. on p. 13).

[DJL93] A. Dessmark, K. Jansen, and A. Lingas. The Maximum k-Dependent and f -
Dependent Set Problem. In: Proceedings of the 4th International Symposium
on Algorithms and Computation (ISAAC 1993). LNCS 762. Springer, 1993,
pp. 88–97 (cit. on pp. 11, 53).

[ELW15] L. Epstein, A. Levin, and G. J. Woeginger. The (Weighted) Metric Dimen-
sion of Graphs: Hard and Easy Cases. In: Algorithmica 72.4 (2015), pp. 1130–
1171 (cit. on p. 21).

[Fel+11] M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier. A Generalization of
Nemhauser and Trotter’s Local Optimization Theorem. In: Journal of Com-
puter and System Sciences 77.6 (2011), pp. 1141–1158 (cit. on pp. 11, 19).

[FT87] A. Frank and E. Tardos. An Application of Simultaneous Diophantine Ap-
proximation in Combinatorial Optimization. In: Combinatorica 7.1 (1987),
pp. 49–65 (cit. on pp. 16, 47).

[Gab83] H. N. Gabow. An Efficient Reduction Technique for Degree-Constrained Sub-
graph and Bidirected Network Flow Problems. In: Proceedings of the 15th An-
nual ACM Symposium on Theory of Computing (STOC 1983). Association
for Computing Machinery, 1983, pp. 448–456 (cit. on pp. 43, 44).

[GKO21] R. Ganian, F. Klute, and S. Ordyniak. On Structural Parameterizations of
the Bounded-Degree Vertex Deletion Problem. In: Algorithmica 83.1 (2021),
pp. 297–336 (cit. on pp. 11, 12, 19, 48, 53, 54).

[Kan87] R. Kannan. Minkowski’s Convex Body Theorem and Integer Programming .
In: Mathematics of Operations Research 12.3 (1987), pp. 415–440 (cit. on
pp. 16, 47).

[KFN21] T. Koana, V. Froese, and R. Niedermeier. Binary Matrix Completion Under
Diameter Constraints. In: Proceedings of the 38th International Symposium
on Theoretical Aspects of Computer Science (STACS 2021). Leibniz Inter-
national Proceedings in Informatics (LIPIcs) 187. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2021, 47:1–47:14 (cit. on p. 43).

[KK20] L. Kellerhals and T. Koana. Parameterized Complexity of Geodetic Set . In:
Proceedings of the 15th International Symposium on Parameterized and Ex-
act Computation (IPEC 2020). Leibniz International Proceedings in Infor-
matics (LIPIcs) 180. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020,
20:1–20:14 (cit. on p. 21).

[Kor21] T. Korhonen. A Single-Exponential Time 2-Approximation Algorithm for
Treewidth. Accepted at FOCS 2021. 2021. arXiv: 2104.07463 [cs.DS] (cit.
on pp. 16, 17).

http://dx.doi.org/10.1007/s00224-016-9689-x
http://dx.doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.1007/3-540-57568-5_238
http://dx.doi.org/10.1007/3-540-57568-5_238
http://dx.doi.org/10.1007/s00453-014-9896-2
http://dx.doi.org/10.1007/s00453-014-9896-2
http://dx.doi.org/10.1016/j.jcss.2010.12.001
http://dx.doi.org/10.1016/j.jcss.2010.12.001
http://dx.doi.org/10.1007/BF02579200
http://dx.doi.org/10.1007/BF02579200
http://dx.doi.org/10.1145/800061.808776
http://dx.doi.org/10.1145/800061.808776
http://dx.doi.org/10.1007/s00453-020-00758-8
http://dx.doi.org/10.1007/s00453-020-00758-8
http://dx.doi.org/10.1287/moor.12.3.415
http://dx.doi.org/10.4230/LIPIcs.STACS.2021.47
http://dx.doi.org/10.4230/LIPIcs.STACS.2021.47
http://dx.doi.org/10.4230/LIPIcs.IPEC.2020.20
https://arxiv.org/abs/2104.07463v2
https://arxiv.org/abs/2104.07463v2
https://arxiv.org/abs/2104.07463

LITERATURE 57

[KS21] M. Kučera and O. Suchý. Minimum Eccentricity Shortest Path Problem
with Respect to Structural Parameters. In: Proceedings of the 32nd Interna-
tional Workshop on Combinatorial Algorithms (IWOCA 2021). LNCS 12757.
Springer, 2021, pp. 442–455 (cit. on p. 39).

[Len83] H. W. Lenstra. Integer Programming with a Fixed Number of Variables. In:
Mathematics of Operations Research 8.4 (1983), pp. 538–548 (cit. on pp. 16,
47).

[Lin18] B. Lin. The Parameterized Complexity of the k-Biclique Problem. In: Journal
of the ACM 65.5 (2018), 34:1–34:21 (cit. on pp. 10, 19, 43).

[Lok08] D. Lokshtanov. Wheel-Free Deletion Is W[2]-Hard . In: Proceedings of the 3rd
International Workshop on Parameterized and Exact Computation (IWPEC
2008). LNCS 5018. Springer, 2008, pp. 141–147 (cit. on p. 10).

[LY80] J. M. Lewis and M. Yannakakis. The Node-Deletion Problem for Hereditary
Properties is NP-Complete. In: Journal of Computer and System Sciences
20.2 (1980), pp. 219–230 (cit. on pp. 9–11, 19).

[Mar10] D. Marx. Chordal Deletion is Fixed-Parameter Tractable. In: Algorithmica
57.4 (2010), pp. 747–768 (cit. on p. 10).

[NM06] J. Nešetřil and P. Ossona de Mendez. Tree-Depth, Subgraph Coloring and
Homomorphism Bounds. In: European Journal of Combinatorics 27.6 (2006),
pp. 1022–1041 (cit. on p. 14).

[Pee03] R. Peeters. The Maximum Edge Biclique Problem is NP-Complete. In: Dis-
crete Applied Mathematics 131.3 (2003), pp. 651–654 (cit. on p. 10).

[PRS12] G. Philip, V. Raman, and S. Sikdar. Polynomial Kernels for Dominating Set
in Graphs of Bounded Degeneracy and Beyond . In: ACM Transactions on
Algorithms 9.1 (2012), 11:1–11:23 (cit. on p. 9).

[Sie19] S. Siebertz. Greedy Domination on Biclique-Free Graphs. In: Information
Processing Letters 145.1 (2019), pp. 64–67 (cit. on p. 9).

[SS20] I. Sau and U. S. Souza. Hitting Forbidden Induced Subgraphs on Bounded
Treewidth Graphs. In: Proceedings of the 45th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2020). Leibniz In-
ternational Proceedings in Informatics (LIPIcs) 170. Schloss Dagstuhl–Leib-
niz-Zentrum für Informatik, 2020, 82:1–82:15 (cit. on p. 11).

[TV19] J. A. Telle and Y. Villanger. FPT Algorithms for Domination in Sparse
Graphs and Beyond . In: Theoretical Computer Science 770.1 (2019), pp. 62–
68 (cit. on p. 9).

[Yan78] M. Yannakakis. Node-and Edge-Deletion NP-Complete Problems. In: Pro-
ceedings of the 10th Annual ACM Symposium on Theory of Computing
(STOC 1978). Association for Computing Machinery, 1978, pp. 253–264
(cit. on pp. 9, 10, 43).

http://dx.doi.org/10.1007/978-3-030-79987-8_31
http://dx.doi.org/10.1007/978-3-030-79987-8_31
http://dx.doi.org/10.1287/moor.8.4.538
http://dx.doi.org/10.1145/3212622
http://dx.doi.org/10.1007/978-3-540-79723-4_14
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1007/s00453-008-9233-8
http://dx.doi.org/10.1016/j.ejc.2005.01.010
http://dx.doi.org/10.1016/j.ejc.2005.01.010
http://dx.doi.org/10.1016/S0166-218X(03)00333-0
http://dx.doi.org/10.1145/2390176.2390187
http://dx.doi.org/10.1145/2390176.2390187
http://dx.doi.org/10.1016/j.ipl.2019.01.006
http://dx.doi.org/10.4230/LIPIcs.MFCS.2020.82
http://dx.doi.org/10.4230/LIPIcs.MFCS.2020.82
http://dx.doi.org/10.1016/j.tcs.2018.10.030
http://dx.doi.org/10.1016/j.tcs.2018.10.030
http://dx.doi.org/10.1145/800133.804355

	Introduction
	Preliminaries
	Notation and Definitions
	Problem Definitions
	Finding Bicliques

	Biclique-Free Vertex Deletion
	Parameterization by Vertex Cover Number
	Parameterization by Feedback Edge Set Number
	The Case of i >= 2
	The Case of Bounded-Degree Deletion

	Parameterization by Distance to Disjoint Paths

	Biclique-Free Edge Deletion
	Parameterization by Vertex Cover Number
	Parameterization by Feedback Edge Set Number
	Parameterization by Feedback Vertex Set Number

	Conclusion
	Literature

