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Zusammenfassung

Wir führen eine Unterklasse von gerichteten azyklischen Graphen (DAGs) ein, und
nennen sie Funnels. Unser Ziel hierbei ist es, die einfache Struktur von gerichteten Bäume
zu bewahren, ohne zu viel von der Ausdruckskraft von DAGs zu verlieren.

Zuerst studieren wir die Klasse aus graphtheoretischer Warte, indem wir manche
strukturelle Eingenschaften von Funnels zeigen. Dann wenden wir die Klasse auf kon-
krete Berechungsprobleme an und überprüfen, ob die betrachteten Probleme im Ver-
gleich zu ihrer Lösung auf DAGs algorithmisch einfacher werden (d.h., in Polynomialzeit
lösbar) wenn die Eingabe auf Funnels eingeschränkt wird. Schließlich betrachten wir
die Graphklasse auch aus einer parametrisierten Warte, wobei wir vier Abstandsmaße
zu Funnel definieren. Für das k-Linkage Problem (auch Vertex-Disjoint Paths ge-
nannt) erzielen wir positive parametrisierte Ergebnisse. Das Problem ist in quadratisch
Zeit lösbar wenn der Kantenlöschungsabstand zu Funnel eine Konstante ist.

Zum Schluss führen wir Experimente durch, um die praktische Nützlichkeit der be-
schriebenen Algorithmen zu ermitteln. Wir stellen fest, dass der Kantenlöschungsabstand
zu Funnel in der Praxis oft schnell berechnet und noch schneller auch zu einem fast opti-
malen Wert hin approximiert werden kann. Wir zeigen auch, dass die Eingabegröße einer
k-Linkage-Instanz stark reduziert werden kann, falls der Kantenlöschungsabstand zu
Funnel gering ist.
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Abstract

We introduce a subclass of directed acyclic graphs (DAGs) which we call funnels.
The purpose of this class is to keep some of the structural simplicity of directed trees
without losing too much of the expressiveness of DAGs.

We first analyze this class from a graph-theoretical perspective, proving certain struc-
tural properties of funnels. Then, we apply the graph class to concrete computational
problems, checking whether they become algorithmically easier (i.e., polynomial-time
solvable) when the input is restricted to be a funnel. Finally, we also treat the class
from a parameterized complexity point of view, defining four distance measures to fun-
nel. For the k-Linkage problem (also known as Vertex-Disjoint Paths), we obtain
positive parameterized results, with the problem becoming solvable in quadratic time
when the arc-deletion distance to a funnel of the input DAG is a constant.

We conclude with an experimental evaluation where we analyze the practical use-
fulness of some of the algorithms described. We conclude that the arc-deletion distance
to a funnel of a DAG can often be quickly computed in practice and it can also ap-
proximated to a value very close to the optimal one. We also showed that it is possible
to considerably reduce the input size of k-Linkage instances with a small arc-deletion
distance to a funnel.
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Chapter 1

Introduction

Many relevant problems in computer science can be modeled using some kind of
network. One can represent relationships between people, the connection between streets
in a city, or the dependencies of tasks in a project using networks. The mathematical
structure used to represent a network is called a graph. Graphs are composed of vertices
which may be connected to each other through edges. For example, one can say that the
vertices represent people and an edge between two of them indicates they are friends.

While some problems are adequately formulated with symmetric connections between
vertices (i.e., if Ana is a friend of Bob, then Bob is also a friend of Ana), other problems
require a notion of direction. When executing a task, for example cooking, it is important
to know whether one is supposed to dice the carrots and then cook them, or cook and then
dice them. In such cases we want to represent the dependency of tasks through a directed
relationship, that is, a not necessarily symmetric connection. When directed edges (also
called arcs) are present, the data structure is called directed graph (or digraph).

Both directed and undirected graphs are very powerful with respect to the infor-
mation which can be modeled with them. One can then expect that solving certain
problems where the input is an arbitrary graph to be computationally hard (that is,
NP-hard) because of its structural complexity. Yet, sometimes restricting the input to
have a simpler structure can make such problems “easy” (that is, solvable in polynomial
time). For example, there is no known “efficient” algorithm for finding the longest path
on a graph. In fact, the existence of a polynomial-time algorithm for this problem would
contradict standard theoretical assumptions and is considered very unlikely. However,
only because finding such a path in an arbitrary graph is hard does not mean that it is
never easy to find one. If the graph has no cycles, then finding the longest path is easy:
Since there is at most one path between any two vertices one can check the length of all
paths in polynomial time.

Often we are not interested in solving a problem for any arbitrary graph, but only
for those in some restricted domain. The layout of streets in a city, as an example, is
restricted to physical constraints and is mostly planar as the construction of overpasses
is expensive. If we know that the input graph has certain properties, we can sometimes
exploit such properties and efficiently solve otherwise hard problems. When restrict-

6



t3

t2t1

s

(a) In a tree, there is exactly
one path from the root s to
some leaf ti. In this example
we have three paths from s
to some sink.

ts

(b) A funnel has only polyno-
mially many paths between
two vertices. Here, there are
four paths from s to t.

ts

(c) A DAG can have ex-
ponentially many paths con-
necting two vertices. In this
case, there are nine paths
from s to t.

Figure 1.1: Comparison between a tree, a funnel and a DAG.

ing the domain of graphs which we are interested in, we are actually thinking about
graph classes. A graph class is nothing but a family of graphs who share some specific
property. Some of the classical graph classes are planar graphs (can be drawn on a
two-dimensional surface without any crossing edges), forests (no cycles), regular graphs
(all vertices have the same degree) and hypercube graphs (geometrical interpretation of
vertices and edges), among others.

Certain graph classes can be considerably different when defined for digraphs in
comparison to undirected graphs. Consider forests. These graphs have less edges than
vertices, and they also have the property that there is at most one path between two
vertices. On directed acyclic graphs (or DAGs), however, the number of arcs can be
quadratic in the number of vertices, and there can be exponentially many paths between
two vertices. Even though the defining property of the class is the same (that is, absence
of cycles), the properties that follow from it are considerably different on undirected
and directed graphs. Some of the properties from forests which are lost on DAGs are,
however, desirable for the construction of efficient algorithms. At the same time, certain
properties that are gained on DAGs (for example, the existence of multiple paths between
two vertices) might be necessary in order to properly model the problem at question.
In such cases it is natural to ask oneself if there is some subclass of DAGs which retain
certain algorithmically interesting properties from forests without preventing relevant
problem instances from being modeled. It is in this context that we consider a subclass
of directed acyclic graphs.

The idea behind introducing this class is to retain certain properties from forests
which are lost in the directed case. In Chapter 2 we provide a formal definition, but
intuitively the digraphs in this class have the property that every path from a source
(vertex with no incoming arcs) to a sink (no outgoing arcs) can be uniquely identified by
one of its arcs, that is, it has an arc that is not shared with other paths from sources to
sinks. One can immediately notice that this property implies that the number of such
paths is not greater than the number of arcs. At the same time, it is still possible to have
multiple paths connecting two vertices. Hence, it achieves what we wanted: Retaining
some properties from forest without destroying too many of DAGs. For reasons that
will become clear later, we call the digraphs in this subclass “funnels”. A comparison
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Parameter Approximation (DAG) Exact (DAG) Exact (Digraph)

Arc-deletion O(n+m), factor-3 3d(n+m) 5dn(n+m)
Vertex-deletion ? 6dn(n+m) ?

Funnel height - O(n+m) not defined
Funnel depth - O(n+m) not defined

Table 1.1: Summary of the results of this work about the complexity of computing
certain distance measures to funnel.

Problem Funnel Arc-deletion Vertex-deletion

DAG Partitioning O(n3) ? NP-hard
k-Linkage O(n2) O(d) kernel ?

Max-Leaf Out-Branching NP-hard - -
Path with Forbidden Pairs O(m · n2) ? ?

Table 1.2: Summary of the results of this work about the (parameterized) complexity of
solving certain NP-hard problems on funnel-like DAGs.

between trees, funnels and DAGs is illustrated in Figure 1.1.
After formally defining the class of funnels, we describe four distance measures to

funnel. Some of these measures are later used to develop algorithms which are efficient
(i.e. fixed-parameter tractable) if the distance to a funnel of the input is small. We also
consider the computational complexity of computing these measures (Table 1.1).

We then analyze the complexity of certain problems when the input is restricted to
a funnel (column “Funnel” in Table 1.2). We also motivate why certain real-world data
might be properly modeled with this restricted class. This is covered in Chapter 4. By
certain NP-hard problems, like Path with Forbidden Pairs, we get straightforward
positive results, with the problem becoming polynomial-time solvable. In contrast, Max-
Leaf Out-Branching remains NP-hard even if the input is a funnel. We also analyze
the parameterized complexity of such problems, in particular for parameters which mea-
sure how similar to a funnel a digraph is (columns “Arc-deletion” and “Vertex-deletion”
in Table 1.2). For k-Linkage we obtain positive results, showing that the problem is
fixed-parameter tractable with respect to arc-deletion distance to a funnel. That is, if
we need to remove d arcs in order to turn a DAG into a funnel, then we get an algorithm
with a running time f(d) · poly(n), where n is the input size and f some function.

1.1 Related Work

Graph Theory The definition of graph classes is fairly common. In the book Digraphs
from Bang-Jensen and Gutin [BJG08] there is a chapter dedicated only to classes of
digraphs. The usage of distance parameters is also very widespread in the field of
parameterized complexity, with tree-width being a good example of such a parameter,
defined by Bertele and Brioschi [BB72].
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Ganian et al. [Gan+09] provide a survey with many problems which remain NP-
hard on DAGs. They also define two variants of tree-width for digraphs which are also
suitable for DAGs (i.e. are not always constant in DAGs).

k-Linkage In the k-Linkage problem (also known as the Vertex-Disjoint Paths
problem), the input consists of a digraph and a set of pairs of vertices P = {(s1, t1),
(s2, t2), . . . , (sk, tk)} and the goal is to find vertex-disjoint paths connecting each si to
its corresponding ti.

Fortune, Hopcroft, and Wyllie [FHW80] showed that Vertex-Disjoint Paths is
NP-hard on directed graphs even if the number of pairs equals two. They also provided
an O(knmk) algorithm for the case where the input is a DAG. For k = 2 there is an
elegant polynomial-time algorithm due to Shiloach and Perl [SP78]. A generalization
from this algorithm for an arbitrary k is presented in the book Digraphs from Bang-
Jensen and Gutin [BJG08]. Schrijver [Sch94] provided an O(nk) algorithm for planar
DAGs.

Slivkins [Sli10] showed that k-Linkage is W[1]-hard with respect to k on DAGs. It
was posed as an open question by Downey and Fellows [DF12] whether the problem is
in FPT with respect to k on planar DAGs. This question was answered positevely by

Cygan et al. [Cyg+13], who provided an 22
O(k2) ·nO(1) time algorithm for planar DAGs.

DAG Partitioning The DAG Partitioning problem consists of removing at most k
arcs from a DAG such that each connected component has exactly one sink. It was first
defined by Leskovec, Backstrom, and Kleinberg [LBK09] and used in order to study the
behavior of the news cycle. Alamdari and Mehrabian [AM12] proved that, for any ε > 0
there is no O(n1−ε)-approximation for DAG Partitioning, unless P = NP. They
also presented a polynomial-time algorithm for graphs with bounded pathwidth. Van
Bevern et al. [Bev+17] showed that the problem is in FPT with respect to k by giving
an algorithm with running time O(2k · (|V |+ |A|)).

Max-Leaf Out-Branching The goal in Max-Leaf Out-Branching is to remove
arcs of a DAG in order to transform it into an out-tree with at least k leaves. Alon et al.
[Alo+07] showed that the problem is in FPT with respect to k for a class of digraphs
which contains DAGs. Bonsma and Dorn [BD07] provided an algorithm with running
time 2O(k

3 log k) ·nO(1) for Max-Leaf Out-Branching on digraphs. Bonsma and Dorn
[BD11] improved on this result, giving a 2O(k log k) ·nO(1)-time algorithm for the problem.

1.2 Definitions and Notation

In this section we describe the notation used in this work and formally define certain
structures and operations. We recommend reading the subsection about graphs, since
they appear quite often, and coming back later to the other subsections as the need
arises.
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1.2.1 Sets and Sequences

We use braces ({ }) to denote a set of unique, unordered elements. We write
{ai}ni=1 = {a1, a2, . . . , an} to denote a set of n indexed elements. Unlike sets, se-
quences are ordered and allow repeated elements. They can be represented using tuples,
but we often write sequences without any separator between the elements, meaning
both a1a2 . . . an and (a1, a2, . . . , an) describe the same sequence of n indexed elements.
The number of elements (not necessarily distinct) of a set or sequence S is given by |S|.
For sets this value is called size, while for sequences it is called length.

Since converting a sequence to a set can be done in an intuitive way by simply
removing duplicates and ignoring the ordering, we sometimes apply certain set operators
to sequences. After implicitly converting the operands to sets, the result remains a set.
That is, if A ⊆ S is a set and p ∈ Sn is a sequence, then p ∩A is the set of all elements
of p which are also in A.

Given two sequences P = a1a2 . . . an and q = b1b2 . . . bm, their concatenation is given
by PQ = a1a2 . . . anb1b2 . . . bm. We say that P is a prefix of Q if there is a sequence P ′

such that Q = PP ′. Similarly, P is a suffix of Q if there is a P ′ such that Q = P ′P .
A sequence P is a subsequence of Q (denoted by P ⊆ Q) if and only if there are
sequences R,S such that Q = RPS.

1.2.2 Graphs

An undirected graph G = (V,E) is a tuple with a set V of vertices and a set E
of edges where each edge {u, v} ∈ E connects two vertices of V . Formally we have
E ⊆ {{u, v} | u, v ∈ V and u 6= v}. The neighbors of a vertex are the vertices that are
connected through an edge to v. They are given by NG(v) = {u ∈ V | {u, v} ∈ E}.
As with all operations on graphs, the index G is omitted from the operator if it is clear
from the context. The degree of a vertex v is defined as the number of its neighbors. It
is formally written as degG(v) = |N(v)|.

A directed graph D = (V,A) (or digraph) is a graph where the edges have a direction
(and are called arcs instead). That is, the arc (u, v) goes from u to v. Thus A ⊆ {(u, v) |
u, v ∈ V and u 6= v}. Since the arcs have a direction, we differentiate between incoming
and outgoing neighbors. The inneighbors of a vertex v are denoted by inD(v) = {u ∈ V |
(u, v) ∈ A}. Its outneighbors are given by outD(v) = {u ∈ V | (v, u) ∈ A}. The indegree
of a vertex v is written as indegD(v) = |in(v)|, and its outdegree as outdegD(v) =
|out(v)|. We can extract the set of arcs ofD withA(D), and the set of vertices with V(D).

We extend the definition of set operators for directed and undirected graphs.
Let G = (V,E), H = (U,F ) be two graphs. We define

H ⊆ G⇔ U ⊆ V ∧ F ⊆ E,
H ∪G = (U ∪ V, F ∪ E),

H ∩G = (U ∩ V, F ∩ E),

H \G = (U \ V, F ∩ (U \ V )2).

10



In particular, we say that H is a subgraph of G if and only if H ⊆ G. The induced
subgraph of a set U of vertices is a graph that is composed by U and all edges between
them that are present in the supergraph. For any function that produces a set of
vertices we define the induced subgraph of this function by using square instead of
round brackets around the parameter. Formally, let f : V → P(V ) be a function. Then
f [v] = (f(v), {{u,w} ∈ E | u,w ∈ f(v)}). We also extend the \ operator for vertex-
and arc-sets. That is, if E′ is an arc-set and V ′ a vertex-set, then G \ E′ = (V,E \ E′)
and G \ V ′ = G \ (V ′, ∅).

Contracting an edge {a, b} ∈ E means adding a vertex v and the required edges such
that N(v) = N(a) ∪ N(b) and then removing a and b. Contracting an arc (a, b) ∈ A is
defined analogously, with that difference that we instead require indeg(v) = indeg(a) ∪
indeg(b) and outdeg(v) = outdeg(a) ∪ outdeg(b).

Subdividing an edge {a, b} ∈ E means removing that edge and adding a new vertex c
together with the edges {a, c}, {c, b}. On digraphs we add the arcs (a, c), (c, b) when
subdividing the arc (a, b). A graph H is a topological minor of G if some H ′ can
be obtained from H by subdividing its edges (or arcs) such that H ′ is isomorphic to
some G′ ⊆ G.

Given two vertices u, v of a graph, a walk from u to v is a sequence of vertices P =
uw1w2 . . . v where for any (a, b) ⊆ P the edge {a, b} exists (or the arc (a, b) in digraphs)
on the graph. Note that a walk may contain a single vertex. A walk from u to v is called
a path (also (u, v)-path) if no vertex appears more than once. A circuit is a walk where
the first and last vertices are the same. A cycle is a circuit where all vertices but the
first and last are different.

In digraphs, the vertices which can be reached from a vertex v are given by out∗(v).
The vertices which can reach v are given by in∗(v). That is u ∈ out∗(v) if and only if
there is a (u, v)-path, and u ∈ in∗(v) if and only if there is a (v, u)-path.

1.2.3 Complexity Theory

When analyzing the time complexity of an algorithm, we use the standard Big-O
notation. For a function f : N→ N we define

O(f) := {g : N→ N | ∃n0 ∈ N ∃c ∈ Q∀n > n0 : g(n) ≤ c · f(n)}.

We frequently use the function definition directly, that is, we write O(n2) instead of O(f)
for f(n) = n2.

We model a decision problem as a language L ⊆ Σ∗, with Σ being some finite
alphabet and Σ∗ being the set of all words over Σ. We say that an input word x ∈ Σ∗

is a yes-instance if and only if x ∈ L. Likewise, x is a no-instance if and only if x 6∈ L.
We classify a language L with respect to the worst-case time complexity of deciding

if x ∈ L, for any input x. If there is a deterministic Turing-machine which can decide L
in polynomial time (i.e., in O(nc) time for some fixed c ∈ N), then we say L ∈ P. If
there is a non-deterministic Turing machine which can decide L in polynomial time,
then L ∈ NP. There is a long-standing open question of whether P = NP or not. It is,
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however, widely believed that P 6= NP, an assumption which is often used to exclude
the existence of polynomial-time algorithms for some problem.

A language L1 is reducible in polynomial time to another language L2 if and only if
there is a polynomial-time computable function f : Σ∗ → Σ∗ such that

∀x ∈ Σ∗ : f(x) ∈ L2 ⇔ x ∈ L1.

A language L1 is said to be NP-hard if every language L2 can be reduced in polynomial-
time to L1. If L1 ∈ NP, it is also said to be NP-complete.

We say that a language L is in coNP if its complement Σ∗ \ L is in NP. Similarly, a
language L1 is coNP-hard if every language in coNP can be reduced in polynomial-time
to L1. From the definition of NP-hardness we have that, if some NP-complete language
is in coNP, then NP = coNP. Similarly to the P versus NP question, it is widely believed
that NP 6= coNP. For further details on the vast field of computational complexity, refer
to standard books on the topic (e.g., [GJ90], [AB09] and [Pap03]).

A problem is said to be fixed-parameter tractable (FPT) with respect to some pa-
rameter k if it can be solved in f(k) · nc time, for some function f : N → N and some
constant c ∈ N. In the context of parameterized complexity we also have the definition
of the W-hierarchy of complexity classes, yet they do not have an intuitive definition
through a machine model like the NP class. In this work, we only need to know that,
if a parameterized problem is W[1]-hard with respect to some parameter k, then it is
unlikely to be in FPT with respect to k. For further details, refer to standard books
about parameterized complexity (e.g., [DF12], [Nie06] and [Cyg+15]).

We say that a problem L admits a problem kernel with respect to some parameter k if
we can compute in polynomial time for any instance x another instance y such that |y| ≤
f(k) and y ∈ L⇔ x ∈ L, for some function f : N→ N.
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Chapter 2

Funnels

In this chapter we formally introduce the central topic of this work, namely a subclass
of directed acyclic graphs (DAGs) which we call funnels. In Section 2.1 we provide a
formal definition of this class together with some examples of DAGs which satisfy the
definition. We then show in Section 2.2 different characterizations of this class.

2.1 Formal Definition

Undirected acyclic graphs (that is, forests) are known to have a fairly simple struc-
ture, which often allows polynomial-time algorithms for otherwise NP-hard problems (for
example, Independent Set and Longest Path). Directed acyclic graphs, however,
have a more complicated structure, and certain problems which are polynomial-time
solvable on forests become NP-hard on DAGs (for example, certain variations from
scheduling [PY90]). In a sense, there is a huge gap between forests and DAGs, which
raises the natural question of whether some natural graph classes exist inside this gap.

We define funnels in such a way that some structural properties of forests are kept
without taking too much of the expressiveness of DAGs. Our goal is to restrict the
structure of the input in order to solve problems which are NP-hard on DAGs more
efficiently (e.g. in polynomial time). To this end, we limit in this class the number
of paths that may exist between two vertices (which can be exponential in DAGs).
Requiring every path between two vertices to be unique would be possibly too restrictive,
and in the case of a single source such DAGs would be just directed trees. Instead, we
require each path going from a source to a sink to be uniquely identified by one of its
arcs. These arcs are said to be private since there is only one path from a source to a sink
which goes through them. This immediately gives us an upper bound for the number of
paths between two vertices, which obviously cannot be greater than the number of arcs
in the digraph. However, it is still possible to have multiple paths between two vertices.

Before proceeding to the definition of funnels, we first define what it means for an
arc to be private. From now on we use the term source-sink path to refer to any path
which starts at some source and ends at some sink.
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Figure 2.1: Example of a funnel (left) and a DAG which is not a funnel. Private arcs
are marked as dashed lines. The DAG on the right is not a funnel because all arcs in an
(s1, t)-path are shared. Removing one arc turns it into a funnel.

Definition 2.1.1 (Private arc). Let D = (V,A) be a DAG. An arc a ∈ A is said to be
private if there is only one source-sink path which contains a.

We can now define funnels formally. An example of a funnel can be seen in Figure 2.1.
The reason for the name, as we will substantiate in Proposition 2.2.1 below, is that,
as soon as a vertex has an indegree greater than one, all of its successors must have
outdegree at most one. In a sense, these vertices funnel paths towards a sink.

Definition 2.1.2 (Funnel). A DAG D is a funnel if every source-sink path has at least
one private arc.

From this definition we obtain a simple property of funnels, namely the fact that the
number of source-sink paths is linearly bounded (as opposed to an exponential function
in general DAGs). This property comes from the fact that each such path has a private
arc, and the amount of private arcs is clearly bounded on the total number of arcs in
the DAG.

Corollary 2.1.3. Every funnel D = (V,A) has at most |A| different source-sink paths.

2.2 Equivalent Definitions

We now consider some different ways of characterizing a funnel. Some of them give
us an efficient method to check if a DAG is a funnel, while others are useful for further
proofs.

2.2.1 Degree Characterization

Definition 2.1.2 does not give us a very efficient way of checking whether a digraph
is a funnel or not. A simple implementation which counts how many paths go through
each arc (and stops if some path has no private arc) would take O(|A|2) time. A more
efficient way of making this check is to use an alternative definition of funnels which
considers the degrees of the vertices. The idea is to show that, if two different paths
meet at some point and diverge later on, then none of the arcs on either path is private.

14
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Figure 2.2: Illustration of the vertices used in the proof of Proposition 2.2.1. We argue
that the arc (x,w) is private.

Also refer to Figure 2.2 while reading the proof below. Recall that a DAG induces a total
ordering of its vertices, and so the first or last vertex of some set is always well-defined.

Proposition 2.2.1. A DAG D = (V,A) is a funnel if and only if for each vertex v ∈ V :

indeg(v) > 1⇒ ∀u ∈ out∗(v) : outdeg(u) ≤ 1. (2.1)

Proof. We first show that a DAG that satisfies Inequality (2.1) is a funnel. The idea
is to identify the private arcs and to argue that each path must contain at least one of
those arcs.

Let D = (V,A) be a DAG which satisfies Inequality (2.1), let s ∈ V be a source and
t ∈ V be a sink such that some (s, t)-path exists, and let v be the first vertex in out∗(s)
with outdeg(v) > 1. If no such vertex v exists, then there is only one (s, t)-path in D
and all outgoing arcs from s are private. Otherwise, we know that ∀u ∈ in∗(v) \ {s} :
indeg(u) = 1, otherwise 2.1 would not hold. This means that there is exactly one (s, v)-
path. Let P be some (s, t)-path that goes through v and let w be the first vertex in this
path with indeg(w) > 1. If no such w exists, then there is only one (v, t)-path and all arcs
after v are private, as required. Otherwise we consider a vertex x such that the arc (x,w)
is in P . We know indeg(x) = 1, which implies there is only one (v, x)-path. Since the
(v, x)-path as well as the (s, v)-path are unique and ∀y ∈ out∗(w) : outdeg(y) = 1, the
arc (x,w) is private for the (s, t)-path that contains it. Thus, D is a funnel.

We now show that every funnel satisfies Inequality (2.1). We do this by contradiction,
showing that every arc of some (s, t)-path is present in at least one other source-sink
path if Inequality (2.1) does not hold.

Let D = (V,A) be a funnel. Without loss of generality we can assume that D has
only one source s and only one sink t. If this is not the case, we add a single source
and arcs from it to all previous sources, and we also add a single sink and arcs from
the previous sinks to the new one. This basically adds one vertex to the beginning and
another to the end of the sequence that defines each path, and if any arc was private for
a path it will remain private.

Assume towards a contradiction that Inequality (2.1) is not true. This means
there is some vertex u ∈ V with indeg(u) > 1 and that there is some other vertex
w ∈ out∗(u) with outdeg(w) > 1. Let w be the first such vertex. Then there are at
least indeg(u) many (s, u)-paths and outdeg(w) many (w, t)-paths. Since there is at
least one (u,w)-path (possibly without arcs), this implies that every arc in the induced
subgraph in∗[u] is shared by outdeg(w) many paths, every arc in out∗[w] is shared by
indeg(u) many paths and all arcs in a (u,w)-path are shared by indeg(u)·outdeg(w) many
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Figure 2.3: Forbidden subgraphs for funnels.

paths. Hence, all arcs in an (s, t)-path which goes through u and w are shared. This
contradicts the fact that D is a funnel.

From Proposition 2.2.1 implies following corollary by setting u to v in Inequality (2.1).

Corollary 2.2.2. If D = (V,A) is a funnel then

∀v ∈ V : outdeg(v) ≤ 1 ∨ indeg(v) ≤ 1.

2.2.2 Forbidden Subgraphs and Minors

While the degree characterization is useful for algorithms, it can make the mathemat-
ical notation for proofs somewhat complicated. That is, it is harder to formally argue
about a substructure which violates the funnel property when using only the degrees
of the vertices on the DAG. In many cases, arguing over some forbidden subgraph or
minor is much simpler and makes proofs easier to understand. Fortunately, using the
previous characterization it is easy to define a family of forbidden subgraphs for funnels.
The condition in Proposition 2.2.1 implies that a DAG D is not a funnel if there is
some path v1v2 . . . vk with indeg(v1) > 1 and outdeg(vn) > 1. In order to show that the
absence of such a path is both sufficient and necessary for a DAG to be a funnel, we first
define Dk := (Vk, Ak) where (see Figure 2.3 for a graphical representation)

Vk = {u1, u2, v0, w1, w2} ∪ {vi}ki=1 and

Ak = {(u1, v0), (u2, v0), (vk, w1), (vk, w2)} ∪ {(vi, vi+1)}k−1i=1 .

With this we define an infinite family of forbidden subgraphs F := {Di}∞i=0. We can
then prove the following statement.

Proposition 2.2.3. A DAG D is a funnel if and only if ∀C ⊆ D : C 6∈ F .

Proof. We prove this by contraposition. That is, we show that ∃C ⊆ D : C ∈ F if and
only if D is not a funnel. Both directions can be easily shown using Proposition 2.2.1.

Let C ⊆ D be a subgraph of D such that C ∈ F . By definition of C it contains some
vertex v0 with indegC(v0) = 2 and another vertex vk ∈ out∗C(v0) with outdegC(vk) = 2.
This implies indegD(v0) > 1 and outdegD(vk) > 1. From Proposition 2.2.1 we know D
is not a funnel.

16



Now assume D is not a funnel. From Proposition 2.2.1 we know there is some
vertex v with indegD(v) > 1 and another vertex u ∈ out∗D(v) with outdegD(u) > 1.
Let u1, u2 ∈ inD(v) and w1, w2 ∈ outD(u) be four distinct vertices. Let vv1v2 . . . vk−1u
be a (v, u)-path. We set v0 := v and vk := u, obtaining the forbidden subgraph Dk

if u 6= v, and D0 otherwise. Hence, D contains a subgraph from F .

From the characterization by forbidden subgraphs we obtain another property of
funnels, namely that they are hereditary. That is, every subgraph of a funnel is also a
funnel. This property follows directly from the fact that the subgraph relationship is
transitive. Hence, we obtain the following corollary.

Corollary 2.2.4. Funnels are hereditary, that is, if D is a funnel then every C ⊆ D is
also a funnel.

Proof. Assume C is not a funnel, but D is. By Proposition 2.2.3 ∃E ⊆ C : E ∈ F .
Hence E ⊆ C ⊆ D ⇒ E ⊆ D, which contradicts the fact that D is a funnel.

Similarly, instead of characterizing funnels by an infinite family of forbidden sub-
graphs we can also use the concept of forbidden topological minors. Recall that sub-
dividing an arc (a, b) means removing it and adding a vertex c together with the
arcs (a, c), (c, b). Subdividing a digraph successively subdividing some of its arcs. Fun-
nels contain two forbidden topological minors, namely D0 and D1.

Proposition 2.2.5. A DAG D is a funnel if and only if it does not contain D0 or D1

as a topological minor.

Proof. We use the characterization with forbidden subgraphs from Proposition 2.2.3 in
this proof. It is enough to show that any Di ∈ F can be obtained by subdividing D0

or D1 multiple times, and that any subdivision of D0 and D1 contains some digraph
of F as a subgraph.

We first show that we can generate F by subdividing D0 and D1. Let Di ∈ F .
If i ≤ 1 then Di obviously contains itself as a topological minor. If i > 1, then by
subdividing the arc (v0, v1) from D1 a total of i − 1 times, we obtain Di. Hence all
digraphs in F can be generated by D0 and D1 through subdivisions.

Now we show that any subdivision of D0 and D1 contains some digraph from F .
Since subdividing arcs does not change the degrees of the affected vertices, from Propo-
sition 2.2.1 we know any subdivision of D0 is not a funnel and, hence, contains some
digraph from F as a subgraph.

For any subdivision D′1 of D1 we know indegD′
1
(v0) = 2, outdegD′

1
(v1) = 2 and v1 ∈

out∗D′
1
(v0). Again, from Proposition 2.2.1 we know D′1 is not a funnel, and hence contains

a subgraph from F .

2.2.3 Constructive Characterization

Although it can be useful to check whether a certain DAG is a funnel (for example,
if we want to choose between a fast algorithm that only works for funnels and a slower
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Figure 2.4: Illustration of the different operations which create a funnel.

one which always works), it is sometimes more convenient to guarantee beforehand that
the input is a funnel. That is, if we use some procedure to generate a funnel from certain
data, we might be interested in guaranteeing that, regardless of how the data looks like,
the produced DAG is always a funnel. To this end, we give two operations which allow
us to construct any funnel and that also always produce a funnel. The operations are
illustrated in Figure 2.4.

We describe each operation as a condition and an effect. The condition is just a
Boolean formula which needs to be satisfied in order for the operation be applicable.
In order to avoid brackets we mix symbolic operators (∨,∧) with the respective verbal
variants (or, and). The symbolic operators have a higher precedence, that is, they are
evaluated before the verbal variants. For example, when we write “p ∨ q and r ∨ s” we
mean that both (r ∨ s) and (p ∨ q) need to be true.

The effect of an operation describes how the initial funnel D is modified by each
operation. We use an auxiliary table F : V → {true, false} which describes whether
a vertex v is “forkable” (F (v) = true) or not (F (v) = false). That is, if F (v) = true

then v is allowed to have outdegree greater than one. The core idea of the operations is
that, as soon as a vertex has its indegree increased to a value greater than one, the vertex
itself and all of its successors must have outdegree at most one. In order to keep the
rules efficient, we prevent adding incoming arcs to vertices which have already forked,
even if their outdegree is one. Thus, we do not need to check the degree of the successors
of a vertex when adding an arc.

We can construct a funnel as follows. First, create a trivial funnel D = (V,A)
containing only some sources si and set F (si) := true. Then, iteratively select some
vertex v ∈ V and execute one of the following operations (if the conditions are met).

The Fork operation adds one outneighbor to a vertex. This is allowed if the vertex
has outdegree zero or if it is allowed to have outdegree greater than one, that is, if
its predecessors all have indegree at most one (recall the degree characterization from
Proposition 2.2.1).
Fork(v, u)
Condition: F (v) ∨ outdeg(v) = 0 and u 6∈ V
Effect: D := (V ∪ {u}, A ∪ {(v, u)}), F (u) := F (v)

The Merge operation adds an arc between two existing vertices, causing one of
them to have an indegree greater than one and, thus, no longer being forkable. We can
apply this operation to a vertex v whenever ∀u ∈ out∗(v) : outdeg(u) ≤ 1. This happens
when v has no successors or when it is no longer forkable.
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Figure 2.5: Step-by-step construction of a funnel using Fork and Merge operations,
as described in Example 2.2.1. Vertices such that F is false are marked in bold. Note
that, if the vertex e were created before adding the arc (s1, a), it would not be possible
to add such an arc afterwards using a Merge.

Merge(v, u)
Condition: ¬F (v) ∨ outdeg(v) = 0 and F (u) ∨ outdeg(u) = 0 = outdeg(v)
Effect: D := (V,A ∪ (u, v)), F (v) := false

Example 2.2.1. We reconstruct the funnel from Figure 2.1 using the operations de-
fined above. The step-by-step procedure is illustrated in Figure 2.5. We start with
D := ({s1, s2}, {}). Then we execute the following operations in order: Fork(s2, a),
Fork(s2, b), Fork(b, c), Fork(b, d), Merge(a, s1), Fork(a, e), Fork(c, t),
Merge(a, t) and Merge(d, t).

From the operations above one can see that there are two types of vertices in a funnel:
Those which are “forkable” and those which are not. Later, we use this property when
developing algorithms to compute the distance of a DAG to a funnel.

It is fairly straightforward to see that applying a Fork or a Merge to a funnel will
produce a funnel. In order to show that these rules construct any funnel, we provide a
method which reconstructs its input. This result are formally described below.

Proposition 2.2.6. A DAG is a funnel if and only if it can be generated with Fork
and Merge operations.

Proof. We start by showing that the Fork and Merge operations always produce a
funnel. We do this by induction, that is, we show that applying any of these rules to
a funnel always produces a funnel. Since we always start with a trivial funnel, this
guarantees that the procedure described above is correct. Note, however, that we need
a function F in order to apply the operations, which is not given by the input digraph.
Even though we could describe how to compute F for any funnel, it is simpler to restrict
the proof to show that applying one of the operations on a funnel generated by the
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procedure produces a funnel. This is no real restriction because later we show that
every funnel can be generated by the above defined operations.

Let D = (V,A) be a funnel generated by the rules above and F the auxiliary table
internally used by the procedure. We show that applying any operation will produce
a funnel D′. We first observe for every v ∈ V that F (v) implies indeg(v) ≤ 1 ∧ ∀u ∈
in∗(v) : F (u), and that ¬F (v) implies outdeg(v) ≤ 1.

Assume we apply Fork(v, u), with v, u satisfying the conditions of the operation, and
obtain D′. Clearly, indegD′(u) = 1 and outdegD′(u) = 0. For v, we have indegD(v) =
indegD′(v). If indegD′(v) > 1, we know that outdegD′(v) = 1, otherwise v would not
satisfy the condition outdegD(v) = 0 since F (v) = false before applying the operation.
If indegD′(v) ≤ 1, then its outdegree is irrelevant. Since the vertices in out∗D(v) were not
modified in D′, the new digraph remains a funnel.

Now assume we apply Merge(v, u) instead, with v, u satisfying the conditions of the
operation, and obtain D′. If F (u), then we can add the arc (u, v) without destroying
the funnel property since we have outdeg(v) ≤ 1 and ∀w ∈ out∗(v) : outdeg(w) ≤ 1.
If outdegD(u) = 0, then we can add the arc (u, v) as long as u 6∈ out∗(v). However, since
we also require that outdeg(v) = 0 or F (u), we know that u 6∈ out∗(v). Hence, the new
digraph is also a funnel.

We now show that we can construct any funnel using Fork and Merge operations.
Let D = (V,A) be a funnel. We reconstruct D iteratively as follows. First, consider
some topological ordering of the vertices of D. Now initialize D′ = (V ′, A′) with all
sources of D.

Following the previously established ordering where vi is the i-th vertex, execute
Merge(vi, u) for all u ∈ inD(vi) if indegD(vi) > 1 and (u, vi) 6∈ A′. To check if we
can execute the Merge, we first note that outdegD′(vi) = 0. Furthermore, if any
Merge(u,w) was executed with u and some w ∈ V ′, then outdeg(u) = 0, other-
wise outdegD(u) > 1 and indegD(u) > 1, which is not possible since D is a funnel.
Hence, it is possible to execute the desired Merge(vi, u). If indegD(vi) ≤ 1, then the
necessary incoming arcs, if any, are already present due to the topological ordering and
no Merge is required. Afterwards, execute Fork(vi, u) for all u ∈ outD(vi) \V ′. Since,
at this point, outdegD′(vi) = 0, this is possible.

Every arc (v, u) ∈ A is created either by executing Fork(v, u) or Merge(u, v).
Thus, after executing both operations for each vertex, all arcs and vertices from D will
be created and D′ = D.

2.3 Summary

The constructive characterization gives us some insight about the structure of a
funnel. Recall that an out-tree is a directed tree where all arcs point outwards from
the root, and an in-tree is one where all arcs point towards the root. One can see
that a funnel can be partitioned into two induced subgraphs: One is an out-forest
(where F (v) = true) and the other is an in-forest. With a simple argument it is possible
to give an upper bound on the number of arcs in a funnel. It is also easy to see from the
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constructive proof below that the bound is sharp, that is, that for any even n ≥ 2 there
is a funnel with n vertices and n2/4 + n− 2 arcs. If n is odd, we can construct a funnel
with (n+ 1)(n− 1)/4 + n− 2 many arcs.

Proposition 2.3.1. Let D = (V,A) be a funnel. Then |A| ≤ |V |2 /4 + |V | − 2.

Proof. Let D be generated by Fork and Merge operations and let F be the auxiliary
table used by them. Let V = X ] Y where ∀v ∈ X : F (v) and ∀v ∈ Y : ¬F (v).
Clearly, the vertices in X form an out-forest, while those in Y form an in-forest. This
gives us at most |X| − 1 arcs between vertices in X, and at most |Y | − 1 arcs between
vertices in Y . Furthermore, there are at most |X| · |Y | arcs from vertices in X to
vertices in Y and we know from the construction that there are no arcs from Y to X.
Hence, |A| ≤ |X| · |Y |+ |X|+ |Y |− 2. This value is maximized when |X| = |Y | = |V | /2,
which gives us the bound |A| ≤ |V |2 /4 + |V | − 2.

If we consider that a DAG has at most
(
n
2

)
= |V | (|V | − 1)/2 arcs, we see from

Proposition 2.3.1 that a funnel can have roughly half as many arcs as a DAG. This
implies that funnels are not necessarily sparse (unlike trees).

We close this section with an overview of how we can characterize funnels by sum-
marizing the results from Propositions 2.2.1, 2.2.3, 2.2.5 and 2.2.6.

Theorem 2.3.2. Let D = (V,A) be a DAG. The following statements are equivalent:

1. D is a funnel.

2. For every source s and every sink t in D every (s, t)-path has at least one private
arc.

3. D can be generated by Fork and Merge operations.

4. For any vertex v ∈ V : indeg(v) > 1⇒ ∀u ∈ out∗(v) : outdeg(u) ≤ 1.

5. No subgraph of D is contained in F = {Di}∞i=0, where

Dk = (Vk, Ak),

Vk = {u1, u2, v0, w1, w2} ∪ {vi}ki=1 and

Ak = {(u1, v0), (u2, v0), (vk, w1), (vk, w2)} ∪ {(vi, vi+1)}k−1i=1 .

6. D does not contain D0 or D1 (defined above) as a topological minor.
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Chapter 3

Closeness to a Funnel

While sometimes one might be only interested in solving a problem where the input
is a funnel, other times this restriction is too strong. However, it can nevertheless be the
case that the digraphs of interest are “almost” funnels. Similarity measures are usually
called distance parameters, providing some concrete definition of how far away a DAG
is from a funnel. There are multiple ways of defining this distance, and in this section
we study some of them.

Two of the parameters are rather canonical, namely arc- and vertex-deletion distance.
The other two, funnel height and funnel depth, are based on the structure of a funnel.
We also provide algorithms to compute each parameter.

3.1 Vertex-Deletion Distance

One of the most straightforward parameters to consider is vertex-deletion distance.
The motivation behind such parameter is that if removing only a few vertices from a
DAG turns it into a funnel, then the DAG itself should be structurally similar to a funnel.
In other words, if a problem is easy on funnels, then one can hope that adding just a
few vertices which violate funnel properties should not make the problem considerably
harder. We now define this parameter formally.

Definition 3.1.1 (Vertex-deletion distance to a funnel). Let D be a digraph and V be
the smallest vertex-set such that D \V is a funnel. Then the vertex-deletion distance to
a funnel of D is |V |.

Lewis and Yannakakis [LY80] proved a very general theorem about the NP-hardness
of several vertex-deletion distance parameters. In order to understand the statement of
the theorem we first define two concepts. A digraph property Π is said to be nontrivial if
it is satisfied by infinitely many digraphs, and not satisfied also by infinitely many. The
property is hereditary if, for any digraph satisfying the property, all induced subgraphs
also satisfy the property.

The theorem of Lewis and Yannakakis [LY80] states that for any nontrivial and
hereditary digraph property Π solving the vertex-deletion problem is NP-hard. Hence,

22



wuv

Figure 3.1: Example application of Reduction Rule 3.1.2. The dotted arc corresponds
to the result of the contraction of (v, u).

it is NP-hard to compute the vertex-deletion distance to a funnel. For this reason it is
interesting to consider FPT-time algorithms for this problem. We first propose a data
reduction rule which simplifies the input digraph. It consists of removing vertices which
cannot contribute to the solution. The reduction rule is illustrated in Figure 3.1.

Reduction Rule 3.1.2. If there is a path vuw in D with indeg(u) = outdeg(u) = 1,
indeg(w), outdeg(v) ≤ 1, then contract the arc (v, u).

Since we use Reduction Rule 3.1.2 again later on in a similar context, we prove here its
correctness in a more general case. In order to prove that applying Reduction Rule 3.1.2
does not change the vertex-deletion distance to a funnel of a digraph, we first show that
it does not destroy any forbidden topological minor F of a digraph class if the reduction
rule is not applicable in F and the class in question is closed under extrusion. Extruding
a vertex v with indeg(v) = 0 means adding a vertex u together with the arc (u, v).
If outdeg(v) = 0 then we add the arc (v, u) instead. If indeg(v) = 0 = outdeg(v) then
we either add the arc (v, u) or (u, v), but not both. A digraph class is closed under
extrusion if extruding any source or sink also produces a digraph of said class.

Lemma 3.1.3. Let Π be a digraph property characterized by a set F of forbidden topo-
logical which is closed under extrusion and is such that Reduction Rule 3.1.2 is not
applicable to any Fi ∈ F . A digraph D satisfies Π if and only if after applying Reduction
Rule 3.1.2 to D it satisfies Π.

Proof. We first show that applying the reduction rule does not destroy any minor Fi.
Let F be some forbidden topological minor for Π. Let D′ be the resulting digraph after
applying the reduction rule to D and let H ⊆ D such that H is isomorphic to some
subdivision of F . If u is not a vertex of H, then H is also a subgraph of D′ and D′

contains F as a topological minor.
If the entire path vuw is contained in H, then it has to correspond to some subdivided

arc of F , since Reduction Rule 3.1.2 is not applicable in F . Hence, the arc (v, w) in D′

corresponds to one less subdivision of the same arc in F , and so D′ also contains F as
a minor.

Finally, if only vu or uw is present in H, then in D′ there is a subgraph isomorphic
to H which contains the vertices v and w and the arc (v, w). Hence, D′ also contains F
as a minor.

Now assume D′ contains F as a topological minor. Let H ′ ⊆ D′ be isomorphic to
some subdivision of F . If H ′ does not contain the arc (v, w), then it is also present in D.
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(a) Single core (b) Double core

Figure 3.2: Example of both families of forbidden subgraphs.

Otherwise, by subdividing this arc we obtain a digraph H which is a subgraph of D.
Since H ′ contains F as a minor, so does H.

We note that Reduction Rule 3.1.2 is not applicable in any forbidden topological
minor for funnels, and so we can apply this lemma when proving the correctness of the
reduction rule.

Proof (Correctness of Reduction Rule 3.1.2). We show that applying the reduction rule
does not change the vertex-deletion distance to a funnel of a DAG. We first show that a
vertex-deletion set for the reduced DAG is also a valid set for the original one, that is,
it also produces a funnel.

Let D = (V,A) be the initial digraph and D′ = (V ′, A′) be the resulting digraph after
applying the rule and U ′ be a vertex-set such that D′ \U ′ is a funnel. If {v, w}∩U ′ = ∅,
then contracting the arc (u,w) in D\U ′ produces a digraph which is isomorphic to D′\U ′.
By Lemma 3.1.3 this implies that D \ U ′ is also a funnel. If {v, w} ∩ U ′ = {v, w},
then u is an isolated vertex in D \ U ′ and does not participate in any forbidden minor.
If {v, w} ∩ U ′ 6= {v}, then clearly D̂ = D \ (U ′ ∪ {u}) is equal to D′ \ U ′ and, hence,
is also a funnel. Adding back the vertex u together with the arc (u,w) to D̂ will not
produce a forbidden minor, since adding an arc from a source to another does not
destroy the funnel property. Hence, D \ U ′ is a funnel. An analogous argument holds
when {v, w} ∩ U ′ 6= {w}.

Now let U ⊆ V be a vertex-set such that D \ U is a funnel. If u 6∈ U then U ⊆ V ′

and D′\U is a subgraph of D\U and, thus, a funnel. Otherwise, set U ′ := (U \{u})∪{w}.
We argue that D′ \ U ′ is a funnel. Clearly, D′′ = D \ (U ∪ {w}) is a funnel, since the
class is closed under deletion. Furthermore, D′′ is isomorphic to D′ \U ′. Hence, D′ \U ′
is also a funnel.

Note that the correctness proof also works if the input is not a DAG. Since DAGs
are characterized by a single forbidden topological minor (namely, a cycle of length two)
and are closed under the extrusion of sources and deletion of vertices, we can apply
Reduction Rule 3.1.2 due to Lemma 3.1.3.

We can now proceed to the algorithm which computes the vertex-deletion distance
to a funnel of a DAG. If Reduction Rule 3.1.2 is not applicable, then we can identify
two families of subgraphs where at least one vertex has to be removed. A digraph of
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the first family, which will be referred to in this section as single core, is composed of a
single vertex with in- and outdegree greater than one together with all of its neighbors.

A digraph of the second family, here called double core, contains two vertices u, v
such that outdeg(u) = indeg(v) = 1, outdeg(v) > 1 and indeg(u) > 1.

Digraphs of both families are illustrated in Figure 3.2. Clearly, if a DAG contains
either a single core or a double core as a subgraph then it is clearly not a funnel. Before
proceeding to the algorithm, we also show that it is sufficient to look for subgraphs of
these two families.

Lemma 3.1.4. Let D be a DAG where Reduction Rule 3.1.2 is no longer applicable.
Then D is a funnel if and only if D contains neither a single nor a double core as a
subgraph.

Proof. One can easily see that none of the digraphs of either family are funnels. Since
being a funnel is an hereditary property, if D is a funnel then it does not contain any
single or double core.

We show the other direction by contraposition. That is, we show that if Reduction
Rule 3.1.2 is no longer applicable and D is not a funnel, then D has a single or double
core. The idea is to use the properties from Proposition 2.2.1. Let D = (V,A) be a
DAG which is not a funnel where Reduction Rule 3.1.2 is not applicable. Since D is
not a funnel, we know from Reduction Rule 3.1.2 that there is some vertex v ∈ V such
that outdeg(v) > 1 ∧ indeg(v) > 1 or indeg(v) > 1 ∧ ∃u ∈ out∗(v) : outdeg(u) > 1. If
outdeg(v) > 1 ∧ indeg(v) > 1 then v together with its neighbors correspond to a single
core. Otherwise if indeg(v) > 1 ∧ ∃u ∈ out∗(v) : outdeg(u) > 1 then we argue that u is
the outneighbor of v. First note that outdeg(v) = 1, and so v has only one outneighbor u.
Furthermore, if outdeg(u) = 1, then Reduction Rule 3.1.2 is applicable, a contradiction
to the initial assumption for D. Since we know that there is some vertex in out∗(v) with
outdegree greater than one, outdeg(u) has to be greater than zero. Thus outdeg(u) > 1
and v, u together with their neighbors form double core.

Our algorithm for computing the vertex-deletion distance to a funnel of a DAG uses
a search tree whose size is a function of the size k of the vertex-deletion set. The search
tree is constructed as follows. First, note that in a single core we must either remove
the central vertex, all but one of its inneighbors or all but one of its outneighbors. For
a double core we also need to consider the possibility of removing either of the central
vertices. In both cases, however, we decrease the parameter by at least one. Furthermore,
if a single or double core has more than k+1 inneighbors, then we know it is not possible
to remove all but one of them since this would require removing more than k vertices.
This implies that the number of branches we have for each single and double core is
bounded by a function in k. Formally, this leads to the following branching rule.

Branching Rule 3.1.5. If there is some vertex v ∈ V such that indeg(v) > 1 and
outdeg(v) > 1, then branch into three cases: Remove all but one inneighbor of v,
remove all but one outneighbor of v or remove v. If there are two vertices v, w ∈ V such
that indeg(v) > 1, outdeg(w) > 1 and (u,w) ∈ A, then branch into four cases: Remove
all but one inneighbor of v, remove all but one outneighbor of w, remove v or remove w.
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Figure 3.3: On the left side is the input DAG. Vertices which correspond to a vertex-
deletion set are marked in bold (3 and 6). On the right side is a fragment of the search
tree described in Theorem 3.1.6. Each box contains the current vertex-deletion set and
the parameter k. In the first step, the single core centered at 3 was chosen. Note that
the possibility of removing 6 was not considered on the first branching, but only after
removing 3.

The search-tree is then obtained by exhaustively applying Branching Rule 3.1.5.
In order to analyze the time complexity of the search-tree algorithm described above
we first consider a simpler one. Instead of considering all in- and outneighbors of a
vertex or vertex pair, we consider only two. The argument that at least one of the
considered vertices needs to be removed still holds. Furthermore, the cases described
above are also tested in this simplified variant. Hence, it is also correct and an upper
bound of its running time is also an upper bound for the search tree constructed from
Branching Rule 3.1.5. An example execution of the algorithm used in the proof is given
by Figure 3.3.

Theorem 3.1.6. Let D = (V,A) be a DAG and k ∈ N. Finding some V ′ ⊆ V
with |V ′| ≤ k such that D \ V ′ is a funnel can be done in O(6k · |V |2) time.

Proof. We describe an algorithm which finds such V ′ if one exists. It starts with an
empty V ′. Applying Reduction Rule 3.1.2 requires removing one vertex and two arcs,
and adding an arc. Doing this for every vertex takes O(|V |2) time.

If all degrees are precomputed, finding a single or double core can be done in linear
time. If neither a single nor a double core exists, then Lemma 3.1.4 assures that the
digraph is a funnel. We then output “yes” if k ≥ 0. We output “no” whenever k < 0
during the branching.

If we find a single core, we pick two inneighbors and two outneighbors of the central
vertex. We then branch on the possibilities of removing one of the neighbors or the
central vertex, and adding it to V ′. This amounts to five branches, each decreasing k by
one. For double cores we pick the vertices analogously, but now we need to consider two
central vertices, giving us six branches. This leads to a search tree with 6k leaves. After
removing a vertex we need to apply Reduction Rule 3.1.2 again. Removing a vertex
takes at most O(|V |2) operations. Thus, checking each leaf of the search tree can be
done in O(6k · |V |2).
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3.2 Arc-Deletion Distance

Similar to vertex-deletion distance, the arc-deletion distance to some class is also a
canonical parameter to be considered. One motivation for considering both parameters
is that deleting vertices is a more “aggressive” operation in the sense that the DAG
is more strongly modified when compared to only deleting arcs. Hence, one can often
expect to find more positive (e.g. FPT) results with respect to the weaker (and, thus,
larger) parameter than with the stronger (and smaller) one.

In this section, we consider different algorithms which compute the arc-deletion dis-
tance to a funnel of a DAG. We start in Section 3.2.1 with a search tree strategy very
similar to the one used in Section 3.1, obtaining again an FPT algorithm with respect to
the solution size. Unlike the other algorithms in this section, this one works on digraphs
as well. We then proceed to a constant-factor approximation algorithm in Section 3.2.2.
Finally, we develop in Section 3.2.3 another FPT algorithm with respect to solution
size, but with a better running time in comparison to the one in Section 3.2.1. This
algorithm, however, has the disadvantage that it only works on DAGs.

3.2.1 An Arc Strategy

We first define formally what is the arc-deletion distance to a funnel of a digraph.

Definition 3.2.1 (Arc-deletion distance to a funnel). Let D be a digraph and A the
smallest arc-set such that D \ A is a funnel. Then the arc deletion distance to a funnel
of D is |A|.

We describe a branching strategy which is very similar to the one used in Section 3.1
for the search-tree algorithm for the vertex-deletion distance to a funnel of a DAG. We
again consider two families of forbidden subgraphs and branch on all possibilities of
eliminating these subgraphs. With some additional steps, we also obtain an algorithm
which computes the arc-deletion distance to a funnel of a digraph. To achieve this,
one needs to solve two problems simultaneously: Finding a feedback arc-set (that is, a
set of arcs whose removal turns the digraph into a DAG) and destroying the forbidden
topological minors for funnels. A simple approach would be to try all possible feedback
arc sets and then compute the distance to a funnel for each of them. This would not,
however, yield an FPT-time algorithm since there can be |V |k many feedback arc-sets
of size k. In order to solve this problem in FPT-time, we first try to remove all arcs
necessary to destroy the forbidden minors for funnels. Then we compute a feedback arc-
set. We only need to argue why it is not necessary to consider all arc-sets which destroy
the forbidden minors for funnels in the digraph. We first show that if a digraph D does
not contain any of the forbidden minors for funnels, then all cycles are disjoint, that is,
they do not share any arcs.

Lemma 3.2.2. Let D be a digraph contains neither a single core nor a double core as
a topological minor. Then every arc of D is contained in at most one cycle.
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wuvx

Figure 3.4: Whenever two cycles share an edge, a double core is present as a topological
minor. In this case, the path xvuw corresponds to this minor.

Proof. Assume towards a contradiction there are two distinct cycles C1, C2 such that
both contain the arc (v, u). Since C1, C2 are distinct, it follows that ∃w ∈ out∗(u) :
outdeg(w) > 1, as otherwise there would be only one cycle from u to itself. Simi-
larly, ∃x ∈ in∗(v) : indeg(v) > 1. Thus, the path x . . . w has a single or double core as
minor, contradicting our assumption that this is not the case.

Lemma 3.2.2 implies that a digraph attains a very simple structure if it does not
contain the forbidden subgraphs for funnels. This structure allows us to find a feedback
arc-set in polynomial time, a problem which is NP-hard in general. In order to find
cycles more easily, we apply the following reduction rule.

Reduction Rule 3.2.3. If there is some vertex v with indeg(v) = 0 or outdeg(v) = 0,
then remove v.

The basic idea of the polynomial-time algorithm for computing a feedback arc-set is
to find a cycle and remove one of its arcs. Since every arc is in at most one cycle, it
does not matter for the solution size which arc from a cycle we remove. Hence, we can
greedily find cycles and remove arcs with a depth-first search, as formalized below.

Lemma 3.2.4. Let D = (V,A) be a digraph which does not contain single or double
cores as topological minors. Then one can find a minimum-sized arc-set A′ ⊆ A such
that D \A′ is a DAG in O(|V |2 + |V | · |A|) time.

Proof. First, exhaustively apply Reduction Rule 3.2.3. We do this in O(|V |+ |A|) time
by starting at the sources and sinks, removing them and proceeding to their neighbors.
In order to find a cycle, we can apply depth-first search on a vertex. If no cycle exist,
output ∅. Otherwise, pick some arc of this cycle into the solution, remove it from the
digraph and apply Reduction Rule 3.2.3 again. We repeat this procedure at most |V |
times, yielding a running time of O(|V | · (|V |+ |A|).

From Lemma 3.2.2 we know that the cycles do not share any arc, and so for each
cycle we have to pick exactly one of its arcs in order to destroy it. Since it is not possible
to destroy multiple cycles by removing a single arc, it is irrelevant which arc of the cycle
is taken into the solution.

In order to complete the definition of the FPT algorithm for computing the arc-
deletion distance to a funnel of a digraph, we need to describe how we destroy the
topological minors for funnels. The idea is to identify single and double cores, and then
branch on all possibilities of destroying them.
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Branching Rule 3.2.5. If there is some vertex v ∈ V with indeg(v) > 1
and outdeg(v) > 1, then branch into all possibilities of deleting all but one of its outgoing
arcs or all but one of its incoming arcs.

If there are two vertices v, u ∈ V with (v, u) ∈ A, indeg(v) > 1 and outdeg(u) > 1,
then branch into all possibilities of deleting all but one of the outgoing arcs of u, all but
one of the incoming arcs of u or the arc (v, u).

We can now combine the previous results, building an FPT algorithm with respect
to solution size for computing the arc-deletion distance to a funnel of a digraph. This is
done on the theorem below. We will also use Reduction Rule 3.1.2, and so we restate it
here and prove its correctness for the arc-deletion problem.

Reduction Rule (repeated). If there is a path vuw in D with indeg(u) = outdeg(u) = 1
and indeg(w), outdeg(v) ≤ 1, then contract the arc (v, u).

Proof (Correctness of Reduction Rule 3.1.2). Let D′ = (V ′, A′) be the digraph obtained
from D = (V,A) after applying the reduction rule once. Let Π be a hereditary digraph
property which is characterized by a set F of forbidden topological minors such that
Reduction Rule 3.1.2 is not applicable to any digraph in F . Let B′ be an arc-set such
that D′\B′ satisfy Π. We show that there is some B ⊆ A such that D\B also satisfies Π
and |B| ≤ |A|.

If (v, w) 6∈ B′, then by Lemma 3.1.3 D\B′ satisfies Π. Otherwise, D′′ = (D\{u})\B′
is isomorphic to D′ \ B′. By assumption, extruding u from w in D′′ does not destroy
the property Π. Doing so produces a digraph which is isomorphic to D \ B, where
B = (B′ \ {(v, w)}) ∪ {(v, u)}. Hence, D \B satisfies Π as well.

Now assume there is some B ⊆ A such that D \ B satisfies Π. If no arc of u is
in B, then by Lemma 3.1.3 D′ \ B also satisfies Π. Otherwise, assume (v, u) ∈ B and
let B′ = (B \ {(v, u)}) ∪ {(v, w)}. Because Π is hereditary, D′′ = (D \ B) \ {u} also
satisfies the property. And because D′′ is isomorphic to D′ \B′, this implies that D′ \B′
also satisfies Π. The case where (u, v) ∈ B follows analogously. Thus, we conclude that
applying Reduction Rule 3.1.2 to a digraph does not change its arc-deletion distance
to Π.

Theorem 3.2.6. Let D = (V,A) be a digraph. One can find an arc-set A′ ⊆ A such
that D \A′ is a funnel in O(5d · (|V |2 + |V | · |A|)) time, where d = |A′|.

Proof. We first delete all single and double cores from D by applying
Reduction Rule 3.1.2 exhaustively and then using Branching Rule 3.2.5. In the worst
case we need to branch into five possibilities, yielding a search tree with 5k leaves. This
search tree clearly finds the smallest set A′ such that D \A′ contains neither a single nor
double core as a subgraph. From Lemma 3.1.4 we also know that D \ A′ also contains
neither single nor double cores as topological minors.

Whenever we reach a leaf of the search tree, we compute a feedback arc set for the
resulting digraph. From Lemma 3.2.4 we know this is doable in O(|V |2 + |V | · |A|)
time. Since we might have to compute this for every leaf, the total running time of the
algorithm is O(5k · (|V |2 + |V | · |A|)).
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We note here that, unlike the vertex-deletion problem, we do not know whether
computing the arc-deletion distance to a funnel of a digraph is NP-hard. The problem
does not seem to have enough structure to allow the construction of gadgets, but at
the same time it is not local enough to allow for some greedy algorithm to compute
an optimal solution. Hopefully, the algorithms in subsequent subsections provide some
insight to the complexity of the problem, yet a concrete answer is unknown to us.

3.2.2 A Factor-3 Approximation

When computing an arc-set whose removal turns the DAG into a funnel it is not
always necessary to find the smallest such set. Sometimes it suffices to have a arc-set
which is small enough. For example, when the arc-set is used in order to solve another
problem having a smaller arc-set often improves the running time but is not required
for correctness. By not requiring the optimal solution to be found, it is often possible to
obtain an algorithm with a better running time. In this section we develop a linear-time
factor-3 approximation for computing the arc-deletion distance to a funnel of a DAG.

Our approximation algorithm for arc-deletion distance to a funnel works in two steps.
First, we assign each vertex v a Fork or Merge label. This decides whether v can have
indegree or outdegree greater than one. For this labeling we use a greedy strategy,
that is, we try to minimize the number of arcs to be removed when only considering v.
This guarantees that, if the approximation algorithm guesses wrongly, in the optimal
solution many arcs need to be removed. We use this property later on to show that
the approximate solution is only by a constant factor worse than the optimal solution.
Formally, we assign a label to a vertex v using the following rule.

labelD(v) :=


Fork, if outdegD(v) > indegD(v)

Merge, if outdegD(v) < indegD(v)

Fork, if outdegD(v) = indegD(v) ∧ ∃u ∈ in(v) : labelD(u) = Fork

Merge, otherwise.

Since we only need the incoming neighbors to break ties, the label of each vertex can
be computed by following some topological ordering of the DAG. After assigning labels
to all vertices, we need to guarantee that the digraph is compatible with our choice.
In other words, we not only need to remove outgoing arcs from Merge vertices and
incoming from Fork vertices, but also arcs from Merge to Fork vertices. This step
can be done in a fairly arbitrary way. If a Fork vertex has two incoming arcs from
other Fork vertices, then it is irrelevant which of the arcs is kept. Likewise, arcs going
from a Merge to another Merge vertex can also be kept in an arbitrary way without
making the solution any worse.

The approximation algorithm for arc-deletion distance is described in Algorithm 1.
We assume the label function has being computed for all vertices and its value is stored
in an array. An example of the execution of the algorithm is given at Figure 3.5.
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Algorithm 1 Approximation for the arc-deletion distance to a funnel of a DAG.

1: function ArcDeletionSet(DAG D = (V,A))
2: A′ := ∅
3: for all v ∈ V do
4: w := ⊥ . The arc (v, w) will be kept if w 6= ⊥.
5: if label(v) = Merge then
6: for all u ∈ out(v) do
7: if label(u) = Merge then
8: w := u . A single arc to another Merge vertex can be kept.

9: X := {(v, u) | u ∈ out(v) ∧ u 6= w}
10: else if label(v) = Fork then
11: for all u ∈ in(v) do
12: if label(u) = Fork then
13: w := u . A single arc from another Fork vertex can be kept.

14: X := {(u, v) | u ∈ in(v) ∧ label(u) = Fork ∧ u 6= w}
15: A′ := A′ ]X
16: return A′

Before we analyze the approximation factor, we first show an interesting property of
the approximation algorithm. We show that if the vertices are labeled as in an optimal
solution, then the algorithm above also outputs an optimal arc-set. In a sense, this
means that the difficult part of the problem lies in finding the correct labeling. Once
this labeling is found, we can compute an arc-deletion set in linear time.

Proposition 3.2.7. Let D = (V,A) be a DAG and A′ ⊆ A a minimum-sized arc-set such
that D′ = D \ A′ is a funnel. If ∀v ∈ V : labelD(v) = labelD′(v),
then |ArcDeletionSet(D)| = |A′|.

Proof. We first consider two simple cases for an arc (v, u) ∈ A. We argue that in both
cases any optimal solution and ArcDeletionSettake the same decision with respect to
this arc.

The first case is when label(v) = Merge and label(u) = Fork. This arc has to be
both in A′ as well as in the solution given by ArcDeletionSet, which we call from now
on B. It is clearly in B since it was added to the solution on Line 9. Since label(v) =
Merge we know ∃w ∈ in∗D′(v) : indegD′(w) > 1. Because label(u) = Fork, then neces-
sarily outdegD′(u) > 1, otherwise u would also be marked as Merge. Hence, (v, u) ∈ A′,
otherwise a forbidden subgraph would be present and D′ would not be a funnel. The
other simple case is when label(v) = Fork and label(u) = Merge. Clearly removing
this arc will not destroy any forbidden subgraph, since ∀w ∈ in∗D′(v) : label(w) = Fork.
Since the approximation algorithm does not remove the arc, it is neither present in B
nor in A′.

For the remaining cases we cannot guarantee that exactly the same decision was
taken with respect to the arc. What we do instead is to consider a set of arcs which is

31



Figure 3.5: Example of the execution of ArcDeletionSet. Vertices which received the
label Fork are green, and those who received the Merge label are red. The approx-
imation algorithm will return the dashed arcs, while there is an optimal solution (bold
arcs in the center) of size two.

not removed and argue that exactly one of them is not removed by the approximation,
and at most one is not removed by an optimal solution.

If label(v) = Merge = label(u), let X = {(v, w) | w ∈ outD(v)}. We know
that |X \A′| ≤ 1, since otherwise outdegD′(v) > 1 which contradicts label(v) = Merge.
We also know that the algorithm will set w to u in Line 8, and potentially to another value
later. In either case, the arc (v, w) will not be present inB. Thus, |X \B| = 1 ≥ |X \A′|.
An analogous argument holds for the case where label(v) = Fork = label(u).

Since those were all cases and in all of them ArcDeletionSetdeletes at most as many
arcs as the optimal solution, we can conclude that |B| = |A′|.

We now give a guarantee of the quality of the solution found by ArcDeletionSet.
Since the algorithm does not always yield an optimal solution, it is useful to have an
upper-bound of how much larger the solution found can be in comparison to an optimal
solution. This can then be used in other algorithms which rely on the fast computation
(e.g., polynomial time) of a arc-deletion set which is not too large (e.g., off by a constant
factor).

Lemma 3.2.8. Let D = (V,A) be a DAG, A′ ⊆ A be a minimum-sized arc-set such
that D \A′ is a funnel, and B be the output of ArcDeletionSet. Then |B| ≤ 3 · |A′|.

Proof. We prove this by mapping each arc removed by the approximation to one arc
from the optimal solution. We then show that at most three arcs are mapped to the
same arc. That is, we construct a function f : B → A′ such that ∀a ∈ A′ :

∣∣f−1(a)
∣∣ ≤ 3,

where f−1(a) = {x ∈ B | f(x) = a} is the inverse image of f . We do this by iterating
through all vertices and analyzing which arcs are removed by the approximation.

Let v ∈ V be a vertex. We first observe that if label(v) = Fork, then the approxi-
mation only removes incoming arcs; when label(v) = Merge it only removes outgoing
arcs. Even though other arcs may be removed in the end, this only happens when the
algorithm reaches other vertices. Hence, we do not need to consider all adjacent arcs of
a vertex. We then make a case distinction based on the in- and outdegree of a vertex.

If outdeg(v) 6= indeg(v) and both are greater than one, then an optimal solution
has to remove at least min{indeg(v)− 1, outdeg(v)− 1} many arcs. The approximation
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u

v

(a) The arc (v, u) is removed both by the ap-
proximation as well as in an optimal solution.

u

v

(b) The arc (v, u) is not removed by the approx-
imation if label(u) = Merge = label(v).

Figure 3.6: Argumentation of why ArcDeletionSetis at most a factor-three approxima-
tion. Even if all dashed arcs are removed, a factor of three is achieved. The dotted arc
corresponds to an optimal solution.

removes at most min{indeg(v), outdeg(v)}many, that is, at most one more than optimal.
Hence, at most two arcs from the approximation are mapped to the same optimal arc,
while the rest is mapped one-to-one to the remaining arcs from the optimal solution.

If outdeg(v) 6= indeg(v) and one of the degrees equals one, then an arc is re-
moved only if the labels of the vertices differ. Consider the case where outdeg(v) = 1,
which implies indeg(v) > 1 and label(v) = Merge and assume the arc was removed.
Then label(u) = Fork, for u ∈ out(v), and outdeg(u) > 1. If additionally indeg(u) > 1,
then the mapping of this arc is covered by the previous case and we do not need to con-
sider it now. Otherwise, if indeg(u) = 1, then in∗[v]∪ in∗[u] forms a forbidden subgraph
for funnels, and so at least one of its arcs is removed by the optimal solution. When con-
sidering v and u, the approximation only removes the arc (v, u). Hence, we can map (v, u)
to one of the arcs removed by the optimal solution. The case where indeg(v) = 1
and label(v) = Fork works analogously.

If outdeg(v) = indeg(v), then we need to consider two further cases. First, if
label(v) = Fork, we know by the definition of label that ∃u ∈ in(v) : label(u) = Fork.
Hence, the arc (u, v) will not be removed by the approximation, and so it removes ex-
actly indeg(v) − 1 arcs, which is the minimum amount of arcs that must be removed
from v. Thus, each arc removed by the approximation is mapped to a different optimal
arc. In the second case label(v) = Merge. The optimal solution has to remove at
least outdeg(v)− 1 many arcs, whereas the approximation removes at most outdeg(v).
Hence, we map two arcs to the same one from the optimal solution, while the rest is
mapped one-to-one to the remaining arcs.

In every case, an arc of the optimal solution receives at most four arcs from the
approximation: Two for each endpoint. However, we argue that the case where a total
of four arcs are mapped to the same one never happens.

Assume towards a contradiction that there is some arc (v, u) = a ∈ A′ such that∣∣f−1(a)
∣∣ = 4. First note that there are only two cases where two arcs from the approxi-

mation are mapped to the same optimal arc: When in- and outdegree are different and
greater than one; or when they are equal and the label is Merge. In both cases this only
happens when all considered arcs are removed (i.e., all outgoing or all incoming). If the
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(a) Optimal labeling for a grid with five
columns and four rows. The optimal solution
consist of removing three arcs.

(b) Labeling found by the approximation algo-
rithm. A total of six arcs are removed by the
algorithm.

Figure 3.7: Example of a DAG where the approximate solution is two times as large
as an optimal solution. Green vertices receive the label Fork, while red ones receive
Merge. The solution of each algorithm is given by the dashed arcs.

in- and outdegree differ, then either both the optimal solution and the approximation
remove incoming arcs or both removing outgoing arcs, as doing otherwise would result
in a one-to-one mapping. Hence, only the cases where label(v) = Merge are relevant.
These cases are illustrated in Figure 3.6.

If label(u) = Fork, then (v, u) ∈ B as well. Thus, it is mapped to itself both when
considering v as well as u. Since we are counting this mapping twice,

∣∣f−1(a)
∣∣ ≤ 3.

If label(u) = Merge, then not all outgoing arcs from v are removed, since keep-
ing (v, u) is allowed. Hence

∣∣f−1(a)
∣∣ ≤ 3.

In all cases
∣∣f−1(a)

∣∣ ≤ 3, so |B| ≤ 3 · |A′|.

Theorem 3.2.9. Let D = (V,A) be a DAG. An arc-set A′ ⊆ A of size |A′| ≤ 3d such
that D \A′ is a funnel can be computed in O(|V |+ |A|) time, where d is the arc-deletion
distance to a funnel of D.

Proof. We start by computing a topological ordering of the vertices of D. This can
be done in O(|V | + |A|). We then apply ArcDeletionSet, obtaining the arc-set A′.
Since this algorithm iterates through all vertices exactly once, and for each vertex v
the number of steps required is linear on its degree, it runs in O(|V | + |A|) time. If
we implement label as an array, we can decide in constant time what is the label of
a vertex. By Lemma 3.2.8 we know |A′| ≤ 3d. Hence, the problem of determining
arc-deletion distance to a funnel of a DAG admits a factor-3 approximation computable
in O(|V |+ |A|) time.

Even though we showed the approximation algorithm yields a solution which is at
most three times larger than an optimal one, it is still unclear whether this bound is
sharp. That is, is there any DAG where a factor of three is indeed achieved? While we do
not know the answer to this question, we provide in Example 3.2.1 a way of constructing
arbitrarily large DAGs where a factor of two is achieved by the approximation.
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Figure 3.8: In tournament DAGs, the approximation algorithm finds an optimal solution.
In this case, only two dashed arc are removed by the approximation. Green vertices
receive the label Fork, while red ones receive the label Merge.

Example 3.2.1. Let D = (V,A) be a directed grid with width w and height h. The grid
is defined as follows

V = {1, 2 . . . w} × {1, 2 . . . h} and

A = {((x, y), (x+ 1, y)) | (x, y) ∈ V, x < w} ∪ {((x, y), (x, y + 1)) | (x, y) ∈ V, y < h}.

Directed grids constructed in this form have (w−2)(h−2) vertices with in- and outdegree
equal to two. Since each arc can destroy at most two forbidden subgraphs, we need to
remove at least d(w − 2)(h − 2)/2e arcs in a grid. By removing (w − 2) arcs of each
second row, we destroy all single-cores of the grid and require only d(w − 2)(h − 2)/2e
arcs (refer to Figure 3.7). Because this amount equals the lower bound, it is also the
size of an optimal solution.

The approximation algorithm, however, will attribute every single-core in the grid
the label Fork. It will then have to remove one incoming arc of every single core,
totaling (w− 2)(h− 2) removed arcs. Hence, on grids the approximation removes twice
as many arcs as an optimal solution.

While on directed grids the approximation factor is not very good, on tournament
DAGs ArcDeletionSetalways finds an optimal solution. This is shown on the example
below (see Figure 3.8).

Example 3.2.2. Let D = (V,A) be a tournament DAG with n vertices, where n is even.
That is,

V = {1, 2, . . . n} and

A = {(v, u) | 1 ≤ v ≤ u ≤ n}.

From Proposition 2.3.1 we know a funnel with n vertices has at most n2/4 + n − 2
arcs. Since a tournament DAG has n(n−1)/2 arcs, the arc-deletion distance to a funnel
of D is at least n(n − 1)/2 − n2/4 − n + 2 = (n2 − 6n + 8)/4 arcs. The approximation
algorithm sets the label of the first dn/2e to Fork since their indegrees is not larger
than their outdegrees. The remaining vertices receive the label Merge. The number of
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arcs removed by the approximation is then given by

dn/2e∑
v=3

(v − 2) +
n−2∑

v=dn/2e+1

(n− v − 1) =
n2 − 6n+ 8

4
.

Hence, the solution from the approximation is optimal. The case where n is odd works
similarly.

3.2.3 A Labeling Strategy

Other than the approximation algorithm from Section 3.2.2, the FPT algorithm in
Section 3.2.1 does not label vertices and branches instead on the arcs that need to be
removed. However, from Proposition 3.2.7 we know we actually only need to correctly
label the vertices in order to find an optimal arc-deletion set. In a sense, the difficulty
of the problem lies in finding this labeling, and not in removing the arcs themselves.

What we now do is to consider another algorithm which tries different labelings of
the vertices. That is, we construct a function L : V → {Fork,Merge} and then apply
ArcDeletionSet to it. A naive approach would be to guess, for each vertex, whether it
is a Fork or a Merge vertex. This would imply testing 2|V | different labelings, which
would not give us an FPT algorithm with respect to the arc-deletion distance to a funnel
of the input DAG.

In order to again bound the size of the search-tree with a function on the arc-deletion
distance d to a funnel, we need to guarantee that, whenever the algorithm needs to
branch, then, regardless of the decision it makes, some arc has to be removed. This
implies that the search-tree has a height upper-bounded by d, and if the number of
branches per step is constant, we obtain again an FPT algorithm for computing the
arc-deletion distance to a funnel of a DAG.

One advantage of using labels instead of simply removing arcs is to gain certain
local information about the vertices. That is, if we know that a vertex has a Merge
label, then, after removing the arc-set found, all of its successors must also have a
Merge label. This locality allows us to define certain data reduction rules which im-
prove the running time of the algorithm. We first consider a reduction rule which allows
us to label vertices without removing any arcs. The main idea is to consider what the
algorithm ArcDeletionSet does when removing arcs from each vertex. Since Propo-
sition 3.2.7 tells us that the algorithm computes an optimal arc-set if the labeling is
optimal, we basically need to argue that the labels we set with this reduction rule do
not increase the number of arcs removed by ArcDeletionSet. The various cases from
Reduction Rule 3.2.10 below are illustrated in Figure 3.9.
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(a)
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(b)
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(c)

Figure 3.9: The three cases considered by Reduction Rule 3.2.10 when attributing the
label Fork to a vertex v. Green vertices already have the label Fork, and yellow ones
already have some label. In (a) we have indeg(v) = 0; in (b) v has only one inneighbor,
and it has the label Fork; in (c) all labels of the outneighbors are known. The cases for
setting L(v) := Merge are analogous.

Reduction Rule 3.2.10 (Set Label). Let v ∈ V be a vertex. Set L(v) := Fork if at
least one of the following is true:

• indeg(v) = 0,
• indeg(v) = 1, u ∈ in(v) and L(u) = Fork, or
• outdeg(v) > 1, indeg(v) = 1 and ∀u ∈ out(v) : L(u) 6= ⊥.

Set L(v) := Merge if at least one of the following is true:

• outdeg(v) = 0,
• outdeg(v) = 1, u ∈ out(v) and L(u) = Merge, or
• outdeg(v) = 1, indeg(v) > 1 and ∀u ∈ in(v) : L(u) 6= ⊥.

Proof (Correctness of Reduction Rule 3.2.10). Recall the definition of the label function
from Section 3.2.2, restated below.

labelD(v) :=


Fork, if outdegD(v) > indegD(v)

Merge, if outdegD(v) < indegD(v)

Fork, if outdegD(v) = indegD(v) ∧ ∃u ∈ in(v) : labelD(u) = Fork

Merge, otherwise.

Clearly, in a funnel the function label attributes every source a Fork label and every sink
a Merge label. Since destroying sinks and sources is not possible, Reduction Rule 3.2.10
labels these vertices optimally.

Let v be a vertex with indeg(v) = 1, let u ∈ in(v) be its only predecessor and as-
sume L(u) = Fork. If we set L(v) := Fork, then ArcDeletionSet will not remove
any arc when considering v. If some outgoing arc (v, w) is removed, then necessar-
ily L(w) = Fork. Hence, if we instead set L(v) := Merge we also need to remove this
arc, and potentially more. This implies that it is never worse to set L(v) := Fork in this
case. An analogous argument holds for the case where outdeg(v) = 1 and L(u) = Merge
for the only successor u of v.
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Finally, let v be a vertex where outdeg(v) = 1, indeg(v) > 1, and ∀u ∈ in(v) :
L(u) 6= ⊥. Since, by assumption, all outneighbors of v already have their labels set
and satisfied, we only need to consider the label of v and of its only predecessor u.
If L(u) = Fork in an optimal solution, then we know by the previous case that it is
optimal to set L(v) := Fork. If L(u) = Merge in an optimal solution, then we need to
remove the arc (u, v) or some outgoing arc of v. That is, we need to remove at least one
arc of v. By setting L(v) := Fork, we know we need to remove exactly one arc of v.
Hence, doing so is optimal. An analogous argument also holds for the last case where
we set L(v) := Merge.

In order to simplify the branching rule defined later, we describe a partial simula-
tion of ArcDeletionSet based on the assigned labels, but which does not necessarily
satisfy the label of a vertex. We basically remove all arcs that would be removed by
ArcDeletionSet, ignoring arcs from and to vertices which currently have no label.

Reduction Rule 3.2.11 (Satisfy Label). Let v be some vertex where L(v) = Fork
and indeg(v) > 1. If ∃u ∈ in(v) : L(u) = Fork, then take the arcs {(x, v) | x ∈
in(v) ∧ x 6= u} into the solution. Otherwise, take {(x, v) | x ∈ in(v) ∧ L(x) = Merge}
into the solution.

Let v be some vertex where L(v) = Merge and outdeg(v) > 1. If ∃u ∈ out(v) :
L(u) = Merge, then take the arcs {(v, x) | x ∈ out(v) ∧ x 6= u} into the solution.
Otherwise, take {(v, x) | x ∈ out(v) ∧ L(x) = Fork} into the solution.

Clearly, the arcs removed by Satisfy Label would also be removed by ArcDeletionSet

if all vertices had a label. Hence, if the labels are correct, then Satisfy Label only removes
arcs that are present in an optimal arc-deletion set.

We can now proceed to the main part of the search-tree algorithm for computing
the arc-deletion distance to a funnel of a DAG, namely the branching rule. As before,
we identify vertices where we always need to remove at least one arc in order to turn
the input DAG into a funnel. The crucial difference is that now we might know the
labels of the neighbors of a vertex, allowing us to consider less possibilities to branch
into. In particular, if we know all the labels of the inneighbors of a vertex, we only need
to branch over the label and the outgoing arcs. We again need to consider single cores
for branching, yet due to the previously defined data reduction rules we no longer need
to consider double cores directly. Indeed, we can optimally decide on the label of one of
the vertices in the double core through the data reduction rules.

The branching rule is divided into two parts. First, we branch on the label a vertex
receives, without removing any arcs. It is important, however, to only take vertices
where we necessarily need to remove at least one arc, otherwise we would not be able
to bound the size of the search tree. The second rule consists of branching, if necessary,
on the arcs that need to be removed from a vertex. Because we now know the labels of
certain vertices, we might be able to optimally decide without further branching which
arcs to remove after setting the label of a vertex.
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Figure 3.10: The three cases considered by Branching Rule 3.2.12 when branching on
the label of a vertex v. Green vertices have the label Fork, red ones have the label
Merge and yellow vertices have any label. In (a) we know the labels of the inneighbors
of v, and thus do not require further branching if we set L(v) := Fork. In (b) we need
to remove the only outgoing arc of v if we set L(v) = Merge, and all but one incoming
arc if we set L(v) = Fork. Case (c) is analogous to (b).

w

x uv

Figure 3.11: A DAG where Satisfy Label and Set Label are not applicable. Label Branch
cannot be applied to v since u does not have a label, yet it can be applied to x ∈ in∗(w).

Branching Rule 3.2.12 (Label Branch). If there is some vertex v such that ∀w ∈ in(v) :
L(w) 6= ⊥ or ∃w ∈ in(v) : L(w) = Fork, branch into two possibilities: Set L(v) :=
Fork; Set L(v) := Merge.

If there is some vertex v such that ∀w ∈ out(v) : L(w) 6= ⊥ or ∃w ∈ out(v) : L(w) =
Merge, branch into two possibilities: Set L(v) := Fork; Set L(v) := Merge.

Branching Rule 3.2.13 (Arc Branch). If there is some vertex v with L(v) = Fork
and indeg(v) > 1, branch into all possibilities of removing all but one incoming arc
of v. If there is some vertex v with L(v) = Merge and outdeg(v) > 1, branch into all
possibilities of removing all but one outgoing arc of v.

From the definition of Label Branch it is, at first glance, unclear that we actually
destroy all forbidden topological minors in the DAG. In particular, the branching rule
requires certain labels of the neighbors of a vertex to be known, but this information is
not necessarily available for every vertex in every forbidden minor. We argue that, if the
label of some inneighbor u of a vertex is not known, then we can apply the branching rule
on some vertex in in∗(u). Since we can label all sources with Set Label, we necessarily
arrive at some vertex where the label of all inneighbors is known, and then we can apply
Label Branch. This is formalized in the lemma below.

Lemma 3.2.14. Let D be a DAG. If Branching Rules 3.2.12 and 3.2.13 and Reduction
Rules 3.2.10 and 3.2.11 are not applicable, then D is a funnel and all vertices have a
label.
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Proof. We first note that, as soon as we set the label of a vertex, we immediately satisfy
it by either applying Satisfy Label or by branching with Arc Branch. Since satisfying all
labels turns D into a funnel, we only need to show that all vertices have a label if Label
Branch, Set Label and Satisfy Label are not applicable. Arc Branch only removes arcs
and does not set labels, hence we do not need to consider it further in this proof.

We first show that, if there is some forbidden subgraph D′ = (V ′, A′) ⊆ D and Set
Label and Satisfy Label are not applicable, then Label Branch is applicable. Let v, u ∈ V ′
be two (not necessarily distinct) vertices in D′ such that indegD′(v) > 1, outdegD′(u) > 1
and all vertices between v and u (if any) have in- and outdegree one in D. If D is not
a funnel, we can always find such a forbidden subgraph by following the successor of v
and the predecessor of u.

If ∀w ∈ inD(v) : L(w) 6= ⊥, then we can apply Label Branch (if outdegD(v) > 1)
and we are done, or we know L(v) = Merge due to Set Label. Since all vertices
between v and u have in- and outdegree one, we also know from the latter case that
there is some arc (x, y) in the (v, u)-path such that L(x) = Merge and L(y) = ⊥. Note
that it cannot happen that L(y) = Fork since Satisfy Label is not applicable. We also
know outdegD(y) > 1, since Reduction Rule 3.2.10 is not applicable. This implies that
Label Branch is applicable on y.

We now consider the remaining case where ∃w ∈ inD(v) : L(w) = ⊥, which is
illustrated in Figure 3.11. We show that we can find some vertex in in∗(w) where we
can apply Label Branch. Consider the longest (x,w)-path that only contains vertices
in in∗(w) which do not have a label. If x = w, then we can apply Label Branch on w
since ∀y ∈ in(x) : L(y) 6= ⊥. Otherwise we know outdeg(x) > 1, since Set Label is not
applicable. Thus, we can apply the branching rule on x.

Since only these two cases are possible, and in both we can apply Label Branch,
it follows, by contraposition, that D is a funnel and all vertices have a label if Label
Branch, Set Label and Satisfy Label are not applicable.

By combining the previous reduction and branching rules, we can construct a search-
tree algorithm for computing the arc-deletion distance to a funnel of a DAG. Since the
size of the search-tree is bounded on the solution size, we obtain an FPT algorithm with
respect to the arc-deletion distance to a funnel.

Theorem 3.2.15. Let D = (V,A) be a DAG. Finding an arc-set A′ ⊆ A such that D\A′
is a funnel is doable in O(3d(|V |+ |A|)) time, where d = |A′|.

Proof. We first exhaustively apply Set Label to D. For each vertex we have two auxiliary
counters for the number of in- and outneighbors whose labels are known. Hence, testing
if the labels of all in- or outneighbors of a vertex are known can be done in constant
time, and assigning a label to a vertex v takes O(indeg(v)+outdeg(v)) time. We iterate
through all vertices once, revisiting a vertex only if one of its neighbors received a label.
Since we visit a vertex v at most indeg(v) + outdeg(v) times, we can exhaustively apply
this reduction rule in O(|V |+ |A|) time.

We then search for a vertex where Label Branch is applicable. We first iterate through
all vertices, collecting in a set S those where Label Branch is applicable. By again using
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the same two counter as before, we can check in constant time if the branching rule is
applicable to a vertex or not. If it is, we add the vertex to S. When S = ∅, we can
stop the algorithm. Every vertex is visited at most indeg(v) + outdeg(v) times, and
applying the rule to a vertex takes O( indeg(v) + outdeg(v)) time. In total, applying
this branching rule takes O(|V |+ |A|) time. By applying Arc Branch and Satisfy Label
immediately after Label Branch, we will need to remove at least one arc in each case of
Label Branch. Label Branch branches into two possible labels and, in the worst case, it
also branches on removing at most d from d+ 1 arcs. If we analyze a branching strategy
which considers two arcs in every step, branching into removing one or the other, we
obtain a search tree with 2d leaves. We additionally need to branch on the label of a
vertex. However, we only need to apply Arc Branch in one of the branches of Label
Branch. Consider a vertex v to which Label Branch is applied. If ∀w ∈ in(v) : L(w) 6= ⊥
or ∃w ∈ in(v) : L(w) = Fork, then Satisfy Label can satisfy the label of v if we
set L(v) := Fork. The other case of the rule follows analogously, with no further
branching being necessary if we set L(v) := Merge. This gives us a total running time
of O(3d(|V |+ |A|)).

By Lemma 3.2.14 we obtain a funnel after exhaustively applying Label Branch,
Satisfy Label and Set Label. Since the search tree explores every possible labeling of
the considered vertices, the labeling of an optimal solution is also considered. While
setting the labels, we simulate the decisions of ArcDeletionSet by applying Satisfy
Label. Hence, it follows from Proposition 3.2.7 that a solution of size at most d is found
if it exists.

As stated before, the algorithm described here only works on DAGs. On digraphs we
can no longer guarantee that, if the reduction rules are no longer applicable, then either
the digraph a funnel or Label Branch is applicable. The reason for this is that digraphs
do not necessarily have sinks or sources, and so we cannot always find a vertex v where
the labels of all inneighbors of v are known. Without this property, we end up with an
algorithm with the same worst-case running time as the one described in Theorem 3.2.6.

3.2.4 A Lower Bound

In practice, the running time of a search-tree algorithm is longer if the input is a no-
instance. To reject the input, all leaves of the search tree need to be evaluated, making
the algorithm reach the worst-case running time. In order to improve the running time
in practice, often pruning rules are used. These rules allow an entire subtree to be
evaluated without having to compute all of its leaves. For example, if we know we need
to remove at least k arcs in order to turn the input DAG into a funnel, and we ask for
a arc-set of size at most d, then if d > k, we can stop the search tree and answer “no”.

We describe in this section an algorithm which computes a lower bound for the arc-
deletion distance to a funnel of a DAG. Since funnels are characterized by forbidden
subgraphs, one natural lower bound consists of collecting such subgraphs. Because we
need to destroy all forbidden subgraphs in order to turn the input into a funnel, the
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Algorithm 2 Compute a lower bound for the arc-deletion distance to a funnel.

1: function LowerBound(DAG D = (V,A))
2: d̂ := 0
3: for all v ∈ V do
4: if indeg(v) > 1 ∧ outdeg(v) > 1 then
5: d := min{indeg(v), outdeg(v)}
6: A′ := take(d, {(u, v) | u ∈ in(v)})
7: A′ := A′ ] take(d, {(v, u) | out(v)})
8: D := D \A′
9: d̂ := d̂+ d− 1

10: else if indeg(v) > 1 ∧ outdeg(v) = 1 then
11: u := out(v)[0]
12: while indeg(u) = 1 = outdeg(u) do
13: u := out(u)[0]

14: if outdeg(u) > 1 ∧ indeg(u) = 1 then
15: A′ := {(v, out(v)[0]), (in(u)[0], u)} ] take(2, {(w, v) | w ∈ in(v)})
16: A′ := A′ ] take(2, {(u,w) | w ∈ out(u)})
17: D := D \A′
18: d̂ := d̂+ 1

19: return d̂

number of arcs we need to remove in order to destroy the collected subgraphs is a lower
bound to the arc-deletion distance to a funnel of a DAG.

For the lower bound to be useful in practice, it needs to be quickly computable,
preferably in polynomial time. Since we do not know any polynomial-time algorithm for
computing the arc-deletion distance to a funnel of an arbitrary DAG, we need to consider
forbidden subgraphs where this distance can be computed efficiently. Furthermore, if we
require the collected subgraphs to be arc-disjoint, then we can consider each subgraph
individually when computing its arc-deletion distance to a funnel. In the proposition
below we formalize how to obtain a lower bound for the arc-deletion distance to a funnel
of a DAG.

Proposition 3.2.16. Let D be a DAG and F1, F2 . . . Fn ⊆ D be arc-disjoint subgraphs
of D which are not funnels. Let di be the arc-deletion distance to a funnel of Fi. Then
the arc-deletion distance to a funnel of D is at least

∑n
i=1 di.

Proof. We can only destroy a forbidden subgraph by removing some of its arcs. Arcs
outside the subgraph do not help in destroying it. Since all Fi are arc-disjoint, arcs used
to destroy some Fi cannot be used to destroy another Fj . Hence, an arc-deletion set
that turns D into a funnel must contain at least

∑n
i=1 di many arcs.

Clearly, if we set F1 := D, we obtain by Proposition 3.2.16 a lower bound which is
equal to the real distance. This is, in itself, useless, since in order to compute the lower
bound we need to be able to compute the arc-deletion distance to a funnel of D. We are
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Figure 3.12: A collection of forbidden subgraphs which give a lower bound for the
arc-deletion distance to a funnel of a grid. The arcs used by each subgraph are colored
according to the subgraph they belong to. In order to destroy each subgraph we collected
we need to remove one arc. To turn the grid into a funnel, it suffices to remove the four
dashed arcs. In this case, the lower bound met the actual distance to a funnel.

actually interested in finding forbidden subgraphs in which computing the arc-deletion
distance to a funnel is easy. This can be achieved by searching for vertices with both in-
and outdegree greater than one. Such vertices can be easily found in linear time (Lines 4
to 9 in Algorithm 2). For a vertex v found we then take x = min{indeg(v), outdeg(v)}
inneighbors and x outneighbors arbitrarily, as long as the respective arcs are not already
taken. The vertex v together with the chosen neighbors form a forbidden subgraph. By
marking each arc with a Boolean value which says whether it is in use or not, we can
find a maximal set of such forbidden subgraphs in O(|V |+ |A|) time, and compute the
arc-deletion distance to a funnel of each of them also in linear time.

Another type of DAG for which we can compute its arc-deletion distance to a fun-
nel efficiently is composed by two vertices v, u such that indeg(v) > 1,outdeg(v) = 1,
outdeg(u) > 1, indeg(u) = 1 and u ∈ out∗(v). If we additionally require that every
vertex in a (v, u)-path to have both in- and outdegree equal to one, we can turn such a
DAG into a funnel by simply removing the outgoing arc of v. When taking these sub-
graphs into our collection, we only need to take two inneighbors of v, two outneighbors
of u and all vertices between the unique (v, u)-path. Finding such subgraphs can also
be done efficiently by first identifying a vertex with indeg(v) > 1 and outdeg(v) = 1
(Lines 10 to 18 in Algorithm 2). We then follow the unique successor u of v, stopping
if outdeg(u) > 1 or indeg(u) > 1. In the case that outdeg(u) > 1, we found a forbidden
subgraph. We visit each vertex v at most 1 + indeg(v) times, obtaining a running time
of O(|V |+ |A|) for computing a maximal set of such arc-disjoint subgraphs.

We consider now the same example where the approximation algorithm from Sec-
tion 3.2.2 achieved a factor of two, namely grids. Interestingly, the lower bound proposed
here finds the exact arc-deletion distance to a funnel on grids. We do not know, however,
how to check this in polynomial time for the general case. That is, checking if there is an
arc-deletion set of the same size as the lower bound. When formulating the arc-deletion
problem as a decision problem, the lower bound acts like a certificate for “no” instances,
allowing us to reject an input if the lower bound is too large.

Example 3.2.3. Let D = (V,A) be a directed grid with h rows and w columns. For
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Figure 3.13: A DAG where the lower bound found by Algorithm 2 is not optimal. The
colored arcs correspond to a subgraph found by the algorithm, implying a lower bound
of one, yet we need to remove both dashed arcs in order to turn the DAG into a funnel.

simplicity, we assume w and h are even. Each row of D contains w−2 vertices with both
in- and outdegree greater than one. If we iterate through the vertices first by row and
then by column, Algorithm 2 finds (w−2)/2 single cores in each row (except for the first
and last ones, refer to Figure 3.12). Hence, in total the algorithm finds (h− 2)(w− 2)/2
single cores. For each of them we need to remove one arc, and so the lower bound
equals (h− 2)(w − 2)/2, which is also the arc-deletion distance to a funnel of the grid.

The lower bound given here is not always optimal. In fact, we do not know if for
every DAG D there is some set F of subgraphs D such that the arc-deletion distance
to a funnel of D is the sum of the arc-deletion distances to funnel of each subgraph
in F , with the additional restriction that we can compute the arc-deletion distance to a
funnel of the DAGs in F in polynomial time. One example where this set F is not know
is shown in Figure 3.13. If such an set F always exist, however, then the problem of
deciding whether the arc-deletion distance to a funnel of a DAG is at most d would be
in coNP. The size of F is clearly polynomial in the size of the input DAG, and if we find
some set F such that the sum of the arc-deletion distances to funnel of every subgraph
in F is greater than d, then we can reject the input. If the problem were indeed in coNP,
then this would explain why we could not show that it is NP-complete. If it were at the
same time NP-complete and in coNP, then this would imply that NP=coNP, which is
assumed not to be the case.

3.3 Funnel Depth and Height

While arc- and vertex-deletion parameters are natural distance measurements, they
have the disadvantage of quickly growing together with the input size: If we simply
duplicate a DAG, we also duplicate its arc- and vertex-deletion distance to a funnel.
From an algorithmic point of view, however, simply duplicating an instance should not
make it much harder. For this reason, we define here two parameters which represent a
more global distance to a funnel of a DAG.

The idea is to view the DAG as having multiple layers, where the innermost one is a
funnel. The number of layers is then the distance parameter. When considering a path
from a source to a sink, this distance parameter tells us how many steps we need to take
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t1

t3

t2

(a) A DAG with funnel-height two. If we start
at t1 or t3 then we already have a funnel, but if
we start at t2 we need to take one further step
backwards in order to reach a funnel.

s1

(b) A DAG with funnel-depth three. If we start
at s1, then after at most two steps we reach a
funnel. Since in general a DAG can have more
than one source, the choice of s1 counts as a
step.

Figure 3.14: Examples of funnel depth and height. In a sense, both parameters measure
the number of steps, starting at some source or sink, we need to take in order to reach
a funnel.

in order to reach a funnel. For an algorithm, this parameter could indicate how many
steps of a path are “hard” to compute.

Here we consider two variants of the distance parameter. In the first one, the layers
appear before the funnel (that is, they start at the source vertices). On the second one,
they come after the funnel. We call the distance parameter in these cases funnel depth
and funnel height, respectively. They are formally defined below (an example can be
seen in Figure 3.14).

Definition 3.3.1 (Funnel depth). Let D be a DAG with sources {si}ni=1. The funnel
depth of D is given by fd(D). If D is a funnel, then fd(D) := 0. Otherwise,

fd(D) := 1 + max{fd(out∗[si] \ {si})}ni=1.

Definition 3.3.2 (Funnel height). Let D be a DAG with sinks {ti}mi=1. The funnel
height of D is given by fh(D). If D is a funnel, then fh(D) := 0. Otherwise,

fh(D) := 1 + max{fh(in∗[ti] \ {ti})}mi=1.

In a sense, the funnel depth of a DAG captures the maximum number of “hard”
decisions an algorithm has to take when constructing some path from a source to a sink.
An alternative way of understanding the parameter is to consider the private arcs of
a source-sink path. While in a funnel we can uniquely identify any source-sink path
through one arc, in a DAG D we need at most fd(D) + 1 arcs: After taking fd(D) arcs
we know we reached a funnel. The same is true for the funnel height. This property
implies that a DAG D = (V,A) with maximum degree ∆ has at most ∆fd(D) · |A| many
paths. Hence, for some problems we can obtain a simple brute-force XP algorithm with
respect to funnel height or funnel depth simply by testing all paths of a DAG.

We can quickly compute both funnel height and funnel depth by following the topo-
logical ordering of the DAG. For funnel depth, all sinks can be marked with 0. We then
follow the topological ordering backwards, until we find a vertex v such that out∗[v] is
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not a funnel. This vertex is then marked with one, and for all of its predecessors we just
need to take one plus the maximum of the values of the outneighbors. An analogous
algorithm works for funnel height. Hence, both funnel height and funnel depth can be
computed in O(|V |+ |A|) time.
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Chapter 4

Applications of Funnels

In this chapter we analyze the usefulness of funnels for the construction of algorithms.
We start by considering problems which are NP-hard on DAGs and ask if they become
polynomial-time solvable if we restrict the input DAG to be a funnel. If we do find a
polynomial-time algorithm for a problem, then we also investigate the parameterized
complexity of said problem with respect to some distance to a funnel measurement.

In Section 4.1 we consider the DAG Partitioning problem, which can be used
to study the behavior of the news cycle, and provide a polynomial-time algorithm for
it when the DAG is a funnel. In Section 4.2 we prove that the Max-Leaf Out-
Branching problem remains NP-hard even when restricted to funnels. Finally, we
study the k-Linkage problem in Section 4.3, providing an FPT algorithm with respect
to the arc-deletion distance to a funnel of the input DAG.

4.1 DAG Partitioning

Leskovec, Backstrom, and Kleinberg [LBK09] developed a method of tracking how
news articles spread over the web, and applied their method in practice. To this end,
they constructed a digraph from millions of news articles where each vertex is some
relevant statement (for example a quote) and there is an arc from a vertex v to another
vertex u if with certain probability v came from u. From this digraph they extracted
which topics were present in each article in such a way that it was possible to identify
which articles belonged to the same topic.

They achieved this by removing arcs from the digraph such that each weakly con-
nected component had one sink, which correspond to the statement from which all other
vertices on the same connected component derived from. They called this problem DAG
Partitioning. Since they did not formally define the problem as a decision problem,
we use the definition due to van Bevern et al. [Bev+17].
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Figure 4.1: Motivating example for DAG Partitioning on funnels. Colored vertices
correspond to articles whose origin is known. These vertices always have outdegree
at most one. For articles whose origin is unknown, we make a decision tree, with the
outneighbors corresponding to possible originators. Such a construction gives us a funnel.

DAG Partitioning [Bev+17]
Input: A directed acyclic graphD = (V,A) with positive integer arc costs ω : A→ N

and a positive integer k ∈ N.
Question: Is there a set S ⊆ A with

∑
a∈S ω(a) ≤ k such that each weakly-connected

component in D′ = (V,A \ S) has exactly one sink?

The problem was considered from a parameterized perspective by van Bevern et al.
[Bev+17]. They developed a O(2k · (|V | + |A|)) algorithm together with linear-time
reduction rules. Alamdari and Mehrabian [AM12] provided an NP-hardness reduction
from 3-SAT to DAG Partitioning. From this reduction we can observe some NP-
hardness results also for some distance to a funnel parameters described in Chapter 3.
Their reduction produces a DAG where the vertex-deletion distance to a funnel is one
and which has funnel height and depth equal to one. The arc-deletion distance to a
funnel is, however, unbounded.

In this section we propose a polynomial-time algorithm for DAG Partitioning
restricted to funnels. It might be realistic to assume that the input DAG is a funnel if
it is constructed in the following manner, illustrated in Figure 4.1. We use a database
of statements whose origin is known, either due to manual verification or from some
previous execution of the algorithm. Because each vertex should only reach one sink, the
database corresponds to an in-forest, which is exactly the Merge region of a funnel. For
each statement whose origin we want to find we construct a decision tree. This decision
tree connects one statement with others through some mutually exclusive criterion. For
example, we could consider who said the statement, in which context it was spoken, if
it happened before or after an event, and so on. At some point the possible originators
of a vertex will be narrowed down to some of the statements on the database.

Perhaps a more concrete example of when the DAG might be a funnel is if we want to
determine the origin of some archaeological finding. We might know the origin of certain
objects, which will form the database. For a newly found object we might ask where and
when it was constructed, what kind of technology was used in its manufacture, which
religious marking it has and so on. After constructing the decision tree the object is
linked to other objects on the database which share similar properties.
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Before describing the algorithm we first consider two data reduction rules proposed
by van Bevern et al. [Bev+17].

Reduction Rule 4.1.1 ([Bev+17]). If there is an arc (v, w) such that w can reach
exactly one sink t 6= w and v can reach multiple sinks, then delete the arc (v, w) and
if there is no arc (v, t), then add it with cost ω(v, w), otherwise, set ω(v, t) := ω(v, t) +
ω(w, t).

Reduction Rule 4.1.2 ([Bev+17]). If, for some sink t, the set L of non-sink vertices
that can reach only t is nonempty, then delete all vertices in L.

If the input digraph is a funnel, after applying both reduction rules it acquires a very
simple structure similar to that of a directed tree. We formalize this with the following
proposition.

Proposition 4.1.3. Let D = (V,A) be a funnel where Reduction Rules 4.1.1 and 4.1.2
are no longer applicable. Then all vertices with indegree greater than one are sinks.

Proof. We argue that, if there is some vertex with indegree greater than one which is not
a sink, then we can apply one of the reduction rules. Assume towards a contradiction
that there is some vertex v ∈ V with indeg(v) > 1 and outdeg(v) > 0. Since D is
a funnel, we also know that outdeg(v) = 1 and every w ∈ out∗(v) has outdegree at
most one. Hence, v can reach only one sink t. Let w ∈ in∗(v) be an arbitrary vertex
which can reach at least two sinks and has the shortest distance to v. If no such w
exists, then every vertex in in∗[v] ∪ out∗[v] can reach exactly one sink, and Reduction
Rule 4.1.2 is applicable. If w exists, then we know there is some w′ ∈ out(w) such
that w′ can reach only t. Thus, Reduction Rule 4.1.1 is applicable. In either case, one
of the reduction rules is applicable, which is a contradiction to the fact that Reduction
Rules 4.1.1 and 4.1.2 are not applicable. Hence, all vertices in D with indegree greater
than one must be sinks.

Corollary 4.1.4. Let D = (V,A) be a funnel where Reduction Rules 4.1.1 and 4.1.2
are no longer applicable. Then all incoming arcs of all sinks tj are private.

Proof. Consider two paths P and Q that start at some source where both contain the
arc (v, tj), with tj being a sink. From Proposition 4.1.3 we know that all vertices with
indegree greater than one are sinks. Thus, all vertices on either path except for the
sink tj have indegree zero or one. This means that there is only one path from a source
to v, and so both paths P and Q are the same. Thus the arc (v, tj) is private.

With Corollary 4.1.4, we can construct a polynomial-time algorithm for DAG Parti-
tioning by restricting the input digraph to a funnel. The idea is to start at the sinks and
using dynamic programming compute a minimum-cost solution. Due to Corollary 4.1.4
we know that paths only meet at the sinks. This implies that the set of arcs belonging
to the subgraph which starts at some vertex v is disjoint to the set of arcs which belong
another vertex u if there is not path between both vertices. In other words, we know
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v1
v2 v3

v4 v5 v6

T v4 v5 v6
v1 4 2 4
v2 1 1 ∞
v3 ∞ 1 1
v4 0 ∞ ∞
v5 ∞ 0 ∞
v6 ∞ ∞ 0

Figure 4.2: An example of the polynomial-time algorithm for DAG Partitioning on
a funnel. The dashed arcs represent an optimal solution of size two. All arcs here have
cost 1. One can see that the cheapest solution costs T (v1, v5) = 2. This values comes
from the sum T (v2, v5) + T (v3, v5), that is, the cost of making both outneighbors of v1
also reach v5.

that an optimal solution for out∗[v] can be combined with an optimal solution for out∗[u]
in order to produce an optimal solution for the union of both subgraphs. The algorithm
is formally described below.

Let (D = (V,A), ω, k) be a DAG Partitioning instance, where D is a funnel
with sources {si}ni=1 and sinks {ti}mi=1 and the data reduction rules above are no longer
applicable. We define a dynamic programming table T : V ×V → N∪{∞} where T (v, ti)
is the cost of making ti the only sink reachable by v, or ∞ if that is not possible.
Naturally, T (ti, tj) equals zero if i = j and ∞ otherwise. We first define an auxiliary
function κ where κ(v, t) represents the costs of making every outgoing neighbor u of v
compatible with v when v can only reach t. That is, either u also can only reach t, or
the arc (v, u) is removed.

In order to determine T (v, t), we observe that for each u ∈ out(v) there are two
possibilities: Either u can also only reach t, or we have to remove the arc (v, u). To
compute T efficiently, we first determine the minimum cost of making every outneighbor
of v compatible with it. This, however, can lead to a solution where v is disconnected
from all of its outneighbors, thus not reaching t. We fix this by choosing some u ∈ out(v)
with the smallest additional cost of forcing u to reach t while keeping the arc (v, u). This
additional cost is given by the function δ(v, u, t). Clearly δ(v, u, t) = 0 if u already reaches
t in the cheapest solution found. We also define a table M(v) which simply stores the
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cheapest solution for v. We claim that those functions satisfy the following:

T (v, t) =


0, t = v ∈ {ti}mi=1

∞, t 6= v ∈ {ti}mi=1

κ(v, t) + min
u∈out(v)

δ(v, u, t), otherwise

M(v) = min
1≤i≤m

T (v, ti)

κ(v, t) =
∑

u∈out(v)

min{T (u, t),M(u) + ω(v, u)}

δ(v, u, t) =

{
0, T (u, t) ≤M(u) + ω(v, u)

T (u, t)− (M(u) + ω(v, u)), otherwise.

We then compute T (a, ti) for every a ∈ V and every sink ti by starting at the sinks and
then going inwards towards the source. An example is given in Figure 4.2.

Lemma 4.1.5. A DAG Partitioning instance (D = (V,A), ω, k) where D is a funnel
with sources {si}ni=1 and sinks {tj}mj=1 is a yes-instance if and only if

n∑
i=0

min
1≤j≤m

T (si, tj) ≤ k.

Proof. We first show for every v ∈ V and every sink tj that if T (v, tj) 6= ∞ then there
is an arc-set Sj of cost at most T (v, tj) such that v reaches only tj in D \Sj . We do this
by induction on the height of v.

Let v ∈ V be a vertex of height zero, that is, a sink and tj an arbitrary sink. Since
v is a sink, it obviously can only reach itself, since it has no outneighbors. If tj =
v we know that T (v, v) = 0. Thus, by choosing Sj := ∅ we satisfy the statement.
Otherwise T (v, tj) =∞ and the statement trivially holds.

Now let v ∈ V be a vertex of height h > 0 and tj a sink. Obviously the height
of all outneighbors of v is smaller than the height of v itself, and so we can apply our
induction hypothesis on them. We know that for every u ∈ out(v) with T (u, tj) ≤M(u)
there is some arc-set Xu with cost at most T (u, tj) such that u only reaches tj in D\Xu.
For u ∈ out(v) with T (u, tj) > M(u), we know there is some arc-set Yu with cost at
most T (u, tk) + ω(v, u), with k 6= j, which contains the arc (v, u) and is such that u
only reaches tk in D \ Yu. We also know from Corollary 4.1.4 that all arcs coming into
a sink are private. This implies that every Xw and Yu for u,w ∈ out(v) are pairwise
disjoint, since any arc that appears in a path from u to some sink tk is not in any path
from w to t`, for any w ∈ out(v) different from u and any sink t`. Thus, the cost of
the arc-set Sv obtained by the union of all Xu and Yu equals the sum of the individual
costs. Every Xu costs at most T (u, tj) and every Yu costs at most M(u) + ω(v, u).
In other words, the sum is at most κ(v, tj). However, if there are no Xu then all arcs
between v and its outneighbors will be removed, meaning that v becomes a sink in D\Sv
and, therefore, does not reach tj as desired. In this case we replace some Yu with an
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arc-set A′u that makes u reach tj in D \ A′u. We know that this arc-set exists, and
its additional cost is at most δ(v, u, t) = T (u, tj) − (M(u) + ω(v, u)). If we choose an
A′u with minimum additional cost, then removing the arc-set (Sv \ Yu) ∪ A′u costs at
most T (v, tj) = κ(v, tj) + minu∈out(v) δ(v, u, tj). By accumulating all solutions for all
sources, this proves that, if

∑n
i=0 min1≤j≤m T (si, tj) = k 6= ∞, then there is a solution

of cost at most k.
It remains to show that, if there is a vertex v and an arc-set Sj with cost k such that

every vertex in out∗[v] reaches only one sink in out∗[v] \ Sj and v reaches the sink tj ,
then T (v, tj) ≤ k. Again we prove this by induction on the height of v.

The statement clearly holds for vertices of height zero, since they are themselves
sinks and no arcs need to be removed. As the cost of an arc-set is never negative, it is
trivially greater than or equal to T (v, v) = 0.

Now let v ∈ V be a vertex with height greater than 0 and Sj be some arc-set such
that every vertex in out∗[v] reaches only one sink in out∗[v] \ Sj and v reaches the
sink tj . Let k be the cost of Sj . Consider an outneighbor u ∈ out(v) of v and the arc-
set Ru = A(out∗[u]) ∩ Sj . By the definition of Sj , the vertex u only reaches one sink tu
in Ru. Furthermore, by the induction hypothesis the cost of Ru is at least T (u, tu).
Let X be the set of outneighbors of v such that the arc from v to any vertex in X is
not present in Sj , and w ∈ X be a vertex such that Rw ≤ Rx for all x ∈ X. Note that
tu = tj for any u ∈ X and that X cannot be empty. Let Y be the set of the remaining
outneighbors of v, that is, those whose incoming arc from v is in Sj .

The cost of Sj is then at least∑
u∈X

T (u, tj) +
∑
u∈Y

[T (u, tu) + ω(v, u)]

≥T (w, tj) +
∑

w 6=u∈out(v)

min{T (u, tj),M(u) + ω(v, u)}

≥δ(v, w, tj) +
∑

u∈out(v)

min{T (u, tj),M(u) + ω(v, u)}

≥κ(v, tj) + min
u∈out(v)

δ(v, u, tj)

=T (v, tj).

Hence, the statement holds.

With the previous lemma we can prove the following theorem, inferring that DAG
Partitioning is polynomial-time solvable if the input is a funnel.

Theorem 4.1.6. DAG Partitioning can be solved in O(|V |3) time if the input DAG D =
(V,A) is a funnel.

Proof. We first compute a topological ordering of D in linear time. By following this
ordering in reverse (that is, starting from the sinks), we compute T (v, t) for each ver-
tex v ∈ V and each sink t. With respect to complexity, the worst case occurs when we
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need to calculate κ(v, t) + min
u∈out(v)

δ(v, u, t). We claim that this can be done in linear

time.
First, note that M(v) can be stored for a certain vertex v as soon as T (v, ti) has

been computed for every sink ti. This adds O(|V |) when computing a row of T , which
implies plus O(|V |2) to the overall complexity of the algorithm. Hence, after finishing
the row of v we can access M(v) in constant time.

Computing κ(v, t) requires us to iterate through all outneighbors of v and compute
the minimum of a set of size two. All values in this set are precomputed, and so deter-
mining the value of κ(v, t) can be done in linear time.

Computing δ(v, u, t) is done in constant time since all necessary values are already
precomputed. Thus, computing each entry in T (v, t) takes O(|V |) time. Since there are
a total of O(|V |2) entries, computing the entire table takes O(|V |3) steps.

By Lemma 4.1.5, we only need to compute
∑n

i=0 min1≤j≤m T (si, tj) ≤ k in order to
determine whether (D, k, ω) is an yes-instance or not. The value min1≤j≤m T (si, tj) is
already stored in M(si), and so this steps takes linear time. In total, we need O(|V |3)
steps.

4.2 Maximum Leaf Out-Branching

In this section we consider the problem of finding a spanning tree of a digraph which
contains the maximum number of leaves. Since the definition of a tree for digraphs can
be ambiguous (for example, if we only require the absence of cycles like in undirected
graphs, we actually obtain the definition of directed acyclic graphs), we first define what
kind of tree are we interested in.

We say that an out-tree is a directed acyclic graph where one vertex has indegree
zero (called root) and all others have indegree one. Vertices with outdegree zero are
called leaves. An out-branching is then an out-tree which contains all vertices, that is, a
spanning out-tree. Here we are interested in finding out-branchings with the maximum
number of leaves. This is useful for sensor networks [BD07], where non-leaf vertices
represent routers which forward information from other sensors to a central (root) vertex.
Due to cost constraints, one wishes to minimize the number of routers, which is the same
as maximizing the number of leaves. The problem is formally defined below.

Max-Leaf Out-Branching [BD11]
Input: A directed graph D = (V,A) and an integer k.
Question: Does D contain an out-branching with at least k leaves, that is, a spanning

subtree where one vertex has indegree zero, all others have indegree one and
at least k vertices have outdegree zero?

We show that the problem is NP-hard on funnels by providing a reduction from
Independent Set, defined below. An illustration of the reduction is provided in Fig-
ure 4.3.
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(a) Independent Set instance. The
bold vertices form a solution of size
two.

ab bc cdbd

b c

dra

(b) Reduced Max-Leaf Out-Branching in-
stance. Removing the dashed arcs provides an
out-branching with six leaves.

Figure 4.3: Example of the reduction from Independent Set to Max-Leaf Out-
Branching.

Independent Set
Input: An undirected graph G = (V,E) and a number k.
Question: Is there a vertex-set V ′ ⊆ V of size at least k such that there are no edges

in G between vertices of V ′?

Theorem 4.2.1. Max-Leaf Out-Branching remains NP-hard if the input digraph
is a funnel.

Proof. We provide a reduction from the NP-complete problem Independent Set.
Let G = (V,E) be a graph. We construct a funnel D as follows. For every vertex in G
we add a vertex in D. For every edge {v, u} in G we add a vertex in D together with
the arcs (v, {v, u}) and (u, {v, u}). We add the arcs (r, v) to D for every vertex v ∈ V .

We now show that D has an independent set of size k if and only if it has an out-
branching with k + |E| leaves.

Let I be an independent set in G of size k. We construct an out-branching for D by
first removing all arcs of every vertex v ∈ I. We know that for every edge {v, u} ∈ E
at most one of its vertices is in I. This means that we do not create new sources by
removing the arcs of v. Since the indegree of the vertices of D which correspond to an
edge in G is two, we also know that removing the arcs of v will decrease the indegree of
its outneighbors to one. Thus we now have k+ |E| leaves in D. We then remove all but
one of the arcs incoming into any vertex with indegree greater than one. This yields an
out-branching for D with at least k + |E| leaves.

Now assume there is an out-branching B of D with k + |E| leaves. All vertices of D
which correspond to edges in G are already leaves in D and must remain so in B. We
then know there are k vertices of D which correspond to vertices of G which are leaves
in B. Let I be the set of such vertices. Assume towards a contradiction that there
is some edge {v, u} in G such that v, u ∈ I. Since both v and u are leaves in B, it
follows that the arcs (v, {v, u}), (w, {v, u}) are not present in B. Thus the vertex in B
corresponding to the edge {v, u} has indegree zero. Hence B is not an out-branching
of D, which is a contradiction. Therefore, the vertices of I form an independent set of
size k in G.
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4.3 k-Linkage

We consider in this section the problem of finding vertex-disjoint paths connecting
certain pairs of vertices. This problem is also known as the k-linkage problem and we
will use this name in order to avoid confusions to the similar k-connectivity problem,
where the task is to find k vertex-disjoint paths connecting two sets of vertices (as
opposed to specific pairs). The latter can be solvable in polynomial-time through a flow
network, while the former is known to be NP-hard for undirected and directed graphs.
The problem in question is defined below.

k-Linkage [BJG08, p. 373]
Input: A directed graph D = (V,A), two disjoint sequences of terminal ver-

tices (s1, s2 . . . sk) ∈ V k and (t1, t2 . . . tk) ∈ V k.
Question: Are there k vertex-disjoint paths P1, P2, . . . Pk such that Pi is an (si, ti)-path?

The problem is NP-hard on general digraphs even if k = 2 [FHW80]. If we restrict
the input to DAGs, the problem can be solved in O(k!nk) time [BJG08] and is W[1]-hard
with respect to k [Sli10]. Downey and Fellows [DF12] posed as an open question whether
k-Linkage is FPT with respect to k on planar DAGs, and this question was answered

positively by Cygan et al. [Cyg+13], who provided an 22
O(k2) · nO(1) algorithm for the

problem.
We first claim that, if two paths from different sources to different sinks share a

vertex, then some forbidden subgraph is present and the input is not a funnel. Thus, by
contraposition, we can prove the following statement.

Theorem 4.3.1. Let (D, (si)
k
i=1, (ti)

k
i=1) be a k-Linkage instance. If D is a funnel

and for every 1 ≤ i ≤ k there is an (si, ti)-path in D, then (D, (si)
k
i=1, (ti)

k
i=1) is a

yes-instance.

Proof. We prove the statement by showing that two paths from different sources to dif-
ferent sinks which share a vertex produce some forbidden subgraph for funnels. Assume
towards a contradiction that there is some (si, ti)-path P and some (sj , tj)-path Q which
share at least one vertex, for i 6= j. Let v be the earliest such vertex, and let u be the last
vertex with u ∈ P and u ∈ Q. Since si and sj are sources, there is no (si, sj)-path in D.
Analogously, there is no path between ti and tj . Thus indeg(v) ≥ 2 and outdeg(u) ≥ 2.
Since u ∈ out∗(v), it follows that D is not a funnel, contradicting the definition of D.
Hence, any (si, tj)-path is vertex-disjoint with any (sj , tj)-path.

We now consider an algorithm for the more general case where the input is only
restricted to be a DAG. We construct the algorithm by exploiting the similarity of the
input DAG to a funnel. From Theorem 4.3.1 above we can see that if a (s1, t1)-path
shares a vertex with a (s2, t2)-path, then both of these paths together form a forbidden
minor for funnels. Now assume we know an arc-set A′ such that D \ A′ is a funnel.
Clearly some arc on the (s1, t1)-path or on the (s2, t2)-path has to be in A′, otherwise
some forbidden minor would be present. We claim that if those paths do not share any
endpoint of the arcs in A′, then they are vertex disjoint (this is shown in Lemma 4.3.2
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Figure 4.4: An (s1, t1)-path and another (s2, t2)-path form a forbidden subgraph for
funnels when they share a vertex. If none of the arcs between v and u are removed, then
it is necessary to remove some of the incoming arcs of v or some of the outgoing arcs
of u in order to destroy the forbidden subgraph.

below). That is, we only need to consider which vertices of the endpoints in A′ are used
by each path. It is this property that we use in order to construct an algorithm for
k-Linkage and we formally prove it now. Refer to Figure 4.4 when reading the proof
of the following lemma.

Lemma 4.3.2. Let D = (V,A) be a DAG, A′ ⊆ A an arc-set such that D \ A′ is a
funnel and let V ′ be the set of endpoints of the arcs in A′. Let P and Q be two paths
from distinct sources to distinct sinks. If P ∩Q ∩ V ′ = ∅, then P ∩Q = ∅.

Proof. We prove the statement by contradiction. The idea is to argue that, if the paths
meet at some vertex outside of V ′, then D\A′ is not a funnel. Assume that P∩Q∩V ′ = ∅
but P ∩ Q 6= ∅. Let R = v . . . u be a maximal path with R ⊆ P and R ⊆ Q. That is,
all vertices of R are present in both paths, while none of the direct predecessors of v
and none of direct successors of u are present in both paths. Obviously indegD(v) > 1
and outdegD(u) > 1. Since P ∩ Q ∩ V ′ = ∅ we know that none of vertices of R are
in V ′. This implies that none of the incoming or outgoing arcs of both v and u are in A′.
Thus, indegD′(v) > 1 and outdegD′(u) > 1, where D′ = D \ A′. Because none of the
vertices in R lie in V ′, we also have u ∈ out∗D′(v). Hence, D′ is not a funnel, which is a
contradiction to the definition of A′.

Using the result above, we develop an FPT algorithm with respect to |A′| for k-
Linkage. The idea is to construct a dynamic programming table where in column i we
store the possibilities of finding valid paths for the first i source-target pairs. Each row
then represents a subset of V ′ which is used by some path. By Lemma 4.3.2 we know
we only need to consider vertices in V ′, and so the number of rows is upper bounded by
a function of the size of A′. Since the paths need to be vertex disjoint, when computing
the solution for the (i+ 1)-th pair it is irrelevant which path is already using a specific
vertex. We only need to know which vertices are being used by some of the previous
paths, and find a set of not yet used vertices which can appear in a path connecting the
new pair.

Let (D = (V,A), (si)
k
i=1, (ti)

k
i=1) be a k-Linkage instance where D is a DAG.

Let A′ ⊆ A be an arc-set such that D′ = D\A′ is a funnel and let V ′ be the set of the end-
points of the arcs in A′. We first define an auxiliary function Path : P(V )×V ×V such
that Path(U, s, t) = true if and only if there is some (s, t)-path P such that P ∩V ′ ⊆ U .
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t1

t2

t3

u

w

s1

s2

s3

1 2 3

∅ 1 0 0
{u} 1 1 0
{w} 1 1 0
{u,w} 1 1 1

Figure 4.5: Example instance for k-Linkage Dashed arcs represent an arc-set whose
removal produces a funnel. Thus V ′ here is {s1, u, w, t2}. Since the vertices s1 and t2
are exclusive to their respective pairs, they can be removed from V ′. The solution
where T ({u,w}, 3) = true corresponds to the bold arcs.

We then define a table T : P(V ′)×N→ B such that T (U, i) is true if and only if there
are i vertex-disjoint paths for the first i pairs in P such that none of these paths contains
a vertex of V ′ \ U .

We compute the values on the table by distinguishing two cases. For i = 1 we only
need to consider (s1, t1)-paths, and we can compute T as

T (U, 1) := Path(U, s1, t1).

For i > 1, we need to consider all subsets U ′ ⊆ U and ask if there is some (si, ti)-path
which uses no vertices in‘V ′ \ U ′ and if there is a solution for the previous pairs which
uses no vertex in V ′ \ (U \ U ′). This can be done recursively as follows

T (U, i) :=

{
true, ∃U ′ ⊆ U : T (U \ U ′, i− 1) ∧ Path(U ′, si, ti)

false, otherwise.

We claim that (D, (si)
k
i=1, (ti)

k
i=1) is a yes-instance if and only if there is some U ⊆ V ′

such that T (U, |P |) is true. Since there are 2|V
′| ≤ 22·|A

′| subsets of V ′ and k pairs,
this gives us a table of size 2|V

′| · k. Finding an (si, ti)-path which does not visit any
vertex in V ′ \ U can be done with a standard linear time algorithm for path-finding in
DAGs. Computing each entry on the table potentially requires going through every one
of the 2|U | ≤ 2|V

′| subsets of U . This gives us an FPT algorithm with respect to the
parameter arc-deletion distance to a funnel. We then use the previous lemma to prove
the correctness of the algorithm.

Lemma 4.3.3. Let (D = (V,A), (si)
k
i=1, (ti)

k
i=1) be a k-Linkage instance, A′ ⊆ A an

arc-set such that D \ A′ is a funnel and let V ′ be the set of endpoints of the arcs in A′.
Then (D, (si)

k
i=1, (ti)

k
i=1) is a yes-instance if and only if there is some U ⊆ V ′ such

that T (U, k) = true.

Proof. We first show by induction that if ∃U ⊆ V ′ : T (U, i) = true then there are i
vertex-disjoint paths which connecting (sj)

i
j=1 to (tj)

k
j=1 go through no vertex in V ′ \U .

By definition of T , the statement is true for i = 1.
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We now show it is also true for i ≤ |P | assuming that it holds for i− 1. If T (U, i) =
true for some U ⊆ V ′, then, by definition of T , there is some U ′ ⊆ U such that
T (U \ U ′) = true and Path(U ′, si, ti) is true. From the induction hypothesis we know
there is a set X of i − 1 vertex-disjoint paths for (sj)

i−1
j=1 and (tj)

i−1
j=1, and these paths

do not use any vertex in V ′ \ (U \ U ′). In particular, they do not use any vertex in U ′.
Let Rj denote an (sj , tj)-path in X and Ri be the (si, ti)-path such that Ri ∩ V ′ ⊆ U ′.
We then know that Ri ∩Rj ∩ V ′ = ∅, for any j ∈ {1, . . . , i− 1}. From Lemma 4.3.2 we
also know Ri ∩ Rj = ∅. Hence there are i vertex-disjoint paths for (sj)

i
j=1 and (tj)

i
j=1,

and those paths do not use any vertex in V ′ \ U . We can then conclude that if there is
some U ⊆ V ′ such that T (U, k), then we can find a (si, ti)-path for every 1 ≤ i ≤ k such
that all such paths are vertex-disjoint. Thus (D, (si)

k
i=1, (ti)

i
i=1) is a yes-instance.

Now assume (D, (si)
k
i=1, (ti)

k
i=1) is a yes-instance. Consider some solution and let Ri

be an (si, ti)-path for each i. We show, again by induction, that T (U, k) = true for
U = V ′ ∩

⋃
1≤i≤k Ri. By definition of T , we know that T (V ′ ∩R1, 1) = true. Let i ≤ k

and assume the hypothesis holds for i − 1. Let U = V ′ ∩
⋃

1≤j≤iRj and U ′ = Ri ∩ V ′.
Since all paths Rj are vertex disjoint, it follows that U \U ′ = V ′∩

⋃
1≤j≤i−1Rj . From the

induction hypothesis we then know that T (U \ U ′, i− 1) = true. Thus, T (U, i) = true

by definition of T . For i = k and U = V ′∩
⋃

1≤j≤k Rj we have that T (U, k) = true, and
so the statement holds.

We can now conclude the algorithm by combining Lemma 4.3.3 with an analysis of
its running time. This is summarized in the theorem below.

Theorem 4.3.4. k-Linkage can be solved in O(16d · |V | · |A|) time, where d is the arc
deletion distance to a funnel of D = (V,A).

Proof. The first step is to find an arc-deletion set A′ such that D \ A′ is a funnel. As
shown in Theorem 3.2.15, this can be done O(3d · (|V |+ |A|)) time.

Let V ′ be the set of the endpoints of the arcs in A′. Clearly |V ′| ≤ 2d. We then
fill the table T described previously from the first to the last column. Computing a
value Path(U, s, t) can be done in linear time using standard path-finding algorithms for
DAGs. Hence, computing all of the 2|V

′| ≤ 4d rows of the first column takes O(4d · |A|)
time (without loss of generality |V | ≤ |A| + 1 since weakly connected components can
be considered individually).

For the subsequent columns, we need to find for each entry T (U, i) some subset
U ′ ⊆ U such that T (U \U ′, i−1)∧Path(U ′, si, ti). There is a total of 2|U | subsets to test.
Thus, each entry takes O(4d · |A|) time to be computed. Since the table has O(4d · |V |)
entries, computing the entire table takes O(16d · |V | · |A|) time.

From Lemma 4.3.3 we can decide the problem by searching for some U ⊆ V ′ such
that T (U, k) is true, where k is the number of requested paths. This is doable in O(2|V

′|)
time. The bottleneck of the algorithm is computing the table itself, which is done in
O(16d · |V | · |A|) time, as shown before.

From Figure 4.5 we can see that it is possible to simplify some instances. For ex-
ample, if a non-terminal vertex v has outdegree equal to one, then any path which
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t1 t2 t3

s1 s2 s3

Rule 4.3.5

t1 t2 t3

s1 s2 s3

Rule 4.3.6

t2 t3

s2 s3

Figure 4.6: Example of the application of both data reduction rules. The dashed arcs
correspond to a arc-set whose deletion turns the input DAG into a funnel. The black
vertices are the endpoints of such arcs. We first contract all non-terminal vertices which
have indegree or outdegree equal to one. After this step, we find a trivial path for the
terminals s1 and t1 consisting only of those vertices. In the end, we obtain a DAG
with 3d = 6 vertices, where d is the arc-deletion distance to a funnel of the original
DAG.

contains v must also contain its successor. Hence, we can skip such vertex by connecting
its inneighbors with its outneighbor. This is yields the following reduction rule.

Reduction Rule 4.3.5. Let v ∈ V be some non-terminal vertex. If indeg(v) = 1
and (u, v) ∈ A, then contract the arc (u, v). If outdeg(v) = 1 and (v, u) ∈ A, then
contract the arc (v, u). If indeg(v) = 0 ∨ outdeg(v) = 0, remove v.

Correctness of Reduction Rule 4.3.5. We first show that the reduction rule does not de-
stroy any solution. Note that removing sources and sinks which are not terminals cannot
change the solution since such vertices can never be used in any path connecting another
source to another sink. Let D be the original DAG and D′ the one obtained after apply-
ing Reduction Rule 4.3.5. Assume there is some solution for D. Let P be a path in this
solution which goes through v. If no such path exists, the P is clearly a valid path in D′,
and so there is also a solution for D′. We first consider the case where indeg(v) = 1. The
other case follows analogously. Since u is the only predecessor of v, it is clear the u must
also be present in P . Let w be the successor of v which is also in P . Since reduction
adds the arc (u,w) to D′ after removing v, we obtain a path in D′ by removing v from
the sequence of P . Hence, there is also a solution for the k-Linkage instance in D′.

We now show that the reduction rule does not create new solutions. Again, we only
consider the case where indeg(v) = 1 since the other one is analogous. Let P be some
path containing u in some solution for D′. If no such path exists, then P is clearly a
valid path in P since it also does not contain v. Otherwise, let w be the successor of u
in P . If w ∈ outD(v), then adding v between u and w in P produces a valid path in D.
Since P is the only path which contains u, there is other path in the solution which
contains v. If w 6∈ outD(v), then the arc (u,w) is present in D, and so P is also a valid
path for D. In both cases, there is also a solution for D.

Another simple reduction rule which we can apply is to remove terminals which are
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already connected by an arc. That is if there is an arc connecting some terminal si to
its corresponding ti, then we can remove both terminals from the input sequence since
there is a trivial path connecting both of them. Even though this reduction rule is very
simple, we need it in order to obtain an upper bound on the number of vertices which
remain after exhaustively applying Reduction Rules 4.3.5 and 4.3.6. We formalize this
reduction rule below.

Reduction Rule 4.3.6. Let si be a terminal source and ti its corresponding sink. If
an arc (si, ti) exists, remove both terminals.

None of the reduction rules defined above use the arc- or vertex-deletion distance
to a funnel directly. We can show, however, that if Reduction Rules 4.3.5 and 4.3.6
are not applicable, then the number of vertices on the DAG is linear on its arc-deletion
distance to a funnel. The basic idea is to argue that all vertices which are neither sinks
nor sources nor endpoint of any arc in an arc-deletion set are removed by Reduction
Rule 4.3.5.

Lemma 4.3.7. Let (D = (V,A), {si}ki=1, {ti}ki=1) be a k-Linkage instance. Then after
exhaustively applying Reduction Rule 4.3.5 we have |V | ≤ 2(d + k) where d is the arc-
deletion distance to a funnel of D.

Proof. Let A′ ⊆ A be a vertex-set such that D \ A′ is a funnel. Let V ′ be the set of
endpoints of the arcs in A′, that is V ′ = {v | ∃u : (u, v) ∈ A′ ∨ (v, u) ∈ A′}. We argue
that every non-terminal vertex in V \ V ′ is removed by Reduction Rule 4.3.5. Since all
non-terminal sinks and sources are removed by Reduction Rule 4.3.5, we can assume
that no such vertex exists in D.

Now let v be a non-terminal vertex in V \ V ′. Since no arc of v is in A′, necessar-
ily indeg(v) = 1 or outdeg(v) = 1. We only consider the case where indeg(v) = 1 since
the other one follows analogously. We can then apply Reduction Rule 4.3.5 to v, contract-
ing the arc (u, v) where u is the unique predecessor of v. If u 6∈ V ′, then indeg(u) ≤ 1,
otherwise u and v would form a forbidden subgraph for funnels. Since contracting the
arc (u, v) does not change the indegree of u, either u is a source or we can apply Re-
duction Rule 4.3.5 to u. Hence, every non-terminal vertex in V \ V ′ is removed by the
reduction rule.

Because |V ′| ≤ 2d, and no terminal vertex is removed, after exhaustively applying
Reduction Rule 4.3.5 to D we obtain a DAG with at most 2(d+ k) vertices.

In order to efficiently apply both reduction rules exhaustively, we can use a strategy
similar to breadth-first search, where each arc is visited a constant number of times.
We also observe that, after applying Reduction Rule 4.3.6, we might be able to apply
Reduction Rule 4.3.5 again. Hence, to maximize the usefulness of the data-reduction
rules it is not enough to apply one rule and then the other, we may need to alternate
between them multiple times. However, it is sufficient to apply only Reduction Rule 4.3.5
in order to obtain at most 2(d+ k) vertices.
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We provide the pseudo-code of how one can exhaustively apply Reduction Rules 4.3.5
and 4.3.6 to a k-Linkage instance in Algorithm Kernelize. We can now show that k-
Linkage admits a polynomial problem kernel with respect to arc-deletion distance to a
funnel. An example of the application of the problem kernel is provided in Figure 4.6.

Algorithm Kernelize Problem kernel for k-Linkage. The function reducible checks
if Reduction Rule 4.3.5 is applicable to a vertex.

function Kernelize(DAG D = (V,A), sequences S = {si}ki=1 and T = {ti}ki=1)
Q := {v ∈ V | reducible(v)}
changed := true

while changed do . We may need to alternate between reduction rules.
while Q 6= ∅ do

v := next(Q)
Q := Q ∪ {u ∈ in(v) ∪ out(v) | reducible(u)}
A := A ∪ {(w, u) | w ∈ in(v), u ∈ out(v)}
V := V \ {v}

S′ := {si | (si, ti) ∈ A}
T ′ := {ti | (si, ti) ∈ A}
S := S \ S′
T := T \ T ′
if |S′| = 0 then . If S did not change, no reduction rule is applicable.

changed := false

else
Q := {u ∈ out(s) ∪ in(t) | reducible(u), s, t ∈ S′ ∪ T ′}

return ((V,A), S, T )

Theorem 4.3.8. k-Linkage admits a problem kernel with 6d ∈ O(d) vertices com-
putable in O(k · (|V |+ |A|)) time, where d is the arc-deletion distance to a funnel of the
input DAG.

Proof. We apply the problem kernel using the Kernelize algorithm. Each call to Kernelize
visits each arc a linear number of times. Using an adjacency list, we can execute the
innermost while loop in O(|V | + |A|). Whenever we remove some terminal, we need to
check again if Reduction Rule 4.3.5 is applicable, and this can be done by adding the
neighbors from the removed terminals back to the queue and running the loop again.
We can find the sets S′ and T ′ by iterating through all arcs once. The outer loop is
executed at most k times, since it is only repeated if some pair of terminals is removed.
If, at some point, the number of terminal pairs is larger than the number of non-terminal
vertices, we can output a trivial no instance and stop the kernelization process. In total,
we obtain a running time of O(k · (|V |+ |A|)).

From Lemma 4.3.7 we know that the reduced instance has at most 2(d+ k) vertices,
where d is the arc-deletion distance to a funnel of the input DAG. If k > 2d and Re-
duction Rule 4.3.6 is not applicable, then we can reject the input instance, since every
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path connecting two terminals must use some non-terminal vertex. Hence, the reduced
instance has at most 6d vertices.

We can now join the problem kernel with the FPT algorithm provided earlier, ob-
taining a faster algorithm. We note that, while the FPT algorithm needed to compute
the arc-deletion distance to a funnel of the input DAG, this is no longer required after
we apply the problem kernel. That is, we can simply take every non-terminal vertex
in our set |V ′| and proceed with the dynamic programming as before. Even though
the reduced DAG might have 6d vertices, we know from Lemma 4.3.7 that there are at
most 2d non-terminal vertices. Hence, we know that |V ′| ≤ 2d. We formalize this below.

Corollary 4.3.9. k-Linkage can be solved in O(16dd3 + k · (|V |+ |A|)) time, where d
is the vertex-deletion distance to a funnel of the input DAG.

Proof. We can apply the problem kernel as described in Theorem 4.3.8 inO(k·(|V |+|A|))
time, obtaining a DAG with at most 2(d + k) ≤ 6d vertices and, consequently O(d2)
arcs, where d is the arc-deletion distance to a funnel of the input DAG and k is the
number of terminal pairs. If k > 2d we can reject the input instance.

We then apply the FPT algorithm described in Theorem 4.3.4, with some modifica-
tions. First, we no longer need to compute that arc-deletion distance to a funnel of the
input DAG, since all non-terminal vertices will be taken on the set V ′. Since there are
at most 2d non-terminal vertices on the kernelized DAG, we also know that |V ′| ≤ 2d.
Hence, the table only has 4d rows and 2d columns, giving us a total of O(4dd) en-
tries. Computing each entry takes O(4d · |A|) ⊆ O(4d · d2). The total running time is
then O(16dd3 + k · (|V |+ |A|)).

We note here that, although the algorithm provided in the end does not directly
depend on the arc-deletion distance to a funnel in order to work, we needed the concept
of funnel in order to give an upper bound for the running time. That is, even though
it would be possible to design and implement this algorithm without any knowledge
on funnels, using this graph class we manged to better understand when and why the
algorithm works in practice. In fact, the reduction rules presented here are also described
in Bang-Jensen and Gutin [BJG08], yet they do not provide any form of guarantee of
their effectiveness.

4.4 Further Applications

We collect here some observations with respect to the computational complexity of
certain problems when restricted to funnels. The corresponding results are either obser-
vations based on existing reductions or simple brute-force algorithms with polynomial
running time due to some property of funnels.
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Parallel-Time Scheduling

In this variant of scheduling, the execution of a parallel algorithm is represented as
a DAG D = (V,A) where each vertex is one job and there is an arc (v, u) whenever
job u needs the output of v in order to be executed. Additionally to the computation
time of each job we also consider the communication time. That is, if two jobs v, u are
executed on different processors but u requires the output of v, then we need to transfer
this information from one processor to the other, which takes a certain amount of time.
If u and v were executed on the same processor, however, then the communication time
is zero since this information is already available.

The computation time of a job is given by the function f : V → N and the commu-
nication time between two jobs is given by function τ : A → N. A schedule s for D is
a surjective partial function s : N×N→ V such that s(p, t) is the job that processor p
executes at time t, or ⊥ if undefined. The schedule must also be consistent, that is, all
dependencies of a job must be executed before the job itself is executed, and a processor
can only execute one job at a time. Formally, it must satisfy the following

s(p, t) = v ∧ (u, v) ∈ A⇒ ∃t′ ≤ t− f(u) : s(p, t′) = u ∨ ∃p′ : s(p′, t′ − τ(u, v)) = u and

s(p, t) = u 6= ⊥ ⇒ ∀t ≤ t′ < t+ f(u) : s(p, t′) = ⊥.

The goal is to the finding a schedule with parallel time at most k. This is given
by maxp∈N{t + f(s(p, t)) | t = max{t | s(p, t) 6= ⊥}}. The problem is formally de-
fined below.

Parallel-Time Scheduling [PY90]
Input: A directed acyclic graph D = (V,A), a function f : V → N, a function

τ : A→ N and a number k ∈ N.
Question: Is there a schedule s for D such that the parallel computation time of s is

at most k?

If we construct the DAG of the execution of some divide-and-conquer algorithm,
then we obtain a funnel: All divide steps correspond to Fork vertices, and conquer
steps correspond to Merge vertices. Since divide-and-conquer algorithms are useful in
practice (e.g. Mergesort), it would be interesting if we could obtain positive results by
limiting the input DAG to be a funnel. Unfortunately, Parallel-Time Scheduling
remains NP-hard on funnels, as can be seen in the reduction presented by Papadim-
itriou and Yannakakis [PY90]. It could still be interesting to know the behavior of the
polynomial-time approximation algorithm (described in the same paper) on funnels.

Paths with Forbidden Pairs

When generating automated tests for programs, we are often interested in covering
all branches of the code. When doing so, one needs to consider that certain combinations
of branches are not possible: For example, if some variable x is divisible by three in one
point, then later it cannot be a power of two. Hence, when constructing test paths we
are only interested in feasible paths.
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We model the program as a flow graph, with each vertex corresponding to an instruc-
tion and the arcs being the branches. Even though a program often contains cycles, the
flow graph is usually converted to a DAG before being processed. The combination of
impossible branches is given as a set F of vertex pairs. We then search for an (s, t)-
path P (where s is the only source and t the only sink in the DAG) such that for no
pair (u, v) ∈ F at least one of u, v is not in P . The problem is formally defined below.
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Path with Forbidden Pairs [GMO76]
Input: A directed acyclic graph D = (V,A), with a source s and a sink t, and a set

F ⊆ V × V .
Question: Is there an (s, t)-path P such that for any pair (u, v) ∈ F at least one of u, v

is not in P?

While it is unlikely for a flow graph to be a funnel (as soon as we have two if-
statements after each other, we obtain a forbidden subgraph for funnels), one can hope
that it is at least funnel-like. The existence of complicated branch patterns makes the
code much harder to read and are undesirable in practice. A simple branch pattern leads
to a funnel-like structure of the flow graph.

One can easily obtain a polynomial-time algorithm if the input DAG is restricted
to be a funnel. Since a funnel has at most |A| paths, one can test each path for the
existence of two vertices of the same pairs. This can be done in O(|A| · (|P |+ |V |)) time.

PERT Networks

PERT (Program Evaluation and Review Technique) networks are sometimes used
for planning projects. The project is described as a DAG, with each task being an arc
and each vertex being a state in which certain tasks have been completed. Sometimes,
however, the tasks can be given as vertices instead, and we might want to convert them
to arcs. That is, we receive as input a DAG D = (V,A) and want to construct another
DAG P = (V ′, A′) such that for each vertex in V (that is, for each task) there is a
corresponding arc in A′. Furthermore, we need to keep the dependencies consistent,
that is, there is a vertex-path from u to v in D if and only if there is an arc-path
between the corresponding arcs in D′. Since it is not always possible to have |A′| = |V |,
the goal is to minimize the number of “dummy” activities. The problem is formally
define below.

PERT Network [KD79]
Input: A directed acyclic graph D = (V,A) and an integer k.
Question: Is there a PERT-Network corresponding to D, that is a digraph P = (V ′, A′)

such that for each vertex in V there is a corresponding arc in A′ and for any
two vertices u, v ∈ V there is a (u, v)-vertex-path in D if and only there is a
(u, v)-edge-path in P and |A′| ≤ |V |+ k?

If a project is divided into a planning phase and an execution phase, then the corre-
sponding PERT network is a funnel: Vertices in the planning phase can have outdegree
greater than one, and those in the execution phase can have indegree greater than one.

Krishnamoorthy and Deo [KD79] proved that PERT Network is NP-hard. Since
the DAG in the reduced instance is a funnel, the problem remains NP-hard even if we
restrict the input to be a funnel.
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Chapter 5

Implementation and Experiments

In this chapter we empirically evaluate some of the algorithms described in previous
sections. Since k-Linkage on DAGs is W[1]-hard with respect to the number of termi-
nals, but in FPT with respect to the arc-deletion distance to a funnel, we consider the
linear problem kernel provided in Section 4.3 to be of practical significance. In order to
compare the practical effectiveness of the kernel with the theoretical guarantee, we need
to be able to compute the distance to a funnel of the input DAG.

Since we have a upper bound for the number of vertices of a kernelized DAG which
depends on its arc-deletion distance to a funnel, we need to know the size of this pa-
rameter in order to analyze the effectiveness of the problem kernel. In Section 3.2 we
provided an approximation algorithm as well as two FPT algorithms with respect to so-
lution size. We implemented all three algorithms for computing the arc-deletion distance
to a funnel, comparing both exact ones with each other and using them to evaluate how
good the approximation algorithm is in practice.

The experiments were divided into two categories, each in turn divided into groups.
The first category consists of experiments related to the arc-deletion distance to a funnel
(Section 5.2), while the second concentrates on the linear problem kernel for k-Linkage
(Section 5.3).

Before proceeding to the experiments, we first describe in Section 5.1 how we obtained
the data used in the experiments and also explain some of the basic data structures used
both in the experiments about the arc-deletion distance to a funnel of DAGs (Section 5.2)
and in the experiment on k-Linkage (Section 5.3).

5.1 Basic Technical Aspects

We describe here some general aspects which apply to all experiments. This in-
cludes how we obtained and preprocessed DAGs, the development environment for the
implementation as well as the data structures we used. Further details specific to each
experiment are given in Sections 5.2 and 5.3.

Multiple experiments were executed in order to empirically determine the behavior
of the implemented algorithms in different settings. The first canonical experimental
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data one can use is random data: It has the big advantage of being easily obtainable
in large quantities, but also the disadvantage that it often does not represent real data
very well. We also used DAGs from real-world scenarios, yet often needing to preprocess
them in order to obtain an acyclic digraph. Even though this decreases the relevance of
the results, the DAGs obtained still do not resemble random data and may still provide
some information about how the algorithms behave in practice.

We downloaded certain digraphs from the Konect database [Kun13]. The dataset in-
cludes source code dependencies (linux, subelj-jdk and subelj-jung-j), food webs (foodweb-
baydry, foodweb-baywet, maayan-foodweb), interactions between animals (moreno-cattle,
moreno-mac, moreno-sheep), and citation networks (subelj-cora). We also obtained the
dependency graph of packages from the Arch Linux distribution (arch-packages). In this
digraph, each vertex corresponds to a package and there is an arc (v, u) when package v
depends on package u.

We first argue why some of the considered instances should have some resemblance
to a funnel. In the case of dependencies graphs (linux, arch-packages, subelj-jdk), we
can expect the DAG to be divided into roughly two types of vertices: Libraries and
applications. That is, some packages or source files have few dependencies, but are used
by many other packages or files. This is often the case with libraries which provide
some core functionality. In contrast, applications (or front-end source files) often need
many different libraries, yet are not required by many other packages since they interact
directly with the user. Hence, libraries should correspond to Merge vertices of a funnel,
while applications are Fork vertices.

In food webs we can sometimes classify animals as being hunters or herbivores. We
can expect few other animals to hunt other predators since these animals are often
faster and harder to catch. Hence, vertices corresponding to predators should have a
large outdegree but a small indegree. In contrast, herbivores should almost never hunt
other animals, but they might be prey for the predators. Vertices corresponding to
herbivores should therefore have a larger indegree but a small outdegree.

We preprocessed the data in the following way. First, we greedily identified cycles
through breadth-first search. We then collapsed each cycle into a single vertex. That
is, for a cycle v1v2 . . . vkv1 we added the arcs {(v1, u) | u ∈ out(vi), 1 ≤ i ≤ k} and
{(u, v1) | u ∈ in(vi), 1 ≤ i ≤ k}. We then removed the vertices v2, v3 . . . vk and the
arc (v1, v1). We repeat this procedure until the input becomes a DAG. We note here
that, regardless of the order in which we collapse the cycles, the obtained DAG is the
same. After applying this, we split the DAG into weakly-connected components, and
then removed components with less than six vertices.

This preprocessing step can strongly change the input digraph, yet in some cases we
can argue that it does not destroy its structure completely. For example, if the digraph
describe some dependency relationship, then as soon as some vertex v depends on one
vertex of some cycle C, then v depends on all vertices of C. Hence, we can treat a cycle
as a single vertex since all members of the cycle have effectively the same neighborhood.

The algorithms used for generating random DAGs (including funnel-like DAGs) are
described in Section 5.1.1. Reading this section is only necessary if the reader wishes to
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(a) There are 23 = 8 different funnels with this
labeling.

(b) There are only 6 funnels with this labeling:
Three with one arc, two with two arcs and one
with no arcs.

Figure 5.1: Green vertices receive the label Fork, red ones receive Merge. Different
labelings may allow for a different number of funnels, yet labelings are drawn uniformly
at random. In this example, we considered a fixed topological ordering.

know from which distributions the random DAGs were generated.

5.1.1 DAG Generation

Since not many publicly available datasets of DAGs were found, we decided to gen-
erate random DAGs according to certain parameters. In this section we describe how
the DAGs were generated.

One relevant property that a random generator should have is that, for any two
DAGs D1, D2 that satisfy the input parameters of the generator (e.g. number of ver-
tices, average degree, etc.), the probability of generating D1 should be the same as the
probability of generating D2. Here we consider only labeled DAGs, that is, two isomor-
phic DAGs are considered to be different if their vertex-sets or arcs-sets are different.

By fixing some topological ordering of the vertices, it is easy to generate uniformly
at random DAGs with n vertices and m arcs. We first set V := {0, 1, . . . , n − 1}. We
can only add an arc (v, u) to the digraph if v < u, otherwise the topological ordering
would not be respected. Hence, there are n(n − 1)/2 different arcs. We then generate
the arc-set A by taking m distinct arcs from the set of all possible arcs.

If we want to generate uniformly at random a DAG with average degree s, for exam-
ple, we can simply set m := ns and then use the procedure above. This method also has
the advantage of taking time proportional to the output size (that is, number of vertices
and arcs) instead of depending on the number of potential arcs. This can make a big
difference on running time when generating sparse DAGs with many vertices.

Generating funnels uniformly at random, however, is not as simple as generating
DAGs. Any vertex can have either indegree greater than one or outdegree greater
than one, but not both at the same time. If we just iteratively draw arcs, the random
choices can no longer be independent from each other. This can easily lead to a biased
distribution. What we do instead is to first assign each vertex a random label (Fork or
Merge) and then only add arcs which do not violate the label of a vertex. Unfortunately,
we this method we lose control on the exact number of arcs that the output funnel has,
since different labelings allow for different numbers of arcs to be added.

The generator receives as parameter the number of vertices and the density of the
funnel (that is, the proportion of arcs that must be added given some labeling). This

68



allows us to generate funnels uniformly at random for a given labeling. The labeling,
however, is drawn uniformly at random from all 2|V | possible labelings, yet this method
does not consider how many different funnels exist with a given labeling. Hence, funnels
with fewer arcs have a larger chance of being generated than funnels with many arcs
(when compared to the chances in a uniform distribution. Refer to Figure 5.1 for an
example). We consider this bias to be a harmless for the experiments since the number
of arcs is not decisive for the running time. Furthermore, most labelings permit a large
number of arcs to be added, so the bias should not have a big impact on the size of the
generated funnels. Unfortunately, counting how many funnels exist with a given labeling
is not easy (except for trying all possibilities), and so obtaining an unbiased method for
generating funnels is also not easy. For this reason we decided to generate funnels using
the simple, yet not uniform, distribution described above.

Finally, in the experiments we are actually interested in funnel-like DAGs instead
of funnels. We obtain a funnel-like DAG by first generating a funnel D = (V,A), with
V = {1, 2, . . . , n}, and then adding d random arcs to it, with d being given as a parameter
to the generator. These arcs are taken from the set {(u, v) | 1 ≤ u ≤ v ≤ n} \ A, which
contains all arcs which can be added to D without breaking the topological ordering
of the vertices in V . While this does not guarantee that the arc-deletion distance to a
funnel of the generated DAG is equal to d, we know it must be at most d.

5.1.2 Runtime Environment and Data Structures

The algorithms were implemented in Haskell 2010 [Mar]. Haskell is a purely func-
tional programming language with a strong type system. We consider this paradigm to
be adequate for the implementation because the algorithms in this work are described
in a way which is much closer to a mathematical or functional description than to an
imperative one. Hence, it is easier to verify that the algorithms were implemented cor-
rectly. Haskell also has a very strict type system, which statically detects many potential
errors on the code, making debugging less time-consuming.

One characteristic of Haskell is that pure code has no side-effects (that is, functions
only return some value and cannot change any variable). This has the advantage of
avoiding many programming mistakes, but also the disadvantage of making certain op-
timization strategies more complicated. For example, it is not possible to use pointers
inside pure code since changing some value is a side-effect. This is often not an issue,
but in some cases the running time of an algorithm had to be increased by a logarithmic
factor. Since we do not deal with huge datasets, this should not have a significant impact
on the running time of the experiments.

For the implementation of the digraph data structure we used sets and maps from the
containers package. Sets and maps allow for lookup, insertion and deletion in O(log n)
time. A digraph is then stored as a map, where each key is the ID of a vertex, and the
value associated with a key contains a set of inneighbors and another of outneighbors.
This allows us to remove arcs and to insert vertices and arcs inO(log |V |) time. Removing
a vertex v takes O((indeg(v) + outdeg(v)) · log |V |) time.

The experiments were run on an Intelr Xeonr E5-1620 3.6 GHz processor with
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64 GB of RAM. The operating system was GNU/Linux, with kernel version 4.4.0-67.
For compiling the code we used GHC version 7.10.3.

5.2 Arc-Deletion distance to a funnel

In Section 3.2 we described two exact algorithms with different branching strategies
for computing the arc-deletion distance to a funnel of a DAG: One which branches on
arcs and has a running time of O(5d · (|V |2 + |V | · |A|)) (defined in Section 3.2.1), and
another which branches on labels and has a running time of O(3d · (|V |+ |A|)) (defined
in Section 3.2.3). For conciseness, we call the first algorithm the arcs strategy, and the
second one the labeling strategy. The names come from the behavior of the algorithm:
The arcs strategy searches for forbidden subgraphs and branches on all possibilities of
destroying them, while the labeling strategy branches instead on the labels the vertices
receive.

By the Big-O notation it is clear which one is faster in the worst case, yet in practice
we are often interested on the average case instead of the worst case. For this reason, we
compare in Section 5.2.2 both algorithms in order to determine which one is in practice
faster. We expect the labeling strategy to be considerably faster than the arc strategy,
specially because of the data-reduction rules it uses. However, the labeling strategy
does not work on general digraphs, and so even if the other strategy is slower, it has the
advantage of being more general.

In Section 5.2.3 we analyze the running time of the faster algorithm and the arc-
deletion distance to a funnel on randomly generated DAGs. Since we do not expect the
arc-deletion parameter to be small in such instances, we also generate in Section 5.2.4
random funnel-like DAGs and repeat a similar experiment on them. Finally, in Sec-
tion 5.2.5 we analyze how large the parameter is in real-world data. We also analyze in
all experiments how good the approximation algorithm from Section 3.2.2 is.

Before proceeding to the experiments, we describe in Section 5.2.1 some heuristics
and pruning rules used in the implementation of the exact algorithm.

5.2.1 Heuristics and Pruning Rules

Both search-tree algorithms considered in this chapter solve a decision problem (that
is, they only answer “yes” or “no”). For the experiments, we want to be able to compute
the actual distance to a funnel of the input DAG. To obtain this, one can start with d = 0
and check if there is a solution of size at most d. If not, the budget k is increased by
one. Since we know there is always a solution if k is the number of arcs, we also know
the algorithm stops when k = d, where d is the arc-deletion distance to a funnel of the
DAG. Furthermore, this increases the worst-case running time only by a factor of 2,
which means the algorithm is still in FPT with respect to d. Nevertheless, properly
“guessing” the correct value for k can have a big impact on the practical running time
of the algorithm.

We describe here some of the heuristics used to speed-up the search-tree algorithm
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for computing the arc-deletion distance to a funnel. A straightforward pruning rule is
the lower bound provided in Section 3.2.4, which allows a branch of the search tree to be
rejected before evaluating all of its leaves. Search trees are often slower when the input
is a no-instance, since in order to be able to answer “no” one has to check all leaves.
Hence, being able to reject some branch without computing the entire subtree can have
a huge impact on performance.

We implemented a simpler version of the lower bound, considering only single-cores
(i.e. vertices with in- and outdegree greater than one). The reason for this simplification
is that it is easier to check the degree of a vertex than iterating through its successors.
We do not expect this to have a great impact on the lower bound, since we only ignore
subgraphs with arc-deletion distance to a funnel equal to one. Furthermore, the reduc-
tion rules for the labeling strategy perform well on such subgraphs, and we assume the
gain obtained by implementing the lower bound as described in Section 3.2.4 would not
be very high.

As an heuristic for the branching rule, we avoid branching on a vertex which is used
by the lower bound, unless there is no other alternative. This is done in an attempt to
only remove arcs which were not considered by the lower bound, thus not reducing it.

Finally, when deciding which branch to take first (that is, whether we first try to
remove incoming or outgoing arcs), we adopt a greedy strategy. That is, when branching
on a vertex v, we try to first remove incoming arcs if indeg(v) ≤ outdeg(v). Otherwise
we branch first on removing outgoing arcs of v. In a sense, this mimics the behavior of
the approximation algorithm, we the difference that we also need to branch on which
arcs are removed.

With respect to heuristics, we believe there is plenty of room for improvements. For
example, the labeling strategy could first branch on vertices where we only need to guess
its label (since the arcs are removed by the reduction rule), thus potentially decreasing
the number of children per node of the search tree for no-instances. Another possible
optimization is to delete vertices from which we know no further arc will be taken into
the solution. As soon as the DAG becomes disconnected, one can consider the connected
components individually. The challenge of implementing this optimization is properly
dividing the budget k for the individual connected components. By doing this correctly,
it should be possible to avoid testing all solutions for one component with all solutions
from the other component.

5.2.2 Branching Strategy Comparison

Our first experiment consisted of testing if the labeling strategy is in practice faster
than the arc strategy. For n ∈ {50, 200} and s ∈ {10, 50, 100} we generated 30 funnels
with n vertices and density 0.5, and then added s random arcs (respecting the topological
ordering) to them. This gives us a total of 180 DAGs. The labeling strategy solved all
of them within 10 minutes, while the arc strategy only solved 85 (47%) instances in the
same time range.

When only 10 arcs were added, the arc strategy managed to solve all instances.
However, when 100 arcs were added it did not solve any instance within 10 minutes.
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Strategy n = 50 n = 200

Arcs 51 (29.8 s) 34 (55.1 s)
Labeling 90 (0.1 s) 90 (0.2 s)

Table 5.1: Number of instances solved by each strategy within 10 minutes. The number
in braces correspond to the average running time.

The number of vertices also made a big difference on the number of solved instances
(Table 5.1). In contrast, the labeling strategy solved all instances within 7.1 s, with an
average running time of 175 ms. From this we can already conclude that the labeling
strategy is much faster on DAGs than the arc strategy, and so in the experiments that
follow we only consider the faster strategy.

5.2.3 Randomly Generated DAGs

The first type of random data we considered was general random DAGs. We expect
the arc-deletion distance to a funnel of such DAGs to be fairly large, since almost every
vertex has, with high probability, in- and outdegree greater than one. Here we are also
interested in verifying the effect that the sparsity of the DAG has on the running time.
While on sparse DAGs the arc-deletion distance to a funnel should be smaller, on dense
ones we need to remove multiple arcs per vertex, making the search tree also shorter.

We generated random DAGs with different numbers of vertices and different average
degrees. For n ∈ {35, 40, 45, 50} and D ∈ {1, 2, 3} we generated 30 DAGs with n vertices
and n(D + 5) arcs (that is, average outdegree D + 5) and 30 also with n vertices but
with n(n/2−D) arcs. This gives us a total of 720 DAGs, and for 696 (97%) we managed
to compute the correct distance within 10 minutes. In this section, we consider a DAG
to be dense if its density is greater than 0.5 and sparse otherwise (recall that the density
of a DAG is the ratio between the number existing arcs and the maximum amount of
arcs the DAG can have).

Running time

We first analyze how many instances can be solved within a given time range. To
this end, we plot a cumulative curve of the percentage of instances solved in relation to
the running time (Figure 5.2a). From this we can read the percentage of instances we
can solve if we decrease the maximum allowed time for the algorithm. We plotted one
curve for each value of n used.

The amount of vertices clearly had a big impact on the running time, with only 74
(22%) instances with 50 vertices being solved within two minutes, against 178 (49%)
instances with 35 vertices. This can be easily explained by the fact that the average
degree was fixed, and so a higher amount of vertices also implies a larger distance to a
funnel.
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the distance varied between 53 and 148, while
on dense DAGs it was between 197 and 543 arcs.

Figure 5.2: Cumulative computation time and arc-deletion distance to a funnel.

Arc-deletion distance

To analyze the arc-deletion distance to a funnel of the generated DAGs we plotted the
cumulative curve of the percentage of instances (only of the solved ones) in relation to
the distance (Figure 5.2b). For dense DAGs, the curve obtains the shape of a staircase.
This happens because the distance increases considerably with the number of vertices,
and so each large horizontal jump corresponds to an increase in the number of vertices.
We can also see that the distance on this dataset was quite large, with all dense DAGs
having a distance between 197 and 543. Considering that 463 (64%) instances were
solved optimally within 30 seconds, this means that the practical running time was
considerably below the theoretical worst-case time-bound of O(3d · (|V |+ |A|). We can
find two explanations for this. First, the branching algorithm could remove multiple arcs
per branch, since the average degree was fairly large (at least 6). Hence, the depth of
the search tree was definitely much smaller than the distance d. The second explanation
is that each vertex is considered by the branching rule at most once. On this dataset,
the number of vertices was much smaller than the distance to a funnel. Thus, the depth
of the search tree was at most 3|V | ≤ 350. Even though 350 is still fairly large, pruning
and data reduction rules can make the tree considerably smaller.

Relation between running time and distance

As the running time in practice is much shorter than the theoretical guarantee pre-
dicts, it is interesting to try to empirically understand what influences the speed of the
algorithm. We compared the running time with the percentage of arcs that needed to
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Figure 5.3: Running time versus percentage of arcs that needed to be removed. A
logarithmic scale was applied to the time axis.

be removed in order to turn the input into a funnel (Figures 5.3a and 5.3b). Since the
running time is exponential on the distance, we used a logarithmic scale for the time axis.
Despite the large variance, one can see a certain correlation both in dense as in sparse
DAGs, although this correlation is stronger on dense ones. Indeed, the Pearson correla-
tion coefficient between the logarithm of the running time and the relative solution on
dense DAGs is 0.83 and on sparse DAGs it is 0.55. We consider the correlation to be
significant in both cases since many other factors should also influence the running time.
The logical explanation for this behavior is that, as the relative solution approaches 50%,
the effectiveness of heuristics and reduction rules decreases. In a sense, if half of the
arcs need to be removed, the DAG bears no resemblance to a funnel and the algorithm
cannot do anything better than guessing. We note here that the case where the relative
solution equals 50% (that is, we have a complete DAG) can be quickly solved by the
algorithm. Thus, at some point the problem becomes easier as the proportion of arcs
that need to be removed increases. It is unclear whether the algorithm becomes slower
when the relative solution is decreased below some threshold.

Approximation and lower bound

Even though the exact algorithm was much faster than expected, the instances con-
sidered here are relatively small. Trying to compute the arc-deletion distance to a funnel
of a random DAG with 1000 vertices, for example, would take a very long time. In such
cases, the approximation algorithm might be a better choice. For this reason, it is
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Figure 5.4: Accuracy of the approximation algorithm and the lower bound on DAGs of
different density.

interesting to know how good the approximation factor is in practice.
We plotted the cumulative percentage of instances in relation to the approximation

error (Figure 5.4a). The approximation error is given by the difference between the real
distance and the distance computed by the approximation. The approximation error was
very small, being considerably smaller than the factor-3 guarantee from Theorem 3.2.9.
In particular, 247 (71%) of the dense DAGs were solved optimally by the approximation
algorithm. Interestingly, this number drops to 73 (21%) on sparse DAGs. Since the
distance is much larger on dense than on sparse DAGs, this suggests that the approxi-
mation performs much better on dense than on sparse DAGs. One possible explanation
is that, if for a vertex x there is a large difference between indeg(v) and outdeg(v), then
the label that v receives in an optimal solution depends mostly on the degree of v and
not so much on its neighborhood. On dense DAGs, vertices which come earlier in the
topological ordering have a larger outdegree, and those in the end have larger indegree.
Since the approximation considers mainly the degree of a vertex when assigning a label,
the decisions taken by this algorithm on dense DAGs are almost always optimal. This
is, however, clearly not the only reason for the small approximation error, since even
on sparse DAGs the approximation was very close to the real distance. We consider a
deeper theoretical analysis to be of interest, specially finding sufficient conditions for the
approximation to be optimal.

For the lower bound we made a similar plot, considering how many arcs were removed
additionally to what the lower bound predicted (Figure 5.4b). The lower bound was not
as close to the real distance as the approximation, but it still fairly close the real distance.
In order to properly determine whether it performs better on sparse or dense DAGs, we
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Figure 5.5: Quality of the approximation and the lower bound relative to the real dis-
tance. A value closer to one is better. Both are closer to the real distance on dense
DAGs.

need to consider the relative error, that is, the lower bound divided by the real distance
(Figure 5.5b). While not as close to the real distance as the approximate distance, the
lower bound achieved fairly good ratio. On 316 (91%) dense DAGs the ratio was at
least 80%, and on sparse DAGs such a ratio was achieved only on 60 (17%) instances.
Nevertheless, it was always greater than 62%, likely having a great impact on the running
time and being one of the reasons why the exact algorithm successfully solved (within
reasonable time) instances with an arc-deletion distance to a funnel of around 500.

With a similar plot we can see that the approximation rate was very small (Fig-
ure 5.5a). On average an rate of 1.01 was achieved. For this reason, we consider the
approximation error to be a more meaningful measure for the quality of the approxima-
tion.

Interestingly, both the approximation algorithm as well as the lower bound were
closer to the real distance on dense DAGs than on sparse ones. This is surprising, since
on dense DAGs one can expect the choices of which arcs to take in the arc-disjoint
forbidden subgraphs to be more relevant. On sparse DAGs, the forbidden subgraphs
should share less arcs, and so the arbitrary choices of the lower bound algorithm should
have less impact. One explanation for this behavior is that the optimal solution for
sparse DAGs might have a more complicated structure. That is, it might be better to
disconnect the DAG or take a decision which is bad locally in order to decrease the
number of arcs removed globally. This type of structure can easily lead both algorithms
to a worse solution.
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Estimated distance

To better understand the behavior of the approximation and the lower bound, we
attempt to predict the arc-deletion distance to a funnel of a DAG given the parameters
used to generate it. Considering Figure 5.2b, one can see that the distance is very regular
with respect to the sparsity. On closer inspection it is also possible to see that the curve
for dense DAGs has multiple jumps. These jumps actually happen when the number of
vertices or the average degree change.

In order to estimate the distance of a DAG given the average degree and the number
of vertices, we consider a simple greedy strategy for removing arcs: For the first dn/2e
vertices (according to some topological ordering) we remove incoming arcs, and for the
remaining we remove outgoing arcs. This clearly produces a funnel, since it is equivalent
to assigning the label Fork to the first vertices and Merge to the remaining. Because of
the topological ordering, we do not need to remove arcs from Merge to Fork vertices.

To determine the expected number of arcs that the algorithm above removes we first
calculate the probability that some arcs starts or ends at some vertex v. Let {0, 1 . . . ,
n− 1} be the set of vertices in their topological ordering and m the number of arcs of a
DAG. Let N =

(
n
2

)
. For a vertex v we define pin(v) as the probability of drawing some

arc (u, v) and pout(v) as the probability of drawing some arc (v, u). Because this is how
we generated the random DAGs, these probabilities are correct for the instances used in
this experiment. Formally, we have

pin(v) = v/N pout(v) = (n− 1− v)/N.

The expected number of arcs we need to remove from a vertex v is then given by m ·
min(pin(v), pin(v)) − 1 or zero if this number is negative. We now search for two val-
ues a, b such that a is the first vertex with m · pin(a) > 1 and b is the last vertex where
m · pout(b) > 1. Formally, we obtain

m · pin(a) = ma/N > 1⇔ a > N/m

m · pout(b) = m(n− 1− b)/N > 1⇔ b < n− 1−N/m.

Hence, a = bN/mc + 1 and b = n − 2 − bN/mc = n − 1 − a. We also define c as the
last vertex where m · pin(c) ≤ m · pout(c). This is given by c = b(n− 1)/2c. With these
definitions, the expected number of arcs removed by the greedy strategy described is

d̂ =
c∑

v=a

(m · pin(v)− 1) +
b∑

v=c+1

(m · pout(v)− 1)

= m/N

(
c∑

v=a

v +
b∑

v=c+1

(n− 1− v)

)
+ a− b− 1.

In Figures 5.6a and 5.6b we compare how accurate the estimator d̂ was. On dense
DAGs the expected value is very close to the real distance. On sparse DAGs, the error
is still small, but other random factors influenced the distance, pulling the distance
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Figure 5.6: Estimated distance d̂ compared to the real distance. The average error was 3.

below the estimated value. We attribute this to the fact that on sparse DAGs the
solution is not very local: One can more easily create connected components, new sinks
or new sources in order to obtain a funnel. When comparing Figures 5.6a and 5.6b to
Figure 5.4a, we can see that the estimator loses accuracy precisely on the same cases
where the approximation error is higher and the lower bound ratio is worse: On sparse
DAGs. This supports our hypotheses about why the approximation algorithm and the
lower bound perform worse on sparse DAGs. The estimator d̂ corresponds to a very
local solution. Since the actual distance of sparse DAGs was often smaller than the
estimated distance, this implies that it was possible to decrease the number of arcs
removed globally by making certain decisions which were not locally optimal. We did
not, however, find any significant correspondence between the approximation error and
the estimation error, and we also note that the approximation was considerably more
accurate than the estimator on sparse DAGs (average error of 2.1 against 9 of the
estimator).

Conclusion

From this first batch of experiments we can already see that the running time of the
exact algorithm for computing the arc-deletion distance to a funnel of a DAG is much
shorter than what the theoretical bound predicts. We also conclude that the error of
the approximation algorithm is very small, making it suitable for practical applications
where the input is too large for the exact algorithm.
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Figure 5.7: Running time and distance of the generated instances.

5.2.4 Funnel-like DAGs

Even though completely random DAGs already give us some insight about the be-
havior of the implemented algorithms, from a parameterized point of view they often
represent cases where an FPT algorithm should perform poorly. That is because an FPT
algorithm is constructed assuming that the input has a certain structure which makes
some parameter small. By their random nature, random DAGs often have no special
structure and, as seen in Section 5.2.3, their arc-deletion distance to a funnel is not very
small. For this reason, we also considered DAGs with a relatively small arc-deletion
distance to a funnel.

For n ∈ {250, 300, 500, 1000}, D ∈ {0.15, 0.5, 0.85} and s ∈ {125, 150, 175} we gen-
erated 30 funnels with n vertices and density D, and then added s random arcs which
respected the topological ordering to each of them. This gives us a total of 1080 DAGs.
From this amount, 1059 (98%) had their arc-deletion distance to a funnel computed
within 10 minutes.

Running time We plotted a cumulative curve with the percentage of instances solved
within a certain time range (Figure 5.7a). Most instance were solved fairly quickly:
Within 15 seconds 932 (86%) instances were solved optimally. We can also observe that
there were essentially two types of instances: Easy ones which were solved within few
seconds, and harder ones which took much longer. That is, if we limit the running time
to five seconds we can solve 855 (79%) instances, and if we increased it to sixty seconds
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Figure 5.8: Effectiveness of the lower bound and the approximation algorithm in deter-
mining the arc-deletion distance to a funnel.

we can solve only 142 additional instances.
In order to compare the measured running time to the theoretical worst-case upper

bound of O(3d · (|V |+ |A|)), we first need to know how large the solution size was. We
then plotted a cumulative curve with the percentage of solved instances with an arc-
deletion distance to a funnel below a certain value (Figure 5.7b). Clearly, the number
of added arcs influenced the distance directly, yet the variance was quite high: The
shortest distance was 59 arcs, and the longest was 164. The median distance was 111.
Considering that 3111 ≈ 9 · 1052, the running time given by the theoretical worst-case
analysis would be of multiple millennia. Clearly, in practice the search-tree constructed
by the algorithm does not need to be exhaustively evaluated. With certain heuristics,
pruning and reduction rules it is possible to considerably increase performance.

Approximation and lower bound

In this context, it is interesting to analyze how both the lower and the upper (given
by the approximation) bound behave in this dataset. We first consider the absolute
error of both bounds (i.e., the difference between the bound and the actual arc-deletion
distance to a funnel). In Section 5.2.3 we concluded that the sparsity of a DAG had a
big impact on the quality of both the approximation algorithm and the lower bound.
Hence, we compare the error of both bounds with the density of the generated funnel
(Figure 5.8). We immediately see they were both very close to the correct value. In
fact, considering that the real distance was often greater than 100, we can see that
both measures are off by a very small amount. This comes in contrast with the proven
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approximation factor of 3. Since the DAGs used here are already close to funnels, most
decisions of the approximation algorithm end up being correct. Having correct local
information helps the approximation making a globally optimal decision, and so it is
no surprise that the approximation factor in funnel-like DAGs is much better than the
theoretical bound. This explanation is supported also by the fact that both bounds
performed worse on sparse funnels than on dense one. The approximation yielded an
optimal solution on 89 (25%) instances with density 0.15, while for density 0.85 it found
an optimal solution on 231 (66%) instances. This behavior is similar to what we observed
on the experiments with random DAGs, and we attribute the reason again to be the
more complicated structure of the solution on sparse DAGs.

We also call attention to the fact that the both plots from Figure 5.8 are very similar,
even though the approximation algorithm and the computation of the lower bound are
based on completely different strategies. The former is based on labeling vertices, while
the latter uses forbidden subgraphs.

We compared the approximation error with the difference between the lower bound
and the arc-deletion distance to a funnel of each instance. To this end, we made a density
plot of the amount of instances in relation to the gap between the arc-deletion distance
to a funnel and each bound (Figure 5.9). The accuracy of the bounds does not appear to
be correlated. That is, a high approximation error does not imply a weaker lower bound.
This could be related to the fact that on 776 (73%) instants both bounds had an error
of at most two. From such a small range it is not possible to draw any conclusions for
the correlation of both bounds. The lack of correlation is, in this case, actually positive,
since a heuristic can then benefit from both bounds. We also call attention to the fact
that in 310 (28%) instances both bounds found an optimal solution. This means that, for
such instances, it is possible not only to find an optimal arc-deletion set in linear time,
but also provide, again in linear time, a certificate that such arc-set is indeed optimal.

Relation between distance and added arcs With respect to what influences the
relationship between the distance to a funnel and the number of added arcs, one can
expect that the density of a funnel has a big impact on this relation. That is, random
arcs added to a dense funnel have a higher chance of destroying the funnel property.

We investigated the distribution of the arc-deletion distance to a funnel of the gen-
erated instances in relation the their density and the number of added arcs. This in-
formation was then represented with a box plot (Figure 5.10a). In such plots, each box
contains half of the samples and the horizontal bar in it stands for the median value.
The whiskers can be interpreted as the certainty interval and have a length of at most
1.5 times the inter-quartile range (i.e., the difference between the third and first quar-
tile). Instances outside this range were plotted as individual dots. For a fixed number
of added arcs, the distance increases together with the density. We can also see that,
for dense funnels, the arc-deletion distance was somewhat close to the number of arcs
added. Yet, the density is not the only relevant factor.

When adding random arcs to a funnel, we draw arcs from all possible arcs a DAG
can have. As the number of vertices increases, so does the number of possible arcs.
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Figure 5.9: Relationship between approximation error and lower bound accuracy. The
size of the dot indicates how many instances lie on that point. In 301 (28%) instances
the lower bound met the approximate solution.

Since the density is fixed, the proportion of arcs which can be added (that is, which are
not already there) and respect the labeling of the funnel decreases. Recall that a DAG
with n vertices has at most

(
n
2

)
arcs and a funnel with nf Fork vertices and nm Merge

vertices has at most nfnm+nf +nm−2 arcs. Let N =
(
n
2

)
and M = nfnm+nf +nm−2.

The number of arcs that can be added is N −MD, where D is the density of the funnel.
The amount of arcs that violate the labeling is given by N −MD−M(D−1) = N −M .
Hence, if we add s arcs to a funnel, we estimate the arc-deletion distance to be

d̂ = s · N −M
N −MD

.

Intuitively, we expect to remove all added arcs except those which respect the labeling
of the funnel. Clearly, this is not exact, since we are allowed to remove arcs which
originally belonged to the funnel, possibly obtaining a different funnel. This means
that d̂ will generally overestimate the actual distance d. In Figure 5.10b we empirically
verified how good the estimator is in practice. One can see that d̂ grows linearly with d,
even though d̂ is almost always larger. Further, the average error of the estimator was 14.
We also note that the error decreased when the number of vertices increases. This is
likely due to the fact that s is fixed, and so the probability that the arcs added belong
to a similar funnel should decrease as the number of arcs and vertices of the original
funnel increases.

Conclusion

The findings from this experiment reinforces those from Section 5.2.3. Even on larger
DAGs the exact algorithm was capable of quickly finding a solution. The approximation
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Figure 5.10: Relationship between number of random arcs added and the arc-deletion
distance to a funnel.

error was again very small, and for funnel-like DAGs the lower bound was very close to
the real distance.

5.2.5 Real-World DAGs

We now consider DAGs obtained from real-world scenarios. This data should repre-
sent much better than random DAGs the behavior of the algorithms in practice. At the
same time, however, it might be biased towards specific areas and applications due to
the fact that the sample size is very small.

For each DAG, we computed a lower bound and an approximation of its arc-deletion
distance to a funnel. We also attempted to compute the real distance, stopping the
algorithm if no solution was found within ten minutes.

The dataset was clearly divided into small DAGs (Table 5.2) and relatively large
DAGs (Table 5.3). On large DAGs the exact algorithm did not find a solution within 10
minutes. For the small DAGs, however, we can verify that the approximation obtained
an optimal solution in all cases. This reinforces the findings of the previous sections
where the approximation rate was very close to one. Furthermore, we can use the lower
bound in order to find the worst-case approximation rate for the instances to which we
do not know an optimal solution. From this we see that even on large instances the
approximation rate is fairly small. We note here that in the experiments in the previous
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Instance |V | |A| Lower Bound Distance Approximation

foodweb-baydry 26 82 5 6 (7%) 6
foodweb-baywet 26 82 5 6 (7%) 6

maayan-foodweb 156 1197 118 129 (10%) 129
moreno-cattle 7 13 2 3 (23%) 3

moreno-mac 24 163 52 60 (37%) 60
moreno-sheep 6 10 1 1 (10%) 1

Table 5.2: Instances which were solved optimally within ten minutes (also within one
second). Numbers in braces represent the distance relative to the number of arcs.

Instance |V | |A| L. Bound Approximation Ap. Rate

arch-packages 9710 26218 2529 2921 (11.1%) ≤ 1.16
linux 29810 103475 4845 5376 (5.2%) ≤ 1.11

subelj-cora 18061 44214 5054 5897 (13.3%) ≤ 1.17
subelj-jdk 6025 27868 2177 2326 (8.3%) ≤ 1.07

subelj-jung-j 5730 26477 2086 2236 (8.4%) ≤ 1.11

Table 5.3: Instances which were not solved by the exact algorithm within 10 minutes.
Numbers in braces represent the distance to the number of arcs.

sections the approximation was much closer to the optimal solution than the lower bound,
which means that the real distance is probably much closer to the approximate value
than to the one given by the lower bound.

With respect to the size of the parameter in practice, it appears to be a small
proportion of the total number of arcs of the DAG, even though in absolute value it is
not very small. Furthermore, in most cases where we argued why the DAG should have
a small distance to a funnel (except in arch-packaes) the proportion of arcs that needed
to be removed in order to turn it into a funnel was at most 10%. This supports our
argumentation about why these DAGs should have some similarity to a funnel.

Considering the absolute value of the distance to a funnel, the parameter might not
be very useful in practice for an FPT algorithm. That is, an algorithm with running
time O(2d · poly(n)), where d is the arc-deletion distance to a funnel of the input, could
take 23000 steps to finish when run on the large DAGs analyzed here. This running time
might not be very practical. If we consider, however, the distance relative to the number
of arcs (that is, the arc-deletion distance divided by the total number of arcs), we can
see that only a small portion of the arcs had to be removed. Hence, the arc-deletion
distance parameter might be useful in practice when coupled together with a problem
kernel. This motivates us to empirically determine the effectiveness of the linear-sized
problem kernel from Section 4.3, which is done in the next section.
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5.3 k-Linkage

For the k-Linkage problem we do not consider completely random DAGs. On such
DAGs one can expect every vertex to have both in- and outdegree greater than one (if
the average degree is large enough), and so the kernel described in Section 4.3 will not
have any effect. Instead, we verify the effectiveness of the kernel in Section 5.3.2 for
funnel-like DAGs. In Section 5.3.3 we apply the problem kernel to real-world DAGs. In
both cases, however, the terminals in the k-Linkage instances were generated randomly.
This was done because no publicly-available real-world instances were found. How the
instances were generated is explained in Section 5.3.1.

5.3.1 Terminal Generation

For k-Linkage we need, additionally to the input DAG, also a sequence of terminals
which must be pairwise connected. Simply picking p random pairs can often lead to
trivial no-instances if, for example, there is no path connecting both vertices. There is
also the problem that no vertex can appear twice in the sequence of terminals, since this
also trivially leads to a no-instance.

The method we used to generate k-Linkage instances works as follows. The gener-
ator receives a number p and a DAG D, and then chooses p sources from D at random,
possibly choosing the same vertex twice. We exclude vertices with both in- and out-
degree equal zero. Then, for each chosen source s, some sink t is chosen uniformly at
random from the set of all sinks which are reachable by s. Vertices which are selected
twice are copied together with their arcs. That is, if we choose a pair (s, t) then we add
new vertices s′, t′ together with the arcs {(s′, v) | v ∈ out(s)} and {(v, t′) | v ∈ in(t)}.
We then add (s′, t′) to the set of pairs. Finally, we remove all vertices which do not
appear in any (si, ti)-path, where si and ti are two terminals.

By taking only sources and sinks into the sequence of terminals we guarantee that the
terminals themselves do not block any path between other terminals. This prevents the
construction of trivial no-instances where a vertex v with outdegree one and its successor
are chosen as terminals for different pairs, prohibiting the existence in the solution of
any path starting at v.

We also decided to allow taking the same vertex twice as a terminal in order to make
the random choices independent from each other. Duplicating the terminals is equivalent
to allowing the endpoints of one path to be shared with other paths. This allows us to
always produce the desired number of pairs, regardless of the structure of the DAG.

5.3.2 Funnel-like DAGs

We verify here the effectiveness of the problem kernel from Theorem 4.3.8 on ran-
domly generated funnel-like DAGs. Even though on such DAGs we have certain control
over their distances to funnel and, hence, over the effectiveness of the kernel, these DAGs
allow us to measure the effect of other parameters (e.g. density) on the behavior of the
kernel.
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Figure 5.11: Effectiveness of the kernel with respect to the relative decrease of the input
size.

For n ∈ {250, 500, 750, 1000}, s ∈ {150, 200, 250}, D ∈ {0.15, 0.5, 0.85} and
p ∈ {10, 20, 30} we generated 30 funnels with n vertices and density D, added s random
arcs to each of them and randomly selected p pairs of sources and sinks. This gives us
a total of 3240 k-Linkage instances, each on a different DAG. From this amount 153
(4.8%) were solved by the kernel, whereas in 55 (1.8%) instances a solution was found
and in 98 (3.1%) there was no solution. Such instances can be considered to have size
zero after the kernelization process, and so we only consider them for the running time.
The remaining statistics only refer to the unsolved instances. On average, applying the
problem kernel took 48 ms, and each instance was kernelized in less than 480 ms. We do
not further analyze the running time since the measurement errors can be quite high on
such a short time-range.

Decrease on input size

We first measure the relative decrease of the input size after the instances were ker-
nelized. We plot a cumulative curve of the percentage of instances against the propor-
tion of vertices (and arcs) which remained after the kernelization process (Figures 5.11a
and 5.11b). Instances were grouped by the density of the generated funnel.

The size of the instance, both in terms of arcs as in vertices, decrease considerably
in most cases. On 2247 (73%) instances the kernelized DAG had at most 25% of the
original arcs. On 2635 (85%) instances the number of vertices was decreased by at least
half, and in 1227 (40%) instances it was 25% of the original value. Since the number
of arcs is quadratic in the number of vertices, it is no surprise that the decrease on the
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number of arcs was stronger than on the number of vertices.
The density had barely any effect on the proportion of vertices which were kept

by the kernel. For the proportion of arcs, the kernel was somewhat less effective on
DAGs where the density of the generated funnel was smaller. Here we recall that the
generated k-Linkage instances modified the DAG by removing unnecessary vertices
and also by duplicating the terminals. Thus, the funnel density used on the plots does
not necessarily correspond to the funnel density of the DAG to which the kernel was
applied. Nevertheless, the difference between instances with density 0.15 and those
with density 0.85 is significant. Our explanation to this is that on dense funnels the
kernelization process will often remove arcs when contracting an arc (v, u), since arcs
from the inneighbors of v to u (or from the outneighbors of u to v) are more likely to
exist than on sparse funnels.

With respect to the meaningfulness of such values, consider the performance boost
obtained if the problem kernel is used as a preprocessing step for some exponential-time
algorithm. If the O(k! |V |k) algorithm described by Bang-Jensen and Gutin [BJG08] is
used to solve the k-Linkage instance after this problem kernel is applied, then halv-
ing |V | possibly decreases the running time from k! |V |k to k!(|V | /2)k = 2−kk! |V |k,
making the algorithm 2k times faster, which can be a big improvement in practice.

Impact of the distance to a funnel

In order to determine the effectiveness of the kernel we also need to know how large
the arc-deletion distance to a funnel of the instances was. Because the instances were
changed after they were generated (a simple reduction rule was applied and vertices
present in some of the pairs were duplicated), the actual distance might differ largely
from the number of random arcs added.

Even though we know a kernelized instance has at most O(d) vertices, in practice it
is relevant to know how big the constants are. Theoretically, the kernel outputs a DAG
with at most 6d vertices (or 2(d + p) if p ≤ d). However, in practice this number can
be much smaller, specially considering that the kernelization process does not need to
know an arc-deletion set in order to be applied.

We compared the number of non-terminal vertices of the kernelized instances with
the arc-deletion distance to a funnel computed by the approximation algorithm from
Section 3.2.2 (Figure 5.12b). From the experiments in Sections 5.2.3 and 5.2.4 we know
the approximation rate is very close to one, and so the plot should barely change if
we were to compute the real distance to a funnel. We often obtain much less than 2d
non-terminal vertices after applying the kernel. On average, the kernelized instances
had 0.7(d + p) vertices, with p being the number of terminal pairs of the kernelized
instance. This ratio remained fairly stable, and in 374 (12%) instances we even obtained
less than 0.5(d+ p) vertices after applying the kernel. This means that, even if the dis-
tance to a funnel of a DAG is not very small, the problem kernel might still considerably
reduce the input size.
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Figure 5.12: Effectiveness of the kernel with respect to average degree and to the size of
kernelized instance.

Average degree

Interestingly, the average degree was also reduced in many cases (Figure 5.12a), with
1592 (52%) instances having their average degree decreased to at most 50% of the original
value after the problem kernel was applied. The density of the funnel appears to have a
large impact on the change of the average degree. Indeed, while 202 (2%) instances with
density 0.15 had their average degree increased by the kernel (up to 1.4 times larger than
the original value), this number drops to 3 (0.1%) in instances with density 0.5 or 0.85.
A possible explanation for this behavior is that on DAGs with smaller (funnel) density
the number of arcs which exist between vertices which are kept by the kernel (that is,
which are an endpoint of some removed arc) is smaller than on dense DAGs. Since
the vertices kept by the kernel includes those which are allowed to have both in- and
outdegree greater than one, these vertices contribute to a larger average degree. Hence,
the average degree might increase if the density is very low. On DAGs with a large
(funnel) density, however, there are many arcs connecting vertices which are kept by the
kernel to vertices which are removed. On such cases, the removed vertices possibly also
decrease the degrees of the remaining ones.

Solved pairs

Because k-Linkage is in XP with respect to the number of terminal pairs, it is also
interesting to know how many pairs were solved by the kernel. We plotted the cumulative
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Figure 5.13: Percentage of instances where the kernelization process solved at least a
certain number of pairs.

percentage of instances in relation to the number of pairs solved by the problem kernel
(Figures 5.13a and 5.13b). Interestingly, the number of solved pairs does not appear to
be affected by the initial amount of pairs, but by the funnel density of the generated
DAG. For denser DAGs, one can expect that the paths in a solution for the k-Linkage
instance are shorter. In particular, the likelihood that there is an arc from a source to
a sink after the kernel is applied is larger on dense DAGs. Hence, it is intuitive that a
smaller number of pairs was solved on sparser DAGs.

It is surprising, however, that the number of pairs generated does not influence
the number of pairs solved by the kernelization process. This could be related to the
way that the terminal pairs are generated. Since we duplicate sources and sinks which
are selected multiple times, increasing the number of pairs chosen also increases the
chance that some source or sink is selected twice. When duplicating sources and sinks,
we potentially increase the degrees of many vertices, which in turn can prevent such
vertices from being removed by the data reduction rules.

Conclusion

The problem kernel for k-Linkage was very effective on funnel-like DAGs, with many
instances having their sizes halved. We also verified that the number of non-terminal
vertices on the reduced instance can be much smaller than the arc-deletion distance to a
funnel of the DAG, making the problem kernel useful in practice even if the arc-deletion
distance to a funnel of the input DAG is not very small.

89



DAG yes no Unsolved

arch-packages 0 3 177
foodweb-baydry 0 120 60
foodweb-baywet 0 116 64

linux 0 178 2
maayan-foodweb 0 1 179

moreno-cattle 0 180 0
moreno-mac 0 120 60

moreno-sheep 180 0 0
subelj-cora 0 178 2
subelj-jdk 0 3 177

subelj-jung-j 0 1 179

Total 180 900 900

Table 5.4: Number of instances solved by kernelization process. The column yes stands
for instances where a solution was found, and in the column no we have instances where
no solution exist.

5.3.3 Real-World DAGs

In order to better understand how the problem kernel for k-Linkage works in prac-
tice, we also used real-world DAGs for the instances. Unfortunately, we still needed to
generate the terminal pairs randomly since no publicly available datasets were found.
We can nevertheless compare the differences between using randomly generated DAGs
and real-world ones, yet we only gain limited insight about the behavior of the problem
kernel on practically relevant k-Linkage instances.

For p ∈ {10, 20, 30, 40, 50, 60} and for each DAG D in the dataset we obtained we
generated 30 k-Linkage instances on D with p terminal pairs. These instances were
then preprocessed in order to remove irrelevant vertices. This gives us a total of 1980
k-Linkage instances which were kernelized. On average, applying the problem kernel
took 2 ms.

Solved Instances

Differently from what we observed on random funnel-like DAGs, the kernel optimally
solved 1080 (55%) instances (Table 5.4). Interestingly, it appears that the DAGs were
divided into two groups: Some easily solvable by the kernel and those where the kernel
solved very few instances.

In the case of moreno-sheep, the original DAG has only six vertices, and the only
source is directly connected to the only sink, making all instances trivial yes-instances.
The moreno-cattle DAG also has few vertices (only seven) yet two sinks aree not directly
connected to the only source. When generating too many pairs, this easily leads to no-
instances. Some other DAGs are also fairly small (foodweb-baydry, foodweb-baywet,
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Figure 5.14: Reduction of the input size by the kernelization process.

moreno-mac), leading to many trivial no-instances. Finally, the maayan-foodweb has
a special structure which made the kernel useless in most cases: Most vertices with
indegree or outdegree equal to one are directly connected to the only source or the one
of the two sinks in the DAG. Hence, when generating the terminal pairs we also increased
the in- or outdegree of such vertices, making the reduction rules no longer applicable on
them. The remaining DAGs are too large to be visually analyzed.

We call attention to the fact that linux and subelj-cora have more than 10000 vertices
and 40000 arcs, yet almost all instances using such DAGs were solved by the kernel.
This means that these DAGs must have some structure which makes most k-Linkage
instances to be no-instances. This supports the findings from Section 5.3.2 where the
number of terminal pairs did not affect how many pairs were solved by the kernelization
process. Apparently the structure of the DAG plays a much more critical role on the
existence of some solution than the terminal pairs chosen. As many DAGs in the dataset
have an poor structure for k-Linkage, we only consider arch-packages, subelj-jdk and
subelj-jung-j for subsequent analyses. This leaves us with 540 instances.

Decrease on input size

We plot the cumulative curve with the percentage of instances in relation to the
relative size of the kernelized instance (Figures 5.14a and 5.14b). The size of the input
DAG decreased considerably in many cases, with 516 (97%) instances having 50% of
the original number of vertices or less. Unlike the experiments with random funnel-like
DAGs, the relative decrease on the number of arcs was smaller than on the number
of vertices, with only 372 (70%) instances having at most 50% of the original number
of arcs after being kernelized. This is probably due to the fact that the DAGs used
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Figure 5.15: Impact of the arc-deletion distance to a funnel on the size of the kernelized
instance, and effectiveness of the kernel with respect to the number of solved pairs.

were rather sparse, and so contracting arcs often reduces the number of arcs by a small
amount.

The number of pairs appears to have some impact on how much the instance sizes
were decreased by the kernel. One can identify two groups: Instances with 20 terminal
pairs or more, and those with only 10 pairs. The kernel was considerably more effec-
tive on instances with only 10 terminal pairs, yet between 20 and 60 pairs there is a
comparatively small difference. This possibly happens because with few pairs we might
rarely choose the same source or sink during the terminal generation process, and so
the degrees of the remaining vertices is not increased. Yet as soon as we start choosing
the same source or sink multiple times, it does not matter whether we choose it twice
or three times: In both cases the kernelization process might not be able to remove the
out- or inneighbors of the chosen terminals.

Impact of the distance to a funnel

From Section 5.2.5 we know the arc-deletion distance to a funnel of the DAGs used
here is not very small, at least if we consider the absolute value. Since the instances
were preprocessed and some unnecessary vertices were removed, it could be that the
arc-deletion distance to a funnel decreased. Nevertheless, it is interesting to know how
the distance to a funnel of the input DAGs influenced the effectiveness of the kernel. For
each instance we compared the number of non-terminal vertices with its approximate

92



arc-deletion distance to a funnel (Figure 5.15a). Instances are grouped by the DAG
used.

The number of non-terminal vertices in the kernelized instances was considerably
smaller than the arc-deletion distance to a funnel. Theoretically, the problem kernel
guarantees at most 2d non-terminal vertices, where d is the arc-deletion distance to a
funnel of the input DAG. Yet, in practice, in 246 (46%) instances we obtained 0.25d
non-terminal vertices. This is considerably less than what we observed on funnel-like
DAGs. Even though the k-Linkage instances are not real-world instances, this result
indicates that the problem kernel might be effective in practice even if the arc-deletion
distance to a funnel of a DAG is not very small. We can also see that the number of
non-terminal vertices grows linearly with the arc-deletion distance to a funnel, meaning
that the distance is a decisive factor for the effectiveness of the kernel.

Solved Pairs

Finally, we measure the number of terminal pairs which were solved by the kerneliza-
tion process. We consider the cumulative curve of the percentage of instances where at
least a certain number of pairs was solved (Figure 5.15b). Similar to funnel-like DAGs,
the initial number of terminal pairs had a relatively small influence on the number of
pairs solved by the problem kernel. We believe the reason to be the same: By duplicat-
ing sources and sinks when generating terminals, we can prevent the neighbors of the
terminals to be removed by the reduction rules.

Conclusion

The dataset used is mostly ill-suited for the k-Linkage problem, with a very large
number of instances being trivially solvable due to structural properties of the DAGs.
From the remaining instances, we can see that the problem kernel managed to consid-
erably reduce the input size, being much more effective than the theoretical worst-case
upper bound predicted.
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Chapter 6

Conclusion and Outlook

We defined a new subclass of directed acyclic graphs (DAGs) which we called funnels,
analyzing it from a graph-theoretical as well as from an algorithmic point of view. We
provided different ways of characterizing this class, some of them being more suitable for
algorithms and others more suitable for proofs of combinatorial properties. We observed
that funnels have a very interesting structure and can be analyzed from considerably
different perspectives. We did not consider how certain DAG parameters (e.g. directed
tree-width) behave on funnels and believe this to be an interesting direction for future
work. We did, however, define four new DAG parameters involving funnels: arc- and
vertex-deletion distance to a funnel, and funnel depth and height.

From the four distance-to-funnel parameters defined, we studied in greater depth the
arc-deletion distance to a funnel. We provided a fixed-parameter (FPT) algorithm with
respect to solution size for computing the arc-deletion distance to a funnel of a digraph.
We also described a factor-3 approximation algorithm which runs in linear time, but we
do not know if the approximation bound is tight, that is, the algorithm might actually be
a factor-2 approximation. We do have, however, a concrete example where a factor of 2
is achieved. With respect to the computational complexity of the arc-deletion problem,
we do not know if it is NP-hard. We made some attempts in proving NP-hardness, yet
none of them was very promising. At the same time, we obtained certain theoretical
results which might indicate that the problem lies in coNP. Since we know it is in NP,
proving that it is also in coNP would imply that it is unlikely to be NP-hard, unless
NP = coNP, which is not expected. As the evidence for containment in coNP is not
strong enough, we only conjecture that the arc-deletion problem is not NP-hard.

After studying some properties of funnels and of some measurements for the distance
to a funnel of a digraph, we applied these concepts to NP-hard problems. In particular,
we searched for problems which are known to be NP-hard for DAGs. It is natural to
ask whether we can solve such problems more efficiently (e.g. in polynomial time) if we
restrict the input to be a funnel.

We focused on three problems. The first one, DAG Partitioning, was used to
study the behavior of the news cycle [LBK09]. If we restrict the input to be a funnel,
we obtain an O(|V |3) time algorithm. By analyzing an NP-hardness reduction due to
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Alamdari and Mehrabian [AM12], we observed that the problem is NP-hard even if the
vertex-deletion distance to a funnel as well as the funnel depth and height are constants.
It remains open whether the problem is in FPT with respect to the arc-deletion distance
to a funnel.

We then considered the Max-Leaf Out-Branching problem, which finds applica-
tions in the construction of sensor networks [BD07]. Unfortunately, the problem remains
NP-hard even if we restrict the input to be a funnel.

Finally, we studied the k-Linkage problem. The input for this problem is a digraph
and a set of vertex pairs, and the goal is to find vertex-disjoint paths connecting both
vertices of each pair. We provided an O(16d · |V | · |A|) time algorithm for this problem,
where d is the arc-deletion distance to a funnel of the input DAG. We also analyzed an
already known data reduction rule, showing that it yields a problem kernel with O(d)
vertices computable in O(k · (|V | + |A|)) time. Even though from an algorithmic point
of view this result is not new, the concept of funnels provided the theoretical tools in
order to analyze the effectiveness of the data reduction rules. For this reason it would be
interesting to know how other distance to a funnel parameters relate to the k-Linkage
problem. In particular, we pose as an open question whether k-Linkage is in FPT with
respect to the vertex-deletion distance to a funnel.

From our theoretical analysis we conclude that funnels are a useful concept both in
designing new algorithms as well as in analyzing the behavior of algorithms which do
not directly use the concept of funnels. The graph class is also not restricted to a single
domain, having applications to considerably different problems. Also for parameterized
complexity we consider the distance to a funnel parameters to be an interesting direction
for further research, specially because very few subclasses of DAGs exist, yet many
problems remain NP-hard on DAGs [Gan+09].

From a practical perspective, we conclude after some experiments that the arc-
deletion distance to a funnel of a DAG can often be quickly computed and also ap-
proximated to a value which is very close to the real distance. Hence, algorithms which
require an arc-deletion set in order to work might be useful in practice. We also verified,
for some selected real-world DAGs, that the arc-deletion distance to a funnel was small
relative to the total amount of arcs. Even though it was fairly large in absolute value,
this means that the parameter might be useful for data reduction rules, since they might
drastically decrease the input size. We also release the code used to compute the arc-
deletion distance to a funnel as free software [Mil17], allowing the research community
not only to verify our results, but also investigate the size of the parameter in different
scenarios.
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