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Zusammenfassung

Maximum Clique – das Finden von Cliquen der maximalen Ordnung ω ∈ N in Gra-
phen der Ordnung n ∈ N, ist eines der grundlegendsten Probleme der Netzwerkanalyse.
Einer der derzeit leistungsfähigsten Algorithmen zum Lösen von Maximum Clique auf
Echtwelt-Graphen wurde formal niedergeschrieben von Komusiewicz [Dissertation, 2011]
und von Walteros und Buchanan implementiert [Operations Research, 2020]. Er baut
auf zwei Zutaten auf:

(1) Aufteilung des Eingabegraphen in viele Teilgraphen, die separat gelöst werden
können, und

(2) lösen jedes Teilgraphen, das heißt Finden einer Clique maximaler Ordnung.

Dieser Algorithmus ist schnell wenn die so genannte Cliquen-Kern-Lücke zwischen
der degeneracy d eines Graphen und ω klein ist, da er in 2d−ω ·nO(1) Schritten ausgeführt
werden kann.

Cliquen sind oft zu restriktiv, um ungenaue Daten zu analysieren, daher wurden
in der Vergangenheit viele

”
Clique-Relaxierungs“-Konzepte vorgeschlagen. Ziel dieser

Arbeit ist es, den Maximum Clique-Algorithmus von oben auf Clique-Relaxierung-
en zu verallgemeinern. Dabei werden wir drei Cliquen-Relaxierungen näher betrachten
(s-defective cliques, s-plexes, und s-clubs).

Unsere Arbeit besteht aus drei Teilen. Zunächst stellen wir fest, dass einige Clique-
Relaxierungen, im Gegensatz zu Clique, wahrscheinlich nicht

”
fixed-parameter trac-

table“ hinsichtlich der Cliquen-Kern-Lücke sind, indem wir mehrere NP- und W [1]-
Härteergebnisse für Clique-Relaxierungen auflisten und die Literatur vervollständigen.

Zweitens passen wir Zutat (2) des Maximum Clique-Algorithmus an, indem wir den
kombinierten Parameter

”
größere Lücke“ plus

”
jeweiligem Relaxierungsparameter“ (n−

ω) + s betrachten. Wir führen mehrere FPT-Resultate für Cliquen-Relaxierungen auf
und stellen neue Algorithmen und Problemkerne für s-defective cliques vor.

Drittens passen wir Zutat (1) des Maximum Clique-Algorithmus an, indem wir eine

”
mittelgroße“ Lücke präsentieren, für die Cliquen-Relaxierungen noch

”
fixed-parameter

tractable“ sind. Das heißt, wir verwenden einen neuen Parameter α ∈ N, welcher die
degeneracy so verallgemeinert, dass d ≤ α ≤ n gilt, und wir

”
fixed-parameter tractable“

für den Parameter (α− ω) + s sind. Dies führt zu einem Ansatz für das Lösen von Ma-
ximum Clique-Relaxierungen, basierend auf den beiden Anpassungen des Maximum
Clique-Algorithmus. Wir wenden diesen Ansatz auf s-defective cliques, s-plexes, und
s-clubs an. Zum Schluss geben wir auch einen Überblick über die Werte von α und der

”
mittelgroßen“ Lücken in Echtwelt-Graphen.
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Abstract

Maximum Clique – finding cliques of maximum-order ω ∈ N in graphs of order n ∈ N,
is one of the most fundamental problems in network analysis. One of the currently best-
performing algorithms for solving Maximum Clique on real-world graphs was formally
written down by Komusiewicz [PhD Thesis, 2011] and implemented by Walteros and
Buchanan [Operations Research, 2020]. It builds upon two ingredients:

(1) Splitting the input graph into many subgraphs which can be solved separately, and

(2) solving each subgraph, that is, finding a maximum-order clique.

This algorithm performs well when the so-called clique-core gap between the degen-
eracy d of a graph and ω is small, as it runs in 2d−ω · nO(1) time.

Cliques are often too restrictive to analyze noisy data, hence many “clique relax-
ations” concepts have been proposed. In this work, our goal is to generalize the Maxi-
mum Clique algorithm from above to clique relaxations. We will consider three clique
relaxations in more detail (s-defective cliques, s-plexes, and s-clubs).

Our work has three parts. First, we observe that several clique relaxations are, in
contrast to clique itself, unlikely to be fixed-parameter tractable with respect to the
clique-core gap. We do this by listing several NP-, and W [1]-hardness results for clique
relaxations and completing the literature.

Second, we adapt ingredient (2) of the Maximum Clique algorithm by considering
the combined parameter “larger gap” plus “respective relaxation parameter”, (n−ω)+s.
Here, we list several FPT-results for clique relaxations, and provide new algorithms and
problem kernels for s-defective cliques.

Third, we adapt ingredient (1) of the Maximum Clique algorithm by presenting
a “middle ground” relaxed gap for which clique relaxations are still fixed-parameter
tractable. That is, we employ a new parameter α ∈ N generalizing degeneracy such
that d ≤ α ≤ n, and we have fixed-parameter tractability for the parameter (α−ω) + s.
This leads to a framework for solving Maximum Clique relaxations based on the two
adaptations of the Maximum Clique algorithm. We apply this framework to s-defective
cliques, s-plexes, and s-clubs. In the end, we also provide an overview of the values of α
and the relaxed gaps on real-world graphs.
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Chapter 1

Introduction

Finding “cohesive” parts of a graph is of interest in many different research areas, such
as biology [SUS07; Yu+06], social network analysis [Kad68], and even when analyzing
the stock market [BBP06; Bog+14]. The most straightforward way to define a cohesive
subset of vertices S ⊆ V (G) of a graph G is to require that each pair of vertices of S
shares an edge in G, hence forming a clique. However, the definition of a clique is very
restrictive. For example, small errors in the data can already destroy the “perfect”
character of a clique in practice [Yu+06]. Hence, several “relaxed clique”-concepts were
proposed, which relax the definition of cliques in one way or another. We provide an
overview of them in Table 1.1.

Nevertheless, cliques are very well studied and many algorithms for finding cliques
were proposed in the past. Hence, for developing algorithms for finding relaxed cliques,
it is of interest to study known clique algorithms [Öst02] and try to generalize them,
as has been accomplished in the past [Shi13; Tru+13]. The goal of this thesis is to
generalize another algorithm for finding cliques to finding relaxed cliques.

In terms of computational complexity, finding a large clique in a graph is a compu-
tationally challenging task, as its decision problem Clique is NP-complete [Kar72], and
the corresponding maximization problem Maximum Clique is NP-hard. As Clique
is a special case of many Clique relaxations, most of these “relaxed” decision and
maximization problems are NP-hard as well.

A very basic, but exact approach for finding maximum-order (relaxed) cliques in a
graph is the Russian-Doll-Search (RDS) algorithm [CP90; VLS96]. In its most general
form, the RDS-algorithm can be stated as follows. For a given graph G:

(1) Define some ordering (v1, v2, . . . , vn) on the vertices of G, and

(2) for each i ∈ [n] := {1, 2, . . . , n}, based on the results for j < i, find a maximum-
order (relaxed) clique of the induced subgraph G[{v1, v2, . . . , vi}].

It has been shown that variants of the RDS-algorithm are fast in practice for solving
Maximum Clique [Buc+14; Öst02; RGG15; VLS96; WB20], as well as Maximum
Clique relaxations [Che+21; GIP18; HKN15a; Shi13; Tru+13]. This is because these
algorithms use various (heuristic) data reduction rules, as well as lower bounds [Sto+20]
and upper bounds [LW70; Shi13] on the order of a maximum (relaxed) clique, hence
they often do not have to consider all n := |V (G)| subgraphs of the RDS-algorithm.
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10 CHAPTER 1. INTRODUCTION

Table 1.1: An overview of clique relaxations, categorized by their relaxation parame-
ter [Gsc+20; Kom16]. Let G be a graph and S ⊆ V (G) induce a respective clique (re-
laxation). Furthermore, let γ ∈ [0, 1] and, based on the parameter, let s ∈ N or s ∈ N+.
We shorten the names γ-complete graph, s-defective clique, and highly connected sub-
graph to γ-CG, s-DC, and HCS, respectively. We emphasize the names of the clique
relaxations which we will study in this work.

Parameter Definition Clique value Clique relaxation, Reference(s), Value

Minimum
Degree δ(G)

min
v∈V (G)

degG(v) δ(G[S]) = |S| − 1
s-core [BH03], δ(G[S]) ≥ s
s-plex [SF78], δ(G[S]) ≥ |S| − s
γ-CG [JP09; MIH99], δ(G[S]) ≥ γ · (|S| − 1)

Average
Degree a(G)

∑
v∈V (G) degG(v)

|V (G)| a(G[S]) = |S| − 1 average s-plex [Guo+11], a(G[S]) ≥ |S| − s

Distance
distG(u, v)

length of shortest u-v-path
∀u, v ∈ S :
distG(u, v) = 1

s-clique [Luc50], distG(u, v) ≤ s∀u, v ∈ S
s-club [Mok79], distG[S](u, v) ≤ s∀u, v ∈ S

Number |E(G)|
of Edges

- |E(G[S])| =
(|S|

2

) s-dense subgraph [KP93; RS08], |E(G)| ≥ s
s-DC [Guo+11; Yu+06], |E(G)| ≥

(|S|
2

)
− s

γ-quasi clique [ARS02], |E(G)| ≥ γ ·
(|S|

2

)
Vertex
Connectivity
κ(G)

min
V ′⊆V (G):

G−V ′ is disconnected

∣∣V ′∣∣
κ(G[S]) = |S| − 1

s-block [Mad78], κ(G[S]) ≥ s
s-bundle [PYB13], κ(G[S]) ≥ |S| − s
γ-RVCS [Ver+14], κ(G[S]) ≥ γ · (|S| − 1)

Edge
Connectivity
λ(G)

min
E′⊆E(G):

G−E′ is disconnected

∣∣E′∣∣
λ(G[S]) = |S| − 1

γ-RECS [Kom16], λ(G[S]) ≥ γ · (|S| − 1)
HCS [HS00], λ(G[S]) ≥ |S| /2

Number ν(G)
of Common
Neighbors

min
{u,v}∈E(G)

|NG(u) ∩NG(v)| ν(G[S]) = |S| − 2 s-community [Coh08; VBB15], ν(G[S]) ≥ s

We observe that the running time of the RDS-algorithm heavily relies on the ordering
of the vertices in step (1) and the algorithm used in step (2). It has been shown that
in practice, a degeneracy ordering [LW70] for the vertices works well [CP90; HKN15a;
Tru+13; WB20]. A degeneracy ordering (v1, v2, . . . , vn) of the vertices of G guarantees
that vi has the minimum degree δ in the induced subgraph G[vi, vi+1, . . . , vn]. Further-
more, we say that d(G) := maxi∈[n] |δ(G[vi, vi+1, . . . , vn])| is the degeneracy of G.

Most variants of the RDS-algorithm lack a (non-trivial) theoretical analysis of their
worst-case running time. One of the few RDS-based algorithms for Maximum Clique
for which a non-trivial upper bound on the running time is known is the algorithm of
Komusiewicz [Kom11, Proposition 5.4]. It has the following two ingredients:

(1) Compute a degeneracy ordering (v1, v2, . . . , vn) for the input graph G, and

(2) for each i ∈ [n], find a maximum-order clique of the induced subgraph of G
on N [vi] ∩ {vi, vi+1, . . . , vn} by branching over two (non-adjacent) vertices which
cannot be part of the same clique, until the resulting instance is a clique.

As, to the best of our knowledge, this folklore algorithm was first formally studied by
Komusiewicz in theory and Walteros and Buchanan [WB20] first studied it in practice,
we will call it the KWB-algorithm.
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Note that although we do not necessarily consider G as a whole at some point of the
KWB-algorithm, the algorithm is still correct. This is because in a clique S all vertices
are adjacent, hence we will find S when we consider the “leftmost” vertex of S with
respect to the degeneracy ordering.

Komusiewicz [Kom11, Proposition 5.4] implicitly showed that this algorithm runs
in O∗(2d+1−ω) time, where ω is the maximum-order of a clique in G. Note that we use
the O∗-notation to omit polynomial factors in the running time f of an exponential-
time algorithm. As d + 1 is by the definition of the degeneracy an upper bound on ω,
Walteros and Buchanan [WB20] called g := d + 1 − ω the clique-core gap of G. The
name comes from the d-core [BH03] of a graph G, which is non-empty if and only if G
has degeneracy at least d [WB20]. Note that this algorithm performs well in graphs with
small clique-core gap, which is often the case in real-world graphs [WB20].

Focus of the thesis. The goal of this thesis is to generalize the KWB-algorithm. That
is, we will provide a framework for several clique relaxations Π which generalizes both
ingredients of the KWB-algorithm in such a way that we can find a maximum-order
vertex set satisfying Π, and we still provide an upper bound on the running time with
respect to some new “relaxed gap”.

We want to show that the ideas presented in this work can be applied to different
clique relaxations, so we will study s-defective cliques with s ∈ N, s-plexes, and s-clubs
with s ∈ N+ in more detail. A vertex set S ⊆ V (G) is an:

• s-defective clique when G[S] contains at most s non-edges;

• s-plex when G[S] has minimum degree at least |S| − s; and

• s-club when G[S] has diameter at most s, where the diameter of G[S] is the max-
imum distance between two vertices in G[S].

We have chosen these three clique relaxations as on the one hand they all relax a
different property of the standard clique (see Table 1.1) and hence represent a variety
of different clique relaxations, and are on the other hand also strongly related to each
other (an s-defective clique is an (s+ 1)-plex [Shi13; Tru+13]; a connected s-plex is an
s-club [PYB13]), which will help us to find common patterns between these three clique
relaxations. See Figure 1.1 for examples of these clique relaxations.

These three clique relaxations are also well-motivated on their own. The most obvious
relaxation of cliques may be to allow to miss some edges. Such an s-defective clique can
be used when the input data is noisy. This happens for example when analyzing protein
interactions inside a cell, where false negatives (an edge is missing in the graph although
it should be present) occur much more often than false positives (an edge is present
in the graph although it should be missing) [Yu+06]. However, it could happen that
one vertex is part of all missing edges, and thus it has a relatively low degree in the
s-defective clique. When looking for a “cohesive” subnetwork in a social network, one
might want to forbid that low-degree vertices are part of the subnetwork, but instead
“distribute” the errors by allowing that each member of the subnetwork knows “most” of
the other members in it. In this case, it is better to “relax” the minimum degree of the
subnetwork, thus searching for s-plexes. For example, Wasserman and Faust [WF94,
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u1 u2 u3

w1 w2 w3

U

W

Figure 1.1: A graphG on six vertices which only misses the edges {ui, wi} for i ∈ {1, 2, 3}.
Note that U and W induce maximum-order cliques in G. All sets U ∪{wi} and W ∪{ui}
induce maximum-order 1-defective cliques. Furthermore, all sets U ∪ {wi, wj} and W ∪
{ui, uj} induce maximum-order 2-defective cliques with 1 ≤ i < j ≤ 3. Finally, G is a
maximum-order 3-defective clique, 2-plex, and 2-club.

Subsection 7.4.1] used 2-plexes to study real-world business and marriage networks.
Finally, one might even allow members of such a subnetwork to not know many other
members of the subnetwork directly, as long as they have a common “friend” (or friend
of a friend) with every other member inside the subnetwork, thus searching for s-clubs.
Milgram [Mil67] claimed that, on average, each citizen of the United States is connected
through a “path” of five friends to any other citizen. In other words, the social network
of the US contains very large 6-clubs. This phenomenon is known as the Small-World
Problem [Mil67] or the Six Degrees of Separation-idea [EL05].

Note that s-defective cliques as well s-plexes can be disconnected. For example,
two isolated vertices induce a 1-defective clique as well as a 2-plex. As Gschwind et al.
[Gsc+20] mentioned, it seems like a rather natural “restriction” to exclude disconnected
solutions when we search for “cohesive” subgraphs. Hence, we will study these two clique
relaxations as well.

Note that we denote the decision (respectively, maximization) problem of find-
ing an s-defective clique/s-plex/s-club of order at least k ∈ N (respectively, of max-
imum order) with s-Defective Clique/s-Plex/s-Club (respectively, Maximum s-
Defective Clique/Maximum s-Plex/Maximum s-Club), respectively. When we
consider connected s-defective cliques or connected s-plexes, then we will extend the
respective problem name with the word Connected.

1.1 Related Work

Finding maximum-order clique relaxations is well-motivated, hence several frameworks
for groups of clique relaxations as well as algorithms for special clique relaxations have
been proposed in the past. Because we focus in this work on (connected) s-defective
cliques, (connected) s-plexes, and s-clubs, we next present related work only for these
clique relaxations. We refer to Komusiewicz [Kom16], Singh and Pandey [SP15], Wal-
teros and Buchanan [WB20], and Wu and Hao [WH15] for further information on finding
cliques in graphs. See Gschwind et al. [Gsc+17; Gsc+20], Komusiewicz [Kom16], and
Pattillo, Youssef, and Butenko [PYB13] for an overview on other clique relaxations.
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It is easy to see that s-Club and (Connected) s-Plex are NP-hard even if s = 1,
and (Connected) s-Defective Clique is NP-hard even if s = 0, as these special
cases are the well-known Clique problem, which is NP-hard [Kar72].

Note that we say that a problem is fixed-parameter tractable (in FPT) with respect
to some parameter k when it can be solved in f(k) · nO(1) time for some computable
function f . We note that if a problem parameterized by k is W [1]- or W [2]-hard, then
it is unlikely to be fixed-parameter tractable under standard parameterized complexity
assumptions.

In the following, the parameter k ∈ N refers to the solution size of the respective
Clique relaxation.

As clique relaxations are well-studied, there is a lot of work from the literature which
is related to this thesis. To make it easier for the reader, we provide an overview on the
results from the literature which are the most important for this thesis in Table 1.2 on
page 19.

(Connected) s-defective cliques. Yu et al. [Yu+06] first introduced s-defective
cliques in the context of finding errors in the data of protein interactions inside a cell.
To the best of our knowledge, s-defective cliques were first formally defined by Guo et al.
[Guo+11]. The s-Defective Clique problem can be decided by a simple brute-force
algorithm in O∗(2n) time, and Chen et al. [Che+21] provided an algorithm which per-
forms slightly better in the worst case. By a general argument of Lewis and Yannakakis
[LY80, Theorem 4], it can be shown that s-Defective Clique is NP-hard for all s ∈ N.
In terms of parameterized complexity, Raman and Saurabh [RS08, Theorem 20] showed
implicitly that s-Defective Clique is W [1]-hard with respect to the parameter k. On
the positive side, Koana, Komusiewicz, and Sommer [KKS20, Theorem 3.7] showed that
s-Defective Clique is decidable in 2O(d

√
s) · nO(

√
s) time, where d is the degeneracy.

Moreover, one can easily adapt a result of Komusiewicz [Kom16, Proposition 3] to show
that s-Defective Clique is decidable in 2d · nO(s) time.

Many results for s-Defective Clique with respect to the parameter n − k follow
from results of its dual problem, Partial Vertex Cover [BB98; GNW07]. It is
known that s-Defective Clique is W [1]-complete with respect to n− k due to Guo,
Niedermeier, and Wernicke [GNW07, Theorem 14] and Cai [Cai08, Theorem 2.5]. In
contrast, s-Defective Clique can be decided in O∗(3(n−k)+s) time by a branching
algorithm of Raman and Saurabh [RS08, Theorem 10].

We briefly mention that s-defective cliques have also been considered in weighted
graphs [GIP18; Gsc+20; Tru+13] and on restricted graph classes [AFS11; Cas+14;
RS08], as well as for many other parameterizations [BGP13; Blä03; KKS20; RS08].
It has also been studied in terms of enumeration algorithms [KKS20], cluster editing
variants [Guo+11; SGB14], and graph partitioning and covering problems [Gsc+17;
Gsc+20].

For solving Maximum s-Defective Clique in practice for s ∈ [1, 4], some exact
combinatorial branching algorithms [Che+21; GIP18; Shi13; Tru+13] as well as ideas
based on integer programming [SS06; Sto+20] have been proposed and implemented. For
a comparison on the quality of a combinatorial solver and an integer-programming–based
solver, we refer to Stozhkov et al. [Sto+20, Chapter 4].
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Connected s-defective cliques on their own are not as well studied as s-defective
cliques. One can transfer the hardness results from s-Defective Clique we presented
before to Connected s-Defective Clique by adding a new universal vertex which is
connected to all other vertices and increasing the solution size k by one. Furthermore,
one can adapt the algorithm of Raman and Saurabh [RS08, Theorem 10] to decide Con-
nected s-Defective Clique in O∗(3(n−k)+s) time as well. Moreover, one can easily
adapt a result of Komusiewicz [Kom16, Proposition 3] to show that Connected s-
Defective Clique is decidable in 2d ·nO(s) time as well. To the best of our knowledge,
a result which holds for Connected s-Defective Clique and not for s-Defective
Clique is that Connected s-Defective Clique is decidable in ∆O(∆) ·nO(1) time by
applying a framework of Komusiewicz [Kom16, Proposition 1], where ∆ is the maximum
degree. Moreover, Gschwind et al. [Gsc+20] provided an exact branching algorithm for
Maximum Connected s-Defective Clique. However, to the best of our knowledge,
no solver for Maximum Connected s-Plex has been implemented yet. One reason
why this might be the case is that an s-defective clique of order at least s+2 is necessar-
ily connected for all s ∈ N, as we know due to Pattillo, Youssef, and Butenko [PYB13,
Proposition 8.d] (observed by Gschwind et al. [Gsc+20, Table 1]). Hence, we can ob-
serve that all maximum-order s-defective cliques we consider in Tables A.5 to A.8 are
necessarily connected.

(Connected) s-plexes. Seidman and Foster [SF78] first introduced s-plexes in the
context of social network analysis. The s-Plex problem can be decided by a simple
brute-force algorithm in O∗(2n) time, and Xiao et al. [Xia+17] provided an algorithm
which performs slightly better in the worst case. By a general argument of Lewis and
Yannakakis [LY80, Theorem 4], it can be shown that s-Plex is NP-hard for all s ∈
N+. Kosub [Kos04, Theorem 6.2.3] and Balasundaram, Butenko, and Hicks [BBH11,
Theorem 2] gave a direct reduction from the NP-hard Clique to s-Plex for all s. In
terms of parameterized complexity, Komusiewicz et al. [Kom+09, Theorem 5] showed
that s-Plex is W [1]-hard with respect to the combined parameter k + s. Furthermore,
Koana, Komusiewicz, and Sommer [KKS20, Theorem 3.3] showed that s-Plex is W [1]-
hard with respect to the combined parameter k+ s+d, where d is the degeneracy of the
graph. On the positive side, Komusiewicz [Kom16, Proposition 2] showed that s-Plex
is decidable in ∆O(∆+s) time by applying a framework of Komusiewicz and Sorge [KS15,
Theorem 4]. Moreover, Komusiewicz [Kom16, Proposition 3] showed that s-Plex is
decidable in 2d · nO(s) time.

Many results for s-Plex with respect to the parameter n − k follow from results
of its dual problem, Bounded-Degree Vertex Deletion. It is known that s-Plex
is W [2]-complete with respect to n − k due to Fellows et al. [Fel+11, Theorem 2]. In
contrast, s-Plex can be solved in O∗(((n − k) + s)(n−k)+3) time due to Nishimura,
Ragde, and Thilikos [NRT05, Theorem 5], as well as in O∗((s + 1)n−k) time by a
branching algorithm of Komusiewicz et al. [Kom+09, Theorem 6], which was slightly
improved in the polynomial part of its running time by Moser, Niedermeier, and Sorge
[MNS12, Theorem 2]. Fellows et al. [Fel+11, Corollary 1] also showed that for constant s
and any ε > 0, s-Plex admits a problem kernel with O((n − k)1+ε) vertices which is
computable in O(n4 ·m) time. In the special cases of 1-Plex (which is Clique) and
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2-Plex, they showed that their problem kernel only contains a linear number of vertices
with respect to n − k. Furthermore, for constant s, Moser, Niedermeier, and Sorge
[MNS12, Theorem 1] provided a problem kernel with O((n − k)2) vertices which is
computable in quadratic time.

We briefly mention that s-plexes have been considered in weighted graphs [GIP18;
Shi13; Tru+13] and temporal graphs [Ben+19], as well as in terms of enumeration algo-
rithms [Con+17; KKS20; Kom+09], cluster editing variants [BMN12; Guo+11; SGB14],
and graph partitioning and covering problems [Gsc+17; Gsc+20].

For solving Maximum s-Plex in practice for s ∈ [2, 5], many exact combinatorial
branching algorithms [Che+20; Con+17; GIP18; HKL19; MH12; MNS12; Pul20; Shi13;
Tru+13; Xia+17; ZH17] as well as ideas based on integer programming [BBH11; Gsc+17;
Sto+20; ZH17] have been proposed and implemented. For a comparison on the quality
of a combinatorial solver and an integer-programming–based solver, we refer to Stozhkov
et al. [Sto+20, Chapter 4].

Connected s-plexes on their own are not as well studied as s-plexes. One can trans-
fer the hardness results from s-Plex we presented before to Connected s-Plex by
adding a new universal vertex which is connected to all other vertices and increasing
the solution size k by one. Furthermore, one can adapt the algorithm of Komusiewicz
et al. [Kom+09, Theorem 6] to decide Connected s-Plex in O∗((s + 1)n−k) time as
well. Moreover, one can easily adapt a result of Komusiewicz [Kom16, Proposition 3]
to show that Connected s-Plex is decidable in 2d · nO(s) time as well. To the best
of our knowledge, a result which holds for Connected s-Plex and not for s-Plex is
that Connected s-Plex is decidable in ∆O(∆) ·nO(1) time [Kom16, Section 2.1, Propo-
sition 1]. Moreover, Gschwind et al. [Gsc+20] provided an exact branching algorithm
for Maximum Connected s-Plex. However, to the best of our knowledge, no solver
for Maximum Connected s-Plex has been implemented yet. One reason why this
might be the case is that an s-plex of order at least 2s − 1 is necessarily connected for
all s ∈ N+, as we know due to Seidman and Foster [SF78]. Nevertheless, there are
real-world graphs which do not contain such “large” s-plexes, and which could therefore
only contain maximum-order s-plexes which are disconnected. For example, this is the
case for the graphs belgium.osm and ecology1 in Table A.8.

s-clubs. First, we note that for s-clubs there is a difference between finding an s-club
of order exactly k and at most k. As we will study the corresponding maximization
problems of clique relaxations in this thesis, we will only consider the decision problem
of finding an s-club of order at least k, and we refer to the survey of Komusiewicz
[Kom16] for a further discussion on finding s-clubs of order exactly k.

Mokken [Mok79] first introduced s-clubs in the context of social network analysis. To
the best of our knowledge, Bourjolly, Laporte, and Pesant [BLP02] were the first to study
the computational complexity of s-Club. They showed that s-Club is NP-complete for
all s ∈ N+, and provided a branching algorithm. It was later shown that this algorithm
has a worst-case running time of O∗(2n−k) [Sch+12] as well as O∗(1.62n) [Cha+13]. In
terms of parameterized complexity, Schäfer et al. [Sch+12] studied s-Club with respect
to the solution size k in more detail. Hartung, Komusiewicz, and Nichterlein [HKN15a]
provided several problem kernels, algorithms, and hardness results for s-Club with re-
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spect to some structural parameters. Furthermore, Hartung, Komusiewicz, and Nichter-
lein showed that the branching algorithm of Bourjolly, Laporte, and Pesant [BLP02] and
Schäfer et al. [Sch+12] cannot be significantly improved unless the Strong Exponential
Time Hypothesis [IPZ01] breaks, which would result in a major breakthrough in param-
eterized complexity theory. For the special case of 2-Club, Hartung et al. [Har+15] and
Hartung, Komusiewicz, and Nichterlein [HKN15a] provided even more algorithms and
hardness results with respect to some structural parameters. We briefly mention that
s-clubs have also been considered in terms of cluster editing variants [Fig+21; LZZ12;
MPS20], as well as graph partitioning and covering problems [Gsc+17; Gsc+20].

Chang et al. [Cha+13], Hartung, Komusiewicz, and Nichterlein [HKN15a], and Ko-
musiewicz et al. [Kom+19] provided implementations based on the (combinatorial)
branching algorithm of Bourjolly, Laporte, and Pesant [BLP02] for 2-Club with ad-
ditional heuristics, which all perform well on real-world graphs. A comparison of the
three algorithms was given by Komusiewicz et al. [Kom+19, Table 3]. For s ∈ [2, 5], fur-
ther exact approaches, mostly based on (mixed) integer programming, have been studied
to solve Maximum s-Club on small or random graph instances [AC12; BBT05; BLP02;
CA11; Gsc+20; PB12; SB20; VB12; YPB17]. For 2-clubs, Hartung, Komusiewicz, and
Nichterlein [HKN15a, Table 6] showed that their branching algorithm performs better
on real-world graphs than a respective integer programming approach.

Degeneracy variants. To generalize the KWB-algorithm, we will generalize the de-
generacy in Chapter 4. To the best of our knowledge, the degeneracy of a graph was first
defined as the coloring number of a graph (not to be confused with the chromatic number
of a graph) by Erdős and Hajnal [EH66]. It was re-introduced by Lick and White [LW70,
Chapter 2], and Matula and Beck [MB83] were the first to provide a linear-time algo-
rithm for computing the degeneracy of a graph. Bader and Hogue [BH03] re-introduced
the degeneracy again as the core-number of a graph.

Many generalizations of the degeneracy have been proposed in the past [Ben+19;
Buc+14; KWB05; Zak13]. One generalization which will be of interest for us is the
weak x-degeneracy ordering of a graph G with x ∈ N [Pic15; Tru+13]. A weak x-
degeneracy ordering (v1, v2, . . . , vn) of the vertices of G guarantees that vi has the min-
imum x-degree δx in G[vi, vi+1, . . . , vn], where the x-degree of a vertex vi is the number
of vertices with distance at most x to vi in G[vi, vi+1, . . . , vn], except vi itself. Further-
more, αx(G) = maxi∈[n] |δx(G[vi, vi+1, . . . , vn])| is the weak x-degeneracy of G. Note
that the degeneracy is equal to the weak 1-degeneracy of a graph. As in a relaxed clique
not all vertices are necessarily adjacent to each other (otherwise it would form a stan-
dard clique), this generalization of the standard degeneracy will help us to generalize
ingredient (1) of the KWB-algorithm.

There is also another natural generalization of the standard degeneracy which we call
the strong x-degeneracy of a graph, see Definition 5.3 for a formal definition. However,
we will not study it in more detail because we show in Proposition 5.5 that the weak
x-degeneracy of a graph is at most its strong x-degeneracy, but the converse is not true.

We mention that Picker [Pic15, Section 4.2] already briefly introduced the notation
of the weak 2-degeneracy of a graph in the context of a variant of 2-Club. However, he
assumed that in practice it might take too much time to compute the weak 2-degeneracy
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ordering of a graph. For this reason, he did not study this new parameter in more detail.
Furthermore, Trukhanov et al. [Tru+13, Subsection 3.3.3] also briefly introduced the
notion of a weak 2-degeneracy ordering in the context of the s-Plex problem. However,
Trukhanov et al. [Tru+13, Chapter 4] mention that for their RDS-algorithm, a (faster
to compute) standard degeneracy ordering performed better in practice. Nevertheless,
trying to generalize the result that Clique is fixed-parameter tractable with respect to
the clique-core gap (due to the KWB-algorithm) to Clique relaxations will motivate us
to study the weak x-degeneracy of a graph in more detail.

1.2 Our Contributions

The results of this work can be divided into three parts. First, we show that the Clique
relaxation s-Defective Clique with s ∈ N is W [1]-hard with respect to the clique-core
gap g := d+ 1−ω (Corollary 3.6 on page 32), We also show this parameterized problem
is contained in W [1] (Theorem 3.10 on page 34).

To circumvent this hardness results, second we study s-Defective Clique with
respect to the combined parameter (n − k) + s in more detail by using the duality
of the problems s-Defective Clique and Partial Vertex Cover and applying
techniques already known in the context of Vertex Cover. Note that for Partial
Vertex Cover, one asks whether a graph G contains a vertex cover of size at most k ∈
N which does not cover at most s ∈ N edges. Furthermore, note that a graph G
contains an s-defective clique of order n − k if and only if the complement graph G
contains an s-partial vertex cover of size k. We will provide two problem kernels for s-
Defective Clique with respect to the parameter (n−k)+s, that is, one can reduce the
size of an s-Defective Clique instance in linear time (quadratic time, respectively)
such that the resulting s-Defective Clique instance contains O((n − k)2) vertices
(O(n− k) vertices, respectively) for constant s (Theorems 4.8 and 4.9 on pages 42 and
43). The linear-vertex problem kernel is one of the highlights of this thesis, as it fills the
hole between the Clique problem (for which a linear-vertex problem kernel exists with
respect to n− k [CKJ01; NT75]), and the strongly related s-Plex problem (for which a
quasi-linear–vertex problem kernel exists with respect to n− k for constant s [Fel+11]).
Along the way, we also provide a new branching algorithm for s-Defective Clique
(Proposition 4.3 on page 40).

To look at a smaller gap than n − k again, third we provide a generalization of
the KWB-algorithm (for solving Maximum Clique) to Maximum Clique relaxations.
Along the way, we will study the weak x-degeneracy αx of a graph for x ∈ N. We
show that this new parameter family is strongly related to the maximum degree of a
graph (Proposition 5.5 on page 62). Furthermore, we show that for arbitrary x it holds
that αx is computable in O(αxnm) time (Lemma 5.6 on page 63), but for all ε > 0 cannot
be computed in O(n2−ε) time unless the Strong Exponential Time Hypothesis [IPZ01]
breaks (Theorem 5.11 on page 65), which would lead to a major breakthrough in pa-
rameterized complexity theory. Finally, as a highlight of this thesis, we will provide the
gap-framework for solving Maximum Clique relaxations (Theorem 5.19 on page 72).
This gap-framework, which is a generalization of the KWB-algorithm, can be applied to
any clique relaxation Π (and its maximization problem) when the following hold:
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(1) There exists an upper-bound x on the diameter of every graph satisfying Π, and

(2) one can verify whether a graph satisfies Π, or find a set of at most c ∈ N vertices
which cannot be part of the same subgraph satisfying Π, in polynomial time.

If these conditions holds, then one can apply our gap-framework to construct an al-
gorithm for solving the respective Maximum Clique relaxation in O∗(c(αx+1)−ωΠ) time,
where ωΠ is the maximum order of a respective relaxed clique in the input graph.

We apply this gap-framework to Maximum s-Club, Maximum Connected s-
Plex, and Maximum Connected s-Defective Clique (Theorems 6.1 to 6.3 on
page 74). Furthermore, we provide adaptations of our framework which might perform
better in practice when certain additional criteria are met for Maximum (Connected)
s-Defective Clique and Maximum (Connected) s-Plex (Sections 6.1.2 and 6.2.2
on pages 77 and 82). For an overview of our results, see Table 1.2.

Structure of the work. In Chapter 2, we will provide the relevant definitions from
graph theory, parameterized complexity theory, and the problems we study in this work.
In Chapter 3, we will show that, in contrast to the standard Clique problem, it is
unlikely that under standard parameterized complexity assumption there exist FPT-
algorithms for the Clique relaxations s-Defective Clique, s-Plex, and s-Club with
respect to the clique-core gap g := d + 1 − ω. In Chapter 4, we will study the larger
“gap” n − k and provide results from the literature that show that all three Clique
relaxations are fixed-parameter tractable with respect to the combined parameter “large
gap” plus “relaxation parameter” (n − k) + s. We also provide three new FPT-results
for s-Defective Clique with respect to (n − k) + s. In Chapter 5, we will consider
a smaller gap by introducing a generalization of the standard degeneracy, and provide
a gap-framework (based on the KWB-algorithm) which can be used to solve several
Maximum Clique relaxations. In Chapter 6, we will apply our gap-framework and
simple modifications of it to Maximum (Connected) s-Defective Clique, Max-
imum (Connected) s-Plex, and Maximum s-Club. Furthermore, we provide the
respective “gap” values for many real-world graphs in Appendix A.
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Table 1.2: Overview of previously known results and our most important results for de-
ciding/solving (Maximum) Clique (relaxations) and computing the weak x-degeneracy
of a graph. We use the following notation: n–number of vertices, m–number of edges,
k–solution size, s–respective relaxation parameter, x ∈ N, αx-weak x-degeneracy, ω–
maximum-order of a respective (relaxed) clique in input graph, gx := αx + 1 − ω,
g∗ := g⌊√

2s+ 1
4

+ 1
2

⌋, ε > 0, ∆–maximum degree. We note that results or open ques-

tions which are centered between two problems apply to both of them. Moreover, all
algorithms with respect to some “gap” can also be used to solve the corresponding max-
imization problem. Furthermore, PK stands for problem kernel. For a parameterized
problem, FPT? denotes that it is open whether this parameterized problem is in FPT.

Parameter Result Reference

(Maximum) Clique

n− k O(2n−k · (n+m) + n2) [Meh84]
2 · (n− k)-vertex PK [CKJ01; NT75]

g1 O(2g1 · α5
1

√
α1n+ ωn) [Kom11]

O((1.28g1 + α2
1) · (n− α1)) [WB20]

(Maximum) s-Club

n− k O(2n−k · nm) [Sch+12]
g1 + s W [1]-hard [Har+15]
gs O(2gs · n · α3

s + αsnm) Theorem 6.3

(Maximum) s-Plex
General Connected

n− k W [2]-hard [Fel+11]
(n− k) + s O((s+ 1)n−k · (n+m))[Kom+09]

O((n− k)2)-vertex PK for fix s [MNS12]
O((n− k)1+ε)-vertex PK for fix s [Fel+11]

g1 + s W [1]-hard [KKS20]
g2 + s FPT?

O(((s+ 1)g2 · n · α2
2 + α2nm) + n2s−1 · s2) Theorem 6.15

gs + s FPT? O((s+ 1)gs · n · α2
s + αsnm) Theorem 6.2

(Maximum) s-Defective Clique
General Connected

n− k W [1]-hard [Cai08; GNW07]

(n− k) + s O(3(n−k)+s · n2)[RS08]
O((2 · (s+ 1))n−k · n2) Proposition 4.3

O((n− k)2)-vertex PK for fix s Theorem 4.8
O(n− k)-vertex PK for fix s Theorem 4.9

g1 + s W [1]-hard Corollary 3.6
g2 + s FPT?

O(((2 · (s+ 1))g2 · n · α2
2 + α2nm) + ns+2 · s2) Theorem 6.7

g∗ + s FPT? O((2 · (s+ 1))g∗ ·n ·α2
∗+α∗nm) Theorem 6.1

O(3g∗+s · n · α2
∗ + α∗nm) Theorem 6.11

Weak x-Degeneracy

Result Reference

∆ ≤ αx ≤ ∆x+1 for x ≥ 2 Proposition 5.5
O(αxnm)-time computable Lemma 5.6
O(n+m)-time computable for x = 1 [MB83]
No O(n2−ε)-time algorithm unless SETH [IPZ01] breaks Theorem 5.11





Chapter 2

Preliminaries

General preliminaries. We denote with N the set of all non-negative natural num-
bers, starting with 0. Furthermore, N+ := N \ {0}. Moreover, [n] is the set {1, 2, . . . , n}
for any n ∈ N.

Let S := {s1, s2, . . . , sn} be a set with n ∈ N, and �:= (s1, s2, . . . , sn) be a linear
ordering of S. For two elements s, t ∈ S, s 6= t, we say that t is right of s with respect
to � when s � t. For ∅ ( S′ ⊆ S, we say that an element s ∈ S′ is the leftmost element
of S′ with respect to � if s � t for all t ∈ S′.

To omit polynomial factors in the running time f of an exponential-time algorithm,
we use the notation O∗(f) := O(f logc f) for a constant c ∈ N.

Graph theory. Most of the notation is based upon the textbook of Diestel [Die16]. We
denote with G an undirected graph where V (G) denotes the set of vertices and E(G) ⊆
{{v, w} | v, w ∈ V (G), v 6= w} denotes the set of edges. When not stated otherwise, we
only work with undirected graphs in this thesis.

Graph notation. Let G denote an undirected graph. We denote by

V (G) the vertex set of G;

E(G) the edge set of G; for an edge e = {u, v} ∈ E(G) the two vertices u and v
are called endpoints of e;

E(G,A,B) the subset of edges of G which have one endpoint in A ⊆ V (G) and one
endpoint in B ⊆ V (G), formally E(G,A,B) := {{u, v} ∈ E(G) | u ∈
A, v ∈ B};

nG the number |V (G)| of vertices;

mG the number |E(G)| of edges;

G′ ⊆ G G′ is a subgraph of G, formally, G′ is a graph with V (G′) ⊆ V (G)
and E(G′) ⊆ E(G);(

V (G)
2

)
the set of all possible edges over V (G), formally,

(
V (G)

2

)
:= {{u, v} | u, v ∈

V (G);u 6= v};

21
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G the complement graph of G, formally, V (G) := V (G), E(G) :=
(
V (G)

2

)
\

E(G);

G[V ′] the induced subgraph of G on the vertex set V ′ ⊆ V (G), formally, G[V ′]

is the graph with V (G[V ′]) := V ′, E(G[V ′]) := E(G) ∩
(
V ′

2

)
;

G− V ′ the graph obtained by removing the vertices from the vertex set V ′ ⊆ V (G)
from G, formally, G− V ′ := G[V (G) \ V ′];

G− v the graph obtained by removing the vertex v ∈ V (G) from G, formally,
G− v := G[V (G) \ {v}];

NG(v) the (open) neighborhood of v, formally, NG(v) := {u ∈ V (G) | {u, v} ∈
E(G)};

NG(V ′) the (open) neighborhood of V ′ for some vertex set V ′ ⊆ V (G), formally,
NG(V ′) := {u ∈ V (G) | ∃v ∈ V ′ : u ∈ NG(v)};

NG[v] the closed neighborhood of v, formally, NG[v] := NG(v) ∪ {v};

degG(v) the degree of v ∈ V (G), formally, degG(v) := |NG(v)|; if degG(v) = 0,
then v is isolated ;

δ(G) the minimum degree of G, formally, δ(G) := minv∈V (G){degG(v)};

distG(u, v) the distance between two vertices u and v, formally, dist(u, v) := length
of a shortest u-v-path;

diameter(G) the diameter of a graph G is the length of a longest shortest path between
any two vertices of G;

Gx the power graph on V (G) in which two distinct vertices u and v are con-
nected by an edge if and only if they have distance at most x in G, for-
mally, V (Gx) := V (G), E(Gx) :=

⋃
u∈V (G){{u, v} | 0 < distG(u, v) ≤ x}

for some x ∈ N+;

Nx,G(v) the (open) x-neighborhood of v for any x ∈ N+, formally, Nx,G(v) := {u ∈
V | u 6= v; distG(u, v) ≤ x};

degx,G(v) the x-degree of v for any x ∈ N+, formally, degx,G(v) := |Nx,G(v)|; and

δx(G) the minimum x-degree of G, formally, δx(G) := minv∈V (G){degx,G(v)}.

If the graph G is clear from the context, then we will omit the subscript or argu-
ment G. For example, we write degx(v) instead of degx,G(v) and δ instead of δ(G).
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(a) Vertex sets inducing relaxed cliques (b) Vertex sets covering edges

Figure 2.1: Figures 2.1a and 2.1b both show the same graph G with five vertices and
two connected components.
Figure 2.1a: The vertex set of the blue subgraph of G induces a maximum-order clique,
and hence by definition a maximum-order 0-defective clique, a 1-plex, a 1-club, and a
minimum-order 3-dense subgraph in G. The vertex set of the orange subgraph of G
induces a maximum-order 2-defective clique, a 3-plex, a 2-club, and a minimum-order
4-dense subgraph in G. The vertex set of the whole, green, graph G induces a maximum-
size 6-defective clique and a 5-plex in G.
Figure 2.1b: The vertex sets of the blue and the orange subgraphs of G both form a
minimum-size vertex cover and 0-partial vertex cover in G. The singleton vertex set of
the green subgraph of G forms a minimum-size 1-partial vertex cover in G. The empty
vertex set forms a minimum-size 4-partial vertex cover in G.

Special vertex sets. Let G be a graph. A vertex set S ⊆ V (G) is called a(n)

clique if {u, v} ∈ E(G) for all u, v ∈ S with u 6= v. Alternatively,
|E(G[S])| =

(|S|
2

)
; if S = V (G), then G is the complete graph

on n vertices, denoted with Kn [GJ79; LP49];

s-defective clique if for s ∈ N it holds that |E(G[S])| ≥
(|S|

2

)
− s [Guo+11; Yu+06];

s-plex if for s ∈ N+ it holds that δ(G[S]) ≥ |S| − s [SF78];

s-club if for s ∈ N+ it holds that diameter(G[S]) ≤ s [Mok79];

`-dense subgraph if for ` ∈ N it holds that E(G[S]) ≥ ` [FS97; KP93];

vertex cover if S covers all edges of G, formally, E(G− S) = ∅ [GJ79]; and

s-partial vertex cover if S covers all but at most s edges of G, formally, |E(G− S)| ≤ s
[BB98; RS08].

Examples for all of these vertex sets are shown in Figure 2.1.
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Special graphs. Let G be graph. We say that G is a

forest if G contains no cycle;

tree if G is a connected forest;

path if V (G) := {v1, v2, . . . , vn}, E(G) := {{vi, vi+1} | i ∈ [n − 1]},
where n ∈ N; we denote with Pn the path on n vertices and
say that Pn has length n− 1;

bipartite graph if V (G) can be partitioned into two vertex sets VA(H), VB(H)
so that each edge of G has one endpoint in VA(G) and one
endpoint in VB(G), formally V (G) = VA(G) ] VB(G), E(G) =
E(G,VA(G), VB(G)). We assume VA(G) and VB(G) to be fixed,
and often denote a bipartite graph with H;

complete bipartite graph ifG is a bipartite graph, and if all edges between both partitions
are present, denoted with Ks,t where s := |VA(G)| and t :=
|VB(G)|; and

star if G is a complete bipartite graph such that s = 1; we say that
the single vertex inside VA(G) is the center of the star, and
all t vertices in VB(G) are the leaves of the star.

Graph Parameters. Let G denote an undirected graph. We denote by

d(G) the degeneracy of a graph G, which is the minimum number d ∈ N so that every
subgraph G′ ⊆ G has minimum degree δ(G′) ≤ d; this definition is equivalent to

d(G) := min
� a linear ordering of V (G)

{ max
v∈V (G)

{|NG(v) ∩ {u ∈ V (G) \ {v} | v � u}|}};

we call a corresponding linear ordering �d:= (v1, v2, . . . , vn) a degeneracy ordering
of G; we say that rN(vi, G,�d) := NG(vi)∩{vi+1, vi+2, . . . , vn} is the (open) right-
neighborhood of vi with respect to �d, and rN[vi, G,�d] := rN(vi, G,�d) ∪ {vi}
the closed right-neighborhood of vi, an example is given in Figure 2.2;

ω(G) the maximum order of a clique in a graph G is the maximum number ω ∈ N such
that G contains a clique induced by ω vertices; and

g(G) the clique-core gap of a graph G is the (non-negative) difference between the
upper bound on the order of a clique d(G) + 1 and the actual order ω(G) of a
maximum-order clique in the graph, formally, g(G) := d(G) + 1 − ω(G). The
name comes from the k-core of a graph G, which is non-empty if and only if G
has degeneracy at least k ∈ N [WB20].
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(a) A graph G

z u v w

(b) G rearranged with respect to a degen-
eracy ordering of G

Figure 2.2: Figure 2.2a is the illustration of a graph G with four vertices. The graph has
degeneracy at least two, because G contains the triangle uvw and in each linear ordering
of the vertices, one of the vertices of the triangle has both of the other vertices of the
triangle as right-neighbors.
Figure 2.2b illustrates an ordering of the vertices of G. Each vertex has at most two right-
neighbors with respect to this ordering, so G has degeneracy two and Figure 2.2b indeed
illustrates a degeneracy ordering of G. The right-neighborhoods with respect to the
degeneracy ordering are rN(z) := {u}, rN(u) := {v, w}, rN(v) := {w}, and rN(w) := ∅.

2.1 Parameterized Complexity

In parameterized complexity theory, we study which parameters make a problem hard
and which parameters allow for efficient algorithms. There are many books for parame-
terized complexity theory [Cyg+15; DF13; FG06; Nie06], and we will build upon Cygan
et al. [Cyg+15, Chapters 1-3, 13, Section 9.4].

Let Σ be a finite alphabet and Σ∗ be the set of all finite words over Σ. We say
that P ⊆ Σ∗ is a decision problem. Furthermore, an instance I ∈ Σ∗ is a YES-instance
of P if I ∈ P , and otherwise I is a NO-instance of P .

A parameterized problem is a subset Π ⊆ Σ∗ × N. We say that an instance (I, k) ∈
Σ∗ × N is parameterized by k. Furthermore, we say that Π is fixed-parameter tractable
(FPT) if it can be decided in f(k) · |I|O(1) time whether (I, k) is a YES- or NO-instance
of Π for some computable function f only depending on k. The corresponding algorithm
is an FPT-algorithm. FPT is the class of all parameterized problems which are fixed-
parameter tractable. Analogously, XP is the class of all parameterized problems which
can be decided in |I|f(k) time for some computable function f .

Showing fixed-parameter intractability. To show that a parameterized problem
is (presumably) not in FPT, a hierarchy FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [P ] ⊆ XP
of classes has been established [DF13; FG06]. For us, the most important class (next
to FPT) is W [1]. A widely believed assumption in parameterized complexity theory
is FPT 6= W [1], hence we can show that a parameterized problem Π is (presumably) not
in FPT by doing a parameterized reduction from a W [1]-hard problem to Π.

A parameterized reduction from a parameterized problem Π ⊆ Σ∗ × N to a param-
eterized problem Π′ ⊆ Σ∗ × N is a function (Σ∗ × N) → (Σ∗ × N) which maps an
instance (I, k) of Π to an instance (I ′, k′) of Π′ such that: (I, k) is a YES-instance of Π
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if and only if (I ′, k′) is a YES-instance of Π′, f(I, k) is computable in g(k) · |I|O(1) time
for some computable function g, and k′ ≤ h(k) for some computable function h.

Another possibility to show that a parameterized problem Π is (presumably) not
in FPT is to show that Π is NP-hard even for a constant parameter value. This can be
done by doing a standard, polynomial-time reduction from an NP-hard problem to Π.
In this case, Π is para-NP-hard. Note that a para-NP-hard problem is in FPT if and
only if P = NP [FG06, Corollary 2.13].

On the positive side, many techniques to develop FPT-algorithms have been proposed
as well [Cyg+15; Fom+18]. Next, we will present the most important techniques we will
use in this work.

Problem kernels. Let Π ⊆ Σ∗ × N be a parameterized problem. We say that two
instances (I, k), (I ′, k′) ⊆ Σ∗ × N are equivalent when (I, k) is a YES-instance of Π if
and only if (I ′, k′) is a YES-instance of Π. A data reduction rule is a polynomial-time
computable function (Σ∗ × N) → (Σ∗ × N) which maps an instance (I, k) of Π to an
instance (I ′, k′) of Π. We say that a data reduction rule is safe or correct if (I, k)
and (I ′, k′) are equivalent. We say that a data reduction rule f is exhaustively applied
to an instance (I, k) of Π if f(I, k) = (I, k). Moreover, if after applying (a polynomial
number of) data reduction rules f it holds that |(I ′, k′)| ≤ g(k) for some computable
function g, then f is a kernelization of Π, and we say that Π admits a problem kernel of
size g.

Note that a (decidable) parameterized problem is fixed-parameter tractable if and
only if it admits a problem kernel [Cai+97]. We refer to the book of Fomin et al.
[Fom+18] for a more in-depth view on constructing problem kernels.

Turing kernels. Problem kernels are a good technique to separate the data reduction
rules that lead to one small problem instance from the brute-force algorithm solving this
small instance. However, Cygan et al. mentioned that in practice, one does not care
whether we solve one instance by brute-force at the end of our procedure, or rather
many smaller instances along the way, which leads to the notion of Turing kernels.

To the best of our knowledge, Turing kernels were first formally defined by Binkele-
Raible et al. [Bin+12], although the idea behind the concept was already known be-
fore [Est+05]. Before we can formally define a Turing kernel, first we need to recall the
notion of t-oracles according to Binkele-Raible et al. [Bin+12, Defintion 2.3]: A t-oracle
for a parameterized problem Π is an oracle that takes an instance (I, k) with |I| ≤ t, k ≤ t
as input, and decides whether (I, k) ∈ Π in constant time.

Now we are able to define the notion of a Turing kernel.

Definition 2.1 ([Bin+12, Definition 2.4]). A parameterized problem Π is said to have
a g(k)-sized Turing kernel if there is an algorithm that, given an instance (I, k) together

with a g(k)-oracle for Π, decides whether (I, k) ∈ Π in |I, k|O(1) time.

Although not explicitly mentioned by Binkele-Raible et al., we assume that g is some
computable function only depending on k.
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2.2 Problem Definitions

The following is a list of the relevant problems for this thesis.

Decision problems of clique (relaxations).

Clique [GJ79; LP49]

Input: A graph G and an integer k ∈ N.
Question: Is there a vertex set S ⊆ V (G) such that |S| ≥ k and S is a clique in G?

s-Defective Clique [Guo+11; Yu+06]

Input: A graph G and integers k, s ∈ N.
Question: Is there a vertex set S ⊆ V (G) such that |S| ≥ k and S is an s-defective

clique in G?

s-Plex [SF78]

Input: A graph G and integers k ∈ N, s ∈ N+.
Question: Is there a vertex set S ⊆ V (G) such that |S| ≥ k and S is an s-plex

in G?

s-Club [Mok79]

Input: A graph G and integers k ∈ N, s ∈ N+.
Question: Is there a vertex set S ⊆ V (G) such that |S| ≥ k and S is an s-club

in G?

Dense Subgraph [FS97; KP93]

Input: A graph G and integers k, ` ∈ N.
Question: Is there a vertex set S ⊆ V (G) with |S| ≤ k such that S is an `-dense

subgraph in G?

Maximization problems of clique (relaxations).

Maximum Clique [GJ79; LP49]

Input: A graph G.
Question: A maximum-size vertex set S ⊆ V (G) such that S is a clique in G.

Maximum Connected s-Defective Clique [Guo+11; Yu+06]

Input: A graph G and an integer s ∈ N.
Question: A maximum-size vertex set S ⊆ V (G) such that G[S] is connected and S

is an s-defective clique in G.

Maximum Connected s-Plex [SF78]

Input: A graph G and an integer s ∈ N+.
Question: A maximum-size vertex set S ⊆ V (G) such that G[S] is connected and S

is an s-plex in G.

Maximum s-Club [Mok79]

Input: A graph G and an integer s ∈ N+.
Question: A maximum-size vertex set S ⊆ V (G) such that S is an s-club in G.
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Edge-Covering decision problems.

Vertex Cover [GJ79]

Input: An undirected graph G and an integer κ ∈ N.
Question: Is there a vertex set S ⊆ V (G) such that |S| ≤ κ and S is a vertex cover

in G?

Partial Vertex Cover [BB98; RS08]

Input: A graph G and integers κ, s ∈ N.
Question: Is there a vertex set S ⊆ V (G) such that |S| ≤ κ and S is an s-partial

vertex cover in G?

Note that this definition of Partial Vertex Cover is non-standard, as the max-
imum number s of edges not covered is part of the input, rather than the (standard)
minimum number t := m− s of covered edges [BB98; GNW07]. However, our definition
improves the readability throughout the thesis, and it is easy to see that both definitions
can be easily interchanged.



Chapter 3

The Clique-Core Gap is Too
Small

The KWB-algorithm of Komusiewicz [Kom11, Proposition 5.4] (re-introduced and im-
plemented by Walteros and Buchanan [WB20, Theorem 1]) shows that Clique is fixed-
parameter tractable with respect to the clique-core gap g := d + 1 − ω, where d is the
degeneracy of G, and ω is the maximum-order of a clique in G. Hence, the most obvious
path for us to explore when trying to generalize the KWB-algorithm is whether different
Clique relaxations are fixed-parameter tractable with respect to g as well.

In this chapter, we will show that the combined parameter clique-core gap plus
“respective relaxation parameter” g + s cannot be used to develop FPT-algorithms for
the Clique relaxations s-Defective Clique, s-Plex, and s-Club under standard
parameterized complexity assumptions. Recall that a given instance (G, k, s) with G
being a graph and k, s ∈ N is a YES-instance of s-Defective Clique, s-Plex, or s-
Club when there exists a set S ⊆ V (G) of order at least k such that: G[S] contains at
most s non-edges; G[S] has minimum degree at least |S| − s; or G[S] has diameter at
most s, respectively. Furthermore, recall that an instance (G, k, `) is a YES-instance of
Dense Subgraph when there exists a set S ⊆ V (G) of order at most k such that G[S]
contains at least ` ∈ N edges.

All of the hardness results will be given with respect to the degeneracy d of a graph,
rather than the clique-core gap. This is no problem for our work, as we observe that the
clique-core gap of a (non-empty) graph is at most its degeneracy.

Observation 3.1. For all graphs G it holds that g(G) ≤ d(G).

Thus, any hardness results of a Clique relaxation with respect to d will hold for the
parameter g as well.

First, we will prove as an intermediate step that Dense Subgraph is W [1]-hard
with respect to the combined parameter solution size plus number of contained edges
plus degeneracy k + `+ d by applying techniques from the literature. Next, we will re-
formulate these results to the strongly related s-Defective Clique problem to show
that s-Defective Clique is W [1]-complete with respect to k+s+d, as well as para-NP-
hard with respect to both the individual parameters d and g, where s is the maximum
number of missing edges. Finally, we will observe for s-Plex and s-Club from hardness

29
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results from the literature that s-Plex is W [1]-hard and s-Club is even para-NP-hard
with respect to the respective combined parameter g + s.

Note that although we study clique relaxations, the parameter g := d+1−ω depends
on the maximum-order ω of a clique. As a clique in a graph is also an s-club, s-plex,
and s-defective clique for all s ∈ N, replacing ω with the corresponding maximum-order
of a relaxed clique would make the new “relaxed” gap parameters even smaller than the
original clique-core gap, hence transferring the hardness results as well.

3.1 Hardness Results for s-Defective Clique

We will show that the Clique relaxation s-Defective Clique is W [1]-complete with
respect to the combined parameter k+ s+ d. We also show that s-Defective Clique
is para-NP-hard with respect to the degeneracy alone. We do this by using the strong
relation between `-dense subgraphs and s-defective cliques.

Observation 3.2. Let G be a graph, S ⊆ V (G) and ` ∈ N be the number of edges
in G[S]. Then, S ⊆ V (G) is an `-dense subgraph if and only if S is an (

(|S|
2

)
− `)-

defective clique.

Proof. Let S be an `-dense subgraph. Then, G[S] contains by definition ` edges and
misses exactly

(|S|
2

)
− ` edges with respect to the complete graph K|S|. If S is an

(
(|S|

2

)
− `)-defective clique, then the other direction holds as well.

Next, we prove that Dense Subgraph is W [1]-hard with respect to k + `+ d, even
if the degeneracy is at most two. We mention that Komusiewicz and Sorge [KS15]
observed that another reduction of Feige and Seltser [FS97, Theorem 3.1] showed that
Dense Subgraph is NP-hard on graphs with degeneracy at most two. However, in
their reduction, both k and ` depend on n. Next, we show that Dense Subgraph
is W [1]-hard with respect to the combined parameter k + ` + d, even if d is at most
two, by building upon a second reduction from Clique to Dense Subgraph from the
literature.

Theorem 3.3 ([RS08, Theorem 20]). Dense Subgraph is W [1]-hard with respect to
the solution size k.

Note that Koana, Komusiewicz, and Sommer [KKS20, Page 8] already mentioned
that s-Defective Clique is W [1]-hard with respect to k by using Theorem 3.3. How-
ever, if one studies the reduction of Raman and Saurabh [RS08, Theorem 20] in more
detail, then one can obtain hardness results for the parameters ` and d as well.

For Dense Subgraph, a graph on k vertices contains at most
(
k
2

)
edges. Hence,

for any Dense Subgraph instance (G, k, `) it holds that ` ≤
(
k
2

)
, or otherwise we

have a trivial NO-instance. Because ` is consequently upper-bounded in
(
k
2

)
, it follows

from Theorem 3.3 that Dense Subgraph is W [1]-hard with respect to the combined
parameter k + `.

Observation 3.4. Dense Subgraph is W [1]-hard with respect to the combined param-
eter solution size plus number of edges, k + `.
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Next, we show that Dense Subgraph is W [1]-hard with respect to the combined
parameter k+ `+ d. The observation that leads to this result has already been made by
Komusiewicz and Sorge [KS15, Theorem 10] for a variant of Dense Subgraph which
is based on the density of the solution. For the sake of completeness, we show that
their observation also applies to our Dense Subgraph problem, which is based on the
absolute number ` of edges in the solution. We also show that each `-dense subgraph in
the resulting graph is connected and relatively sparse. We mention that we will use the
last two properties for a hardness result of s-Defective Clique in Section 6.1.

Theorem 3.5. Dense Subgraph is W [1]-hard with respect to the combined parameter
solution size plus number of edges plus degeneracy, k + ` + d, even if the degeneracy of
the resulting graph is at most two, every solution in the resulting graph is connected,
and k ∈ Ω(`).

Proof. We apply the reduction from the W [1]-hard parameterized problem Clique with
respect to the solution size k to Dense Subgraph with respect to the solution size k′

as presented by Raman and Saurabh [RS08, Theorem 20].

For the sake of completeness, we recall the construction of Raman and Saurabh [RS08,
Theorem 20]. Let (G, k) be a Clique instance with k ≥ 3. Next, we will construct a
corresponding Dense Subgraph instance (G′, k′, `).

First, we fix some arbitrary linear ordering � of V (G). This can be done in linear
time. To construct the new graph G′, the concept of subdividing all edges of G as
described in the textbook Diestel [Die16, Section 1.7] is used. This means that we
introduce one new vertex wuv for each edge {u, v} in G. To be precise, we introduce a new
set of vertices W := {wuv | {u, v} ∈ E;u � v}. Now, one replaces each edge {u, v} in the
original graph G with the corresponding vertex wuv of W and connects the corresponding
vertices u and v from V (G) not to each other, but to the vertex wuv, thus “dividing”
each edge in G.

All in all, we define the new graph G′ with V (G′) := V (G) ∪ W and E(G′) :=
{{u,wu,v}, {v, wu,v} | {u, v} ∈ E(G)}. To finish the reduction, let k′ := k+

(
k
2

)
and ` :=

2
(
k
2

)
. Raman and Saurabh [RS08, Theorem 20] have shown that this reduction is correct

and runs in polynomial time.

Due to an observation of Komusiewicz and Sorge [KS15, Theorem 10], each induced
subgraph of G′ of order exactly k +

(
k
2

)
contains at most 2

(
k
2

)
edges. Additionally, they

showed that G contains a clique of order exactly k if and only if G′ contains an `-dense
subgraph of order exactly k′ := k +

(
k
2

)
with exactly ` := 2

(
k
2

)
present edges. Hence, we

conclude that k′ ∈ Ω(`). Furthermore, we conclude from Raman and Saurabh [RS08,
Theorem 20] and Komusiewicz and Sorge [KS15, Theorem 10] that such an `-dense
subgraph in G′ is always connected.

Komusiewicz and Sorge [KS15, Theorem 10] briefly mentioned thatG′ has degeneracy
at most two. For the sake of completeness, we argue why this is the case. As the vertices
in W correspond to the edges in G, we observe that each edge inside G′ is incident to
some vertex in W . Hence, each vertex in W has degree exactly two, as already mentioned
by Raman and Saurabh [RS08, Theorem 20].

All in all, we can construct a degeneracy ordering �d of V (G′) in such a way that
each vertex has at most two of its neighbors to the right. We add the vertices from W
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at the beginning in an arbitrary ordering to �d. Afterwards, we add the remaining
vertices V (G′) \W = V (G) from V (G′) in an arbitrary ordering to the right of �d.

Now we show that each vertex has at most two neighbors to its right with respect
to �d. Because each vertex of W has degree at most two, it can have at most two
neighbors to its right. And because all edges in G′ are incident to some vertex in W and
the remaining vertices V (G) are all to the right of the vertices of W with respect to �d,
no vertex of V (G) has a neighbor to its right. Thus, G′ has degeneracy at most two.

By applying Observation 3.4 as well, we have shown that Dense Subgraph is W [1]-
hard with respect to the combined parameter k+`, even if the degeneracy of the resulting
graph is at most two, every solution in G′ is connected, and k′ ∈ Ω(`).

Finally, we can reduce from Dense Subgraph with respect to the combined parame-
ter k+`+d to s-Defective Clique with respect to the combined parameter k+s+d by
applying Observation 3.2. Hence, an analogous hardness result to Theorem 3.5 follows
for s-Defective Clique.

Corollary 3.6. s-Defective Clique is W [1]-hard with respect to the combined pa-
rameter solution size plus number of missing edge plus the degeneracy, k + s + d, even
if the degeneracy of the resulting graph is at most two, every solution in the resulting
graph is connected, and k ∈ O(

√
s).

Proof. We reduce a given Dense Subgraph-instance (G, k, `) to the s-Defective
Clique-instance (G′ := G, k′ := k, s :=

(
k
2

)
− `).

For the sake of completeness, we discuss the potential pitfalls of this reduction.
As mentioned in the proof of Observation 3.4, we can assume that ` ≤

(
k
2

)
and thus s

is a non-negative number upper-bounded in some function only depending on k + `. As
we do not change k or the degeneracy of G in any way, it follows from Theorem 3.5 that
s-Defective Clique is W [1]-hard with respect to the combined parameter k + s+ d.
Furthermore, this reduction is computable in linear time.

Recall that when we directly reduce from the resulting Dense Subgraph-instance
of Theorem 3.5, then we can assume that all `-dense subgraphs are connected and of
order exactly k′. Due to Observation 3.2 and as we do not change the graph in this
reduction in any way, we can assume that all s-defective cliques in G′ are connected and
of order exactly k′. As we can additionally assume that k ∈ Ω(`) due to Theorem 3.5, it
holds that s ∈ Ω(k2). Finally, as k′ := k, we conclude that k′ ∈ O(

√
s).

Next, this implies that s-Defective Clique is para-NP-hard with respect to d.

Corollary 3.7. s-Defective Clique is NP-hard on graphs with degeneracy two.

Note that this result also follows directly from Feige and Seltser [FS97, Theorem 3.1]
when applying Observation 3.2 afterwards.

For the sake of completeness, we describe an algorithm that decides s-Defective
Clique in linear time for graphs with degeneracy at most one. We observe that graphs
with degeneracy at most one are forests. Hence, each connected component with ` ver-
tices has `− 1 edges.

The following greedy algorithm decides an s-Defective Clique instance (G, k, s)
when G is a forest. We assume that k ≤ n. First, we sort all connected components
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inside the forest by their order. Furthermore, let T be the maximum-order tree in this
forest and let S := ∅ be the solution set. While |S| + |V (T )| < k, we update S to
be S ∪ V (T ), and T to be the next tree in the sorting. After this loop, we add k − |S|
many vertices which are connected in T to S. Finally, we return YES if and only if G[S]
contains at most s non-edges.

This algorithm is correct, as traversing through the trees in this ordering leads to a
graph with the minimum number of missing edges possible. Furthermore, it is easy to
see that the algorithm runs in linear time.

Next, we show that s-Defective Clique is contained in W [1] with respect to the
combined parameter k + s + d. To be precise, we even show the containment for the
smaller parameter k. We prove this by using the machine model that characterizes the
parameterized complexity class W [1]. This characterization was first proven by Chen,
Flum, and Grohe [CFG05, Defintion 4, Theorem 16], but we present it as stated by Guo,
Niedermeier, and Wernicke [GNW07, Theorem 12]. We refer to Chen, Flum, and Grohe
[CFG05, Chapter 3] for the definition of a nondeterministic RAM program.

Lemma 3.8. For a parameterized problem Π, we have Π ∈ W [1] if and only if there
exist a computable function f , a polynomial p(n), and a nondeterministic RAM program
deciding Π such that for every run of the program on an instance (I, k) (where |I| = n),

1. it performs at most f(k) · p(n) steps;

2. at most the first f(k) · p(n) registers are used;

3. at every point of the computation, no register contains numbers strictly greater
than f(k) · p(n);

4. all nondeterministic steps are among the last f(k) steps.

We will use Lemma 3.8 to prove that s-Defective Clique is contained in W [1]
with respect to the parameter k. Note that our RAM program will be very similar to
the RAM program described for Clique with respect to k as sketched by Chen, Flum,
and Grohe [CFG05, Section 3]. However, for the sake of completeness, we still present
our result as well.

Lemma 3.9. s-Defective Clique is contained in W [1] with respect to the parame-
ter k, where k is the solution size and s is the maximum number of missing edges.

Proof. We show that there exists a nondeterministic RAM program as described in
Lemma 3.8 deciding s-Defective Clique with respect to the parameter k, which
implies Lemma 3.9.

Let (G, k, s) be an s-Defective Clique instance. We assume that k ≤ n. Further-
more, we assume that the graph G is given in a representation where it takes constant
time to check whether any two vertices are adjacent. If this is not the case, then the
first step of our algorithm is to construct an adjacency matrix of the graph, which is a
graph representation that fulfills this property.

Next, we check whether s ≥
(
k
2

)
. If this is the case, then we return YES. Afterwards,

we compute a potential solution set S by guessing k vertices of G. To verify that G[S] is
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an s-defective clique of order k, we first check that all vertices in S are pairwise different.
This is possible by iterating k times over S and comparing in the i-th iteration the i-th
vertex v of S to all vertices u which are right of v in S for all i ∈ [k], where the ordering
of S is given by the ordering of the k registers. Second, we check that there are not too
many missing edges in G[S] by counting them. Let ` be a counter for the missing edges.
We count them by iterating k times over S and comparing in the i-th iteration the i-th
vertex v of S to all vertices u which are right of v in S for all i ∈ [k], where the ordering
of S is given by the ordering of the k registers. If v and u are not adjacent in G, then
we increase ` by one. Furthermore, if at any point ` ≥ s holds, then we abort the RAM
program and return NO. If we never returned NO at any point of the iteration, then we
return YES in the end.

It is easy to see that our RAM program decides s-Defective Clique. Note that
we may return YES when s ≥

(
k
2

)
, as in this case any arbitrary set of k vertices is an

s-defective clique.

Now we analyze the running time and space of this RAM program to show that it
satisfies all requirements of Lemma 3.8. Note that a vertex of the graph is uniquely
identifiable with O(log n) bits, thus storing a vertex inside exactly one register does not
violate Lemma 3.8. Hence, constructing an adjacency matrix of the graph is possible in
deterministic polynomial time and space. Next, guessing k vertices is possible in O(k)
nondeterministic steps, and the vertices can be stored in overall k registers. Recall
that because we used nondeterminism, we afterwards are only allowed to do g(k) more
steps to fulfill all requirements of Lemma 3.8 for some computable function g. When
we check that all vertices in S are pairwise different, we keep track of the iterations
by using a pointer to v and another pointer to u. Furthermore, comparing v and u for
equality can be done in constant time. Hence, checking that all vertices in S are pairwise
disjoint can be done in deterministic O(k2) time and constant additional space. When
we check that G[S] does not miss too many edge, we keep track of the iterations again by
using a pointer to v and another pointer to u. Furthermore, we assumed that checking
the adjacency of two vertices is possible in constant time. Additionally, ` is never larger
than s, so we are allowed to store the variable ` inside one register as ` ≤ s <

(
k
2

)
. Hence,

checking that G[S] does not miss too many edges can be done in deterministic O(k2) time
and constant additional space.

With all of this information it is easy to check that our RAM program satisfies all
requirements of Lemma 3.8. Hence, Lemma 3.9 holds.

As k + s + d is larger than k, we conclude from Corollary 3.6 and Lemma 3.9 that
s-Defective Clique is W [1]-complete with respect to the combined parameter k+s+d.

Theorem 3.10. s-Defective Clique is W [1]-complete with respect to the combined
parameter k + s+ d, where k is the solution size, s is the maximum number of missing
edges, and d is the degeneracy of the graph.
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3.2 Intractability of the Clique-Core Gap for s-Defective
Clique, s-Plex, and s-Club

Recall that s-Defective Clique is W [1]-hard with respect to the combined parameter
degeneracy plus number of missing edges d+s due to Corollary 3.6. Next, we will present
similar results for s-Plex and s-Club from the literature.

First, Koana, Komusiewicz, and Sommer [KKS20, Theorem 3.3] implicitly showed
that s-Plex is W [1]-hard with respect to d + s, where s is the maximum number of
neighbors each vertex in the solution is allowed to miss. Second, Hartung et al. [Har+15,
Corollary 1] showed that s-Club is NP-hard even if s = 2 and d = 6, where s is the
maximum diameter of the graph induced by the solution set. Due to Observation 3.1,
this means that for all three of these Clique relaxations, one has to consider larger pa-
rameters than the combined parameter clique-core gap plus the “relaxation parameter” s
(or the combined parameter degeneracy plus s, respectively) to develop FPT-algorithms.

Corollary 3.11. The Clique relaxation s-Club is para-NP-hard with respect to the
combined parameter g + s, where g := d + 1 − ω is the clique-core gap and s is the
maximum diameter of the graph induced by the solution set. s-Defective Clique and
s-Plex are W [1]-hard with respect to the combined parameter g + s, where s is the
maximum number of non-edges in the solution, or the maximum number of neighbors
each vertex in the solution is allowed to miss, respectively.

Corollary 3.11 motivates the introduction of “larger” gap parameters for developing
FPT-algorithms for Clique relaxations. Hence, in Chapter 4, we will study a much
larger gap parameter, that is, n− ω.





Chapter 4

Studying a Larger Gap

In Chapter 3, we have shown that we cannot easily re-formulate the KWB-algorithm
of Komusiewicz [Kom11, Proposition 5.4] (re-introduced and implemented by Walteros
and Buchanan [WB20, Theorem 1]) for Maximum Clique to clique relaxations with
respect to the clique-core gap g := d + 1− ω, where d is the degeneracy of G, and ω is
the order of a maximum clique in G. This is because s-Defective Clique, s-Plex,
and s-Club are W [1]- or para-NP-hard with respect to the clique-core gap.

The goal of this chapter is to enlarge the “gap” as much as possible in the hope of
finding FPT-algorithms for these three Clique relaxations with respect to this “larger
gap”. Recall that a given instance (G, k, s) with G being a graph and k, s ∈ N is a YES-
instance of s-Club, s-Plex, or s-Defective Clique when there exists a set S ⊆ V (G)
of order at least k such that: G[S] has diameter at most s; G[S] has minimum degree at
least |S| − s; or contains at most s ∈ N+ non-edges, respectively.

Next, recall that for Maximum Clique, the clique-core gap of the input graph G
can be seen as the gap between the upper bound d+ 1 on the order of a clique in G and
the actual maximum order ω of a clique in G. In this chapter, we will enlarge the clique-
core gap by studying “the largest” upper bound n on the order of a clique in G. Hence
we will study the parameter n − k for the three decision Clique relaxations in more
detail, where k is the solution size. Note that we consider the solution size rather than
the maximum-order of a relaxed clique, because we will study the respective decision
problems in this chapter.

First, we will present in Section 4.1 several results from the literature for all three of
our Clique relaxations, that is we will note that s-Club is fixed-parameter tractable
with respect to n− k, and both s-Plex and s-Defective Clique are fixed-parameter
tractable with respect to the combined parameter (n− k) + s, where s is the respective
“relaxation parameter”. While presenting these results, we will see that in the literature
there exist several problem kernels for s-Plex with respect to (n − k) + s which were
constructed by studying the dual problem of s-Plex (which is Bounded-Degree Ver-
tex Deletion). As, to the best of our knowledge, there exist no problem kernels for
s-Defective Clique with respect to (n− k) + s, this will motivate us to find problem
kernels for s-Defective Clique with respect to (n− k) + s by studying the dual prob-
lem Partial Vertex Cover of s-Defective Clique in more detail in Sections 4.2
and 4.3.

37
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Note that for a given graph G and integers κ, s ∈ N, the instance (G, κ, s) is a YES-
instance of Partial Vertex Cover if and only if G contains an s-partial vertex cover S
of size at most κ. This means that S covers at least m − s edges, or in other words,
there are at most s edges which are not covered by S. Hence, G contains an s-defective
clique of order n− k if and only if its complement graph G contains an s-partial vertex
cover of size k =: κ.

Observation 4.1. Let (G,n − k, s) be an instance of s-Defective Clique. Then,
(G,n − k, s) is a YES-instance of s-Defective Clique if and only if (G, k, s) is a
YES-instance of Partial Vertex Cover.

Because of Observation 4.1, we say that Partial Vertex Cover with respect
to κ + s is the dual problem of s-Defective Clique with respect to (n − k) + s.
In Section 4.2, we will provide a new branching algorithm and a “Buss-like” problem
kernel for Partial Vertex Cover with respect to κ + s. This problem kernel con-
tains O(κ2) vertices for constant s, and we will provide another, more sophisticated
problem kernel with O(κ) vertices for constant s in Section 4.3.

We start by giving an overview of results for our three Clique relaxation when
parameterized by n− k.

4.1 Overview of Known Results

Next, we give an overview of results for our three Clique relaxation when parameterized
by the “large gap” n− k.

s-Club. Bourjolly, Laporte, and Pesant [BLP02] proposed a search-tree algorithm for
finding a maximum-order s-club in a graph G for all s ∈ N+ by branching over two
vertices which cannot be part of the same s-club, that is, they have distance at least s+1,
until the resulting instance is an s-club. Schäfer et al. [Sch+12, Theorem 5] proved that
this branching algorithm can be used to decide whether (G, k, s) is a YES-instance of
s-Club in O∗(2n−k) time by branching at most n− k times.

Hence, s-club is fixed-parameter tractable with respect to n− k.

s-Plex and Bounded-Degree Vertex Deletion. Many results for s-Plex with
respect to n − k have been found by studying the dual problem Bounded-Degree
Vertex Deletion of s-Plex, hence we quickly introduce Bounded-Degree Vertex
Deletion [NRT05].

For a given graph G and integers κ, d ∈ N, the instance (G, κ, d) is a YES-instance of
Bounded-Degree Vertex Deletion if and only if G contains a bdd-d-set S of size
at most κ. This means that G− S has maximum degree at most d. Hence, G contains
an s-plex of order n−k if and only if its complement graph G contains a bdd-(s− 1)-set
of size k =: κ. Thus, we say that Bounded-Degree Vertex Deletion with respect
to κ+ d is the dual problem of s-Plex with respect to (n− k) + s. The following results
were all originally proven for Bounded-Degree Vertex Deletion.

Fellows et al. [Fel+11, Theorem 2] showed that s-Plex is W [2]-complete with respect
to n− k.
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On the positive side, Hartung et al. [Har+15, Theorem 6] showed indirectly that for
all s ∈ N+ one can find a maximum-order s-plex of a graph G by branching over s +
1 vertices which cannot be part of the same s-plex, that is, one of the vertices is non-
adjacent to all the other s other vertices, until the resulting instance is an s-plex. They
also proved that this branching algorithm can be used to decide whether (G, k, s) is a YES-
instance of s-Plex inO∗((s+1)n−k) time by branching at most n−k times. Furthermore,
for constant s, Fellows et al. [Fel+11, Theorem 1] provided a quasi-linear–vertex problem
kernel for s-Plex with respect to n − k which is computable in O(n4 · m) time, and
Moser, Niedermeier, and Sorge [MNS12, Theorem 1] provided a “Buss-like” quadratic-
vertex problem kernel with respect to n− k which is computable in quadratic time.

s-Defective Clique and Partial Vertex Cover. Some results for s-Defective
Clique can be transferred from the its dual problem Partial Vertex Cover.

Guo, Niedermeier, and Wernicke [GNW07, Theorem 14] and Cai [Cai08, Theo-
rem 2.5] showed that s-Defective Clique is W [1]-complete with respect to n− k.

On the positive side, Raman and Saurabh [RS08, Theorem 10] showed that for all s ∈
N+ one can find a maximum-order s-defective clique of a graph G by branching over a
missing edge into three different cases, until the resulting instance is an s-defective clique.
They also proved that this branching algorithm can be used to decide whether (G, k, s)
is a YES-instance of s-Plex in O∗(3(n−k)+s) time by branching at most (n−k)+s times.

To the best of our knowledge, no branching algorithm over a set of vertices was
considered for s-Defective Clique before, in contrast to s-Club and s-Plex. As
our goal in this thesis is to find a framework for Clique relaxations, it is of high
interest to find such a branching algorithm for s-Defective Clique too. Furthermore,
it is of interest to provide two problem kernels for s-Defective Clique with respect
to (n− k) + s of “similar sizes” as the ones for s-Plex, as each s-defective clique is an
s+ 1-plex as observed by Trukhanov et al. [Tru+13, Section 3.1] and Shirokikh [Shi13,
Proposition 2.7]. As all three of these results for s-Plex were found by studying the
dual problem Bounded-Degree Vertex Deletion, we next will concentrate on the
dual problem Partial Vertex Cover of s-Defective Clique, and consider the
parameterization κ+ s. For the sake of completeness, we mention that under standard
complexity assumptions it is unlikely that Partial Vertex Cover is fixed-parameter
tractable with respect to κ or s alone. This is because Partial Vertex Cover is W [1]-
complete with respect to κ [Cai08; GNW07], and para-NP-hard with respect to s = 0,
as this special case coincides with the NP-hard Vertex Cover problem [Kar72].

4.2 Basic FPT-Results for Partial Vertex Cover

Recall that Raman and Saurabh [RS08, Theorem 10] provided an O∗(3κ+s)-time algo-
rithm for Partial Vertex Cover by branching over a missing edge. In the following,
we will provide an O∗((2 · (s + 1))κ)-time algorithm for Partial Vertex Cover by
branching over a set of vertices. Afterwards, we will construct a “Buss-like” problem
kernel as well.
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Branch over set of vertices. For the standard Vertex Cover problem, it is known
that for each edge {u, v} of a graph G, every vertex cover of G has to contain u or v,
as otherwise the edge {u, v} is not covered. One may use this observation to construct
an algorithm for Vertex Cover running in O(2κ · (n + m)) time as explained in the
textbook of Mehlhorn [Meh84, Chapter 6]. Next, we lift this idea to Partial Vertex
Cover by observing that if G contains strictly more than s edges, then at least one
of the endpoints of these edges has to be part of any s-partial vertex cover S of G,
as otherwise there are strictly more than s edges in G not covered by S, contradicting
the definition of an s-partial vertex cover. This observation was already made by Guo
et al. [Guo+11, Theorem 2] in the context of a Cluster Editing variant in a slightly
different form.

Observation 4.2. Let G be a graph and s ∈ N. If G contains at least s+ 1 edges, then
every s-partial vertex cover of G has to contain at least one endpoint of these edges.

Observation 4.2 leads to a simple depth-bounded search tree algorithm computing
an s-partial vertex cover of order at most κ ∈ N when there exists such a set inside a
graph G, or NONE otherwise. If κ is non-positive, then we return NONE. If G contains at
most s edges, then we return the empty set. Otherwise, we branch over all endpoints
of s+1 edges inside G, and assume that the current endpoint is part of an s-partial vertex
cover of order at most κ, thus removing the vertex from the graph and decreasing κ by
one. If one of the branches returns an s-partial vertex cover, then we return this s-
partial vertex cover together with the selected endpoint of this branch, otherwise we
return NONE.

This algorithm is correct due to Observation 4.2. Note that s + 1 edges have at
most 2 ·(s+1) unique endpoints, and we branch at most κ times. Furthermore, counting
the number of edges in G, constructing a set of s + 1 edges of G, and constructing the
subgraphs is possible in linear time. Hence, we arrive at the following result.

Proposition 4.3. Let G be a graph. An s-partial vertex cover of order at most κ ∈ N
is computable in O((2 · (s + 1))κ · (n + m)) time, where s ∈ N is the maximum number
of edges not covered.

Note that Proposition 4.3 is strongly related to the algorithm of Guo et al. [Guo+11,
Theorem 3] for deciding a Cluster Editing variant.

Next, we show that in different circumstances, both the O∗(3κ+s)-time algorithm of
Raman and Saurabh [RS08, Theorem 10] (denoted with Edge-Alg ) and the algorithm of
Proposition 4.3 (denoted with Vertex-Alg ) could perform better than their respective
other algorithm. First, note that for constant κ, Vertex-Alg runs in polynomial time,
while Edge-Alg runs in O∗(3s) time. In contrast, as O((2 · (s+ 1))κ) ⊆ 3O(log(s)·κ), if κ
and s are unbounded, then Edge-Alg might perform better in practice than Vertex-Alg.
This is because in the exponent of the running time of Edge-Alg, there exists an additive
dependency between κ and s, while Vertex-Alg has a multiplicative dependency between
them.

Next, we present two problem kernels for Partial Vertex Cover with respect
to κ+ s.
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Buss-like problem kernel. We briefly discuss a problem kernel for Partial Vertex
Cover with respect to κ + s with O(κ · (κ + s)) vertices. This is meant as a warm-up
for the more involved problem problem kernel in Section 4.3, where we will exploit the
idea of removing high-degree vertices even more.

Like the data reduction rules of Buss and Goldsmith [BG93] for Vertex Cover,
we present a data reduction rule for isolated vertices as well as a data reduction rule for
“high”-degree vertices. Furthermore, we will show that these data reduction rules are
applicable in linear time.

Reduction Rule 4.2.1. Let (G, κ, s) be an instance of Partial Vertex Cover. If
there is a vertex v ∈ V (G) with deg(v) = 0, then return (G− v, κ, s).

We observe that removing isolated vertices from a Partial Vertex Cover instance
is safe. Furthermore, removing all isolated vertices from G can be done in O(n+m) time
by iterating once over the graph.

Lemma 4.4. Reduction Rule 4.2.1 is safe and it is exhaustively applicable in linear
time.

Next, we observe that a vertex v of some graph G with at least κ+s+1 neighbors has
to be part of every s-partial vertex cover S of size at most κ for some κ, s ∈ N. If v would
not be a part of S, then S would cover at most κ incident edges of v, leaving s+ 1 edges
in G not covered.

Observation 4.5. Let G be a graph and κ, s ∈ N. If there exists a vertex v ∈ V (G)
of degree at least κ + s + 1, then every s-partial vertex cover of G of size at most κ
contains v.

Next, we formulate a “high-degree” data reduction rule based on Observation 4.5.

Reduction Rule 4.2.2. Let (G, κ, s) be an instance of Partial Vertex Cover. If
there is a vertex v ∈ V (G) with deg(v) ≥ κ+ s+ 1, then return (G− v, κ− 1, s).

Lemma 4.6. Reduction Rule 4.2.2 is safe and it is exhaustively applicable in linear
time.

Proof. The correctness of Reduction Rule 4.2.2, that is the statement (G, κ, s) is a YES-
instance of Partial Vertex Cover if and only if (G− v, κ− 1, s) is a YES-instance of
Partial Vertex Cover, holds trivially due to Observation 4.5.

Next, we show how to exhaustively apply Reduction Rule 4.2.2 in O(n + m) time.
We assume that G is given as an adjacency list. Next, we sort the vertices of G by
their degree in an ascending ordering, which can be done with a bucket-sort approach
in linear time. We say that vi is the vertex which is represented by the i-th entry in the
adjacency list with i ∈ [n].

First, we construct an array of length n where the i-th entry contains the degree
of vi for i ∈ [n]. This can be done by traversing the adjacency list once in O(n +∑

i∈[n] deg(vi)) = O(n+m) time. This array is the label array. Furthermore, we initialize

the variable κ′ with κ.
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Next, we iterate over the label array with i ∈ (n, n − 1, . . . , 1), starting at the label
of vn. If the current label of the vertex vi is at least κ′ + s + 1, then vi has to be part
of every s-partial vertex cover of size κ due to Observation 4.5. Thus, we decrease κ′ by
one, and decrease every label of each neighbor of vi by one, as we will remove vi later
on. Otherwise, the current label of the vertex vi is less than κ′ + s+ 1, and we stop the
whole iteration and define the variable p to be i+ 1. As we remove every vertex at most
once, the whole iteration takes overall O(n+

∑
i∈[n] deg(vi)) = O(n+m) time.

As the vertices vp, vp+1, . . . , vn all have to be part of every s-partial vertex cover
of size at most κ, we will construct the induced subgraph G∗ of G on the vertex
set {v1, v2, . . . , vp−1}. First, we remove for all vertices vi all neighbors vj with j ≥ p in
overall O(n+

∑
i∈[n] deg(vi)) = O(n+m) time, where i ∈ [n], vj ∈ N(vi). Afterwards, we

say that the array of the adjacency list of G∗ ends at position p− 1, which can be done
in constant time. Afterwards, we return (G∗, κ′, s). All in all, exhaustively applying
Reduction Rule 4.2.2 takes linear time.

Next, we show that these two data reduction rules are enough to find an upper
bound on the number of vertices in G with respect to κ+ s. Note that we assume κ to
be non-negative, as there exists no s-partial vertex cover of negative size.

Proposition 4.7. Let (G, κ, s) be an instance of Partial Vertex Cover such that
Reduction Rules 4.2.1 and 4.2.2 are not applicable anymore. If G contains strictly more
than κ · (κ+ s) + 2s vertices, then (G, κ, s) is a trivial NO-instance of Partial Vertex
Cover.

Proof. We observe that G does not contain any isolated vertices due to Reduction
Rule 4.2.1, and each vertex in G is incident to at most κ + s edges due to Reduc-
tion Rule 4.2.2, and there are at most s edges with at most 2s unique endpoints which
are not covered by any s-partial vertex cover of G. Thus, we conclude that if G contains
strictly more than κ · (κ + s) + 2s vertices, then (G, κ, s) is a NO-instance of Partial
Vertex Cover.

All in all, we compute a problem kernel for Partial Vertex Cover with at most κ·
(κ+ s) + 2s vertices by exhaustively applying Reduction Rules 4.2.1 and 4.2.2 in linear
time, as well as counting the vertices in the resulting graph to apply Proposition 4.7 in
linear time.

Theorem 4.8. Partial Vertex Cover admits a problem kernel with at most κ · (κ+
s) + 2s vertices, where κ is the solution size and s is the maximum number of edges not
covered. This problem kernel is computable in linear time.

Note that a similar approach was used by Moser, Niedermeier, and Sorge [MNS12,
Theorem 1] to provide a similar problem kernel for Bounded-Degree Vertex Dele-
tion with respect to the combined parameter solution size plus “relaxation parameter”.

We observe that Partial Vertex Cover admits a problem kernel with O(κ2) ver-
tices for constant s due to Theorem 4.8. In the next section, we will present a prob-
lem kernel for Partial Vertex Cover that for constant s admits a problem kernel
with O(κ) vertices.
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4.3 Linear Vertex Kernel for Partial Vertex Cover

In this section, we will show the following problem kernel.

Theorem 4.9. Partial Vertex Cover admits a problem kernel with strictly less
than (s+ 2) · (κ+ s) vertices, where κ is the solution size and s is the maximum number
of edges not covered. This problem kernel is computable in O(κ · (n+m)2) time.

Note that this means that for constant s, Partial Vertex Cover admits a problem
kernel with O(κ) vertices.

To prove Theorem 4.9, we use techniques known in the context of linear programming
as well as the expansion lemma from [PR05, Corollary 8.1], which we will recall in
Section 4.3.1. Afterwards, we will prove Theorem 4.9 by partitioning the vertices of a
graph in three sets and find an upper bound on the number of vertices inside each set
in Sections 4.3.2 and 4.3.3. In Section 4.3.4, we will put everything together to prove
Theorem 4.9 and show that our analysis is tight, that is we need new data reduction rules
to find a problem kernel with less vertices for Partial Vertex Cover with respect to
the combined parameter κ+ s.

4.3.1 Fundament

In the following, we will recall techniques known in the context of linear programming as
well as the expansion lemma, which we will apply to find an upper bound on the number
of vertices of the resulting graph in Sections 4.3.2 and 4.3.3.

Linear Programming

To compute our problem kernel as described in Theorem 4.9, we present the standard
Vertex Cover problem as both an Integer Linear Programming (ILP) and a Lin-
ear Programming (LP) formulation as stated in the textbook Cygan et al. [Cyg+15,
Section 2.5]. Both formulations are folklore.

Given a graph G, we say that the following ILP formulation is the ILPVC(G) of G:

min
∑

v∈V (G)

xv

subject to xu + xv ≥ 1 ∀{u, v} ∈ E(G)

0 ≤ xv ≤ 1 ∀v ∈ V (G)

xv ∈ {0, 1} ∀v ∈ V (G)

Let G be graph. If the variables (xv)v∈V (G) satisfy all constraints of ILPVC(G),
then (xv)v∈V (G) is a feasible solution of ILPVC(G). If the value

∑
v∈V (G) xv of a feasible

solution (xv)v∈V (G) of ILPVC(G) is the minimum of all values of the feasible solutions
of ILPVC(G), then (xv)v∈V (G) is an optimal solution of ILPVC(G). The value of any
optimal solution for ILPVC(G) is the optimal value of ILPVC(G).

Since it is NP-hard to compute the optimal value of an ILPVC(G) instance, we
relax the ILP formulation of Vertex Cover to an LP formulation, which is solvable
in polynomial time [Kha80].
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Given a graph G, we say that the following LP formulation is the LPVC(G) of G:

min
∑

v∈V (G)

xv

subject to xu + xv ≥ 1 ∀{u, v} ∈ E(G) (4.1)

0 ≤ xv ≤ 1 ∀v ∈ V (G) (4.2)

Let G be a graph. We define the notation of ILPVC(G) analogously for LPVC(G).
Additionally, if all values xv of a feasible solution (xv)v∈V (G) of LPVC(G) are 1, 1/2, or 0,
then (xv)v∈V (G) is called half-integral. For a half-integral feasible solution, we define the
partitioning V (G) =: V1(G, (xv)v∈V (G))]V1/2(G, (xv)v∈V (G))]V0(G, (xv)v∈V (G)), where

• V1(G, (xv)v∈V (G)) := {v ∈ V (G) | xv = 1},

• V1/2(G, (xv)v∈V (G)) := {v ∈ V (G) | xv = 1/2}, and

• V0(G, (xv)v∈V (G)) := {v ∈ V (G) | xv = 0}.

If the half-integral solution (xv)v∈V (G) is clear from the context, then we will omit
the argument (xv)v∈V (G) from these functions.

As an optimal solution for ILPVC(G) is also a feasible solution for LPVC(G), the
optimal value of LPVC(G) is a lower bound on the minimum size of a vertex cover with
respect to G.

Observation 4.10 ([NT75, Section 3]). Let G be a graph. Then, the optimal value of
LPVC(G) is a lower bound on the minimum size of a vertex cover of G.

Next, it is easy to see that N(V0(G)) ⊆ V1(G), because if an edge of G is incident
to a vertex of V0(G), then it has to be incident to a vertex of V1(G) as well. Otherwise,
Inequality 4.1 would not hold for this edge.

Observation 4.11 ([NT75]). Let G be a graph and (xv)v∈V (G) a half-integral optimal
solution of LPVC(G). It holds that N(V0(G)) ⊆ V1(G).

Nemhauser and Trotter [NT75] showed that for any graph G, there exists a half-
integral optimal solution (xv)v∈V (G) of LPVC(G). Furthermore, they showed that
there also exists a corresponding minimum-size vertex cover S of G for (xv)v∈V (G) such
that V1(G) ⊆ S. Hence, S ∩ V0(G) = ∅ holds due to Observation 4.11. Thus, this half-
integral optimal solution gives us a 2κ-vertex problem kernel for the Vertex Cover
problem as observed by Chen, Kanj, and Jia [CKJ01], because we only have to consider
the subgraph of G induced by the vertex set V1/2(G) any longer and reduce the solution
size κ by |V1(G)|. One observes that 2κ is an upper bound on

∣∣V1/2(G)
∣∣ by applying Ob-

servation 4.10, although Nemhauser and Trotter [NT75] proved that this upper-bound
exists in a slightly different form.

Note that Cygan et al. showed that a half-integral optimal solution for LPVC(G) is
computable with the approach of Nemhauser and Trotter [NT75, Theorem 3], using an
adapted version of the algorithm of Hopcroft and Karp [HK73], in O(m

√
n) time.

Theorem 4.12 ([Cyg+15, Proposition 2.23]). Vertex Cover admits a problem kernel
with at most 2κ vertices. This problem kernel is computable in O(m

√
n) time.
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Figure 4.1: An illustration of the graph K1,s with s ≥ 1 and the vertex partitions given
by a half-integral optimal solution (xv)v∈V (K1,s) for LPVC(K1,s). As K1,s is a star
with v1 as its center and at least one leaf, there always exists an optimal solution for
LPVC(K1,s) with assignments xv1 := 1 and xvi0

:= 0 for all s ∈ N+, i ∈ [s]. Hence,
for each s, there exists a minimum-size vertex cover S of K1,s that only contains v1.
However, for each s ∈ N+ every minimum-size s-partial vertex cover of K1,s is empty,
because K1,s only contains s edges. Thus, an s-partial vertex cover does not have to
cover any edge of K1,s. Hence, it is possible that no minimum-size s-partial vertex cover
of a graph G contains all vertices of V1(G).

In contrast to Vertex Cover, we observe that we cannot add the set V1(G) com-
pletely to the solution set of Partial Vertex Cover. The problem is that a minimum
s-partial vertex cover for a graph G does not necessarily cover all edges inside the graph.
An example for such a situation is given in Figure 4.1. Hence, we have to find an upper
bound on the size of |V1(G)| for Partial Vertex Cover as well. In Section 4.3.2, we
will find an upper bound on the combined size |V1(G)| +

∣∣V1/2(G)
∣∣ by applying Obser-

vation 4.10 to Partial Vertex Cover. However, to find an upper bound on the size
of V0(G) in Section 4.3.3, we also use the expansion lemma, which we will discuss next.

Expansion Lemma

To compute an upper bound on the size of V0(G), we use the expansion lemma of
[PR05, Corollary 8.1], which builds upon the concept of a q-expansion as described in
the textbook of Cygan et al. [Cyg+15, Section 2.3, Section 2.4, Lemma 2.18]. We
briefly mention that a q-expansion induces a more restricted crown.

Next, we define the necessary notation to understand the expansion lemma. Let G
be a graph, U,W ⊆ V (G) be two disjoint vertex sets, and p ∈ N. Furthermore, let M ⊆
E(G) be an edge set such that each edge has one endpoint in U and one in W . If
exactly p vertices of W are an endpoint of some edge in M , then we say that M saturates
exactly p vertices in W . Now, we define the concept of a q-expansion.

Definition 4.13 ([PR05, Definition 8.1]). Let H be a bipartite graph with vertex bi-
partition (VA(H), VB(H)), M ⊆ E(H), and q ∈ N+. If

• every vertex of VA(H) is incident to exactly q edges of M , and

• M saturates exactly q · |VA(H)| vertices in VB(H),

then we say that M is a q-expansion of VA(H) into VB(H).

See Figures 4.2b and 4.2c for two examples of such q-expansions M1 and M2.
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(b) A 2-expansion M1 of X1 into Y1. The
sets X1 and Y1 do not fulfill the require-
ments of Lemma 4.14.
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(c) A 2-expansion M2 of X2 into Y2. The
sets X2 and Y2 fulfill the requirements of
Lemma 4.14.

Figure 4.2: Figures 4.2a to 4.2c all show the same bipartite graph H. The (blue) edge
set M1 is a 2-expansion of X1 into Y1. Note that the edge {v1

A, v
3
B} cannot extend the 2-

expansion M1, as v1
A has to be incident to exactly two edges in M1. Furthermore, the

(blue) edge set M2 is a 2-expansion of X2 into Y2 as well.

Now, we have presented everything to understand the expansion lemma. It states
that we can find a q-expansion in a “large” bipartite graph in quadratic time.

Lemma 4.14 (Expansion Lemma [PR05, Corollary 8.1]). Let H be a bipartite graph
and q ∈ N+. If

• |VB(H)| ≥ q · |VA(H)|, and

• there are no isolated vertices in VB(H),

then there exist non-empty vertex sets X ⊆ VA(H) and Y ⊆ VB(H) such that

• there is a q-expansion of X into Y , and

• no vertex in Y has a neighbor outside X, that is, N(Y ) ⊆ X.

Furthermore, appropriate sets X and Y are computable in O((n+m)2) time.

We observe that the vertex sets X and Y are more restricted than a q-expansion.
For example, we observe that the sets X2 and Y2 of Figure 4.2c fulfill the requirements
of the sets X and Y as specified in Lemma 4.14 for H and q := 2. However, this is not
the case for X1 and Y1 of Figure 4.2b, as N(Y1) 6⊆ X1, although M1 is a 2-expansion.
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We mention that we will use this additional property of X and Y to find an upper bound
on the size of V0(G) in Section 4.3.3.

Note that Thomassé [Tho10, Theorem 2.4] also showed how to compute X and Y in
polynomial time in the case of q = 2.

Next, we start to compute our problem kernel by finding an upper bound on the
sizes of the sets V1(G) and V1/2(G).

4.3.2 Upper Bound on |V1(G)| and
∣∣V1/2(G)

∣∣
We start by relating the minimum size of a vertex cover in a graph G to the minimum size
of an s-partial vertex cover inG. This helps us to mirror the approach of Observation 4.10
towards the minimum size of an s-partial vertex cover of G.

Lemma 4.15. Let G be a graph. For any given κ, s ∈ N, if G contains an s-partial
vertex cover of size at most κ, then G contains a vertex cover of size at most κ+ s.

Proof. Assume towards a contradiction that G contains an s-partial vertex cover S of
size at most κ, but G does not contain a vertex cover of size at most κ+ s.

By the definition of an s-partial vertex cover, G − S contains at most s edges.
Thus, the s-partial vertex cover S can be extended to a vertex cover S′ of G by adding
one arbitrary endpoint of each edge to the set S. The set S′ therefore has size |S| +
|E(G− S)| ≤ κ + s. Thus, S′ is a vertex cover of G of size at most κ + s, which
is a contradiction to the assumption. Hence, the original assumption of Lemma 4.15
holds.

Recall that due to Observation 4.10, the value of an optimal solution for LPVC(G)
is a lower bound on the minimum size of a vertex cover of a graph G. Next, we use the
contrapositive of Lemma 4.15 to relate the optimal value of LPVC(G) and the minimum
size of an s-partial vertex cover of G.

Corollary 4.16. Let G be a graph and κ, s ∈ N. If the optimal value of LPVC(G)
exceeds κ+ s, then G does not contain an s-partial vertex cover of size at most κ.

Next, we will use Corollary 4.16 to construct a corresponding data reduction rule for
the Partial Vertex Cover problem.

Reduction Rule 4.3.1. Let (G, κ, s) be an instance of Partial Vertex Cover with κ
being the solution size and s the maximum number of edges not covered. Furthermore,
let (xv)v∈V (G) be a half-integral optimal solution of LPVC(G). If the inequality |V1(G)|+
1/2 ·

∣∣V1/2(G)
∣∣ ≤ κ + s does not hold, then return a trivial NO-instance of Partial

Vertex Cover.

Lemma 4.17. Reduction Rule 4.3.1 is safe and applicable in linear time.

Proof. We prove the correctness of Reduction Rule 4.3.1, that is we show (G, κ, s) is a
YES-instance of Partial Vertex Cover if and only if (G′, κ′, s′) is a YES-instance of
Partial Vertex Cover. We assume that Reduction Rule 4.3.1 is actually applied, as
otherwise the correctness holds trivially.
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“⇒”: Because (G, κ, s) is a YES-instance of Partial Vertex Cover, the value
of
∑

v∈V (G) xv is at most κ + s. Since
∑

v∈V (G) xv = |V1(G)| + 1/2 ·
∣∣V1/2(G)

∣∣ ≤ κ + s
holds due to Corollary 4.16, we conclude that the inequality of Reduction Rule 4.3.1 is
fulfilled and Reduction Rule 4.3.1 returns the original YES-instance of Partial Vertex
Cover, thus (G′, κ′, s) is a YES-instance of Partial Vertex Cover.

“⇐”: Because (G′, κ′, s′) is a YES-instance of Partial Vertex Cover, Reduction
Rule 4.3.1 has not changed the original (YES-)instance of Partial Vertex Cover.
Thus, (G, κ, s) is a YES-instance of Partial Vertex Cover.

For the running time, note that we assume that (xv)v∈V (G) is part of the input.
Thus, counting the number of vertices in V1(G) and V1/2(G) as well as computing a
trivial NO-instance of Partial Vertex Cover can be done in linear time.

By the inequality inside of Reduction Rule 4.3.1, two upper bounds on the sizes of
the sets V1(G) and V1/2(G) follow.

Lemma 4.18. Let (G, κ, s) be an instance of Partial Vertex Cover and (xv)v∈V (G)

a half-integral optimal solution of LPVC(G) such that Reduction Rule 4.3.1 is not
applicable anymore. Then, the inequality |V1(G)|+ 1/2 ·

∣∣V1/2(G)
∣∣ ≤ κ+ s holds.

We will study the relation of the sizes of the sets V1(G) and V1/2(G) in more detail
at the end of this section. Next, we relate the sizes of the sets V1(G) and V0(G) to find
an upper bound on the size of V0(G).

4.3.3 Upper Bound on |V0(G)|

In the following, we show that if G contains an (s+ 1)-expansion, then one can remove
some vertices inside G in quadratic time. Next, we will observe that if V0(G) is “large
enough”, then the expansion lemma is applicable to G and thus we will find an (s+ 1)-
expansion for G. All in all, we will find an upper bound on the size of V0(G).

Using the Expansion Lemma

We show that if a graph G contains a bipartite subgraph H which is applicable to the
expansion lemma, then there exists a minimum-size s-partial vertex cover of G which
contains the vertex set X completely and is disjoint from the vertex set Y , with X
and Y as specified in the expansion lemma. Thus, G contains an s-partial vertex cover
of size at most κ if and only if G− (X ∪ Y ) contains an s-partial vertex cover of size at
most κ− |X| for some κ, s ∈ N. To prove this, we introduce some additional notation.

Let H be a bipartite graph with vertex bipartition (VA(H), VB(H)), and q ∈ N+ such
that there exists a q-expansion M of VA(H) into VB(H). For convenience, denote X :=
VA(H) and Y := VB(H). For a vertex x ∈ X, we define NM,Y (x) ⊆ Y to be the set of all
vertices in Y adjacent to x over edges in M , formally, NM,Y (x) := {y ∈ Y | {x, y} ∈M}.
We also define NM,Y [x] := NM,Y (x) ∪ {x}. Finally, we say that MY (x) ⊆ M is the set
of all edges in M incident to x, formally, MY (x) := {{x, y} ∈M | y ∈ Y }. If the sets X
and Y are clear from the context, then we omit their subscripts. For example, for the
sets M1, X1, and Y1 of Figure 4.2b, the sets NM1(x) are NM1(v1

A) := {v1
B, v

2
B} as well

as NM1(v2
A) := {v3

B, v
4
B}, and the sets M1(x) are M1(v1

A) := {{v1
A, v

1
B}, {v1

A, v
2
B}} as well

as M1(v2
A) := {{v2

A, v
3
B}, {v2

A, v
4
B}}.
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Note that, due to the definition of a q-expansion, for all x ∈ X it holds that |M(x)| =
q. Thus, as all edges in M(x) are only incident to vertices in NM [x], if q := s+ 1, then
every s-partial vertex cover of G has to contain at least one vertex of NM [x] due to
Observation 4.2.

Proposition 4.19. Let H be a bipartite graph and s ∈ N such that Lemma 4.14 is
applicable to H and q := s+ 1. Next, let X ⊆ VA(H), Y ⊆ VB(H) be the vertex sets as
specified in Lemma 4.14, and let M be an (s + 1)-expansion of X into Y . Then, every
s-partial vertex cover of H contains at least one vertex from NM [x] for all x ∈ X.

Next, we lift Proposition 4.19 to be applicable to a graph G which contains a bipartite
subgraph H ⊆ G for which Lemma 4.14 is applicable.

Lemma 4.20. Let G be a graph, H ⊆ G be a bipartite subgraph of G, and s ∈ N.
Assume that NG(VB(H)) ⊆ VA(H). Furthermore, assume Lemma 4.14 is applicable to H
with q := s + 1 and let X and Y be the vertex sets as specified in Lemma 4.14. Then,
there exists a minimum-size s-partial vertex cover of G which contains X completely and
is disjoint from Y .

Proof. Let S be a minimum-size s-partial vertex cover of G. We claim that S∗ :=
(S \Y )∪X fulfills all requirements of Lemma 4.20. To show this, we prove the following
three claims:

1. S∗ ∩ (X ∪ Y ) = X,

2. |S| ≥ |S∗|, and

3. {u, v} ∈ E(G) is covered by S =⇒ {u, v} is covered by S∗.

These three conditions together imply that S∗ is a minimum-size s-partial vertex
cover of G such that S∗ ∩ (X ∪ Y ) = X. Note that S∗ is an s-partial vertex cover of G
because of the third condition. Hence, if we show that S∗ satisfies all three conditions,
then Lemma 4.20 holds.

The first condition S∗ ∩ (X ∪ Y ) = X holds by the definition of S∗.
Next, we show that |S| ≥ |S∗|. There exists a q-expansion M ⊆ E(H) of X into Y

due to Lemma 4.14. Note that all vertex sets NM [x] are pairwise disjoint for all x ∈ X.
Due to Proposition 4.19, every s-partial vertex cover of H has to contain at least one
vertex from each vertex set NM [x]. Consequently, as H is a subgraph of G, every s-
partial vertex cover of G has to contain at least one vertex from each vertex set NM [x] as
well. Hence, |S ∩ (X ∪ Y )| ≥ |X|. It follows that |S| = |S \ (X ∪ Y )|+ |S ∩ (X ∪ Y )| ≥
|S \ (X ∪ Y )|+ |X| = |S∗|. Thus, |S| ≥ |S∗|.

Lastly, we show that if {u, v} ∈ E(G) is covered by S, then {u, v} is covered by S∗ as
well. Let {u, v} ∈ E(G) be covered by S. If u 6∈ Y or v 6∈ Y , then we observe that {u, v}
is covered by S∗. Furthermore, it cannot happen that u and v are both inside Y because
of the first assumption of Lemma 4.20.

All in all, S∗ is a minimum-size s-partial vertex cover of G such that S∗∩(X∪Y ) = X.
Thus, Lemma 4.20 holds.

Lemma 4.20 will help us to construct a data reduction rule for Partial Vertex
Cover later on. Before we present it, we show how to find a bipartite subgraph H of G
which fulfills the requirements to apply Lemma 4.20 to it.
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Complying with the Expansion Lemma

In the following, we show for a graph G and a half-integral optimal solution of LPVC(G)
that if V0(G) is large enough, then the expansion lemma is applicable to the bipartite
graph H with vertex bipartition (VA(H) := V1(G), VB(H) := V0(G)). In the end, this
allows us to find an upper bound on the size of V0(G).

First, we formally define the bipartite subgraph H of G which we will use to apply
Lemma 4.20 later on.

Definition 4.21. Let G be a graph and (xv)v∈V (G) be a half-integral optimal so-
lution of LPVC(G). Then, HG,(xv)v∈V (G)

⊆ G is the bipartite subgraph of G such

that VA(HG,(xv)v∈V (G)
) := V1(G), VB(HG,(xv)v∈V (G)

) := V0(G), and E(HG,(xv)v∈V (G)
) :=

E(G,V1(G), V0(G)).

If G and (xv)v∈V (G) are clear from the context, then we omit their subscripts. Next,
we show that if V0(G) large enough, then Lemma 4.14 is applicable to H.

Proposition 4.22. Let G be a graph without isolated vertices, (xv)v∈V (G) be a half-
integral optimal solution of LPVC(G), H be the bipartite subgraph of G as in Defini-
tion 4.21, and s ∈ N. If |V0(G)| ≥ (s + 1) · |V1(G)|, then there exists a minimum-size
s-partial vertex cover S of G such that S ∩ (X ∪Y ) = X, with X and Y being the vertex
sets as specified in Lemma 4.14 when applied to H and q := s+ 1.

Proof. We show that H and s satisfy both requirements to apply Lemma 4.20.

First, the neighborhood of VB(H) = V0(G) is part of VA(H) = V1(G) due to Obser-
vation 4.11.

Next, we show that H satisfies all requirements to apply Lemma 4.14 with q to
it. It holds that H is a bipartite graph and q ∈ N+. Furthermore, by our assumption,
|VB(H)| = |V0(G)| ≥ q · |V1(G)| = q · |VA(H)|, and so the first requirement of Lemma 4.14
holds. Hence, it remains to show that VB(H) = V0(G) does not contain isolated vertices
with respect to H. Due to Observation 4.11, NG(VB(H)) = NG(V0(G)) ⊆ V1(G) =
VA(H) holds. Hence, if there would be an isolated vertex v in VB(H) with respect to H,
then v would be isolated in G as well. However, as we assume that G does not contain
any isolated vertices, there are no isolated vertices in VB(H) with respect to H. Hence,
the second requirement of Lemma 4.14 is fulfilled as well.

Thus, Lemma 4.20 is applicable to G with respect to H and s, so Proposition 4.22
holds.

Next, we put everything together to find an upper bound on the size of V0(G).

An Upper Bound on |V0(G)|

To find an upper bound on the size of V0(G) for our problem kernel, we first present a
data reduction rule which is based on Proposition 4.22. Afterwards, we prove that this
data reduction rule together with Reduction Rule 4.3.1 leads to (s + 1) · (κ + s) being
an upper bound on the size of V0(G).
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Reduction Rule 4.3.2. Let (G, κ, s) be an instance of Partial Vertex Cover with κ
being the solution size and s the maximum number of edges not covered. Furthermore,
let (xv)v∈V (G) be a half-integral, optimal solution of LPVC(G).

First, exhaustively apply Reduction Rule 4.2.1 to (G, κ, s) to remove all isolated ver-
tices from G. Next, let H be the bipartite subgraph of G as in Definition 4.21.

In the case of |V0(G)| ≥ (s + 1) · |V1(G)|, let X and Y be resulting vertex sets as
specified in Lemma 4.14 from applying Lemma 4.14 to H and q := s + 1. If κ′ :=
κ − |X| < 0, then return a trivial NO-instance of Partial Vertex Cover, otherwise
return the Partial Vertex Cover instance (G′ := G− (X ∪Y ), κ′ := κ−|X| , s′ := s)
together with a half-integral optimal solution (x′v)v∈V (G′) := (xv)v∈V (G′) of LPVC(G′).

Lemma 4.23. Reduction Rule 4.3.2 is safe and it is exhaustively applicable in O(κ ·
(n+m)2) time.

Proof. We prove the correctness of Reduction Rule 4.3.2, that is we show (G, κ, s) is
a YES-instance of Partial Vertex Cover if and only if (G′, κ′, s′) is a YES-instance
of Partial Vertex Cover. We assume that Reduction Rule 4.3.2 is applied, as
otherwise the correctness holds trivially. Thus, we may assume for both directions
that |V0(G)| ≥ (s+ 1) · |V1(G)|, as otherwise Reduction Rule 4.3.2 was not applied.

“⇒”: First, G does not contain any isolated vertices because we already exhaustively
applied Reduction Rule 4.2.1. Thus, we may assume that there exists a minimum-size
s-partial vertex cover S of G such that S ∩ (X ∪ Y ) = X due to Proposition 4.22.
As (G, κ, s) is a YES-instance of Partial Vertex Cover, we conclude that |S| ≤ κ.
Hence, S′ := S \X is an s-partial vertex cover of G′, because all edges incident to X in G
are not part of G′. Next, S′ has size |S| − |X| ≤ κ− |X| = κ′. As κ′ is non-negative be-
cause (G, κ, s) is a YES-instance of Partial Vertex Cover, Reduction Rule 4.3.2 does
not return a trivial NO-instance of Partial Vertex Cover. Additionally, (x′v)v∈V (G′)

is an optimal solution of LPVC(G′), as otherwise (xv)v∈V (G) would not have been an
optimal solution of LPVC(G). All in all, the returned instance (G′, κ′, s′) is a YES-
instance of Partial Vertex Cover, because S′ is an s-partial vertex cover of size at
most κ′ of G′.

“⇐”: Let S′ be an s′-partial vertex cover of G′ of size at most κ′. We prove
that S := S′ ∪ X is an s-partial vertex cover of G. Because NG(Y ) ⊆ X holds
due to Observation 4.11 and Lemma 4.14, all edges in E(G) \ E(G′) are incident to
some vertex in X. Hence, S covers in G all edges which are not part of G′, and
all except at most s′ = s edges of G′. Thus, S is an s-partial vertex cover of G of
size |S′|+ |X| ≤ κ′+ |X| = κ. All in all, (G, κ, s) is a YES-instance of Partial Vertex
Cover.

To apply Reduction Rule 4.3.2 once, we first exhaustively apply Reduction Rule 4.2.1
in O(nG + mG) time. Next, we compute H in O(nG + mG) time. Lastly, we apply
Lemma 4.14 in O((nG + mG)2) time. Thus, it takes O((nG + mG)2) time to apply
Reduction Rule 4.3.2 once.

Because the vertex set X as specified in Lemma 4.14 is non-empty, κ′ := κ− |X| is
strictly smaller than κ. As we return a trivial NO-instance of Partial Vertex Cover
in the case of κ′ < 0, we have to apply Reduction Rule 4.3.2 at most κ+ 1 times. Thus,
it takes O(κ ·(nG+mG)2) time to exhaustively apply Reduction Rule 4.3.2 to a Partial
Vertex Cover instance.
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Next, we show that after exhaustively applying Reduction Rule 4.3.2, we find an
upper bound on the number of vertices in V0(G).

Lemma 4.24. Let (G, κ, s) be an instance of Partial Vertex Cover and (xv)v∈V (G)

be a half-integral optimal solution of LPVC(G) such that Reduction Rule 4.3.2 is not
applicable anymore. Then, |V0(G)| < (s+ 1) · |V1(G)|.

Proof. To start, we assume that Reduction Rule 4.3.2 has not returned a trivial NO-
instance of Partial Vertex Cover, as otherwise Lemma 4.24 holds trivially.

Next, as we cannot apply Reduction Rule 4.3.2 to (G, κ, s) and (xv)v∈V (G), we observe
that at least one of the following three claims has to hold:

1. κ < 0, or

2. there is an isolated vertex in G, or

3. |V0(G)| < (s+ 1) · |V1(G)|.

If all three claims would not hold, then we could apply Reduction Rule 4.3.2 again,
which would lead to a contradiction.

If the first claim would hold, then Reduction Rule 4.3.2 would have returned a
trivial NO-instance of Partial Vertex Cover, which we assume to not be the case.
The second claim cannot hold as well, as Reduction Rule 4.3.2 removes all isolated
vertices by exhaustively applying Reduction Rule 4.2.1 in each iteration. Thus, the third
claim |V0(G)| < (s+ 1) · |V1(G)| has to hold, which means that Lemma 4.24 holds.

Next, we put everything together to compute our problem kernel. We will also show
how to find a smaller upper bound on the total number of vertices of this problem kernel
by studying the relations between the sizes of V0(G), V1/2(G), and V1(G) in more detail.

4.3.4 Analysis of Our Kernel

We will discuss how to efficiently compute our problem kernel for Partial Vertex
Cover and show that it contains strictly less than (s + 2) · (κ + s) vertices, where κ
is the solution size and s is the maximum number of edges not covered. Note that
if s = 0, then we obtain a 2κ-vertex problem kernel for Vertex Cover. Additionally,
for all κ ∈ N, s ∈ N+, we will provide a graph with exactly (s+2) · (κ+s)−1 vertices for
which we cannot apply any of our data reduction rules. This means that we need new
data reduction rules to find a problem kernel with less vertices for Partial Vertex
Cover with respect to the combined parameter κ+ s.

We compute our problem kernel for a Partial Vertex Cover instance (G, κ, s) in
the following way. First, we compute a half-integral optimal solution for LPVC(G)
in O(m

√
n) time as discussed in Section 4.3.1, and afterwards we apply Reduction

Rule 4.3.1 once in linear time. Finally we exhaustively apply Reduction Rule 4.3.2
in O(κ · (n+m)2) time. Note that none of our data reduction rule increases κ or s.

We will show that (s + 2) · (κ + s) is an upper bound on the number of vertices by
combining the following inequalities.
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|V1(G)|+ 1/2 ·
∣∣V1/2(G)

∣∣ ≤ κ+ s (4.3)

|V0(G)| < (s+ 1) · |V1(G)| (4.4)

Both inequalities have to hold after exhaustively applying Reduction Rules 4.3.1
and 4.3.2, see Lemmas 4.18 and 4.24. Next, we combine both inequalities to find an
upper bound on the number of vertices in G.

|V (G)| = |V0(G)|+
∣∣V1/2(G)

∣∣+ |V1(G)|
Inequality 4.4

< (s+ 2) · |V1(G)|+
∣∣V1/2(G)

∣∣
= s · |V1(G)|+ 2 · (|V1(G)|+ 1/2 ·

∣∣V1/2(G)
∣∣)

Inequality 4.3
≤ s · |V1(G)|+ 2 · (κ+ s)

Inequality 4.3
≤ (s+ 2) · (κ+ s) (4.5)

Hence, (s+ 2) · (κ+ s)− 1 is an upper bound on the number of the vertices in G.
As we compute our problem kernel in O(m

√
n+κ · (n+m)2) = O(κ · (n+m)2) time

and have strictly less than (s+2) · (κ+s) vertices in the resulting graph, we have proven
Theorem 4.9.

Theorem 4.9. Partial Vertex Cover admits a problem kernel with strictly less
than (s+ 2) · (κ+ s) vertices, where κ is the solution size and s is the maximum number
of edges not covered. This problem kernel is computable in O(κ · (n+m)2) time.

Note that for the special case s = 0, Partial Vertex Cover coincides with the
Vertex Cover problem. Thus, we obtain a 2κ-vertex problem kernel for Vertex
Cover, therefore matching the size of the problem kernel of Theorem 4.12.

For constant s, Theorem 4.9 admits a problem kernel for Partial Vertex Cover
with O(κ) vertices, which is computable in O(κ · (n+m)2) time. This stands in contrast
to Theorem 4.8, where we presented a problem kernel for Partial Vertex Cover
that for constant s admits a problem kernel with O(κ2) vertices, which is computable in
linear time.

Because of the duality of s-Defective Clique and Partial Vertex Cover as
presented in Observation 4.1, we conclude from Theorem 4.9 that there exists a similar
linear-vertex problem kernel for s-Defective Clique with respect to the combined
parameter (n − k) + s, where k is the solution size and s the maximum number of
missing edges.

Additionally, we show that our analysis for Theorem 4.9 is tight by constructing for
each κ ∈ N, s ∈ N+ a graph Gκ,s which matches the upper bound on the number of
vertices from Inequality 4.5. Thus, we need new data reduction rules to find a smaller
upper bound on the number of vertices.

Proposition 4.25. For all κ ∈ N, s ∈ N+, there exists a graph Gκ,s with exactly (s+2) ·
(κ+s)−1 vertices and a half-integral optimal solution (yv)v∈V (Gκ,s) for LPVC(Gκ,s) for
which neither Reduction Rule 4.3.1 nor Reduction Rule 4.2.1 nor Reduction Rule 4.3.2
can be applied.
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Figure 4.3: An illustration of the graph Gκ,s for some κ ∈ N, s ∈ N+ and a half-
integral optimal solution (yv)v∈V (Gκ,s) for LPVC(Gκ,s). The graph Gκ,s is build upon
the stars K1, . . . ,Kκ+s. Each graph Gκ,s contains (s+ 2) · (κ+ s)−1 vertices and we can
neither apply Reduction Rule 4.3.1 nor Reduction Rule 4.2.1 nor Reduction Rule 4.3.2
to the Partial Vertex Cover instance (Gκ,s, κ, s) and (yv)v∈V (Gκ,s).

Proof. We build Gκ,s out of several stars. For any κ, s, each graph Gκ,s consists
of the disjoint stars K1,K2, . . . ,Kκ+s, where K1 is a star K1,s with v1 as its center
and s leaves u1

1, u
2
1, . . . , u

s
1, while Ki is a star K1,s+1 with vi as its center and s +

1 leaves u1
i , u

2
i , . . . , u

s
i , u

s+1
i for i ≥ 2. Additionally, for the first κ + s − 1 stars, we

add an edge between the center vi of the i-th star and the first leaf of the next star u1
i+1.

Formally, we define V (Gκ,s) :=
⋃
i∈[κ+s] V (Ki), and E(Gκ,s) := (

⋃
i∈[κ+s]E(Ki)) ∪

{{vi, u1
i+1} | i ∈ [κ+ s− 1]}. See Figure 4.3 for an illustration of Gκ,s.

Next, we discuss why we cannot apply any of our data reduction rules toGκ,s with κ ∈
N, s ∈ N+. We define a half-integral optimal solution (yv)v∈V (Gκ,s) for LPVC(Gκ,s),
which we would need to apply Reduction Rule 4.3.1 or Reduction Rule 4.3.2. In general,
we observe that for a star G with at least one leaf, a half-integral optimal solution for
LPVC(G) is constructable by assigning 1 to the corresponding variable of its center,
and 0 to the variables of all leaves. Thus, for any κ, s, the list of variables (yv)v∈V (Gκ,s)

with yvi := 1, y
uj1

:= 0, and y
uj
′
i

:= 0, where i ∈ [κ + s], j ∈ [s], j′ ∈ [s + 1], is a half-

integral optimal solution for LPVC(Gκ,s). This is because our additional edges between
the stars do not decrease the optimal value of LPVC(Gκ,s), and (yv)v∈V (Gκ,s) is still a
feasible solution of LPVC(Gκ,s). Note that this argument would not apply when we
allowed s to be zero. Hence, V1(Gκ,s) contains κ+ s vertices, V0(Gκ,s) contains (s+ 1) ·
(κ+ s)− 1 vertices, and V1/2(Gκ,s) contains no vertices. Overall, Gκ,s contains (s+ 2) ·
(κ+ s)− 1 vertices.

We observe that Gκ,s does not contain any isolated vertices, so we cannot apply
Reduction Rule 4.2.1. For (yv)v∈V (Gκ,s), the inequality |V1(Gκ,s)|+ 1/2 ·

∣∣V1/2(Gκ,s)
∣∣ ≤

κ + s holds, so we cannot apply Reduction Rule 4.3.1 to Gκ,s and (yv)v∈V (Gκ,s) either.
Lastly, the inequality |V0(Gκ,s)| ≥ (s+ 1) · |V1(Gκ,s)| does not hold, so we cannot apply
Reduction Rule 4.3.2 either. Thus, we cannot apply any of our data reduction rules
to Gκ,s with respect to (yv)v∈V (Gκ,s).

Due to Proposition 4.25, our analysis is tight. Hence, we need new data reduction
rules to find a problem kernel for Partial Vertex Cover with respect to the combined
parameter κ+ s with at most (s+ 2− ε) · (κ+ s) vertices for any ε > 0.

Finally, we show how the results of this chapter link to the rest of this thesis, and
how they relate to other work. In the context of this thesis, we presented that the three
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Clique relaxations s-Club, s-Plex, and s-Defective Clique are fixed-parameter
tractable with respect to the combined parameter “large gap” plus “respective relaxation
parameter” (n− k) + s. Furthermore, with Proposition 4.3, we also showed that we can
decide all three problems by “branching over a set of vertices which cannot be part of
the same solution”. In Chapter 5, we will find the “essence” of these three branching
algorithms and formalize it. This formalization will be one of our two ingredients towards
a more general framework for deciding Clique relaxations in Chapter 5. Additionally,
we will also show how to apply our two problem kernels from Theorems 4.8 and 4.9 for
Partial Vertex Cover to s-Defective Clique in Chapter 6.

We briefly mention that for the Bounded-Degree Vertex Deletion problem,
which is strongly related to Partial Vertex Cover, a similar “Buss-like” problem
kernel like Theorem 4.8 is known [MNS12]. However, for a constant “relaxation parame-
ter”, we only know that there exists a quasi-linear–vertex problem kernel for Bounded-
Degree Vertex Deletion with respect to the solution size [Fel+11], which stands
in contrast to our linear-vertex problem kernel from Theorem 4.9 for Partial Vertex
Cover with respect to the solution size.





Chapter 5

A Smaller Gap and a
Gap-Framework

In Chapter 3, we have shown that we cannot easily re-formulate the KWB-algorithm
of Komusiewicz [Kom11, Proposition 5.4] (re-introduced and implemented by Walteros
and Buchanan [WB20, Theorem 1]) for Maximum Clique to clique relaxations with
respect to the clique-core gap g := d+1−ω, where d is the degeneracy of G, and ω is the
order of a maximum clique in G. This is because s-Defective Clique, s-Plex, and
s-Club are W [1]- or para-NP-hard with respect to the clique-core gap. Furthermore, in
Chapter 4, we have presented that these three Clique relaxations are fixed-parameter
tractable with respect to the combined parameter “large gap” plus “respective relaxation
parameter” (n− k) + s, where k ∈ N is the solution size.

Unfortunately, the maximum-order of a relaxed clique in real-world graphs is rela-
tively small (see Tables A.5 to A.8), therefore the parameter n−k is often almost as large
as n itself. The goal of this chapter is to find a “new gap” which is smaller than n− k
in real-world graphs, but still can be used to develop FPT-algorithms for Clique re-
laxations with respect to this “new gap”. In other words, as in practice we often want
to find a solution of maximum order, our goal is to find a better upper bound than n
on the maximum order of a relaxed clique, and provide a general “gap-framework” for
solving Maximum Clique relaxations. Next, we will study the main ingredients of the
KWB-algorithm in more detail and generalize these ingredients in a way so that they
are applicable to Maximum Clique relaxations.

The KWB-algorithm has the following two ingredients:

1. Constructing a Turing kernel, that is splitting the input graph into many subgraphs
with at most d+ 1 vertices, where all subgraphs can be solved separately, and

2. solving each subgraph by branching over two vertices which cannot be part of the
same solution, that is they are non-adjacent, until the resulting instance induces a
clique.

Recall from Komusiewicz [Kom16, Theorem 5.4] that each subgraph in the Turing
kernel has at most d + 1 vertices and there is an algorithm for finding a maximum
clique in O∗(2n−ω) time, thus we can combine both ideas to find a maximum clique

57
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in O∗(2d+1−ω) time. To understand how a new “relaxed gap” can be defined for clique
relaxations, we will present next the two ingredients of the KWB-algorithm again in
more detail.

Turing kernelization. It is known that a clique S ⊆ V (G) in a graph G has diameter
exactly one. Hence, for each v ∈ S it holds that S ⊆ N [v]. Thus, for the leftmost ver-
tex v of S with respect to some degeneracy ordering, the closed right-neighborhood of v
contains S completely. This means that one can propagate the search of finding a clique
in G to finding a clique in the n subgraphs induced by the closed right-neighborhoods
of all vertices in G with respect to some degeneracy ordering. Note that each of these
subgraphs contains at most d+ 1 vertices. This technique is known as Turing kerneliza-
tion, see Section 2.1 for the precise definition. Note that this means that a clique in a
graph has order at most d+ 1.

Recall that the x-neighborhood of a vertex v contains all vertices with distance at
most x to v in G, except v itself. We will see in Section 5.2.1 that several Clique
relaxations also implicitly have an upper bound on the diameter of their solutions. This
leads to the idea of generalizing the degeneracy and degeneracy ordering of a graph by
considering the x-neighborhood of the vertices, rather than the standard neighborhood.
In Section 5.1, we will see that there are two natural generalizations of the standard
degeneracy, both with strengths and weaknesses. To make it easier for the reader, we
will refer to this concept as the x-degeneracy dx and x-degeneracy ordering until the
start of Section 5.1.

We will see in Section 5.2.1 that if there exists an upper bound x ∈ N on the diameter
of the solution of a Maximum Clique relaxation, then we can propagate the search of
finding a relaxed clique in G to finding a relaxed clique in the n subgraphs induced by
the closed x-right-neighborhoods of G with respect to some x-degeneracy ordering, thus
effectively constructing a Turing kernel. Note that dx + 1 is an upper bound on the
maximum order of such a relaxed clique. Such an upper bound on the diameter can only
exist when all solutions of the Maximum Clique relaxation are connected, which is not
always the case (for example, two isolated vertices induce a 1-defective clique as well as
a 2-plex). We already discussed the advantages of searching only connected solutions in
Section 1.1 and came to the conclusion that this “restriction” is well-motivated. For the
rest of the thesis, we assume that G is connected.

Incompatible vertices. The second property of Maximum Clique that the KWB-
algorithm uses is that one can find a clique of order ω ∈ N in a graph G by branching
at most n − ω times over removing one of two non-adjacent vertices, as both vertices
cannot be part of the same clique. This idea was named branching over two incompatible
vertices by Komusiewicz et al. [Kom+19], and in Section 5.2.2 we will recall this concept
in more detail and generalize it for several Maximum Clique relaxations to branch over
some constant number of incompatible vertices.

Combining both ingredients. After having discussed both ingredients of the KWB-
algorithm, we observe that we can combine them to get the following framework for some
clique relaxation Π: “If each graph that satisfies Π has diameter at most x ∈ N, and
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if we can find in polynomial time a constant number of vertices which cannot be part
of the same solution, then one can find a subgraph of maximum order satisfying Π
in 2O(dx+1−ωΠ) · nO(1) time.” Here, ωΠ is the maximum order of a subgraph G′ of G
such that G′ is a relaxed clique Π. We say that (dx + 1) − ωΠ is a gap, as dx + 1 is an
upper bound on the order of G′. Hence, (dx + 1)−ωΠ is the gap between the maximum
possible order dx+ 1 of G′ in G and the actual maximum order of such a subgraph in G.
In Section 5.2, we will present this gap-framework in more detail.

Before we present our generalization of the KWB-algorithm, we will study next the
x-degeneracy of a graph for x ≥ 2 in more detail, as it is an important part of our Turing
kernelization. The goal is to relate this new family of parameters to known parameters,
as well as to study the complexity of computing the x-degeneracy of a graph.

5.1 Generalizing Degeneracy

After having motivated the study of a generalized degeneracy of a graph for x ≥ 2, we
will formally define it here. We will see that there are two natural ways to generalize
the standard degeneracy concept, and we will show that both ways will lead to non-
equivalent definitions. Afterwards, we demonstrate how both generalizations relate to
well-known graph parameters. Furthermore, we show how to compute both generaliza-
tions in polynomial time. Finally, we prove that an algorithm computing any of the two
generalizations in O(n1.999) time would break the Strong Exponential Time Hypothesis,
which would result in a major breakthrough in parameterized complexity theory.

Introducing generalizations. It is known that the standard degeneracy of a graph G
can be defined in two equivalent ways. We will generalize both options and show that
they are non-equivalent. Recall that for x ∈ N+, δx(G) is the minimum size of an
x-neighborhood Nx(v) for some vertex v in G.

Definition 5.1 ([Pic15; Tru+13]). Let G be a graph and x ∈ N. The weak x-degeneracy
of G is the minimum number αx(G) ∈ N such that for all G′ ⊆ G it holds that δx(G′) ≤
αx(G).

Furthermore, we say that �αx := (v1, v2, . . . , vn) is a weak x-degeneracy ordering
of G if for all i ∈ [n] it holds that δx(Gi) = |Nx,Gi(vi)|, where Gi := G[vi, vi+1, . . . , vn].
Additionally, wrNx(vi, G,�αx) := Nx,Gi(vi) is the (open) weak x-right-neighborhood of a
vertex vi ∈ V (G) with respect to �αx , and wrNx[vi, G,�αx ] := wrNx(vi, G,�αx) ∪ {vi}
is the closed weak x-right-neighborhood of vi with respect to �αx . If G or �αx are clear
from the context, then we will omit their arguments. See Figure 5.1 for an example of a
weak 2-degeneracy ordering, which we will discuss later in more detail when comparing
both generalizations of the standard degeneracy concept.

We observe that G has weak x-degeneracy αx if and only if in a weak x-degeneracy
ordering of G each vertex has at most αx x-right-neighbors due to an argument of Matula
and Beck [MB83, Chapter 2]. For the sake of completeness, we provide the whole proof.

Observation 5.2. Let G a graph and x ∈ N. Furthermore, let �αx := (v1, v2, . . . , vn) be
a weak x-degeneracy ordering of G, and let α′x be the maximum size of a weak x-right-
neighborhood with respect to �αx. Then, αx = α′x.
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Proof. “αx ≥ α′x”: Let i ∈ [n] be arbitrary but fixed, and Gi := G[vi, vi+1, . . . , vn]. As vi
has the minimum x-degree of Gi, and by Definition 5.1 it holds that δx(Gi) ≤ αx, we
conclude that wrNx(vi) has size at most αx.

“αx ≤ α′x”: Let G′ ⊆ G be an arbitrary subgraph of G. Furthermore, let v be the
leftmost vertex of G′ with respect to �αx . As wrNx(v) has size at most α′x, we conclude
that the minimum x-degree of G′ is at most α′x.

Next, we generalize the second way to define the standard degeneracy.

Definition 5.3. Let G be a graph and x ∈ N. The strong x-degeneracy of G is the
minimum number βx ∈ N such that for the vertices of G there exists a linear ordering �βx
such that no vertex v ∈ V (G) has more than βx of its x-neighbors right to it with respect
to �βx , formally,

βx(G) := min
� a linear ordering of V (G)

{ max
v∈V (G)

{|{u ∈ V (G) \ {v} | v � u; dist(u, v) ≤ x}|}}.

Additionally, a corresponding linear ordering �βx is a strong x-degeneracy ordering
ofG. Furthermore, srNx(vi, G,�βx) := Nx,G(vi)∩{vi+1, vi+2, . . . , vn} is the (open) strong
x-right-neighborhood of a vertex vi ∈ V (G) with respect to �βx , and srNx[vi, G,�βx ] :=
srNx(vi, G,�βx)∪{vi} is the closed strong x-right-neighborhood of vi with respect to �βx .
If G or �βx are clear from the context, then we will omit their arguments. See Figure 5.1
for an example of a strong 2-degeneracy ordering, which we discuss later in more detail
when comparing the weak x-degeneracy and strong x-degeneracy.

We observe that the strong x-degeneracy of a graph is the same as the standard
degeneracy of its power graph Gx, where the power graph Gx is the graph where two
distinct vertices are adjacent if and only if they have distance at most x.

Observation 5.4. Let G be a graph, x ∈ N+, and Gx be the power graph of G. Then,
βx(G) = d(Gx).

Proof. Let G be a graph and � be some linear ordering of the vertices of G. To prove
Observation 5.4 we will show that srNx(v,G,�) = rN(v,Gx,�) for all v ∈ V (G). This
is sufficient, as we define the strong x-degeneracy of a graph as the maximum size of
a strong x-right-neighborhood, and the standard degeneracy as the maximum size of a
right-neighborhood with respect to a linear ordering.

“u ∈ srNx(v,G,�)⇒ u ∈ rN(v,Gx,�)”: Due to the definition of the strong x-right-
neighborhood, v and u have distance at most x in G. Hence, v and u are adjacent in Gx.
Furthermore, u is right of v with respect to �. Finally, this means that u ∈ rN(v,Gx,�).

“u ∈ srNx(v,G,�) ⇐ u ∈ rN(v,Gx,�)”: As v and u are adjacent in Gx, v and u
have distance at most x in G. Hence, u is in the x-neighborhood of v, which means
that u ∈ srNx(v,G,�).

Relation between the generalizations. To explain the difference between the weak
x-right-neighborhood and the strong x-right-neighborhood on a high level, let G be a
graph, (v1, v2, . . . , vn) be a linear ordering of V (G), i ∈ [n], and G′ := G[vi, vi+1, . . . , vn].
While vi has distance at most x to all vertices in its weak x-right-neighborhood with
respect to G′, it can happen that the distance between vi and a vertex in its strong
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(a) An illustration of the graph G from
Bourjolly, Laporte, and Pesant [BLP02,
Figure 4].

v6 v4 v5 v1 v2 v3 v7

(b) G rearranged with respect to a weak 2-
degeneracy ordering of G. Red “edges”
illustrate the weak 2-right-neighborhood
of v4.

v6 v4 v5 v1 v2 v3 v7

(c) G rearranged with respect to a strong 2-
degeneracy ordering of G. Red “edges”
illustrate the strong 2-right-neighborhood
of v4.

Figure 5.1: An illustration of a graph G for which the weak 2-degeneracy is strictly
smaller than its strong 2-degeneracy. We observe that srN2(v4) \ wrN2(v4) = {v5}.

x-right-neighborhood is greater than x with respect to G′. For a concrete example, we
consider for x = 2 the graph G as illustrated in Figure 5.1. By removing a minimum 2-
degree vertex in each step, it is easy to see that the linear ordering (v6, v4, v5, v1, v2, v3, v7)
is a weak 2-degeneracy ordering of G. Furthermore, the same linear ordering is also
a strong 2-degeneracy ordering of G, as v6 is the vertex of minimum degree in G2,
and G2 − v6 is a clique. Now we observe that wrN2(v4) does not contain v5, as the
distance of v4 and v5 in G − v6 is three. However, srN2(v4) contains v5 (although they
have distance three in G − v6), as v5 is in the 2-neighborhood of v4 with respect to G
and it is right of v5 with respect to the linear ordering.

Now, we study the relation of the weak x-degeneracy and strong x-degeneracy of a
graph in more detail. Let G be a graph and � be some linear ordering of the vertices
of G. It is easy to see that the weak x-right-neighborhood of a vertex v is a subset of the
strong x-right-neighborhood of v. Hence, the weak x-degeneracy of a graph is at most
as large as its strong x-degeneracy.

Next, we show that the strong x-degeneracy of a graph can be strictly larger than
the weak x-degeneracy, hence Definitions 5.1 and 5.3 are non-equivalent. Let G be the
graph as illustrated in Figure 5.1. Recall that the linear ordering (v6, v4, v5, v1, v2, v3, v7)
is both a weak x-degeneracy ordering and a strong x-degeneracy ordering of G. We
observe that for this linear ordering, the maximum size of a weak x-right-neighborhood
is four, while the size of srN2(v4) is five. Thus, αx(G) < βx(G).

As the weak x-degeneracy of a graph is at most its strong x-degeneracy, we will focus
on the weak x-degeneracy when constructing our Turing kernel in Section 5.2.1.
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5.1.1 Relation to Other Parameters

We will show that the weak and strong x-degeneracies of a graph are both strongly
related to the maximum degree ∆ of the graph. Recall that the weak x-degeneracy of
a graph is at most its strong x-degeneracy for all x ∈ N+. Furthermore, recall that the
x-neighborhood Nx(v) of a vertex v in a graph G contains all vertices with distance at
most x to v in G, except v itself.

Proposition 5.5. Let x ≥ 2 and G be a graph. Then, ∆ ≤ αx ≤ βx ≤ βx+1 ≤ ∆x+2,
where αx is the weak x-degeneracy of G, and βx is the strong x-degeneracy of G.

Proof. As a warm-up, it is easy to see that for a given graph G, αx ≤ αx+1 holds for
all x ∈ N, as Nx,G′(v) ⊆ Nx+1,G′(v) holds for all G′ ⊆ G and v ∈ V (G). For the same
reason, βx ≤ βx+1 holds as well.

Now, we show that the weak 2-degeneracy is an upper bound on the maximum degree
of a graph. Let v be a vertex of maximum degree ∆ in G, and let G′ := G[N [v]]. As each
vertex from G′ contains all other vertices from G′ in its 2-neighborhood, δ2(G′) = ∆.
Hence, the weak 2-degeneracy of G is at least ∆.

Next, we show that ∆x+1 is an upper bound on the strong x-degeneracy of a graph
for constant x ∈ N+. As each vertex in a graph has at most ∆ neighbors, the x-
neighborhood of any vertex has size at most

∑
i∈[x] ∆x ≤ ∆x+1. Hence, in every arbitrary

linear ordering � of the vertices, the strong x-right-neighborhood of any vertex has size
at most ∆x+1.

Another relation between the maximum degree and the weak x-degeneracy of a graph
is that for all x ≥ 2, ∆x ≤ αx+1 does not hold for all graphs, as the weak (x + 1)-
degeneracy of a star is always n− 1, while ∆x = (n− 1)x.

Due to Proposition 5.5, many graph parameters relate to the weak and strong x-
degeneracies in the same way as to the maximum degree of a graph. Although not
relevant for following the content of this thesis, we refer to Sorge and Weller [SW19] for
a discussion on the relation to other parameters.

Although we can upper bound the weak and strong x-degeneracies of a graph in some
polynomial of ∆, it is still of interest to study the weak and strong x-degeneracies of a
graph, as they are often much smaller than ∆x. In Table 5.1, we provide an overview
of the values of the maximum degree ∆, the weak and strong 2-degeneracies α2, β2,
and ∆2 for ten real-world graphs. We provide more values for more real-world graphs
in Tables A.1 to A.4, and explain our implementation for computing these values in
Appendix A.

5.1.2 Computation of Generalized Degeneracies

Next, it is interesting how we can compute a weak x-degeneracy ordering and a strong x-
degeneracy ordering of a graph G for x ≥ 2, and how these algorithms differ from the
algorithm for computing a standard degeneracy ordering. We will present an algorithm
for computing the weak x-degeneracy ordering of a graph G in O(αxnm) time, and a
strong x-degeneracy ordering of G in O(nm) time for any x ∈ N+. We start with the
weak x-degeneracy.
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Table 5.1: Values of weak/strong 2-degeneracies in some freely-available real-world
graphs [DIM12; DIM93; HKN15b; LK14]. We use the following notation: n–number
of vertices, m–number of edges, ∆–maximum degree, α2–weak 2-degeneracy, β2–strong
2-degeneracy. See Appendix A for more details.

Graph n m ∆ α2 β2 ∆2

johnson8-2-4 28 210 15 27 27 225
jazz 198 2,742 100 109 109 10,000
san400 0.7 3 400 55,860 307 399 399 94,249
DSJC500.5 500 62,624 286 499 499 81,796
hamming10-4 1,024 4.3 · 105 848 1023 1023 7.2 · 105

hep-th 8,361 15,751 50 50 50 2,500
cond-mat-2005 40,421 1.8 · 105 278 278 278 77,284
G n pin pout 1 · 105 5 · 105 25 64 71 625
coAuthorsCiteseer 2.3 · 105 8.1 · 105 1,372 1372 1372 1.9 · 106

graph thres 01 7.2 · 105 2.5 · 106 804 804 804 6.5 · 105

Lemma 5.6. Let G be a graph and x ∈ N+. Constructing a weak x-degeneracy ordering
of G and computing the weak x-degeneracy αx of G can be done in O(αxnm) time.

Proof. To compute a weak x-degeneracy ordering of G, we modify the straightforward
approach: Let G′ := G and �:= (). While G′ is non-empty, find a vertex v with minimum
x-degree in G′, add v to the right of �, and proceed on G′ := G′ − v.

Next, we observe that the only vertices which have a different x-neighborhood in G′−
v in contrast to G′ are the ones which have v inside their x-neighborhood. In other words,
in each iteration we only have to re-compute the x-neighborhood of vertices inside the
x-neighborhood of v with respect to G′. By the definition of the weak x-degeneracy,∣∣Nx,G′(v)

∣∣ ≤ αx(G), thus in each iteration we have to re-compute the x-neighborhood of
at most αx(G) vertices.

Computing the x-neighborhood of all vertices in the beginning can be done by
starting a depth-bounded breadth-first-search from each vertex in G, which takes over-
all O(nm) time. Furthermore, G′ − v is computable in linear time. Updating the
x-neighborhoods in one iteration can be done in O(αxm) time. As we have n iterations,
this procedure takes overall O(nm + n · ((n + m) + αxm)) = O(αxnm) time. By keep-
ing track of the x-degrees of the vertices, the weak x-degeneracy is computable as an
aside.

To compute a strong x-degeneracy ordering of G, we exploit the relation of the strong
x-degeneracy of G and the standard degeneracy of the power graph Gx due to Observa-
tion 5.4.

Lemma 5.7. Let G be a graph and x ∈ N+. Constructing a strong x-degeneracy ordering
of G and computing the strong x-degeneracy βx of G can be done in O(nm) time.

Proof. It is easy to observe from the proof of Observation 5.4 that a degeneracy ordering
of the power graph Gx is a strong x-degeneracy ordering of G. Hence, first we con-
struct Gx and afterwards compute a degeneracy ordering of Gx by using the linear-time
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algorithm of Matula and Beck [MB83]. By keeping track of the degrees of the vertices,
one can modify their algorithm to compute the strong x-degeneracy as an aside.

We can compute Gx by starting a depth-bounded breadth-first-search from each
vertex, which can be done in overall O(nGmG) time. Moreover, applying the algorithm
of Matula and Beck can be done in O(nGx +mGx) ⊆ O(n2

G) time. All in all, a strong x-
degeneracy ordering of G is constructable in O(nm) time.

Next, we will show that for arbitrary x ∈ N+, the running time of our algorithm
computing the strong x-degeneracy is already optimal up to a poly-logarithmic factor in
sparse graphs, unless the Strong Exponential Time Hypothesis breaks.

5.1.3 Running Time Lower Bounds

Next, we will show that there cannot exist an algorithm computing the weak or strong
x-degeneracy of a graph in O(n1.999) time for arbitrary x ∈ N+, unless the Strong
Exponential Time Hypothesis (SETH) breaks, which would lead to a major breakthrough
in parameterized complexity theory. Note that this stands in contrast to the algorithm
of Matula and Beck [MB83], which computes the standard degeneracy of a graph in
linear time.

Before we present our result, we first recall the SETH as well as a lower bound on the
running time of computing the diameter of a graph which builds upon the SETH. After-
wards, we will show that a fast algorithm computing the weak or strong x-degeneracy
of a graph for arbitrary x ∈ N+ would break the lower bound on the running time of
computing the diameter of a graph, hence breaking the SETH.

Fundamental Results from the Literature

The Strong Exponential Time Hypothesis (SETH) claims that for deciding CNF-SAT,
one cannot find an algorithm which outperforms the trivial brute-force algorithm in the
worst case. This claim was first made by Impagliazzo, Paturi, and Zane [IPZ01], but we
present it as stated by Komusiewicz et al. [Kom+19, Section 4.2].

Hypothesis 5.8 (Strong Exponential Time Hypothesis (SETH) [IPZ01]). There is no
algorithm deciding CNF-SAT in (2 − ε)N · (N + M)O(1) time for any ε > 0, where N
is the number of variables and M is the number of clauses of the input formula.

Although the SETH builds upon an NP-hard problem, it can also be used to find
conditional lower bounds on the running time of decision problems which are decidable
in polynomial time. Recall that the diameter of a graph is at most x ∈ N if and only
if the distance between each pair of vertices is at most x. One can easily deduce from
the more general result of Roditty and Williams [RW13, Theorem 4] the following lower
bound on the running time of computing the diameter of a graph.

Theorem 5.9 (Roditty and Williams [RW13, Theorem 4]). Let G be a graph with diam-
eter two or three. For ε > 0, there is no algorithm deciding whether G has diameter two
or three in O(n2−ε) time unless the SETH breaks, even when G contains O(n log n) edges.

Next, we will use Theorem 5.9 to show similar lower bounds on the running time of
computing the weak or strong x-degeneracy of a graph for x ≥ 2, based on the SETH.
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Hardness Results

Next, we apply Theorem 5.9 to show that for arbitrary x ∈ N+, there cannot exist
an algorithm computing the weak or strong x-degeneracy of a graph in O(n1.999) time,
unless the SETH breaks.

First, we relate the diameter to the weak and strong x-degeneracies of a graph. We
observe that for all x ∈ N, a graph G has diameter at most x if and only if the closed
x-neighborhood of each vertex contains all vertices of G.

Proposition 5.10. Let G be a graph and x ∈ N. Then, G has diameter at most x if
any only if the weak x-degeneracy of G is exactly n − 1. Moreover, G has diameter at
most x if any only if the strong x-degeneracy of G is exactly n− 1.

Proof. Recall that if G has diameter at most x, then the distance between all pairs of
vertices in G is by definition at most x. Hence, G has diameter at most x if any only if G
has minimum x-degree exactly n−1, where the minimum x-degree of G is the minimum
size of an x-neighborhood in G.

As G is a subgraph of G, it follows that G has diameter at most x if and only if the
weak x-degeneracy of G is exactly n− 1, so our first claim holds.

For the second claim, note that G has diameter at most x if and only if Gx is a
clique. As the standard degeneracy of a graph is n − 1 if and only if it is a clique, the
second claim follows.

Due to this result, it is easy to see that the diameter of a graph is at most two if and
only if its weak and strong 2-degeneracies are exactly n − 1. Combining these results
with Theorem 5.9 leads to the following result:

Theorem 5.11. There is no algorithm computing the weak or strong x-degeneracy of a
graph G in O(n2−ε) time for arbitrary, but fixed x ∈ N+, unless the SETH breaks, even
when G contains O(n log n) edges, where ε > 0.

As Theorem 5.11 holds even when the input graph contains O(n log n) edges, we ob-
serve that the running time O(nm) of our algorithm computing the strong x-degeneracy
of a graph as described in Lemma 5.7 is already optimal up to a poly-logarithmic factor.

Next, we will present our gap-framework for generalizing the KWB-algorithm (for
solving Maximum Clique) to Maximum Clique relaxations.

5.2 The Gap-Framework

After we have formally generalized the standard degeneracy of a graph, we will next
generalize the KWB-algorithm for Maximum Clique to provide a framework for finding
a maximum-order relaxed clique in a graph. Recall from Section 5.1 that we study
the weak x-degeneracy rather than the strong x-degeneracy of a graph, as the weak
x-degeneracy is the smaller parameter.

We will show that the maximization problems of several clique relaxations Π can be
solved in O∗(cαx+1−ωΠ) time, where x ∈ N is an upper bound on the diameter of the
solutions of the corresponding maximization problem, c ∈ N only depends on Π, and ωΠ

is the maximum order of a subgraph which is a relaxed clique Π in the input graph G.
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Recall that we say that (αx + 1)−ωΠ is a gap, as αx + 1 is an upper bound on the order
of a subgraph satisfying Π.

Recall that the KWB-algorithm has two ingredients: First, we construct a Turing
kernel for G with respect to the standard degeneracy of G, and afterwards we branch
over two non-adjacent vertices. To generalize these ideas for clique relaxations, our
framework replaces a standard degeneracy ordering of G with a weak x-degeneracy
of G for some fixed x ∈ N+, and afterwards we branch over incompatible vertices (that
is, vertices which cannot be part of the same solution). We will present our Turing
kernelization in Section 5.2.1. Afterwards, we will recall the notion of incompatible
vertices in Section 5.2.2 and generalize this idea to provide a simple branching algorithm
for several clique relaxations. In Section 5.2.3, we will combine our Turing kernel and
our branching algorithm to provide a generalization of the KWB-algorithm.

Next, we will formally define the problem we will solve.

Problem definitions. We say that a set Π of graphs is a graph property. If a graph G
is contained in Π, then we say that G satisfies Π. As an example, “being a clique” is a
graph property.

We briefly mention that there are clique relaxations which cannot be expressed with
our notion of graph properties. A common example is the s-clique property, which can
depend on vertices outside of the s-clique. These properties were called weak by Pattillo,
Youssef, and Butenko [PYB13, Section 3.4], and we refer for more information on them
to Komusiewicz [Kom16] and Pattillo, Youssef, and Butenko [PYB13]. We will need
the “independence” on the graph outside of the solution to construct a Turing kernel in
Lemma 5.14, which is a crucial part of our framework. Hence, we will not study weak
properties in more detail.

Next, we define the decision problem as well as the maximization problem of finding a
vertex set S ⊆ V (G) such that G[S] ∈ Π. Note that we only consider induced subgraphs
rather than all subgraphs, as we will only study clique relaxations in this thesis, thus
adding more edges to a solution should never be an issue.

Induced Π-Subgraph [LY80]

Input: A graph property Π, a graph G and k ∈ N.
Question: Is there a vertex set S ⊆ V (G) such that |S| ≥ k and G[S] satisfies Π?

Maximum Induced Π-Subgraph [LY80]

Input: A graph property Π and a graph G.
Question: A maximum-size vertex set S ⊆ V (G) such that G[S] satisfies Π.

If Π is fixed, then we say that the resulting problems are the corresponding deci-
sion/maximization problems of Π. Furthermore, for a given graph G, we say that ωΠ(G)
is the maximum size of a set S ⊆ V (G) such that G[S] ∈ Π. Note that (Maximum)
Induced Π-Subgraph is a generalization of (Maximum) Clique.

In Sections 5.2.1 to 5.2.3, we will study the corresponding decision problems of
particular graph properties in more detail. At the end of Section 5.2.3, we will show how
to use all of our results to solve the corresponding maximization problems as well.
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5.2.1 Turing Kernel

To generalize the first ingredient of the KWB-algorithm for Maximum Clique, we next
show how to construct a Turing kernel for several Clique relaxations Π with respect
to the weak x-degeneracy αx of a graph, where each graph satisfying Π has diameter at
most x ∈ N.

Note that because every clique has diameter one, Clique admits a folklore Turing
kernel where each input graph to the oracle contains at most d + 1 vertices, where d is
the standard degeneracy of the graph. Next, we lift this idea to other graph properties Π
as well. First, we assume that there is an upper bound x ∈ N on the diameter that a
graph satisfying Π can have, where x only depends on Π. If there exists such an x for Π,
then we say that Π has diameter at most x. Note that although many graph properties
do not restrict the diameter of their graphs explicitly, graph properties like connected
s-defective clique or connected s-plex still implicitly restrict the diameter of their graphs
for all constant s ∈ N, as we will show when applying our framework in Chapter 6.
Additionally, we observe that if a disconnected graph satisfies Π, then we cannot find
such an upper bound on the diameter. Thus, our framework will only apply to graph
properties which exclude disconnected graphs.

First, recall that for the Turing kernel of Clique, each of the n input graphs to the
oracle contains the closed right-neighborhood of some vertex with respect to a degeneracy
ordering of the graph. Next, we will construct similar subgraphs for clique relaxations
by using a weak x-degeneracy ordering and the closed weak x-right-neighborhoods of all
vertices for some x ∈ N+. We start by introducing a new notion for these subgraphs.

Definition 5.12. Let G be a graph and �αx= (v1, v2, . . . , vn) be a weak x-degeneracy
ordering of G for some x ∈ N. Then, Gxi,G,�αx is the subgraph induced by the closed weak
x-right-neighborhood wrNx[vi] of vi, formally, Gxi,G,�αx := G[wrNx[vi]] for all i ∈ [n].

If G, x, and �αx are clear from the context, then we will omit their subscripts.
For a given weak x-degeneracy ordering �αx= (v1, v2, . . . , vn) of G, we construct the

vertex set and edge set of Gxi by starting a depth-bounded breadth-first-search from the
vertex vi with i ∈ [n], where we do not consider vertices left of vi with respect to �αx .
Hence, the construction of all Gxi takes overall O(nm) time.

Proposition 5.13. Let G be a graph and �αx= (v1, v2, . . . , vn) be a weak x-degeneracy
ordering of G for some x ∈ N. Then one can construct the graphs Gx1 ,Gx2 , . . . ,Gxn accord-
ing to Definition 5.12 in overall O(nm) time.

We briefly mention that Walteros and Buchanan [WB20] presented a way to construct
these subgraphs in overall O((n−d) ·d2) time for the special case of d = α1. However, as
we construct a weak x-degeneracy ordering of G in Ω(αxnm) time in order to construct
these subgraphs for arbitrary x ∈ N, we have not tried to optimize the running time of
Proposition 5.13.

Next, we provide a Turing kernel for the corresponding decision problems of graph
properties Π which have an upper bound on their diameter. This is a straightforward
generalization of the folklore Turing kernel for Clique with respect to d and the Turing
kernel of 2-Club with respect to ∆ from Schäfer et al. [Sch+12]. For the sake of
completeness, we provide a proof.
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Lemma 5.14. Let Π be a graph property such that Π has a diameter of at most x.
Furthermore, let P be the corresponding decision problem of Π. Then, P admits a
Turing kernel where each input graph to the oracle contains at most αx + 1 vertices,
where αx is the weak x-degeneracy of the input graph G. Furthermore, the Turing kernel
is computable in O(αxnm) time.

Proof. Let (G, k) be an instance of P . To construct the Turing kernel, first we compute
a weak x-degeneracy ordering �αx= (v1, v2, . . . , vn) of G as described in Lemma 5.6.
Next, we construct all subgraphs Gx1 ,Gx2 , . . . ,Gxn with respect to �αx as described in
Proposition 5.13. Finally, we ask the oracle of the Turing kernel whether (Gxi , k) is a
YES-instance of P for all i ∈ [n]. We return YES if and only if the oracle returns YES at
least once.

Next, we show the correctness of this approach, that is we show (G, k) is a YES-
instance of P if and only if there exists some i ∈ [n] such that (Gxi , k) is a YES-instance
of P .

“⇒”: As (G, k) is a YES-instance of P , there exists a set S ⊆ V (G) such that |S| ≥ k
and G[S] satisfies Π. Let vi be the leftmost vertex of S with respect to �αx for some i ∈
[n]. As G[S] has diameter at most x, all vertices of S are part of the closed weak x-right-
neighborhood of vi. This means that G[S] = Gxi [S] holds by definition of Gxi . Hence,
as Π is a graph property, (Gxi , k) is a YES-instance of P .

“⇐”: As (Gxi , k) is a YES-instance of P for some i ∈ [n], there exists a set S ⊆ V (Gxi )
such that |S| ≥ k and Gxi [S] satisfies Π. As Gxi [S] is an induced subgraph of G, and Π is
a graph property, (G, k) is a YES-instance of P .

Since one can, due to Lemma 5.6 and Proposition 5.13, compute a weak x-degeneracy
ordering as well as our subgraphs in overall O(αxnm) time, and the oracle takes constant
time to decide any of the n questions, the Turing kernel is computable in O(αxnm) time.
Furthermore, by the definition of a weak x-degeneracy ordering, each input graph Gxi to
the oracle contains at most αx + 1 vertices. Hence, Lemma 5.14 holds.

To replace the oracle of the Turing kernel of Lemma 5.14 with an actual algorithm,
we next introduce the notion of incompatible vertices.

5.2.2 Incompatible Vertices

To generalize the second ingredient of the KWB-algorithm for Maximum Clique, we
next recall the notion of incompatible vertices from Komusiewicz et al. [Kom+19, Sec-
tion 4.2]. First, we present a very broad definition of incompatible vertices, and show
that restricting ourselves to so-called (c, p)-shrinkable graph properties leads to a simple
branching algorithm.

There are many graph properties Π for which the corresponding decision problem can
be solved by branching over two vertices which cannot be part of the same solution. For
example, one can decide a Clique instance (G, k) as the survey Komusiewicz [Kom16,
Chapter 1] presents it: If G is not a clique, then there must exist two non-adjacent
vertices. As both of these vertices cannot be part of the same clique, we branch over
removing one of these two vertices. As one can check whether G is a clique in polynomial
time, or otherwise find two non-adjacent vertices in polynomial time as well, this leads
to an algorithm deciding Clique in O∗(2n−k) time.
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The idea of branching over two vertices which cannot be part of the same solution
was also used before in the context of 2-club [BLP02; Kom+19; Sch+12]. To the best
of our knowledge, Komusiewicz et al. [Kom+19, Section 4.2] were the first to formalize
the notion of two vertices being incompatible in the context of 2-club variants. We will
consider it here in a slightly more generalized form.

Definition 5.15 ([BLP02, Chapter 4], [Kom+19, Section 4.2]). Let Π be a graph prop-
erty and G be a graph. A vertex set I ⊆ V (G) is incompatible with respect to Π if no
set I ⊆ S ⊆ V (G) exists such that G[S] satisfies Π.

Next, we show that incompatible vertices are useful for finding induced subgraphs of
a graph G satisfying Π.

Proposition 5.16. Let Π be a graph property and G be a graph. Then, G satisfies Π if
and only if no set I ⊆ V (G) of incompatible vertices in G exists.

Proof. “⇒”: Assume towards a contradiction that there exists a set I of incompatible
vertices. As I ⊆ V (G), and G satisfies Π, this is a contradiction to the assumption
that I is a set of incompatible vertices.

“⇐”: Assume towards a contradiction that G does not satisfy Π. As V (G) already
contains all vertices of G, it is by definition a set of incompatible vertices. This is a
contradiction to the assumption that there is no set of incompatible vertices.

Proposition 5.16 already hints that computing a set I of incompatible vertices and
branching over removing one of them might result in an algorithm for deciding the re-
spective decision problems for several graph properties (like the algorithms for cliques
and 2-clubs). However, we still have two issues when constructing these general branch-
ing algorithms. First, it might happen that it takes too much time to check whether G
satisfies Π, which would slow down the whole branching algorithm. And second, it could
happen that I has size n, which would lead to the intractable case of creating n branches.
Hence, we will restrict the graph properties we study by defining a new feature for them.

Definition 5.17. Let Π be a graph property, c ∈ N, and p be a polynomial. Further-
more, let G be an arbitrary graph. If it is decidable whether G ∈ Π in O(p(n,m)) time,
and a set I of incompatible vertices with |I| ≤ c can be constructed in O(p(n,m)) time
in the case of G 6∈ Π, then Π is (c, p)-shrinkable.

Note that c and p (without its arguments) both depend only on Π, and not on the
graph G. For example, we observe that Clique as well as 2-Club are both (2, nm)-
shrinkable by our discussion at the beginning of Section 5.2.2.

For the decision problems of (c, p)-shrinkable graph properties Π, it is easy to con-
struct a branching algorithm for finding a set S ⊆ V (G) of size at least k ∈ N in G such
that G[S] ∈ Π, or NONE when G does not contain such a set:

• If |V (G)| < k, then we return NONE.

• If G satisfies Π, then we return V (G).

• Otherwise, we compute a set of incompatible vertices I and branch over deleting
one of the vertices in I. If one of the branches returns a set S, then we return S,
otherwise we return NONE.
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v1 v2 v3

v4

v5

v6

C = {{v1, v5}, {v1, v6}}

(a) A graph G as well as all pairs of incom-
patible vertices with respect to 2-Club.

v1 v2 v3

v4

v6

C ′ = {{v1, v6}, {v4, v6}}

(b) G′ := G−v5 after removing v5 from the
set {v1, v5} of incompatible vertices, as well
as all pairs of incompatible vertices with re-
spect to 2-Club.

Figure 5.2: Figure 5.2a is an illustration of a graph G with six vertices, and the set C of
all pairs of incompatible vertices with respect to 2-Club. Recall that two vertices are
incompatible with respect to 2-Club when they have distance at least three. Figure 5.2b
is an illustration of G′ after removing vertex v5 from the incompatible set {v1, v5} from G.
We observe that in G′, {v4, v6} is a pair of incompatible vertices which was not part of C
before. Hence, the task of removing vertices until the resulting graph does not contain
a set of incompatible vertices anymore is not equivalent to the Hitting Set problem.

As the depth of our branching algorithm is bounded by n − k, the overall running
time of our algorithm is O(cn−k ·p(n,m)). We will prove the correctness of this approach
in Lemma 5.18. Note that the corresponding algorithms for clique and 2-club are the
same ones we briefly discussed at the beginning of Section 5.2.2.

We briefly mention that one might think that our problem is a variant of the Hitting
Set problem [GJ79], in the way that we are given an universe U with n elements and a
collection C ⊆ 2U , and we try to hit every S ∈ C with at most n− k elements. Here, U
corresponds to V (G) and a set S ∈ C corresponds to a set of incompatible vertices in G.
Although the comparison of both problems is appropriate, in our branching algorithm it
can happen that by hitting one set, we create a new set of incompatible vertices which
has not existed before, thus changing C. See Figure 5.2 for such an example for 2-Club.
However, our problem is an implicit Hitting Set problem as stated by Moreno-Centeno
and Karp [MK13, Chapter 1]. Here, C is not listed explicitly, but given implicitly as an
oracle which also depends on the current solution set.

This difference of the two problems shows that we cannot lift the idea of the KWB-
algorithm of Komusiewicz and Walteros and Buchanan where they searched for a large
clique by searching for a small vertex cover in the complement graph, or in other words,
solving a Hitting Set instance. We really have to branch over the current set of
incompatible vertices and compute a new set of incompatible vertices afterwards as
needed, instead of computing all sets of incompatible vertices at once.



5.2. THE GAP-FRAMEWORK 71

Algorithm 1 Algorithm deciding Induced Π-Subgraph

Input: A graph property Π which is (c, p)-shrinkable, an integer x ∈ N such that Π has
diameter at most x, a graph G, and an integer z ∈ N.

Output: A set S ⊆ V (G) of size at least αx(G) + 1 − z such that G[S] ∈ Π, or NONE

when no such set exists.
1: function MainΠ(Π, x,G, z)
2: (v1, v2, . . . , vn)← a weak x-degeneracy ordering of G . see Section 5.1.2
3: Compute subgraphs Gx1 ,Gx2 , . . . ,Gxn of G . see Section 5.2.1
4: Search for S in our subgraphs with branching algorithm . see Section 5.2.2
5: if suitable S found then return S else return NONE

6: end function

5.2.3 Combining Both Ingredients of the Framework

Next, we combine both ingredients of the KWB-algorithm for Maximum Clique, that
is the Turing kernel as well as the branching algorithm, to decide Induced Π-Subgraph
for graph properties Π with the restrictions described in Sections 5.2.1 and 5.2.2. At
the end, we will show how to use our results to solve the corresponding maximization
problems as well.

In the following, we will slightly modify the notation for Induced Π-Subgraph.
First, we assume that the graph property Π has diameter at most x for some x ∈ N.
Then, instead of searching for a solution of order k in a graph G, we assume that an
integer z is given such that we have to decide whether there is a vertex set S ⊆ V (G)
such that |S| ≥ αx+1−z holds and G[S] satisfies Π, where αx is the weak x-degeneracy
of G. In other words, we check whether gΠ(G) := αx + 1 − ωΠ is at most z. If there
exists such a set S, then we will return it, otherwise we will return NONE.

Note that if Π has diameter at most x, then αx(G) + 1− |S| is always non-negative.
This is because from Lemma 5.14 we conclude that a set S ⊆ V (G) such that G[S] ∈
Π has order at most αx(G) + 1, as each subgraph in the Turing kernel contains at
most αx(G) + 1 vertices.

By restricting ourselves to graph properties which are (c, p)-shrinkable for some c ∈ N
and some polynomial p according to Definition 5.17, the following algorithm for In-
duced Π-Subgraph combines our Turing kernel from Lemma 5.14 with our search-tree
algorithm from Section 5.2.2 and the new parameter gΠ: Let (Π, x,G, z) be an instance
of Induced Π-Subgraph, where Π has diameter at most x and Π is (c, p)-shrinkable
for some c ∈ N and a polynomial p. Recall that we check whether gΠ is at most z. First,
we compute a weak x-degeneracy ordering of G as well as the subgraphs Gx1 ,Gx2 , . . . ,Gxn
according to Definition 5.12. Afterwards, for each Gxi , we search a set S of size at
least αx(G) + 1 − z in Gxi such that Gxi [S] ∈ Π holds. This can be done by applying
our branching algorithm from Section 5.2.2. If we find in any of these subgraphs such a
set S, then gΠ is at most z and we return S. Otherwise, we return NONE. See Algorithm 1
for the pseudo-code.

Lemma 5.18. Algorithm 1 is correct and can be executed in time O(cz · n · p(n,m) +
αxnm), where z ∈ N is a number for which we check whether gΠ ≤ z, c ∈ N, and p is a
polynomial such that c and p only depend on Π.
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Proof. “⇒”: Assume G contains a set S ⊆ V (G) of size at least αx(G) + 1 − z such
that G[S] ∈ Π. Without loss of generality, assume that there is no set S ( S′ ⊆ V (G)
such that G[S′] satisfies Π as well.

Let vi be the leftmost vertex of S with respect to the computed weak x-degeneracy
ordering. Due to Lemma 5.14, S is a valid solution for the subgraph Gxi .

Next, we show that for the subgraph Gxi , our branching algorithm will find S in one of
its branches. If S = V (Gxi ), then our algorithm will return S. Otherwise, it will compute
a set of incompatible vertices I and branch over removing one of these |I| vertices. We
observe that by the definition of an incompatible set, it cannot happen that I is a subset
of S, because Gxi [S] satisfies Π. Hence, there exists at least one vertex v ∈ I \ S so that
the new graph Gxi − v still completely contains S. Now, by applying this argumentation
recursively and knowing that S is not part of a strictly larger solution, there is at least
one branch of our algorithm that removes all vertices from V (Gxi ) \ S. As S has size
at least αx(G) + 1 − z, our branching algorithm will not “cut” this particular branch
because of its depth. Hence, our algorithm will return a set of size at least αx(G)+1−z.

“⇐”: Assume that for some i ∈ [n], our branching algorithm returned a set S ⊆
V (Gxi ) for the subgraph Gxi of size at least αx(G) + 1 − z. As our algorithm does not
remove solely edges in any step, Gxi [S] ∈ Π holds. Due to Lemma 5.14, S is a valid
solution in G of size αx(G) + 1− z.

A weak x-degeneracy ordering of G as well as αx are computable in O(αxnm) time
as shown in Lemma 5.6. Furthermore, one can compute the subgraphs Gx1 , . . . ,Gxn
in O(nm) time as shown in Proposition 5.13. For some fixed i ∈ [n], our branching

algorithm runs in O(c
nGx
i
−(αx(G)+1−z) · p(n,m)) ⊆ O(c(αx(G)+1)−(αx(G)+1−z) · p(n,m)) =

O(cz · p(n,m)) time. All in all, Algorithm 1 can be executed in overall O(αxnm + (n ·
cz · p(n,m))) = O(cz · n · p(n,m) + αxnm) time.

By iteratively calling Algorithm 1 for z = 0, 1, . . . until we find the first set S such
that G[S] ∈ Π, we obtain our framework:

Theorem 5.19. Let Π be a graph property with diameter at most x ∈ N, and let Π be
(c, p)-shrinkable for some c ∈ N and a polynomial p only depending on Π. Furthermore,
let P be the corresponding maximization problem of Π. Then, P can be solved in O(cgΠ ·
n ·p(n,m) +αxnm) time, where gΠ := αx+ 1−ωΠ, with αx being the weak x-degeneracy
of G, and ωΠ being the maximum size of a set S ⊆ V (G) such that G[S] satisfies Π.

Note that we apply the “(c, p)-shrinkable-algorithm” only to the subgraphs of the
Turing kernel, which have an upper bound of αx+1 on the number of vertices. Hence, this
sub-algorithm can also be executed in O(p(αx, α

2
x)) time rather than O(p(n,m)) time.

We will use this observation more in Chapter 6.
In Chapter 6, we will apply Theorem 5.19 to the graph properties s-club, connected

s-defective clique, and connected s-plex for all constant s ∈ N. Note that we will give
an overview of values of the new “relaxed gaps” for these three graph properties in
real-world graphs in Appendix A.



Chapter 6

Applying the Gap-Framework

In Chapter 5, we have presented a framework for solving the respective maximization
problem of various clique relaxations. In this chapter, we will show how to apply our
gap-framework to the maximization problems Maximum Connected s-Defective
Clique, Maximum Connected s-Plex, and Maximum s-Club. We will denote their
corresponding graph properties with ΠCs-DC, ΠCs-P, and Πs-Club, respectively. In other
words, a graph G satisfies ΠCs-DC when G is connected and contains at most s ∈ N non-
edges; ΠCs-P when G is connected and has minimum degree at least n− s with s ∈ N+;
and Πs-Club when G has diameter at most s ∈ N+.

Recall from Theorem 5.19 that in order to apply our framework to some graph
property Π, we have to show that

(1) Π has diameter at most x ∈ N, that is, all graphs satisfying Π have diameter at
most x ∈ N (for applying our Turing kernel from Section 5.2.1), and

(2) Π is (c, p)-shrinkable, that is, for some c ∈ N and polynomial p (without its argu-
ments) only depending on Π, we can decide for some graph G in O(p(n,m)) time
whether G satisfies Π, or otherwise compute a set of at most c incompatible ver-
tices (that is, they cannot be all part of the same solution) in O(p(n,m)) time as
well (for applying our branching algorithm from Section 5.2.2).

In Sections 6.1.1, 6.2.1 and 6.3.1, our goal is to show that ΠCs-DC, ΠCs-P, and Πs-Club

all satisfy both ingredients of our framework.

For ingredient (1), we will present in Section 6.1.1 an upper bound x ∈ N on the
diameter of ΠCs-DC which is tight, that is, for all s ∈ N there exists a graph G ∈
ΠCs-DC with diameter exactly x. We will provide similar tight results from the literature
for ΠCs-P and Πs-Club in the respective subsections.

For ingredient (2), we will show that:

• ΠCs-DC is (2 · (s+ 1), n2)-shrinkable for all s ∈ N,

• ΠCs-P is (s+ 1, n+m)-shrinkable for all s ∈ N+, and

• Πs-Club is (2, n2)-shrinkable for all s ∈ N+.

73
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We will also show in Section 6.1.1 that under standard complexity assumptions, there
is no c ∈ N and no polynomial p such that for all s ∈ N, ΠCs-DC is (c, p)-shrinkable. This
means, informally speaking, that we cannot get rid of the dependence on the parameter s
in the size of the incompatible set. In Section 6.2.1, we will provide a similar result
for ΠCs-P for all s ∈ N+. In contrast to these two results, we will show in Section 6.3.1
that such a c and p exist for Πs-Club, as it is (2, n2)-shrinkable for all s ∈ N+, hence we
can get rid of the dependence on the parameter s for Πs-Club.

Combining both ingredients, we will apply our gap-framework to these three clique
relaxations. Before we present the results, recall from Definition 5.1 that for some x ∈
N+, a graph G has weak x-degeneracy αx ∈ N+ when αx is the minimum number such
that each subgraph of G contains a vertex with an x-neighborhood of size at most αx.

Theorem 6.1. Let s ∈ N. Then, Maximum Connected s-Defective Clique is
solvable in O((2 · (s+ 1))gCs-DC · n · α2

∗ + α∗nm) time, where gCs-DC := α∗ + 1− ωCs-DC,

with α∗ being the weak
⌊√

2s+ 1
4 + 1

2

⌋
-degeneracy of G, and ωCs-DC being the maximum

size of a set S ⊆ V (G) such that G[S] satisfies ΠCs-DC.

Theorem 6.2. Let s ∈ N+. Then, Maximum Connected s-Plex is solvable in O((s+
1)gCs-P · n · α2

s + αsnm) time, where gCs-P := αs + 1 − ωCs-P, with αs being the weak s-
degeneracy of G, and ωCs-P being the maximum size of a set S ⊆ V (G) such that G[S]
satisfies ΠCs-P.

Theorem 6.3. Let s ∈ N+. Then, Maximum s-Club is solvable in O(2gs-Club · n · α3
s +

αsnm) time, where gs-Club := αs + 1−ωs-Club, with αs being the weak s-degeneracy of G,
and ωs-Club being the maximum size of a set S ⊆ V (G) such that G[S] satisfies Πs-Club.

To complement these results, note that we present the values for the “relaxed gaps”
in some real-world graphs in Appendix A.

Afterwards, in Sections 6.1.2 and 6.2.2, we will show for the graph properties ΠCs-DC

and ΠCs-P that parts of our framework can easily be replaced by “similar” algorithms.
Our goal is to provide adaptations of our framework which might perform better in
practice when certain additional criteria are met. To be more precise, we will start by
adapting ingredient (1) of our framework. That is, we will show that “large” connected
s-defective cliques and “large” connected s-plexes have a “small” diameter. These ob-
servations will help us finding better upper bounds on the sizes of our Turing kernels
for ΠCs-DC and ΠCs-P. In contrast, we will prove in Section 6.3.2 that for “large” s-
clubs, a better upper bound on the diameter does not exist. Moreover, for ΠCs-DC, we
will show that we can also adapt ingredient (2) of our framework. That is, we will replace
in Section 6.1.2 the branching algorithm of our framework with an alternative branching
algorithm from the literature.

Next, we will apply our gap-framework to Maximum Connected s-Defective
Clique.

6.1 Maximum Connected s-Defective Clique

In the following, we will apply Theorem 5.19 to the family of the Maximum Connected
s-Defective Clique problems for all s ∈ N. Recall that in a graph G, S ⊆ V (G) is
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a connected s-defective clique if G[S] is connected and contains at most s non-edges.
We will show how to fulfill all requirements of Theorem 5.19 for the graph property of
“being a connected s-defective clique” (in the following denoted with ΠCs-DC) for all s.
Afterwards, we will show that “large” connected s-defective cliques have a “small” di-
ameter and present two different ways on how to deal with “small” connected s-defective
cliques. Furthermore, we will provide a second branching algorithm for solving Con-
nected s-Defective Clique and show how we can adapt our framework with it.

6.1.1 Application of the Framework

Recall that in order to apply our framework, we have to show that for all s ∈ N there ex-
ists an upper bound on the diameter of ΠCs-DC, and that each ΠCs-DC is (c, p)-shrinkable
for some c ∈ N and some polynomial p.

Upper bound on diameter. For each s ∈ N, an upper bound of s+ 1 on the diam-
eter of ΠCs-DC can be achieved due to Pattillo, Youssef, and Butenko [PYB13, Proposi-
tion 4] because each connected s-defective clique is a connected s + 1-plex as observed
by Trukhanov et al. [Tru+13, Section 3.1] and Shirokikh [Shi13, Proposition 2.7].

We will show next that
⌊√

2s+ 1
4 + 1

2

⌋
is also an upper bound on the diameter of a

connected s-defective clique for all s ∈ N+. Note that
⌊√

2s+ 1
4 + 1

2

⌋
is at most s + 1

for all s ∈ N. Furthermore, we show that our upper bound is tight, which means
that for each s ∈ N, there exists a connected s-defective clique with diameter ex-

actly
⌊√

2s+ 1
4 + 1

2

⌋
.

Lemma 6.4. For all s ∈ N, a graph G satisfying the graph property ΠCs-DC has diameter

at most
⌊√

2s+ 1
4 + 1

2

⌋
. This upper bound is tight.

Proof. Let G be a graph with diameter x ∈ N+ satisfying ΠCs-DC for some s ∈ N. Hence,
there exist two vertices u, v in G such that u and v have distance exactly x. Thus, there
exists an induced path Px+1 on x+ 1 vertices in G.

Next, we calculate how many edges Px+1 misses to be a clique Kx+1 on x+1 vertices.
Note that this number is a lower bound on the number of missing edges in G. Recall
that due to the definition of a connected s-defective clique, G misses at most s edges.
As |E(Kx+1)| = x2+x

2 and |E(Px+1)| = x, the following inequality has to hold:

s ≥ x2

2
− x

2
. (6.1)

Solving Inequality 6.1 like an equation for x leads to the two roots x = 1
2 +

√
1
4 + 2s

and x = 1
2 −

√
1
4 + 2s. We only concentrate on the first root, as for all s ∈ N, the value

of x for the second root is non-positive, hence the diameter x of the graph would be

non-positive. Due to the first root, x ≤
√

2s+ 1
4 + 1

2 has to hold. As the diameter x of

a graph is always an integer, we conclude that x ≤
⌊√

2s+ 1
4 + 1

2

⌋
.
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Lastly, note that by construction, for a given s ∈ N, a path on
⌊√

2s+ 1
4 + 1

2

⌋
+

1 vertices is a connected s-defective clique and has diameter exactly
⌊√

2s+ 1
4 + 1

2

⌋
.

(c, p)-shrinkable. Next, we will show that for all s ∈ N, ΠCs-DC is (2 · (s + 1), n2)-
shrinkable according to Definition 5.17. Our proof is based on ideas from Observation 4.2
and Proposition 4.3.

Lemma 6.5. For all s ∈ N, the graph property ΠCs-DC is (2 · (s+ 1), n2)-shrinkable.

Proof. Let G be a graph. First, we show that it is possible to decide whether G satis-
fies ΠCs-DC in linear time. Recall that G ∈ ΠCs-DC holds if and only if G is connected
and contains at most s non-edges. Hence, it is enough to check that G is connected and
count the number of edges in G, which can be done in overall linear time.

Second, we show that if G 6∈ ΠCs-DC, then it is possible to construct a set I of
incompatible vertices so that |I| ≤ 2 · (s + 1). If G is disconnected, then two vertices
from different connected components form an incompatible set of size two. Otherwise, G
misses at least s+1 edges. It is possible to find a set of s+1 missing edges in O(n2) time
by constructing an adjacency matrix first. As s+1 “edges” have at most 2·(s+1) unique
endpoints, and not all of these endpoints can be part of the same connected s-defective
clique, this set of endpoints is a set of incompatible vertices.

All in all, ΠCs-DC is (2 · (s+ 1), n2)-shrinkable, and Lemma 6.5 holds.

Next, we mention that under standard complexity assumptions, it is unlikely that
there exist a constant c ∈ N and a polynomial p such that for all s ∈ N, ΠCs-DC is (c, p)-
shrinkable. This means, informally speaking, that we cannot get rid of the dependence
on the parameter s in the size of the incompatible set. To observe this, recall that
s-Defective Clique is W [1]-hard with respect to n − k [Cai08; GNW07], where k is
the solution size. If ΠCs-DC would be (c, p)-shrinkable for all s ∈ N, then due to our
results in Section 5.2.2, we would have shown that the decision problem Connected s-
Defective Clique where s is part of the input is fixed-parameter tractable with respect
to n−k. However, as one can easily reduce s-Defective Clique with respect to n−k to
Connected s-Defective Clique with respect to n−k by adding a new vertex which
is connected to all other vertices in the graph, under standard complexity assumptions
this would lead to a contradiction to the result that s-Defective Clique is W [1]-hard
with respect to n− k.

Applying our gap-framework. Next, we connect Lemmas 6.4 and 6.5 to apply The-
orem 5.19 to ΠCs-DC for all s ∈ N. Note that due to our Turing kernel from Lemma 5.14,
we apply Lemma 6.5 only to graphs which have at most α⌊√

2s+ 1
4

+ 1
2

⌋ + 1 vertices.

Theorem 6.1. Let s ∈ N. Then, Maximum Connected s-Defective Clique is
solvable in O((2 · (s+ 1))gCs-DC · n · α2

∗ + α∗nm) time, where gCs-DC := α∗ + 1− ωCs-DC,

with α∗ being the weak
⌊√

2s+ 1
4 + 1

2

⌋
-degeneracy of G, and ωCs-DC being the maximum

size of a set S ⊆ V (G) such that G[S] satisfies ΠCs-DC.
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In practice, one could try to improve the running time of this algorithm by first
applying our two problem kernels from Chapter 4.

6.1.2 Adaptation of the Framework

In the following subsection, we will discuss how to modify our gap-framework with
respect to Maximum Connected s-Defective Clique. That is, we first show how to
reduce the size of our Turing kernel when we assume that a “large” connected s-defective
clique exists inside the input graph. Afterwards, we will show how we can replace the
branching algorithm of our gap-framework by applying ideas from the literature.

Modifying the Turing Kernel

As discussed, the upper bound on the diameter given in Lemma 6.4 is, for arbitrary n,
tight. However, for large connected s-defective cliques, we can give a better upper bound.
The following observation can be seen as a modification of the proof of Kosub [Kos04,
Proposition 6.2.2], which is a proof for a similar statement about the diameter of an
s-plex which was first observed by Seidman and Foster [SF78].

Observation 6.6. Let s ∈ N. Then, every graph G ∈ ΠCs-DC with at least s+2 vertices
has diameter at most two.

Proof. Assume towards a contradiction thatG has diameter at least three. Hence, G con-
tains two vertices u, v with distance exactly three. In other words, the edge {u, v} is not
part of G, and for each vertex w ∈ V (G) \ {u, v}, at least one of the edges {u,w}, {w, v}
cannot be part of G. This means that G misses at least 1 + |V (G) \ {u, v}| ≥ 1 + ((s+
2) − 2) > s edges, which is a contradiction to the assumption that G satisfies ΠCs-DC.
Hence, G has diameter at most two, and Observation 6.6 holds.

Note that Observation 6.6 strengthens a result of Pattillo, Youssef, and Butenko
[PYB13, Proposition 8.d] (observed by Gschwind et al. [Gsc+20, Table 1]), as Pattillo,
Youssef, and Butenko only showed that s-defective cliques of order at least s + 2 are
connected. Furthermore, as s + 2 ≤ 2s + 1 holds for all s ∈ N+, Observation 6.6
strengthens a result of Shirokikh [Shi13, Corollary 4.3], as he only showed that s-defective
cliques of order at least 2s+ 1 have diameter at most two.

Next, we can adapt Theorem 6.1 for solving Maximum Connected s-Defective
Clique when the input graph G contains a connected s-defective clique of order at
least s+ 2: As the diameter of a maximum-order connected s-defective clique in G is at
most two due to Observation 6.6, we only have to consider the weak 2-degeneracy of G,

rather than the weak
⌊√

2s+ 1
4 + 1

2

⌋
-degeneracy as in Theorem 6.1. In the following,

we will call this new algorithm the adapted framework. However, in the general case
one cannot assume that G contains such a large connected s-defective clique. Then,
our adapted framework alone might not return a maximum-order connected s-defective
clique. For example, if s = 3 and the input graph G := P4 is a path on four vertices,
then the maximum-order connected s-defective clique of G is G itself, but as G has
diameter three, our adapted framework will not consider it as a solution. Hence, we will
provide two strategies for solving Maximum Connected s-Defective Clique in the
case of ωCs-DC(G) ≤ s+ 1.
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Finding small solutions through brute-force. The following idea serves as a
warm-up. The most obvious idea for finding a maximum-order connected s-defective
clique of order at most s + 1 in G is to use a brute-force algorithm which checks all
induced subgraphs of order at most s+ 1 in O(ns+2 · s2) time.

Hence, by returning a maximum-order connected s-defective clique which was re-
turned by our adapted framework or our brute-force algorithm, we get the following
result.

Theorem 6.7. Let s ∈ N. Maximum Connected s-Defective Clique is solvable
in O(((2 · (s+ 1))α2+1−ωCs-DC · n · α2

2 + α2nm) + ns+2 · s2) time, with α2 being the weak
2-degeneracy of G, and ωCs-DC being the maximum size of a set S ⊆ V (G) such that G[S]
satisfies ΠCs-DC.

Note that as Observation 6.6 does not assume that the s-defective clique is already
connected and we consider all subsets of size at most s+ 1 in Theorem 6.7, we can use
the same algorithm to solve the standard Maximum s-Defective Clique problem as
well in the same running time.

One might try to find an algorithm for solving Maximum Connected s-Defective
Clique in the case of ωCs-DC ≤ s + 1 in f(s, k, d) · (n + m)O(1) time, where f is some
computable function and d is the standard degeneracy of a graph. In other words,
one might try to get rid of the dependence on the parameter s in the exponent of
the O(ns+2 · s2)-time algorithm, while using parameters which are already part of the
exponential running time of our framework (k corresponds to ωCs-DC, d is at most α2).
Unfortunately, due to Corollary 3.6, Connected s-Defective Clique is W [1]-hard
with respect to k + s + d, even if k ∈ O(

√
s). Hence, assuming that ωCs-DC ≤ s + 1

does not help us to develop an FPT-algorithm for deciding Connected s-Defective
Clique with respect to k + s+ d under standard complexity assumptions.

Changing the diameter before finding small solutions through brute-force.
Our second idea for solving Maximum Connected s-Defective Clique when the
input graph only contains “small” solutions builds upon our first idea. The difference is
that before we find such a “small” solution by brute-force, first we re-define what a small
solution is by changing the upper bound on the diameter for our adapted framework.
Informally speaking, by not only searching for connected s-defective cliques of diameter
at most two with our adapted framework, but searching for connected s-defective cliques
of diameter at most ν > 2, the maximum-order of a connected s-defective cliques which
has diameter at least ν + 1 decreases from s + 1 to some smaller number. Hence, the
exponent of the brute-force algorithm decreases. Note that this idea circumvents the
hardness result from above.

Theorem 6.8. Let s, ν ∈ N. Then, Maximum Connected s-Defective Clique
is solvable in O(((2 · (s + 1))α∗+1−ωCs-DC · n · α2

∗ + α∗nm) + nν+1 · ν2) time, with α∗

being the weak
⌈
1 + 2·(s+1)

ν

⌉
-degeneracy of G, and ωCs-DC being the maximum size of a

set S ⊆ V (G) such that G[S] satisfies ΠCs-DC.

The main idea to prove Theorem 6.8 is that a “large” connected s-defective clique has
to contain a “large” star. As stars have diameter at most two, the connected s-defective
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clique also has to have a “small” diameter. We start with an easy observation about the
maximum degree ∆ of a connected s-defective clique. Although it is straightforward, to
the best of our knowledge it was not considered before in the literature.

Observation 6.9. Let s ∈ N. Then, for every graph G ∈ ΠCs-DC it holds that ∆ >
(n− 1)− 2·(s+1)

n .

Proof. Assume towards a contradiction that ∆ ≤ (n − 1) − 2·(s+1)
n . Recall that by

definition, a connected s-defective clique contains at least
(
n
2

)
− s edges. Next, we count

the number of edges in G.

(
n

2

)
− s ≤ |E(G)|

Handshaking Lemma
=

∑
v∈V (G) deg(v)

2

≤ n ·∆
2

≤
n · ((n− 1)− 2·(s+1)

n )

2

=

(
n

2

)
− (s+ 1)

However, this is a contradiction, as
(
n
2

)
− s >

(
n
2

)
− (s+ 1). Hence, our assumption was

wrong and Observation 6.9 holds.

For finding an upper bound on the diameter of a connected s-defective clique, note
that for every graph G and vertex v it holds that G[N [v]] contains a star with v as the
center and N(v) as the leaves. Thus every graph contains a star of order ∆ + 1.

Lemma 6.10. Let s ∈ N. Then, for every graph G ∈ ΠCs-DC it holds that diameter(G) ≤⌈
1 + 2·(s+1)

n

⌉
.

Proof. We conclude from Observation 6.9 that G contains a star K ′ of order strictly
greater than n − 2·(s+1)

n . Hence, there are strictly less than 2·(s+1)
n vertices in G which

are not part of K ′. As K ′ has diameter at most two, G is connected, and each ver-
tex which is not part of K ′ can increase the diameter of G by at most one, it holds
that diameter(G) < 2 + 2·(s+1)

n . As the diameter of a graph is always an integer, we

observe that diameter(G) ≤
⌈
2 + 2·(s+1)

n

⌉
− 1 =

⌈
1 + 2·(s+1)

n

⌉
.

Finally, we observe that for fixed s, our upper bound on the diameter on a connected
s-defective clique is non-increasing. Thus, our upper bound on the diameter of a con-
nected s-defective clique of order ν ∈ N is also an upper bound on the diameter of a
connected s-defective clique of order n ≥ ν. By searching for large and small connected
s-defective cliques separately as in Theorem 6.7, we have proven Theorem 6.8.
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Theorem 6.8. Let s, ν ∈ N. Then, Maximum Connected s-Defective Clique
is solvable in O(((2 · (s + 1))α∗+1−ωCs-DC · n · α2

∗ + α∗nm) + nν+1 · ν2) time, with α∗

being the weak
⌈
1 + 2·(s+1)

ν

⌉
-degeneracy of G, and ωCs-DC being the maximum size of a

set S ⊆ V (G) such that G[S] satisfies ΠCs-DC.

We observe that Theorem 6.7 is not a special case of Theorem 6.8, as setting s ≥
2, ν := s + 2 for Lemma 6.10 results in an upper bound of three on the diameter of
a connected s-defective clique of order at least ν, while due to Observation 6.6 such a
connected s-defective clique has diameter at most two.

Note that Chen et al. [Che+21, Property 2] also found a relation of the order and
the diameter of a connected s-defective clique. However, their result has an additional
constraint on the minimum order of a connected s-defective clique. Furthermore, for
a connected s-defective clique variant which is based on the density of the solution,
Pattillo, Youssef, and Butenko [PYB13, Proposition 8] found an upper bound on the
diameter of these solutions. Additionally, they showed that for each n ∈ N there exists
a solution with a diameter matching their upper bound. However, we were unable to
relate Lemma 6.10 to the results of Chen et al. and Pattillo, Youssef, and Butenko.
Nevertheless, our result provides a different perspective for finding an upper bound on
the diameter of a connected s-defective clique.

Modifying the Branching Algorithm

After we have modified the Turing kernel of our framework for Maximum Connected s-
Defective Clique, we will replace next the branching algorithm of our gap-framework
for this problem. Recall from Section 5.2.2 that when applying our framework, we
usually branch over deleting one of the vertices of an incompatible set. However, in
the special case of Maximum Connected s-Defective Clique, we can describe a
different branching algorithm which also takes the edges of the graph into account. This
algorithm was first described by Raman and Saurabh [RS08, Theorem 10] for the dual
problem of s-Defective Clique, the Partial Vertex Cover problem. We will
shortly recall the idea of this algorithm for Connected s-Defective Clique.

The basic idea of this algorithm is that for an instance (G, k, s) of Connected s-
Defective Clique where n ≥ k and G is not already a connected s-defective clique,
we branch for each missing edge {u, v} 6∈ E(G) into three cases:

1. Assume that u is not part of the solution; proceed on G− u;

2. Assume that v is not part of the solution; proceed on G− v;

3. Assume that u and v are both part of the solution; decrease s by one; proceed
on G− {u, v}.

Note that we can verify whether G is a connected s-defective clique or otherwise find
a missing edge of G in overall O(n2) time (see the details inside the proof of Lemma 6.5).
As we decrease n − k in the first two cases, and we decrease s in the third case, this
branching algorithm runs in O(3(n−k)+s ·n2) time. The correctness follows directly from
Raman and Saurabh [RS08, Theorem 10]. For a discussion on the relation between the
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running times of the “original” branching algorithm following from Lemma 6.5 and the
“new” branching algorithm of Raman and Saurabh, we refer to Section 4.2.

By replacing our branching algorithm from Theorem 6.1 with this new branching
algorithm described above, we get the following result.

Theorem 6.11. Let s ∈ N. Then, Maximum Connected s-Defective Clique is
solvable in O(3gCs-DC+s · n · α2

∗ + α∗nm) time, where gCs-DC := α∗ + 1− ωCs-DC, with α∗

being the weak
⌊√

2s+ 1
4 + 1

2

⌋
-degeneracy of G, and ωCs-DC being the maximum size of

a set S ⊆ V (G) such that G[S] satisfies ΠCs-DC.

Next, we will apply our gap-framework to Maximum Connected s-Plex.

6.2 Maximum Connected s-Plex

In the following, we will apply Theorem 5.19 to the family of the Maximum Connected
s-Plex problems for all s ∈ N+. Recall that in a graph G, S ⊆ V (G) is a connected
s-plex when G[S] is connected and δ(G[S]) ≥ |S| − s, where δ is the minimum degree.
We will show how to fulfill all requirements of Theorem 5.19 for the graph property of
“being a connected s-plex” (in the following denoted with ΠCs-P) for all s. Afterwards,
we will note that “large” connected s-plexes have a “small” diameter and present three
different ways on how to deal with “small” connected s-plexes.

6.2.1 Application of the Framework

Recall that in order to apply our framework, we have to show that for all s ∈ N+ there
exists an upper bound on the diameter of ΠCs-P, and that each ΠCs-P is (c, p)-shrinkable
for some c ∈ N and some polynomial p.

Upper bound on diameter. We start with the following observation from the liter-
ature.

Observation 6.12 (Pattillo, Youssef, and Butenko [PYB13, Proposition 4]). For all s ∈
N+, the graph property ΠCs-P has diameter at most s. This upper bound is tight.

Note that tight means that for each s ∈ N+, there exists a graph G (a path on s +
1 vertices) satisfying ΠCs-P and having diameter exactly s.

(c, p)-shrinkable. Next, we will show that for all s ∈ N+, ΠCs-P is (s + 1, n + m)-
shrinkable according to Definition 5.17. Our proof is based on ideas from Komusiewicz
et al. [Kom+09, Theorem 6].

Lemma 6.13. For all s ∈ N+, the graph property ΠCs-P is (s+ 1, n+m)-shrinkable.

Proof. Let G be a graph. First, we show that it is possible to decide whether G sat-
isfies ΠCs-P in linear time. Recall that G ∈ ΠCs-P holds if and only if G is connected
and δ(G) ≥ n − s. Hence, it is enough to check that G is connected and compute the
minimum degree of G, which can be done in overall linear time.
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Second, we show that if G 6∈ ΠCs-P, then it is possible to construct a set I of
incompatible vertices so that |I| ≤ (s+ 1). If G is disconnected, then two vertices from
different connected components form an incompatible set of size two. Otherwise, by the
definition of ΠCs-P, G contains a vertex v such that deg(v) ≤ n − (s + 1). Let J be a
set of exactly s vertices which are not adjacent to v, and I := J ∪ {v}. As Komusiewicz
et al. [Kom+09, Theorem 6] already observed, there cannot exist a set I ⊆ S ⊆ V (G)
such that G[S] ∈ ΠCs-P, as otherwise degG[S](v) ≤ |S| − (s+ 1) holds, contradicting the
definition of a connected s-plex. It is possible to find a minimum-degree vertex v as well
as s non-neighbors of v in linear time.

All in all, ΠCs-P is (s+ 1, n+m)-shrinkable, and Lemma 6.13 holds.

Next, we mention that under standard complexity assumptions, it is unlikely that
there exist a constant c ∈ N and a polynomial p such that for all s ∈ N+, ΠCs-P is (c, p)-
shrinkable. Informally speaking, we cannot get rid of the dependence on the parameter s
in the size of the incompatible set. To observe this, note that s-Plex is W [2]-complete
with respect to n − k [Fel+11], where k is the solution size. If ΠCs-P would be (c, p)-
shrinkable for all s ∈ N+, then due to our results in Section 5.2.2, we would have shown
that the decision problem Connected s-Plex where s is part of the input is fixed-
parameter tractable with respect to n − k. However, as one can easily reduce s-Plex
with respect to n − k to Connected s-Plex with respect to n − k by adding a new
vertex which is connected to all other vertices in the graph, under standard complexity
assumptions this would lead to a contradiction to the result that s-Plex is W [2]-hard
with respect to n− k.

Applying our gap-framework. Next, we connect Observation 6.12 and Lemma 6.13
to apply Theorem 5.19 to ΠCs-P for all s ∈ N+. Note that due to our Turing kernel from
Lemma 5.14, we apply Lemma 6.13 only to graphs which have at most αs + 1 vertices.

Theorem 6.2. Let s ∈ N+. Then, Maximum Connected s-Plex is solvable in O((s+
1)gCs-P · n · α2

s + αsnm) time, where gCs-P := αs + 1 − ωCs-P, with αs being the weak s-
degeneracy of G, and ωCs-P being the maximum size of a set S ⊆ V (G) such that G[S]
satisfies ΠCs-P.

One could try to improve the running time of this algorithm by first applying one of
the two problem kernels of s-Plex with respect to the combined parameter (n− k) + s
from Fellows et al. [Fel+11, Theorem 1] and Moser, Niedermeier, and Sorge [MNS12,
Theorem 1], which are computable in O(n4 ·m) time and quadratic time, respectively.

6.2.2 Adaptation of the Framework

As discussed, the upper bound on the diameter given in Observation 6.12 is, for arbi-
trary n, tight. However, for large connected s-plexes, Seidman and Foster [SF78] gave a
better upper bound.

Observation 6.14. Let s ∈ N+. Then, every graph G ∈ ΠCs-P with at least 2s −
1 vertices has diameter at most two.
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Hence, we can adapt Theorem 6.2 for solving Maximum Connected s-Plex when
the input graph G contains a connected s-plex of order at least 2s − 1. This idea was
already briefly discussed by Trukhanov et al. [Tru+13, Subsection 3.3.3]: As the diameter
of a maximum-order connected s-plex in G is at most two due to Observation 6.14, we
only have to consider the weak 2-degeneracy of G, rather than the weak s-degeneracy as
in Theorem 6.2. In the following, we will call this new algorithm the adapted framework.
However, in the general case one cannot assume that G contains such a large connected s-
plex. Then, our adapted framework alone might not return a maximum-order connected
s-plex. For example, if s = 3 and the input graph G := P4 is a path on four vertices,
then the maximum-order connected s-plex of G is G itself, but as G has diameter three,
our adapted framework will not consider it as a solution. Hence, we will provide three
strategies for solving Maximum Connected s-Plex in the case of ωCs-P(G) ≤ 2s− 2.

Finding small solutions through brute-force. Like in the warm-up for connected
s-defective cliques, the most obvious idea for finding a maximum-order connected s-plex
of order at most 2s − 2 in G is to use a brute-force algorithm which checks all induced
subgraphs of order at most 2s− 2 in O(n2s−1 · s2) time.

Hence, by returning a maximum-order connected s-plex which was returned by our
adapted framework or our brute-force algorithm, we get the following result.

Theorem 6.15. Let s ∈ N+. Then, the Maximum Connected s-Plex problem is
solvable in O(((s+1)α2+1−ωCs-P ·n ·α2

2 +α2nm)+n2s−1 ·s2) time, with α2 being the weak
2-degeneracy of G, and ωCs-P being the maximum size of a set S ⊆ V (G) such that G[S]
satisfies ΠCs-P.

Note that as Observation 6.14 does not assume that the s-plex is already connected
and we consider all subsets of size at most 2s− 2 in Theorem 6.15, we can use the same
algorithm to solve the standard Maximum s-Plex problem as well in the same running
time.

One might try to find an algorithm for solving Maximum Connected s-Plex in
the case of ωCs-P ≤ 2s − 2 in f(s, k, d) · (n + m)O(1) time, where f is some computable
function and d is the standard degeneracy of a graph. In other words, one might try to
get rid of the dependence on the parameter s in the exponent of the O(n2s−1 · s2)-time
algorithm, while using parameters which are already part of the exponential running
time of our framework (k corresponds to ωCs-P, d is at most α2). Unfortunately, this
is not possible under standard complexity assumptions, as we will present next. Recall
that Koana, Komusiewicz, and Sommer [KKS20, Theorem 3.3] showed that s-Plex
is W [1]-hard with respect to the combined parameter k + s + d. By studying their
reduction in more detail, we observe that if the resulting s-Plex-instance (G, k, s) is a
YES-instance, thenG contains an s-plex of order k, but not of order k+1, hence ωCs-P ≤ k.
Furthermore, we can observe that k ≤ 2s− 2 holds for all s ≥ 4. Lastly, we observe that
each s-plex of order k in G has to be connected. Hence, Connected s-Plex is W [1]-
hard with respect to the combined parameter k + s + d, even if ωCs-P ≤ 2s − 2. Thus,
assuming that ωCs-P ≤ 2s−2 does not help us to develop an FPT-algorithm for deciding
Connected s-Plex with respect to k+ s+ d under standard complexity assumptions.
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Changing the diameter before finding small solutions through brute-force.
Like for Connected s-Defective Clique, our second idea for solving Maximum
Connected s-Plex when the input graph only contains “small” solutions builds upon
our first idea. The difference is that before we find such a “small” solution by brute-
force, we re-define what a small solution is by changing the upper bound on the diameter
for our adapted framework. Informally speaking, by not only searching for connected s-
plexes of diameter at most two with our adapted framework, but searching for connected
s-plexes of diameter at most ν > 2, the maximum-order of a connected s-plex which has
diameter at least ν + 1 decreases from 2s − 2 to some smaller number. Hence, the
exponent of the brute-force algorithm decreases. Note that this idea circumvents the
hardness result from above. Before we present this idea, we briefly mention that the
obvious idea would be to use our approach from Observation 6.9 again, thus finding an
upper bound on the number of non-neighbors of a vertex in a connected s-plex G which
depends both on s and n. However, by definition of an s-plex, this number only depends
on s, thus we would get the same upper bound of s+ 1 on the diameter of a connected
s-plex as in Observation 6.12. Next, we present a different upper bound on the diameter
of ΠCs-P which depends both on s and ν, based on a result from the literature.

Theorem 6.16. Let s ∈ N+, ν ∈ N. Then, Maximum Connected s-Plex is solvable
in O(((s + 1)α∗+1−ωCs-P · n · α2

∗ + α∗nm) + nν+1 · ν2) time, with α∗ being the weak

max{
⌈

ν
ν−s+1

⌉
, 3 · (

⌊
ν−z
ν−s+1

⌋
− 1) + z, z ∈ {0, 1, 2}}-degeneracy of G, and ωCs-P being the

maximum size of a set S ⊆ V (G) such that G[S] satisfies ΠCs-P.

Proof. First, note that Pattillo, Youssef, and Butenko [PYB13, Proposition 5.a] showed
for all s ∈ N+ that each graph G satisfying ΠCs-P has diameter at most f(s, n) :=

max{
⌈

n
n−s+1

⌉
, 3 · (

⌊
n−z
n−s+1

⌋
− 1) + z, z ∈ {0, 1, 2}}.

Note that we cannot guess the exact maximum-order of a connected s-plex in the
input graph G in polynomial time (as Connected s-Plex is NP-hard), but we can only
find a (heuristic) lower bound ν ∈ N on this order. Hence, to use the result of Pattillo,
Youssef, and Butenko for Theorem 6.16, we have to show that for all constant s it holds
that f is non-increasing in order to know that f(s, ν) is an upper bound on the diameter
we have to consider, even if the maximum order of a connected s-plex is larger than ν.
Without loss of generality, we assume that n ≥ s + 2, as each connected subgraph of
order at most s+ 1 is a connected s-plex [PYB13].

To show that f(s, n) ≥ f(s, n+ 1) holds, note that due to the definition of the max-
function, it is sufficient to show that every function which is part of the max-function
is itself non-increasing. Additionally, due to applying equivalent transformations, it is
sufficient to show that n−z

n−s+1 is non-increasing for all z ∈ {0, 1, 2}. Next, we observe
that

n− z
n− s+ 1

=
n− (s− 1) + (s− 1)− z

n− s+ 1
= 1 +

s− z − 1

n− s+ 1
.

It is easy to see that the denominator of s−z−1
n−s+1 is positive as we assume n ≥ s.

Furthermore, if s ≥ 3, then the numerator is non-negative for all z, hence in this case it
is easy to see that 1 + s−z−1

n−s+1 is non-increasing.
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For the case of s = 2, note that if z ∈ {0, 1}, then 1 + s−z−1
n−s+1 is also non-increasing.

In the case of z = 2, it is easy to see that 1 − 1
n−1 ∈ [0, 1) for all n ≥ s. As the values

get floored afterwards,
⌊
1− 1

n−1

⌋
is non-increasing for n ≥ s.

For the case of s = 1, note that if z = 0, then 1 + s−z−1
n−s+1 is also non-increasing. In

the case of z = 1, it is easy to see that 1 − 1
n ∈ [0, 1) for all n ≥ s. As the values get

floored afterwards,
⌊
1− 1

n

⌋
is non-increasing for n ≥ s. In the case of z = 2, it is easy

to see that 1− 2
n ∈ [0, 1) for all n ≥ s+ 1. As the values get floored afterwards,

⌊
1− 2

n

⌋
is non-increasing for n ≥ s.

Hence, f(s, n) ≥ f(s, n+ 1) holds for all s ∈ N+, n ≥ s+ 2.

In the end, we adapt our framework in the same way as in Theorem 6.8 for connected
s-defective cliques. That is, we search for large and small connected s-plexes separately
as in Theorem 6.15. Additionally, we assume that if the branching algorithm of our
framework as well as the brute-force algorithm return a connected s-plex of size at
most s, then it is possible to find a connected s-plex of order s+ 1 in linear time. All in
all, Theorem 6.16 holds.

Note that if we set ν := 2s− 1, then we can observe that Theorem 6.15 is a special
case of Theorem 6.16. This is no surprise, as Pattillo, Youssef, and Butenko [PYB13,
Proposition 5.a] showed that their formula is tight, that is for all s ∈ N+, n ∈ N there
exists a graph G ∈ ΠCs-P such that diameter(G) = f(s, n).

We mention that Xiao et al. [Xia+17, Property 3] also found a relation of the order
and the diameter of a connected s-plex by generalizing Observation 6.12. However, as in
their formula the order and the diameter are more intertwined, we were unable to apply
or relate their result to our framework.

Finding small solutions by iteratively increasing the search space. Our third
idea for solving Maximum Connected s-Plex in the case of ωCs-P ≤ 2s − 2 is to
successively assume that ωCs-P = 2s− 2, 2s− 3, . . . , 0. Let z be the value of the current
iteration. In each iteration, we assume that the diameter of a connected s-plex is at
most z − 1, hence we could adapt Theorem 6.2 as before, but this time we consider the
weak (z − 1)-degeneracy rather than the weak s-degeneracy. We would return the first
connected s-plex S we found such that |S| ≥ z. However, as the upper bound of z−1 on
the diameter decreases in each iteration, it would be sufficient to return the maximum-
order connected s-plex found in the case of z = 2s− 2. Furthermore, as (2s− 2)− 1 ≥ s
for all s ≥ 3, this idea alone would result in an algorithm which would not perform
better than the original algorithm of Theorem 6.2.

Hence, to make our idea useful, we have to find another upper bound on the di-
ameter of a connected s-plex S that is non-decreasing when the order of S decreases.
Furthermore, this upper bound on the diameter should also be smaller than the trivial
upper bound of s from Observation 6.12. Next, we present a result from the literature.
Due to Kosub [Kos04, Propostion 6.2.2], for all s ∈ N+ it holds that if a connected
s-plex S is of order at most 2s − 2, then it has diameter at most 2s + 2 − |S|. Note
that if ωCs-P ≥ s + 2 holds for the input graph G, then the upper bound of Kosub on
the diameter of a maximum-order connected s-plex in G is at most the trivial upper
bound of ωCs-P− 1. Furthermore, note that Maximum Connected s-Plex is trivially
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solvable for ωCs-P ≤ s + 1 by returning any connected subgraph of order exactly s + 1
as observed by Pattillo, Youssef, and Butenko [PYB13, Section 5].

Hence, the following algorithm can be applied to solve Maximum Connected s-
Plex for some s ∈ N+ and input graph G:

• Execute our adapted framework, if it returns a connected s-plex S of order at
least 2s− 1, then return S.

• Search for a connected s-plex S of order at least z with respect to the weak (2s+
2− z)-degeneracy of G for all z = 2s− 2, 2s− 3, . . . , ωCs-P; return the first S such
that |S| = z.

As the formula of Kosub is non-decreasing for constant s and decreasing |S|, and 2s+
2− z ≥ 2 holds for all s ∈ N+, z ∈ [2s− 2], it holds that 2s+ 2− ω∗ is an upper bound
on the largest diameter we have to consider, where ω∗ := min{2s− 1, ωCs-P}. Hence, we
get the following result.

Theorem 6.17. Let s ∈ N+. Then, the Maximum Connected s-Plex problem is
solvable in O((2s−ω∗) · ((s+ 1)α∗+1−ωCs-P ·n ·α2

∗+α∗nm)) time, with α∗ being the weak
(2s + 2 − ω∗)-degeneracy of G, ωCs-P being the maximum size of a set S ⊆ V (G) such
that G[S] satisfies ΠCs-P, and ω∗ := min{2s− 1, ωCs-P}.

In practice, this algorithm might perform better than the two brute-force algorithms
before in the case of ωCs-P being slightly smaller than 2s − 1. In other words, in this
case the diameter of a maximum-order connected s-plex is not necessarily two, but still
does not depend on s.

Finally, we will apply our gap-framework to Maximum s-Club.

6.3 Maximum s-Club

In the following, we will apply Theorem 5.19 to the family of the Maximum s-Club
problems for all s ∈ N+. Recall that in a graph G, S ⊆ V (G) is an s-club when G[S]
has diameter at most s. We will show how to fulfill all requirements of Theorem 5.19
for the graph property of “being an s-club” (in the following denoted with Πs-Club) for
all s. Afterwards, in contrast to connected s-defective cliques and connected s-plexes,
we will show for the sake of completeness that assuming that an s-club is “large” does
not result in a “small” diameter of this s-club.

6.3.1 Application of the Framework

To give another example on how to apply our framework from Theorem 5.19, we will
provide all of the steps for applying it to Πs-Club. Recall that in order to apply our
framework, we have to show that for all s ∈ N+ there exists an upper bound on the
diameter of Πs-Club, and that each Πs-Club is (c, p)-shrinkable for some c ∈ N and some
polynomial p.

The upper bound of s on the diameter follows directly from the definition.

Observation 6.18. For all s ∈ N+, the graph property Πs-Club has diameter at most s.
This upper bound is tight.
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Note that tight means that for each s ∈ N+, there exists a graph G (a path on s +
1 vertices) satisfying Πs-Club and having diameter exactly s.

(c, p)-shrinkable. Next, we will show that for all s ∈ N+, Πs-Club is (2, nm)-shrinkable
according to Definition 5.17. Our proof is based on ideas from Schäfer et al. [Sch+12,
Theorem 5].

Lemma 6.19. For all s ∈ N+, the graph property Πs-Club is (2, nm)-shrinkable.

Proof. Let G be a graph. First, we have to show that it is possible to decide whether G
satisfies Πs-Club in O(nm) time. Second, we have to show that if G 6∈ Πs-Club, then it is
possible to construct a set I of incompatible vertices in O(nm) time so that |I| = 2.

Both can be done by computing the distances between all pairs of vertices by starting
a breadth-first-search from each vertex in overall O(nm) time. Recall that G ∈ Πs-Club

holds if and only if G has diameter at most s. Hence by the definition of the diameter
of a graph, G ∈ Πs-Club holds if and only if all pairs of vertices have distance at most s.
Second, if G 6∈ Πs-Club, then it is easy to see that there have to exist two vertices u, v
in G with distance at least s + 1. As both u and v cannot be part of the same s-
club, they form a set I of incompatible vertices of size two. All of this can be done in
overall O(nm) time.

All in all, Πs-Club is (2, nm)-shrinkable, and Lemma 6.19 holds.

We mention that showing Πs-Club is (2, n2)-shrinkable for all s ∈ N+ would mean
that one could compute the diameter of a graph G in O(diameter(G) · n2) time by
iteratively calling this “(2, n2)-shrinkable-algorithm” for all s = 1, 2, . . . ,diameter(G),
until no set of incompatible vertices exists anymore. Such an O(diameter(G) · n2)-time
algorithm would improve the best known algorithm for computing the diameter of a
graph. Although not relevant for following the content of this thesis, we refer to Bentert
and Nichterlein [BN19] for a discussion on algorithms for computing the diameter of a
graph.

Applying our gap-framework. Next, we connect Observation 6.18 and Lemma 6.19
to apply Theorem 5.19 to Πs-Club for all s ∈ N+. Note that due to our Turing kernel from
Lemma 5.14, we apply Lemma 6.19 only to graphs which have at most αs + 1 vertices.

Theorem 6.3. Let s ∈ N+. Then, Maximum s-Club is solvable in O(2gs-Club · n · α3
s +

αsnm) time, where gs-Club := αs + 1−ωs-Club, with αs being the weak s-degeneracy of G,
and ωs-Club being the maximum size of a set S ⊆ V (G) such that G[S] satisfies Πs-Club.

Note that Hartung, Komusiewicz, and Nichterlein [HKN15a, Corollary 3] proved
that under the assumption that the SETH (see Hypothesis 5.8) holds, s-Club cannot
be decided in O∗((2−ε)n−ωs-Club) time for all s ≥ 2. As all subgraphs we look at have at
most αs + 1 vertices, the result of Hartung, Komusiewicz, and Nichterlein implies that
Theorem 6.3 cannot be significantly improved without violating the SETH.
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Kn−1+s Ps−1

Figure 6.1: An illustration of our graph Gs,n with s ∈ N+, n ≥ s+ 1. Note that Gs,n has
diameter exactly s.

6.3.2 No Adaptation of Framework Possible

As discussed, the upper bound on the diameter given in Observation 6.18 is, for arbi-
trary n, tight. Unfortunately, in contrast to connected s-defective cliques and connected
s-plexes, there is no better upper bound for large s-clubs, as we will show next.

We observe that for all s, n ∈ N+ such that n ≥ s + 1, there exists an s-club of
order n and diameter exactly s.

Observation 6.20. Let s ∈ N+, n ≥ s + 1. Then, there exists a graph Gs,n ∈ Πs-Club

of order n such that G has diameter exactly s.

Proof. Let Gs,n be a graph consisting of the disjoint union of a clique Kn+1−s and a
path Ps−1. Furthermore, if s ≥ 2, then we add an edge connecting an arbitrary vertex
of Kn+1−s with one of the endpoints of Ps−1. See Figure 6.1 for an illustration of Gs,n.
It is easy to see that Gs,n has order exactly n and diameter exactly s.

In the context of this thesis, in this chapter we have presented how to apply our
gap-framework from Theorem 5.19 (which is a generalization of the KWB-algorithm for
solving Maximum Clique) to some Maximum Clique relaxations. Hence, the “relaxed
gaps” gCs-DC, gCs-P, and gs-Club can be seen as a middle ground between the “small”
clique-core gap d+ 1− ω and the “large” gap n− ω.

In Appendix A, we provide the values of these relaxed gaps in many real-world graphs.
Note that Walteros and Buchanan [WB20, Table 1] observed that if a Maximum Clique
real-world instance is hard to solve for all solvers, then its clique-core gap is large. With
the data provided in Appendix A, one could investigate whether a similar observation
holds for some Maximum Clique relaxations and their respective “relaxed gaps”.



Chapter 7

Conclusion

We studied the KWB-algorithm of Komusiewicz [Kom11, Proposition 5.4] and Wal-
teros and Buchanan [WB20, Theorem 1] for solving Maximum Clique and generalized
it to Maximum Clique relaxations. It turned out that the KWB-algorithm is not
trivially generalizable to Maximum Clique relaxations, as the decision problems s-
Defective Clique, s-Plex [KKS20], and s-Club [Har+15] are all W [1]-hard with
respect to the combined parameter clique-core gap plus “relaxation parameter”, g + s,
where g := d + 1 − ω is the gap between the maximum possible order “degeneracy
plus one” of a clique in G and the actual order ω of a clique in a graph. To circum-
vent this hardness result, we studied the larger gap between the order n of the input
graph G and the maximum-order ωΠ of a relaxed clique in G, n − ωΠ, and saw that
s-Defective Clique [RS08], s-Plex [Kom+09], and s-Club [Sch+12] are all fixed-
parameter tractable with respect to the combined parameter (n − ωΠ) + s. Further-
more, we provided a new branching algorithm and two problem kernels for s-Defective
Clique with respect to (n− k) + s, where k is the solution size. Afterwards, we studied
the ingredients of the KWB-algorithm in more detail to construct our gap-framework
which can be used to solve Maximum Clique relaxations. To find a “middle ground”
between the “small” clique-core gap and the “large” gap n − ω, we introduced and
studied for x ∈ N+ the weak and strong x-degeneracies αx, βx of a graph, which both
generalize the standard degeneracy. Next, we applied our gap-framework to Maximum
(Connected) s-Defective Clique, Maximum (Connected) s-Plex, and Maxi-
mum s-Club. We also provided the values of the weak and strong x-degeneracies and
the “relaxed gaps” gΠ := αx+1−ωΠ for Maximum Connected s-Defective Clique,
Maximum Connected s-Plex, and Maximum s-Club in many real-world graphs.

Future research directions. First, we repeat the open questions we have already
summarized in Table 1.2 on page 19. It is open whether (Connected) s-Plex and
(Connected) s-Defective Clique are fixed-parameter tractable with respect to the
combined parameter g2 := α2 + 1 − ωΠ plus the respective relaxation parameter s.
Furthermore, it is open whether s-Plex and s-Defective Clique are fixed-parameter
tractable with respect to the combined parameter gs := αs + 1− ωΠ plus s.

Next, it would be interesting to implement the algorithms we provided for Maximum
(Connected) s-Defective Clique, Maximum (Connected) s-Plex, and Maxi-
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mum s-Club in Chapter 5, and show how they behave for different classes of graphs,
such as random graphs or real-world graphs. Note that the KWB-algorithm, which we
generalized, is a state-of-the-art algorithm for solving Maximum Clique on real-world
graphs [WB20]. Furthermore, for solving Maximum 2-Club, Hartung, Komusiewicz,
and Nichterlein [HKN15a] already implemented and studied an algorithm which also
generates a Turing kernel where each subgraph is solved with a branching algorithm,
which is similar to our gap-framework. However, in contrast to our gap-framework,
their orderings on solving the subgraphs of the Turing kernel are heuristic and do not
provide any worst-case running-time improvements. It would be interesting to compare
their orderings to our weak and strong x-degeneracy orderings. Additionally, it would
be interesting to implement both of our problem kernels for s-Defective Clique with
respect to (n− k) + s and study their usefulness in practice.

Applying the gap-framework to all clique relaxations as presented in Table 1.1 on
page 10 was out of scope of this thesis. However, we guess that the gap-framework is
applicable to many of these clique relaxations as well, as many of these implicitly have
an upper bound on the diameter of their solutions. For example, Pattillo, Youssef, and
Butenko [PYB13] also provided an upper bound on the diameter of s-blocks.

Lastly, we observe from Tables A.1 to A.4 that for all x ∈ Nx it takes much time
to compute a weak x-degeneracy ordering of a graph with our algorithm as described
in Lemma 5.6. Recall from Theorem 5.11 that a weak x-degeneracy ordering for arbi-
trary x ≥ 2 and all ε > 0 is not computable in O(n2−ε) time, unless the SETH [IPZ01]
breaks, which would result in a major breakthrough in parameterized complexity the-
ory. One way to circumvent this hardness result would be to approximate the weak
x-degeneracy of a graph. For the standard degeneracy of a graph, this topic has already
been researched in the context of streaming large graphs [FT14; FT16]. It would be in-
teresting to study whether similar techniques can be applied to the weak x-degeneracy.
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[Blä03] M. Bläser. “Computing small partial coverings”. In: Information Processing
Letters 85.6 (2003), pp. 327–331. url: https://doi.org/10.1016/S0020-
0190(02)00434-9 (cit. on p. 13).

[BLP02] J. Bourjolly, G. Laporte, and G. Pesant. “An exact algorithm for the max-
imum k-club problem in an undirected graph”. In: European Journal of
Operational Research 138.1 (2002), pp. 21–28. url: https://doi.org/10.
1016/S0377-2217(01)00133-3 (cit. on pp. 15, 16, 38, 61, 69).

[BMN12] R. van Bevern, H. Moser, and R. Niedermeier. “Approximation and tidying -
A problem kernel for s-plex cluster vertex deletion”. In: Algorithmica 62.3-4
(2012), pp. 930–950. url: https://doi.org/10.1007/s00453-011-9492-
7 (cit. on p. 15).

[BN19] M. Bentert and A. Nichterlein. “Parameterized complexity of diameter”. In:
Algorithms and Complexity - 11th International Conference, CIAC 2019.
Vol. 11485. Lecture Notes in Computer Science. Springer, 2019, pp. 50–61.
url: https://doi.org/10.1007/978-3-030-17402-6_5 (cit. on p. 87).

[Bog+14] V. Boginski, S. Butenko, O. Shirokikh, S. Trukhanov, and J. Gil-Lafuente.
“A network-based data mining approach to portfolio selection via weighted
clique relaxations”. In: Annals of Operations Research 216.1 (2014), pp. 23–
34. url: https://doi.org/10.1007/s10479-013-1395-3 (cit. on p. 9).

[Buc+14] A. Buchanan, J. L. Walteros, S. Butenko, and P. M. Pardalos. “Solving max-
imum clique in sparse graphs: an O(nm+n2d/4) algorithm for d-degenerate
graphs”. In: Optimization Letters 8.5 (2014), pp. 1611–1617. url: https:
//doi.org/10.1007/s11590-013-0698-2 (cit. on pp. 9, 16).

[CA11] F. D. Carvalho and M. T. Almeida. “Upper bounds and heuristics for the 2-
club problem”. In: European Journal of Operational Research 210.3 (2011),
pp. 489–494. url: http://doi.org/10.1016/j.ejor.2010.11.023 (cit.
on p. 16).

https://doi.org/10.1137/0222038
https://doi.org/10.1137/0222038
https://doi.org/10.1016/j.tcs.2013.03.008
https://doi.org/10.1016/j.tcs.2013.03.008
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1145/2344422.2344428
https://doi.org/10.1016/S0020-0190(02)00434-9
https://doi.org/10.1016/S0020-0190(02)00434-9
https://doi.org/10.1016/S0377-2217(01)00133-3
https://doi.org/10.1016/S0377-2217(01)00133-3
https://doi.org/10.1007/s00453-011-9492-7
https://doi.org/10.1007/s00453-011-9492-7
https://doi.org/10.1007/978-3-030-17402-6_5
https://doi.org/10.1007/s10479-013-1395-3
https://doi.org/10.1007/s11590-013-0698-2
https://doi.org/10.1007/s11590-013-0698-2
http://doi.org/10.1016/j.ejor.2010.11.023


LITERATURE 93

[Cai08] L. Cai. “Parameterized complexity of cardinality constrained optimization
problems”. In: The Computer Journal 51.1 (2008), pp. 102–121. url:
https://doi.org/10.1093/comjnl/bxm086 (cit. on pp. 13, 19, 39, 76).

[Cai+97] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. “Advice classes of pa-
rameterized tractability”. In: Annals of Pure and Applied Logic 84.1 (1997),
pp. 119–138. url: https://doi.org/10.1016/S0168-0072(95)00020-8
(cit. on p. 26).

[Cas+14] B. Caskurlu, V. Mkrtchyan, O. Parekh, and K. Subramani. “On partial ver-
tex cover and budgeted maximum coverage problems in bipartite graphs”.
In: Theoretical Computer Science - 8th IFIP TC 1/WG 2.2 International
Conference, TCS 2014. Vol. 8705. Lecture Notes in Computer Science.
Springer, 2014, pp. 13–26. url: https://doi.org/10.1007/978- 3-

662-44602-7_2 (cit. on p. 13).

[CFG05] Y. Chen, J. Flum, and M. Grohe. “Machine-based methods in parameter-
ized complexity theory”. In: Theoretical Computer Science 339.2-3 (2005),
pp. 167–199. url: https://doi.org/10.1016/j.tcs.2005.02.003 (cit.
on p. 33).

[Cha+13] M. Chang, L. Hung, C. Lin, and P. Su. “Finding large k-clubs in undirected
graphs”. In: Computing 95.9 (2013), pp. 739–758. url: https://doi.org/
10.1007/s00607-012-0263-3 (cit. on pp. 15, 16).

[Che+20] P. Chen, H. Wan, S. Cai, J. Li, and H. Chen. “Local search with dynamic-
threshold configuration checking and incremental neighborhood updating
for maximum k-plex problem”. In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
USA, 2020. AAAI Press, 2020, pp. 2343–2350. url: https://aaai.org/
ojs/index.php/AAAI/article/view/5613 (cit. on p. 15).

[Che+21] X. Chen, Y. Zhou, J.-K. Hao, and M. Xiao. “Computing maximum k-
defective cliques in massive graphs”. In: Computers & Operations Research
127 (2021 - in press), pp. 105–131. url: http://www.sciencedirect.com/
science/article/pii/S0305054820302483 (cit. on pp. 9, 13, 80, 105).

[CKJ01] J. Chen, I. A. Kanj, and W. Jia. “Vertex cover: further observations and
further improvements”. In: Journal of Algorithms 41.2 (2001), pp. 280–301.
url: https://doi.org/10.1006/jagm.2001.1186 (cit. on pp. 17, 19, 44).

[Coh08] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. National
security agency technical report 3.1. 2008 (cit. on p. 10).

[Con+17] A. Conte, D. Firmani, C. Mordente, M. Patrignani, and R. Torlone. “Fast
enumeration of large k-plexes”. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Cana-
da, 2017. ACM, 2017, pp. 115–124. url: https://doi.org/10.1145/

3097983.3098031 (cit. on p. 15).

https://doi.org/10.1093/comjnl/bxm086
https://doi.org/10.1016/S0168-0072(95)00020-8
https://doi.org/10.1007/978-3-662-44602-7_2
https://doi.org/10.1007/978-3-662-44602-7_2
https://doi.org/10.1016/j.tcs.2005.02.003
https://doi.org/10.1007/s00607-012-0263-3
https://doi.org/10.1007/s00607-012-0263-3
https://aaai.org/ojs/index.php/AAAI/article/view/5613
https://aaai.org/ojs/index.php/AAAI/article/view/5613
http://www.sciencedirect.com/science/article/pii/S0305054820302483
http://www.sciencedirect.com/science/article/pii/S0305054820302483
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1145/3097983.3098031
https://doi.org/10.1145/3097983.3098031


94 LITERATURE

[CP90] R. Carraghan and P. M. Pardalos. “An exact algorithm for the maximum
clique problem”. In: Operations Research Letters 9.6 (1990), pp. 375 –
382. url: http://www.sciencedirect.com/science/article/pii/

016763779090057C (cit. on pp. 9, 10).

[Cyg+15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.
url: https://doi.org/10.1007/978-3-319-21275-3 (cit. on pp. 25, 26,
43–45).

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complex-
ity. Texts in Computer Science. Springer, 2013. url: https://doi.org/
10.1007/978-1-4471-5559-1 (cit. on p. 25).

[Die16] R. Diestel. Graph Theory, 5th Edition. Vol. 173. Graduate Texts in Mathe-
matics. Springer, 2016 (cit. on pp. 21, 31).

[DIM12] DIMACS’12. Graph partitioning and graph clustering. 10th DIMACS
implementation challenge. https : / / www . cc . gatech . edu / dimacs10 /

downloads.shtml. Accessed March 2021. 2012 (cit. on pp. 63, 103).

[DIM93] DIMACS’93. NP-hard problems: Maximum clique, graph coloring, and satis-
fiability. 2nd DIMACS implementation challenge. https://dmac.rutgers.
edu/pub/challenge/. Accessed March 2021. 1993 (cit. on pp. 63, 103).
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[Mad78] W. Mader. “Über n-fach zusammenhängende Eckenmengen in Graphen”.
In: Journal of Combinatorial Theory, Series B 25.1 (1978), pp. 74–93. url:
https://doi.org/10.1016/S0095-8956(78)80012-4 (cit. on p. 10).

[MB83] D. W. Matula and L. L. Beck. “Smallest-last ordering and clustering and
graph coloring algorithms”. In: Journal of the ACM 30.3 (1983), pp. 417–
427. url: https://doi.org/10.1145/2402.322385 (cit. on pp. 16, 19, 59,
64).

[Meh84] K. Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and
NP-Completeness. Vol. 2. EATCS Monographs on Theoretical Computer
Science. Springer, 1984. url: https://doi.org/10.1007/978-3-642-
69897-2 (cit. on pp. 19, 40).

[MH12] B. McClosky and I. V. Hicks. “Combinatorial algorithms for the maximum
k-plex problem”. In: Journal of Combinatorial Optimization 23.1 (2012),
pp. 29–49. url: https://doi.org/10.1007/s10878-010-9338-2 (cit. on
p. 15).

[MIH99] H. Matsuda, T. Ishihara, and A. Hashimoto. “Classifying molecular se-
quences using a linkage graph with their pairwise similarities”. In: Theo-
retical Computer Science 210.2 (1999), pp. 305–325. url: https://www.
sciencedirect.com/science/article/pii/S0304397598000917 (cit. on
p. 10).

[Mil67] S. Milgram. “The small world problem”. In: Psychology today 2.1 (1967),
pp. 60–67 (cit. on p. 12).

[MK13] E. Moreno-Centeno and R. M. Karp. “The implicit hitting set approach
to solve combinatorial optimization problems with an application to multi-
genome alignment”. In: Operations Research 61.2 (2013), pp. 453–468. url:
https://doi.org/10.1287/opre.1120.1139 (cit. on p. 70).

[MNS12] H. Moser, R. Niedermeier, and M. Sorge. “Exact combinatorial algorithms
and experiments for finding maximum k-plexes”. In: Journal of Combina-
torial Optimization 24.3 (2012), pp. 347–373. url: https://doi.org/10.
1007/s10878-011-9391-5 (cit. on pp. 14, 15, 19, 39, 42, 55, 82).

[Mok79] R. J. Mokken. “Cliques, clubs and clans”. In: Quality & Quantity 13.2
(1979), pp. 161–173 (cit. on pp. 10, 15, 23, 27).

https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/978-3-642-29700-7_22
https://doi.org/10.1007/978-3-642-29700-7_22
https://doi.org/10.1016/S0095-8956(78)80012-4
https://doi.org/10.1145/2402.322385
https://doi.org/10.1007/978-3-642-69897-2
https://doi.org/10.1007/978-3-642-69897-2
https://doi.org/10.1007/s10878-010-9338-2
https://www.sciencedirect.com/science/article/pii/S0304397598000917
https://www.sciencedirect.com/science/article/pii/S0304397598000917
https://doi.org/10.1287/opre.1120.1139
https://doi.org/10.1007/s10878-011-9391-5
https://doi.org/10.1007/s10878-011-9391-5


LITERATURE 99

[MPS20] N. Misra, F. Panolan, and S. Saurabh. “Subexponential algorithm for d -
cluster edge deletion: exception or rule?” In: Journal of Computer and Sys-
tem Sciences 113 (2020), pp. 150–162. url: https://doi.org/10.1016/
j.jcss.2020.05.008 (cit. on p. 16).

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006 (cit. on p. 25).

[NRT05] N. Nishimura, P. Ragde, and D. M. Thilikos. “Fast fixed-parameter tractable
algorithms for nontrivial generalizations of vertex cover”. In: Discrete Ap-
plied Mathematics 152.1-3 (2005), pp. 229–245. url: https://doi.org/
10.1016/j.dam.2005.02.029 (cit. on pp. 14, 38).

[NT75] G. L. Nemhauser and L. E. Trotter. “Vertex packings: structural properties
and algorithms”. In: Mathematical Programming 8.1 (1975), pp. 232–248.
url: https://doi.org/10.1007/BF01580444 (cit. on pp. 17, 19, 44).
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[PR05] E. Prieto-Rodŕıguez. “Systematic kernelization in FPT algorithm design”.
PhD thesis. University of Newcastle, Australia, 2005 (cit. on pp. 43, 45, 46).

[Pul20] W. Pullan. “Local search for the maximum k-plex problem”. In: Journal of
Heuristics (2020), pp. 1–22 (cit. on pp. 15, 105).

[PYB13] J. Pattillo, N. Youssef, and S. Butenko. “On clique relaxation models in net-
work analysis”. In: European Journal of Operational Research 226.1 (2013),
pp. 9–18. url: https://doi.org/10.1016/j.ejor.2012.10.021 (cit. on
pp. 10–12, 14, 66, 75, 77, 80, 81, 84–86, 90).

[RGG15] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin. “Parallel maximum
clique algorithms with applications to network analysis”. In: SIAM Journal
on Scientific Computing 37.5 (2015), pp. C589–C616. url: https://doi.
org/10.1137/14100018X (cit. on p. 9).

[RS08] V. Raman and S. Saurabh. “Short cycles make W -hard problems hard:
FPT algorithms for W -hard problems in graphs with no short cycles”. In:
Algorithmica 52.2 (2008), pp. 203–225. url: https://doi.org/10.1007/
s00453-007-9148-9 (cit. on pp. 10, 13, 14, 19, 23, 28, 30, 31, 39, 40, 80,
81, 89).

https://doi.org/10.1016/j.jcss.2020.05.008
https://doi.org/10.1016/j.jcss.2020.05.008
https://doi.org/10.1016/j.dam.2005.02.029
https://doi.org/10.1016/j.dam.2005.02.029
https://doi.org/10.1007/BF01580444
https://doi.org/10.1016/S0166-218X(01)00290-6
https://doi.org/10.1016/S0166-218X(01)00290-6
https://doi.org/10.1016/j.disopt.2012.02.002
https://fpt.akt.tu-berlin.de/publications/theses/MA-marten-picker.pdf
https://fpt.akt.tu-berlin.de/publications/theses/MA-marten-picker.pdf
https://doi.org/10.1016/j.ejor.2012.10.021
https://doi.org/10.1137/14100018X
https://doi.org/10.1137/14100018X
https://doi.org/10.1007/s00453-007-9148-9
https://doi.org/10.1007/s00453-007-9148-9


100 LITERATURE

[RW13] L. Roditty and V. V. Williams. “Fast approximation algorithms for the
diameter and radius of sparse graphs”. In: Symposium on Theory of Com-
puting Conference, STOC’13. ACM, 2013, pp. 515–524. url: https://doi.
org/10.1145/2488608.2488673 (cit. on p. 64).

[SB20] H. Salemi and A. Buchanan. “Parsimonious formulations for low-diameter
clusters”. In: Mathematical Programming Computation 12.3 (2020), pp. 493–
528. url: https://doi.org/10.1007/s12532- 020- 00175- 6 (cit. on
pp. 16, 104, 105).
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Appendix A

Appendix - Data Tables

We provide the values of the respective “relaxed gaps” of Maximum Connected s-
Defective Clique, Maximum Connected s-Plex, and Maximum s-Club, thus
complementing the algorithms of Chapter 6. In order to compute these relaxed gaps,
first we computed the weak x-degeneracy with x ∈ [1, 4] according to Definition 5.1 for
many real-world graphs, the results are presented in Tables A.1 to A.4. We also com-
puted the strong x-degeneracy according to Definition 5.3 along the way, as we want to
present how the weak and strong x-degeneracies relate in real-world graphs. Recall from
Observation 5.4 that the strong x-degeneracy of a graph G is the standard degeneracy
of its power graph Gx. Afterwards, in Tables A.5 to A.8, we provide an overview of
the relaxed gaps for the three Maximum Clique relaxations for s ∈ [1, 4]. Our goal is
to provide more information about how we computed and acquired the values in these
tables. The code to compute the generalized degeneracies as well as a large CSV-file with
all values from the Tables A.1 to A.8 is made publicly available under https://git.tu-
berlin.de/niklas.wuensche/compute-diameter-and-weak-and-strong-degeneracies/.

Computing generalized degeneracies. In Tables A.1 to A.4, we computed the
weak/strong x-degeneracies for x ∈ [1, 4] of 151 graphs from the 2nd and 10th DI-
MACS challenges [DIM12; DIM93] and the SNAP repository [LK14]. Furthermore,
we studied the graph-thres-instances [HKN15b], which were first presented and mo-
tivated by Hartung, Komusiewicz, and Nichterlein [HKN15a]. We renamed the graphs
kron g500-simple-logn16 and preferentialAttachment to kron500-16 and prefAtt.

We ran our program on an Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz with four cores
and eight threads and with 220GB main memory under the Ubuntu 18.04.5 operating
system. Our implementation is written in C++ and was compiled with g++ version
7.5.0. The program depends on the libboost-dev library in version 1.65.1.0ubuntu1, and
the CTPL library in version 0.0.2.

Recall that the x-neighborhood of a vertex v in a graph G contains all vertices with
distance at most x to v in G, except v itself, and Gx is the graph where each vertex is
adjacent to all vertices in its x-neighborhood with respect to G. We implemented our
algorithms for computing the weak x-degeneracy αx of a graph G (Successively find and
remove the vertex with the smallest x-neighborhood) in O(αxnm) time as described in
Lemma 5.6, as well as our algorithm for computing the strong x-degeneracy βx (com-
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pute the standard degeneracy of the power graph Gx) in O(nm) time as described in
Lemma 5.7. We store the graphs as adjacency lists to reduce their sizes in memory.

Note that both algorithms could be implemented by storing the x-neighborhood of
each vertex at all times. Hence, both algorithms would use O(∆xn) space, where ∆ is the
maximum degree of the graph. However, this takes up too much space in practice, and
we ran out of memory for a couple of graphs like the eu-2005 graph. To solve this issue,
we only stored the size of the x-neighborhoods, and re-computed the actual set when
needed. This method only requires O(n) space at the cost of an O(nm)-time overhead.
Furthermore, note that both algorithms for computing the weak/strong x-degeneracies
of a graph heavily rely on computing the x-neighborhoods of the vertices, which can be
computed independently from each other in parallel. As we used a multi-core machine
to compute all values, we implemented this parallelization.

For computing the strong x-degeneracy of a graph, we set a time limit of 24 hours.
In contrast, as it took much longer to compute the weak x-degeneracy than the strong
x-degeneracy of a graph in general, we had to set a time limit of six hours for computing
the weak x-degeneracy of a graph. The computation time includes the time to read the
graph from the file, and we rounded up the times to the next full second. If the time limit
was reached, then in Tables A.1 to A.4 we set the respective running time in the table
to “-”, and provide the size of the largest x-neighborhood of a vertex which was already
removed from G as a lower bound on the weak x-degeneracy. Note that the respective
strong x-degeneracy is an upper-bound on the weak x-degeneracy due to Proposition 5.5.
For the sake of completeness, we also computed the weak/strong 1-degeneracies of the
graphs, although the standard degeneracy, the weak 1-degeneracy, and the strong 1-
degeneracy of a graph are all by definition equivalent. We also computed the diameter
and the maximum degree ∆ of the graphs for comparison.

Computing gaps. In Tables A.5 to A.8, we computed the “gaps” for Maximum
Connected s-Defective Clique, Maximum Connected s-Plex, and Maximum
s-Club for s ∈ [1, 4]. We do not study Maximum Connected 0-defective Clique
nor Maximum Connected 1-Plex nor Maximum 1-Club, because all these cases are
equivalent to Maximum Clique, for which Walteros and Buchanan [WB20] already
provided a detailed study on the size of the clique-core gap in real-world graphs.

Recall from Chapter 5 that for Maximum Connected s-Defective Clique, the
corresponding gap parameter gC-sDC is defined as α⌊√

2s+ 1
4

+ 1
2

⌋ + 1 − ωC-sDC due to

Lemma 6.4, where ωC-sDC is the maximum-order of a connected s-defective clique in the
input graph. Similarly, for Maximum Connected s-Plex and Maximum s-Club,
the corresponding gap parameters gC-sP and gsC are αs + 1 − ωC-sP and αs + 1 − ωsC

due to Observations 6.12 and 6.18. Hence, first we have to solve the maximization
problems before we can compute the respective gaps. As it was out of focus of this work
to implement a solver for these problems, we took the maximum solutions sizes for all
three problems from the literature.

For Maximum 2-Club, we used the values from Hartung, Komusiewicz, and Nichter-
lein [HKN15a, Table 6] and Komusiewicz et al. [Kom+19, Table 3] as they looked at
many different real-world graphs. Furthermore, we consider the paper of Salemi and
Buchanan [SB20, Table 6] as this is one of the few papers which solves Maximum 3-
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Club and Maximum 4-Club on some real-world graphs. To show where a certain
solution size is taken from, we added the “cite”-column to our tables. If at least one of
the values of the respective graph is taken from Hartung, Komusiewicz, and Nichterlein
[HKN15a], Komusiewicz et al. [Kom+19], or Salemi and Buchanan [SB20], then we add
the letter H, K, or S to the “cite”-column, respectively.

To the best of our knowledge, solving Maximum Connected s-Defective Clique
and Maximum Connected s-Plex in practice has not been considered before, but only
the standard Maximum s-Defective Clique and Maximum s-Plex problems. To
still find the maximum solution sizes for Maximum Connected s-Defective Clique
and Maximum Connected s-Plex, recall from Observation 6.6 that if an s-defective
clique is of order at least s+2, then it is necessarily connected. In other words, if ωsDC ≥
s + 2 , then ωC-sDC = ωsDC. Similarly, if ωsP ≥ 2s − 1 , then ωC-sP = ωsP due to
Observation 6.14.

For Maximum s-defective Clique, we used the values from Chen et al. [Che+21,
Tables 1, 2, 4, 5] as they studied many different real-world graphs. Note that all solutions
they provided are necessarily connected.

For Maximum s-Plex, we used the values from Zhou and Hao [ZH17, Tables 1, 2,
A1, A2] as they looked at many different real-world graphs. Note that they did not
always provide the order of the largest s-plex in the graph. Hence, we only provide the
size of gC-sP of a graph if the given ωsP is known to be optimal. Furthermore, not all
solutions they provided are necessarily connected, for example the maximum-order of an
4-plex in the graph ecology1 is six, which is strictly smaller than 2s−1 = 7. In cases like
these, we set the value of the respective gap in Tables A.5 to A.8 to “?”. We mention that
we were not able to consider the graphs rgg n 2 21 s0, rgg n 2 22 s0, rgg n 2 23 s0,
and uk-2002 from their paper due to an out-of-memory error while reading these graphs.

If one of these papers provided the maximum-order of a clique relaxation, then we
also provide the time it took them to compute this value. If the paper studied multiple
solvers, then we provide the minimum over all of the given running times. We rounded
up the times to the next full second. Furthermore, if in Tables A.1 to A.4 we could
only provide an lower bound on the weak x-degeneracy which we need to compute the
respective gap, then we only provide an lower bound on the size of the gap. Note that
in this case, it could happen that the lower bound on the gap is negative as happens for
the graphs coPapersCiteseer and coPapersDBLP. However, note that in Table A.5, the
exact Maximum 2-Club-gap g2C of the celegansneutral graph is negative. We think
that the maximum-order of a 2-club in this graph is not 285 (as claimed by Hartung,
Komusiewicz, and Nichterlein [HKN15a, Table 6]), because Salemi and Buchanan [SB20,
Table 6] claim that the maximum-order of a 3 -club is 243. As a 2-club is also a 3-club,
we think that the value from Hartung, Komusiewicz, and Nichterlein should be smaller
than 243.

Lastly, we want to thank the authors Hartung et al. [Har+15], Komusiewicz et al.
[Kom+19], Pullan [Pul20], Salemi and Buchanan [SB20], and Zhou and Hao [ZH17]
again for providing us their results in some machine-readable format.
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Table A.1: Results for computing the weak/strong x-degeneracies of real-world graphs (part 1). We use the following nota-
tion: n–number of vertices, m–number of edges, dia–diameter, ∆–maximum degree, x ∈ [1, 4], αx–weak x-degeneracy, βx–strong
x-degeneracy, tαx–time (in seconds) to compute weak x-degeneracy (set to “-” if timeout after 6 hours), tβx–time (in seconds) to
compute strong x-degeneracy (set to “-” if timeout after 24 hours). See Appendix A on page 103 for more details.

Graph n m dia ∆ ∆2 α1 α2 α3 α4 β1 β2 β3 β4 tα1 tα2 tα3 tα4 tβ1 tβ2 tβ3 tβ4

johnson8-2-4 28 210 2 15 225 15 27 27 27 15 27 27 27 1 1 1 1 1 1 1 1
karate 34 78 5 17 289 4 17 24 32 4 17 24 32 1 1 1 1 1 1 1 1
chesapeake 39 170 3 33 1,089 6 35 38 38 6 35 38 38 1 1 1 1 1 1 1 1
MANN a9 45 918 2 41 1,681 40 44 44 44 40 44 44 44 1 1 1 1 1 1 1 1
dolphins 62 159 8 12 144 4 16 28 39 4 16 29 39 1 1 1 1 1 1 1 1
hamming6-2 64 1,824 2 57 3,249 57 63 63 63 57 63 63 63 1 1 1 1 1 1 1 1
hamming6-4 64 704 2 22 484 22 63 63 63 22 63 63 63 1 1 1 1 1 1 1 1
johnson8-4-4 70 1,855 2 53 2,809 53 69 69 69 53 69 69 69 1 1 1 1 1 1 1 1
lesmis 77 508 5 72 5,184 9 36 57 74 9 37 63 74 1 1 1 1 1 1 1 1
polbooks 105 441 7 25 625 6 28 52 69 6 29 53 69 1 1 1 1 1 1 1 1
adjnoun 112 425 5 49 2,401 6 49 87 106 6 49 87 106 1 1 1 1 1 1 1 1
football 115 613 4 12 144 8 37 97 114 8 39 97 114 1 1 1 1 1 1 1 1
johnson16-2-4 120 5,460 2 91 8,281 91 119 119 119 91 119 119 119 1 1 1 1 1 1 1 1
C125.9 125 6,963 2 119 14,161 102 124 124 124 102 124 124 124 1 1 1 1 1 1 1 1
keller4 171 9,435 2 124 15,376 102 170 170 170 102 170 170 170 1 1 1 1 1 1 1 1
jazz 198 2,742 6 100 10,000 29 109 174 191 29 109 174 191 1 1 1 1 1 1 1 1
brock200 1 200 14,834 2 165 27,225 134 199 199 199 134 199 199 199 1 1 1 1 1 1 1 1
brock200 2 200 9,876 2 114 12,996 84 199 199 199 84 199 199 199 1 1 1 1 1 1 1 1
brock200 3 200 12,048 2 134 17,956 105 199 199 199 105 199 199 199 1 1 1 1 1 1 1 1
brock200 4 200 13,089 2 147 21,609 117 199 199 199 117 199 199 199 1 1 1 1 1 1 1 1
c-fat200-1 200 1,534 18 17 289 14 24 34 44 14 24 34 44 1 1 1 1 1 1 1 1
c-fat200-2 200 3,235 9 34 1,156 32 54 76 98 32 54 76 98 1 1 1 1 1 1 1 1
c-fat200-5 200 8,473 3 86 7,396 83 141 199 199 83 141 199 199 1 1 1 1 1 1 1 1
san200 0.7 1 200 13,930 2 155 24,025 125 199 199 199 125 199 199 199 1 1 1 1 1 1 1 1
san200 0.7 2 200 13,930 2 164 26,896 122 199 199 199 122 199 199 199 1 1 1 1 1 1 1 1
san200 0.9 1 200 17,910 2 191 36,481 162 199 199 199 162 199 199 199 1 1 1 1 1 1 1 1
san200 0.9 2 200 17,910 2 188 35,344 169 199 199 199 169 199 199 199 1 1 1 1 1 1 1 1
san200 0.9 3 200 17,910 2 187 34,969 169 199 199 199 169 199 199 199 1 1 1 1 1 1 1 1
sanr200 0.7 200 13,868 2 161 25,921 124 199 199 199 124 199 199 199 1 1 1 1 1 1 1 1
sanr200 0.9 200 17,863 2 189 35,721 166 199 199 199 166 199 199 199 1 1 1 1 1 1 1 1
gen200 p0.9 44 200 17,910 2 190 36,100 167 199 199 199 167 199 199 199 1 1 1 1 1 1 1 1
gen200 p0.9 55 200 17,910 2 190 36,100 166 199 199 199 166 199 199 199 1 1 1 1 1 1 1 1
C250.9 250 27,984 2 236 55,696 210 249 249 249 210 249 249 249 1 1 1 1 1 1 1 1
hamming8-2 256 31,616 2 247 61,009 247 255 255 255 247 255 255 255 1 1 1 1 1 1 1 1
hamming8-4 256 20,864 2 163 26,569 163 255 255 255 163 255 255 255 1 1 1 1 1 1 1 1
celegansneural 297 4,296 4 268 71,824 14 151 264 296 58 167 266 296 1 1 1 1 1 1 1 1
p hat300-1 300 10,933 3 132 17,424 49 298 299 299 49 298 299 299 1 1 1 1 1 1 1 1
p hat300-2 300 21,928 2 229 52,441 98 299 299 299 98 299 299 299 1 1 1 1 1 1 1 1
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Table A.2: Results for computing the weak/strong x-degeneracies of real-world graphs (part 2). We use the following nota-
tion: n–number of vertices, m–number of edges, dia–diameter, ∆–maximum degree, x ∈ [1, 4], αx–weak x-degeneracy, βx–strong
x-degeneracy, tαx–time (in seconds) to compute weak x-degeneracy (set to “-” if timeout after 6 hours), tβx–time (in seconds) to
compute strong x-degeneracy (set to “-” if timeout after 24 hours). See Appendix A on page 103 for more details.

Graph n m dia ∆ ∆2 α1 α2 α3 α4 β1 β2 β3 β4 tα1
tα2

tα3
tα4

tβ1 tβ2 tβ3 tβ4

p hat300-3 300 33,390 2 267 71,289 180 299 299 299 180 299 299 299 1 1 1 1 1 1 1 1

MANN a27 378 70,551 2 374 1.4·105 364 377 377 377 364 377 377 377 1 1 1 1 1 1 1 1

brock400 1 400 59,723 2 320 1 · 105 277 399 399 399 277 399 399 399 2 1 1 1 1 1 1 1

brock400 2 400 59,786 2 328 1.1·105 278 399 399 399 278 399 399 399 2 1 1 1 1 1 1 1

brock400 3 400 59,681 2 322 1 · 105 278 399 399 399 278 399 399 399 2 1 1 1 1 1 1 1

brock400 4 400 59,765 2 326 1.1·105 277 399 399 399 277 399 399 399 2 1 1 1 1 1 1 1
san400 0.5 1 400 39,900 2 225 50,625 183 399 399 399 183 399 399 399 1 1 1 1 1 1 1 1
san400 0.7 1 400 55,860 2 301 90,601 261 399 399 399 261 399 399 399 2 1 1 1 1 1 1 1
san400 0.7 2 400 55,860 2 304 92,416 259 399 399 399 259 399 399 399 2 1 1 1 1 1 1 1
san400 0.7 3 400 55,860 2 307 94,249 253 399 399 399 253 399 399 399 2 1 1 1 1 1 1 1

san400 0.9 1 400 71,820 2 374 1.4·105 344 399 399 399 344 399 399 399 2 1 1 1 1 1 1 1
sanr400 0.5 400 39,984 2 233 54,289 177 399 399 399 177 399 399 399 1 1 1 1 1 1 1 1
sanr400 0.7 400 55,869 2 310 96,100 258 399 399 399 258 399 399 399 2 1 1 1 1 1 1 1

gen400 p0.9 55 400 71,820 2 375 1.4·105 336 399 399 399 336 399 399 399 2 1 1 1 1 1 1 1

gen400 p0.9 65 400 71,820 2 378 1.4·105 336 399 399 399 336 399 399 399 2 1 1 1 1 1 1 1

gen400 p0.9 75 400 71,820 2 380 1.4·105 336 399 399 399 336 399 399 399 2 1 1 1 1 1 1 1
celegans metabolic 453 2,025 7 237 56,169 10 237 372 431 10 237 372 431 1 1 1 1 1 1 1 1

johnson32-2-4 496 1.1·105 2 435 1.9·105 435 495 495 495 435 495 495 495 2 2 2 2 1 1 1 1
c-fat500-1 500 4,459 40 20 400 17 29 41 53 17 29 41 53 1 1 1 1 1 1 1 1
c-fat500-2 500 9,139 20 38 1,444 35 59 83 107 35 59 83 107 1 1 1 1 1 1 1 1
c-fat500-5 500 23,191 8 95 9,025 92 154 216 278 92 154 216 278 1 1 1 1 1 1 1 1
c-fat500-10 500 46,627 4 188 35,344 185 310 436 499 185 310 436 499 1 1 1 1 1 1 1 1
p hat500-1 500 31,569 2 204 41,616 86 499 499 499 86 499 499 499 1 1 1 1 1 1 1 1

p hat500-2 500 62,946 2 389 1.5·105 170 499 499 499 170 499 499 499 2 2 2 2 1 1 1 1

p hat500-3 500 93,800 2 452 2 · 105 303 499 499 499 303 499 499 499 4 2 2 2 1 1 1 1
DSJC500.5 500 62,624 2 286 81,796 225 499 499 499 225 499 499 499 2 2 2 2 1 1 1 1

C500.9 500 1.1·105 2 468 2.2·105 432 499 499 499 432 499 499 499 4 3 3 3 1 1 1 1
p hat700-1 700 60,999 2 286 81,796 117 699 699 699 117 699 699 699 2 3 3 3 1 1 1 1

p hat700-2 700 1.2·105 2 539 2.9·105 235 699 699 699 235 699 699 699 6 5 5 5 1 1 1 1

p hat700-3 700 1.8·105 2 627 3.9·105 426 699 699 699 426 699 699 699 12 7 7 7 1 1 1 1

keller5 776 2.3·105 2 638 4.1·105 560 775 775 775 560 775 775 775 12 10 10 10 1 1 1 1

brock800 1 800 2.1·105 2 560 3.1·105 487 799 799 799 487 799 799 799 18 10 10 10 2 1 1 1

brock800 2 800 2.1·105 2 566 3.2·105 486 799 799 799 486 799 799 799 18 10 10 10 2 1 1 1

brock800 3 800 2.1·105 2 558 3.1·105 483 799 799 799 483 799 799 799 18 10 10 10 2 1 1 1

brock800 4 800 2.1·105 2 565 3.2·105 485 799 799 799 485 799 799 799 18 10 10 10 2 1 1 1

p hat1000-1 1,000 1.2·105 2 408 1.7·105 163 999 999 999 163 999 999 999 4 11 11 11 1 1 1 1
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Table A.3: Results for computing the weak/strong x-degeneracies of real-world graphs (part 3). We use the following nota-
tion: n–number of vertices, m–number of edges, dia–diameter, ∆–maximum degree, x ∈ [1, 4], αx–weak x-degeneracy, βx–strong
x-degeneracy, tαx–time (in seconds) to compute weak x-degeneracy (set to “-” if timeout after 6 hours), tβx–time (in seconds) to
compute strong x-degeneracy (set to “-” if timeout after 24 hours). See Appendix A on page 103 for more details.

Graph n m dia ∆ ∆2 α1 α2 α3 α4 β1 β2 β3 β4 tα1 tα2 tα3 tα4 tβ1 tβ2 tβ3 tβ4

p hat1000-2 1,000 2.4·105 2 766 5.9·105 327 999 999 999 327 999 999 999 23 20 20 20 2 1 1 1

p hat1000-3 1,000 3.7·105 2 895 8 · 105 609 999 999 999 609 999 999 999 42 27 27 27 3 1 1 1

san1000 1,000 2.5·105 2 550 3 · 105 464 999 999 999 464 999 999 999 14 19 18 18 2 1 1 1

DSJC1000.5 1,000 2.5·105 2 551 3 · 105 459 999 999 999 459 999 999 999 23 18 18 18 2 1 1 1

hamming10-2 1,024 5.2·105 2 1,013 1 · 106 1013 1023 1023 1023 1013 1023 1023 1023 35 34 34 34 2 1 1 1

hamming10-4 1,024 4.3·105 2 848 7.2·105 848 1023 1023 1023 848 1023 1023 1023 41 30 30 30 2 1 1 1

MANN a45 1,035 5.3·105 2 1,031 1.1·106 1012 1034 1034 1034 1012 1034 1034 1034 37 37 37 37 2 2 2 2
email 1,133 5,451 8 71 5,041 11 87 384 801 11 93 390 802 1 1 2 3 1 1 1 1

polblogs 1,490 16,715 8 351 1.2·105 36 376 864 1139 36 377 864 1139 1 3 5 6 1 1 1 1

p hat1500-1 1,500 2.8·105 2 614 3.8·105 252 1499 1499 1499 252 1499 1499 1499 19 50 50 50 2 1 1 1

p hat1500-2 1,500 5.7·105 2 1,153 1.3·106 504 1499 1499 1499 504 1499 1499 1499 107 94 94 94 5 2 2 2

p hat1500-3 1,500 8.5·105 2 1,330 1.8·106 929 1499 1499 1499 929 1499 1499 1499 203 123 123 123 7 3 3 3
netscience 1,589 2,742 17 34 1,156 19 34 53 84 19 34 53 84 1 1 1 1 1 1 1 1
add20 2,395 7,462 15 123 15,129 35 123 670 1453 35 123 670 1453 1 1 4 11 1 1 1 1
data 2,851 15,093 79 17 289 7 23 45 73 7 23 45 73 1 1 1 1 1 1 1 1

MANN a81 3,321 5.5·106 2 3,317 1.1·107 3280 3320 3320 3320 3280 3320 3320 3320 3941 3897 3921 3922 30 31 30 29

keller6 3,361 4.6·106 2 2,952 8.7·106 2690 3360 3360 3360 2690 3360 3360 3360 3121 3359 3371 3356 30 26 26 26
uk 4,824 6,837 214 3 9 2 6 11 17 2 6 11 17 1 1 1 1 1 1 1 1
power 4,941 6,594 46 19 361 5 19 29 60 5 19 29 60 1 1 1 1 1 1 1 1
add32 4,960 9,462 28 31 961 3 31 98 267 3 31 98 267 1 1 1 2 1 1 1 1

wiki-Vote 7,115 1 · 105 7 1,065 1.1·106 53 1232 3436 6355 53 1235 3436 6355 3 118 576 957 1 2 5 8
hep-th 8,361 15,751 19 50 2,500 23 50 179 527 23 50 186 544 1 1 2 10 1 1 1 1
whitaker3 9,800 28,989 161 8 64 4 10 19 31 4 10 19 31 1 1 2 2 1 1 1 1
crack 10,240 30,380 107 9 81 4 12 25 42 4 12 25 42 1 1 2 3 1 1 1 1
PGPgiantcompo 10,680 24,316 24 205 42,025 31 205 423 1160 31 205 424 1160 1 2 9 47 1 1 1 1
p2p-Gnutella04 10,876 39,994 10 103 10,609 7 103 686 3795 7 103 861 3979 1 3 71 750 1 1 1 4

astro-ph 16,706 1.2·105 14 360 1.3·105 56 360 2047 5846 56 364 2082 5870 2 29 515 2302 1 1 4 11
cond-mat 16,726 47,594 18 107 11,449 17 107 342 1151 17 107 351 1187 1 2 14 106 1 1 1 2

memplus 17,758 54,196 12 573 3.3·105 96 573 8056 8962 96 573 8056 8962 2 32 648 2864 1 1 7 21
cs4 22,499 43,858 75 4 16 3 9 19 37 3 9 19 38 2 2 3 4 1 1 1 1
p2p-Gnutella25 22,687 54,705 11 66 4,356 5 66 327 2163 5 66 421 2618 2 4 38 1116 1 1 1 6

as-22july06 22,963 48,436 11 2,390 5.7·106 25 2390 8920 15786 25 2390 8921 15788 3 132 3053 9617 1 2 21 101

p2p-Gnutella24 26,518 65,369 11 355 1.3·105 5 355 422 4281 5 355 550 4281 2 6 92 2263 1 1 2 10

cit-HepTh 27,770 3.5·105 15 2,468 6.1·106 37 2468 8120 ≥14737 37 2468 8155 14823 7 866 11669 - 1 9 40 138

cond-mat-2003 31,163 1.2·105 16 202 40,804 24 202 1215 4256 24 202 1252 4338 3 14 283 2874 1 1 3 11

cit-HepPh 34,546 4.2·105 14 846 7.2·105 30 846 4537 ≥13847 30 846 4651 15521 6 403 13427 - 1 6 40 129
p2p-Gnutella30 36,682 88,328 11 55 3,025 7 55 356 2609 7 55 473 3273 3 7 96 3130 1 1 2 11

cond-mat-2005 40,421 1.8·105 18 278 77,284 29 278 1995 7101 29 278 2033 7214 4 39 1093 10813 1 2 7 28
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Table A.4: Results for computing the weak/strong x-degeneracies of real-world graphs (part 4). We use the following nota-
tion: n–number of vertices, m–number of edges, dia–diameter, ∆–maximum degree, x ∈ [1, 4], αx–weak x-degeneracy, βx–strong
x-degeneracy, tαx–time (in seconds) to compute weak x-degeneracy (set to “-” if timeout after 6 hours), tβx–time (in seconds) to
compute strong x-degeneracy (set to “-” if timeout after 24 hours). See Appendix A on page 103 for more details.

Graph n m dia ∆ ∆2 α1 α2 α3 α4 β1 β2 β3 β4 tα1
tα2

tα3
tα4

tβ1 tβ2 tβ3 tβ4

p2p-Gnutella31 62,586 1.5·105 11 95 9,025 6 95 406 3226 6 95 532 4142 8 16 221 8915 2 2 4 25

kron500-16 65,536 2.5·106 6 17,997 3.2·108 432 ≥4306 ≥32208 ≥54989 432 17997 48805 54989 1616 - - - 15 710 2889 3543

soc-Epinions1 75,879 4.1·105 15 3,044 9.3·106 67 3044 ≥6251 ≥13628 67 3044 14719 41918 32 4894 - - 3 25 188 1664

soc-Slashdot0811 77,360 4.7·105 12 2,539 6.4·106 54 2539 ≥6042 ≥17860 54 2539 17774 50926 22 7102 - - 3 29 268 2779

graph thres 05 81,519 1.1·105 40 71 5,041 10 71 149 440 10 71 149 440 11 13 21 57 3 3 3 3

soc-Slashdot0902 82,168 5 · 105 13 2,552 6.5·106 55 2552 ≥5471 ≥16481 55 2552 18119 52568 24 7790 - - 4 31 296 3051

prefAtt 1 · 105 5 · 105 7 983 9.7·105 5 983 ≥3375 ≥22964 5 983 6619 43737 21 368 - - 4 7 110 1181

smallworld 1 · 105 5 · 105 10 17 289 7 34 190 1006 7 36 214 1156 21 35 137 1121 5 5 8 20

G n pin pout 1 · 105 5 · 105 9 25 625 7 64 587 ≥5248 7 71 698 6358 20 53 594 - 5 6 15 113

graph thres 04 1.1·105 1.7·105 31 88 7,744 13 88 172 617 13 88 172 659 20 25 55 276 5 5 5 7

luxembourg.osm 1.1·105 1.2·105 1,337 6 36 2 6 10 16 2 6 10 16 23 22 26 25 6 6 5 5

rgg n 2 17 s0 1.3·105 7.3·105 341 28 784 14 29 47 71 14 29 47 71 32 44 63 92 7 7 8 8

wave 1.6·105 1.1·106 56 44 1,936 8 44 114 255 8 44 114 258 45 97 237 550 10 11 13 15

graph thres 03 1.7·105 2.9·105 29 123 15,129 16 123 313 1701 16 123 334 1802 44 62 243 2784 10 10 12 21

caidaRouterLevel 1.9·105 6.1·105 26 1,071 1.1·106 32 1071 3855 ≥1539 32 1071 3921 15812 64 427 16926 - 13 16 53 308

coAuthorsCiteseer 2.3·105 8.1·105 33 1,372 1.9·106 86 1372 1633 ≥2922 86 1372 1633 6818 86 209 2029 - 18 19 28 99

amazon0302 2.6·105 9 · 105 38 420 1.8·105 6 420 838 3611 6 420 839 3611 116 205 1157 14694 27 26 33 76

email-EuAll 2.7·105 3.6·105 14 7,636 5.8·107 37 7636 ≥2795 ≥13373 37 7636 19371 ≥162540 129 8781 - - 28 50 566 -

citationCiteseer 2.7·105 1.2·106 36 1,318 1.7·106 15 1318 ≥2215 ≥2017 15 1318 3350 18245 123 1048 - - 25 34 152 1022

web-Stanford 2.8·105 2 · 106 753 38,625 1.5·109 71 ≥19004 ≥3672 ≥4086 71 38625 42983 76672 362 - - - 33 1379 3254 9473

graph thres 02 2.8·105 6.4·105 29 201 40,401 63 201 1036 ≥2041 63 201 1097 7073 124 239 3029 - 28 28 41 151

coAuthorsDBLP 3 · 105 9.8·105 24 336 1.1·105 114 336 1982 ≥1398 114 336 1982 12057 146 435 12319 - 30 32 70 426

cnr-2000 3.3·105 2.7·106 34 18,236 3.3·108 83 ≥17814 ≥6425 ≥6372 83 18236 24048 44759 301 - - - 45 211 480 2794

web-NotreDame 3.3·105 1.1·106 46 10,721 1.1·108 155 10721 ≥3809 ≥3532 155 10721 12019 56853 177 8435 - - 38 66 194 3002

amazon0312 4 · 105 2.3·106 20 2,747 7.5·106 10 2747 ≥1418 ≥1356 10 2747 5343 22844 268 1915 - - 60 69 219 1698

amazon0601 4 · 105 2.4·106 25 2,752 7.6·106 10 2752 ≥1374 ≥1437 10 2752 5838 22131 273 2007 - - 62 71 234 1761

amazon0505 4.1·105 2.4·106 22 2,760 7.6·106 10 2760 ≥1328 ≥1341 10 2760 5864 24349 281 2090 - - 63 73 241 1863

coPapersCiteseer 4.3·105 1.6·107 34 1,188 1.4·106 844 1220 ≥976 ≥826 844 1238 7666 32700 803 13345 - - 69 128 693 3763

rgg n 2 19 s0 5.2·105 3.3·106 633 30 900 17 31 53 80 17 31 53 80 450 665 1002 1498 101 105 108 110

coPapersDBLP 5.4·105 1.5·107 23 3,299 1.1·107 336 ≥1184 ≥805 ≥687 336 3299 14736 73759 942 - - - 101 222 1880 12259

web-BerkStan 6.9·105 6.6·106 714 84,230 7.1·109 201 ≥5665 ≥1827 ≥940 201 84230 93371 ≥140580 1787 - - - 190 10557 25191 -

graph thres 01 7.2·105 2.5·106 22 804 6.5·105 113 804 ≥531 ≥517 113 804 8411 52089 789 4772 - - 174 187 669 6667

eu-2005 8.6·105 1.6·107 21 68,963 4.8·109 388 ≥2140 ≥2009 ≥1470 388 68963 116230 ≥377849 2986 - - - 291 11182 64403 -

web-Google 8.8·105 4.3·106 24 6,332 4 · 107 44 ≥3120 ≥1319 ≥311 44 6332 7696 ≥259559 1290 - - - 261 362 801 -

ldoor 9.5·105 2.3·107 186 76 5,776 34 90 188 321 34 90 188 321 2520 5677 10892 18739 349 356 367 381

ecology1 1 · 106 2 · 106 1,998 4 16 2 6 12 20 2 6 12 20 1490 1761 2223 2785 450 410 427 444

rgg n 2 20 s0 1 · 106 6.9·106 865 36 1,296 17 37 59 88 17 37 59 88 1776 2727 4194 6288 405 419 429 434

in-2004 1.4·106 1.4·107 43 21,869 4.8·108 488 ≥2907 ≥973 ≥505 488 21869 24312 81579 3891 - - - 644 1322 1981 16680

belgium.osm 1.4·106 1.5·106 1,987 10 100 3 10 14 21 3 10 14 21 3208 3189 3514 3347 837 793 763 747
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Table A.5: Results for computing the gaps for Maximum Clique relaxations on real-world graphs (part 1). The graphs are sorted
ascending by their number of vertices. We use the following notation: s ∈ [1, 4], αx–weak x-degeneracy, CsDC–connected s-defective
clique, sDC–s-defective clique, CsP–connected s-plex, sP–s-plex, sC–s-club, ωΠ–maximum-order of a subgraph satisfying Π (taken
from the literature), tΠ–time to compute ωΠ (in seconds, taken from the literature), gCsDC := α⌊√

2s+ 1
4

+ 1
2

⌋ + 1 − ωsDC, gCsP :=

αs + 1− ωsP, gsC := αs + 1− ωsC, cite–sources for the respective s-club-values. If a maximum-order s-plex is not guaranteed to be
connected, then we set gCsP to “?”. See Appendix A on page 103 for more details.

Graph ω1DC gC1DC t1DC ω2DC gC2DC t2DC ω3DC gC3DC t3DC ω4DC gC4DC t4DC ω2P gC2P t2P ω3P gC3P t3P ω4P gC4P t4P ω2C g2C t2C ω3C g3C t3C ω4C g4C t4C cite

johnson8-2-4 4 24 0 5 23 0 5 23 0 6 22 0 5 23 0 8 20 0 9 19 0 - - - - - - - - - -
karate 6 12 0 6 12 0 6 19 1 6 19 1 6 12 0 6 19 0 8 25 0 18 0 1 - - - - - - S

chesapeake 6 30 0 6 30 1 7 32 1 7 32 1 - - - - - - - - - - - - - - - - - - -
MANN a9 17 28 1 18 27 1 19 26 1 20 25 2 26 19 0 36 9 0 36 9 0 - - - - - - - - - -
dolphins 6 11 0 6 11 0 6 23 1 7 22 1 6 11 0 7 22 0 7 33 0 13 4 1 29 0 1 40 0 1 S

hamming6-2 32 32 0 32 32 0 32 32 0 32 32 0 32 32 0 32 32 0 40 24 0 - - - - - - - - - -
hamming6-4 4 60 0 5 59 1 6 58 1 6 58 1 6 58 0 8 56 0 10 54 0 - - - - - - - - - -
johnson8-4-4 14 56 0 14 56 1 14 56 1 15 55 1 14 56 0 18 52 0 22 48 0 - - - - - - - - - -
lesmis 10 27 0 11 26 0 11 47 0 12 46 1 - - - - - - - - - - - - - - - - - - -
polbooks 7 22 1 7 22 1 8 45 1 8 45 1 7 22 0 9 44 0 10 60 0 28 1 1 53 0 1 68 2 1 S

adjnoun 6 44 1 6 44 1 7 81 1 7 81 2 6 44 0 8 80 0 8 99 0 50 0 0 82 6 1 - - - K,S

football 9 29 1 9 29 1 9 89 1 9 89 1 10 28 1 11 87 1 12 103 0 16 22 1 58 40 1 - - - S

johnson16-2-4 8 112 21 9 111 244 9 111 289 10 110 345 10 110 0 - - - - - - - - - - - - - - - -
C125.9 35 90 38 36 89 379 37 88 1887 38 87 4663 43 82 0 51 74 2 - - - 125 0 1 - - - - - - H

keller4 12 159 3 13 158 47 14 157 439 15 156 637 15 156 0 21 150 1 - - - 171 0 1 - - - - - - H

jazz 30 80 0 30 80 0 30 145 0 30 145 0 30 80 0 30 145 0 30 162 0 103 7 1 174 1 1 - - - S

brock200 1 21 179 540 22 178 6911 - - - - - - - - - - - - - - - - - - - - - - - - -
brock200 2 12 188 2 12 188 24 13 187 109 13 187 831 13 187 1 16 184 1 - - - 200 0 1 - - - - - - H

brock200 3 15 185 27 16 184 386 16 184 2729 17 183 13749 17 183 1 - - - - - - - - - - - - - - - -
brock200 4 17 183 56 18 182 804 18 182 6604 - - - 20 180 1 - - - - - - 200 0 1 - - - - - - H

c-fat200-1 12 13 0 12 13 1 12 23 1 12 23 1 12 13 0 12 23 0 12 33 0 - - - - - - - - - -
c-fat200-2 24 31 0 24 31 0 24 53 1 24 53 1 24 31 1 24 53 1 24 75 1 - - - - - - - - - -
c-fat200-5 58 84 0 58 84 0 58 142 1 58 142 1 58 84 1 58 142 1 58 142 0 - - - - - - - - - -
san200 0.7 1 30 170 5 30 170 71 30 170 729 30 170 5227 - - - - - - - - - - - - - - - - - - -
san200 0.7 2 19 181 5 19 181 99 20 180 1002 20 180 8621 - - - - - - - - - - - - - - - - - - -
san200 0.9 1 70 130 12 70 130 73 71 129 1296 71 129 2454 90 110 1 125 75 1 125 75 1 - - - - - - - - - -
san200 0.9 2 60 140 96 61 139 1345 61 139 2296 61 139 1693 - - - 105 95 1 105 95 1 - - - - - - - - - -
san200 0.9 3 44 156 192 45 155 380 45 155 4827 46 154 2892 - - - - - - 96 104 1 - - - - - - - - - -
sanr200 0.7 19 181 152 19 181 2329 - - - - - - - - - - - - - - - - - - - - - - - - -
sanr200 0.9 43 157 5046 44 156 6683 45 155 12502 - - - - - - - - - - - - - - - - - - - - - -
gen200 p0.9 44 45 155 697 46 154 153 46 154 279 47 153 4791 - - - - - - - - - 200 0 1 - - - - - - H

gen200 p0.9 55 56 144 158 57 143 2527 57 143 167 58 142 174 - - - - - - - - - 200 0 1 - - - - - - H

C250.9 - - - - - - - - - - - - - - - - - - - - - 250 0 1 - - - - - - H

hamming8-2 128 128 1 128 128 1 128 128 1 128 128 1 128 128 1 128 128 1 - - - - - - - - - - - - -
hamming8-4 16 240 1 16 240 3 16 240 64 17 239 529 16 240 1 - - - - - - 256 0 1 - - - - - - H

celegansneural 8 144 1 9 143 2 10 255 39 10 255 40 - - - - - - - - - 285 -133 1 243 22 1 - - - H,S

p hat300-1 9 290 1 9 290 4 10 290 21 10 290 136 10 289 0 12 288 0 14 286 1 299 0 1 - - - - - - H

p hat300-2 26 274 18 27 273 324 28 272 3765 - - - 30 270 1 - - - - - - 300 0 1 - - - - - - H
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Table A.6: Results for computing the gaps for Maximum Clique relaxations on real-world graphs (part 2). The graphs are sorted
ascending by their number of vertices. We use the following notation: s ∈ [1, 4], αx–weak x-degeneracy, CsDC–connected s-defective
clique, sDC–s-defective clique, CsP–connected s-plex, sP–s-plex, sC–s-club, ωΠ–maximum-order of a subgraph satisfying Π (taken
from the literature), tΠ–time to compute ωΠ (in seconds, taken from the literature), gCsDC := α⌊√

2s+ 1
4

+ 1
2

⌋ + 1 − ωsDC, gCsP :=

αs + 1− ωsP, gsC := αs + 1− ωsC, cite–sources for the respective s-club-values. If a maximum-order s-plex is not guaranteed to be
connected, then we set gCsP to “?”. See Appendix A on page 103 for more details.

Graph ω1DC gC1DC t1DC ω2DC gC2DC t2DC ω3DC gC3DC t3DC ω4DC gC4DC t4DC ω2P gC2P t2P ω3P gC3P t3P ω4P gC4P t4P ω2C g2C t2C ω3C g3C t3C ω4C g4C t4C cite

p hat300-3 37 263 1799 - - - - - - - - - - - - - - - - - - 300 0 1 - - - - - - H

MANN a27 127 251 1163 128 250 111 129 249 126 130 248 134 236 142 13 351 27 1 - - - 378 0 1 - - - - - - H

brock400 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
brock400 2 - - - - - - - - - - - - - - - - - - - - - 400 0 1 - - - - - - H

brock400 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
brock400 4 - - - - - - - - - - - - - - - - - - - - - 400 0 1 - - - - - - H

san400 0.5 1 13 387 29 13 387 1115 13 387 13966 - - - - - - - - - - - - - - - - - - - - - -
san400 0.7 1 40 360 396 40 360 11190 - - - - - - - - - - - - - - - - - - - - - - - - -
san400 0.7 2 30 370 554 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
san400 0.7 3 22 378 2890 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
san400 0.9 1 100 300 3182 100 300 2626 100 300 5322 100 300 3645 - - - - - - 200 200 1 - - - - - - - - - -
sanr400 0.5 14 386 145 14 386 3395 - - - - - - - - - - - - - - - - - - - - - - - - -
sanr400 0.7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
gen400 p0.9 55 - - - - - - - - - - - - - - - - - - - - - 400 0 1 - - - - - - H

gen400 p0.9 65 - - - - - - - - - - - - - - - - - - - - - 400 0 1 - - - - - - H

gen400 p0.9 75 - - - - - - - - - - - - - - - - - - - - - 400 0 1 - - - - - - H

celegans metabolic 10 228 1 10 228 1 11 362 7 11 362 56 10 228 0 11 362 0 13 419 0 238 0 1 371 2 1 432 0 1 K,S

johnson32-2-4 16 480 1814 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c-fat500-1 14 16 1 14 16 1 14 28 1 14 28 2 14 16 0 14 28 0 14 40 0 - - - - - - - - - -
c-fat500-2 26 34 1 26 34 1 26 58 1 26 58 1 26 34 0 26 58 0 26 82 0 - - - - - - - - - -
c-fat500-5 64 91 1 64 91 1 64 153 1 64 153 1 64 91 1 64 153 1 64 215 1 - - - - - - - - - -
c-fat500-10 126 185 1 126 185 1 126 311 1 126 311 1 126 185 1 126 311 1 126 374 1 - - - - - - - - - -
p hat500-1 10 490 4 11 489 46 11 489 495 12 488 2738 12 488 1 14 486 1 - - - - - - - - - - - - -
p hat500-2 37 463 457 38 462 10172 - - - - - - - - - - - - - - - - - - - - - - - - -
p hat500-3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
DSJC500.5 14 486 1029 - - - - - - - - - - - - - - - - - - 500 0 1 - - - - - - H

C500.9 - - - - - - - - - - - - - - - - - - - - - 500 0 1 - - - - - - H

p hat700-1 12 688 10 12 688 189 13 687 1321 13 687 12478 13 687 1 - - - - - - 700 0 1 - - - - - - H

p hat700-2 45 655 4724 - - - - - - - - - - - - - - - - - - 700 0 2 - - - - - - H

p hat700-3 - - - - - - - - - - - - - - - - - - - - - 700 0 2 - - - - - - H

keller5 - - - - - - - - - - - - - - - - - - - - - 776 0 3 - - - - - - H

brock800 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
brock800 2 - - - - - - - - - - - - - - - - - - - - - 800 0 3 - - - - - - H

brock800 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
brock800 4 - - - - - - - - - - - - - - - - - - - - - 800 0 3 - - - - - - H

p hat1000-1 11 989 128 12 988 2008 - - - - - - - - - - - - - - - - - - - - - - - - -
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Table A.7: Results for computing the gaps for Maximum Clique relaxations on real-world graphs (part 3). The graphs are sorted
ascending by their number of vertices. We use the following notation: s ∈ [1, 4], αx–weak x-degeneracy, CsDC–connected s-defective
clique, sDC–s-defective clique, CsP–connected s-plex, sP–s-plex, sC–s-club, ωΠ–maximum-order of a subgraph satisfying Π (taken
from the literature), tΠ–time to compute ωΠ (in seconds, taken from the literature), gCsDC := α⌊√

2s+ 1
4

+ 1
2

⌋ + 1 − ωsDC, gCsP :=

αs + 1− ωsP, gsC := αs + 1− ωsC, cite–sources for the respective s-club-values. If a maximum-order s-plex is not guaranteed to be
connected, then we set gCsP to “?”. See Appendix A on page 103 for more details.

Graph ω1DC gC1DC t1DC ω2DC gC2DC t2DC ω3DC gC3DC t3DC ω4DC gC4DC t4DC ω2P gC2P t2P ω3P gC3P t3P ω4P gC4P t4P ω2C g2C t2C ω3C g3C t3C ω4C g4C t4C cite

p hat1000-2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
p hat1000-3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
san1000 15 985 1901 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
DSJC1000.5 - - - - - - - - - - - - - - - - - - - - - 1000 0 3 - - - - - - H

hamming10-2 512 512 2 512 512 3 512 512 3 512 512 4 512 512 9 - - - - - - - - - - - - - - - -
hamming10-4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
MANN a45 346 689 641 347 688 2247 348 687 2289 349 686 1074 662 373 6 990 45 8 990 45 8 - - - - - - - - - -
email 12 76 0 12 76 1 12 373 1 13 372 7 12 76 1 12 373 1 12 790 1 72 16 4 212 173 122 651 151 2 S

polblogs 21 356 7 22 355 16 22 843 532 23 842 3007 23 354 1 27 838 1 29 1111 1 352 25 5 776 89 2 1127 13 1 S

p hat1500-1 12 1488 2035 - - - - - - - - - - - - - - - - - - 1500 0 27 - - - - - - H

p hat1500-2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
p hat1500-3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
netscience 20 15 0 20 15 0 20 34 0 20 34 0 20 15 0 20 34 0 20 65 0 35 0 1 - - - - - - K

add20 - - - - - - - - - - - - - - - - - - - - - 124 0 1 - - - - - - K

data - - - - - - - - - - - - - - - - - - - - - 18 6 4 32 14 6 52 22 9 S

MANN a81 - - - - - - - - - - - - 2162 1159 140 3240 81 139 3240 81 148 - - - - - - - - - -
keller6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uk - - - - - - - - - - - - - - - - - - - - - 5 2 4 8 4 5 14 4 5 S

power 6 14 0 6 14 0 7 23 1 - - - 6 14 0 6 24 0 8 53 1 20 0 1 - - - - - - K

add32 - - - - - - - - - - - - - - - - - - - - - 32 0 1 - - - - - - S

wiki-Vote - - - - - - - - - - - - 21 1212 1 - - - - - - - - - - - - - - - -
hep-th 24 27 0 24 27 0 24 156 0 24 156 0 - - - - - - - - - 51 0 1 120 60 48 344 184 405 K,S

whitaker3 - - - - - - - - - - - - - - - - - - - - - 9 2 21 15 5 25 23 9 30 S

crack - - - - - - - - - - - - - - - - - - - - - 10 3 26 17 9 29 31 12 38 S

PGPgiantcompo 26 180 1 27 179 1 28 396 1 28 396 5 29 177 1 31 393 1 33 1128 1 206 0 1 422 2 6 - - - K,S

p2p-Gnutella04 4 100 15231 - - - - - - - - - 5 99 1 - - - - - - - - - - - - - - - -
astro-ph 57 304 0 57 304 0 57 1991 1 57 1991 1 57 304 1 57 1991 1 57 5790 1 - - - - - - - - - -
cond-mat 18 90 0 18 90 0 18 325 0 18 325 1 - - - - - - - - - - - - - - - - - - -
memplus 97 477 0 97 477 0 97 7960 0 97 7960 0 97 477 1 97 7960 1 97 8866 1 - - - - - - - - - -
cs4 - - - - - - - - - - - - - - - - - - - - - 6 4 84 12 8 90 18 20 114 S

p2p-Gnutella25 - - - - - - - - - - - - 5 62 1 - - - - - - - - - - - - - - - -
as-22july06 18 2373 1 18 2373 2 19 8902 32 19 8902 76 19 2372 1 21 8900 1 22 15765 1 - - - - - - - - - -
p2p-Gnutella24 - - - - - - - - - - - - 5 351 1 - - - - - - - - - - - - - - - -
cit-HepTh - - - - - - - - - - - - 28 2441 2 - - - - - - - - - - - - - - - -
cond-mat-2003 25 178 0 25 178 0 26 1190 0 26 1190 0 - - - - - - - - - - - - - - - - - - -
cit-HepPh - - - - - - - - - - - - 24 823 1 - - - - - - - - - - - - - - - -
p2p-Gnutella30 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
cond-mat-2005 30 249 0 30 249 0 30 1966 0 30 1966 0 30 249 1 30 1966 1 30 7072 1 - - - - - - - - - -
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Table A.8: Results for computing the gaps for Maximum Clique relaxations on real-world graphs (part 4). The graphs are sorted
ascending by their number of vertices. We use the following notation: s ∈ [1, 4], αx–weak x-degeneracy, CsDC–connected s-defective
clique, sDC–s-defective clique, CsP–connected s-plex, sP–s-plex, sC–s-club, ωΠ–maximum-order of a subgraph satisfying Π (taken
from the literature), tΠ–time to compute ωΠ (in seconds, taken from the literature), gCsDC := α⌊√

2s+ 1
4

+ 1
2

⌋ + 1 − ωsDC, gCsP :=

αs + 1− ωsP, gsC := αs + 1− ωsC, cite–sources for the respective s-club-values. If a maximum-order s-plex is not guaranteed to be
connected, then we set gCsP to “?”. See Appendix A on page 103 for more details.

Graph ω1DC gC1DC t1DC ω2DC gC2DC t2DC ω3DC gC3DC t3DC ω4DC gC4DC t4DC ω2P gC2P t2P ω3P gC3P t3P ω4P gC4P t4P ω2C g2C t2C ω3C g3C t3C ω4C g4C t4C cite

p2p-Gnutella31 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
kron500-16 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
soc-Epinions1 24 3021 16030 - - - - - - - - - 28 3017 1 - - - - - - - - - - - - - - - -
soc-Slashdot0811 27 2513 15695 - - - - - - - - - 31 2509 1 - - - - - - - - - - - - - - - -
graph thres 05 - - - - - - - - - - - - - - - - - - - - - 72 0 9 - - - - - - H

soc-Slashdot0902 28 2525 15944 - - - - - - - - - 32 2521 1 - - - - - - - - - - - - - - - -
prefAtt - - - - - - - - - - - - 7 977 1 8≥3368 1 9≥22956 1 - - - - - - - - - -
smallworld - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
G n pin pout - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
graph thres 04 - - - - - - - - - - - - - - - - - - - - - 89 0 14 - - - - - - H

luxembourg.osm - - - - - - - - - - - - 4 3 1 5 6 1 6 ? 1 - - - - - - - - - -
rgg n 2 17 s0 15 15 0 16 14 1 16 32 2 - - - 16 14 1 17 31 1 18 54 1 - - - - - - - - - -
wave - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
graph thres 03 - - - - - - - - - - - - - - - - - - - - - 124 0 25 - - - - - - H

caidaRouterLevel 18 1054 3314 - - - - - - - - - 20 1052 1 - - - - - - - - - - - - - - - -
coAuthorsCiteseer 87 1286 0 87 1286 0 87 1547 0 87 1547 0 87 1286 1 87 1547 1 87 ≥2836 1 1373 0 12 - - - - - - K

amazon0302 - - - - - - - - - - - - 8 413 1 9 830 1 10 3602 1 - - - - - - - - - -
email-EuAll 17 7620 443 17 7620 12317 - - - - - - 19 7618 1 - - - - - - - - - - - - - - - -
citationCiteseer - - - - - - - - - - - - - - - - - - - - - 1319 0 22 - - - - - - K

web-Stanford 62≥18943 49 63≥18942 212 64 ≥3609 8284 - - - 64≥18941 4 64≥3609 6 - - - - - - - - - - - - -
graph thres 02 - - - - - - - - - - - - - - - - - - - - - 202 0 60 - - - - - - H

coAuthorsDBLP 115 222 0 115 222 0 115 1868 0 115 1868 0 115 222 1 115 1868 1 115 ≥1284 1 337 0 16 - - - - - - K

cnr-2000 85≥17730 0 85≥17730 0 86 ≥6340 0 86 ≥6340 1 85≥17730 7 86≥6340 11 86 ≥6287 8 - - - - - - - - - -
web-NotreDame 155 10567 519 155 10567 1360 - - - - - - 155 10567 1 155≥3655 1 155 ≥3378 1 - - - - - - - - - -
amazon0312 - - - - - - - - - - - - 12 2736 1 13≥1406 1 14 ≥1343 1 - - - - - - - - - -
amazon0601 - - - - - - - - - - - - 12 2741 1 13≥1362 1 14 ≥1424 1 - - - - - - - - - -
amazon0505 - - - - - - - - - - - - 12 2749 1 13≥1316 1 14 ≥1328 1 - - - - - - - - - -
coPapersCiteseer - - - - - - - - - - - - 845 376 8 845 ≥132 8 845 ≥-18 8 - - - - - - - - - -
rgg n 2 19 s0 19 13 0 19 13 0 19 35 1 20 34 1 19 13 1 19 35 1 20 61 1 - - - - - - - - - -
coPapersDBLP - - - - - - - - - - - - 337 ≥848 3 337 ≥469 4 337 ≥351 4 3300≥-2115 251 - - - - - - K

web-BerkStan 202 ≥5464 1 202 ≥5464 2 202 ≥1626 7 202 ≥1626 33 202 ≥5464 5 202≥1626 5 202 ≥739 5 - - - - - - - - - -
graph thres 01 - - - - - - - - - - - - - - - - - - - - - 805 0 76 - - - - - - K

eu-2005 - - - - - - - - - - - - 388 ≥1753 5 390≥1620 6 391 ≥1080 8 - - - - - - - - - -
web-Google 45 ≥3076 0 46 ≥3075 1 46 ≥1274 1 47 ≥1273 1 46 ≥3075 2 47≥1273 2 48 ≥264 2 - - - - - - - - - -
ldoor - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ecology1 - - - - - - - - - - - - 4 3 0 - - - 6 ? 1 - - - - - - - - - -
rgg n 2 20 s0 18 20 0 18 20 1 - - - - - - 18 20 2 19 41 2 20 69 2 - - - - - - - - - -
in-2004 - - - - - - - - - - - - 490 ≥2418 4 491 ≥483 7 491 ≥15 8 - - - - - - - - - -
belgium.osm - - - - - - - - - - - - 5 6 1 5 10 1 6 ? 1 - - - - - - - - - -
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