
Combinatorial Feature Selection
Parameterized Algorithms and Complexity

Vincent Froese

Masterarbeit

Zur Erlangung des akademischen Grades
Master of Science (M.Sc.)

im Studiengang Informatik

Technische Universität Berlin
Fakultät IV - Elektrotechnik und Informatik

Institut für Softwaretechnik und Theoretische Informatik
Fachgebiet Algorithmik und Komplexitätstheorie

Eingereicht von Vincent Froese

Betreuer: Dipl.-Inf. René van Bevern,
Prof. Dr. Rolf Niedermeier,

Dipl.-Inf. Manuel Sorge

28. September 2012

Eidesstattliche Erklärung

Die selbständige und eigenhändige Ausfertigung versichert an Eides statt

Berlin, den 28. September 2012

. .
Unterschrift

i

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Problemen aus dem Bereich der Kombi-
natorischen Merkmalsselektion. Ziel der Kombinatorischen Merkmalsselektion ist es,
für eine gegebene Menge hochdimensionaler Daten eine Teilmenge der Dimensionen so
auszuwählen, dass die Daten in den ausgewählten Dimensionen eine gesuchte Eigenschaft
erfüllen. Probleme dieser Art treten zum Beispiel im Bereich des Maschinellen Lernens
auf, wo Daten häufig erst geeignet für die jeweilige Zielanwendung vorverarbeitet werden
müssen. In dieser Arbeit betrachten wir Probleme aus einem allgemeinen Framework
für Kombinatorischen Merkmalsselektion, das von Charikar et al. [CGK+00] eingeführt
wurde. Dieses Framework umfasst unter anderem das Problem Hidden Clusters aus
dem Bereich der Clusteranalyse, sowie das Dimensionsreduktionsproblem Distinct
Vectors. Bei Hidden Clusters möchte man verrauschte Dimensionen löschen, so-
dass sich die Daten in den übrigen Dimensionen in eine vorgegebene Anzahl an Clustern
einteilen lassen. Das Distinct Vectors Problem besteht darin, eine möglichst kleine
Menge an Dimensionen zu behalten, die ausreicht, um alle Datenpunkte unterscheiden
zu können. Außerdem führen wir ein weiteres Clustering Problem namens Hidden
Cluster Graph ein, bei dem die Anzahl an Clustern nicht vorgegeben ist.

Diese Arbeit beinhaltet eine verfeinerte Analyse hinsichtlich der Komplexität der oben
genannten Probleme. Dabei setzen wir die Ergebnisse von Charikar et al. [CGK+00] fort
und untersuchen die Probleme im Kontext der Parametrisierten Komplexitätstheorie.
Zu den erzielten Ergebnissen gehören unter anderem parametrisierte Härtebeweise
bezüglich der Parameter Anzahl auszuwählender Dimensionen und Anzahl zu löschender
Dimensionen. Darüber hinaus werden einige Spezialfälle der genannten Probleme
formuliert und analysiert. Diese Spezialfälle konzentrieren sich auf weitere Parameter,
wie die gesuchte Anzahl an Clustern, der Clusterradius, die Alphabetgröße oder den
paarweisen Hamming Abstand der Daten. Zwar gelten einige der oben erwähnten
Härteresultate für manche Probleme sogar in den eingeschränkten Spezialfällen, doch
ist es dennoch möglich, für geeignete Parameterkombinationen Lösungsalgorithmen
anzugeben, bei denen der superpolynomielle Teil der Laufzeit sich auf den Parameter
beschränkt. Für Distinct Vectors zeigen wir zudem eine untere Schranke an
den superpolynomiellen Teil der Laufzeit für den kombinierten Parameter Anzahl
auszuwählender Dimensionen und Alphabetgröße. Die Ergebnisse geben Anlass für
zukünftige Forschung auf dem Gebiet der Kombinatorischen Merkmalsselektion.

iii

Abstract

This work deals with the topic of combinatorial feature selection. Given a set of
high-dimensional data, the goal is to select an appropriate subset of dimensions such
that some desired property holds for the data restricted to the selected dimensions.
Problems of this kind arise as data preprocessing tasks in areas such as machine
learning. Charikar et al. [CGK+00] defined a general framework for combinatorial
feature selection. Their framework comprises cluster analysis as well as dimension
reduction. They defined several instances of feature selection problems within their
framework and provided hardness results as well as approximation algorithms for them.
In this work, we consider two of their problems: The clustering problem Hidden
Clusters and the dimension reduction problem Distinct Vectors. The goal of
Hidden Clusters is to get rid of noisy dimensions in the data such that in the
remaining dimensions the data can be divided into a given number of clusters. The
Distinct Vectors problem aims at finding a minimum number of dimensions such
that all given points can still be distinguished from each other in the selected dimensions.
In addition to the two problems mentioned above, we introduce another clustering
problem, called Hidden Cluster Graph, where the number of cluster centers is not
known.

We conduct a refined analysis concerning the computational complexity of the above
problems from the perspective of parameterized complexity analysis. In doing so, we
pursue the analysis of Charikar et al. [CGK+00] and provide parameterized hardness
results as well as fixed-parameter algorithms. For all three problems, it turns out
that they are hard to solve with respect to some natural parameters such as the
number of dimensions to select or the number of dimensions to delete. In order to
obtain fixed-parameter tractability, we also focus on some special cases of the problems
involving parameters such as the number of cluster centers, the radius of a cluster,
the size of the alphabet, or the pairwise Hamming distance of the data points. We
show that the problems are indeed fixed-parameter tractable for several combinations
of the mentioned parameters by providing problem kernels as well as fixed-parameter
tractable algorithms. Moreover, we prove a lower bound on the running time for any
fixed-parameter algorithm for Distinct Vectors parameterized by the number of
dimensions to select and the size of the alphabet. We also indicate some interesting
open questions resulting from our discussions which encourage for future research.

v

Contents

1 Introduction 1
1.1 Combinatorial Feature Selection: A Framework 2
1.2 Overview and Results . 7
1.3 Related Work . 8

2 Preliminaries 11
2.1 Parameterized Complexity . 12
2.2 Graphs . 14

3 Subspace Selection 17
3.1 Hidden Clusters . 17

3.1.1 NP- and W[1]-Hardness . 18
3.1.2 A Fixed-Parameter Algorithm 21

3.2 Hidden Cluster Graphs . 22
3.2.1 A Polynomial-Time Algorithm 23
3.2.2 NP- and W[2]-Hardness . 24
3.2.3 A Fixed-Parameter Algorithm 28

4 Dimension Reduction 31
4.1 Distinct Vectors on a Binary Alphabet 32

4.1.1 NP- and EW[2]-Hardness . 32
4.1.2 Bounded Pairwise Hamming Distance: A Dichotomy 34

4.2 Distinct Vectors on an Arbitrary Alphabet 38
4.2.1 Problem Kernels . 39
4.2.2 Fixed-Parameter Tractability and Approximation 41
4.2.3 W[2]-Hardness Regarding the Required Solution Size 42

4.3 Summary . 43

5 Conclusion 45

vii

1 Introduction

Imagine a professional whisky taster (presumably a Scotsman) whose job is to taste
whiskies and afterwards judge them by their quality. In order to do a good job,
he always takes notes of each whisky he tastes. Carefully, he writes down all the
information that help him in assessing a particular whisky such as color, age, bouqet,
taste, alcohol strength, viscosity, the type of cask used for maturation, the “peatiness”,
and many attributes more. After many years and thousands of glasses of whisky, he
decides to share his knowledge and experience with other enthusiasts by writing a
comprehensive book about Scotch whisky containing a detailed description of every
single whisky he knows of. His bulk of notes, however, is way too much to be completely
contained in his book. Hence, he has to find a compact description containing only
those attributes that are necessary to uniquely describe an individual whisky. Moreover,
he wants to categorize the whiskies according to their character. There are five to six
geographical regions in Scotland that are recognized to produce whiskies of distinct
types [Hof07]. His goal is thus to divide up the whiskies into five groups such that all
whiskies of one group are as similar to each other in as many attributes as possible.

The two problems of the whisky connoisseur described above can in fact be considered
as instances of what we call combinatorial feature selection problems. The term
combinatorial feature selection refers to a general class of problems that, given a set
of high-dimensional objects, ask for selecting a subset of dimensions (features) such
that some desired property holds for the dataset restricted to the selected dimensions.
Problems of this kind often arise in areas like machine learning [HM94, BL97, WMC+00],
data mining [LM07, LM98a, LM98b] or computational biology [GWBV02], where the
dimensionality of the considered data frequently is in the thousands. Examples of
applications involving large feature sets are document classification [FH01] or gene
expression array analysis [XK01]. For many applications, large feature sets impose
severe problems regarding efficiency and computational tractability of data processing
as well as the accuracy of the results (a phenomenon often referred to as the curse
of dimensionality [Bel61]). In most cases an appropriate preprocessing of the data is
inevitable, and feature selection is one common approach to it. Working only on a
carefully chosen subset of features provides several beneficial effects such as increased
tractability of data processing, better generalization performance, decreased risk of
overfitting and elimination of noise in the data. Moreover, it can bring a better
understanding of the structure underlying the data and it may enable visualizations.

The classical approach to feature selection takes place in an affine setting where we
are allowed to select an affine subspace of the original feature space (in this context,
the term feature extraction is often used since new features are constructed out of the
original ones). Often the resulting features take the form of linear combinations of the

1

1 Introduction

original features. Affine versions of feature selection, like principal component analysis
[Pea01, Jol02] for example, are well-studied in the literature [Krz87]. In combinatorial
feature selection [CGK+00], we directly choose a subset of the original dimensions. One
advantage of the combinatorial approach is that the selected subspace is interpretable
in the sense that the selected features have a clear meaning in the context of the original
data. Moreover, applying an already determined solution to new datasets can be done
much faster in a combinatorial setup since it only discards features, whereas an affine
method often involves some sort of linear transformation. Another advantage is that
combinatorial feature selection can be applied to arbitrary feature spaces containing
categorical or symbolic attributes, whereas affine methods often require numerical
feature spaces (real-valued vector spaces).
In section 1.1 we describe a general theoretical framework that was introduced by

Charikar et al. [CGK+00] for studying combinatorial feature selection problems. They
considered several instances of combinatorial feature selection problems within this
framework and provided approximation algorithms as well as hardness results. In this
work we investigate some of their problems from the perspective of parameterized
complexity analysis [DF99, FG06, Nie06]. section 1.2 gives an overview of this work
and the accomplished results.

1.1 Combinatorial Feature Selection: A Framework

This section contains the basic definitions of combinatorial feature selection problems
which we consider throughout this work. We mainly adopt the notation by Charikar et
al. [CGK+00, Section 2].

In the following, S = {x1, . . . , xn} ⊆ Σd denotes a set of n points1 of a d-dimensional
feature space Σd. We refer to a specific dimension by using its index i ∈ {1, . . . , d}.
Accordingly, (x)i denotes the value of x in dimension i. Let K ⊆ {1, . . . , d} be a subset
of dimensions. Then x|K ∈ Σ|K| is the projection of x onto the subspace indexed by
the dimensions in K and we define the set S|K := {x|K | x ∈ S}. The feature space Σd

does not necessarily have to be a metric space, we only assume that it is equipped
with a function dist : Σd × Σd → Q, which defines a distance between points from Σd.
Moreover, for any subset K of dimensions, the restriction dist|K : Σ|K| × Σ|K| → Q of
the function dist to the subspace indexed by the dimensions in K has to be defined.
Feature selection is the task of selecting a subset of dimensions K such that S|K

satisfies a given property Π. More precisely, we consider an optimization setting where
we ask for a subset K of minimum or maximum cardinality such that Π holds for S|K .
Whether the goal is to minimize or to maximize the size of K depends on Π. Charikar
et al. [CGK+00] defined two complementary flavors of the feature selection problem
which they called subspace selection and dimension reduction.

1 Depending on Σ, these may be vectors from a vector space over some field or simply words over an
alphabet. We use the general term “points” for convenience as the meaning will be clear from the
context.

2

1.1 Combinatorial Feature Selection: A Framework

Subspace Selection. In this genre of feature selection problems we are given a set S
that does not satisfy a certain property Π and we want to find a subset of dimensions K
of maximum cardinality such that Π(S|K) holds. Problems of this kind may arise if Π
is such that it reveals some interesting structure that “explains” the data in some way.
The goal is then to maintain a maximum amount of information (features) from the
input, subject to preserving the underlying structure, that is, we want to be able to
explain (or understand) as much of the data as possible. For example, data clustering
problems can be formulated in this way. We will consider the Hidden Clusters
problem by Charikar et al. [CGK+00] in which we are given a set of points from
a high-dimensional feature space which cannot be clustered due to the presence of
some “noisy” dimensions. The goal is to discard the noisy dimensions such that in
the remaining dimensions the data clusters well. They defined clustering in terms of
a min-max objective where the task is to find a given number of cluster centers such
that the maximum distance of a point to its corresponding cluster center is minimized.
The formal problem definition reads as follows:

Hidden Clusters
Input: A set S = {x1, . . . , xn} ⊆ Σd consisting of n points in d dimensions,

r ∈ Q, `, k ∈ N.
Question: Is there a subsetK ⊆ {1, . . . , d} of dimensions with |K| ≥ k such

that there exist ` centers C = {c1, . . . , c`} ⊆ Σd and an assignment
of points to centers σ : S → C such that dist|K(x, σ(x)) ≤ r for all
points x ∈ S?

Figure 1.1 shows an illustrative example of the Hidden Clusters problem.
In addition to Hidden Clusters, we introduce another clustering problem that

belongs to the setting of subspace selection. One drawback of the Hidden Clusters
formulation is the requirement to know the number of clusters ` beforehand. As this
may often not be the case in practical applications, we introduce a somewhat stricter
notion of clustering, called a cluster graph. Herein, a cluster is a set of points having
distance of at most r from each other and a distance greater than r to all other points.
The task can be described as minimizing the distances of points within a cluster
(increasing homogeneity of a cluster) while maximizing the distances between clusters
(increasing heterogeneity between clusters). In this way, the number of resulting clusters
depends on the data (for a given radius r). We call this problem the Hidden Cluster
Graph problem. An example instance is shown in Figure 1.2. The problem is defined
as follows:

Hidden Cluster Graph
Input: A set S = {x1, . . . , xn} ⊆ Σd consisting of n points in d dimensions,

r ∈ Q, k ∈ N.
Question: Is there a subset K ⊆ {1, . . . , d} of dimensions with |K| ≥ k

such that the graph GK = (V,EK) with

V := S, EK := {{xi, xj} | xi 6= xj ∈ V, dist|K(xi, xj) ≤ r}

is a cluster graph (that is, a union of disjoint cliques)?

3

1 Introduction

 0 1 2
 0

 1
 2

 0

 1

 2

z

x

y

z

 0 1 2
 0

 1

 2

y

x

 0

 1

 2

 0 1 2

z

x

 0 1 2
 0

 1

 2

z

y

Figure 1.1: Example of the Hidden Clusters problem: The top left plot shows a
three-dimensional dataset which cannot be separated into three clusters
of radius 0.5. The top right plot shows a solution to the problem where
the dataset is projected onto the x-y-plane. In these two dimensions the
data fulfills the clustering condition. The two bottom plots contain the
projections onto the x-z-plane and the y-z-plane. In both cases the data
does not fulfill the clustering condition.

4

1.1 Combinatorial Feature Selection: A Framework

x

y

0 1 2 3 4
0

1

2

3

4

x

y

0 1 2 3 4
0

1

2

3

4

x

y

0 1 2 3 4
0

1

2

3

4

Figure 1.2: Example of the Hidden Cluster Graph problem: The top plot shows a
two-dimensional dataset and the corresponding graph G{x,y}, which is not
a cluster graph with respect to the Euclidean metric and the radius r = 1.
The two bottom plots illustrate the two possible solutions obtained by
selecting either the dimension x (left) or y (right). The black dots indicate
the projected data points. In both cases the corresponding graph is a
cluster graph.

5

1 Introduction

x1
x2
x3
x4
x5

1 2 3 4 5 6 7 8 9 10
0
0
0
1
1

1
0
1
0
1

1
0
0
1
0

1
1
0
1
1

1
1
0
0
1

0
0
0
0
0

1
1
1
1
0

1
1
1
0
0

0
0
1
1
1

0
0
1
0
0

Figure 1.3: Example of the Distinct Vectors problem: The dataset {x1, . . . , x5}
consisting of five points over a binary alphabet in ten dimensions is
represented as a matrix with rows corresponding to points and columns
corresponding to dimensions. It is possible to distinguish all points from
each other by selecting dimension 2, 5 and 7 (highlighted in gray).

Dimension Reduction. In this scenario we are given a set S satisfying a property Π
and we want to find the smallest subset of dimensions K such that Π(S|K) still holds.
In contrast to subspace selection, we now want to determine the minimum amount of
information (features) that is needed in order to appropriately describe the data. The
goal of finding the smallest feature set that serves a given purpose may be motivated,
for example, by aiming at a better understanding of the data or reducing the amount
of resources involved in data processing by filtering out unnecessary or redundant
information.

Charikar et al. [CGK+00] provided several instances of dimension reduction problems.
In this work we consider one of their problems called Distinct Vectors2. This
problem consists of the basic task to find a smallest subset of dimensions that suffices
to distinguish all points in a given dataset. In its general formulation, the problem may
arise in applications such as finding a unique key in a database or simply compressing
data without losing the essential information to tell apart all data points. The formal
decision problem reads as follows:

Distinct Vectors
Input: A multiset S = {x1, . . . , xn} ⊆ Σd of n distinct points in d dimen-

sions and k ∈ N.
Question: Is there a subset K ⊆ {1, . . . , d} of dimensions with |K| ≤ k

such that all points in S|K are still distinct?

Note that, for technical reasons, in the definition of Distinct Vectors the datasets S
and S|K are defined to be multisets, that is they are allowed to contain multiple elements.
This is required for the Distinct Vectors problem in order to be well-defined because
otherwise all elements of a set S|K would be distinct by definition. Figure 1.3 depicts
an example of a Distinct Vectors instance.

2Note that the term “vectors” is not used in the mathematical sense of an element of some vector
space, but in the general sense of a word over an alphabet. Anyhow, we stick to the original problem
name.

6

1.2 Overview and Results

1.2 Overview and Results

In chapter 2 we give a brief introduction into the basics of parameterized complexity
theory and graph theory.
chapter 3 and chapter 4 constitute the main part of this work. The main results

obtained in these chapters are briefly summarized in Table 1.1. In chapter 3 we discuss
the subspace selection problems Hidden Clusters and Hidden Cluster Graph.
section 3.1 contains a detailed version of the proof sketch for NP-hardness of Hidden
Clusters by Charikar et al. [CGK+00]. The proof additionally yields W[1]-hardness
with respect to the number of selected dimensions k implying that Hidden Clusters
is unlikely to be solvable by an algorithm whose super-polynomial part of the running
time only depends on k. The problem, however, is fixed-parameter tractable with
respect to the dual parameter t, that is, the “number of dimensions to be deleted”,
combined with the number of centers `: We give a fixed-parameter algorithm running
in O(`td(`3 + n)) time. Since we want to retain a maximum number of dimensions, the
value of t might be small in applications. If the number of centers ` is small too, then
the above algorithm solves the problem efficiently. Table 3.1 summarizes the results in
more detail.
In section 3.2 we study the Hidden Cluster Graph problem equipped with

distance functions induced by Lp-norms. We show NP-hardness as well as W[2]-
hardness with respect to the parameter t for all natural numbers p ≥ 1. On the
contrary, for the L∞-distance, we are able to solve the problem in O(d(n2d+ n3) time.
Hidden Cluster Graph becomes fixed-parameter tractable if the radius r is also
taken into consideration as a parameter. This may be interesting for datasets that are
normalized such that all points are located within a bounded region of the feature space
(for example, inside a sphere of a small radius). The radius will then also be bounded.
The combined parameter (r, t) allows an algorithm running in O((2pr)t · (n2d+ n3))
time. See Table 3.2 for the details.

chapter 4 deals with the Distinct Vectors problem. We prove a dichotomy result
concerning the special case of a binary alphabet: If, for each pair of points, the number
of dimensions in which both have different entries (also called the Hamming distance)
can be bounded from above by three, then Distinct Vectors can be solved in O(n3d)
time. Otherwise it is NP-hard. Furthermore, we analyze the parameterized complexity
of Distinct Vectors. Despite the general NP-hardness, there may be hope for
fixed-parameter tractability, for example with respect to the sought solution size k for
this can be expected to take on small values. We show that, in general, this is not the
case by proving W[2]-hardness with respect to k for an alphabet of unbounded size. It is
therefore natural to add the alphabet size σ to the parameterization in order to obtain
fixed-parameter tractability. Indeed, we prove existence of an O(σσk+k)-size problem
kernel. For constant alphabet size σ, Distinct Vectors is thus fixed-parameter
tractable with respect to k. But the proof of NP-hardness also implies EW[2]-hardness
for the combined parameter (k, σ). This basically means that Distinct Vectors is
unlikely to be solvable by an algorithm whose running time depends singly exponential
on k and σ. Note that for Distinct Vectors this implies that there is no linear-size

7

1 Introduction

Table 1.1: Overview of the main results.

Problem Results†

Hidden Clusters NP-hard
(See Table 3.1 for the details.) W[1]-hard with respect to k

FPT with respect to (`, t)

Hidden Cluster Graph NP-hard
(See Table 3.2 for the details.) W[2]-hard with respect to t

FPT with respect to (r, t)

Distinct Vectors NP-hard for σ = 2 and f ≥ 4
(See Table 4.1 for the details.) polynomial-time solvable for σ = 2 and f ≤ 3

W[2]-hard with respect to k
W[1]-hard with respect to t for σ = 2 and f ≥ 4
FPT with respect to (k, σ) and (k, f)

† k: sought solution size, t: number of dimensions to delete, `: number of cluster
centers, r: radius, σ alphabet size, f : maximum pairwise Hamming distance of
the data points

problem kernel with respect to (k, σ) since this would allow to solve the problem
in 2O(k+σ) · (nd)O(1) time by trying out all subsets of dimensions.

For the dual parameter t, however, we show that the problem is W[1]-hard even for
constant σ = 2. We define another parameter, called f , which denotes the bound on
the maximal pairwise Hamming distance mentioned above. This parameter could be
small in applications where the data is sparse (that is, most entries are 0). We develop
some fixed-parameter tractability results for the combined parameter (k, f). A detailed
overview of all results is given in Table 4.1.

1.3 Related Work

Feature selection is most commonly done within the affine setting. For example,
principal component analysis, independent component analysis, canonical correlation
analysis, or multidimensional scaling are well-studied methods for selecting affine linear
subspaces. They are covered, for example, by the books of Duda et al. [DHS01] and
Bishop [Bis06]. Nonlinear dimension reduction techniques can be found in the work
by Schölkopf et al. [SSM98], Tenenbaum et al. [TSL00] or Roweis and Saul [RS00].
Further, see the surveys of Molina et al. [MBN02] and Guyon and Elisseeff [GE03] for
a broad overview of different approaches to feature selection.

A popular problem of the combinatorial feature selection setup is Minimum Feature
Set, which considers a given dataset of binary points that is divided into two different
classes. The task is to choose a subset of at most k dimensions that allows to
distinguish all pairs of points from different classes. The Distinct Vectors problem

8

1.3 Related Work

by Charikar et al. [CGK+00] is a modification of the classic Minimum Feature Set
problem in that it requires to distinguish all points from one another. Davies and
Russel [DR94] proved Minimum Feature Set to be NP-complete. In addition, Van
Horn and Martinez [HM94] showed that the problem is in fact hard to approximate in
polynomial time via reduction from Set Cover. They proved that Minimum Feature
Set cannot be approximated within a factor of o(logn) in polynomial time, unless
NP ⊆ DTIME[nlog logn]. Conversely, as Oliveira and Sangiovanni-Vincentelli [OSV92]
observed, Minimum Feature Set can in turn be reduced to Set Cover. This allows
for polynomial-time factor-O(logn) approximation algorithms, for example, see the
work by Dash [Das97].

Parameterized complexity results for the Minimum Feature Set problem can be
found in the work by Cotta and Moscato [CM03], where they proved W[2]-hardness
with respect to the sought solution size k. This result is surprising insofar as one may
reckon that it is in fact easier to distinguish only pairs of points from two different
classes instead of all pairs. But, as we will see, Distinct Vectors is fixed-parameter
tractable with respect to k for binary data, whereas Minimum Feature Set is W[2]-
hard. Moreover, Cotta and Moscato recognized that even the special case of finding a
feature set that distinguishes only a single point from all others (One-Out Feature
Set) is NP-complete and W[2]-hard with respect to k [CM05]. They also identified
an amenable variant called d-MaxRowWeight One-Out Feature Set, where the
maximum number d of 1’s for each point is bounded by a constant. They proved this
case to be fixed-parameter tractable with respect to the parameter k [CM05].

9

2 Preliminaries
In this chapter we introduce the theoretical basis that is necessary to understand the
subsequent chapters. We assume the reader to be familiar with the fundamentals
in logic, set theory and computational complexity, especially with the concept of
NP-completeness. For example, see the books by Papadmitriou [Pap94] and Arora and
Barak [AB09] for comprehensive introductions. A detailed introduction to the concept
of NP-completeness is given by Garey and Johnson [GJ79].

Miscellaneous and Notation. The cardinality of set A is denoted by |A|. A disjoint
union of two sets A and B is denoted by A] B. A partition of a set A is a division
of A into disjoint, non-empty subsets. The Stirling number of the second kind

S(n, k) = 1
k!

k∑
i=0

(−1)k−i
(
k

i

)
in

is the number of different partitions of an n-element set into exactly k non-empty
subsets. By N, Z, Q, R we denote the sets of the natural, integer, rational and real
numbers respectively. By ~x refer to the vector where all components are equal to x. We
assume all numbers appearing as inputs in problem definitions and algorithms to be
rational numbers. This is required for computational reasons since a Turing machine
cannot handle irrational numbers in finite time. Moreover, throughout this work, we
assume that arithmetical operations such as additions and comparisons of two numbers
can be done in O(1) time.

Norms and Metrics. For p ∈ N with p ≥ 1, we define the Lp-norms

‖ · ‖p : Rd → [0,∞), ‖x‖p :=
(d∑
j=1
|(x)j |p

) 1
p

and for p = ∞ we define the maximum norm ‖x‖∞ := maxj∈{1,...,d} |(x)j |. One
important property of a norm ‖ · ‖ is the so called triangle inequality

∀x, y ∈ Rd : ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The Lp-norm induces the following metric

Mp : Rd × Rd → [0,∞), Mp(x, y) := ‖x− y‖p,

which defines a distance between two vectors. The Hamming distance ∆(x, y) of two
words x, y ∈ Σd is defined as ∆(x, y) :=

∑
(x)i 6=(y)i

1.

11

2 Preliminaries

2.1 Parameterized Complexity

Since the development of the theory of NP-completeness, many computational problems
of practical relevance were shown to be NP-hard. These problems are considered to
be computational intractable, meaning they are widely believed not to be solvable by
any algorithm running in time polynomial in the input size. Parameterized complexity
theory aims at a more fine-grained analysis of such computationally hard problems.
The goal is to identify certain parameters of the problem instances such that the
presumably inherent super-polynomial part of the running time can be confined to the
value of the parameter. This may allow to solve practical instances efficiently if the
parameter is independent from the size of the instance and takes on a “small” value.
Besides algorithmic benefits, the parameterized study of NP-hard problems provides a
better understanding of the properties that make instances hard to solve.

Downey and Fellows [DF99] developed a parameterized complexity theory defining the
fundamental notions and concepts. Their monograph focuses on structural complexity-
theoretic results. Further complexity-theoretic approaches can be found in the book
by Flum and Grohe [FG06]. Algorithmic approaches to parameterized problems are
discussed in the book by Niedermeier [Nie06].

Parameterized Problems. Let Σ be a finite alphabet. A parameterized problem is a
language L ⊆ Σ∗ × N. The second component is called the parameter of the problem.
A parameterized problem L is called fixed-parameter tractable with respect to the
parameter if there exists an algorithm that, given an instance (I, k) ∈ Σ∗ × N, decides
whether (I, k) ∈ L in time f(k) · |I|O(1) for some computable function f : N→ N only
depending on k.

Search Tree Algorithms. One way to prove a parameterized problem fixed-parameter
tractable is to give a search tree algorithm that solves it. The idea is to identify subsets
of the input instance for which we know that they contain at least one element that
contributes to an optimal solution. For each subset, we branch over all elements, that
is, we simply try out all elements and recursively check whether we obtain a solution.
If we can find such a subset in polynomial time and if the size of each subset as well as
the recursion depth can be bounded by the parameter, then this procedure yields a
fixed-parameter algorithm.

Problem Kernels. Another way to prove a parameterized problem L fixed-parameter
tractable is to show that it admits a problem kernel. Indeed, it is known that a
parameterized problem is fixed-parameter tractable if and only if it admits a problem
kernel [CCDF97].

A reduction to a problem kernel is a mapping r : Σ∗ × N→ Σ∗ × N, (I, k) 7→ (I ′, k′)
such that (I, k) ∈ L ⇔ (I ′, k′) ∈ L, and |I ′| ≤ g(k), and k′ ≤ h(k) holds for some
computable functions g, h : N→ N only depending on k. The function g is called the
size of the problem kernel (I ′, k′). Moreover, the reduction r must be computable in

12

2.1 Parameterized Complexity

time polynomial in |I|+ k. A problem kernel can be seen as a form of data reduction
rule of guaranteed efficiency [LMS12, Bod09].

Parameterized Reductions. Let L and L′ be two parameterized problems. A param-
eterized (many-one) reduction is a mapping r : Σ∗ ×N→ Σ∗ ×N, (I, k) 7→ (I ′, k′) that
is computable in f(k) · |I|O(1) time for some computable function f : N → N solely
depending on k such that (I, k) ∈ L⇔ (I ′, k′) ∈ L′ and k′ ≤ g(k) for some computable
function g : N→ N only depending on k.

Parameterized Intractability. Since there are parameterized problems which are not
known to be fixed-parameter tractable, there exist several parameterized complexity
classes in order to characterize the different levels of intractability. Here, we introduce
some of them which will appear throughout this work. For a comprehensive study, we
refer to the books by Downey and Fellows [DF99] and Flum and Grohe [FG06]. To
begin with, we introduce the classes

FPT ⊆W[1] ⊆W[2] ⊆W[3] ⊆ · · · ⊆ XP.

The class FPT contains all parameterized problems that are fixed-parameter tractable.
For t ∈ N, the class W[t] contains all parameterized problems that are parameterized
many-one reducible to the satisfiability problem for boolean formulae of the form
“products-of-sum-of-products . . . of literals” with t− 1 alternations between products
and sums, parameterized by the number of variables that are assigned true. The
class XP contains all parameterized problems L for which it can be determined
in f(k) · |I|g(k) time whether (I, k) ∈ Σ∗ × N is in L for some computable functions f
and g only depending on k. A parameterized problem L is considered intractable if it
is W[1]-hard—that is if all problems in W[1] are parameterized many-one reducible
to L. For example, Independent Set is W[1]-hard with respect to the parameter
sought solution size.

Independent Set
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Is there a subset of vertices I ⊆ V with k or more vertices that

form and independent set, that is, I induces an edgeless subgraph
of G?

Hitting Set parameterized by the sought solution size even is W[2]-hard. This
means, that Hitting Set could be intractable even if Independent Set would be
fixed-parameter tractable.

13

2 Preliminaries

Hitting Set
Input: A finite universe U , a collection C of subsets of U , and a nonnegative

integer k.
Question: Is there a subset K ⊆ U with |K| ≤ k such that K contains at

least one element from each subset in C?

Bounded Fixed-Parameter Tractability. Instead of allowing arbitrary computable
functions f in the definition of fixed-parameter tractability, one could also bound
the growth of the parameter dependence. In doing so, one obtains the bounded
parameterized complexity theory introduced by Flum et al. [FGW06, FG06]. For
example, one could define f to be upper bounded by 2O(k) (singly exponential). The
subclass of FPT containing the parameterized problems which are solvable by a
fixed-parameter algorithm running in such a time is called EPT.

EPT-Reductions. In order to define complexity classes for problems that are not
bounded fixed-parameter tractable, one needs to define a proper notion of reduction:
Let L and L′ be two parameterized problems. An ept-reduction is a mapping r :
Σ∗ × N→ Σ∗ × N, (I, k) 7→ (I ′, k′) that is computable in 2O(k) · |I|O(1) time such that
(I, k) ∈ L⇔ (I ′, k′) ∈ L′ and k′ ∈ O(k + log |I|).

Bounded Fixed-Parameter Intractability. As with the unbounded theory, there are
also several classes containing bounded fixed-parameter intractable problems. Again,
for each t ∈ N, one can define a class EW[t]. The class EW[2] appearing in this work is
defined to contain all parameterized problems that are ept-reducible to the satisfiability
problem for boolean formulae of the form product-of-sum-of literals, parameterized by
the number of variables that are assigned true.

The EW-classes allow for proofs of lower bounds in that for a parameterized problem
to be EW[1]-hard basically means that it cannot be solved in time depending singly
exponential on the parameter and polynomial on the input size. For example, Hitting
Set is also known to be EW[2]-hard with respect to the sought solution size. The
EW-classes are related to the W-classes in that, for t ≥ 2, it holds that EW[t] = EPT
implies W[t] = FPT.

2.2 Graphs
We shortly introduce some basic notions of graph theory. For further reading on graph
theory, for example, see the book by Diestel [Die10].

Basic Definitions. A simple undirected graph G = (V,E) consists of a set V of
vertices and a set E of edges, where every edge e ∈ E is a set such that |e ∩ V | = 2.
Usually, the number of vertices |V | is denoted by n and the number of edges |E| is
denoted by m. A vertex v ∈ V is incident with an edge e = {u,w} ∈ E if v ∈ e. Two
vertices are adjacent (or neighbors) if there is an edge e ∈ E such that both are incident

14

2.2 Graphs

with e. The incidence matrix IG ∈ {0, 1}n×m of a graph G is a binary matrix defined
to contain a 1 in the i-th row and j-th column if the vertex i is incident with edge j,
otherwise it contains a 0. A graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E is called a
subgraph of G. Let V ′ ⊆ V . The graph G[V ′] := (V ′, {e ∈ E | e ⊆ V ′}) is called the
(vertex-)induced subgraph of G with respect to V ′.

Some Special Graphs. A path of length k is a graph that is isomorphic to the graph

Pk = ({v1, . . . , vk}, {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}}).

A graph is called complete if it contains all possible edges. Such a graph is also called
a clique. A cluster graph is a disjoint union of cliques. An equivalent characterization
of a cluster graph is a graph that does not contain an induced P3 (for example, see
Shamir et al. [SST04]). An independent set is a set of vertices where no two vertices
are adjacent. A matching is a graph where no two edges are incident with the same
vertex. The line graph L(G) of a graph G is defined to contain a vertex for every edge
in G and two vertices are adjacent in L(G) if and only if G contains a vertex that is
incident with the corresponding edges.

15

3 Subspace Selection

This chapter deals with two problems belonging to the setting of subspace selection,
namely Hidden Clusters and the Hidden Cluster Graph problem. As both of
them will turn out to be NP-hard, we conduct a more detailed analysis in order to
identify for which parameters the problems become fixed-parameter tractable and for
which they remain hard to solve. section 3.1 studies Hidden Clusters followed by a
discussion of the Hidden Cluster Graph problem in section 3.2.

3.1 Hidden Clusters
In this section, we focus on the Hidden Clusters problem by Charikar et al. [CGK+00].
Recall the problem definition:

Hidden Clusters
Input: A set S = {x1, . . . , xn} ⊆ Σd consisting of n points in d dimensions,

r ∈ Q, `, k ∈ N.
Question: Is there a subsetK ⊆ {1, . . . , d} of dimensions with |K| ≥ k such

that there exist ` centers C = {c1, . . . , c`} ⊆ Σd and an assignment
of points to centers σ : S → C such that dist|K(x, σ(x)) ≤ r for all
points x ∈ S?

Charikar et al. [CGK+00] provided some (α, β)-approximation algorithms which ap-
proximate the radius r within a factor of α and the number of dimensions k within a
factor of β−1. More specifically, they gave a (3, 1)-approximation algorithm running
in O(n(`3 + d)n`d(`

2)) time for Hidden Clusters with the L∞-norm as distance
function and a randomized algorithm which yields an (O(logn), 1 + ε)-approximation
with probability 1− n−O(1) for any ε > 0 within n`2(`

2)dO(logn) time for the L1-version.
They proved that it is in fact NP-hard to find any (α, 1)-approximation for the L∞-
and the L1-version. Even with a constant number of centers `, it is NP-hard, for any
constants δ > 0, c > 1, to obtain a (2− δ, d1−δ)-approximation for the L∞-version and
a (c, d1−δ)-approximation for the L1-version.
The approximation hardness results for an arbitrary number of cluster centers are

based on a special case of the Hidden Clusters problem, where Charikar et al.
[CGK+00] considered a binary alphabet Σ = {0, 1}, a radius r = 0 and an arbitrary
metric as distance function. We call this variant the Binary Hidden Clusters
problem. The formal definition reads as follows:

17

3 Subspace Selection

Table 3.1: Overview of results for the Binary Hidden Clusters
problem (new results are indicated by I).

Parameter† Binary Hidden Clusters Theorem

unparameterized . NP-hard [Theorem 3.2]

k I W[1]-hard [Corollary 3.3]

(`, t) I O(`td(`3 + n))-time solvable [Theorem 3.6]
† k: sought solution size, `: number of cluster centers, t: number of
dimensions to be deleted

Binary Hidden Clusters
Input: A set S = {x1, . . . , xn} ⊆ {0, 1}d consisting of n points in d dimen-

sions and `, k ∈ N.
Question: Is there a subset K ⊆ {1, . . . , d} of dimensions with |K| ≥ k

such that |S|K | ≤ `?

The results presented in this section all refer to this special case. Note that all hardness
results automatically hold for the general formulation of the Hidden Clusters
problem. We consider the following three parameters: The sought solution size k, the
number of dimensions to be deleted t := d − k (the dual parameter to k), and the
number of cluster centers `. Table 3.1 summarizes the results of this section.

3.1.1 NP- and W[1]-Hardness

Charikar et al. [CGK+00, Lemma 12] stated that it is NP-hard to find the optimal
number of dimensions with any finite approximation on the radius (that is, an (α, 1)-
approximation) in polynomial time. In fact, their proof also implies general NP-hardness
of Hidden Clusters. They described a reduction from Clique, however, without
providing a detailed proof1 of correctness. Based on their construction, we now give a
full proof of NP-hardness. To this end, we first show the following technical lemma:

Lemma 3.1. For m, i ∈ N with m ≥ 4 and 1 ≤ i ≤ m it holds(
m− i

2

)
<

(
m

2

)
− (i+ 1).

Proof. Let m ≥ 4 and 1 ≤ i ≤ m. We have to show the following:

i+ 1 <
(
m

2

)
−
(
m− i

2

)
.

1After e-mail communication with Ravi Kumar in April 2012, it became apparent that there is no
version containing a fully detailed proof.

18

3.1 Hidden Clusters

The right hand side can be rewritten to(
m

2

)
−
(
m− i

2

)
=

i∑
j=1

[(
m− (j − 1)

2

)
−
(
m− j

2

)]
=

i∑
j=1

(m− j) = im−
(
i+ 1

2

)
.

Hence, for i > 0, we have to show the following inequality

i+ 1
i

< m− i+ 1
2 .

If i = 1, then the above inequality reads 3 < m, which is true. The inequality also
holds for i = m since

m+ 1
m

≤ 5
4 <

3
2 ≤

m− 1
2 .

Finally, for 1 < i < m we have

i+ 1
i
≤ 3

2 < 2 ≤ m− i+ 1
2 ,

which finishes the proof.

Now, we show how Lemma 3.1 can be utilized to prove the main result.

Theorem 3.2. Binary Hidden Clusters is NP-hard.

Proof. We describe a polynomial-time many-one reduction from the Clique problem:

Clique
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Is there a subset C ⊆ V of vertices of size at least k that forms

a clique in G?

Let (G, k) be an instance of Clique with a simple graph G = (V,E), |V | = n, |E| = m
and k ≥ 0. If k ≤ 3 or k ≥ n − 2, we simply solve the problem in polynomial time
by trying out all O(n3) possible subsets of V of size k and return a trivial “yes”- or
“no”-instance. To check if the chosen subset is a clique requires O(n2) time. Otherwise,
consider the incidence matrix IG of G with rows corresponding to vertices and columns
corresponding to edges. Let (S, `, k′) be the Binary Hidden Clusters instance
where S ⊆ {0, 1}m is the set of all rows of IG, the number of centers is ` = k + 1
and k′ =

(k
2
)
. This instance can be computed in O(nm) time. Thus, the overall time

required to perform the reduction is in O(n5) and we claim that G has a clique of
size k if and only if there is a subset K ⊆ {1, . . . ,m} of dimensions with |K| =

(k
2
)

such that |S|K | ≤ k + 1.
To prove the correctness, we first assume that G contains a clique of size k. Then

we can choose K to contain all dimensions corresponding to edges between vertices in
the clique. Now, all vertices that are not in the clique correspond to the same point
in S|K containing only 0’s (the null point) because they are not incident with any edge
corresponding to a dimension in K. So, all non-clique vertices correspond to the null

19

3 Subspace Selection

point. Together with the k points corresponding to the clique vertices this results in at
most k + 1 different points in S|K .
Now, suppose that there is a subset K of dimensions with |K| =

(k
2
)
such that

|S|K | ≤ k + 1. Then we have to consider the cases where S|K contains the null point
and where it does not. If S|K contains the null point, there are k points with at least
one entry equal to 1. We call them non-zero points. Let N be the number of vertices
in G that correspond to any of the k non-zero points in S|K .
If N = k, then the

(k
2
)
edges corresponding to the chosen dimensions in K are

induced by k vertices in G. This is tantamount with a clique of size k in G.
If N > k, then there exist two vertices u and v that correspond to the same point

in S|K . Note that this is only possible if both points contain a single 1 in the same
dimension since G is a simple graph. This can only happen if the edge {u, v} is isolated
in K. Hereby, we refer to the situation that K contains the dimension corresponding
to the edge {u, v} and none of the dimensions corresponding to edges that are incident
with u or v in G. Indeed, both endpoints of an isolated edge in K have the same point
in S|K with a single entry equal to 1. It also follows that for each non-zero point in S|K
there are at most two vertices in G corresponding to it. The number i ≤ k of edges
isolated in K satisfies

k − i = N − 2i
⇔ i = N − k.

Hence, there are k − i vertices in G corresponding to k − i non-zero points in S|K
with

(k
2
)
− i edges between them. But k − i vertices induce at most

(k−i
2
)
edges and

Lemma 3.1 yields (
k − i

2

)
<

(
k

2

)
− i,

which shows that this is actually not possible.
Finally, we have to deal with the case that S|K contains only non-zero points and
|S|K | ≤ k + 1. But this situation is also not possible: Since all n > k + 2 vertices in G
correspond to a non-zero point in S|K , there have to be i = n− (k + 1) edges isolated
in K. Note that 2 ≤ i ≤ k + 1. Now we have k + 1− i vertices in G with

(k
2
)
− i edges

between them. Again, by Lemma 3.1 it follows(
k − (i− 1)

2

)
<

(
k

2

)
− i

and we end up with a contradiction. Hence, we have shown the correctness of the
above reduction.

Note that the above reduction runs in polynomial time and outputs a Binary Hidden
Clusters instance with a sought solution size k′ only depending on k. Thus, it is
a parameterized reduction from Clique, which is known to be W[1]-complete with
respect to the parameter k (see Downey and Fellows [DF99]). As a result, we obtain
the following corollary:

20

3.1 Hidden Clusters

Corollary 3.3. Binary Hidden Clusters is W[1]-hard with respect to the parame-
ter k.

3.1.2 A Fixed-Parameter Algorithm
So far, we have seen that Binary Hidden Clusters is not only NP-hard but also
W[1]-hard with respect to the parameter k. In contrast to these results, we now show
that there is also a tractable case. As the goal of Hidden Clusters is to maximize
the number of dimensions to keep, the parameter k typically will take on large values.
Thus, it seems natural to seek for fixed-parameter algorithms with respect to the dual
parameter t := d− k (number of dimensions to be deleted) since it will take on small
values accordingly. Another parameter of interest is the number of cluster centers ` as
it is also conceivable that this will be small in some applications since one benefit of a
cluster analysis is to get an overview of the main patterns or prototypes present in the
data by grouping many individual samples into few clusters. In a simple scenario, the
data can be grouped into two classes representing “positive” and “negative” examples
of some phenomenon. For instance, one could imagine the data to represent some
symptoms of patients in a medical study and the aim is to group the subjects into
healthy and ill ones.

We show that the Binary Hidden Clusters problem is fixed-parameter tractable
with respect to the combined parameter (`, t). Since both parameters could be small in
some cases, the combination (`, t) constitutes a reasonable parameter. The concept of
a discriminating feature set will be helpful in constructing a fixed-parameter algorithm
for the Binary Hidden Clusters problem:

Definition 3.4. Let S ⊆ Σd. A discriminating feature set D ⊆ {1, . . . , d} of S is a
subset of dimensions such that ∀x, y ∈ S, x 6= y : x|D 6= y|D.

Note that if we find a discriminating feature set for more than ` points in a given
Binary Hidden Clusters instance, then we know that we have to delete at least
one dimension out of it. We may not know which dimension to delete but if the
discriminating feature set is not too large, then we could simply guess and try out all
possibilities. Lemma 3.5 states an upper bound on the size of a discriminating feature
set.

Lemma 3.5. Let S = {x1, . . . , xn} ⊆ Σd be a set of n ≥ 2 points. Then, there exists
a discriminating feature set D ⊆ {1, . . . , d} of S of size at most n− 1.

Proof. The proof is by induction on n: For n = 2 we only need one dimension to
distinguish two different points. For the inductive step let S = {x1, . . . , xn+1} ⊆ Σd

and let S′ ⊂ S be a subset of size n. From the induction hypothesis it follows that S′
has a discriminating feature set D′ of size n− 1. If D′ is also a discriminating feature
set of S, then we are done. Otherwise, since all points in S′|D′ are distinct, there exists
at most one point y ∈ S′ with y|D′ = x|D′ for x ∈ S \ S′. But we know that there
exists an i ∈ {1, . . . , d} \D′ with (y)i 6= (x)i and thus D := D′ ∪{i} is a discriminating
feature set of S of size n.

21

3 Subspace Selection

Now we are ready to prove the following theorem:

Theorem 3.6. Binary Hidden Clusters is solvable in O(`td(`3 + n)) time.

Proof. We describe a search tree algorithm that solves a given Binary Hidden
Clusters instance (S, `, k). At first, let K = {1, . . . , d}. As long as |S|K | > `, we
choose an arbitrary subset S′ ⊆ S|K with |S′| = ` + 1 and find a discriminating
feature set D of S′ of size at most `. Note that Lemma 3.5 ensures the existence
of D. Moreover, the induction in the proof of Lemma 3.5 indicates a bottom-up
procedure to determine D in O(`3d) time. The set S|K can be computed in O(nd)
time by sorting the points lexicographically (for example with radix sort [Knu98]) and
deleting multiple points afterwards. Now, it holds that K must not contain D because
otherwise |S|K | > ` still holds. So, we have to delete at least one dimension out of D
from K. A simple branching over all dimensions in D yields an O(`td(`3 + n)) search
tree algorithm.

So far, we have seen that Binary Hidden Clusters is fixed-parameter tractable for
the combined parameter (`, t). An interesting question—which we have to leave open
here—is whether it is possible to prove Binary Hidden Clusters fixed-parameter
tractable with respect to one of the two parameters alone. Furthermore, one could
omit the restriction to a binary alphabet. The general case of Hidden Clusters with
an arbitrary alphabet certainly constitutes a challenge for future research.

3.2 Hidden Cluster Graphs
We now proceed to clustering tasks where the actual number of centers is not known
beforehand, which could often happen in practice, for example in an explorative setting,
where there is no a priori knowledge about the underlying structure of the data at hand.
In this case, we consider a different notion of clustering that compensates for the lack
of information by defining the number of clusters implicitly. We already introduced
the Hidden Cluster Graph problem:

Hidden Cluster Graph
Input: A set S = {x1, . . . , xn} ⊆ Σd consisting of n points in d dimensions,

r ∈ Q, k ∈ N.
Question: Is there a subset K ⊆ {1, . . . , d} of dimensions with |K| ≥ k

such that the graph GK = (V,EK) with

V := S, EK := {{xi, xj} | xi 6= xj ∈ V, dist|K(xi, xj) ≤ r}

is a cluster graph (that is, a union of disjoint cliques)?

Throughout this section, we consider the feature space Σd = Qd equipped with the
distance function dist(p)(x, y) := ‖x− y‖pp for p ∈ N or dist(∞)(x, y) := ‖x− y‖∞. We
refer to this case as the Lp-Hidden Cluster Graph problem and give the following
definition:

22

3.2 Hidden Cluster Graphs

Table 3.2: Overview of results for the Lp-Hidden Cluster Graph problem (new
results are indicated by I).

Parameter† Lp-Hidden Cluster Graph Theorem

unparameterized I O(d(n2d+ n3))-time solvable for p =∞ [Proposition 3.7]
I NP-hard for 1 ≤ p <∞ and Σ ⊇ N [Corollary 3.9]

t I W[2]-hard for 1 ≤ p <∞ and Σ ⊇ N [Theorem 3.8]

(r, t) I O((2pr)t · (n2d+ n3))-time solvable [Theorem 3.10]
for Σ ⊆ Z

† t: number of dimensions to be deleted, r: radius

Lp-Hidden Cluster Graph
Input: A set S = {x1, . . . , xn} ⊆ Qd consisting of n points in d dimensions,

r ∈ Q, k ∈ N.
Question: Is there a subset K ⊆ {1, . . . , d} of dimensions with |K| ≥ k

such that the graph GK = (V,EK) with

V := S, EK := {{xi, xj} | xi 6= xj ∈ V, dist(p)
|K (xi, xj) ≤ r}

is a cluster graph (that is, a union of disjoint cliques)?

It turns out that, in contrast to the Hidden Clusters problem—which is NP-hard
for arbitrary metrics, the choice of distance function has a considerable impact on
the tractability of the Hidden Cluster Graph problem. We show that Lp-Hidden
Cluster Graph is NP-hard and W[2]-hard with respect to t for all finite p ≥ 1 even
if the dataset is restricted to contain natural numbers only, whereas for p = ∞, the
problem is polynomial-time solvable. A summary of the results obtained in this section
is given in Table 3.2.

3.2.1 A Polynomial-Time Algorithm

We begin our discussion of the Hidden Cluster Graph problem with a polynomial-
time algorithm for the L∞-distance function.

Proposition 3.7. L∞-Hidden Cluster Graph can be solved in O(d(n2d + n3))
time, assuming constant-time arithmetical operations.

Proof. We describe a polynomial-time algorithm that deterministically solves a given
L∞-Hidden Cluster Graph instance (S, r, k). We start with the following observa-
tion: If we remove a dimension, the distance between two points induced by the L∞-
norm cannot increase. Since we are only allowed to select a subset of dimensions, this
means that we can only decrease the distance between arbitrary points in S and not in-
crease it. This corresponds to only adding edges to G{1,...,d}. In order to obtain a cluster

23

3 Subspace Selection

graph, we have to destroy all induced P3’s of the form P = ({u, v, w}, {{u, v}, {v, w}})
in G{1,...,d} by inserting the missing edge between u and w. Hence, we have to select a
subset of dimensions K such that dist(∞)

|K (u,w) = maxj∈K |(u)j − (w)j | ≤ r. This can
only be achieved by deleting all dimensions where u and w differ by more than r.
Now, our algorithm starts with the full set of dimensions K = {1, . . . , d} and

iteratively searches for an induced P3 in GK and deletes all dimensions of K that have
to be deleted due to the above requirement. The algorithm terminates if there are
no P3’s in GK anymore or if |K| < k. In the former case it outputs “yes”, whereas in
the latter case it outputs “no”.

algorithm 1 depicts the pseudocode. The computation of GK can be done in O(n2d)
time. Hoàng et al. [HKSS12] showed that finding all induced P3’s in GK can be done
in O(m1.5 + p3(GK)) time, where m is the number of edges in GK and p3(GK) is the
number of induced P3’s in GK . The while-loop in line 3 is iterated at most d times
since it always deletes at least one dimension in each step. Hence, the overall running
time is in O(d(n2d+ n3)).

Algorithm 1: L∞-Hidden Cluster Graph
Input : Dataset S ⊆ Qd, radius r ∈ Q, k ∈ N
Output : Feature set K ⊆ {1, . . . , d} such that GK is a cluster graph

1 K ← {1, . . . , d};
2 G← compute GK ;
3 while ∃u, v, w ∈ V (G) : G[{u, v, w}] = ({u, v, w}, {{u, v}, {v, w}}) do
4 K ← K \ {j ∈ K | |(u)j − (w)j | > r};
5 if |K| < k then return False;
6 ;
7 G← compute GK ;
8 return True(K);

3.2.2 NP- and W[2]-Hardness
We now show that the Lp-Hidden Cluster Graph problem is unlikely to be fixed-
parameter tractable with respect to the number t of dimensions to be deleted if p
takes on finite values. For this purpose, we describe a reduction from a problem called
Lobbying occurring in the area of computational social choice. The original problem
definition is due to Christian et al. [CFRS07]. They proved the W[2]-hardness of
Lobbying parameterized by the number of modifications. However, we will use a
slightly different problem formulation introduced by Bredereck et al. [BCH+12], shown
to be equivalent to the original one:

24

3.2 Hidden Cluster Graphs

Lobbying
Input: A matrix A ∈ {0, 1}n×m and an integer k > 0.
Question: Can one modify (set to 1) at most k rows in A such that in the

resulting matrix each column contains more 1’s than 0’s?

In their proof of W[2]-hardness Christian et al. [CFRS07] showed that the problem
is in fact W[2]-hard with respect to the parameter k if the number of columns m is
odd. But with m being odd, requiring more ones than zeros is equivalent to requiring
at least as many ones as zeros. Moreover, exchanging ones with zeros and rows with
columns clearly does not change the problem. Thus, we can formulate the following
equivalent definition, which is more convenient for our purpose:

Lobbying*
Input: A matrix A ∈ {0, 1}m×n containing an odd number of columns n

and an integer k > 0.
Question: Can one modify (set to 0) at most k columns in A such that in

the resulting matrix each row contains at least as many 0’s as 1’s?

A reduction from Lobbying* might seem surprising at first glance since the problem
originates from an area which is not directly related to cluster analysis. But a closer look
on the above problem formulation reveals some similarity: The matrix A can be seen
as a set of points in an n-dimensional feature space. If the columns of the matrix A are
interpreted as dimensions, then modifying columns basically means deleting dimensions
of a dataset. Moreover, the goal is to reduce the number of 1’s in each row, which
corresponds to reducing the distance between points. The following proof demonstrates
in detail how Lobbying* can be turned into a Lp-Hidden Cluster Graph problem
by choosing an appropriate dataset and radius.

Theorem 3.8. Lp-Hidden Cluster Graph is W[2]-hard with respect to the param-
eter t for all 1 ≤ p <∞.

Proof. We give a parameterized many-one reduction from Lobbying*: Let (A, k) be
an instance of Lobbying* with A ∈ {0, 1}m×n containing m rows a1, . . . , am ∈ {0, 1}n.
We assume that every row of A contains more ones than zeros because otherwise we
could delete it from the input without changing the answer to the question. We define
an Lp-Hidden Cluster Graph instance (S, r, k′) with

S :=
⋃

1≤i≤m
{ui, vi, wi} ⊆ Qn, r := 2p−1n, k′ := n− k.

The idea of the construction is to let S contain three data points ui, vi and wi for every
row ai in A such that their induced subgraph Hi := G{1,...,n}[{ui, vi, wi}] is a P3, that
is

Hi = ({ui, vi, wi}, {{ui, vi}, {vi, wi}}).

25

3 Subspace Selection

This can be achieved by setting

u1 := ~0, w1 := 2a1, v1 := u1 + w1
2 ,

ui := wi−1 + 2~n, wi := ui + 2ai, vi := ui + wi
2 , i = 2, . . . ,m,

where ~x := (x, . . . , x) ∈ Σn for x ∈ Σ. The above construction only requires the
feature space Nn in order to be well-defined. The reduction can be done using O(mn)
arithmetical operations. It is a parameterized reduction since t = n−k′ = k. Figure 3.1
illustrates the constructed dataset. Now, for all i = 1, . . . ,m we have

dist(p)(ui, wi) = ‖2ai‖pp = 2p
n∑
j=1
|(ai)j |p ≥ 2p

(⌊
n

2

⌋
+ 1

)
> r

and
dist(p)(ui, vi) = dist(p)(vi, wi) = ‖ai‖pp ≤ n ≤ r.

Since G{1,...,n} is defined to contain an edge between two vertices if and only if the
distance of their corresponding points in S is at most r, it follows indeed that Hi is
a P3. By construction, the Hi are independent of each other in the sense that, for
every non-empty subset K ⊆ {1, . . . , n} of dimensions, GK never contains an edge
between any vertices from Hi and Hj for i 6= j. To verify this, we first claim that,
by construction, the smallest distance between any vertices from Hi and Hj is the
distance of wi and uj : Let 1 ≤ i < j ≤ m, the following identities hold

vj − wi = uj − wi + aj , uj − vi = uj − wi + ai,

wj − wi = uj − wi + 2aj , uj − ui = uj − wi + 2ai,
vj − vi = uj − wi + aj + ai, wj − vi = uj − wi + 2aj + ai,

vj − ui = uj − wi + 2aj + ai, wj − ui = uj − wi + 2aj + 2ai,

and

uj − wi = (j − i) · ~n+ 2
j−i−1∑
k=1

ai+k.

Note that all components of uj − wi, ai and aj are positive or at least zero. The Lp-
norms of all the above differences are thus greater or equal to ‖uj −wi‖p. Accordingly,
all distances between vertices from Hi and Hj are greater or equal to dist(p)

|K (uj , wi).
For every non-empty subset of dimensions K this distance is bounded from below by

dist(p)
|K (uj , wi) = dist(p)

|K

(
wi + (j − i) · 2~n+ 2

j−i−1∑
k=1

ai+k, wi
)

=
∑
l∈K

∣∣∣(wi + (j − i) · 2~n+ 2
j−i−1∑
k=1

ai+k
)
l
− (wi)l

∣∣∣p
≥ 2p

∑
l∈K
|(~n)l|p = 2p · |K| · n ≥ 2pn > r.

26

3.2 Hidden Cluster Graphs

x

y

2 4 6 8

2

4

6

8

> r

> r

> r

≤ r

≤ r

≤ r

≤ r

≤ r
≤ r

> r

> r

> r

u1

v1

w1

u2

v2

w2

u3

v3

w3

Figure 3.1: A two-dimensional illustration of the constructed Lp-Hidden Cluster
Graph instance: For each row ai in the lobbying matrix A there are three
points ui, vi, wi in the dataset S such that, for every non-empty subset of
dimensions K, they induce a P3 in GK . This is achieved by recursively
setting vi = ui + ai, wi = vi + ai and choosing an appropriate radius
‖ai‖pp ≤ r < ‖2ai‖pp. The picture indicates three such P3’s. For example,
the distance between u1 and v1 is the same as the distance between v1
and w1 and both are smaller than the radius r, whereas u1 and w1 have
a distance greater than r. Accordingly, there are edges from u1 to v1 and
from v1 to w1 but not from u1 to w1. Note that the nearest point to any
of the points in the first P3 is u2. Its distance to w1 is greater than r in
every dimension, which ensures that there is no edge between w1 and u2.
The construction is such that this holds for all wi and ui+1.

27

3 Subspace Selection

Thus, there will never be an edge in GK between vertices from Hi and Hj for any K.
The only solution of this instance is the cluster graph consisting of the m disjoint
triangles obtained by inserting the missing edge in each Hi. In order to insert the
missing edge between ui and wi in every Hi, we have to find a subset of dimensions K
such that

dist(p)
|K (ui, wi) = 2p

∑
j∈K
|(ai)j |p ≤ r = 2p−1n

holds for all i = 1, . . . ,m. In other words, we have to delete at most t dimensions (that
is, set entries in ai to zero) such that for the remaining dimensions K it holds

∑
j∈K
|(ai)j |p ≤

n

2 .

Since ai is a binary point, the above equation states that the modified ai contains
at least as many zeros as ones, which is exactly the Lobbying* problem. So, the
Lp-Hidden Cluster Graph instance is a “yes”-instance if and only if the initial
Lobbying* instance is a “yes”-instance.

As a byproduct, the above reduction also yields NP-hardness since it runs in polynomial
time and Lobbying is NP-hard (for example, see Bredereck et al. [BCH+12]).

Corollary 3.9. Lp-Hidden Cluster Graph is NP-hard for every 1 ≤ p <∞.

It is worth mentioning that the proof of Theorem 3.8 relies on some assumptions that
could be considered unrealistic or pathological. For example, the data points of the
constructed instance are very scattered, which yields a clustering with many clusters
each of which contains only a few points. As a consequence, the reduction requires
the data points and the radius to take on unbounded values. The next subsection
addresses this issue and presents an approach towards fixed-parameter tractability.

3.2.3 A Fixed-Parameter Algorithm

We already remarked that the reduction from the proof of Theorem 3.8 requires the data
points to take on unbounded values. Moreover, the diameter δ, that is the maximum
distance between any two points in S, of the dataset can become arbitrary large.
This subsection shows that an unbounded diameter is indeed necessary for Lp-Hidden
Cluster Graph to be W[2]-hard with respect to the parameter t. To this end, observe
that the radius r can always be bounded from above by the diameter δ since otherwise
the graph G{1,...,d} is a clique and thus a cluster graph, which corresponds to a trivial
“yes”-instance. It is therefore sufficient to prove the following theorem:

Theorem 3.10. If all points are restricted to integer coordinates, Lp-Hidden Cluster
Graph is O((2pr)t · (n2d + n3))-time solvable for p ≥ 1 under the assumption of
constant-time arithmetic operations.

28

3.2 Hidden Cluster Graphs

Proof. We solve a given instance (S, r, k) of Lp-Hidden Cluster Graph by the
following algorithm: Start with the full set of dimensions K = {1, . . . , d}. If GK is
not a cluster graph, it contains an induced P3, say P = ({u, v, w}, {{u, v}, {v, w}}).
Since we have to select a subset of dimensions, distances between points can only be
decreased. Thus, in order to get a cluster graph, we have to select a subset K ′ ⊂ K
such that {u, v, w} does not induce a P3 in GK′ , that is, GK′ contains the edge {u,w}.
Recall that, by definition of GK , we have

dist(p)
|K (u, v) ≤ r, dist(p)

|K (v, w) ≤ r, dist(p)
|K (u,w) > r.

Moreover, as ‖ · ‖p is a norm, the triangle inequality yields

dist(p)
|K (u,w) = ‖u− w‖pp ≤ (‖u− v‖p + ‖v − w‖p)p ≤ 2pr.

By substitution of the definition of dist(p)
|K , we get

dist(p)
|K (u,w) =

∑
j∈K
|(u)j − (w)j |p ≤ 2pr.

Since all points consist of integer coordinates only, each summand of the above sum
is either zero or at least one. It follows that K contains at most 2pr dimensions in
which u and w differ and we have to delete at least one of them. A simple branching
over all feasible dimensions yields a search tree of size O((2pr)t). Computing GK and
finding P3’s requires O(n2d+ n3) time. The overall running time is O((2pr)t · (n2d+
n3)).

As we have seen, Lp-Hidden Cluster Graph parameterized by the radius and the
number of dimensions to be deleted is fixed-parameter tractable. There might exist
even more parameterizations allowing for fixed-parameter tractability: For example,
one could be interested in the case that the data points contain only a finite number of
different values. With an upper bound on the coordinates, the proof of Theorem 3.8
does not work. This may indicate that the problem is tractable with respect to this
parameter. Another parameter, for which we could not provide any results so far, is
the sought solution size k. Since the problem is already known to be W[2]-hard with
respect to its dual parameter t, it would be interesting to know whether the problem
is also hard with respect to k or not. Moreover, the algorithm from Theorem 3.10
requires points with integer coordinates. It is thus obvious to ask whether the problem
remains fixed-parameter tractable if we omit this restriction and allow arbitrary rational
numbers. These are some possible questions to be addressed in future work.

29

4 Dimension Reduction

In this chapter we study the Distinct Vectors problem where the goal is to select a
minimum number of dimensions such that all given points can still be distinguished
from each other within the selected dimensions.

Distinct Vectors
Input: A multiset S = {x1, . . . , xn} ⊆ Σd of n distinct points in d dimen-

sions and k ∈ N.
Question: Is there a subset K ⊆ {1, . . . , d} of dimensions with |K| ≤ k

such that all points in S|K are still distinct?

Keep in mind that throughout this chapter S and S|K are defined to be multisets
allowing for multiple elements. Charikar et al. [CGK+00] showed that, unless P = NP,
there is a constant c > 0 such that the Distinct Vectors problem is hard to
approximate within a factor of c · log d.

We analyze various cases of the Distinct Vectors problem and contribute further
hardness results as well as algorithms for some tractable cases. Our considerations are
based on the following parameters: The size of the alphabet σ, the sought solution
size k, the number of dimensions to be deleted t := d− k and the maximum Hamming
distance between any pair of points f .

In section 4.1 we focus on the case where the dataset consists of points over a binary
alphabet (σ = 2). We prove NP-hardness and several parameterized hardness results
such as EW[2]-hardness with respect to the combination of requested solution size and
alphabet size and W[1]-hardness with respect to the number of dimensions to be deleted.
Further, we consider an even more specific case where the points are restricted not to
be “too different” from each other in the sense that the number of dimensions in which
two points differ (the Hamming distance) is bounded from above by a constant f . For
this case the following dichotomy holds: Distinct Vectors with a binary alphabet is
polynomial-time solvable for f ≤ 3 and NP-hard for f > 3.

The general case of an alphabet with arbitrary size is treated in section 4.2. We show
that—besides the hardness results established in section 4.1—there are parameteri-
zations for which Distinct Vectors is fixed-parameter tractable. For example, we
provide problem kernels with respect to the sought solution size in combination with the
size of the alphabet and in combination with the maximum pairwise Hamming distance.
Intuitively, an alphabet of unbounded size, however, does not make the problem easier.
Accordingly, we prove that, for alphabets of arbitrary cardinality, Distinct Vectors
is W[2]-hard with respect to the sought solution size k. A summary of the results
obtained in this chapter is given in Table 4.1.

31

4 Dimension Reduction

Table 4.1: Overview of results for the Distinct Vectors problem (new results
are indicated by I).

Parameter† Distinct Vectors Theorem

unparameterized

. NP-hard for σ = 2 [Theorem 4.1]
I and constant f ≥ 4 [Theorem 4.4]
I O(n3d)-time solvable for σ = 2 [Theorem 4.3]

and f = 3
I O(n2d)-time factor-f approximable [Proposition 4.9]

k I W[2]-hard [Theorem 4.10]

t I W[1]-hard for σ = 2 and f ≥ 4 [Corollary 4.5]

(k, f) I O(fk · nd)-time solvable [Proposition 4.8]
I O((f ! · ff+1 · (k + 1)f)2)-size kernel in [Theorem 4.7]

O(n2(d+ f log f + logn) + f(n4 + d))
time

(k, σ) I EW[2]-hard [Theorem 4.1]
I O(σσk+k)-size kernel in O(d2n) time [Proposition 4.6]

† σ: alphabet size, k: sought solution size, t: number of dimensions to be deleted,
f : maximum number of dimensions in which any pair of points differs

4.1 Distinct Vectors on a Binary Alphabet

In this section, we concentrate on Distinct Vectors instances with binary data.
Based on a proof by Charikar et al. [CGK+00], we show that even the binary case
of Distinct Vectors is NP-hard. The same proof yields EW[2]-hardness for the
parameters sought solution size k and alphabet size σ. This result implies a lower
bound on the running time for any fixed-parameter algorithm. As we will see in the
next section, there is a problem kernel with respect to the size of the alphabet and the
size of the sought solution, which proves the problem to be fixed-parameter tractable.

The second part of this section deals with an even more restricted version of Distinct
Vectors with a bounded number of dimensions in which any two points differ (the
Hamming distance). We show that Distinct Vectors with binary data is NP-hard
even if this bound is four. For smaller bounds, however, the problem turns out to be
polynomial-time solvable.

4.1.1 NP- and EW[2]-Hardness

Charikar et al. [CGK+00, Theorem 20] proved that Distinct Vectors is NP-hard
to approximate in polynomial time within a factor of c log d. Their proof also implies
NP-hardness, for they used a polynomial-time many-one reduction from the NP-hard

32

4.1 Distinct Vectors on a Binary Alphabet

Set Cover problem. We provide a different proof of this result using an adapted
reduction from Hitting Set, where we basically exchange rows and columns of the
element-set incidence matrix of the Set Cover instance. The effort pays off because
the reduction from Hitting Set allows us to conclude even more hardness results
such as EW[2]-hardness, for example.

Theorem 4.1. Distinct Vectors is NP-hard even for a binary alphabet and EW[2]-
hard with respect to the combined parameter sought solution size k and alphabet size σ.

Proof. We give a reduction from Hitting Set:

Hitting Set
Input: A finite universe U , a collection C of subsets of U , and a nonnegative

integer k.
Question: Is there a subset K ⊆ U with |K| ≤ k such that K contains at

least one element from each subset in C?

Hitting Set is known to be NP-hard and EW[2]-hard with respect to k (see Flum and
Grohe [FG06]). Given an instance (U, C, k) of Hitting Set with U = {u1, . . . , um},
C = {C1, . . . , Cn}, we construct a Distinct Vectors instance (S, k′) with

S := {x1, . . . , xn, x
′
1, . . . , x

′
n} ⊆ {0, 1}m+dlogne,

k′ := k + dlogne,

where

(xi)j :=
{

1, uj ∈ Ci
0, uj 6∈ Ci

and (x′i)j := 0

for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. In the last dlogne dimensions we define xi
and x′i to contain the binary representation of i− 1. This reduction is computable in
O(n(m+ logn)) time. Moreover, note that the parameters k′ = k + dlogne and σ = 2
meet the conditions of an ept-reduction. Thus, we have a polynomial-time many-one
reduction and an ept-reduction at once. It remains to show the correctness.
Let K ⊆ U be a solution of (U, C, k) with |K| ≤ k. Then we can solve (S, k′) by

choosing the subset of dimensions K ′ that contains all dimensions corresponding to
elements in K and the last dlogne dimensions. This choice allows us to distinguish
each xi from x′i since K contains at least one element from each Ci, which ensures
that there is at least one 1-entry in every xi|K′ . Furthermore, picking the last dlogne
dimensions enables us to distinguish each xi|K′ from xj |K′ and each x′i|K′ from x′j |K′

for i 6= j. Since |K ′| ≤ k′, it follows that K ′ is a solution for (S, k′).
Conversely, assume that K ′ with |K ′| ≤ k′ is a solution for (S, k′). Then K ′ contains

the last dlogne dimensions because otherwise it is not possible to distinguish x′i|K′

from x′j |K′ for i 6= j. Note that xi and x′i cannot be distinguished by the last dlogne
dimensions. Thus, K ′ contains at most k of the first m dimensions which ensure that
each xi can be distinguished from x′i, that is every xi|K′ contains at least one 1. This
implies a solution of the original instance (U, C, k). Hence, the above reduction is
correct.

33

4 Dimension Reduction

Notice that the reduction given above is not a parameterized many-one reduction
since the sought solution size depends not only on k but also on n (more precisely
logn). Thus, we cannot infer from the W[2]-hardness of Hitting Set (see the book
by Downey and Fellows [DF99]) that Distinct Vectors is W[2]-hard with respect
to k for a binary alphabet. In section 4.2, we show that Distinct Vectors is in fact
fixed-parameter tractable with respect to k for any alphabet of constant size.
One may argue that the above reduction produces a rather artificial Distinct

Vectors instance because it contains “dummy” points x′i which mainly consist of 0’s
and it numbers all points in the last dlogne dimensions. Nevertheless, we show that
Distinct Vectors is also hard to solve on instances appearing more “natural”. The
following subsection contains another proof of NP-hardness, for an even more restricted
variant, where the resulting instance basically takes on the form of an incidence matrix
of arbitrary graphs.

4.1.2 Bounded Pairwise Hamming Distance: A Dichotomy
In this subsection, we further restrict our considerations to instances with points of
bounded “degree of distinctiveness”. Hereby, we refer to instances where each pair of
points differs in at most f dimensions. In other words, the Hamming distance of any
pair of points is bounded from above by f . For example, this situation can arise for
sparse datasets where the points mainly contain 0’s. Intuitively, if the dataset consists
of points that are all “similar” to each other, one could hope to be able to solve the
instance efficiently since there are at most f dimensions to choose from in order to
distinguish two points. Later on, however, we will see that this is only the case for very
small values of f : Even for f = 4, Distinct Vectors is NP-hard.

But first, we address the value of f that makes the problem tractable: We show that
Distinct Vectors is in fact solvable in polynomial time if the pairwise Hamming
distance is upper bounded by three. To start with, we introduce the following combi-
natorial lemma, which we use to identify the polynomial-time solvable special cases of
Distinct Vectors.

Lemma 4.2. Let m,n ∈ N with m > n+ 1 and let A = {A1, . . . , Am} be a family of
pairwise different sets, each of size n, such that

∀Ai 6= Aj : |Ai ∩Aj | = n− 1.

Then it follows

∀Ai 6= Aj : Ai ∩Aj =
m⋂
k=1

Ak.

The structure formed by the Ai is known as a sunflower [Juk11].

Proof. We assume n ≥ 2 since the statement trivially holds for n = 1. We define
Bij := Ai ∩ Aj with |Bij | = n − 1 for all i 6= j. Notice that it is sufficient to show
B12 = B13 = . . . = B1m because this already implies the lemma. We will prove this by
contradiction.

34

4.1 Distinct Vectors on a Binary Alphabet

Suppose that there exist indices i, j with 2 ≤ i < j ≤ m such that B1i 6= B1j . Then
|B1i ∩B1j | = n− 2 and thus Bij \A1 =: C is non-empty and consists of one element.
We claim that, for all k = 2, . . . ,m, it holds that C ⊂ Ak. This can be seen as follows:
By assumption, the sets Bik and Bjk contain n− 1 elements. If Ak does not contain C,
then it follows

Bik = Ai \ C = B1i and Bjk = Aj \ C = B1j .

We obtain
Ak = Bik ∪Bjk = B1i ∪B1j = A1,

which is a contradiction. Thus, Ak can be written as Ak = C ∪B1k. Since A2, . . . , Am
are all pairwise different, it follows that B12, . . . , B1m are all pairwise different. But
now we have m − 1 > n different subsets of A1 of size n − 1, which is not possible
since A1 is of size n.

Theorem 4.3. Distinct Vectors is solvable in O(n3d) time for a binary alphabet
and f ≤ 3.

Proof. We give a search tree algorithm that solves a given Distinct Vectors in-
stance (S, k). The restriction f = 3 guarantees that there are not “too many” branches
to consider. For x ∈ S and i ∈ N we define the following sets:

Dx := {j ∈ {1, . . . , d} | (x)j = 1},
Si := {x ∈ S | |Dx| = i}.

Herein, Dx denotes the subset of dimensions in which x equals 1. By Si we refer to
the subset of points which are equal to 1 in exactly i dimensions. Without loss of
generality, we can assume that ~0 ∈ S. If this is not the case, then we can simply fix an
arbitrary point x0 ∈ S and swap 1’s and 0’s in all points in S in all dimensions where
x0 equals 1. This yields in linear time an equivalent instance with x0 = ~0 ∈ S.
Let (S, k) be an instance of Distinct Vectors with |S| = n binary points in

d dimensions. The bound f = 3 implies that each point in S contains at most three 1’s
since otherwise it differs in more than three dimensions from ~0. Thus, we can partition
the dataset S as follows:

S = {~0}] S1] S2] S3.

Moreover, the restriction f = 3 also implies the following two conditions, which
constitute the crucial points for our proof.

∀x, y ∈ S3 : |Dx ∩Dy| = 2 (4.1)
∀x, y ∈ S2 : |Dx ∩Dy| = 1 (4.2)

The algorithm starts with considering the subset S3. The points in S3 can only be
distinguished from each other by a subset of the dimensions

D3 :=
⋃
x∈S3

Dx.

35

4 Dimension Reduction

x1

1 1

1
x2

1 1

1
x3 1 1 1
x4

1 1

1
x5

1 1

1

Figure 4.1: The set S3 represented as a matrix with rows corresponding to points.
The columns correspond to the dimensions in D3. Zero entries are omitted.
Each pair of points has to share a 1 in two dimensions. With more than
four points this is only possible if there are two dimensions in which
all points are 1. Any solution contains at least all but one of the other
dimensions.

If |S3| ≤ 4, we simply branch over all possible subsets of D3. With a constant number
of at most four distinct points in S3, the size of D3 is also bounded by a constant and
so there are only constantly many subsets to try out. If |S3| > 4, then statement (4.1)
together with Lemma 4.2 implies that

C3 :=
⋂
x∈S3

Dx

contains two dimensions. It follows that for each dimension j ∈ D3 \ C3 there exists
exactly one point x ∈ S3 with (x)j = 1. This situation is depicted in Figure 4.1. Any
solution has to contain all but one dimension from D3 \C3 because otherwise there are
two points that cannot be distinguished. Hence, we can try out all subsets of D3 \ C3

of size at least |S3| − 1. Together with the four possible subsets of C3 we end up with
at most 4(n+ 1) subsets of D3 to branch over.
Now, we continue with the subset S2. The points in this subset can only be

distinguished from one another by some of the dimensions contained in the following
set:

D2 :=
⋃
x∈S2

Dx.

If |S2| ≤ 3, we simply branch over all O(1) subsets of D2. For |S2| > 3, it follows by
statement (4.2) and Lemma 4.2 that

C2 :=
⋂
x∈S2

Dx

contains one dimension. Figure 4.2 shows such a dataset. In order to distinguish all
points in S2 from each other, any solution has to contain at least |S2| − 1 dimensions
from D2 \ C2. This results in at most 2(n+ 1) subsets of D2 to consider.
Finally, for S1 it is necessary to select all dimensions in

D1 :=
⋃
x∈S1

Dx.

36

4.1 Distinct Vectors on a Binary Alphabet

x1

1

1
x2

1
1

x3

1
1

x4

1

1

Figure 4.2: The points in S2 represented as rows of a binary matrix with columns
corresponding to the dimensions in D2. Zero entries are omitted. Each
pair of points has to share a 1 in one dimension. For more than three
points there exists a dimension in which all points are 1. Any solution
contains at least all but one of the other dimensions.

in order to distinguish the points from ~0.
Thus, we end up with at most 4(n+ 1) · 2(n+ 1) ∈ O(n2) possible subset selections.

For each selection we have to check whether it is a solution or not. This can be done
in O(nd) time by sorting the dataset lexicographically with radix sort [Knu98] and
comparing successive points. This gives a search tree algorithm with an overall running
time of O(n3d).

We now move on to the case f > 3. Now the condition 4.2 from the proof above
does not hold and therefore we cannot apply Lemma 4.2, which is crucial in that it
guarantees a regular structure of the dataset that makes the instance easy to solve.
Instead, we will shortly see that the dataset can now “encode” arbitrary graphs.
For concreteness, we claim that if a pair of points is allowed to take on different

values in at least four dimensions, then the problem becomes indeed NP-hard. To
prove this, we describe a polynomial-time many-one reduction from a special variant of
the well-known Independent Set problem. We refer to this variant as Distance-3
Independent Set. It is defined as follows:

Distance-3 Independent Set
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Is there a subset of vertices I ⊆ V of size at least k such that

any pair of vertices from I has distance at least three?

Here, the distance of two vertices is the number of edges contained in the shortest
path between them. Note that the classic Independent Set problem is the same as
Distance-2 Independent Set. Distance-3 Independent Set can be shown to be
NP-hard by a reduction from the Induced Matching problem.

Induced Matching
Input: An undirected graph G = (V,E) and a nonnegative integer k.
Question: Does G contain a matching of size at least k that forms an

induced subgraph of G?

Cameron [Cam89] proved this problem to be NP-hard. The reduction to Distance-3
Independent Set is simple and based on the observation that a graph G contains

37

4 Dimension Reduction

an induced matching of size k if and only if there exists a distance-3 independent set
of size k in the line graph L(G) (for example, see the work by Brandstädt and Mosca
[BM11]). After this preliminary considerations, we show how to reduce Distance-3
Independent Set to Distinct Vectors.

Theorem 4.4. Distinct Vectors is NP-hard for a binary alphabet and f ≥ 4.

Proof. Let (G = (V,E), k) with |V | = n and |E| = m be an instance of Distance-3
Independent Set and let Z be the m × n transposed incidence matrix of G with
rows corresponding to edges and columns to vertices. The dataset S of our Distinct
Vectors instance (S, k′) is defined to contain all m rows of Z and the null vector. The
sought solution size is set to k′ := n− k. Notice that each point in S contains exactly
two 1’s (except the null vector). Thus, each pair of points differs in at most f = 4
dimensions. The instance (S, k′) can be computed in O(nm) time.
Correctness follows by the following argument: The subset I ⊆ V is a solution

of (G, k) if and only if it is of size k and every edge in G has at least one endpoint
in V \ I and no vertex in V \ I has two neighbors in I. In other words, the latter
condition says that no two edges with an endpoint in I share the same endpoint in V \I.
Equivalently, for the subset K of dimensions corresponding to the vertices in V \ I, it
holds that all rows of Z in S|K contain at least one 1 and no two points contain only
a single 1 in the same dimension. This holds if and only if K is a solution for (S, k′)
because S contains the null vector and thus two points can only be identical in S|K if
either they consist of 0’s only or contain a single 1 in the same dimension.

As a last point, we remark that Induced Matching is not only NP-hard but also
W[1]-hard with respect to the parameter k as was shown by Moser and Thilikos [MT09].
From this result we can infer that Distance-3 Independent Set is also W[1]-hard
with respect to k. To see why this is of interest for us, notice that the reduction given
in the proof of Theorem 4.4 yields an instance where the number of dimensions to be
deleted is t := n− k′ = k. Thus, we have a parameterized reduction from Distance-3
Independent Set parameterized by k to Distinct Vectors parameterized by t and
the following corollary holds:

Corollary 4.5. Distinct Vectors is W[1]-hard with respect to the number of
dimensions to delete.

4.2 Distinct Vectors on an Arbitrary Alphabet

As we have seen in the last section, Distinct Vectors is NP-hard and W[1]-hard with
respect to the number of dimensions to be deleted even in the case of a binary alphabet
where the pairwise Hamming distance of the points is bounded by four. Although, of
course, hardness also holds for the general case without the above restrictions, this
section contains some tractability results that hold even for an arbitrary alphabet. For
instance, we prove the existence of problem kernels and fixed-parameter algorithms for

38

4.2 Distinct Vectors on an Arbitrary Alphabet

the parameter sought solution size in combination with the the alphabet size and the
bound on the pairwise Hamming distance.

Nevertheless, with respect to the sought solution size k alone, the problem becomes
intractable for an alphabet of unbounded size and so we finish the section with a proof
of W[2]-hardness of Distinct Vectors with respect to k.

4.2.1 Problem Kernels
We start with a simple problem kernel with respect to the combined parameter (k, σ).

Proposition 4.6. There exists an O(σσk+k)-size problem kernel for Distinct Vec-
tors computable in O(d2n) time, assuming constant-time arithmetical operations.

Proof. From the fact that S contains n data points, it follows that at least dlogσ ne
dimensions are required to distinguish all points. With fewer dimensions we could
simply decide the instance with “no”. Thus, we have n ≤ σk.
Moreover, we claim that the number of dimensions d can always be bounded from

above by σn. This bound is based on a simple data reduction rule: For any two
dimensions that distinguish the same pairs of points (we call such dimensions redundant),
we can arbitrarily delete one of them without altering the solution to the problem.
This rule clearly is correct since any optimal solution does not contain both dimensions
at once. Exhaustive application of the above rule requires O(d2n) time. The resulting
instance is free of any redundant dimensions and so it holds that each dimension
uniquely partitions the dataset into at most σ non-empty subsets. Thus, there are at
most as many dimensions as there are partitions of n points into at most σ subsets:

d ≤
σ∑
i=1

S(n, i) =
σ∑
i=1

1
i!

i∑
j=0

(−1)i−j
(
i

j

)
jn.

Here, S(n, i) is the Stirling number of the second kind, that is the number of ways
to partition n points into i non-empty subsets. We skip a thorough analysis of the
asymptotical behavior of the above sum and state the simple bound σn for the value
of d. More dimensions cannot exist because otherwise there would be two dimensions
with identical values for all n points, which clearly makes them redundant. The overall
number of entries in S is thus in O(σσk+k), which yields a problem kernel.

A problem kernel of size O(σσk+k) shows that Distinct Vectors is fixed-parameter
tractable with respect to (k, σ). Recall Theorem 4.1, which shows that Distinct
Vectors is also EW[2]-hard with respect to (k, σ) and thus implies that there is no
linear-size problem kernel for Distinct Vectors. Nonetheless, the kernel stated in
Proposition 4.6 seems to be a rather poor estimation which brings up the question for
better problem kernels of polynomial size or even of singly exponential size. Filling the
gap might be an interesting task.
As Charikar et al. [CGK+00] mentioned, Distinct Vectors can be polynomial-

time reduced to Set Cover. Since Set Cover is equivalent to Hitting Set it is

39

4 Dimension Reduction

also reducible to Hitting Set. This observation allows us to state a problem kernel
for Distinct Vectors with bounded pairwise Hamming distance between any pair of
points by transferring a known kernelization for a special case of Hitting Set, called
f-Hitting Set, to our problem.

f-Hitting Set
Input: A finite universe U , a collection C of subsets of U of size at most f ,

and a nonnegative integer k.
Question: Is there a subset K ⊆ U with |K| ≤ k such that K contains at

least one element from each subset in C?

Here, the value f corresponds directly to the maximum pairwise Hamming distance
between pairs any pair of points in the Distinct Vectors instance as we will
see shortly. Niedermeier and Rossmanith [NR03] showed an O(k3)-size kernel for
3-Hitting Set. An O(kf)-size kernel for the general f-Hitting Set is described in
the book by Flum and Grohe [FG06]. A kernel with a universe of size O(kf−1) was
shown by Abu-Khzam [Abu10]. Van Bevern [Bev12] showed how a kernel comprising
f ! · ff+1 · (k + 1)f subsets can be computed in O(f |U |+ f log f · |C|+ f |C|2) time. We
use this kernelization to prove the following theorem:

Theorem 4.7. There exists an O((f !·ff+1·(k+1)f)2)-size problem kernel for Distinct
Vectors computable in O(n2(d+f log f +logn)+f(n4 +d)) time, assuming constant-
time arithmetical operations.

Proof. The idea of the proof is to first describe a polynomial-time parameterized
many-one reduction from Distinct Vectors to f-Hitting Set. Then one applies
the aforementioned kernelization which yields an f-Hitting Set instance of size
O(f ! · ff+1 · (k + 1)f). This kernel will then be transformed back by the reduction
from the proof of Theorem 4.1. The resulting Distinct Vectors instance will have
size O((f ! · ff+1 · (k + 1)f)2), which yields the problem kernel.

The first reduction works as follows: Given an instance (S, k) of Distinct Vectors,
the f-Hitting Set instance (U, C, k) is defined by

U := {1, . . . , d},
C := {Cij ⊆ U | 1 ≤ i < j ≤ n},

Cij := {u ∈ U | (xi)u 6= (xj)u}.

Note that |Cij | ≤ f for all i 6= j. This reduction requires O(n2d) time. It is correct
since K ⊆ {1, . . . , d} with |K| ≤ k is a solution of (S, k) if and only if for every pair of
points in S there is at least one dimension in K in which both points have different
values. This is equivalent to the situation that K contains at least one element from
each Cij in C, which implies that K is a solution of (U, C, k).
Now we can apply the kernelization mentioned above to (U, C, k). In O(fd +

f log f · n2 + fn4) time we obtain an instance (U ′, C′, k) of f-Hitting Set, where
max{|U ′|, |C′|} ≤ f ! · ff+1 · (k + 1)f .

40

4.2 Distinct Vectors on an Arbitrary Alphabet

Finally, we use the reduction from the proof of Theorem 4.1 to get the Distinct
Vectors instance (S′, k′) in O(n2(d+ logn)) time. Since (U ′, C′, k) is an instance of
f-Hitting Set, each point in S′ is equal to 1 in at most f of the first |U ′| dimensions.
Thus, each pair of points in S′ differs in at most

f ′ = 2f + log |C′| = 2f +
f∑
j=1

log j + (f + 1) log f + f log(k + 1)

dimensions. The new sought solution size is

k′ = k + log |C′| = k +
f∑
j=1

log j + (f + 1) log f + f log(k + 1).

Note that k′ and f ′ depend only on k and f , which also holds for the overall size of S′,
which is in O((f ! · ff+1 · (k + 1)f)2). The overall running time is in O(n2(d+ f log f +
logn) + f(n4 + d)). Thus we have a problem kernel.

4.2.2 Fixed-Parameter Tractability and Approximation

The case of a bounded pairwise Hamming distance brings further tractability results
with it. In addition to the problem kernel from Theorem 4.7, we give a fixed-parameter
algorithm with respect to the combined parameter (k, f).

Proposition 4.8. Distinct Vectors is solvable in O(fk · nd) time, where f is the
maximum pairwise Hamming distance and k is the requested solution size, assuming
constant-time arithmetical operations.

Proof. The following simple search tree algorithm solves a given Distinct Vectors
instance (S, k) in O(fk ·nd) time: We set K = ∅ to start with. As long as S|K contains
a pair of vectors x, y that cannot be distinguished yet, we determine the set

D := {i ∈ {1, . . . , d} \K | (x)i 6= (y)i}

of dimensions where x and y differ. Any solution has to contain at least one element
of D and so we simply branch over all dimensions in D. Since x and y differ in at
most f dimensions the resulting search tree is of size O(fk). Determining x, y and D
can be done by lexicographical sorting the data via radix sort in O(nd) time [Knu98]
and comparing successive points afterwards.

Albeit Distinct Vectors is NP-hard even for a constant f = 4 (see Theorem 4.4),
there exists a simple factor-f approximation in O(n2d) time.

Proposition 4.9. Distinct Vectors can be approximated within a factor of f in
time O(n2d), assuming constant-time arithmetical operations.

41

4 Dimension Reduction

Proof. The algorithm is based on the following greedy strategy: Start with the empty
set K = ∅. Consider a pair of points x, y ∈ S|K that cannot be distinguished yet. There
are at most f dimensions in which x and y differ. We simply add all f dimensions
to K and repeat this procedure until all points in S|K are pairwise distinct. Since any
optimal solution has to contain at least one dimension in which x and y differ, our
solution is at most f times larger than optimal. This can be done in time O(n2d).

4.2.3 W[2]-Hardness Regarding the Required Solution Size

As we have already seen in Corollary 4.5, the binary version of Distinct Vectors
parameterized by the number of dimensions to be deleted is W[1]-hard. Moreover,
the problem kernel given in Proposition 4.6 shows that Distinct Vectors is fixed-
parameter tractable with respect to k for constant σ. Recall the reduction from the
proof of Theorem 4.1 for which we already mentioned that it is not a parameterized
one since the sought solution size k′ does not solely depend on k but also on n. For this
reason, the proof does not provide evidence of W[2]-hardness of Distinct Vectors
for the binary case even though Hitting Set is known to be W[2]-hard [DF99]. To
round off this section, we now show that Distinct Vectors is W[2]-hard with respect
to the parameter k in case of an alphabet of unbounded size.

Theorem 4.10. Distinct Vectors is W[2]-hard with respect to the parameter k for
an unbounded alphabet Σ.

Proof. We give a similar reduction from Hitting Set as in the proof of Theorem 4.1.
An alphabet of unbounded size allows us to get rid of the last dlogne dimensions. As a
result, we obtain a parameterized reduction which yields the W[2]-hardness.
We reduce a given Hitting Set instance (U, C, k) with U = {u1, . . . , um} and
C = {C1, . . . , Cn} to the Distinct Vectors instance (S, k′), where

S := {x1, . . . , xn,~0} ⊆ Σm, (xi)j :=
{
i uj ∈ Ci
0 uj 6∈ Ci

, k′ := k

for all i ∈ {1, . . . , n} and j ∈ {1 . . . ,m}.
Let K be a subset of dimensions of size k that is a solution of (S, k′). Then, for

every i ∈ {1, . . . , n}, there exists a dimensions in K such that xi is different from 0 in
this dimension because xi|K 6= ~0|K . It follows that the elements of U corresponding to
the dimensions in K form a solution of (U, C, k).

Now, suppose that K is a solution of (U, C, k). The corresponding set of dimensions
is a solution of (S, k′) since, for every i ∈ {1, . . . , n}, there is a dimension where xi is
equal to i. This implies that xi can be distinguished from all other points because no
other point contains the symbol i.
Thus, the reduction is correct and clearly runs in polynomial time. Note that the

sought solution size k′ only depends on the parameter k. Consequently, the above
reduction is indeed a parameterized reduction.

42

4.3 Summary

4.3 Summary
This section briefly summarizes the discussion of the Distinct Vectors problem. In
Theorem 4.4, we have seen that it is NP-hard to solve even for very restricted instances
where the alphabet contains two symbols and each pair of points differs in at most four
dimensions. This variant is also W[1]-hard with respect to the number of dimensions to
delete. Only if each pair differs in at most three dimensions, then the dataset exhibits a
regular structure that allows for a polynomial-time algorithm to solve it as was shown
in Theorem 4.3.
In general, if the size of the alphabet is unbounded, the problem even withstands

approaches to fixed-parameter algorithms regarding the sought solution size since
Theorem 4.10 shows that it is W[2]-hard. But, taking into account the size of the
alphabet or the maximum Hamming distance between any pair of points together
with the requested solution size, enables fixed-parameter algorithms as was shown in
Proposition 4.6, Theorem 4.7 and Proposition 4.8

43

5 Conclusion

In this thesis, we studied several combinatorial feature selection problems. First, we
considered the clustering problems Hidden Clusters and Hidden Cluster Graph.
We have seen that both problems are NP-hard in general and so we investigated their
parameterized complexity. The Hidden Clusters problem turned out to be W[2]-hard
with respect to number of dimensions to select and fixed-parameter tractable with
respect to the combination of the number of dimensions to be deleted and the number
of cluster centers. For the Hidden Cluster Graph problem, where the number of
cluster centers is unknown, we proved that it is W[2]-hard with respect to the number
of dimensions to be deleted. Combining the number of dimensions to be deleted with
the radius, however, yields a fixed-parameter tractable parameterization of Hidden
Cluster Graph.

Besides the two clustering problems, we also studied the dimension reduction problem
Distinct Vectors. We first focused on a very restricted case of Distinct Vectors,
where we assumed a binary alphabet and a bounded pairwise Hamming distance of the
data points. We recognized a dichotomous behavior in the computational complexity
concerning the bound on the pairwise Hamming distance: If the bound is at most three,
then Distinct Vectors is polynomial-time solvable. Otherwise it is NP-hard and
even W[1]-hard with respect to the number of dimensions to delete. For alphabets of
arbitrary cardinality, the problem is W[2]-hard with respect to the number dimensions
to select. The problem, however, is fixed-parameter tractable with respect to the
combined parameter number of dimensions to select and alphabet size. But there is in
fact a lower bound on the running time since we proved the problem to be EW[2]-hard
with respect to the above parameterization. Thus, Distinct Vectors parameterized
by the number of dimensions to select and the alphabet size is in FPT \ EPT. Also
the bound on the pairwise Hamming distance in combination with the number of
dimensions to select yields fixed-parameter tractability.

Future Work. Finally, we mention a few interesting questions that had to be left open
in this thesis and thus offer some possibilities for further research. For instance, our
discussion of Hidden Clusters is based solely on the special case Binary Hidden
Clusters. It is thus natural to ask for fixed-parameter results concerning the general
case of arbitrary alphabets and an arbitrary radius.
The Hidden Cluster Graph problem could be analyzed in respect of fixed-

parameter tractability for a finite alphabet since our proof of W[2]-hardness required an
unbounded alphabet. So far, it is also not clear whether the problem is fixed-parameter
tractable with respect to the number of dimensions to select or not. Moreover, one
could define several generalized versions of Hidden Cluster Graph. For example,

45

5 Conclusion

recall that we used the triangle inequality to prove a fixed-parameter algorithm for
Hidden Cluster Graph with respect to the radius and the number of dimensions to
be deleted. It could thus be interesting to consider arbitrary distance functions, for
which the triangle inequality does not hold. It is also possible to modify the definition
of a clustering. For example, one could define a relaxed notion of a cluster graph that
allows for some edges between nodes of different clusters and some missing edges inside
a cluster.

As regards the Distinct Vectors problem, the most interesting question is whether
the problem kernel with respect to the number of dimensions to select and the alphabet
size can be improved. The gap between O(σσk+k) and the linear lower bound leaves
plenty of room for improvements. Note that a polynomial-size problem kernel would
yield a fixed-parameter tractable algorithm that performs “as best as possible” because
the EW[2]-hardness implies that one could not expect to do essentially better. Instead
of improving the size of the problem kernel, one could also try to find better lower
bounds on the size. For example, one could try to show that there is in fact no
polynomial-size kernel using the cross-composition technique by Bodlaender et al.
[BJK11]. It is also conceivable to find better problem kernels for alphabets of constant
size. Another interesting point about Distinct Vectors is its relation to Hitting
Set. We have seen that Distinct Vectors is essentially a special instance of a
Hitting Set problem. For an alphabet of constant size, however, Distinct Vectors
is fixed-parameter tractable with respect to the parameter sought solution size (that is,
the number of dimensions to select), which is in contrast to Hitting Set generally
being W[2]-hard with respect to the sought solution size. Thus, the Hitting Set
instances corresponding to Distinct Vectors instances have to contain a certain
structure that makes them easier to solve. Identifying and analyzing the structure
of the corresponding Hitting Set instances is an interesting task that might reveal
further parameterized complexity results.

46

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009. Cited on page 11.

[Abu10] Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. Journal
of Computer and System Sciences, 76(7):524–531, 2010. Cited on page 40.

[BCH+12] Robert Bredereck, Jiehua Chen, Sepp Hartung, Stefan Kratsch, Rolf
Niedermeier, and Ondřej Suchy̌. A multivariate complexity analysis of
lobbying in multiple referenda. In Proceedings of the 26th AAAI Conference
on Artificial Intelligence, pages 1292–1298, 2012. Cited on pages 24 and 28.

[Bel61] Richard Bellman. Adaptive Control Processes - A Guided Tour. Princeton
University Press, 1961. Cited on page 1.

[Bev12] René van Bevern. Towards optimal and expressive kernelization for d-
hitting set. Manuscript, 2012. Abstract appeared in Proceedings of the 18th
Annual International Computing and Combinatorics Conference. Cited
on page 40.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006. Cited on page 8.

[BJK11] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-
composition: A new technique for kernelization lower bounds. In Pro-
ceedings of the 28th International Symposium on Theoretical Aspects of
Computer Science, pages 165–176, 2011. Cited on page 46.

[BL97] Avrim L. Blum and Pat Langley. Selection of relevant features and examples
in machine learning. Artificial Intelligence, 97(1–2):245–271, 1997. Cited
on page 1.

[BM11] Andreas Brandstädt and Raffaele Mosca. On distance-3 matchings and
induced matchings. Discrete Applied Mathematics, 159(7):509–520, 2011.
Cited on page 38.

[Bod09] Hans Bodlaender. Kernelization: New upper and lower bound techniques.
In Jianer Chen and Fedor Fomin, editors, Parameterized and Exact Com-
putation, volume 5917 of Lecture Notes in Computer Science, pages 17–37.
Springer, 2009. Cited on page 13.

47

Bibliography

[Cam89] Kathie Cameron. Induced matchings. Discrete Applied Mathematics,
24(1–3):97–102, 1989. Cited on page 37.

[CCDF97] Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows.
Advice classes of parameterized tractability. Annals of Pure and Applied
Logic, 84(1):119–138, 1997. Cited on page 12.

[CFRS07] Robin Christian, Mike Fellows, Frances Rosamond, and Arkadii Slinko.
On complexity of lobbying in multiple referenda. Review of Economic
Design, 11(3):217–224, 2007. Cited on pages 24 and 25.

[CGK+00] Moses Charikar, Venkatesan Guruswami, Ravi Kumar, Sridhar Ra-
jagopalan, and Amit Sahai. Combinatorial feature selection problems.
In Proceedings of the 41st Annual IEEE Symposium on Foundations of
Computer Science, pages 631–640, 2000. Cited on pages iii, v, 2, 3, 6, 7,
9, 17, 18, 31, 32, and 39.

[CM03] Carlos Cotta and Pablo Moscato. The k-feature set problem is W[2]-
complete. Journal of Computer and System Sciences, 67(4):686–690, 2003.
Cited on page 9.

[CM05] Carlos Cotta and Pablo Moscato. The parameterized complexity of multi-
parent recombination. In Proceedings of the Sixth Metaheuristics Interna-
tional Conference, pages 237–242, 2005. Cited on page 9.

[Das97] Manoranjan Dash. Feature selection via set cover. In Proceedings of the
IEEE Workshop on Knowledge and Data Exchange, pages 165–171, 1997.
Cited on page 9.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer-Verlag New York, 1999. Cited on pages 2, 12, 13, 20, 34, and 42.

[DHS01] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
Wiley, 2nd edition, 2001. Cited on page 8.

[Die10] Reinhard Diestel. Graph Theory. Springer, 4th edition, 2010. Cited on
page 14.

[DR94] Scott Davies and Stuart Russell. NP-completeness of searches for smallest
possible feature sets. In AAAI Symposium on Intelligent Relevance, pages
37–39, 1994. Cited on page 9.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer,
2006. Cited on pages 2, 12, 13, 14, 33, and 40.

[FGW06] Jörg Flum, Martin Grohe, and Mark Weyer. Bounded fixed-parameter
tractability and log2 n nondeterministic bits. Journal of Computer and
System Sciences, 72(1):34–71, 2006. Cited on page 14.

48

Bibliography

[FH01] Karel Fuka and Rudolf Hanka. Feature set reduction for document classifica-
tion problems. In International Joint Conferences on Artificial Intelligence:
Workshop on Text Learning: Beyond Supervision, 2001. Cited on page 1.

[GE03] Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research, 3:1157–1182,
2003. Cited on page 8.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
1979. Cited on page 11.

[GWBV02] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik.
Gene selection for cancer classification using support vector machines.
Machine Learning, 46(1–3):389–422, 2002. Cited on page 1.

[HKSS12] Chính T. Hoàng, Marcin Kamiński, Joe Sawada, and R. Sritharan. Finding
and listing induced paths and cycles. Discrete Applied Mathematics to
appear, 2012. Cited on page 24.

[HM94] Kevin S. Van Horn and Tony Martinez. The minimum feature set problem.
Neural Networks, 7(3):491–494, 1994. Cited on pages 1 and 9.

[Hof07] Marc A. Hoffmann. Whisky: Marken aus der ganzen Welt. Parragon, 2007.
Cited on page 1.

[Jol02] I. T. Jolliffe. Principle Component Analysis. Springer, 2nd edition, 2002.
Cited on page 2.

[Juk11] Stasys Jukna. Extremal Combinatorics. Springer, 2nd edition, 2011. Cited
on page 34.

[Knu98] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison-Wesley, 2nd edition, 1998. Cited on pages 22, 37,
and 41.

[Krz87] W. J. Krzanowski. Selection of variables to preserve multivariate data
structure, using principal components. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 36(1):22–33, 1987. Cited on page 2.

[LM98a] Huan Liu and Hiroshi Motoda, editors. Feature Extraction, Construction
and Selection: A Data Mining Perspective, volume 453 of The Springer
International Series in Engineering and Computer Science. Springer, 1998.
Cited on page 1.

[LM98b] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery
and Data Mining, volume 454 of The Springer International Series in
Engineering and Computer Science. Springer, 1998. Cited on page 1.

49

Bibliography

[LM07] Huan Liu and Hiroshi Motoda, editors. Computational Methods of Feature
Selection. Data Mining and Knowledge Discovery Series. Chapman &
Hall/CRC, 2007. Cited on page 1.

[LMS12] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization –
preprocessing with a guarantee. In Hans Bodlaender, Rodney G. Downey,
Fedor Fomin, and Dániel Marx, editors, The Multivariate Algorithmic
Revolution and Beyond, volume 7370 of Lecture Notes in Computer Science,
pages 129–161. Springer, 2012. Cited on page 13.

[MBN02] Luis Carlos Molina, Lluís Belanche, and Àngela Nebot. Feature selection
algorithms: A survey and experimental evaluation. In Proceedings of IEEE
International Conference on Data Mining, pages 306–313, 2002. Cited on
page 8.

[MT09] Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity
of finding regular induced subgraphs. Journal of Discrete Algorithms,
7(2):181–190, 2009. Cited on page 38.

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006. Cited on pages 2 and 12.

[NR03] Rolf Niedermeier and Peter Rossmanith. An efficient fixed-parameter
algorithm for 3-hitting set. Journal of Discrete Algorithms, 1(1):89–102,
2003. Cited on page 40.

[OSV92] Arlindo L. Oliveira and Alberto Sangiovanni-Vincentelli. Constructive
induction using a non-greedy strategy for feature selection. In Proceedings
of Ninth International Conference on Machine Learning, pages 355–360,
1992. Cited on page 9.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison Wesley,
1994. Cited on page 11.

[Pea01] K. Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2(6):559–572, 1901. Cited on page 2.

[RS00] Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290(5500):2323–2326, 2000. Cited on
page 8.

[SSM98] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear
component analysis as a kernel eigenvalue problem. Neural Computation,
10(5):1299–1319, 1998. Cited on page 8.

[SST04] Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification
problems. Discrete Applied Mathematics, 144(1–2):173–182, 2004. Cited
on page 15.

50

Bibliography

[TSL00] Josh B. Tenenbaum, Vin de Silva, and John C. Langford. A global
geometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000. Cited on page 8.

[WMC+00] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik.
Feature selection for SVMs. In Advances in Neural Information Processing
Systems 13, pages 668–674, 2000. Cited on page 1.

[XK01] Eric P. Xing and Richard M. Karp. CLIFF: Clustering of high-dimensional
microarray data via iterative feature filtering using normalized cuts. In
Proceedings of the Ninth International Conference on Intelligent Systems
for Molecular Biology, pages S306–S315, 2001. Cited on page 1.

51

	Introduction
	Combinatorial Feature Selection: A Framework
	Overview and Results
	Related Work

	Preliminaries
	Parameterized Complexity
	Graphs

	Subspace Selection
	Hidden Clusters
	NP- and W[1]-Hardness
	A Fixed-Parameter Algorithm

	Hidden Cluster Graphs
	A Polynomial-Time Algorithm
	NP- and W[2]-Hardness
	A Fixed-Parameter Algorithm

	Dimension Reduction
	Distinct Vectors on a Binary Alphabet
	NP- and EW[2]-Hardness
	Bounded Pairwise Hamming Distance: A Dichotomy

	Distinct Vectors on an Arbitrary Alphabet
	Problem Kernels
	Fixed-Parameter Tractability and Approximation
	W[2]-Hardness Regarding the Required Solution Size

	Summary

	Conclusion

