
Exact Algorithms for NP-hard
Problems on Networks:

Design, Analysis, and Implementation

Dissertation

der Fakultät für
Informations- und Kognitionswissenschaften
(Wilhelm-Schickard Institut für Informatik)

zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von

Dipl.-Math. Jochen Alber

aus Ebersbach an der Fils

Tübingen
2002

Tag der mündlichen Qualifikation: 08.01.2003
Dekan: Prof. Dr. Ulrich Güntzer
1. Gutachter: Prof. Dr. Klaus-Jörn Lange
2. Gutachter: Prof. Dr. Michael Kaufmann

Erklärung

Hiermit erkläre ich, dass ich die Arbeit selbständig und nur mit den angegebenen
Hilfsmitteln angefertigt habe und dass alle Stellen, die im Wortlaut oder dem Sinne
nach anderen Werken entnommen sind, durch Angaben der Quellen als Entlehnung
kenntlich gemacht worden sind.

Tübingen, Oktober 2002 Jochen Alber

Zusammenfassung der Arbeit

Die Arbeit befasst sich mit dem Entwurf von exakten Algorithmen für NP-vollständige
Optimierungsprobleme auf Graphen, wie etwa Vertex Cover, Independent Set, oder Do-
minating Set. Viele praxisbezogene Aufgaben, beispielsweise sogenannte “facility location”-
Probleme aus dem Bereich der Entscheidungsanalyse (decision analysis), sind durch entspre-
chende Netzwerk-Modellierung auf derartige Fragestellungen zurückzuführen. Im Vordergrund
der Arbeit stehen Lösungsverfahren mit beweisbaren Laufzeitschranken. Wegen der solchen
Problemen inhärenten kombinatorischen Komplexität müssen wir exponentielles Laufzeitverhal-
ten unserer Algorithmen in Kauf nehmen, wollen dieses jedoch kleinstmöglich halten.

Wir verfolgen dabei den Ansatz sogenannter “parametrisierter Algorithmen”. Vereinfacht
gesagt handelt es sich hierbei um eine zweidimensionale Herangehensweise, bei welcher die
Laufzeit nicht ausschließlich in der Größe der Eingabeinstanz, sondern überdies auch in der Größe
eines sogenannten “Problemparameters” gemessen wird. Problemparameter sind in unserem
Zusammenhang die Größe der zu optimierenden Lösung, wie etwa die Größe einer Knotenüber-
deckungsmenge bei Vertex Cover, die Größe einer unabhängigen Knotenmenge in Indepen-
dent Set, oder die Größe einer dominierende Knotenmenge im Fall von Dominating Set. Ein
parametrisiertes Problem1 heißt “fixed-parameter tractable”, falls sich ein Lösungsalgorithmus
der Laufzeit f(k) ·nO(1) finden läßt, wobei f eine beliebige, den exponentiellen Laufzeitanteil er-
fassende Funktion sein darf. Hier ist n die Größe der Eingabeinstanz und k der zugehörige Prob-
lemparameter. Entsprechend heißt ein solcher Algorithmus dann Fest-Parameter-Algorithmus.
FPT bezeichnet die Klasse aller parametrisierten Probleme, welche fixed-parameter tractable
sind.

Es ist beispielsweise bekannt, dass par-Vertex Cover in FPT liegt. Das Problem par-In-
dependent Set hingegen ist vollständig für W[1], eine Klasse parameterisierter Probleme, die
sich wohl nicht mit einem Fest-Parameter-Algorithmus lösen lassen; par-Dominating Set ist
sogar W[2]-vollständig, in diesem Sinn also parametrisiert noch weniger handhabbar. Schränkt
man sich auf planare Graphen ein, so behalten die genannten Probleme zwar ihre NP-Härte,
sind jedoch alle in FPT.

Der Entwurf von effizienten Fest-Parameter-Algorithmen für parametrisierte Optimierungs-
probleme auf planaren Graphen steht im Mittelpunkt der Arbeit. Unter effizient verstehen
wir hierbei Algorithmen mit möglichst geringem exponentiellen Laufzeitanteil (gemessen durch
die Funktion f in der Definition von FPT). Dabei untersuchen wir sowohl von theoretischer,
als auch von praktischer Seite unterschiedliche Methoden des Algorithmen-Designs: Datenre-
duktion, beschränkte Suchbäume, Separation von Graphen und das Konzept von Baumzerle-

1Die “kanonische” parametrisierte Variante eines Optimierungsproblems Q, bei welcher der Problemparameter
eine Schranke auf die Optimierungskosten ist, bezeichnen wir mit par-Q.

II

gungen. Jedem der Verfahren ist ein Kapitel der Arbeit gewidmet. Wir legen dabei Wert auf
eine möglichst methodische, wenig problemspezifisch Herangehensweise. Als laufende Beispiele
dienen u.a. die oben genannten Probleme par-Vertex Cover, par-Independent Set und
par-Dominating Set.

Kapitel 1 stellt nach einer kurzen Einführung die in der Arbeit behandelten Probleme im
einzelnen und die bisher bekannten Ergebnisse hierzu überblicksartig zusammen. Darüber hinaus
findet sich dort ein umfangreicher Überblick über die neuen Ergebnisse dieser Arbeit.

Kapitel 2 beschäftigt sich mit sogenannter Datenreduktion. Dabei wird eine Eingabein-
stanz in eine — bezüglich der Problemstellung äquivalente — neue Instanz kleinerer Größe,
den sogenannten Problemkern, transformiert. Zentrale Forderung beim Design parametrisierter
Algorithmen ist hierbei, dass die Größe des Problemkerns nicht von der Größe der Ausgangsin-
stanz, sondern nur noch vom Problemparameter abhängt. Wir rekapitulieren ein Theorem von
Nemhauser und Trotter, welches einen sogenannten linearen Problemkern für par-Vertex Co-
ver liefert. Außerdem zeigen wir, wie aus dem Vierfärbbarkeitssatz auf einfache Weise ein
linearer Problemkern für par-Independent Set auf planaren Graphen folgt. Hauptresultat
des Kapitels ist jedoch der Nachweis eines linearen Problemkerns für par-Dominating Set
auf planaren Graphen, womit wir eine seit längerem offene Frage positiv beantworten können.
Die Problemkernreduktion hierfür basiert auf zwei sehr einfachen und leicht zu implementieren-
den Reduktionsregeln; der Beweis für die Linearität des Problemkerns hierzu ist jedoch recht
aufwändig.

In Kapitel 3 verfolgen wir die wohl am häufigsten angewandten Methode im Entwurf von
Fest-Parameter-Algorithmen, sogenannte beschränkte Suchbäume. Mit deren Hilfe läßt sich
eine systematische, erschöpfende Suche realisieren. Wir betrachten einen speziellen Ansatz für
kombinatorische Graphprobleme, die sogenannte “degree-branching”-Technik, bei welcher ein
Suchbaum sukzessive aufgrund lokaler Nachbarschaftsstrukturen im zu untersuchenden Graphen
aufgebaut wird. Als einfache Beispiele dienen par-Vertex Cover und par-Independent Set
auf planaren Graphen. Die Anwendung dieser Methode für par-Dominating Set auf planaren
Graphen liefert einen Laufzeit O(8kn) Algorithmus, erfordert jedoch größeren Aufwand. Ins-
besondere die Analyse des zugehörigen Suchbaums ist sehr technisch und umfangreich. Nachdem
ein früheresO(11kn) Resultat von Downey und Fellows [82, Theorem 3.1] einen (offensichtlichen)
Fehler enthält, liefert unser Ergebnis — unseres Wissens nach — den ersten (korrekten) Algo-
rithmus der Laufzeit O(ckn) für par-Dominating Set auf planaren Graphen.

In Kapitel 4 entwickeln wir Algorithmen, die eine “divide-and-conquer”-Strategie basierend
auf der Separation von Graphen verwenden. Um eine formale, mathematisch korrekte Beschrei-
bung dieser Methode zu ermöglichen, prägen wir den Begriff der “glueability”, welcher jene
Probleme charakterisiert, die sich mittels “divide-and-conquer” lösen lassen. Das Kapitel un-
tergliedert sich in zwei Teile. Im ersten Teil beschäftigen wir uns mit Graphklassen, für welche
ein sogenanntes

√·-Separator-Theorem bekannt ist. Wir stellen eine Methode vor, mit welcher
man für parametrisiserte Probleme mit “glueability”-Eigenschaft unter gewissen Voraussetzung-

en Fest-Parameter-Algorithmen der Laufzeit 2O(
√
k) + nO(1) gewinnen kann. Hierunter fallen,

u.a., par-Vertex Cover, par-Independent Set und par-Dominating Set auf planaren
Graphen. Unserer Erkenntnis nach sind dies die ersten Fest-Parameter-Algorithmen “sublinear-
exponentieller” Laufzeit (d.h., die Funktion f hat einen sublinearen Exponenten) überhaupt in

III

der Literatur. Darüber hinaus zeigen wir, dass diese Algorithmen asymptotisch optimal sind:

Genauer gesagt würde ein Algorithmus der Laufzeit 2o(
√
k)nO(1) für eines dieser Probleme bereits

3 sat ∈ DTIME(2o(n)) implizieren (n ist hierbei die Anzahl der Variablen einer 3 sat Formel),
was in der (klassischen) Komplexitätstheorie als eher unwahrscheinlich angesehen wird.

Im zweiten Teil versuchen wir die “divide-and-conquer”-Strategie auf sogenannte Kreis-
graphen (disk graphs) — das sind Überschneidungsgraphen von Kreisscheiben—zu erweitern.
Für diese kann jedoch kein

√·-Separator-Theorem im obigen Sinne gelten, da solche Graphen
Cliquen unbeschränkter Größe enthalten können. Wir umgehen diese Schwierigkeit indem wir,
als zentrales Ergebnis, eine neue geometrische Variante eines solchen Separator-Theorems für
Kreisgraphen mit beschränktem Radiusverhältnis beweisen. Als Anwendung betrachten wir das
par-Independent Set Problem, welches in der Modellierung von Konfliktgraphen, u.a. etwa
bei Interferenzvermeidung in Frequenzzuweisungsproblemen, auftritt. Wir geben einen Algo-

rithmus der Laufzeit 2O(
√
k log(n)) für Kreisgraphen mit beschränktem Radiusverhältnis, eine

Laufzeit, die auf generellen Graphen — unter der Annahme 3 sat /∈ DTIME(2o(n)) (n die
Anzahl der Variablen) — nicht erzielt werden kann. Unter der zusätzlichen Voraussetzung der
sogenannten ϑ-Präzision — dies bedeutet, dass die Mittelpunkte der Kreisscheiben gegenseitig
jeweils Abstand mindestens ϑ > 0 haben — finden wir für par-Independent Set sogar einen

“sublinear-exponentiellen” Fest-Parameter-Algorithmus der Laufzeit O(2O(
√
k) + n).

In Kapitel 5 wenden wir uns dem Konzept von Baumzerlegungen zu. Baumzerlegungsbasierte
Algorithmen setzen sich typischerweise aus zwei Phasen zusammen. In einer ersten, im all-
gemeinen Fall sehr rechenzeitaufwändigen Stufe wird eine Baumzerlegung (möglichst kleiner
Weite) des Eingabegraphen konstruiert. Mit Hilfe dieser kann in einer zweiten Stufe das
gegebene Problem in der Regel durch einen dynamischen Programmieransatz gelöst werden.
Da die Weite der Baumzerlegung meist exponentiell in die Laufzeit der zweiten Phase eingeht,
sind kleine Baumweiten wünschenswert. Die Arbeit liefert neue Ergebnisse bezüglich bei-
den Phasen der oben genannten Methode. Zum einen beweisen wir neue, konstruktive obere
Schranken für die Baumweite tw(G) eines planaren Graph G. Fundamental hierbei ist der
von uns eingeführte Begriff der “Layerwise Separation Property” (LSP). Es wird gezeigt, dass
für jede “Ja”-Instanz (G, k) eines parametrisierte LSP-Problems eine Baumzerlegung der Weite
höchstens c

√
k effizient in Zeit O(

√
kn) konstruiert werden kann. Speziell folgen hieraus für

die Baumweite tw(G) eines planaren Graph G etwa die Schranken

tw(G) ≤ 4
√
3 vc(G) + 5 und tw(G) ≤ 6

√
34ds(G) + 8,

wobei vc(G) die Größe einer optimalen Knotenüberdeckung (vertex cover number) bzw. ds(G) die
Größe einer optimalen dominierenden Knotenmenge (domination number) bezeichnen. Beide
Schranken sind asymptotisch optimal.

Zum anderen beschäftigen wir uns mit dynamischem Programmieren auf Baumzerlegung-
en für eine Reihe von “Dominierungs”-Problemen. Durch ein Konzept, das auf einer Art
“Monotonieverhalten” innerhalb des dynamischen Programmierens beruht, verbessern wir die
hierzu bisher besten Algorithmen der Literatur erheblich. U.a. geben wir einen Algorithmus
der Laufzeit O(4ℓN) für Dominating Set an (ℓ ist die Weite der gegebenen Baumzerlegung
und N die Anzahl der Knoten im Baum) — der zuvor beste bekannte Algorithmus hierzu hatte
Laufzeit O(9ℓN) [183, 184]. Ähnliche Verbesserungen erzielen wir beispielsweise für Vertex

IV

Cover, Independent Dominating Set, Total Dominating Set, Perfect Dominating
Set, oder Perfect Code.

Die Verschmelzung der Ergebnisse zu den beiden Phasen führt zu einem universellen Schema,
mit welchem, unter gewissen Voraussetzungen, Fest-Parameter-Algorithmen mit Laufzeitverhal-

ten O(2O(
√
k)n) oder 2O(

√
k)+nO(1) (d.h. Algorithmen mit sublinearem Term im exponentiellen

Laufzeitanteil) für viele parametrisierte LSP-Probleme gewonnen werden können. Insbesondere

erhalten wir einen O(24
√
3kk+kn) Algorithmus für par-Vertex Cover, einen O(24

√
6kk+n2)

Algorithmus für par-Independent Set und einen O(212
√
17 log(3)kk+n3) Algorithmus für par-

Dominating Set auf planaren Graphen. Vergleichbare Ergebnisse gelten für eine Reihe von
Variationen dieser Probleme, u.a., für sogenannte par-Dominating Set with Property P

Probleme oder für das par-Face Cover Problem.

In Kapitel 6 stellen wir ein Software-Paket vor, welches im Rahmen dieses Projektes mit
studentischer Unterstützung entwickelt wurde und eine Vielzahl der genannten Algorithmen
implementiert. Wir berichten über eine Reihe von empirischen Studien zur Auswertung der
Praxistauglichkeit dieser Algorithmen. Die Leistungstests basieren auf kombinatorisch gene-
rierten Zufallsgraphinstanzen. In den Tests bestätigt sich, dass unsere theoretische Analyse
der Worst-Case-Szenarien oftmals (viel) zu pessimistisch für tatsächliche Aussagen über die
praktische Güte der Algorithmen ist. Im einzelnen wollen wir folgende Beobachtungen her-
vorheben: Die Tests zum O(8kn) Suchbaum-Algorithmus für par-dominating set ergaben
eine durchschnittlichen Verzweigungsgrad im Suchbaum von 1.6, der schlechtest aufgetretene
Fall überhaupt hatte einen Verzweigungsgrad von 4 — nach der Worst-Case-Abschätzung wäre
jedoch ein Verzweigungsgrad von 8 möglich. Bei den Tests zu den baumzerlegungsbasierten Al-
gorithmen ergab sich ein ähnliches Bild. Die in der Praxis erhaltenen Baumzerlegungen hatten
eine bei weitem geringere Baumweite, als dies aus der theoretischen Analyse zu erwarten gewesen
wäre. Folglich erweist sich das gesamte Konzept der Baumzerlegungen in unseren Tests als sehr
vielversprechend und effizient. Schließlich ist die eindrucksvolle Stärke der Datenreduktions-
Algorithmen hervorzuheben. Wohingegen unsere Tests ergaben, dass die von Nemhauser und
Trotter vorgeschlagene Problemkernreduktion für par-Vertex Cover die Eingabeinstanzen um
durchschnittlich ca. 65% verkleinerte, konnten die von uns entwickelten Datenreduktionsregeln
für par-Dominating Set die Eingabegraphen gar um über 99% reduzieren. Durch Hinzunahme
dieser effizienten Problemkernreduktionen als “Preprocessing” konnten demnach die meisten Al-
gorithmen signifikant beschleunigt werden.

Am Ende der Arbeit (Kapitel 7) werden die Ergebnisse nochmals zusammengefasst. Darüber
hinaus berichten wir über weitere aktuelle Veröffentlichungen im Umfeld dieser Arbeit und
skizzieren einen Ausblick mit Fragestellungen für zukünftige Forschungsprojekte.

Preface “Weitermachen!”

This thesis emerged from my efforts in the design, analysis, and implementation of parameterized
algorithms. The occupation in this research field goes back to my work in the project “Parame-
terized Complexity and Exact Algorithms (PEAL),” NI 369/1-1,1-2, supported by the Deutsche
Forschungsgemeinschaft (DFG). I owe sincere thanks to this support and to Klaus-Jörn Lange
and Rolf Niedermeier who initiated this research project. In particular, I want to highlight the
indefatigable efforts of Rolf Niedermeier who supervised my research in this project. I am very
grateful for his support. Besides the above mentioned members of our working group, I want
to thank Henning Fernau, Jens Gramm, Jiong Guo, Michael Kaufmann, and Klaus Reinhardt
for various stimulating discussions and for providing a very friendly and enriching working at-
mosphere in Tübingen. Finally, I wish to thank Michael R. Fellows, Venkatesh Raman and
Jan Arne Telle for their kind invitations to common research meetings and for their hospitality
during the corresponding visits.

The most important research partners in this project for me were Rolf Niedermeier and
Henning Fernau. Other people from whom I profited relevantly are Hans L. Bodlaender, Ton
Kloks, Michael R. Fellows, Jǐŕı Fiala, and several other people with whom I had collaborations
and discussions on the topic of this work. This thesis is based on my various research collabo-
rations together with one or another of the above mentioned authors. In this work, however, I
only present results to which I contributed in a significant manner and to whose achievement I
played a major role.

In the following, I give a detailed, chapterwise description of my main personal contributions
to the new results presented here.

The work is organized in six chapters followed by a short conclusion. The contents of these
chapters is worked up in a fully personally biased way. After a quick “Introduction” (Chapter 1),
various techniques to design fixed-parameter algorithms for combinatorial problems mainly on
planar graphs are presented, namely “Data Reduction” (Chapter 2), “Bounded Search Trees”
(Chapter 3), “Graph Separation” (Chapter 4), and “Tree Decomposition Based Algorithms”
(Chapter 5). Finally, I report on “Experimental Studies” (Chapter 6). Nearly all chapters are
organized in a similar way. They contain a first subsection (called “Background”) where the
reader shall be introduced to the given chapter. Then, in each chapter further sections follow in
which the new results are presented.

In Chapter 2, a linear problem kernel for par-dominating set on planar graphs (see Sec-
tion 2.2) is given. Coming up with the final set of reduction rules needed to prove this result
mainly goes back to my work. In particular, I developed the concept of region decompositions
which can be considered to be the breakthrough in proving the linear problem kernel. Finally,
using this concept, all the major parts of the technically involved proof for the linear kernel were

carried out by myself.

In Chapter 3, a search tree algorithm based on degree-branching is presented for par-do-
minating set on planar graphs (see Section 3.2). The key difficulty there lies in proving a
so-called “branching theorem” for certain reduced black and white graphs. The proof for this
theorem was unclear since it may not be assumed that the black induced subgraph is connected.
I came up with the final proof to overcome these difficulties which finally led to the complete
analysis of the search tree size.

In Chapter 4, a parameterized divide-and-conquer approach based on graph separation is
studied to design—seemingly for the first time—subexponential fixed-parameter algorithms (see
Section 4.2). This idea was initiated by me. In particular, I provided a mathematically sound
definition and analysis of the technically involved concept of “glueability” which characterizes
problems for which such an approach is possible. The second part of Chapter 4 (see Section 4.3)
concentrates on disk graphs for which such separator theorems do not exist. To cope with this
dilemma I provide a new geometric version of a separator theorem. The idea for this goes back
to me. Also, I did the main part of the proof—which includes the decisive idea of considering
the so-called covering grid of a disk graph.

In Chapter 5, a prospective tree decomposition based approach is presented. Here, my
contribution was to develop the technical concept of the “Layerwise Separation Property” (LSP)
to obtain fixed-parameter algorithms with a sublinear exponential growth in the running time for
a wide class of problems on planar graphs (see Section 5.2). Besides, it is one of my achievements
to use the LSP in order to efficiently construct tree decompositions with a guaranteed upper
bound on the treewidth that is sublinear in the problem parameter. This implies new worst-case
upper bounds for the treewidth of a planar graph with respect to the vertex cover number or
the domination number. In a second part of Chapter 5 (see Section 5.3), the concept of dynamic
programming on tree decompositions is studied. Here, my achievement is to elaborate and
realize the so-called monotonicity concept for dynamic programming that results in improved
algorithms for various domination-like problems. Finally, Chapter 5 is concluded by putting
together the results from the previous sections leading to the claimed “sublinear-exponential”
fixed-parameter algorithms (see Section 5.4).

In Chapter 6, we report on first empirical studies on most of the algorithms presented in this
work. Accompanying our theoretical studies, a software package implementing these algorithms
had to be designed. This project was initiated, coordinated and supervised by myself. I want
to thank the students Frederic Dorn (who did the main programming work), Nadja Betzler and
Simone Lehnert for their contributions in this programming project.

Tübingen, October 2002 Jochen Alber

Contents

1 Introduction 1
1.1 Fixed-Parameter Algorithms . 1
1.2 Preliminaries and Notion . 4
1.3 Hard Optimization Problems on Graphs . 6

1.3.1 Vertex Cover . 8
1.3.2 Independent Set . 9
1.3.3 Dominating Set . 11
1.3.4 Further Problems . 12

1.4 Overview of New Results . 13

2 Data Reduction 17
2.1 Background . 17

2.1.1 The Concept of Data Reduction by (Linear) Problem Kernels 18
2.1.1.1 Definition and another characterization of FPT 18
2.1.1.2 The importance of (small) problem kernels. 19

2.1.2 Nemhauser and Trotter’s Theorem and other Examples 20
2.2 A Linear Problem Kernel for par-dominating set on Planar Graphs 22

2.2.1 Reduction Rules . 23
2.2.1.1 The Neighborhood of a Single Vertex . 23
2.2.1.2 The Neighborhood of a Pair of Vertices 24
2.2.1.3 Reduced Graphs . 27

2.2.2 Region Decompositions . 28
2.2.3 An Upper Bound on the Kernel Size . 32

Appendix . 37

3 Bounded Search Trees 39
3.1 Background . 39

3.1.1 The Concept of Bounded Search Trees . 40
3.1.2 The Degree-Branching Method . 42

3.1.2.1 An Easy Search Tree for par-Vertex Cover 42
3.1.2.2 An Easy Search Tree for par-Independent Set 43

3.2 A Bounded Search Tree for par-Annotated Dominating Set on Planar Graphs 45
3.2.1 Degree-Branching for Annotated Dominating Set 46
3.2.2 Further Reduction Rules . 48
3.2.3 A New Branching Theorem . 50

3.2.3.1 A Technical Lemma . 51
3.2.3.2 Analyzing the Black Subgraph . 52
3.2.3.3 Proving the Branching Theorem . 55

3.2.4 Optimality of the Branching Theorem . 55
Appendix . 57

ii CONTENTS

4 Graph Separation 63
4.1 Background . 64

4.1.1 Classical
√·-Separator Theorems . 64

4.1.2 Algorithms Based on Graph Separation . 65
4.1.2.1 Glueability . 66
4.1.2.2 Divide-and-Conquer . 71

4.2 Planar Graphs: 2O(
√
k)-Algorithms Based on Separation 73

4.2.1 How (Linear) Problem Kernels Help . 74
4.2.2 Lower Bounds . 76

4.3 Beyond Planar Graphs: Algorithms on Disk Graphs . 78
4.3.1 Disk Graphs, Lebesgue Graph Measure and Covering Grids 79
4.3.2 Geometric Problem Kernelizations . 82
4.3.3 A New Geometric

√·-Separator Theorem . 84
4.3.3.1

√·-Separator Theorem on Disk Graphs with ϑ-Precision 84
4.3.3.2

√·-Separator Theorem on Disk Graphs with Bounded Radius Ratio . . . 85
4.3.4 An Exact Algorithm for par-Independent set on Disk Graphs 89

4.3.4.1 The Algorithm . 89
4.3.4.2 Summary and Comparison . 91

5 Tree Decomposition Based Algorithms 93
5.1 Background . 94

5.1.1 Tree Decompositions and Treewidth . 94
5.1.1.1 Definition and First Properties . 94
5.1.1.2 The Importance of Tree Decompositions 96

5.1.2 Layer Decompositions . 97
5.2 Constructing Tree Decompositions for Planar Graphs . 99

5.2.1 Separators and Treewidth . 99
5.2.2 Outerplanarity and Treewidth . 100
5.2.3 The Layerwise Separation Property (LSP) . 102

5.2.3.1 Definition . 103
5.2.3.2 Linear Problem Kernels and the LSP . 103
5.2.3.3 Directly Showing the LSP . 104

5.2.4 New Constructive Upper Bounds for the Treewidth 107
5.2.4.1 Partial Layerwise Separation . 108
5.2.4.2 LSP and Treewidth . 110

5.3 Dynamic Programming on Tree Decompositions . 112
5.3.1 The Basic Concept . 112

5.3.1.1 Tree Decomposition Based Dynamic Programming 112
5.3.1.2 Previous Work and Overview of our Results 113

5.3.2 An Improved Algorithm for Dominating set Based on Monotonicity 114
5.3.2.1 Colorings and Monotonicity . 114
5.3.2.2 The Algorithm . 116
5.3.2.3 Correctness and Time Complexity . 118

5.3.3 Further Applications and Extensions . 119
5.3.3.1 Dominating Set with Property P . 119
5.3.3.2 Weighted Versions of Dominating Set 119
5.3.3.3 Red-Blue Dominating Set . 120

5.4 Putting it all Together: 2O(
√
k)-Algorithms for LSP-Problems 121

5.4.1 Using Tree Decompositions . 121
5.4.2 Using Bounded Outerplanarity . 123

Appendix . 126

CONTENTS iii

6 Experimental Studies 133
6.1 The FPT-Toolbox for Planar Graph Problems . 133

6.1.1 Design and Use . 134
6.1.2 Implementation . 136
6.1.3 Test Data . 138

6.2 Evaluation of Tree Decomposition Based Algorithms . 139
6.3 Evaluation of a Search Tree Based Algorithm . 143
6.4 The Influence of Data Reduction by Preprocessing . 146

6.4.1 Nemhauser-Trotter Kernelization for Vertex cover 146
6.4.2 Kernelization for Dominating Set . 149

7 Conclusion 153
7.1 Brief Summary of Results . 153
7.2 Ongoing research . 154
7.3 Open Problems and Future Research . 157

References 161

Chapter 1

Introduction

1.1 Fixed-Parameter Algorithms

We encounter (hard) combinatorial optimization problems almost everywhere. As a typical
example consider a so-called facility location problem where the task is to place facilities under
minimum costs in such a way that all clients can profit from the facilities. We might think of
placing emergency stations in a transportation network such that quick access to each point in
the network can be guaranteed, or locating antennas in a mobile communication network in a
way that each customer can be served. A concrete model of the facility location problem can
be given using a (bipartite) graph that encodes the information which client could be served
by which facility. In this graph, we have a set of vertices representing possible locations for
the facilities and a set of vertices representing the clients. An edge is drawn between a vertex
corresponding to a location and a vertex that corresponds to a client if and only if the client
would be served by a facility placed in this location. Let us call this graph the facility location
graph. Since placing a facility is expensive the goal is to minimize the number of facilities to
“dominate” all clients.

As complexity theorists we translate this into a decision problem.

The facility location problem:

Input: A facility location graph G and a positive integer k.
Question: Can we satisfy all clients using at most k facilities?

We ask for an algorithm solving this problem, where the running time of the algorithm shall
be measured in the size of the input. Unless we are dealing with a special class of input graphs,
the bad news then probably is that the facility location problem is NP-complete, i.e., we
do not expect that the problem can be solved in polynomial time unless P = NP. Besides
heuristic methods [146] which often lack theoretical analysis, or randomized algorithms [152]
the main contribution of theoretical computer science on the attack of intractability so far has
been to design and analyze approximation algorithms [30, 116]. However, since establishing a
facility might be very expensive we are not satisfied with an approximate solution. Consequently,

2 Introduction

our goal should be to directly attack the NP-hard problem by providing a deterministic, exact
algorithm; in this case, however, we have to deal with exponential running times.

It is an immediate question to ask: Where does the combinatorial hardness of the facility
location problem come from? Is the intractability a matter of the size of the input graph G
or is it a matter of the size k of the solution we seek for? Classical complexity theory does
not distinguish between different parts of the input. A recent proposal on a more fine-grained
approach which tries to answer the above raised questions is given by “Parameterized Complex-
ity,” a theory pioneered by Downey and Fellows and some of their co-authors [82]. The goal of
the theory is to get a deeper insight into the hardness of combinatorial problems. The idea of
parameterized complexity study can easily be sketched as follows. Instead of considering the
input as a whole a certain part of the input is extracted as a parameter. In our example, the
following would be a natural parameterized version of the problem.

The parameterized facility location problem:

Input: A facility location graph G and a positive integer k.
Parameter: The positive integer k.
Question: Can we satisfy all clients using at most k facilities?

The running time of an algorithm solving this problem shall now be measured in the size of
the graph G and the parameter k, separately. In this sense, whereas classical complexity theory
offers a one-dimensional approach, parameterized complexity theory is a two-dimensional study
of combinatorial problems.

Observe that, if the graph G has n vertices, it is trivial to solve the facility location
problem in time O(nk+2)—simply by trying all possible locations of placing k facilities. The
decisive question now is whether we can shift the combinatorial explosion only into k. In
other words, we ask whether the seemingly unavoidable inherent combinatorial explosion of
the problem can be restricted to the parameter only, i.e., whether there exists an algorithm with
running time polynomial1 in the size of the graph G and only exponential in k.

More formally, a parameterized problem is a two-dimensional language L ⊆ Σ∗ ×N, where Σ
is some alphabet. The second coordinate of an element (x, k) ∈ L is called the parameter.2

As a convention throughout this work, if not otherwise stated, we will always use n for the
size |x| of an input instance x.

Definition 1.1.1 A parameterized problem L is called fixed-parameter tractable if there exists

an algorithm that decides, for an instance (x, k) ∈ Σ∗ × N, the word problem (x, k)
?∈ L in

time f(k) · nO(1), where n = |x| and f is an arbitrary function that only depends on k. The
associated complexity containing all parameterized problems that are fixed-parameter tractable is
called FPT.

In other words, the function f captures the exponential part of the running time. For
each fixed k, the problem is solvable in polynomial time where the degree of the polynomial is

1The degree of the polynomial shall be independent of k.
2 In this work, the parameter will always be a number. In a more general setting, a parameter could also be

a substructure encoded over some alphabet Γ .

1.1 Fixed-Parameter Algorithms 3

independent of k. The hope is that for a small value of k, the “constant f(k)” is reasonably small,
yielding an efficient exact algorithm for the problem. Specifically, in our above given example,
the number of facilities we wish to place (i.e., the parameter k) might be small compared to
the number of possible locations for the facilities (which are encoded in the graph G). Hence,
a fixed-parameter algorithm (if existent)—e.g., of running time O(2kn)—would be of practical
use to compute an exact solution for the problem and, thus, to cope with its NP-hardness.

Not every parameterized problem is necessarily fixed-parameter tractable. In fact, analo-
gously to classical complexity theory, Downey and Fellows developed a completeness program [82]
for classifying parameterized problems. However, the completeness theory of parameterized in-
tractability involves significantly more technical effort. We very briefly sketch the most relevant
parts of this theory in the following (for details we refer to [82]).

In order to compare the hardness of parameterized problems, in complete analogy to the
classical complexity, a (two-dimensional) notion of classical reduction—called parameterized
reduction—is introduced (for a precise definition we refer to [82, Definition 9.3] or to Defini-
tion 4.2.8 in Section 4.2.2). The “lowest class of parameterized intractability,” so-called W[1],
can be defined as the class of parameterized languages for which a parameterized reduction
to the so-called short Turing machine acceptance problem (also known as the k-step
halting problem) exists [82]. Here, we want to determine for an input consisting of a nonde-
terministic Turing machine M and a string x, whether M has a computation path accepting x
in at most k steps. In some sense, this is the parameterized analogue to the Turing machine
acceptance problem—the basic generic NP-complete problem in classical complexity theory.
Downey and Fellows argue that “if one accepts the philosophical argument that Turing ma-
chine acceptance is intractable, then the same reasoning would suggest that short Turing
machine acceptance is fixed-parameter intractable.” Moreover, the working hypothesis that
FPT and W[1] do not coincide has a strong link to classical complexity study: It was shown
by Abrahamson et al. [1] that FPT = W[1] implies that 3 sat ∈ DTIME(2o(n)), n being the
number of variables of a boolean formula. It is open whether 3 sat can be solved determinis-
tically in exponential time with a sublinear exponent. However, it is generally believed not to
hold true.3 The result of Abrahamson et al. was complemented by Cai and Juedes [53] who
showed that sat ∈ DTIME(2o(n)) (again n being the number of variables) has the consequence
that FPT = W[1].

As a matter of fact, W[1] only is the lowest level of a whole hierarchy of parameterized
intractability. In general, the classes W[t], t ∈ N≥1, are defined based on “logical depth” (i.e.,
the number of alternations between unbounded fan-in And- and Or-gates) in boolean circuits [82,
Definition 10.2]. It must be emphasized, however, that the majority of natural parameterized
problems seems to be in FPT, or complete for either of the classes W[1] or W[2]. In this sense,
these three classes probably are the most fundamental ones in parameterized complexity study.
We will see examples for these classes in the following subsection. For further details, surveys
on the field of parameterized complexity and overviews on the recent developments, the reader
is referred to [12, 15, 82, 83, 84, 85, 92, 155, 165].

Lately, two lines of research emerged from the concept of parameterized complexity study.
One direction focuses on the classification of various parameterized problems along the W-

3 The best known (deterministic) algorithm so far for 3 sat has running time O(1.481n)[115].

4 Introduction

hierarchy (for an extensive list of already classified problems, see [82]). Another direction is
concerned with a closer algorithmic study of the problems inside the class FPT and the design
of efficient fixed-parameter algorithms. This latter algorithmic aspect lies at the heart of this
thesis. Note that in the definition of the class FPT we allow the function f, which captures
the exponential part of the running time, to be arbitrary. Typical functions that appear for
fixed-parameter algorithms in the literature are, e.g., f(k) = ck, f(k) = kk, or f(k) = ck

2
. Still,

it could be as bad as f(k) = (· · · ((k!)!)! · · ·)!. The special focus in the design of fixed-parameter
algorithm in this thesis will lie on the (asymptotic) quality of the function f. In particular, we
will present various algorithms where the function f grows sublinearly in the exponent, namely

f(k) = c
√
k for some constant c. Hence, our studies are interesting both from an algorithmic point

of view as well as from a structural point of view allowing further insight into the class FPT.

Graph theory and related computational problems so far appear to be among the most fertile
grounds for the study of parameterized problems. The scope of this work is to present various
tools and techniques to design fixed-parameter algorithms for optimization problems on (planar)
graphs. Our focus will be on methods such as “data reduction by problem kernelization,”
“bounded search trees,” “graph separation,” and “tree decomposition based” algorithms. The
aim is to evaluate the applicability and the value of the distinct methods—in first place, from a
theoretical, but also from a practical point of view. Up to now, several interesting but specialized
fixed-parameter algorithms have been developed. The thrust has been to improve running times
in a problem-specific manner. It is a crucial goal throughout this work not to narrowly stick to
problem-specific approaches, but to try to widen the techniques as far as possible.

1.2 Preliminaries and Notion

Graphs and, in particular, planar graphs will be the main object of study in this work. We
assume basic familiarity with the notion of graphs and standard algorithmic tools. For a very
comprehensive overview on the general theory of graphs we refer to [74]; we point to [159] for a
textbook on planar graphs; and for an overview on graph classes, the reader is referred to [50].
We use the following notion throughout this work.

Graphs and (Induced) Subgraphs. Unless otherwise specified, we always deal with undi-
rected graphs that contain no multiple edges and no self loops. A graph is denoted by G = (V, E),
where V is the set of vertices and E ⊆ V × V is the set of edges. If not otherwise stated, n will
always refer to the number of vertices in a graph and m will refer to the number of edges.
To stress that the vertices V (or edges E, respectively) belong to G, we sometimes use the no-
tion V(G) (or E(G), respectively) instead. A subgraph G ′ = (V ′, E ′) of G is a graph with V ′ ⊆ V
and E ′ ⊆ E ∩ (V ′ × V ′). For a subset V ′ ⊆ V, the graph G[V ′] is called the induced subgraph,
i.e., the subgraph whose vertex set is V ′ and whose edge set is E ∩ (V ′ × V ′).

Neighborhood and Degree. Let v ∈ V be a vertex. Then, N(v) := {w ∈ V : {v,w} ∈ E}

denotes the (open) neighborhood of v, and N[v] := N(v)∪ {v} denotes the closed neighborhoodof v.
For V ′ ⊆ V, we use the abbreviations N(V ′) :=

⋃
v∈V ′ N(v) and similarly N[V ′] :=

⋃
v∈V ′ N[v].

We write deg(v) for the degree of the vertex v, where deg(v) := |N(v)|. To avoid ambiguity and
to emphasize the underlying graph, we sometimes use NG(v), NG[v], or degG(v) instead.

1.2 Preliminaries and Notion 5

Graph Operations. Occasionally, we need the operation of deleting or adding vertices or edges
to a graph G. Suppose v,w ∈ V(G) and e ∈ E(G). By G−v we denote the subgraph of G, where v
is removed together with all incident edges, i.e., V(G−v) := V \{v} and E(G−v) := E\{e ∈ E(G) :

v ∈ e}. Similarly, G − e defines the subgraph of G where the edge e is removed. Furthermore,
G + {v,w} is the supergraph of G where the edge {v,w} is added (if not already existent). A
graph H is called a minor of G if it is isomorphic to a graph G ′ that is obtained by repeated
application of edge contractions to a subgraph of G. Here, an edge contraction is the operation
of removing an edge e = {v,w} ∈ E(G) from a given graph G and identifying the endpoints into
a new vertex ve, i.e., for the resulting graph G/e, formally, we get V(G/e) := (V(G) \ e) ∪ {ve},
and E(G/e) := {h ∈ E(G) : e ∩ h = ∅ } ∪ { {u, ve} : u ∈ N(v) ∪N(w) }.

Paths, Connected Components, Spanning Forest. A path between two vertices v,w ∈
V(G) is a set of edges e1, . . . , eℓ ∈ E(G), such that v ∈ e1, w ∈ eℓ, and |ei ∩ ei+1| = 1, for
1 ≤ i ≤ ℓ − 1, and ei ∩ ej = ∅, for 1 ≤ i, j ≤ ℓ with |i − j| > 1. A graph G = (V, E) is called
connected if there is a path between any pair of distinct vertices v,w ∈ V(G). A connected
component of a graph G is a maximal connected subgraph of G. Finally, a spanning tree of a
connected graph G is a tree T that is a subgraph of G and uses all vertices, i.e., V(T) = V(G).
A spanning forest of a general graph G is a set of spanning trees for each connected component
of G.

Planar Graphs, Graphs of Bounded Genus. In our setting, we mainly deal with planar
graphs, i.e., graphs that can be embedded in the (Euclidean) plane without any edge-crossing.
More formally, an embedding of a graph in the plane4 is a mapping φ that maps each vertex v ∈
V(G) to a point φ(v) ∈ R2, and each edge e ∈ E(G) to a (non-self-intersecting) polygonal arc
φ(e) ⊆ R2, in such a way that for each edge {v,w} the endpoints of the arc φ({v,w}) are the
points φ(v) and φ(w). An embedding φ of G is called crossing-free, if, for all distinct pairs
e1, e2 ∈ E, we have φ(e1) ∩ φ(e2) = ∅ in case e1 ∩ e2 = ∅ and φ(e1) ∩ φ(e2) = φ(ve1,e2) in case
e1 ∩ e2 = {ve1,e2 }. A crossing-free embedding cuts the plane in various regions that are called
faces (of the embedding). More precisely, the faces are the topological connected components
of the set R2 \

(⋃
e∈Eφ(e)

)
. The (only) open set among the faces is called the exterior face. A

graph G is said to be planar if a crossing-free embedding φ in the plane exists. A well-known
theorem due to Kuratowski (see, e.g., [159, Theorem 1.3]) states that a graph is planar if and
only if it contains no K5 (complete graph of five vertices) and no K3,3 (complete bipartite graph
with three vertices in each bipartition set) as a minor. A graph can be tested for planarity and,
if planar, it can be embedded in the plane in linear time (see, e.g., [59, 117]). The pair (G,φ)

is called a plane graph. Planar graphs enjoy many properties. In our context, Euler’s formula
(dating back to Euler, 1750) is the most important one. For every planar graph G = (V, E), we
have

|V | − |E| + |F| = 1+ cG, (1.1)

where F denotes the set of faces of G and cG denotes the number of connected components
of G [159, Theorem 1.2]. From this formula it is not hard to derive that every planar graph
contains a vertex of degree at most 5 [159, Corollary 1.4].

Euler’s formula even holds in the more general context of graphs that are embedded on
(orientable) surfaces: Let Sg denote the orientable surface of genus g that is obtained by “adding

4The notion of an embedding can be generalized to any other surface.

6 Introduction

g handles” to the sphere S (see [150, Chapter 3.1] for details), and let G(Sg) denote the class of
graphs that admit a crossing-free embedding on Sg. The genus of a graph is defined by g(G) :=

min {g ≥ 0 : G ∈ G(Sg) }. For fixed g, there is a linear time algorithm which tests whether a
graph belongs to G(Sg), and, if true, returns a corresponding embedding [149]. For each graph G
with g = g(G) and a crossing-free embedding in Sg, the generalized Euler formula states that

|V | − |E| + |F| = 2− 2g (1.2)

(see [150, Eqn. (3.7)]). Using the easy observation that 2|E| ≥ 3|F|, a simple calculation shows

|E| ≤ 3|V | − 6+ 6g, (1.3)

which holds for all graphs G ∈ G(Sg). In particular, this implies that a graph of bounded genus
can have at most O(|V |) many edges, whereas a general graph may have up to |V |(|V | − 1)/2

many edges.

Computational Models. The algorithms presented in this work are analyzed upon the hy-
pothetical model of a unit-cost Random Access Machine (RAM) as introduced by Cook and
Reckhow [64]. In this model each simple operation (such as arithmetic operations, compares,
memory access, etc.) takes one time step. This has become the most popular and most widely
used standard model for algorithm analysis since it strikes the balance by capturing the most
essential behavior of computers while at the same time being simple to work with. All algo-
rithms are analyzed using the so-called “O-notation” (see, e.g., [65, Chapter 3]).5 The running
time of a graph algorithm is always measured in the size |G|, i.e., the number n of vertices
and m of edges. Most of the algorithms will be for planar graphs or, more generally, for graphs
from G(Sg). By the above observations, the size |G| of a graph in G(Sg) is given by O(n).

1.3 Hard Optimization Problems on Graphs

In our work, we mainly deal with optimization problems. The following, very general definition
is taken from [161, Definition 13.1].

Definition 1.3.1 An optimization problem is a 4-tupel Q = (IQ, FQ, cQ, optQ), where

(i) IQ is a set of input instances (recognizable in polynomial time)

(ii) FQ(x) is the set of feasible solutions for some x ∈ IQ,

(iii) cQ(y) is the cost for the solution y ∈ FQ(x) of some x ∈ IQ, and

(iv) optQ ∈ {min,max}.

5 We sometimes use an “interleaved” form of the O-notation, e.g., we use a term of the form O(2O(
√
k) n). To

stay within a mathematically precise framework, for two functions f, g : N→ N, we let f(O(g)) :=
⋃
g ′∈O(g){f◦g ′},

and we define O(F) :=
⋃
f∈F O(f), for a family of functions F .

1.3 Hard Optimization Problems on Graphs 7

For an input instance x ∈ IQ, we define the optimal cost to be

OPTQ(x) = optQ { cQ(z) | z ∈ FQ(x) }.

An optimal solution for an input instance x ∈ IQ is a feasible solution y ∈ FQ(x) which has
optimal cost, i.e., cQ(y) = OPTQ(x).

An optimization problem induces, in a very natural way, a parameterized problem, simply
by parameterizing on the target cost function (see [82, Section 4.1]).

Definition 1.3.2 Let Q = (IQ, FQ, cQ, optQ) be an optimization problem. The parameterized
problem associated with Q which will be denoted by par-Q is given as follows.

The parameterized problem par-Q:

Input: An instance x ∈ IQ and a positive integer k.
Parameter: The positive integer k.

Question: Does

{
OPTQ(x) ≥ k, if optQ = max,
OPTQ(x) ≤ k, if optQ = min,

}
hold?

This decision problem corresponds to the parameterized language

par-Q := { (x, k) | x ∈ IQ,OPTQ(x) ≥ k }, if optQ = max, or
par-Q := { (x, k) | x ∈ IQ,OPTQ(x) ≤ k }. if optQ = min .

We say that we solve the parameterized problem par-Q constructively, if, in case of giving
a positive answer to the decision question, we furthermore output a feasible solution y ∈ FQ(x)

that witnesses (x, k) ∈ par-Q.6

Throughout this work, the running time of an algorithm for a parameterized problem par-Q
will be measured in the size n = |x| and the parameter k.

In the remainder of this section, we introduce the three optimization problems

vertex cover, independent set, and dominating set.

These three problems will serve as our running examples throughout this work. There are two
main reasons, why this “threesome” of problems stirs our special attention:

• The problems are probably (among) the most important optimization problems in combi-
natorial graph theory. To underline this statement we quote from [110, Preface]:

“[...] perhaps the fastest-growing area within graph theory is the study of domina-
tion and related subset problems, such as independence, covering, and matching
[...]”

6Unless otherwise stated, all algorithms in this work will solve the parameterized problems constructively.
Hence, as a convention, saying that “an algorithm solves the parameterized problem” will implicitly refer to a
constructive solution.

8 Introduction

Vertex Cover Independent Set Dominating Set

Figure 1.1: Examples for vertex cover (left-hand graph), independent set (middle graph), and
dominating set (right-hand graph). In each graph, the black vertices form an optimal solution for the
corresponding optimization problem. Note that all graphs are planar.

• The problems are central in the study of parameterized complexity since they are (the
most intensively studied) representatives for the three classes

FPT, W[1], and W[2].

More precisely, par-vertex cover is in FPT; par-independent set is complete for W[1];
and par-dominating set is complete for W[2].

1.3.1 Vertex Cover

The vertex cover problem is probably one of the most prominent graph problems in both
classical and parameterized complexity study. On the one hand, it was among the first graph
problems for which NP-completeness was proved. On the other hand, reviewing recent papers
on parameterized complexity issues, there is no denying the fact that par-vertex cover is the
standard problem for an introduction to the theory of fixed-parameter algorithms.

Definition 1.3.3
Vertex cover is the optimization problem (I, F, c,min) which is defined as follows:

(i) The set of instances I consists of all (undirected) graphs G = (V, E).

(ii) A feasible solution is a subset V ′ ⊆ V which covers all edges, i.e., ∀e ∈ E : V ′ ∩ e 6= ∅. We
call such a set a vertex cover.

(iii) The cost or size for a feasible solution V ′ is given by c(V ′) := |V ′|.

We denote by vc(G) the size of the smallest vertex cover of a graph G, and call this number the
vertex cover number.

An example for vertex cover is shown in Fig. 1.1 (left-hand graph).

1.3 Hard Optimization Problems on Graphs 9

The core application of the vertex cover problem arises in the field of resolving so-called
conflict graphs. In a conflict graph, vertices represent parties and edges model conflicts between
these parties. The aim in such conflict-graphs is to remove as few parties as necessary to resolve
all conflicts. As reported in [156], applications for this problem appear, e.g., in computational
biology. Among other applications we want to highlight the spare allocation problem in the area
of reconfigurable VLSI design [95, 133].

Vertex cover is known to be NP-complete by a reduction from 3 sat [124]. The problem

is approximable within 2−
log log |V|

2 log |V|
[33, 151]. Observe that this is only a slight improvement on

a trivial 2-approximation algorithm which greedily considers an arbitrary edge in the current
graph, takes both endpoints of the edge in the vertex cover to be constructed, and removes
these vertices from the graph. There is still a certain gap to the best known lower bound due
to H̊astad [108] who showed that an approximation-factor of 1.1666 cannot be achieved unless
P = NP. For further results on the approximability of vertex cover we refer to [68].

When restricted to planar graphs, the problem still remains NP-complete even if we require
that no vertex degree exceeds four [100]. However, a polynomial time approximation scheme
(PTAS) is given for vertex cover on planar graphs in Baker’s well-known work [31]. That is,
there is a polynomial time approximation algorithm with approximation factor 1 + ε, where ε
is a constant arbitrarily close to 0. The degree of the polynomial grows with 1/ε. We mention
in passing, that this PTAS is extendable to all classes of graphs that exclude a minor [104].

Let us turn our attention to the parameterized complexity of the problem. The parameterized
problem par-vertex cover (see Definition 1.3.2) is in FPT and probably the most often
cited prototype example for this class with a long history on steadily improved fixed-parameter
algorithms [82, p.5]. The first fixed-parameter algorithm was non-constructive and derived
from the heavy machinery of graph minor theory [93]. Later, it was observed that based on a
similar idea as the aforementioned 2-approximation algorithm an easy O(2kn) search tree can
be constructed. Since then, in the literature, we find a whole sequence of contributions [32, 180,
85, 156, 56] employing more and more fine-grained search tree algorithms (see Section 3.1.2.1).
The currently best known algorithm has running time O(1.2852k+kn) [56] using a combination
of bounded search tree and problem kernel reduction. It was unclear whether, for planar graphs,
a better algorithm is possible. We provide new results in this direction in Chapters 4 and 5.

1.3.2 Independent Set

Next, we introduce a closely related maximization problem.

Definition 1.3.4
Independent set is the optimization problem (I, F, c,max) which is defined as follows:

(i) The set of instances I consists of all (undirected) graphs G = (V, E).

(ii) A feasible solution is a subset V ′ ⊆ V which is independent, i.e., ∀v,w ∈ V ′ : {v,w} /∈ E.
We call such a set an independent set.

(iii) The cost or size for a feasible solution V ′ is given by c(V ′) := |V ′|.

10 Introduction

We denote by is(G) the size of the largest independent set of a graph G, and call this number
the stability number.

An example for independent set is shown in Fig. 1.1 (middle graph).

As in the case for vertex cover this problem has its applications mainly in resolving
conflict graphs. However, since this is a maximization problem, the goal is to keep as many
items as possible that are mutually non-conflicting. Concrete applications arise, e.g., in the
field of frequency assignment problems [142] (see Section 4.3), or in the area of map labeling
problems [2]. Here, the goal is to maximize the number of labels (e.g., names of cities, streets,...)
on a map—each label is given together with suitable positions—such that no two labels overlap.

Independent set is closely related to vertex cover: Observe that for each graph it
holds that the complement vertex set of a (minimum) vertex cover is a (maximum) independent
set. This is the key argument behind the NP-completeness proof for independent set [100].
Moreover, there is a close relation to the clique problem7: The vertices of a (maximum)
independent set form a (maximum) clique in the complementary graph and vice versa. Hence,
concerning approximation results, independent set enjoys the same properties as clique,
e.g., there is an O(

|V|

(log |V|)2
)-approximation algorithm due to Boppana and Halldórsson [48] and

the problem is not approximable within |V |1/4−ε for any ε > 0 unless P = NP [34].

It is known that the parameterized version par-independent set (see Definition 1.3.2) is
complete for the class W[1] [81, 82]. We want to emphasize that, from a parameterized point of
view, there is a subtle but crucial difference between the aforementioned relations of par-inde-
pendent set to par-vertex cover and to par-clique, respectively. On the one hand, for a
graph G = (V, E), we obtain vc(G) = |V |−is(G) which means that the above given reduction from
par-independent set to par-vertex cover is not “parameter-preserving”—the new problem
parameter is(G) depends on the size of the graph and not only the old parameter vc(G). In fact,
par-vertex cover and par-independent set are so-called dual problems. If a parameterized
reduction8 from par-independent set to par-vertex cover existed then the W-hierarchy
would collapse at the lowest level, i.e., then FPT = W[1]. On the other hand, transforming a
graph G to its complementary graph Gc is a parameterized reduction from par-independent
set to par-clique and vice versa: letting cl(G) denote the size of a maximal clique in G, we
have is(Gc) = cl(G). Hence, par-independent set and par-clique both are equally hard from
a parameterized point of view.9

Restricting to planar graphs independent set is still NP-complete even if the graph is
cubic [100]. Baker [31] gave a PTAS for independent set on planar graphs, which again
is extendable to all classes of graphs that exclude a minor [104]. The parameterized problem
par-independent set on planar graphs is no longer W[1]-hard but admits a fixed-parameter
algorithm. For a simple search tree algorithm running in timeO(6kn), we refer to Section 3.1.2.2.

7In the clique problem one is given an undirected graph and the task is to find a maximum set of vertices
that form a clique, i.e., that are pairwisely joined by edges.

8For a precise definition on parameterized reductions, we refer to Definition 4.2.8.
9The reason why, in this work, we focus on par-independent set instead of par-clique is due to the fact

that we focus our attention on planar graph problems. It is clear, that par-clique does not make sense in this
setting, since a planar graph has no clique larger than four.

1.3 Hard Optimization Problems on Graphs 11

Further algorithms for par-independent set will be given in Chapters 4 and 5.

1.3.3 Dominating Set

The dominating set problem is among the core problems in algorithms, combinatorial opti-
mization, and computational complexity [30, 68, 100, 116, 161]. Solving domination-like prob-
lems developed into a research area on its own (see [109, 110, 111, 112] for comprehensive
overviews). According to a 1998 survey [110, Preface], more than 1200 research papers were
published on domination in graphs, among which more than 200 publications and more than
30 PhD theses investigate the algorithmic complexity of domination and related problems [110,
Chapter 12].

Definition 1.3.5
Dominating set is the optimization problem (I, F, c,min) which is defined as follows:

(i) The set of instances I consists of all (undirected) graphs G = (V, E).

(ii) A feasible solution is a subset V ′ ⊆ V which dominates all vertices in V \ V ′, i.e., V ⊆
N[V ′]. We call such a set a dominating set.

(iii) The cost or size for a feasible solution V ′ is given by c(V ′) := |V ′|.

We denote by ds(G) the size of the smallest dominating set of a graph G, and call this number
the domination number.

An example for dominating set is shown in Fig. 1.1 (right-hand graph).

Domination problems occur in numerous practical settings. Typical applications are facility
location problems as presented at the beginning of this chapter. These imply strategic decision
problems, such as, e.g., locating base stations in a mobile network such that each customer is
served [99, 102], placing servers in a network [160], positioning security system cameras to ob-
serve an environment [35], or placing emergency service stations. Further applications comprise
models in social network theory [125], routing in wireless networks [190], game theory [154],
computational biology, or voting systems [106] (see [110, 111, 169] for a survey).

Dominating set is known to be NP-complete [100]. The approximability of the domina-
ting set problem has received considerable attention [30, 68, 116]. It is known that domina-
ting set is polynomial time approximable with factor 1+ log |V | since the problem is a special
case of the minimum set cover problem. On the negative side, however, it is not known and
it is not believed that dominating set for general graphs has a constant factor approximation
algorithm (see, e.g., [30, 68] for details). More precisely, if P 6= NP, then dominating set has no
polynomial time approximation scheme, see [27, p. 503], since it is hard for the approximation
class MAXSNP defined in [162]. Feige [91, p. 637] has even shown that the problem is not
approximable within (1− ε) ln |V | for any ε > 0 unless NP ⊆ DTIME(nlog logn) [91].

In the case of planar graphs, the problem remains NP-complete, even when restricted to pla-
nar graphs with maximum vertex degree 3 and to planar graphs that are regular of degree 4 [100].

12 Introduction

Baker [31] states that the shifting techniques used to derive the PTAS for independent set
on planar graphs can be carried over to dominating set on planar graphs.10 Again, Grohe
extended this result to graphs that exclude a minor [104]. For further complexity results for
dominating set, we refer to [110, 140, 164]. We mention one interesting fact concerning com-
plete grid graphs. Unlike vertex cover and independent set which are solvable in linear
time on a complete n ×m-grid Pn × Pm, dominating set happens to be NP-complete [62].
There is a series of papers that investigate and compute the domination number ds(Pn× Pm)

for a small fixed n in a certain range of m [55, 107, 178] and try to detect certain periodicities
in these numbers [54, 63, 120, 139].

What is known about the parameterized complexity of the par-dominating set problem
(see Definition 1.3.2)? On general graphs par-dominating set is W[2]-complete [79, 82], i.e.,
we believe that the complexity of handling the parameter is even more sophisticated than in the
case of the W[1]-complete par-independent set problem. On planar graphs, Downey and Fel-
lows [80, 82] claimed a search tree algorithm for par-dominating set running in time O(11kn).
The analysis of their algorithm, however, turned out to be flawed. We give a corrected and im-
proved search tree algorithm in Chapter 3. Besides, further improved fixed-parameter algorithms
will be presented in Chapters 4 and 5. We mention in passing that, from the general context
of model checking on structures that are locally tree-decomposable, it can be derived that par-
dominating set on planar graphs is fixed-parameter tractable [98, Theorem 1.1]. However, it
seems that this general context only serves as classification tool not yielding efficient algorithms.

1.3.4 Further Problems

In the following, we summarize some important modifications and variants of the dominating
set problem. Haynes et al. [110, p. 327 ff] name more than 75 related problems among which
we concentrate on a small selection. A property P of a vertex set V ′ ⊆ V of an undirected graph
G = (V, E) will be a Boolean predicate which yields true or false values when given as input
V, E, and V ′. Since V and E will always be clear from the context, we will simply write P(V ′)
instead of P(V, E, V ′). The dominating set with property P problem is defined analogously
to dominating set (see Definition 1.3.5) with the exception that a feasible solution for a
graph G = (V, E) now is a dominating set D with property P, i.e., such that P(D) is true.

Examples for such problems (all also appearing in [110, 132, 183, 184]) are:

• the independent dominating set problem, where the property P(D) of the dominating
set D is that D is independent,

• the total dominating set problem, where the property P(D) of the dominating set D
is that each vertex of D has a neighbor in D,

• the perfect dominating set problem, where the property P(D) is that each vertex
which is not in D has exactly one neighbor in D,

• the perfect code problem, where the dominating set has to be perfect and independent,
and

10A small flaw in the running time stated in [31] was detected and corrected in [123].

1.4 Overview of New Results 13

• the total perfect dominating set problem, where the dominating set has to be total
and perfect.

All mentioned problems are NP-complete which follows from a general framework on do-
mination-like problems due to Telle [181]. For an overview on the complexity of some of these
problems restricted to special graph classes we refer to [132, Fig. 8.3]. Finally, we will deal with
the NP-complete face cover problem which is defined as follows (see [39, 82, 166]).

Definition 1.3.6
Face cover is the optimization problem (I, F, c,min) which is defined as follows:

(i) The set of instances I consists of all plane graphs (G = (V, E), φ).

(ii) A feasible solution is a subset F ′ of the set of faces F which covers all vertices, i.e., each
vertex in V is on the boundary of at least one face in F ′. We call such a set a face cover.

(iii) The cost or size for a feasible solution F ′ is given by c(F ′) := |F ′|.

1.4 Overview of New Results

In the following we give a short chapterwise summary of the new results covered by this thesis.
For details we refer to the corresponding chapters.

Data reduction (Chapter 2)

Description. Data reduction is important in theory as well as in practice. In parameterized
complexity data reduction mainly is achieved by so-called problem kernelization. From a
theoretical point of view, the existence of a problem kernel for a parameterized problem
is equivalent to the fixed-parameter tractability of the problem, thus, yielding a differ-
ent characterization of the class FPT. From a practical point of view, data reduction
can be an extremely powerful tool: Enriching a known algorithm with preprocessing by
problem kernelization may lead to enormous speed-ups. We underpinned this by various
experimental studies demonstrating the practical strength of data reduction.

Results. We revisit the linear problem kernel due to Nemhauser/Trotter for par-vertex co-
ver and then prove linear problem kernels for two further parameterized problems. Firstly,
we make an easy observation based on the four color theorem that establishes a linear prob-
lem kernel for par-independent set on planar graphs. Secondly, as our main result, we
prove a linear problem kernel for par-dominating set on planar graphs, thus affirmly
answering an open question from previous work. The result is based on two simple re-
duction rules, yet, the proof involves complicated combinatorial arguments. This problem
kernelization proved to be very efficient in practice: a set of combinatorially generated
random planar graphs was reduced by more than 99%. Thus, we come up with a prac-
tically promising as well as theoretically appealing result for computing the domination
number of a graph, one of the so far few positive news for this important problem.

14 Introduction

Search tree algorithms (Chapter 3)

Description. Constructing a bounded search tree is probably the most wide-spread technique
in the design of fixed-parameter algorithms. Here, we consider a special form of search
tree algorithms for combinatorial graph problems called the degree-branching method.

Results. We revisit the degree-branching method for par-vertex cover and for par-indepen-
dent set on planar graphs. The key result in this chapter is to provide and, in particular
to analyze, a time O(8kn) degree-branching algorithm for the much more involved par-
dominating set problem on planar graphs. Here k is the size of the dominating set
we seek for. To establish this result we prove an intricate branching theorem based on
the Euler formula. Our theorem states that every planar black and white graph which is
reduced with respect to certain simple reduction rules admits a black vertex of degree at
most seven (which then is used as a branching vertex). Since a previous result claiming a
time O(11kn) algorithm [82, Theorem 3.4] happens to contain an obvious flaw, our result
seems to give the first completely correct analysis for an par-dominating set algorithm
on planar graphs with running time O(ckn) for small constant c that even improves on
the previously claimed constant considerably.

Graph separation (Chapter 4)

Description. Many hard combinatorial graph problems can be attacked by a divide-and-
conquer strategy if the input instances are taken from a graph class that admits a (vertex)
separator theorem. We coin the notion of “glueability” to characterize such graph prob-
lems. Throughout this chapter, we design fixed-parameter algorithms by combining (lin-
ear) problem kernelization with the aforementioned divide-and-conquer approach based on
graph separation.

Results. This chapter has two main objectives. Firstly, we focus on graph classes G for which
a so-called

√·-separator theorem is known, as, e.g., in the case of planar graphs or, more
generally, on the class of graphs of bounded genus. We give a general methodology how to

derive time 2O(
√
k) + nO(1) algorithms for glueable parameterized graph problems which

admit a linear problem kernel on G. Here n is the size of the input graph, and k is the
corresponding problem parameter. These include par-vertex cover, par-independent
set, and par-dominating set on planar graphs. In this way we gain an exponential im-
provement over previous exact solutions for the problems. The claimed algorithms seem to
be the first fixed-parameter algorithms at all with a sublinear exponent in the exponential
running time component. Moreover, we show that their running time is asymptotically
optimal by providing a lower bound of the following form: If any of the three problems
par-vertex cover, par-independent set, or par-dominating set can be solved in

time 2o(
√
k)nO(1) on planar graphs, then 3 sat ∈ DTIME(2o(n)), where (in the latter

case) n is the number of variables of a 3 sat formula. This fact, i.e., that 3 sat can be
solved in exponential time with a sublinear exponent, is generally considered to be unlikely
in classical complexity theory.

1.4 Overview of New Results 15

Secondly, we extend the aforementioned methods to the class of disk intersection graphs
for which a (classical)

√·-separator theorem does not exist. The key contribution here is to
prove a new geometric version of a

√·-separator theorem for disk graphs of bounded radius
ratio. As an application we consider the par-independent set problem on this graph
class which is motivated by modeling conflict graphs that appear, e.g., when studying

interference problems in frequency assignment. We obtain a time 2O(
√
klog(n)) algorithm

for this problem. Such a sublinear exponent cannot be obtained for par-independent
set on general graphs unless 3 sat ∈ DTIME(2o(n)), where n is the number of variables
in a 3 sat formula. In the case of so-called ϑ-precision disk graphs we expose algorithms

for par-independent set and par-dominating set with running time O(2O(
√
k) + n),

which establishes fixed-parameter tractability.

Tree decompositions (Chapter 5)

Description. Tree decomposition based algorithms for (hard) combinatorial graph problems
generally consist of two phases: constructing a tree decomposition of the given input
graph, and then solving the underlying graph problem using dynamic programming on the
tree decomposition. We exhibit the generality and the usefulness of a tree decomposition
based approach in the case of parameterized planar graph problems. For that purpose,
we introduce the novel so-called “Layerwise Separation Property” (LSP) as a key unifying

tool to generically obtain time O(2O(
√
k)n) algorithms.

Results. Firstly, we focus on the construction of tree decompositions. We prove a structural
relationship for the treewidth tw(G) of a planar graph G stating that tw(G) ≤ c ·

√
k,

for every “yes”-instance (G, k) of an LSP-problem.11 Moreover, we demonstrate how
to construct the corresponding tree decompositions in time O(

√
k · n). Specializing to

vertex cover or dominating set, we obtain new upper bounds relating the treewidth
of a planar graph G with its vertex cover number vc(G) or the domination number ds(G),
namely: tw(G) ≤ 4

√
3 vc(G) + 5 and tw(G) ≤ 6

√
34ds(G) + 8. Both upper bounds are

asymptotically optimal.

Secondly, we considerably improve upon the previously best known dynamic programming
algorithms for various domination-like problems on graphs of bounded treewidth. E.g.,
we demonstrate how dominating set can be solved in time O(4ℓN) (here, ℓ being the
upper bound on the treewidth and N being the number of tree nodes in the underlying
tree decomposition) whereas the state of the art had been O(9ℓN) [183, 184]. Similar
improvements are given for a series of problems, among others for vertex cover, in-
dependent dominating set, total dominating set, perfect dominating set, or
perfect code.

Putting the two phases together we, thus, establish a universal scheme to obtain time

O(2O(
√
k)n) algorithms for all LSP-problems that can be solved by dynamic programming

on a given tree decomposition.12 We provide formulas on how to compute the constants

11 The constant c can be computed from the so-called width and size-factor of the LSP-problem.
12Most of the algorithms can be sped-up to 2O(

√
k) + nO(1) using problem kernelization.

16 Introduction

hidden in the exponent from various problem-specific parameters. In particular, we come

up with a time O(24
√
3kk + kn) algorithm for par-vertex cover, an O(24

√
6kk + n2)

algorithm for par-independent set, and an O(212
√
17 log(3)kk + n3) algorithm for par-

dominating set on planar graphs. Here n is the size of the input graph and k is the
corresponding parameter (i.e., the size of the vertex cover, the independent set, or the
dominating set we seek for). Similar results hold true for various variations of these
problems such as several par-dominating set with property P problems or par-face
cover. These algorithms outperform the ones obtained by graph separation and linear
problem kernelization. In addition, the Layerwise Separation Property is seemingly less
restrictive than requiring a linear problem kernel (as needed for the graph separation
approach).13 In this sense, the tree decomposition based approach applies to a broader
class of parameterized planar graph problems than the graph separation approach.

Experimental Studies (Chapter 6)

Description. Most of the given algorithms were implemented and included in our “FPT-
Toolbox” an easy to use software package designed to compute exact solutions for various
NP-hard planar graph problems. Based on these implementations, we report on a first
serious round of experiments using combinatorially generated random graph samples. The
results are very encouraging.14

Results. Our empirical studies reveal that, in all examined cases, the algorithms were com-
petitive and the actual running time behavior is far from the corresponding worst-case
performance bounds that were derived from the theoretical analysis. We highlight some of
the findings: For the par-dominating set search tree algorithm, we detect that the actual
average branching degree is around 1.6 with a measured worst case branching degree of 4,
whereas the (tight) worst case analysis stated a branching degree of 8. For the tree decom-
position based algorithms, we measure, among others, that the width obtained for the tree
decompositions is considerably smaller than the one expected by our worst-case analysis
which results in much smaller overall running times than predicted. The most significant
finding concerns the power of data reduction through problem kernelization: e.g., the data
reduction for vertex cover due to Nemhauser and Trotter shrinks, on our set of test
instances, the input graphs by around 65%; our new kernelization rules for dominating
set succeed in a reduction of the input graphs by more than 99%. Incorporating data
reduction strategies results in enormous speed-ups of all our algorithms.

13We provide evidence for this by some examples for LSP-problems for which a linear problem kernel so far is
unknown.

14We remark that our investigations are based on randomly generated graphs only, and that our findings might,
therefore, not straight-forwardly be carried over to problem instances arising from specific applications. Still, our
tests indicate the practical significance and competitive capacity of our algorithms.

Chapter 2

Data Reduction

Data reduction by preprocessing is a widely used core technique in algorithm engineering [52]; it
is perhaps one of the most beneficial strategies to solve hard problems in practice. Weihe [188,
189] gave a striking example when dealing with the NP-complete red-blue dominating set
problem in context of the European railroad network. In a preprocessing phase, he applied
two simple data reduction rules again and again until no further application was possible. The
impressive result of his empirical study was that each of his real-world instances was broken
into very small pieces such that for each of these a simple brute-force approach was sufficient to
solve the hard problems efficiently and optimally.

In the development of fixed-parameter algorithms data reduction is achieved by so-called
problem kernel reduction. In a sense, the idea behind is to cut off the “easy parts” of a given
problem instance such that only the “hard kernel” of the problem remains, where then, e.g.,
exhaustive search can be applied (with reduced costs). To get a problem kernel as small as
possible is, therefore, a central goal from a practical as well as from a theoretical point of view.

In Section 2.1, we give a short introduction to the concept of “reduction to problem kernel.”
Besides we will enrich the theory with two examples for linear problem kernels, namely par-in-
dependent set on planar graphs and par-vertex cover. A linear problem kernel for the
par-dominating set problem on planar graphs is shown in Section 2.2, thus, answering a
question that was open for the last few years.

2.1 Background

This section provides a formal definition of reduction to problem kernel, demonstrates the rele-
vance of this technique to the design of fixed-parameter algorithms and gives first examples for
so-called linear problem kernels.

18 Data Reduction

2.1.1 The Concept of Data Reduction by (Linear) Problem Kernels

2.1.1.1 Definition and another characterization of FPT

Definition 2.1.1 Let L ⊆ Σ∗ × N be a parameterized problem. We say that L is kernelizable
(or that L admits a problem kernel) if there exists a mapping

Φ : Σ∗ × N→ Σ∗ × N, (x, k) 7→ (x ′, k ′),

and an arbitrary function g : N→ N such that

(i) Φ is computable in time pkernel polynomial in |x| and k.1

(ii) (x, k) ∈ L if and only if (x ′, k ′) ∈ L.

(iii) |x ′| ≤ g(k ′) and k ′ ≤ k.

The instance x ′ is called the reduced instance or the problem kernel and g(k ′) is called the size
of the problem kernel. If g is a linear function then we simply say that L admits a linear problem
kernel. Reduction to problem kernel means replacing (x, k) by (x ′, k ′).

It is clear that a kernelizable parameterized problem L which can be solved in time h(|x|, k) for
an input instance (x, k) admits a solving algorithm running in time O(h(g(k), k)+pkernel(|x|, k)),
and hence is in FPT. The following theorem shows that the converse is also true, i.e., that
kernelizability exactly characterizes the class FPT.

Theorem 2.1.2 Let L be a parameterized problem which is decidable. Then L ∈ FPT if and
only if L is kernelizable.

Proof: In the discussion before this theorem we have already shown one direction. It remains to
prove kernelizability of L assuming L ∈ FPT Suppose we have a time f(k)nα algorithm A to
solve the word problem for L. For an instance (x, k), we do the following: Run A on (x, k) for
|x|α+1 steps.

Case 1: A stops (i.e., |x|α+1 ≥ f(k)|x|α) and returns the answer whether (x, k) ∈ L or not. In
this case do a constant reduction, i.e.,

Φ((x, k)) :=

{
(x0, k0) if (x, k) ∈ L,
(x1, k1) if (x, k) /∈ L,

for some (x0, k0) ∈ L, and (x1, k1) /∈ L (with |x0| ≤ f(k0) and |x1| ≤ f(k1)).
Case 2: A does not return a result, but this means, that

|x|α+1 < f(k)|x|α,

which is equivalent to |x| < f(k). In this case let Φ((x, k)) := (x, k).

Then Φ yields the desired reduction to problem kernel. 2

It must be emphasized that Theorem 2.1.2 is interesting only from a theoretical point of
view, whereas all other results in this chapter are also significant from a practical point of view.

1In principal, we could also allow a running time of the form f(k) · |x|O(1) , where f is an arbitrary function.

2.1 Background 19

2.1.1.2 The importance of (small) problem kernels.

We have demonstrated the importance of reduction to problem kernel in theory. There are
various other aspects which underpin the central role of this technique. Throughout this work,
we will see close relations of reduction to problem kernel to basically all chapters.

Reduction to problem kernel as preprocessing (see Chapter 6). Reduction to problem
kernel itself can be seen as a preprocessing step for hard problems: From a given instance (x, k),
in a preprocessing phase, one computes the problem kernel (x ′, k ′) in polynomial time and then
solves the problem for the kernel. It is clear that the size of the problem kernel has a significant
impact on the overall running time. Hence, small problem kernels are desirable. In this sense,
Theorem 2.1.2 is of theoretical importance only, since the guaranteed size of a problem kernel
for a parameterized problem that can be solved in time f(k) ·nO(1) is f(k), which is exponential
in general. It is a challenging and algorithmically important task to find problem kernels which
are small, where by “small” we mean of polynomial or even linear size in k.

Reduction to problem kernel and bounded search trees (see Chapter 3). Niedermeier
and Rossmanith [157] showed an interesting technique to interleave reduction to problem kernel
with bounded search trees (see Chapter 3 for details on bounded search trees). More specifically,
they proposed a method to speed up bounded search tree algorithms for parameterized problems
that admit a problem kernel of polynomial size.

Theorem 2.1.3 Let L be a parameterized problem which can be solved in time O(ckn) by a
search tree algorithm. If L admits a problem kernel of polynomial size g(k) that can be computed
in time pkernel(n, k) then we can solve L in time O(ck+ pkernel(n, k)). 2

Note that by the observations before Theorem 2.1.2 a simple combination of reduction to problem
kernel and bounded search tree algorithm would yield time complexity O(ckg(k)+pkernel(n, k)).
The key contribution of [157] is to get rid of the polynomial factor g(k). This can be achieved
by a thorough analysis of the modified search tree algorithm in which problem kernel reduction
is performed to the current instance in sufficiently many search tree nodes.

Reduction to problem kernel and fixed-parameter algorithms with sublinear ex-
ponents (see Chapters 4 and 5). A recent achievement in the theory of fixed-parameter
tractability is the design of time f(k) · nO(1) algorithms where the running time component f

grows sublinearly in the exponent, i.e., is of the form f(k) = 2O(
√
k) (see Chapters 4 and 5).

There are basically two distinct strategies—both being in a sense generic—to obtain algorithms
for various planar graph problems with this running time behavior. Reduction to problem ker-
nel plays a central role for both strategies. One method is to combine reduction to problem
kernel with divide-and-conquer algorithms based on graph separation (see Section 4.2) and the
other one is a tree decomposition based approach. The key to the latter method is the so-called
“Layerwise Separation Property” for which kernelizability (with a linear problem kernel) is a
sufficient condition (see Section 5.4 for details).

20 Data Reduction

In the remainder of this section we will revisit the threesome par-vertex cover, par-inde-
pendent set and par-dominating set (on planar graphs) with respect to kernelizability and
possible “small” problem kernels.

2.1.2 Nemhauser and Trotter’s Theorem and other Examples

Often the best one can hope for is that the problem kernel has size linear in k, a so-called linear
problem kernel . In the following, we, firstly, present some easy observations which establish a
linear problem kernel for the par-independent set problem on planar graphs. Secondly, we cite
a theorem of Nemhauser and Trotter [153], (also refer to [33, 163]), from which Chen et al. [56]
recently derived a linear problem kernel for par-vertex cover on general (not necessarily
planar) graphs.

By making use of the four color theorem for planar graphs and the corresponding algorithm
generating a four coloring [170], the following result can be obtained easily.

Proposition 2.1.4 par-Independent set on planar graphs admits a linear problem kernel of
size 4k. The reduction to problem kernel can be carried out in time O(n2).

Proof: Due to the four-color theorem (see [21, 22] or [170]), every maximum independent set of
a planar graph G = (V, E) with n vertices has size at least ⌈n/4⌉: Let V = V1∪̇ · · · ∪̇V4 be a
four coloring, then every “color set” Vi is an independent set and there exists at least one such
set Vi0 with |Vi0 | ≥ ⌈n/4⌉. Hence,

Φ((G, k)) := (G ′, k ′) :=

{
(G, k) if k > ⌈n/4⌉,
(G0, k0) otherwise,

where (G0, k0) is some trivial “yes”-instance of par-independent set (e.g., (G[Vi0], |Vi0 |)),
yields the desired problem kernel reduction. Note that, by construction, for the reduced graph
G ′ = (V ′, E ′), it holds |V ′| ≤ 4k ′. Using the four-coloring algorithm by Robertson et al. [170]
this reduction can be carried out in quadratic time. 2

Remark 2.1.5 Using a linear time five-color algorithm, e.g., the one by Chiba et al. [60] we
can even get a linear time reduction to problem kernel with a problem kernel of size 5k.

There is an easy generalization of the above principle.

Remark 2.1.6 We say that a maximization problem Q = (IQ, SQ, cQ,max) admits solutions
of guaranteed fraction 1/d, where d is some constant, if for x ∈ IQ a feasible solution y ∈ SQ(x)

with cQ(y) ≥ |x|/d exists. Then, a similar idea as the one in the above proof shows that if
a maximization problem Q admits solutions of guaranteed fraction 1/d, then par-Q admits a
linear problem kernel of size dk.

We have seen that independent set on a planar graphs admits solutions of guaranteed
fraction 1/4. We briefly mention in passing that other examples with a guaranteed fraction
solution exist, for which a linear problem kernel can be derived in a similar way: e.g., the

2.1 Background 21

par-maxsat problem parameterized by the number m of satisfied clauses admits a solution
of guaranteed fraction 1/2 (see [141]), and the so-called par-betweenness problem admits a
solution of guaranteed fraction 1/3 (see [61]).

We now turn our attention to vertex cover, for which Buss and Goldsmith [51] gave a
very easy problem kernel reduction which transforms an instance (G, k) in time O(kn) into
a reduced instance (G ′, k ′), where G ′ has no more than k2 edges (and, hence, at most 2k2

vertices). The idea is that if we are looking for a vertex cover of size at most k, then a vertex
with degree k+ 1 has to be part of such a vertex cover because, otherwise, k vertices would not
suffice to cover all edges emanating from v. This can further be improved using the following
theorem of Nemhauser and Trotter [153] (also see [127] for a very recent account on this result).

Theorem 2.1.7 Let G = (V, E) be a graph. There is an algorithm that finds in time O(
√

|V |·|E|)

disjoint sets C0, V0 ⊆ V which have the following properties:

(i) If D ⊆ V0 is a vertex cover of G[V0] then D ∪ C0 is a vertex cover of G.

(ii) There exists an optimal vertex cover C∗ of G with C0 ⊆ C∗.

(iii) It holds that vc(G[V0]) ≥ |V0|/2.

The proof of the theorem relies on an elegant construction: For a given graph G = (V, E),
let V ′ = {v ′ | v ∈ V} be a copy of the vertex set. Then, the bipartite graph

B = (V ∪ V ′, EB), where EB := { {v,w ′} | {v,w} ∈ E }

is constructed. From an optimal vertex cover CB (which can be computed easily in a bipartite
graph using maximum matching), one derives the sets

C0 := { v | v ∈ CB AND v ′ ∈ CB }, and

V0 := { v | v ∈ CB XOR v ′ ∈ CB },

for which Nemhauser and Trotter proved that these sets fulfill the claimed properties. For
algorithmic purposes this means that, in order to compute an optimal vertex cover in G, we
may start from the set C0 and add an optimal vertex cover of the reduced graph G[V0].

As observed in [56], from the Theorem of Nemhauser and Trotter, we obtain the following.

Corollary 2.1.8 par-vertex cover admits a linear problem kernel of size 2k. The reduction
to problem kernel can be carried out in time O(k3+ kn).

Proof: Using the notation from Theorem 2.1.7, we define

ΦNT((G, k)) :=

{
(G[V0], k − |C0|) if |V0| ≤ 2k,
(Ĝ, k̂) otherwise,

22 Data Reduction

where (Ĝ, k̂) /∈ par-vertex cover is some trivial “no”-instance with |Ĝ| ≤ 2k̂. To proof that
this indeed yields a reduction to problem kernel it remains to show that (G, k) ∈ par-vertex
cover if and only if ΦNT((G, k)) ∈ par-vertex cover. To see this consider two cases. Firstly,
assume that |V0| > 2k. But then k < vc(G[V0]) ≤ vc(G), by property (iii) of Theorem 2.1.7,
which means that (G, k) /∈ par-vertex cover.

Secondly, assume that |V0| ≤ 2k. If (G, k) ∈ par-vertex cover, by property (ii) of The-
orem 2.1.7, we can assume that there exists a vertex cover C∗ of G, with |C∗| ≤ k, such that
C0 ⊆ C∗. Since C0∩ V0 = ∅, the set D := C∗ \C0 is a vertex cover of G[V0] with |D| ≤ k− |C0|.
Conversely, if (G[V0], k− |C0|) ∈ par-vertex cover and D is a vertex cover with |D| ≤ k− |C0|

then, by property (i) of Theorem 2.1.7, D ∪ C0 is a vertex cover of G with |D ∪ C0| ≤ k.
Let ΦBG be the aforementioned problem kernel reduction of Buss and Goldsmith [51]. Then,

clearly, Φ := ΦNT ◦ ΦBG, also is a problem kernel reduction yielding a problem kernel of
size 2k. Letting (G1, k1) := ΦBG((G, k)), the total running time for computing Φ((G, k)) is
O(kn+

√
|V(G1)||E(G1)|) = O(kn+ k3). 2

According to the current state of knowledge, this is the best one could hope for par-vertex
cover on general graphs, because a problem kernel of size (2− ε)k with constant ε > 0 would
imply a factor 2− ε polynomial time approximation algorithm for vertex cover, which would
mean a major breakthrough in approximation algorithms for vertex cover [116]. Remarkably,
for vertex cover on planar graphs, better approximation algorithms are known [33], as well as
a polynomial time approximation scheme [31]. It remains an open question whether par-vertex
cover on planar graphs admits a problem kernel of size dk with some d < 2.

2.2 A Linear Problem Kernel
for par-dominating set on Planar Graphs

We will now prove a linear problem kernel for the par-dominating set problem on planar
graphs. This is the first result on problem kernel reduction for par-dominating set on planar
graphs, answering an open question from previous work. Not even a polynomial problem kernel
was known before. Unless FPT = W[2], a similar result is very unlikely to hold for general
graphs. This is because par-dominating set is W[2]-complete on general graphs and the
existence of a (linear) problem kernel implies membership of the class FPT (see Theorem 2.1.2).

More precisely, in this section, we will show the following result. We partly follow [7].

Theorem 2.2.1 par-dominating set on planar graphs admits a linear problem kernel of
size 335k. The reduction to problem kernel can be carried out in time O(n3).

The reduction to problem kernel is established by two “reduction rules” which are applied
to the input graph. These reduction rules, which are designed for general and not necessarily
planar graphs, are presented in Subsection 2.2.1. We then prove that a planar graphs that is
reduced with respect to these reduction rules is small, i.e., has at most O(k) vertices. The proof
consists of two stages. In a first step, we try to find a so-called “maximal region decomposition”
of the vertices of a reduced planar graph (see Subsection 2.2.2). In a second step, we show, on the

2.2 A Linear Problem Kernel for par-dominating set on Planar Graphs 23

one hand, that such a maximal region decomposition must contain all but O(k) many vertices.
On the other hand, we prove that such a region decomposition uses at most O(k) regions, each
of which having size O(1) (see Subsection 2.2.3). Combining the results then yields an upper
bound of the form O(k) on the size of the problem kernel.

Remark 2.2.2 We remark that, at the current state of research, we do not know whether a
linear problem kernel can be obtained for variants of the par-dominating set problem on
planar graphs as well, e.g., for par-independent dominating set, par-total dominating
set, par-perfect dominating set, perfect code, or total perfect dominating set.
The reduction rules which will establish Theorem 2.2.1 are tailored toward par-dominating
set only and a straightforward adaption to these variants seems difficult.

2.2.1 Reduction Rules

We present two reduction rules for dominating set which both are based on the same principle:
The rules explore the local structures of the graph and try to replace them by simpler structures.
For the first reduction rule, the local structure will be the neighborhood of a single vertex. For
the second reduction rule, we will deal with the union of the neighborhoods of a pair of vertices.

2.2.1.1 The Neighborhood of a Single Vertex

Consider a vertex v ∈ V of the given graph G = (V, E). We partition the vertices of the open
neighborhood N(v) of v into three different sets:

• the “exit vertices” Nexit(v), through which we can “leave” the closed neighborhood N[v],

• the “guard vertices” Nguard(v), which are neighbors of exit-vertices, and

• the “prisoner vertices” Nprison(v), which are not direct neighbors of an exit vertex.

More formally, we define

Nexit(v) := {u ∈ N(v) | N(u) \N[v] 6= ∅ }, 2

Nguard(v) := {u ∈ N(v) \Nexit(v) | N(u) ∩Nexit(v) 6= ∅ },

Nprison(v) := N(v) \ (Nexit(v) ∪Nguard(v)).

An example which illustrates the partitioning of N(v) into the subsets Nexit(v), Nguard(v),
and Nprison(v) can be seen in the left-hand diagram of Fig. 2.1.

Our first reduction rule is based on the fact that we try to detect an optimal domination of
the prisoner vertices Nprison(v) within our local structure N(v).

2For two sets X,Y, where Y is not necessarily a subset of X, we use the convention that X \ Y := {x ∈ X : x /∈ Y}.

24 Data Reduction

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

Nprison(v)

Nguard(v)

Nexit(v)
v

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
��� v

v ′

Figure 2.1: The left-hand side shows the partitioning of the neighborhood of a single vertex v. The

vertices marked with horizontal lines are the exit vertices Nexit(v). The guard vertices Nguard(v) are

marked with vertical lines. White vertices symbolize the prisoner vertices Nprison(v). Since, for this

example, Nprison(v) 6= ∅, reduction Rule 1 applies to v. The right-hand side shows the neighborhood after

the application of Rule 1.

Rule 1 If Nprison(v) 6= ∅ for some vertex v then

• remove Nguard(v) and Nprison(v) from G and

• add a new vertex v ′ with the edge {v, v ′}.

We use the vertex v ′ as a “gadget vertex” that enforces us to take v (or v ′) into an optimal
dominating set in the reduced graph.

An example demonstrating the effect of this reduction rule is given in Fig. 2.1.

Lemma 2.2.3 Let G = (V, E) be a graph and let G ′ = (V ′, E ′) be the resulting graph after having
applied Rule 1 to G. Then ds(G) = ds(G ′).

Proof: Consider a vertex v ∈ V such that Nprison(v) 6= ∅. The vertices in Nprison(v) can only be
dominated by either v or by vertices in Nguard(v) ∪ Nprison(v). But, clearly, N(w) ⊆ N(v) for
every w ∈ Nguard(v)∪Nprison(v). This shows that a best possible way to dominate Nprison(v) is
given by taking v into the dominating set. This is simulated by the “gadget” edge {v, v ′} in G ′.
It is safe to remove Nguard(v)∪Nprison(v), since N(Nguard(v)∪Nprison(v)) ⊆ N(v), i.e., since the
vertices that could be dominated by vertices from Nguard(v) ∪Nprison(v) are already dominated
by v. Hence, ds(G ′) = ds(G). 2

Lemma 2.2.4 Reduction Rule 1 can be carried out in time O(n) for planar graphs and in
time O(n3) for general graphs.

Proof: The proof is deferred to the Appendix at the end of the chapter. 2

2.2.1.2 The Neighborhood of a Pair of Vertices

Similar to Rule 1, we explore the union of the neighborhoods N(v,w) := N(v)∪N(w) of two ver-
tices v,w ∈ V. Analogously, we now partition N(v,w) into three disjoint subsets Nexit(v,w) (the

2.2 A Linear Problem Kernel for par-dominating set on Planar Graphs 25

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���

���
���
��� ��

��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

v
w

Nexit(v,w)

Nguard(v,w)

Nprison(v,w)

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

w

v

v ′ w ′

Figure 2.2: The left-hand side shows the partitioning of the neighborhood of a pair of vertices v and w.

The vertices marked with horizontal lines are the exit verticesNexit(v,w). The guard verticesNguard(v,w)

are marked with vertical lines. White vertices symbolize the prisoner vertices Nprison(v,w). Since, for this

example, Nprison(v,w) cannot be dominated by a single vertex, Case 2 of Rule 2 applies. The right-hand

side shows the neighborhood after the application of Rule 2.

“exit vertices” of N(v,w)), Nguard(v,w) (the corresponding “guard vertices”), and Nprison(v,w)

(the “prisoner vertices” of N(v,w)). Setting N[v,w] := N[v] ∪N[w], we define

Nexit(v,w) := {u ∈ N(v,w) | N(u) \N[v,w] 6= ∅ },

Nguard(v,w) := {u ∈ N(v,w) \Nexit(v,w) | N(u) ∩Nexit(v,w) 6= ∅ },

Nprison(v,w) := N(v,w) \ (Nexit(v,w) ∪Nguard(v,w)).

The left-hand diagram of Fig. 2.2 shows an example which illustrates the partitioning
of N(v,w) into the subsets Nexit(v,w), Nguard(v,w), and Nprison(v,w).

Our second reduction rule—compared to Rule 1—is slightly more complicated, but it is
based on the same principle: We try to detect an optimal domination of the prisoner ver-
tices Nprison(v,w) in our local structure N(v,w).

Rule 2 Consider v,w ∈ V (v 6= w) and suppose that Nprison(v,w) 6= ∅. Suppose that Nprison(v,w)

cannot be dominated by a single vertex from Nguard(v,w) ∪Nprison(v,w).

Case 1 If Nprison(v,w) can be dominated by a single vertex from {v,w}:

(1.1) If Nprison(v,w) ⊆ N(v) as well as Nprison(v,w) ⊆ N(w):

• remove Nprison(v,w) and Nguard(v,w) ∩N(v) ∩N(w) from G and

• add two new vertices z, z ′ and edges {v, z}, {w, z}, {v, z ′}, {w, z ′} to G.

(1.2) If Nprison(v,w) ⊆ N(v), but not Nprison(v,w) ⊆ N(w):

• remove Nprison(v,w) and Nguard(v,w) ∩N(v) from G and

• add a new vertex v ′ and the edge {v, v ′} to G.

(1.3) If Nprison(v,w) ⊆ N(w), but not Nprison(v,w) ⊆ N(v):

• remove Nprison(v,w) and Nguard(v,w) ∩N(w) from G and

• add a new vertex w ′ and the edge {w,w ′} to G.

26 Data Reduction

Case 2 If Nprison(v,w) cannot be dominated by a single vertex from {v,w}:

• remove Nprison(v,w) and Nguard(v,w) from G and

• add two new vertices v ′,w ′ and edges {v, v ′}, {w,w ′}.

Again, the newly added vertices v ′ and w ′ of degree one act as gadgets that enforce us to
take v or w into an optimal dominating set. A special situation is given in Case (1.1). Here, the
gadget added to the graph G simulates that at least one of the vertices v or w has to be taken
to an optimal dominating set.

The effect of this second reduction rule is demonstrated in Fig. 2.2 for the particular Case 2.

Lemma 2.2.5 Let G = (V, E) be a graph and let G ′ = (V ′, E ′) be the resulting graph after having
applied Rule 2 to G. Then ds(G) = ds(G ′).

Proof: Similar to the proof of Lemma 2.2.3, we observe that vertices from Nprison(v,w) can only
be dominated by vertices from M := {v,w} ∪ Nguard(v,w) ∪ Nprison(v,w). All cases in Rule 2
are based on the fact that Nprison(v,w) needs to be dominated. Moreover, all cases only apply
if there is not a single vertex in Nguard(v,w) ∪Nprison(v,w) which dominates Nprison(v,w).

We first of all discuss the correctness of Case (1.2) (and similarly obtain the correctness of the
symmetric Case (1.3)): If v dominates Nprison(v,w) (and w does not) then it is optimal to take v
into the dominating set—and at the same time still leave the option of taking vertex w—instead
of taking any combination of two vertices x and y from the set M \ {v}. It may be that we still
have to take w to a minimum dominating set, but in any case {v,w} dominates at least as many
vertices as x and y together. The “gadget edge” {v, v ′} simulates the effect of taking v. It is
safe to remove R := (Nguard(v,w) ∩N(v))∪Nprison(v,w) since, by taking v into the dominating
set, all vertices in R are already dominated and since, as discussed above, it is always at least as
good to take {v,w} into a minimum dominating set than to take v and any other of the vertices
from R.

In the situation of Case (1.1), we can dominate Nprison(v,w) by either v or w. Since we
cannot decide at this point which of these vertices should be chosen to be in the dominating
set, we use the gadget with vertices z and z ′ which simulates a choice between v or w, as can
be seen easily. In any case, however, it is at least as good to take one of the vertices v and w
(maybe both) than to take any two vertices from M \ {v,w}. The argument for this is similar to
the one for Case (1.2). The removal of Nprison(v,w)∪ (Nguard(v,w)∩N(v)∩N(w)) is safe by a
similar argument as the one that justified the removal of R in Case (1.2).

Finally, in Case 2, we clearly need at least two vertices to dominate Nprison(v,w). Since
N(v,w) ⊇ N(x, y) for all pairs x, y ∈ M it is optimal to take v and w into the dominat-
ing set, simulated by the gadgets {v, v ′} and {w,w ′}. As in the previous cases the removal
of Nprison(v,w)∪Nguard(v,w) is safe since these vertices are already dominated and since these
vertices need not be used for an optimal dominating set. 2

Lemma 2.2.6 Reduction Rule 2 can be carried out in time O(n2) for planar graphs and in
time O(n4) for general graphs.

2.2 A Linear Problem Kernel for par-dominating set on Planar Graphs 27

Figure 2.3: The Figure illustrates an example of reducing a (planar) graph with respect to Rule 1 and

Rule 2. The original graph on the left-hand side is reduced to the graph on the right-hand side. The

little grey vertices of degree one in the reduced graph are the “gadget vertices” that were introduced by

the reduction rules to force their neighbors to be in an optimal dominating set. Since all 21 remaining

non-gadget vertices have such a degree-one neighbor, we already obtain an optimal dominating set (which

consists of these 21 non-gadget vertices).

Proof: The proof is deferred to the Appendix at the end of the chapter. 2

We remark that the running times given in Lemmas 2.2.4 and 2.2.6 are pure worst-case
estimates and turn out to be much lower in our experimental studies (see Subsection 6.4). In
particular, for practical purposes it is important to see that Rule 2 can only be applied for vertex
pairs that are at distance at most three.

2.2.1.3 Reduced Graphs

We will now describe the problem kernel reduction for the par-dominating set problem.

Definition 2.2.7 Let G = (V, E) be a graph such that both the application of Rule 1 and the
application of Rule 2 leave the graph unchanged. Then we say that G is reduced with respect to
these rules.

Given an input instance (G, k) of the par-dominating set problem, we can repeatedly apply
Rule 1 and Rule 2 to the graph G to obtain a reduced graph G ′. An example illustrating the
transformation of G into G ′ is demonstrated in Fig. 2.3. The problem kernel reduction then is
given by Φ : (G, k) 7→ (G ′, k).

Observing that the (successful) application of any reduction rule always “shrinks” the given
graph implies that there can only be O(n) successful applications of reduction rules. This leads
to the following.

28 Data Reduction

Lemma 2.2.8 A graph G can be transformed into a reduced graph G ′ with ds(G) = ds(G ′) in
time O(n3) in the planar case and in time O(n5) in the general case. 2

Remark 2.2.9 The reduction of a graph G to a reduced graph G ′ does not only guarantee
that ds(G) = ds(G ′). Moreover, the reduction is constructive, in the sense that an optimal
dominating set D ′ for G ′ = (V ′, E ′) easily translates into an optimal dominating set D for G =

(V, E): By construction, V ′ = Vgadget ∪ V0, where V0 ⊆ V and Vgadget are some newly added
“gadget vertices,” which are either single vertices of degree one or a pair of “gadget vertices” of
degree two (as added by Case (1.1) of Rule 2). If D ′ ⊆ V ′ is a dominating set for G ′, then—
noting that a single vertex of a “gadget” pair cannot solely be part of D— it is easy to see that
D := (D ′∩V0)∪N(D ′∩Vgadget) is an optimal dominating set for G. It is, however, not possible
to reconstruct all optimal dominating sets for G from G ′.

The following remark is crucial for the proof of the linear problem kernel.

Remark 2.2.10 A graph G = (V, E) which is reduced with respect to reduction Rules 1 and 2
has the following properties:

(i) For all v ∈ V, the set Nprison(v) of prisoner vertices is empty, since otherwise Rule 1
removes these vertices. There is one exception for this statement: A newly added “gadget
vertex” v ′ of v formally belongs to Nprison(v). But except for such a single gadget vertex,
the set Nprison(v) is empty.

(ii) For all v,w ∈ V, there exists a single vertex in Nguard(v,w)∪Nprison(v,w) which dominates
all prisoner vertices Nprison(v,w), since otherwise Rule 2 removes these vertices.

2.2.2 Region Decompositions

In the following, we restrict to planar graphs. The key result will be the following.

Proposition 2.2.11 For a planar graph G = (V, E) which is reduced with respect to reduction
Rules 1 and 2, we get |V | ≤ 335 ds(G).

The rest of this section is devoted to the proof of Proposition 2.2.11. Together with
Lemma 2.2.8 this will establish Theorem 2.2.1.

History and outline of the proof. The linear size problem kernel question for par-domina-
ting set on planar graphs has taken the attention of numerous people. Various proof strategies
were suggested, however, none of them yielded a complete, correct proof. We briefly comment
on some previous attempts showing partial results and outline where the obviously hard part of
the proof lies.

Suppose we are given a reduced planar graph G = (V, E) together with a dominating set D
with |D| = ds(G). The task is to prove an upper bound of the form |V | ≤ c · ds(G) for some
constant c.

2.2 A Linear Problem Kernel for par-dominating set on Planar Graphs 29

(i) A first idea that we followed for a long time is to partition the vertices in V \ D into
disjoint subsets Vi := { v ∈ V \D | |N(v) ∩D| = i } according to the number of neighbors
in D. We wish to give upper bounds for each of these sets individually. For the size of
V≥3 :=

⋃
i≥3Vi, an upper bound of the form 3ds(G) − 4 is quite easy to see, by analyzing

the planar bipartite graph G[D ∪ V≥3]. For the set V2, we might consider the graph
GV2 := (D,EV2) with EV2 := {{x, y} | ∃v ∈ V2 : {x, v}, {v, y} ∈ E}, where the vertices
of V2 are interpreted as edges between vertices in D. This is a planar graph with possible
multiple edges. Since the graph is reduced, one can show that there are not too many of
these multiple edges and that |V2| = |EV2 | = O(ds(G)).3 Hence, it would remain to show
that |V1| = O(ds(G)). This, however, seemed to be a difficult task, for which similar tricks
as used for the upper bounds of V2 and V≥3 did not work.

(ii) An alternative proof strategy could be to try to upperbound the number of vertices which
lie in a neighborhood N(v,w) of a pair v,w ∈ D. An attempt that we followed was to find
(at most O(ds(G)) many) neighborhoods N(v1,w1), . . . ,N(vℓ,wℓ) with vi,wi ∈ D, such
that all vertices in V lie in at least one such neighborhood; and then use the fact that G is
reduced in order to prove that each N(vi,wi) has size at most O(1). However, even if the
graph G is reduced, the neighborhoods N(v,w) for vertices v,w ∈ D may contain many
vertices: the size of N(v,w), basically depends on how big Nexit(v,w) is.

(iii) The strategy by which we finally succeeded, and which will be outlined in the rest of
this chapter, circumvents these difficulties. Instead of trying to partition the vertices
in O(ds(G)) many neighborhoods of the formN(vi,wi) (for some vi,wi ∈ D), our partition
sets will be so-called “regions,” which are only those vertices of a neighborhood N(vi,wi),
that lie on short paths between vi and wi. By this we ensure that only a constant number
of exit vertices from Nexit(vi,wi) are contained in a region. This is the key for showing
that the size of such a region is bounded by O(1) (the fact that G is reduced with respect
to Rule 2 is important in this step). The drawback of this method is that not all vertices
in V \D lie in such regions. However, if a maximal number of regions is used, i.e., if we use
a so-called “maximal region-decomposition,” only O(ds(G)) vertices will lie outside such
regions (the fact that G is reduced with respect to Rule 1 being important here).

The notion of “region-decompositions” heavily relies on the planarity of our input graph
and cannot be carried over to general graphs.

We now give the details for this last strategy. In the remainder of this section let us consider
some fixed embedding φ of G = (V, E) in the plane.4

Definition 2.2.12 Let G = (V, E) be a plane graph. A region R(v,w) between two vertices v,w
is a closed subset of the plane with the following properties:

3The trick is to show that every multiple edge between x, y ∈ D corresponds to a set of so-called simple regions
(see Definition 2.2.19) between x and y. Moreover, the induced graph of these simple regions (see Definition 2.2.14)
is “thin” in the sense of Definition 2.2.15.

4For the ease of presentation, since it will always be clear from the context, in the following, we will not
distinguish between a vertex v ∈ V and the point φ(v) in the plane, or an edge e ∈ E and the arc φ(e). Moreover,
we simply write G for the plane graph (G,φ).

30 Data Reduction

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���
���
���
���

���
���
���
���

����
����
����

����
����
����

�
�
�
�

�
�
�
�

�����
�����
�����
�����

���
���
���

���
���
���

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��

��
��
��

������
������
������

������
������
������

�
�
�
�

�
�
�
�

��������
��������
��������
��������

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����������������
����������������
����������������
����������������

������������������
������������������
������������������
������������������

������������������
������������������
������������������
��

������
������
������
������

������
������
������
������

������������
������������
������������
������������

������������
������������
������������
������������ ������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Figure 2.4: The left-hand side diagram shows an example of a possible D-region decomposition R of

some graph G, where D is the subset of vertices in G that are drawn in black (D is a dominating set here).

The various regions are highlighted by different patterns. The remaining white areas are not considered

as regions. The given D-region decomposition is maximal since we cannot find a further region between

vertices in D that does not cross any region in R and contains a vertex from V \ V(R). The right-hand

side shows the induced graph GR (Definition 2.2.14).

(i) the boundary of R(v,w) is formed by two paths P1 and P2 in V which connect v and w,
and the length of each path is at most three5, and

(ii) all vertices which are strictly inside the region R(v,w) are from N(v,w).6

For a region R = R(v,w), let V(R) denote the vertices belonging to R, i.e.,

V(R) := {u ∈ V | u sits inside or on the boundary of R }.

Definition 2.2.13 Let G = (V, E) be a plane graph and D ⊆ V. A D-region decomposition
of G is a set R of regions between vertices in D such that

(i) for R(v,w) ∈ R, no vertex from D (except for v,w) lies in V(R(v,w)), and

(ii) no two regions R1, R2 ∈ R intersect (however, they may touch each other by having common
boundaries).

For a D-region decomposition R, we define V(R) :=
⋃
R∈R V(R). A D-region decomposition R

is called maximal if there is no region R /∈ R such that R ′ := R∪ {R} is a D-region decomposition
with V(R) (V(R ′).

For an example of a (maximal) D-region decomposition we refer to the left-hand side diagram
of Fig. 2.4.

We will show that, for a given graph G with dominating set D, we can always find a maximal
D-region decomposition with at most O(ds(G)) many regions. For that purpose, we observe that
a D-region decomposition induces a graph in a very natural way.

5The length of a path is the number of edges on it.
6By “strictly inside the region R(v,w)” we mean lying in the region, but not sitting on the boundary of R(v,w).

2.2 A Linear Problem Kernel for par-dominating set on Planar Graphs 31

Definition 2.2.14 The induced graph GR = (VR, ER) of a D-region decomposition R of G is
the graph with possible multiple edges which is defined as follows:

VR := D, and ER := { {v,w} | there is a region R(v,w) ∈ R between v,w ∈ D }.

Note that, by Definition 2.2.13, the induced graph GR of a D-region decomposition is planar.
For an example of an induced graph GR, see Fig. 2.4.

Definition 2.2.15 A planar graph G = (V, E) with multiple edges is thin if there exists a planar
embedding such that no two multiple edges are homotopic: This means that if there are two
edges e1, e2 between a pair of distinct vertices v,w ∈ V, then there must be two further vertices
u1, u2 ∈ V which sit inside the two disjoint areas of the plane that are enclosed by e1, e2.

The induced graph GR in Fig. 2.4 is thin.

Lemma 2.2.16 For a thin planar graph G = (V, E) we have |E| ≤ 3|V | − 6.

Proof (Sketch): The claim is true for planar graphs without multiple edges. But then, an easy
induction on the number of multiple edges in G proves the claim. 2

Using the notion of thin graphs, we can formulate the main result of this section.

Proposition 2.2.17 For a reduced plane graph G with dominating set D, there exists a maximal
D-region decomposition R such that GR is thin.

Proof: We give a constructive proof on how to find a maximal D-region decomposition R of
a plane graph G such that the induced graph GR is thin. Consider the algorithm presented
in Fig. 2.5. It is obvious that this algorithm returns a D-region decomposition, since—by
construction—we made sure that all regions in R are between vertices in D, that regions in R
do not contain vertices from D, and that regions in R do not intersect mutually. Moreover, the
D-region decomposition obtained by the algorithm is maximal: If a vertex u does not belong to
a region, i.e., if u /∈ Vused, then eventually we check, if there is a region Su such that R ∪ {Su}

is a D-region decomposition.

It remains to show that the induced graph GR of the D-region decomposition R found by
the algorithm is thin. We embed GR in the plane in such a way that an edge belonging to a
region R ∈ R is drawn inside the area covered by R. To see that the graph is thin, we have to
show that, for every multiple edge e1, e2 (belonging to two regions R1, R2 ∈ R that were chosen at
some point of the algorithm) between two vertices v,w ∈ D, there exist two vertices u1, u2 ∈ D
which lie inside the areas enclosed by e1, e2. Let A be such an area. Suppose that there is no
vertex u ∈ D in A. We distinguish two cases. Either there is also no vertex from V \D in A,
or there are other vertices V ′ from V \D inside A. In the first case, by joining the regions R1
and R2 we obtain a bigger region which fulfills all the four conditions (i)–(iv) checked by the
algorithm in Fig. 2.5, a contradiction to the maximality of R1 and R2. In the second case, since D
is assumed to be a dominating set, the vertices in V ′ need to be dominated by D. Since v,w are
the only vertices from D which are part of A, R1, or R2, the vertices in V ′ need to be dominated

32 Data Reduction

procedure region decomposition

/* input: a plane graph G = (V, E) and a vertex subset D ⊆ V. */
/* output: a D-region decomposition R for G */
/* such that the induced graph GR is thin. */

◦ Vused ← ∅, R← ∅.
◦ for all u ∈ V do

◦ if ((u /∈ Vused) and (u ∈ V(R) for some region R = R(v,w) between
two vertices v,w ∈ D such that R∪ {R} is a D-region decomposition)) then

◦ consider the set Ru of all regions S with the following properties:a

(i) S is a region between v and w.

(ii) S contains u.

(iii) no vertex from D \ {v,w} is in V(S).

(iv) S does not cross any region from R.

◦ choose a region Su ∈ Ru which is maximal in space.b

◦ R← R∪ {Su}.

◦ Vused ← Vused ∪ V(Su).

◦ return R.

aThese four properties ensure that R∪ {S} is a D-region decomposition for every S ∈ Ru.
bBy “maximal in space” we mean a region Su such that S ′ ⊇ Su for any S ′ ∈ Ru implies S ′ = Su .

Figure 2.5: Greedy-like construction of a maximal D-region decomposition (see Proposition 2.2.17).

by v,w, hence they belong to N(v,w). But then again by joining the regions R1 and R2 we
obtain a bigger region which again fulfills all the four conditions (i)–(iv) of the algorithm in
Fig. 2.5, a contradiction to the maximality of R1 and R2. 2

2.2.3 An Upper Bound on the Kernel Size

Suppose that we are given a reduced planar graph G = (V, E) with a minimum dominating set D.
Then, by Proposition 2.2.17 and Lemma 2.2.16, we find a maximal D-region decomposition R
of G with at most O(ds(G)) regions. To see that |V | = O(ds(G)), it remains to show that

(i) there are at most O(ds(G)) vertices not belonging to any of the regions in R, and that

(ii) every region of R contains at most O(1) vertices.

These issues are treated by Propositions 2.2.21 and 2.2.22.

We first of all state two technical lemmas, one which characterizes an important property of
a maximal region decomposition and another one which gives an upper bound on the size of a
special type of a region.

2.2 A Linear Problem Kernel for par-dominating set on Planar Graphs 33

v

w

u2u1

Type 0

���
���
���

���
���
���

���
���
���
���

w

v

u1
u2

Type 1

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

v

w

u1 u2

Type 2

Figure 2.6: Simple regions of Type 0, Type 1, and Type 2. This figure illustrates the largest possible

simple regions in a reduced graph. Vertices marked with horizontal lines are in Nexit(v,w), vertices

marked with vertical lines belong to Nguard(v,w), and white vertices are in Nprison(v,w).

Lemma 2.2.18 Let G be a reduced planar graph with a dominating set D and let R be a maximal
D-region decomposition. If u ∈ Nexit(v) for some vertex v ∈ D then u ∈ V(R).

Proof: The proof is deferred to the Appendix at the end of the chapter. 2

We now investigate a special type of a region specified by the following definition.

Definition 2.2.19 A region R(v,w) between two vertices v,w ∈ D is called simple if all vertices
contained in R(v,w) except for v,w are common neighbors of both v and w, i.e., if (V(R(v,w))\

{v,w}) ⊆ N(v) ∩N(w).

Let v, u1,w, u2 be the vertices that sit on the boundary of the simple region R(v,w). We say
that R(v,w) is a simple region of Type i (0 ≤ i ≤ 2) if i vertices from {u1, u2} have a neighbor
outside R(v,w).

Lemma 2.2.20 Every simple region R of Type i of a plane reduced graph contains at most 5+2i
vertices.

Proof: The proof is deferred to the Appendix at the end of the chapter. 2

Fig. 2.6 illustrates the (worst-case) examples for simple regions of each type. We use Lem-
mas 2.2.18 and 2.2.20 for the following two proofs.

Proposition 2.2.21 Let G = (V, E) be a plane reduced graph and let D be a dominating set
of G. If R is a maximal D-region decomposition, then |V \ V(R)| ≤ 2|D| + 56|R|.

Proof: To start with, we claim that every vertex u ∈ V \V(R) is either a vertex in D or belongs
to a set Nguard(v) ∪Nprison(v) for some v ∈ D. To see this, suppose that u /∈ D. But since D
is a dominating set, we know that u ∈ N(v) = Nexit(v) ∪Nguard(v) ∪Nprison(v) for some vertex
v ∈ D. Since R is assumed to be maximal, by Lemma 2.2.18, we know that Nexit(v) ⊆ V(R).
Thus, u ∈ Nguard(v) ∪Nprison(v).

For a vertex v ∈ D, let N∗
guard(v) = Nguard(v) \ V(R). The above observation implies

V \ V(R) ⊆ D ∪ (
⋃

v∈D
Nprison(v)) ∪ (

⋃

v∈D
N∗

guard(v)). (2.1)

34 Data Reduction

From this set inclusion, we will derive an upper bound on |V \ V(R)| in what follows.

We, firstly, upperbound the size of
⋃
v∈DNprison(v). Since G is reduced, by Remark 2.2.10,

|Nprison(v)| ≤ 1, we get |
⋃
v∈DNprison(v) ≤ |D|.

We now upperbound the size of N∗
guard(v) for a given vertex v ∈ D. To this end, for a

vertex v ∈ D, let N∗
exit(v) be the subset of Nexit(v) which sit on the boundary of a region in R.

It is clear that N∗
guard(v) ⊆ N(v)∩N(N∗

exit(v)). Hence, we investigate the set N∗
exit(v). Suppose

that R(v,w1), . . . , R(v,wℓ) are the regions between v and some other vertices wi ∈ D, where
ℓ = degGR(v) is the degree of v in the induced region graph GR. Then, every region R(v,wi)

can contribute at most two vertices u1i , u
2
i to N∗

exit(v), i.e., in the worst-case, we have N∗
exit(v) =⋃ℓ

i=1{u
1
i , u

2
i } with u1i , u

2
i ∈ V(R(v,wi)), i.e., |N∗

exit(v)| ≤ 2degGR(v). We already observed that
every vertex in N∗

guard(v) must be a common neighbor of v and some vertex in N∗
exit(v). We

claim that, moreover, the vertices in N∗
guard(v) can be grouped into various simple regions. More

precisely, we claim that there exists a set Sv of simple regions, such that

(i) every S ∈ Sv is a simple region between v and some vertex in N∗
exit(v),

(ii) N∗
guard(v) ⊆

⋃
S∈Sv V(S), and

(iii) |Sv| ≤ 2 · |N∗
exit(v)|.

The idea for the construction of the set Sv is similar to the greedy-like construction of a maximal
region decomposition (see Fig. 2.5). Starting with Sv as empty set, one iteratively adds a simple
region S(v, x) between v and some vertex x ∈ N∗

exit(v) to the set Sv in such a way that (1)
Sv ∪ {S(v, x)} contains more N∗

guard(v)-vertices than Sv, (2) S(v, x) does not cross any region in
Sv, and (3) S(v, x) is maximal (in space) under all simple regions S between v and x that do not
cross any region in Sv. The fact that we end up with at most 2 · |N∗

exit(v)| many regions can be
proven by an argument on the induced graph GSv .

Since, by Lemma 2.2.20, every simple region S(v, x) with x ∈ N∗
exit(v) contains at most seven

vertices—not counting the vertices v and x which clearly cannot be in N∗
guard(v)—we conclude

from (i)–(iii) that

|N∗
guard(v)| ≤ 7 · |Sv| ≤ 14 · |N∗

exit(v)| ≤ 28 · degGR(v).

From the set inclusion in (2.1) we then get

|V \ V(R)| ≤ |D| + |D| +
∑

v∈D
|N∗

guard(v)| ≤ 2 · |D| + 28
∑

v∈D
degGR(v) ≤ 2 · |D| + 56 · |R|.

2

We now investigate the maximal size of a region in a reduced graph. The worst-case scenario
for a region in a reduced graph is depicted in Fig. 2.7.

2.2 A Linear Problem Kernel for par-dominating set on Planar Graphs 35

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

����������������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����������
����������
����������

����������
����������
����������

����������
����������
����������

����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Type 1:

Type 2:

Worst-case scenario for a region R(v,w): Simple regions S(x, y):

y

wd

u3 u4

u2

v

u1

xy

x

Figure 2.7: The left-hand diagram shows a worst-case scenario (with 55 vertices) for a region R(v,w)

between two vertices v andw in a reduced planar graph (cf. the proof of Proposition 2.2.22). Such a region

may contain up to four vertices from Nexit(v,w), namely u1, u2, u3, and u4. The vertices from R(v,w)

which belong to the sets Nguard(v,w) and Nprison(v,w) can be grouped into so-called simple regions of

Type 1 (marked with a line-pattern) or of Type 2 (marked with a crossing-pattern); the structure of

such simple regions S(x, y) is given in the right-hand part of the diagram. In R(v,w) there might be two

simple regions S(d, v) and S(d,w) (of Type 2), containing vertices from Nprison(v,w). And, we can have

up to six simple regions of vertices from Nguard(v,w): S(u1, v), S(v, u3), S(u4, w), S(w,u2), S(u2, v), and

S(u4, v) (among these, the latter two can be of Type 2 and the others are of Type 1). See the proof of

Proposition 2.2.22 for details.

Proposition 2.2.22 A region R of a plane reduced graph contains at most 55 vertices, i.e.,
|V(R)| ≤ 55.

Proof: Let R = R(v,w) be a region between vertices v,w ∈ V. As in the proof of Lemma 2.2.20,
we count the number of vertices in V(R) ⊆ N[v,w] = N[v] ∪N[w] which belong to Nexit(v,w),
Nguard(v,w), and Nprison(v,w), separately.

We start with counting the number of vertices in Nprison(v,w) ∩ V(R). Since the graph is
assumed to be reduced, by Remark 2.2.10, we know that all vertices in Nprison(v,w) need to be
dominated by a single vertex from Nguard(v,w) ∪Nprison(v,w). Denote by d the vertex which
dominates all vertices in Nprison(v,w). Since all vertices in Nprison(v,w) are also dominated
by v or w, we may write Nprison(v,w) = S(d, v) ∪ S(d,w) where S(d, v) ⊆ N(d) ∩ N(v) and
S(d,w) ⊆ N(d) ∩N(w). In this way, S(d, v) and S(d,w) form simple regions between d and v,
and d andw, respectively. In Fig. 2.7 these two simple regions S(d, v) and S(d,w) (of Type 2) are
horizontally arranged inside R and they are drawn with a crossing pattern. By Lemma 2.2.20 we
know that S(d, v) and S(d,w) both contain at most seven vertices each, not counting the vertices
d, v and d, w, respectively. Since d may be from Nprison(v,w), we obtain |Nprison(v,w)∩V(R)| ≤
2 · 7+ 1 = 15.

It is clear that vertices in Nexit(v,w) ∩ V(R) need to be on the boundary of R, since, by
definition of Nexit(v,w), they have a neighbor outside N(v,w). The region R is enclosed by two

36 Data Reduction

paths P1 and P2 between v and w of length at most three each. Hence, there can be at most
four vertices in Nexit(v,w)∩V(R), where this worst-case holds if P1 and P2 are disjoint and have
length exactly three each. Consider Fig. 2.7, which shows a region enclosed by two such paths.
Suppose that the four vertices on the boundary besides v and w are u1, u2, u3, and u4.

Finally, we count the number of vertices in Nguard(v,w) ∩ V(R). It is important to note
that, by definition of Nguard(v,w), every such vertex needs to have a neighbor in Nexit(v,w)

and at the same time needs to be a neighbor of either v or w (or both). Hence, Nguard(v,w) =⋃4
i=1(S(ui, v) ∪ S(ui,w)), where S(ui, v) ⊆ N(ui) ∩N(v) and S(ui,w) ⊆ N(ui) ∩N(w). All the

sets S(ui, v) and S(ui,w), where 1 ≤ i ≤ 4, form simple regions inside R. Due to planarity,
however, there cannot exist all eight of these regions. In fact, in order to avoid crossings, the
worst-case scenario is depicted in Fig. 2.7 where six of these simple regions exist.7 Concerning
the type of these simple regions, it is not hard to verify, that in the worst-case there can be
two among these six regions of Type 2, the other four of them being of Type 1. In Fig. 2.7, the
simple regions S(u2, v) and S(u4, v) are of Type 2 (having two connections to vertices outside
the simple region), and the simple regions S(u1, v), S(u2,w), S(u3, v), and S(u4,w) are of Type
1 (having only one connection to vertices outside the region; a second connection to vertices
outside the region is not possible because of the edges {u1, v}, {u2,w}, {u3, v}, and {u4,w}). In
summary, the worst-case number of vertices in Nguard(v,w) ∩ V(R) is given by four times the
number of vertices of a simple region of Type 1 and two times the number of vertices of a
simple region of Type 2; each time, of course, excluding vertices from {u1, u2, u3, u4, v,w}. By
Lemma 2.2.20 this amounts to |Nguard(v,w) ∩ V(R)| ≤ 4 · (3+ 2 · 1) + 2 · (3+ 2 · 2) = 34.8

The claim now follows from the fact that V(R) = {v,w} ∪ (V(R) ∩ Nprison(v,w)) ∪ (V(R) ∩
Nexit(v,w)) ∪ (V(R) ∩Nguard(v,w)), which yields |V(R)| = 2+ 15+ 4+ 34 = 55. 2

We now piece all arguments together to give a complete proof of Proposition 2.2.11. We first
of all observe that, for a graph G with minimum dominating set D, by Proposition 2.2.17 and
Lemma 2.2.16, we can find a D-region decomposition R of G with at most 3ds(G) regions, i.e.,
|R| ≤ 3ds(G). By Proposition 2.2.22, we know that

|V(R)| ≤
∑

R∈R
|V(R)| ≤ 55|R|.

By Proposition 2.2.21, we have |V \ V(R)| ≤ 2|D| + 56|R|. Hence, we get

|V | ≤ 2|D| + 111|R| ≤ 335 ds(G).

This finishes the proof of Proposition 2.2.11.

7Observe that regions S(u1 , w) and S(u3 , w) would cross the regions S(u2 , v) and S(u4 , v), respectively.
8Note that for the size of, e.g., a region S(ui, v) we do not have to count ui and v, since they are not vertices

in Nguard(v, w).

Appendix 37

Appendix

Proof of Lemma 2.2.4:
We first of all discuss the planar case. To carry out Rule 1, for each vertex v of the given planar
graph G we first have to determine the neighbor sets Nexit(v), Nguard(v), and Nprison(v). By
definition of these sets, one easily observes that it is sufficient to consider the subgraph G that
is induced by all vertices that are connected to v by a path of length at most two. To do so, we
employ a search tree of depth two, rooted at v. We perform two phases.

In phase 1, constructing the search tree we determine the vertices from Nexit(v). Each
vertex of the first level (i.e., at distance one from the root v) of the search tree that has a
neighbor at the second level of the search tree belongs to Nexit(v). Observe that it is enough
to stop the expansion of a vertex from the first level as soon as its first neighbor in the second
level is encountered. Hence, denoting the degree of v by deg(v), phase 1 takes time O(deg(v)),
because there clearly are at most 2 · deg(v) tree edges and at most O(deg(v)) non-tree edges to
be explored. The latter holds true since these non-tree edges all belong to the subgraph of G
induced by N[v]. Since this graph is clearly planar and |N[v]| = deg(v) + 1, the claim follows.

In phase 2, it remains to determine the sets Nguard(v) and Nprison(v). To get Nguard(v), one
basically has to go through all vertices from the first level of the above search tree that are not
already marked as being in Nexit(v), but have at least one neighbor in Nexit(v). All this can
be done within the planar graph induced by N[v], using the already marked Nexit(v)-vertices,
in time O(deg(v)). Finally, Nprison(v) simply consists of vertices from the first level that are
neither marked being in Nexit(v) nor marked being in Nguard(v). In summary, this shows that
for vertex v, the sets Nexit(v), Nguard(v), and Nprison(v) can be constructed in time O(deg(v)).

Once having determined these three sets, the sizes of which all are bounded by deg(v), it
is clear that the possible removal of vertices from Nguard(v) and Nprison(v) and the addition
of a vertex and an edge as required by Rule 1 all can be done in time O(deg(v)). Finally, it
remains to analyze the overall complexity of this procedure when going through all n vertices
of G = (V, E). But this is easy. The running time can be bounded by

∑
v∈VO(deg(v)). Since G

is planar, this sum is bounded by O(n), i.e., the whole reduction takes linear time.

For general graphs, the method described above leads to a worst-case cubic time implemen-
tation of Rule 1. Here, one ends up with the sum

∑
v∈VO((deg(v))2) = O(n3). 2

Proof of Lemma 2.2.6:
To prove the time bounds for Rule 2, basically the same ideas as for Rule 1 apply (cf. proof
of Lemma 2.2.4). Instead of a depth two search tree, one now has to argue on a search tree
where the levels indicate the minimum of the distances to vertex v and w. Hence, we associate
the vertices v and w to the root of this search tree. The first level consists of all vertices
that lie in N(v,w) (i.e., at distance one from either of the vertices v or w). Determining the
subset Nprison(v,w) means to check whether some vertex on the first level has a neighbor on
the second level. We do the same kind of construction as in Lemma 2.2.4. The running time
again is determined by the size of the subgraph induces by the vertices that correspond to the
root and the first level of this search tree, i.e., by G[N[v,w]] in this case. For planar graphs,
we have |G[N[v,w]]| = O (deg(v) + deg(w)). Hence, we get

∑
v,w∈VO (deg(v) + deg(w)) as an

38 Data Reduction

upper bound on the overall running time in the case of planar graphs. This is upperbounded by

O(
∑

v∈V
(n · deg(v) +

∑

w∈V
deg(w))) = O(n2).

Since, in case of general graphs, we have |G[N[v,w]]| = O
(
(deg(v) + deg(w))2

)
, we trivially

obtain the upper bound
∑
v,w∈VO((deg(v) + deg(w))2) = O(n4) for the overall running time.2

Proof of Lemma 2.2.18:
Let u ∈ Nexit(v) for some v ∈ D and assume that u /∈ V(R). By definition of Nexit(v), there
exists a vertex u ′ ∈ N(u) with u ′ /∈ N[v]. We distinguish two cases. Either u ′ ∈ D or u ′ needs
to be dominated by a vertex w ∈ D with w 6= v. If u ′ ∈ D, we consider the (degenerated)
region consisting of the path 〈v, u, u ′〉. Since R is assumed to be maximal, this path must cross
a region R ∈ R. But this implies that u ∈ V(R), a contradiction.

In the second case (i.e., if u ′ is dominated by some other vertex w 6= v), we consider
the (degenerated) region consisting of the path 〈v, u, u ′,w〉. Again, by maximality of R, this
path must cross a region R = R(x, y) ∈ R between two vertices x, y ∈ D. Since, by assumption,
u /∈ V(R), the edge {u ′,w} has to cross R which implies that w lies on the boundary of or inside R
and, hence, w ∈ V(R). However, according to the definition of a D-region decomposition, the
only vertices from D that are in V(R) are x, y. Hence, w.l.o.g., x = w. At the same time u ′

must lie on the boundary of R, otherwise u ∈ V(R). By definition of a region, there exists a
path P of length at most three between w and y that goes through u ′ and that is part of the
boundary of R. We claim that u ′ is a neighbor of y: If this were not the case, the edge {u ′,w}

would be on P. We already remarked, however, that the edge {u ′,w} crosses R and, thus, cannot
lie on the boundary, a contradiction to u ′ not being neighbor of y. We know that u ′ /∈ N(v),
hence, y 6= v. But then, the (degenerated) region R ′ consisting of the path {v, u, u ′, y} is a region
between two vertices v and y in D, which does not cross (it only touches R) any region in R.
For the D-region decomposition R ′ := R ∪ {R ′}, we have u ∈ V(R ′) \ V(R), contradicting the
maximality of R. 2

Proof of Lemma 2.2.20:
Let R = R(v,w) be a simple region of Type i between vertices v and w. We will show
that |V(R)| ≤ 5 + 2i. The worst-case simple regions are depicted in Fig. 2.6. Firstly, let us
count the number of vertices in V(R) which belong to Nexit(v,w) ∪Nguard(v,w). Clearly, only
vertices on the boundary (except for v and w) can have a neighbor outside R. Thus, all vertices
in Nexit(v,w) ∩ V(R) lie on the boundary of R. By definition of a simple region of Type i,
we have |Nexit(v,w) ∩ V(R)| ≤ i. Moreover, it is easy to see that, by planarity, every vertex
in Nexit(v,w) ∩ V(R) can contribute at most one vertex to Nguard(v,w) ∩ V(R). Hence, we get
|(Nexit(v,w) ∪Nguard(v,w)) ∩ V(R)| ≤ 2i

Secondly, we determine the number of vertices in Nprison(v,w) ∩ V(R). Since G is re-
duced, by Remark 2.2.10, we know that these vertices need to be dominated by a single
vertex in Nguard(v,w) ∪ Nprison(v,w). Moreover, since the region is simple, all vertices in
Nprison(v,w) ∩ V(R) are neighbors of both v and w. By planarity, it follows that there can
be at most 3 vertices in Nprison(v,w) ∩ V(R).

In summary, together with the vertices v,w ∈ V(R), we get |V(R)| ≤ 5+ 2i. 2

Chapter 3

Bounded Search Trees

Systematic exhaustive search by a bounded search tree is probably the most commonly used
technique to design “efficient” fixed-parameter algorithms. According to [157],

“[...] at least the majority of efficient FPT algorithms known so far are based on [...]
bounded search trees [...].”

The reason for this is quite obvious. Bounded search trees, in general, have proven to be
particularly easy to describe and to implement, and—compared to other methods—no deep
theoretical background knowledge is necessary to design a search tree algorithm. The analysis
of the search tree size, however, might be complicated.

In Section 3.1, we give a brief introduction to bounded search trees and formalize their
concept in a precise mathematical way (see Subsection 3.1.1). As two easy examples we exhibit
the so-called “degree-branching” method for par-vertex cover on general graphs and for
par-independent set on, e.g., graphs of bounded genus (see Subsection 3.1.2).

The main contribution of this chapter is a time O(8kn) search tree algorithm for par-domi-
nating set on planar graphs (see Section 3.2). The search tree is particularly easy to describe,
yet, the running time analysis is complicated. We observe that a direct application of the
degree-branching method to par-dominating set will fail (see Subsection 3.2.1), forcing us
to consider a so-called “annotated version” of par-dominating set. In order to guarantee a
bounded branching degree in the search tree, some extra work is necessary. For that purpose,
we introduce some reduction rules according to which the graph will be reduced in each search
tree node (see Subsection 3.2.2). The technically most intricate part is to prove a new branching
theorem which guarantees the existence of a low degree branching vertex in a reduced instance
(see Subsection 3.2.3). Finally, it is observed that the branching theorem, in a sense, is optimal
(see Subsection 3.2.4).

3.1 Background

Bounded search trees basically solve the problem on a given input instance in an exhaustive
manner. More precisely, the central idea is to replace the current instance (I, k) by a set of

40 Bounded Search Trees

instances (I1, k1), . . . , (Im, km) with smaller parameters, i.e., ki < k for all 1 ≤ i ≤ m, and then
to recursively apply this procedure to the replaced instances.

3.1.1 The Concept of Bounded Search Trees

The most important ingredient which already specifies a bounded search tree algorithm is given
by what we call “branching rule.” In the following definition, we use ℘ to denote the power set.

Definition 3.1.1 Let L ⊆ Σ∗ × N be a parameterized problem. A mapping

Φ : Σ∗ × N→ ℘(Σ∗ × N), (x, k) 7→ Φ((x, k)),

is called a branching rule if

(i) Φ is computable in time polynomial in |x| and k.

(ii) (x, k) ∈ L if and only if there exists some (x ′, k ′) ∈ Φ((x, k)) such that (x ′, k ′) ∈ L.

(iii) for all (x ′, k ′) ∈ Φ((x, k)), we have k ′ < k.

For a branching rule Φ and an instance (x, k), we define the branching vector1 to be the multiset

∆Φ((x, k)) := {k− k ′ | (x ′, k ′) ∈ Φ((x, k)) }.

A search tree algorithm for a parameterized problem L is specified by a branching rule Φ and
some “termination condition” τ : Σ∗ → {true, false}.2 Using these specifications, the algorithm
formally proceeds as shown in Fig. 3.1.

We now briefly discuss the algorithm scheme of Fig. 3.1. Since, in each step, the current
problem parameter is reduced, the recursion in this algorithm finally terminates. For the cor-
rectness of the approach, it is clear that by property (ii) of Definition 3.1.1, we have (x, k) ∈ L
if and only if (xi, ki) ∈ L for some instance (xi, ki) which is associated with a leaf node i of the
search tree T as constructed in the algorithm in Fig. 3.1.

The size of the search tree clearly depends solely on the amount by which the problem
parameter is reduced in each “branch,” i.e., it depends on the branching vectors ∆Φ((x, k)) that
appear in T .

Suppose ∆ := {d1, . . . , dq} is some fixed branching vector. Assuming that all branchings in
the tree had this branching vector, an upper bound on the size of the search tree is easy to
obtain by solving the homogeneous difference equation for the number of leaves in the tree:

Sk =
∑

d∈∆
Sk−d, with Si = 1 for i ≤ 0.

1In the literature, the branching vector is the multiset ∆Φ((x, k)) together with some ordering. However, since
the ordering is irrelevant we prefer the notion as a multiset.

2A termination condition will always be easy compute. More precisely, we assume that on input (x, k) com-
puting τ(x) and, if τ(x) = true, verifying whether (x, k) ∈ L can be done in time polynomial in |x| and k.

3.1 Background 41

procedure construct search tree (branching rule Φ, termination rule τ)

/* input: an instance (x, k) */
/* output: a search tree for (x, k) specified by */
/* the branching rule Φ and the termination rule τ. */

◦ create a tree T = (V, F), where each node i ∈ V of the tree is associated with a problem
instance, recursively as follows:

◦ associate the instance (x, k) with the root of T .

◦ let i be a node with which we associate the instance (xi, ki)

Case 1: if ki > 0 and τ(xi) = false then

- apply the branching rule Φ to (xi, ki). Let ji = |Φ((xi, ki))|.

- create children i1, . . . , iji of i.

- associate the ji instances of Φ((xi, ki)) with these nodes.

Case 2: if ki ≤ 0 or τ(xi) = true then i is a leaf of the tree.

Figure 3.1: General scheme of a search tree algorithm specified by a branching rule Φ and termination

condition τ.

Here Sℓ denotes the number of leaves of the search tree under the assumption that the instance
associated with its root has parameter value ℓ. The characteristic polynomial of this difference
equation is

zk−
∑

d∈∆
zk−d. (3.1)

According to the general theory of difference equations (see [103, Chapter 2]), if c is a root of
the polynomial in (3.1) with maximum absolute value among all other roots, then Sk is of the
form O(ck) up to a polynomial factor and c is called the branching number that corresponds to
the branching vector ∆. We denote this branching number by bn(∆). Moreover, if c is a single
root, then even Sk = O(ck).3 Since, the size of the search tree is determined by the branching
vector with the biggest branching number, we let

bn(Φ, τ) := max{bn(∆Φ((x, k)) | (x, k) ∈ Σ∗ × N, k > 0, τ(x) = false } (3.2)

denote the global branching number. The above observations are summarized in the following
lemma.

Lemma 3.1.2 Let L be a parameterized problem for which a search tree algorithms is speci-
fied by a branching rule Φ and a termination condition τ. Then the running time on input
instance (x, k) is given by

O(bn(Φ, τ)k · p(|x|, k)),
where p(|x|, k) is the time needed to perform Φ on (x, k), to compute τ(x), and to verify whether
(x, k) ∈ L in case τ(x) = true.

3For the branching vectors that appear in our setting, c is always real and will always be a single root.

42 Bounded Search Trees

3.1.2 The Degree-Branching Method

In this subsection, as a “warm-up,” we provide some easy examples of search tree algorithms for
par-vertex cover, on the one hand, and for par-independent set, on the other hand. Both
examples have in common that the branching rule which specifies the search tree algorithm is
based on the investigation of the closed neighborhood N[v] of some vertex v. Since the branching
number will depend on the degree of this vertex v, we call such a strategy “degree-branching.”

3.1.2.1 An Easy Search Tree for par-Vertex Cover

The base for a simple search tree algorithm lies in the following easy observation.

Observation 3.1.3 Let V ′ be a minimum vertex cover of a graph G = (V, E). Then, for every
vertex v ∈ V, either v ∈ V ′ or N(v) ⊆ V ′. Moreover, for every vertex v ∈ V ′, we have
vc(G) = vc(G− v) + 1

This suggests to choose a vertex v (of degree at least one) in each branch, and put either v or
all of its neighbors N(v) in the vertex cover we seek for. The parameter is reduced by one in the
first case and by |N(v)| in the latter case. We will stop if no further edge needs to be covered,
i.e., we use the termination condition τ(G) = true if and only if E(G) = ∅. In the following we
only deal with graph instances G for which τ(G) = false. The branching rule formally reads
as follows

Φ((G, k)) :=
{
(G− v, k− 1), (G−N(v), k− degG(v))

}
, (3.3)

where v is some vertex in V(G) with degG(v) > 0. The corresponding branching vector clearly
is ∆d := {1, d} where d = degG(v). The branching number bn(∆d) satisfies the equation

zd−1 (z− 1) = 1, (3.4)

and, hence, we get bn(∆d) > bn(∆d+1) for d ≥ 1.
This means that the higher the degree degG(v) of the chosen vertex v, the better the branch-

ing number will be. As a consequence, the global branching number (see Eq. (3.2)) is given
by bn(Φ, τ) = bn(∆1) = 2 which means that this search tree algorithm has running time O(2kn)

according to Lemma 3.1.2.

To further improve the running time, we observe that a vertex v with degG(v) = 1 can be
treated in a very simple way without any branching. Since it is always optimal to take N(v) for
such a vertex we improve the branching rule using the following case distinction.

Case 1: If there exists a vertex v ∈ V(G) with degG(v) = 1 then Φ((G, k)) := {(G−N(v), k−1)}.

Case 2: If all vertices in V(G) have degree more than one then
Φ((G, k)) := {(G− v, k− 1), (G−N(v), k− degG(v))} , for some v ∈ V(G).

Case 1 has branching vector {1} with corresponding branching number 1. The worst-case branch-
ing number in Case 2 is achieved if we use a vertex v with degG(v) = 2, we now get a branching

3.1 Background 43

number bn(∆2) ≈ 1.618 (which is a root of Eq. (3.4) with d = 2), implying a time O(1.618k |G|)

algorithm.

We further improve the running time if we find a suitable branching for a vertex of degree
two, which has a smaller branching number than bn(∆3) ≈ 1.4656. Suppose v is a vertex with
neighbors N(v) = {v1, v2}. Again we branch by either choosing N(v) to be in the vertex cover
or v itself. Note that it is always at least as good to take N(v) in the vertex cover as v together
with any one of the vertices from N(v). Hence, if we use v in one branch, we may delete N(v)

and use N(N(v)) in order to cover all edges between N(v) and N(N(v)). If we assume that there
exists no vertex of degree one then we know that |N(N(v))| ≥ 2. This results in the following
more advanced branching rule.

Case 1: If there exists a vertex v ∈ V(G) with degG(v) = 1 thenΦ((G, k)) := {(G−N(v), k−1)}.

Case 2: If there exists a vertex v ∈ V(G) with degG(v) = 2 then
Φ((G, k)) := {(G−N(N(v)), k− |N(N(v))|), (G−N(v), k− 2)}.

Case 3: If all vertices in V(G) have degree at least three then
Φ((G, k)) := {(G− {v}, k− 1), (G−N(v), k− degG(v))} , for some v ∈ V(G).

The worst-case branching vector for Case 2 is given by {2, 2} (if |N(N(v))| = 2), and the worst-
case branching vector for Case 3 now is ∆3 = {1, 3}. Since, bn({2, 2}) =

√
2 (which is a root of

the polynomial z2− 2 = 0) and bn(∆3) ≈ 1.4656 (which is a root of the polynomial in Eq. (3.4)
with d = 3), we obtain an algorithm with running time O(1.4656k|G|).

This “game” of steadily refining the branching rule can be continued, at each step making
the case distinction more and more intricate. In the literature, we find a whole sequence of
contributions (see [32, 156, 180, 56]) in this direction with a current record base of approxi-
mately 1.2852.

3.1.2.2 An Easy Search Tree for par-Independent Set

The statement corresponding to Observation 3.1.3, in the case of par-independent set, reads
as follows.

Observation 3.1.4 Let V ′ be a maximum independent set of a graph G = (V, E). Then, for
every vertex v ∈ V, at least one vertex from N[v] belongs to V ′. Moreover, for every vertex
v ∈ V ′, we have is(G) = is(G−N[v]) + 1.

With this observation at hand, it is clear that, for a given vertex v of a graph G, we decide
to choose, in each branch, a vertex u from N[v] to be in the independent set we seek for. If we
decide to take u in the independent set, we reduce the problem parameter by one, and we have
to remove u together with all neighbors of u from the graph. Formally, the branching rule is
given by

Φ((G, k)) :=
⋃

u∈N[v]

{
(G−N[u], k − 1)

}
(3.5)

44 Bounded Search Trees

for some vertex v ∈ V(G). We call v the branching vertex. Suppose the degree of the branching
vertex v is d := degG(v), then the corresponding branching vector is the multiset ∆d := {1, . . . , 1}

with |N[v]| = d + 1 elements. Consequently, the branching number is bn(∆d) = d + 1. As a
termination condition we use τ(G) = true if and only if V(G) = ∅.

Unfortunately, if we try to construct a search tree specified by the branching rule Φ and the
termination condition τ, the global branching number bn(Φ, τ) (see Eq. (3.2)) may be unbounded
since there is no constant c such that an arbitrary graph G always contains a branching vertex
of degree bounded by c.

On a suitably restricted graph class, however, the above given degree-branching yields a
bounded search tree.

Lemma 3.1.5 Suppose we are given a graph class G that is closed under taking subgraphs and
that guarantees a vertex of degree d for some constant d.4 Then par-independent set on G
can be solved in time

O((d+ 1)k |G|),

using a bounded search tree algorithm. Here, k is the size of the independent set we seek for.

Proof: We use a search tree specified by the termination rule τ above and the branching rule
given in (3.5). Here, for a graph G, the branching vertex v to be chosen is such that degG(v) ≤ d.
By assumption such a vertex always exists in G. By the discussion preceding this lemma we
obtain bn(Φ, τ) = d+ 1. Lemma 3.1.2 implies the claimed running time, since Φ can be carried
out in time O(|G|). 2

We finish the discussion by providing an example of a graph class which fulfills the as-
sumptions of Lemma 3.1.5. Recall from Section 1.2 the class G(Sg) of graphs that admit a
crossing-free embedding on the surface Sg of genus g.

Lemma 3.1.6 A graph G ∈ G(Sg) always contains a vertex of degree bounded by

dg := ⌈2(1+
√
3g+ 1)⌉ for g > 0 and d0 := 5.

Proof: The proof is deferred to the Appendix at the end of this chapter. 2

Remark 3.1.7 We remark that the value dg = ⌈2(1 +
√
3g+ 1)⌉ is optimal in the following

sense: Let dopt
g := maxG∈G(Sg) minv∈V(G) degG(v) be the smallest number such that each graph

in G(Sg) admits a vertex of degree at most dopt
g . Then, it holds that there is a sequence (gn)n∈N

such that dgn = d
opt
gn for all n ∈ N.

To see this, first observe that by Lemma 3.1.6, we have dopt
g ≤ dg. Conversely, by a famous

result of Ringel and Youngs [168], we know that the genus of the complete graph Kn with n
vertices is

g(Kn) = ⌈(n− 3)(n− 4)/12⌉ .
On the one hand, some easy arithmetic shows that dg(Kn) ≤ n−1 if n ≥ 15. On the other hand,

since all vertices in Kn have degree n− 1, we obtain n− 1 ≤ dopt
g(Kn)

. This gives us dopt
g = dg for

all g ∈ {g(Kn) | n ≥ 15}.
4This means that, for each G ∈ G, there exists a v ∈ V(G) with degG(v) ≤ d.

3.2 A Bounded Search Tree for par-Annotated Dominating Set on Planar Graphs 45

3.2 A Bounded Search Tree
for par-Annotated Dominating Set on Planar Graphs

The search trees for par-vertex cover and par-independent set from the previous sub-
section were easy to derive. In the case of par-dominating set the situation is much more
intricate. We will see in the following that we encounter difficulties when directly carrying over
the degree-branching method to the par-dominating set problem. In search for an analogue
to Observation 3.1.4, we find the following.

Observation 3.2.1 Let V ′ be a minimum dominating set of a graph G = (V, E). Then, for
every vertex v ∈ V, at least one vertex from N[v] belongs to V ′.

This again suggests to perform a degree-branching for some branching vertex v, i.e., to
choose—in each branch—some vertex u ∈ N[v] to belong to the dominating set. However, it
is not clear, in which way the graph must be modified in a branch corresponding to the choice
of u:

On the one hand, if we decide to choose u to belong to the dominating set, we might be
tempted to remove N[u] from the graph, since these vertices are already dominated. This would
correspond to what was done by the branching rule Φ as defined in the assignment of (3.5)
for par-independent set. However, this mapping fails to be a branching rule in the case of
par-dominating set. This is due to the fact that with the choice of u being in the dominating
set the neighbors N(u) still are suitable candidates for an optimal dominating set, and, hence,
must not be removed from the graph.5

On the other hand, if we decide to choose u to belong to the dominating set and still want
to preserve the possibility of taking one of its neighbors, we might consider the mapping

Φ((G, k)) :=
⋃

u∈N[v]

{
(G− u, k− 1)

}
.

Here, in each branch, instead of removing the closed neighborhood N[u], we only remove u
from the graph. Again, this is not a branching rule for par-dominating set, since—in the
graph G−u—we lose the information that with the choice of u being in the dominating set, the
vertices in N(u) are already dominated.6

These considerations lead us to formulate a generalization of the dominating set problem,
where there are two kinds of vertices in our graph: “regular” vertices which still need to be
dominated and vertices which are already dominated but still are suitable candidates to be
chosen for the dominating set we seek for.

5One may verify, that, unlike in the situation for par-independent set (see Observation 3.1.4), for a vertex u
that belongs to an optimal dominating set, ds(G) < ds(G −N[u]) + 1 may well happen.

6One may verify, that ds(G) < ds(G − u) + 1 is possible for a vertex u that belongs to an optimal dominating
set.

46 Bounded Search Trees

3.2.1 Degree-Branching for Annotated Dominating Set

We use the following generalization of dominating set.

Definition 3.2.2 Annotated dominating set is the optimization problem (I, F, c,min) which
is defined as follows:

(i) The set of instances I consists of all graphs G = (B∪̇W,E) with two disjoint sets B of black
and W of white vertices. Such graphs will be called black and white graphs.

(ii) A feasible solution for a black and white graph is a set V ′ of B ∪W which dominates all
black vertices, i.e., B ⊆ N[V ′]. We call such a set V ′ an annotated dominating set.

(iii) The cost for a feasible solution V ′ is given by cQ(V ′) := |V ′|.

We denote by ads(G) the size of the smallest annotated dominating set in a black and white
graph G.

In other words, only black vertices need to be dominated in this setting. In this sense, a
white vertex can be interpreted as a vertex which is already dominated but still is a valid choice
to be in the (annotated) dominating set.

In the rest of this section we will establish the following main result. We follow parts of [6].

Theorem 3.2.3 par-Annotated dominating set on planar graphs can be solved, using a
bounded search tree algorithm, in time O(8kn), where n is the number of vertices of an input
graph and k is the size of the (annotated) dominating set we seek for.

In combination with the linear problem kernel (see Theorem 2.2.1) we get the following.

Corollary 3.2.4 par-Dominating set on planar graphs can be solved in time O(8kk+ n3).

Remark 3.2.5 Downey and Fellows [80, 82] claimed a search tree algorithm for par-annotated
dominating set running in time O(11kn). The analysis of their algorithm, however, turned
out to be flawed. Hence, Theorem 3.2.3 seems to give the first correctly analyzed fixed-parameter
algorithm for par-dominating set on planar graphs with running time O(ckn) for small con-
stant c that even improves the previously claimed constant.

Discussion of the proof of Theorem 3.2.3. We will pursue a degree-branching strategy
similar to the one presented for par-independent set in Subsection 3.1.2.2. Indeed, for par-
annotated dominating set, we have a complete analogy to Observation 3.1.4.

Observation 3.2.6 Let V ′ be a minimum annotated dominating set of a black and white graph
G = (B∪̇W,E). Then, for every vertex v ∈ B, at least one vertex from N[v] belongs to V ′.
Moreover, for every vertex v ∈ V ′, we have ads(G) = ads(G⊖ v) + 1.

Here, we define G⊖v to be the black and white graph that is obtained by removing v (together
with all adjacent edges) and letting all neighbors N(v) be white.

3.2 A Bounded Search Tree for par-Annotated Dominating Set on Planar Graphs 47

Proof: It is obvious that at least one vertex from N[v] belongs to V ′. (compare with Observa-
tion 3.2.1). We show that ads(G) = ads(G⊖v)+1 if v belongs to V ′. Suppose V ′′ is a minimum
annotated dominating set of G⊖ v. Then, clearly, V ′′ ∪ {v} is an annotated dominating set for G
and, hence, ads(G) ≤ ads(G⊖v)+1. Conversely, in order to show that ads(G) ≥ ads(G⊖v)+1,
we claim that V ′ \ {v} is an annotated dominating set for G⊖v. To see this, observe that a black
vertex u in G⊖ v is at distance at least two to v in G (since N(v) are all white vertices in G⊖ v
by definition of the operation “⊖”). This implies that u must be dominated by some vertex in
V ′ \ {v} in G and, hence, in G⊖ v. 2

As a result, the mapping

Φ((G, k)) :=
⋃

u∈N[v]

{
(G⊖ u, k− 1)

}
, (3.6)

where v is some black vertex v in the black and white graph G, is a branching rule for par-
annotated dominating set. If degG(v) = d, the branching vector is the multiset ∆d =

{1, . . . , 1} of order d + 1 with the branching number bn(∆d) = d + 1 (as defined in Sub-
section 3.1.1). Since we require to dominate all black vertices only, we use the termination
rule τ(G = (B∪̇W,E)) = true if and only if B = ∅.

As in Subsection 3.1.2.2, the global branching number bn(Φ, τ) may be unbounded since
there is no constant c such that an arbitrary black and white graph G always contains a black
branching vertex of degree bounded by c.

Clearly, if we restrict ourselves to the class Gdeg≤d of (black and white) graphs of bounded
degree d, then bn(Φ, τ) ≤ d+1 and we obtain a timeO((d+1)kn) algorithm for par-annotated
dominating set on Gdeg≤d.

An extension of this result to planar graphs, however, is not immediately possible. The
reason for this is that—even though every planar graph has a vertex of degree at most 5—for
a black and white graph, it is not necessarily the case that we find a black vertex of degree
bounded by 5 that could be used as a branching vertex. A simple counterexample is, e.g., given
by a star which n vertices consisting of a single black vertex of degree n − 1 and n − 1 white
vertices of degree one. In this case, branching rule (3.6) would create a branch with branching
number n (sic!).

This shows that establishing a time O(ckn) search tree algorithm for par-annotated do-
minating set on planar graphs needs some extra work that avoids such situations. To this end,
in each node of the search tree, we will transform the current instance into an instance that is
equivalent in terms of being member of the language, but which guarantees a black branching
vertex of bounded degree. More precisely, in Subsection 3.2.2 and Subsection 3.2.3 we will prove
that there exists a transformation Γ on the set of black and white graphs which can be computed
in linear time, such that, for a black and white graph G,

(i) ads(G) = ads(Γ(G)) (see Lemma 3.2.9), and

(ii) there exists a black vertex of degree at most 7 in Γ(G) (see Corollary 3.2.11).

48 Bounded Search Trees

u
u2u1

u

u3u1

u

u2 u3u1 u2

u

bw-Rule 1 bw-Rule 2 bw-Rule 3.1 bw-Rule 3.2 bw-Rule 4

Figure 3.2: Illustration of the settings in which bw-Rules 1, 2, 3, and 4 apply.

Combining Γ and the mapping Φ from (3.6) we obtain the branching rule

Ψ : (G, k) 7→
⋃

u∈NΓ (G)[v]

{(Γ(G) ⊖ u, k− 1)} , (3.7)

where v is chosen to be a black vertex in V(Γ(G)) with degΓ(G)(v) ≤ 7.
From the previous discussion it is clear the search tree specified by Ψ and the termination

rule τ has global branching number bn(Ψ, τ) ≤ 8 (see Eq. (3.2)). Since Ψ can be computed in
linear time, Theorem 3.2.3 follows from Lemma 3.1.2. 2

3.2.2 Further Reduction Rules

In order to define the transformation Γ mentioned in the previous section, we consider the
following reduction rules for simplifying a black and white graph instance of the annotated
dominating set problem (see Fig. 3.2 for an illustration).

bw-Rule 1 Delete edges between white vertices.

bw-Rule 2 Let u be a white vertex u of degree 1. Then, delete u.

bw-Rule 3 Let u be a white vertex u of degree 2, with two black neighbors u1 and u2.

(3.1) If u1 and u2 are connected by an edge, then delete u.

(3.2) If u1 and u2 are connected via a third (black or white) vertex u3, then delete u.

bw-Rule 4 Let u be a white vertex of degree 3, with three black neighbors u1, u2 and u3. If the
edges {u1, u2} and {u2, u3} are present in G (and possibly also {u1, u3}), then delete u.

The following result shows that all reduction rules are sound.

Lemma 3.2.7 Let G be a black and white graph and let G ′ be the resulting graph after having
applied bw-Rule i (for some 1 ≤ i ≤ 4) to G. Then ads(G) = ads(G ′).

Proof: bw-Rule 1 is correct since a vertex set D is an annotated dominating set for G if and
only if it is an annotated dominating set for G ′.

3.2 A Bounded Search Tree for par-Annotated Dominating Set on Planar Graphs 49

For all other rules, observe that removing a white vertex u always implies that ads(G) ≤
ads(G−u), hence, for the remaining rules, we only need to show that ads(G) ≥ ads(G−u) holds.
We assume now that D is an annotated dominating set for G. We show that, in all remaining
cases, we can construct an annotated dominating set of the same size. Let u be the white vertex
considered in the corresponding rule. If u /∈ D then D also is an annotated dominating set
for G ′. Suppose that u ∈ D.

In the case of bw-Rule 2 let D ′ := (D \ {u}) ∪NG(u).

In the case of bw-Rule 3.1 let D ′ := (D \ {u}) ∪ {u1}.

In the case of bw-Rule 3.2 let D ′ := (D \ {u}) ∪ {u3}.

In the case of bw-Rule 4 let D ′ := (D \ {u}) ∪ {u3}.

It is easy to verify that in all of the cases the set D ′ is an annotated dominating set for G ′

with |D ′| = |D|. 2

Definition 3.2.8 Let G be a black and white graph such that bw-Rule i cannot be applied (1 ≤
i ≤ 4). Then we say that G is reduced with respect to this rule.

Given a black and white graph G, we can apply bw-Rule 1 to all edges between white vertices
and then apply bw-Rules 2, 3, and 4 (if possible) to all white vertices of degree one, two, and
three to obtain a black and white graph G ′ which is reduced with respect to all these rules.
Below, we will see that reducing a graph with respect to bw-Rules 1, 2, 3.1, and 4 can be done
in linear time. It is not clear, however, how to reduce a graph with respect to bw-Rule 3.2 in
linear time.7 Here, a certain technicality comes into play to keep the overall running time linear
(see [105]): When transforming G into G ′, we only apply bw-Rule 3.2 to white vertices u with
neighbors N(u) = {u1, u3}, for which either u1 or u3 has at most seven neighbors that have
degree at least 4.

Let Γ be the transformation which maps G to G ′.

Lemma 3.2.9 The transformation Γ can be computed in linear time. And, for a black and
white graph G, we have ads(G) = ads(Γ(G)).

Proof: The fact that ads(G) = ads(Γ(G)) follows from Lemma 3.2.7.

We now argue that reducing a graph with respect to bw-Rules 1, 2, 3.1, 3.2 (when applied
only to white vertices u, for which either u1 or u3 has at most seven neighbors that are of degree
at least 4) and 4 can be done in linear time.

In case of bw-Rule 1 and bw-Rule 2 this is clear, since all edges between white vertices and
all white vertices of degree one can be removed by a single scan of the graph.

In the case of bw-Rule 3.1, for each white vertex of degree two, we determine the neighbors u1
and u2 and ask the query whether {u1, u2} is an edge in G. If this is the case, we remove u. In
total we have to answer at most O(n) queries of this form, which can be done in linear time by
sorting the edges and the queries via radix sort.

7It was stated in [6] that a graph can be reduced with respect to all rules in linear time. Thanks go to Torben
Hagerup who noticed this inaccuracy and suggested a fix of the flaw [105].

50 Bounded Search Trees

In the case of bw-Rule 4, for each white vertex of degree three, we determine the neigh-
bors u1, u2 and u3 and ask the three queries whether any of the sets {ui, uj} (1 ≤ i, j ≤ 3, i 6= j)
is an edge in G. If two of these queries are answered positively, we remove u. In total we have
at most O(n) queries of this form, which can be answered in linear time.

In the case of bw-Rule 3.2, for each white vertex of degree two, we determine the neighbors u1
and u3 of u and check whether one of these vertices has at most seven neighbors that are of
degree at least 4. (Observe that, for fixed u, this can be done in constant time since we only
need to determine the degree of u1 and u3 in the graph G − { v ∈ V(G) : degG(v) ≤ 4 }. These
degrees could have been determined in a preprocessing step in linear time.) If this is not the case
(i.e., if both vertices u1 and u3 have more than seven neighbors of degree at least 4), we leave
the graph unchanged. Otherwise (assuming, w.l.o.g, that u1 has at most seven such neighbors)
we have to check whether u1 is connected to u3 by a vertex v. To answer this, we ask for each
of the at most seven such neighbors v, the queries whether {v, u2} is an edge in G. If one such
query is answered positively, we remove u. In total we have at most O(n) queries of this form,
which can be answered in linear time. It remains to check, whether u1 is connected to u3 by a
vertex v of degree two or three. To cover these cases, we check for each vertex v of degree two
or three, whether there are two neighbors u1 and u3 of v (among which one vertex has to have
at most seven neighbors of degree at least four and) which are connected by a white vertex of
degree two. This needs at most three queries per vertex v, meaning that the total number of
queries again is linear and, hence, can be answered in linear time. 2

3.2.3 A New Branching Theorem

In the course of this subsection, we will prove the following main theorem.

Theorem 3.2.10 If G = (B∪̇W,E) is a connected planar black and white graph that is reduced
with respect to bw-Rules 1, 2, 3, and 4, then there exists a black vertex v ∈ B with degG(v) ≤ 7.

In particular, this theorem implies that our transformation Γ (defined in the previous sub-
section) fulfills the desired property.

Corollary 3.2.11 Let G be a black and white graph, then Γ(G) contains a black vertex of degree
at most 7.

Proof: Let G ′ be the graph obtained when reducing G with respect to bw-Rules 1, 2, 3, and 4.
In particular, each connected component of G ′ is reduced. Hence, there exists a black vertex v
with degG′(v) ≤ 7 (in one such component). The only difference between G ′ and Γ(G) is
that Γ(G) may contain white vertices of degree two where both neighbors have more than
seven neighbors that are of degree at least 4. We argue that degΓ(G)(v) ≤ 7. If this were
not the case, then v must have additional neighbors which are not present in G ′. By the above
observation an additional neighbor must be a white vertex u of degree two where both neighbors
(in particular, the neighbor v) have more than seven neighbors that are of degree at least 4.
Hence, there exist vertices v1, . . . , vℓ ∈ NΓ(G)(v) (ℓ ≥ 8) which are of degree at least 4. Since
these vertices are not removed by any of the reduction rules, it follows that v1, . . . , vℓ ∈ NG′(v)

which implies degG′(v) > 7, a contradiction. 2

3.2 A Bounded Search Tree for par-Annotated Dominating Set on Planar Graphs 51

In the remainder of this subsection we give a proof of our Branching Theorem 3.2.10. To this
end, firstly, using Euler’s formula for planar graphs, we establish a criterion which guarantees
a black vertex of degree at most 7 (see Subsection 3.2.3.1). Secondly, in order to verify this
criterion (see Subsection 3.2.3.3) for a reduced black and white graph G = (B∪̇W,E), we have to
analyze the black induced subgraph G[B] (see Subsection 3.2.3.2). This latter part is technically
demanding.

3.2.3.1 A Technical Lemma

The following technical lemma is based on Euler’s formula (see Eq. (1.2)).

Lemma 3.2.12 Suppose G = (B∪̇W,E) is a connected plane black and white graph with b black
vertices, w white vertices, and m edges. Let the subgraph induced by the black vertices be denoted
H = G[B]. Let cH denote the number of components of H and let fH denote the number of faces
of H. Let

z =
(
3(b+w) − 6

)
−m (3.8)

measure the extent to which G fails to be a triangulation of the plane. If the criterion

3w− 4b− z+ fH− cH < 7 (3.9)

is satisfied, then there exists a black vertex v ∈ B with degG(v) ≤ 7.

Proof: Let the (total) numbers of vertices, edges and faces of G be denoted n,m, f, respectively.
Let mbw be the number of edges in G between black and white vertices, and let mbb denote the
number of edges between black and black vertices. With this notation, we have the following
relationships.

n−m+ f = 2 (Euler’s formula for G (connected)) (3.10)

n = b+w (3.11)

m = mbb+mbw (3.12)

b−mbb+ fH = 1+ cH (Euler’s formula for H (need not be connected)) (3.13)

2n− 4− z = f (by Eq. (3.8), (3.10), and (3.11)) (3.14)

If the lemma were false, then we would have, using (3.12),

8b ≤ 2mbb+mbw = mbb+m. (3.15)

We will assume this and derive a contradiction. The following inequality holds:

3+ cH ≤ n+ b− (mbb+m) + f+ fH (by (3.10) and (3.13))
≤ n+ b− 8b+ f+ fH (by (3.15))
= 3n− 7b+ fH− 4− z (by (3.14))
= 3w− 4b+ fH− 4− z. (by (3.11))

This yields a contradiction to (3.9). 2

In the end, we will use criterion (3.9) to establish Theorem 3.2.10.

52 Bounded Search Trees

F
51

2 4

3

e

da

b c

��������������������������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

������
������
������
������

������
������
������
������

������
������
������
������

������������

������
������
������
������

WF T(WF)

1

2

3

4

5

a

b

c

d

e

Figure 3.3: The left-hand diagram shows a (very simple) example of a face F of a reduced black and

white graph with white vertices {1, 2, 3, 4, 5}. Note that G[B] is not connected in this example. More

precisely, we get cF = 1. The dotted lines {a, b, c, d, e} correspond to possible black-black edges that still

can be drawn inside F in order to triangulate that part of G[B]. Hence, we have wF = tF = 5. Besides,

one can verify that zF = 5. The right-hand diagram shows the construction of the bipartite graph H(WF)

that is needed in the proof of Proposition 3.2.15.

3.2.3.2 Analyzing the Black Subgraph

Let us consider some fixed crossing-free embedding of G in the plane.8

For each face F, of the subgraph G[B] induced by the black vertices, we will determine the
number of white vertices that can possibly sit inside F.

Notation: Let G = (B∪̇W,E) be a plane black and white graph and let F be the set of faces
of G[B]. Then, for each F ∈ F , we let

• wF denote the number of white vertices sitting inside F,

• zF denote the number of edges that would have to be added in order to complete a trian-
gulation of the subgraph of G inside F (including the boundary of F),

• tF denote the number of edges needed to triangulate F in G[B] (that is, triangulating only
between the black vertices on the boundary of F, and noting that the boundary of F may
not be connected), and

• cF denote the number of components of the boundary of F, minus 1.

We refer to the left-hand graph in Fig. 3.3 for an example of the above introduced notion.

The following lemma will be useful for our further analysis.

8Again, for the ease of presentation, since it will always be clear from the context, in the following, we will not
distinguish between a vertex v ∈ V and the point φ(v) in the plane, or an edge e ∈ E and the arc φ(e). Moreover,
we simply write G for the plane graph (G,φ).

3.2 A Bounded Search Tree for par-Annotated Dominating Set on Planar Graphs 53

Lemma 3.2.13 Let G = (V1∪̇V2, E) be a plane graph, where both G[V1] and G[V2] are forests.
Then, the vertices of V1 can be connected in a treelike fashion without destroying planarity. The
number of added edges equals the number of components of G[V1] minus one.

Proof: The proof is deferred to the Appendix at the end of this chapter. 2

The following properties give an interrelation between the numbers wF, tF, and zF.

Proposition 3.2.14 Let G = (B∪̇W,E) be a plane black and white graph that is reduced with
respect to bw-Rule 1, and let F be a face of G[B]. Then, using the notation above, we have

wF+ cF ≤ zF+ 1.

Proof: Consider the “face-graph” GF := G[BF∪WF], where BF is the set of black vertices forming
the boundary of F and WF is the set of white vertices inside F. Note that GF may consist of
several “black components,” connected among themselves through white vertices. Contracting
each of these black components into one (black) vertex, we obtain the bipartite black and white
graph G ′

F. Note that both the black and also the white vertices form independent sets in G ′
F by

the above construction and since G is assumed to be reduced with respect to bw-Rule 1. Clearly,
G ′
F is still planar. Since G ′

F is a bipartite planar graph, the assumptions of Lemma 3.2.13 are
fulfilled (with V1 being the white vertices and V2 being the black vertices) and we can connect
the white vertices among themselves by a tree of wF − 1 white-white edges. Observe that the
resulting black and white graph G ′ again satisfies the assumptions of Lemma 3.2.13 (now, V1
are the black vertices and V2 are the treelike connected white vertices). Thus, in addition, we
can connect the black vertices among themselves by a tree of cF black-black edges. Clearly, this
implies that we can also add at least cF+wF− 1 new edges to GF without destroying planarity.
Hence, we need at least cF + wF − 1 additional edges to triangulate the interior of F in the
graph G. 2

The proof of the following proposition is technically involved. The main difficulty arises from
the fact that the subgraph G[B] need not be connected. To get an insight in the proof strategy,
and for the ease of a more fluent presentation, we restrict ourselves to giving a proof for the
special case when G[B] is connected. For a full proof of the more general situation, the reader
is deferred to the Appendix at the end of this chapter.

Proposition 3.2.15 Suppose G = (B∪̇W,E) is a plane black and white graph which is reduced
with respect to bw-Rule 4. And suppose that deg(u) ≥ 3 for all u ∈W. Let F be a face of G[B].
Then, using the notation above, we have

wF ≤ tF.

Proof (Sketch): As already mentioned, we only give a proof under the assumption that G[B]

is connected. The general situation is treated in a similar way, however, more sophisticated
technical details are needed (see the Appendix of this chapter).

Consider a face F of the black induced subgraph G[B]. Let WF ⊆ W be the set of white
vertices in the interior of F, and let BF ⊆ B denote the black vertices on the boundary of F.

54 Bounded Search Trees

We want to find at least wF = |WF| many black-black edges that can be added to G[B] inside F
without destroying planarity. For that purpose, define the set

Eposs :=
{
e = {b1, b2} | b1, b2 ∈ BF ∧ e /∈ E(G[B])

}

of non-existing black-black edges.

For a subset W ′ ⊆WF, we construct a bipartite graph

H(W ′) := (W ′∪̇T(W ′), E(W ′)) (3.16)

as follows. In H(W ′), the first bipartition set is formed by the vertices W ′ and the second one
is given by the set

T(W ′) :=
{
e = {b1, b2} ∈ Eposs | ∃u ∈W ′ : e ⊆ NG(u)

}
.

The edges in H(W ′) are then given by

E(W ′) :=
{
{u, e} | u ∈W ′, e ∈ T(W ′), e ⊆ NG(u)

}
.

An example for the construction of H(W ′) is illustrated in Fig. 3.3. In this way, the set T(W ′)
gives us vertices in H(W ′) that correspond to pairs e = {b1, b2} of black vertices in BF between
which we still can draw an edge in G[B]. Note that the edge e can even be drawn in the interior
of F, since b1 and b2 are connected by a white vertex in W ′ ⊆WF. In particular, this shows that
|T(WF)| ≤ tF. Hence, if we can find a matchingM in H(WF) which assigns to each vertex u ∈WF
an edgeM(u) ∈ T(WF) we know that wF = |WF| = |M(WF)| ≤ tF, which finishes the proof of this
proposition. The existence of such a matching is due to the following claim (with W ′ = WF).

Claim: For each set W ′ ⊆WF, there exists a W ′-saturated matching in H(W ′), i.e., a matching
in H(W ′) which uses all vertices in W ′.

Proof of the Claim: We prove the claim by induction on the size of the subset W ′ ⊆ WF.
If |W ′| = 0 there is nothing to prove. Now consider some set W ′ ⊆ WF. We argue on the
subgraph G[BF ∪W ′] of the “face graph” GF = G[BF ∪WF]. Let 〈b1, . . . , bm〉 be a clockwise
representation of the face boundary BF—with possible multiple enumeration of some vertices.
As demonstrated in the proof of Proposition 3.2.14, we can connect the white vertices W ′

inside the face F by a tree like-structure. Let u ∈ W ′ be a leaf of this tree and consider the
neighbors N(u) (in BF). Since u is a leaf of the tree, there are two distinct vertices bi1 , bi2 ∈
N(u) ∩ BF, such that N(u) ⊆ {bi1 , bi1+1, . . . , bi2 } and no further vertex from W ′ lies in the
region bounded by 〈u, bi1 , bi1+1, . . . , bi2 , u〉. In particular, due to planarity, no further vertex
from W ′ (except for u) has a neighbor in {bi1+1, . . . , bi2−1}. By assumption, u has at least three
neighbors. Since G is reduced with respect to bw-Rule 4, there must exist a further neighbor
bi3 ∈ {bi1+1, . . . , bi2−1}, such that either the edge {bi1 , bi3 }, or {bi2 , bi3 } is not present in G
(otherwise we could have applied bw-Rule 4 to u). W.l.o.g., assume that eu := {bi1 , bi3 } ∈ T(W ′).

By induction hypothesis, there exists a W ′
0-saturated matching M0 in the subgraph H(W ′

0)

of H(W ′). Note that no further vertex fromW ′
0 := W ′\{u} shares both bi1 and bi3 as a neighbor,

which means that eu /∈ T(W ′
0). Hence, M ∪ {{u, eu}} is a W ′-saturated matching of H(W ′). 2

We remark that the upper bounds in Propositions 3.2.14 and 3.2.15 are sharp as can be seen
from the graph in Fig. 3.3.

3.2 A Bounded Search Tree for par-Annotated Dominating Set on Planar Graphs 55

3.2.3.3 Proving the Branching Theorem

We now are ready to give a complete proof of Theorem 3.2.10. Proving this theorem by contra-
diction, it will be helpful to know that we can assume that a corresponding graph has minimum
degree 3.

Lemma 3.2.16 If there is any counterexample to Theorem 3.2.10, then there is a counterex-
ample where degG(u) ≥ 3 for all u ∈W.

Proof: The proof is deferred to the Appendix at the end of this chapter. 2

Proof (of Theorem 3.2.10): We can assume that if there is a counterexample G = (B∪̇W,E)

then G is connected, but the black subgraph H := G[B] might not be connected. Moreover, by
Lemma 3.2.16, we may assume that degG(u) ≥ 3 for all u ∈ W. Recall the notation from the
previous subsection. We will show that there must exist a black vertex of degree at most 7, by
establishing criterion (3.9) for G: If cH denotes the number of components of H, by induction
on cH, it is easy to see that cH − 1 =

∑
F∈F cF. Also, if z is the number of edges needed to

triangulate G, we get z =
∑
F∈F zF. Hence—using the notation from Lemma 3.2.12—, we have

3w− z− cH+ fH− 4b

=
∑

F∈F
(3wF+ cF− zF+ 1) − 2cH+ 1− 4b

≤
∑

F∈F
(2tF+ 2) − 2cH+ 1− 4b,

here we used Propositions 3.2.14 and 3.2.15 in the last step.

Noting that
∑
F∈F tF is the number of edges needed to triangulate H, we have

∑

F∈F
tF = 3b− 6−mbb.

The number of faces of H is
∑
F∈F 1 = fH = mbb − b + 1 + cH, by Euler’s formula (3.13).

Together, the criterion evaluates as follows

3w− z+ −cH+ fH− 4b ≤ 2(3b− 6−mbb) + 2(mbb− b+ 1+ cH) − 2cH+ 1− 4b = −9.

By Lemma 3.2.12, this guarantees the existence of a vertex v ∈ B with degG(v) ≤ 7. This is a
contradiction to the assumption that G is a counterexample. 2

3.2.4 Optimality of the Branching Theorem

We conclude this section by the observation that, with respect to the set of reduction rules we
introduced in Subsection 3.2.2, the upper bound in our branching theorem is optimal. More
precisely, there exists a planar reduced black and white graph with the property that all black
vertices have degree 7. Such a graph is shown in Fig. 3.4. Moreover, this example can be
generalized towards an infinite set of plane reduced black and white graphs with the property

56 Bounded Search Trees

Figure 3.4: A graph that shows optimality of the bound derived in our branching theorem.

that all black vertices have degree 7. The example given in Figure 3.4 is the smallest of all
graphs in this class. Let us describe this class of sample graphs in the following in more details.
Each of the graphs could be imagined to be drawn on a can or, mathematically speaking, on a
cylinder. On the bottom and the top of the cylinder, we embed the graph depicted in Fig. 3.5
(left-hand diagram). The vertices with numbers 1 through 9 are at the rim of the top or of the
bottom of the can. These numbers are meant as an “interface” to the surface wrapped around
the side face of the can. The (general) graph pattern used on the side face is depicted in Fig. 3.5
(right-hand diagram). It consists of two types of horizontal stripes. If the upper one is denoted
by S2 and the lower one by S△, then consider some sidewall with the pattern described by the
expression S△(S2S△)n for some n ≥ 0. Hereby, the upper row of black vertices in the uppermost
stripe and the lower row of black vertices in the lowermost stripe of the type S△ are numbered
1, 2, 3, 4, 5, 6, 7, 8, 9, 1. Identifying these vertices with the vertices on the rim of the top and the
bottom of the can, respectively, we obtain the “can graph” Gn. The graph Gn has

2 · 9 · n [the side wall] + 2 · 12 [the top and bottom] = 18n+ 24

black vertices (each of degree seven) and

15 · n+ 6 [the side wall] + 2 · 6 [the top and bottom] = 15n+ 18

white vertices (each of degree four). As the reader may verify, G0 is the graph depicted in
Fig. 3.4. Moreover, none of the graphs Gn is reducible by means of any of the rules listed in
Subsection 3.2.2.

It is an interesting and challenging task to ask for further reduction rules that would yield
a provably better constant in the branching theorem. For example, one might think of the
following straightforward generalization of bw-Rule 3.2:

bw-Rule 5 If there is a white vertex u with the property that NG(u) ⊆ NG(v) for some other
(black or white) vertex, then delete u.9

However, the graph in Fig. 3.4 is reduced even with respect to this bw-Rule 5.
9Note that it is not clear how to carry out this reduction rule in linear time.

Appendix 57

8

7

6 5

4

3

2

1

9

6 7 8 9 154321

1 2 3 4 5 6 8 9 17

Figure 3.5: The left-hand diagram shows the top and bottom of the sample can. The right-hand

diagram illustrates the sidewall pattern of the sample can.

Appendix

Proof of Lemma 3.1.6:
It is well-known that every planar graph contains a vertex of degree bounded at most 5 (see
Section 1.2). For g > 0, let G = (V, E) ∈ G(Sg), and let n = |V | and m = |E|. If n ≤ dg + 1,
then clearly degG(u) ≤ dg for all u ∈ V. Hence, we can assume

n ≥ dg+ 2. (3.17)

Suppose we had degG(u) > dg for all u ∈ V. Then, by Euler’s formula (see Eq. (1.3)), we get

dg · n < 2m ≤ 2(3n− 6+ 6g) = 6n+ 12(g− 1),

which is equivalent to
(dg− 6)n < 12(g− 1). (3.18)

Hence, combining (3.17) and (3.18), and using that g > 0, we have

(dg− 6)(dg+ 2) ≤ (dg− 6)n < 12(g− 1)

from which we conclude that dg < 2(1+
√
3g+ 1), a contradiction. 2

Proof of Lemma 3.2.13:
We construct a tree connecting the V1-vertices among themselves by recursively decrementing
the number of components in G[V1] from |V1| to 1 by adding edges. This means that we are
going to prove the lemma by induction over the number of components of G[V1]. The induction
base—where the number of these components equals one—trivially holds. In the induction step,
we use the following claim.

Claim: Let G = (V1∪̇V2, E) be a plane graph, where V1 is an independent set in G and where
G[V2] is a forest. Then, for every vertex v ∈ V1, there exists another vertex v ′ ∈ V1 such that the
edge {v, v ′} can be additionally drawn in the embedded graph G without destroying planarity.

Assume that the claim has been verified and that the assertion of the lemma holds for all
graphs where G[V1] is a forest with c components. Consider now a graph G which satisfies the

58 Bounded Search Trees

assumptions of this lemma and where G[V1] is a forest with c + 1 components. Let the graph
G ′ = (V ′

1∪̇V2, E ′) be obtained from G by contracting all components of G[V1] to single vertices.
Then, G ′ satisfies the assumption of the claim. Hence, a vertex can be drawn connecting two
vertices u and u ′ in V ′

1 which represent components K and K ′ in G. Clearly, the edge e obtained
by the claim can be drawn between two arbitrary vertices v and v ′ belonging to components K
and K ′, respectively. Now, the induction hypothesis can be applied to Ĝ = G + e, since Ĝ has
only c components.

Proof of the Claim. Take some vertex v ∈ V1. If there is no cycle enclosing v, it is possible to
connect v with any other vertex in V1 without destroying planarity. Otherwise, consider the set
of all embedded cycles which enclose v. This set is partially ordered by the relation “cycle C1
contains cycle C2.” Take the smallest of these cycles. Since G[V2] is acyclic by assumption,
this cycle must contain at least one vertex v ′ from V1. By construction, an edge can be drawn
between v and v ′ without destroying planarity. 2

Proof of Proposition 3.2.15:
We first of all proof the claim assuming that deg(u) = 3 for all u ∈W.

We use the same idea as in the proof for the special case where G[B] was assumed to be
connected. Let F be a face of the black induced subgraph G[B]. Let WF ⊆W be the set of white
vertices in the interior of F, and let BF ⊆ B denote the black vertices on the boundary of F.

For a subset W ′ ⊆WF, we again consider the bipartite graph

H(W ′) = (W ′∪̇T(W ′), E(W ′))

as constructed in (3.16). It is again helpful to consult Fig. 3.3 for an example of this construction.

Instead of trying to find a WF-saturated matching for H(WF) (as it was done in the special
case where G[B] was assumed to be connected), we now follow a different approach.

We already observed that the set T(W ′) gives us vertices in H(W ′) that correspond to pairs
e = {b1, b2} of black vertices in BF between which we still can draw an edge in G[B]. The edge e
can even be drawn in the interior of F, since b1 and b2 are connected by a white vertex in
W ′ ⊆WF. In particular, this means that

|T(WF)| ≤ tF. (3.19)

Observe that, due to bw-Rule 4, for each u ∈ WF, the neighbors N(u) ⊆ BF are connected by
at most one edge in G[B]. By construction of H(WF), this means that

degH(WF)
(u) ≥ 2 for all u ∈WF. (3.20)

By construction, the degree degH(WF)
(e) for an element e = {b1, b2} ∈ T(WF) tells us how many

white vertices share the pair {b1, b2} as common neighbors. We do case analysis according to
this degree.

Case 1: Suppose that degH(WF)
(e) ≤ 2 for all e ∈ T(WF). Then, H(WF) is a bipartite graph, in

which the first bipartition set has degree at least two (see Eq. (3.20)) and the second bipartition

Appendix 59

zℓ−1

u2

b2

b1

uℓ−1

z1 zℓ

uℓu1

D1
Dℓ−1D2

z2

Figure 3.6: Illustration of a diamond D generated by a pair vertices {b1, b2} ∈ T(WF).

set has degree at most two. In this way, the second set cannot be smaller, which yields

wF = |WF| ≤ |T(WF)|
(3.19)

≤ tF.

Case 2: There exist elements e = {b1, b2} in T(WF) which are shared as common neighbors by
more than 2 white vertices (i.e., degH(WF)

(e) = ℓ > 2). Suppose that we have u1, . . . , uℓ ∈ WF
with NG(ui) = {b1, b2, zi} (i.e., {ui, e} ∈ E(WF)). We may assume that the vertices are ordered
such that the closed region D bounded by {b1, u1, b2, uℓ} contains all other vertices u2, . . . , uℓ−1
(see Fig. 3.6).

We call D the diamond generated by {b1, b2}. Note that D consists of ℓ − 1 regions, which
we call blocks in the following; the block Di is bounded by {b1, ui, b2, ui+1} (1 ≤ i ≤ ℓ − 1).
Let Wi ⊆WF and Bi ⊆ BF, respectively, denote the white and black vertices, respectively, that
lie in Di. For the boundary vertices {b1, b2, u1, . . . , uℓ}, we use the following convention: b1, b2
are added to all blocks, i.e., b1, b2 ∈ Bi for all i; and ui is added to the region where its third
neighbor zi lies in. A block is called empty if Bi = {b1, b2} and, hence, Wi = ∅. Moreover, let
WD :=

⋃ℓ−1
i=1Wi and BD :=

⋃ℓ−1
i=1Bi.

We only consider diamonds where z1 and zℓ are not contained in D (see Fig. 3.6). The other
cases can be treated with similar arguments.

Note that each block of a diamond D may contain further diamonds, the blocks of which
may contain further diamonds, and so on. Since no diamonds overlap, the topological inclusion
forms a natural ordering on the set of diamonds and their blocks.

We now use the following claim.

Claim: For each diamond D generated by {b1, b2}, let tD denote the number of black-black edges
that can be added to G[B] other than {b1, b2}. We claim that tD ≥ |WD| and that all of these
tD edges can be drawn inside D, in a way that we still have the possibility to draw the edge
{b1, b2} without any edge-crossing.

Using this claim, we can finish the proof: Consider all diamonds D1, . . . ,Dr which are not
contained in any further diamond. Suppose Di has boundary {bi1, u

i
1, b

i
2, u

i
ℓi

} with bi1, b
i
2 ∈ BF

60 Bounded Search Trees

and ui1, u
i
ℓi
∈WF. Let

W ′
F := WF \ (

r⋃

i=1

WDi).

According to the claim, we already found
∑r
i=1 tDi many black-black edges in Eposs inside the

diamonds Di. Observe that each pair ei = {bi1, b
i
2} is only shared as common neighbors by at

most two white vertices (namely, ui1 and uiℓi) in (sic!) W ′
F. Hence, the bipartite graph H(W ′

F)

again has the property that

• degH(W′
F
)(e) ≤ 2 for all e ∈ T(W ′

F), and

• degH(W′
F
)(u) ≥ 2 for all u ∈W ′

F.
10

Similar to Case 1 this proves that—additionally—we find t ′ (with t ′ ≥ |W ′
F|) many edges in

Eposs. Hence,

wF = |WF| = |W ′
F| +

∣∣∣∣∣

r⋃

i=1

WDi

∣∣∣∣∣ ≤ t ′ + (

r∑

i=1

tDi) ≤ tF.

This finishes the proof under the assumption that deg(u) = 3 for all u ∈WF.

Proof of the Claim. We give an inductive argument proceeding from the “innermost” diamonds
to the outer ones with respect to the inclusion ordering mentioned above.

Induction base: Consider an innermost diamond D with its blocks D1, . . . ,Dℓ−1. We give a
proof for the claim in the case where z1 and zℓ are not contained in D (see Fig. 3.6). The
other cases work similarly. Suppose that there are ℓ ′ ≤ ℓ− 1 many non-empty blocks. For each
non-empty block, we consider the bipartite graph H(Wi). Since Di has no further diamonds
in its interior, we again have the property that degH(Wi)

(e) ≤ 2 for all e ∈ T(Wi). This shows
that |Wi| ≤ |T(Wi)| (with the same arguments as in Case 1). This means, that we can draw in
each block at least |Wi| many black black edges. Note that all edges e ∈ T(Wi) can be drawn
in the interior of Di. This sums up to at least

∑ℓ−1
i=1 |Wi| = |WD| many black black edges that

can be drawn inside D as stated in the claim. There is one minor subtlety we have to be aware
of: We might have used {b1, b2} for each non-empty Di, i.e., at most ℓ ′ times. Since (according
to the claim) we do not wish to use the edge {b1, b2} at all, we use a set of ℓ ′ many additional
black black edges from Eposs instead. These additional edges can be found by the following
observation: Consider the vertex zi (2 ≤ i ≤ ℓ − 1). Suppose zi ∈ Bi (the case zi ∈ Bi−1
works similarly). We distinguish the two cases that either Di−1 is an empty block or Di−1 is
non-empty. If Di−1 is empty, then zi−1 ∈ Bi−2 and it is easy to see that a black-black edge
{zi, zi−1} (from Di to Di−2) could be additionally added. If Di−1 is a non-empty block, then it
is not hard to see that there must be a vertex x ∈ Bi−1 (possibly zi−1) so that we can add the
additional black-black edge {zi, x} (from Di to Di−1). An easy analysis shows that this gives ℓ ′

many additional edges.

Induction step: Consider a diamondD generated by {b1, b2} with blocksD1, . . . , Dℓ and suppose
that, for all further diamonds inside the blocks Di, the claim already holds true. Suppose we

10Note that according to the claim the edges {bi1 , b
i
2} still can be used.

Appendix 61

had “inner diamonds” D1i , . . . , Djii inside Di. The induction hypothesis already assures that

we find at least
∑ji
s=1 |WDs

i
| many black-black edges from Eposs inside the diamonds D1i , . . . D

ji
i .

Hence, it remains to consider W ′
i := Wi \ (

⋃ji
s=1WDsi). The graph H(W ′

i) has the properties
that

• degH(W′
i
)(u) ≥ 2 for all u ∈W ′

i, and

• degH(W′
F
)(e) ≤ 2 for all e ∈ T(W ′

i).

This means that we can argue similar to the induction base to see that we can find at least∑ℓ
i=1 |W ′

i| many additional black-black edges inside D not using the edge {b1, b2}. In total this
gives us at least

ℓ∑

i=1

(
|W ′
i| +

ji∑

s=1

|WDs
i
|

)
= |WD|

many edges. This finishes the proof of the claim.

We show in the following that the assumption that degG(u) = 3 for all u ∈ WF is no
restriction.

Observation 3.2.17 If F1 and F2 are two faces of G[B] with common boundary edge e, then
tF1 + tF2 + 1 equals tF, where we now consider (G − e)[B], and F is the face which results from
merging F1 and F2 when deleting e.

Consider a black and white graph G = (B∪̇W,E) that is reduced with respect to bw-Rule 4
and for which deg(u) ≥ 3 holds for all u ∈ W. If there is some u ∈ W with deg(u) > 4, then
delete arbitrarily all edges incident with u but four of them. While preserving the black induced
subgraph, the resulting graph is still reduced with respect to bw-Rule 4, since this rule does not
apply to white degree-4-vertices. Therefore, we can assume from now on w.l.o.g. that all white
vertices of G have maximum degree of four.

We will now show the claim by induction on the number w4 of white vertices of degree four.
The above proof for the case deg(u) = 3 for all u ∈W can be taken as induction base. Assume
that the claim was shown for each graph with w4 ≤ ℓ and consider now the case that G has ℓ+1
white degree-4-vertices. Choose some arbitrary u ∈W with deg(u) = 4. Let {b1, . . . , b4} be the
clockwisely ordered neighbors of u. Due to planarity, we may assume further that {b1, b3} /∈ E
without loss of generality. Consider now G ′ = (G − u) + {b1, b3}. We prove below that G ′ (or
G ′′ = (G − u) + {b2, b4} in one special case) is reduced with respect to bw-Rule 4. This means
that the induction hypothesis applies to G ′. Hence, wF ≤ tF for all faces in G ′[B]. Observe that
G ′ contains all the faces of G except for the face F of G which contains u; F might be replaced
by two faces F1 and F2 with common boundary edge {b1, b3}. In this case, wF1 ≤ tF1 , wF2 ≤ tF2 ,
wF1 +wF2 +1 = wF and, by Observation 3.2.17, tF1 + tF2 +1 = tF. Hence, wF ≤ tF by induction.
In the case where face F still exists in G ′, it is trivial to see that wF ≤ tF.

To complete the proof, we argue why G ′ has to be reduced with respect to bw-Rule 4.
Obviously, this is clear if ∀bi∀v ∈ N(bi) : deg(v) = 4, since bw-Rule 4 only applies to degree-3-
vertices. We now discuss the case that u has degree-3-vertices as neighbors.

62 Bounded Search Trees

(i) If a degree-3-vertex v is neighbor of some bi, but not of bj, j 6= i, then bw-Rule 4 will not
apply to v in G ′, if it has not been applicable in to v in G already.

(ii) Consider the case that a degree-3-vertex is neighbor v of two bi, bj, i 6= j. If |{i, j} ∩
{1, 3}| ≤ 1, then introducing the edge {b1, b3} will not add any further edge to N(v).
Hence, bw-Rule 4 will not be applicable to v in G ′ unless we could have applied this rule
already in G. If {i, j} = {1, 3}, then, by planarity, {b2, b4} /∈ E(G) and we could consider
G ′′ = (G− u) + {b2, b4} instead of G ′ with an argument similar to the case {i, j} = {2, 4}.

(iii) If a degree-3-vertex is neighbor of three bi, bj, bk, then a reasoning similar to the one in
the previous point applies.

This concludes the full proof of the proposition. 2

Proof of Lemma 3.2.16:
Suppose G is a counterexample to the theorem. Then, G does not have any white vertices
of degree one, else bw-Rule 2 can be applied. Let G ′ be obtained from G by simultaneously
replacing every white vertex u of degree two with neighbors x and y by an edge {x, y}. The
neighbors x and y of u are necessarily black, else bw-Rule 1 can be applied, and in each case
the edge {x, y} is not already present in G else bw-Rule 3.1 would apply. We argue that G ′ is
reduced. If not, then the only possibility is that bw-Rule 4 applies to some white vertex u ′ of
degree three in G ′. If bw-Rule 4 did not apply to u ′ in G, then one of the edges between the
neighbors of u ′ must have been created in our derivation of G ′ from G, i.e., one of these edges
replaced a white vertex u of degree two. But this implies that bw-Rule 3.2 could be applied
in G to u ′, contradicting that G is reduced. 2

Chapter 4

Graph Separation

Often a problem can be solved by breaking it into smaller subproblems of similar kind, recursively
solving these subproblems and then combining the solutions of the subproblem to get a solution
for the original problem. This strategy is well-known as the divide-and-conquer method. The
key ingredient to make a divide-and-conquer approach applicable to graph problems is the notion
of (vertex) separators.

In this chapter, we will pursue a divide-and-conquer approach based on graph separation in
combination with problem kernel reduction (see Chapter 2) in order to design fixed-parameter
algorithms for various graph problems. The first subsection discusses the general concept. There,
we focus on a general (mathematically precise) formulation of divide-and-conquer using graph
separation. In addition, we coin the notion of “glueable vertex selection problems” to charac-
terize the problems that allow for such a divide-and-conquer approach.

The three main contributions of this chapter are the following: Firstly, in Section 4.2, we
consider planar graph problems. We show that various parameterized problems, including our
threesome par-vertex cover, par-independent set, and par-dominating set, allow for

“sublinear-exponential algorithms” running in time 2O(
√
k)+nO(1). To our knowledge, these are

the first algorithms with a sublinear term in the exponent of the running time. Moreover, we
will see that these algorithms are asymptotically optimal. More precisely, we will show that an

algorithm of running time 2o(
√
k) + nO(1) for any of the three aforementioned problems would

imply that 3 sat ∈ DTIME(2o(n)), where n is the number of variables. This is considered to
be unlikely in classical complexity theory.

Secondly, in Section 4.3, we take a glance beyond planar graphs and discuss disk (intersection)
graphs of bounded radius ratio. Here, separator theorems are only known for the case of so-called
ϑ-precision disk graphs (see Subsection 4.3.3). We prove a new geometric separator theorem that
does not need this extra assumption and holds for all disk graphs of bounded radius ratio.

Finally, in Subsection 4.3.4, this new separator theorem then is used to solve the par-in-
dependent set problem on disk graphs of bounded radius ratio. The problem is motivated
from frequency assignment problems in cellular networks. We give an algorithm that runs in

time 2O(
√
klog(n)), a running time that is unlikely to be achievable for general graphs [119].

More precisely, if independent set can be solved in time 2o(n) then 3 sat ∈ DTIME(2o(n)),

64 Graph Separation

where (in the latter case) n is the number of variables in a 3 sat formula. Moreover, for the
case of ϑ-precision disk graphs, we obtain fixed-parameter algorithms with a sublinear term in

the exponent (i.e., running in time 2O(
√
k) + nO(1)) for various problems including par-vertex

cover, par-independent set, and par-dominating set.

4.1 Background

This first introductory section is meant to familiarize the reader with known separator theorems
and to provide a mathematical sound framework for the use of separator theorems for algorithmic
purposes. We will describe, using several examples, how certain graph problems can be solved by
a divide-and-conquer approach based on graph separation. The goal here is to point to various
difficulties that arise for structurally sophisticated problems.

4.1.1 Classical
√·-Separator Theorems

We briefly discuss (classical) vertex separator theorems. For later purposes, we introduce a
somewhat generalized notion of separator theorems.

Definition 4.1.1 A separator VS ⊆ V of a graph G = (V, E) partitions V into two parts VA
and VB such that

• VA∪̇VS∪̇VB = V, and

• no edge joins a vertex of VA to VB.

The triple (VA, VS, VB) is also called a separation of G. In the following we sometimes use the
notion δVA := VA∪ VS and δVB := VB ∪ VS.

In order to provide a quantitative approach to separators, we need the notion of “measure.”

Definition 4.1.2 Let G be a graph class closed under taking subgraphs. A function ξ : G→ R+

that is monotonous with respect to the subgraph ordering, i.e., ξ(G) ≤ ξ(G ′) if G ⊆ G ′, and for
which ξ((∅, ∅)) = 0, is called a graph measure.

Example 4.1.3 The usual counting measure | · | which assigns to a graph G the size of its vertex
set |VG| is clearly a graph measure. Later in this chapter we will use other graph measures for
disk intersection graphs.

Definition 4.1.4 Let ξ be a graph measure. An f(·)-vertex separator theorem for the measure ξ
(and constants α < 1, β > 0) on a class of graphs G which is closed under taking subgraphs is
a theorem of the following form:
For any G ∈ G there exists a separation (VA, VS, VB) of G such that

(i) ξ(G[VS]) ≤ β · f(ξ(G)), and

(ii) ξ(G[VA]), ξ(G[VB]) ≤ α · ξ(G).

4.1 Background 65

β α = 2
3

r(2
3
, β) α = 1

2
r(1
2
, β) α = 3

4
r(3
4
, β)

upper bounds
√
2
3

+

√
4
3

[77] 10.74
√
24 [17, 45] 16.73

√
2π√
3
· 1+

√
3√
8

[179] 13.73

lower bounds 1.55 [75] 8.45 1.65 [179] 5.63 1.42 [179] 10.60

Table 4.1: Summary of various
√·-separator theorems on planar graphs with their constants α and β.

Here, r(α,β) denotes the ratio r(α,β) = β/(1−
√
α), which is of central importance to the running time

analysis of our algorithms (see Proposition 4.1.15).

√·-separator theorems on planar graphs. Stated in this framework, the planar separator
theorem due to Lipton and Tarjan [137] can be formulated as follows.

Theorem 4.1.5 On the class of planar graphs, there exists a
√·-separator theorem for the

counting measure |· | with constants α = 2
3

and β = 2
√
2. Moreover, the corresponding separation

can be found in linear time.

Later, Djidjev [75] showed an improved planar
√·-separator theorem with constants α = 2/3

and β =
√
6 ≈ 2.45, which was further improved to α = 2/3 and β =

√
4.5 ≈ 2.12 by Alon et

al. [20]. The current record for α = 2/3 is β =
√
2/3+

√
4/3 ≈ 1.97 [77]. Djidjev has also shown

a lower bound of β ≈ 1.55 for α = 2/3 [75]. For α = 1/2, the “record” of β = 7+ 1/
√
3 ≈ 7.58

due to Venkatesan [187] was recently outperformed by Bodlaender [45], yielding β = 2
√
6 ≈ 4.90.

A lower bound of β ≈ 1.65 is known in this case [179]. For α = 3/4, the best known value for β

is
√
2π/

√
3 · (1+

√
3)/

√
8 ≈ 1.84 with a known lower bound of β ≈ 1.42 (see [179]). The results

are summarized in Table 4.1.

√·-separator theorems on other graph classes. Similar to the case of planar graphs,
√·-

separator theorems are also known for other graph classes, e.g., for the class of graphs of bounded
genus, see [76]. More generally, Alon, Seymour, and Thomas proved a

√·-separator theorem for
graph classes with an excluded complete graph minor [18, 19]. Besides, a

√·-separator theorem
is known on the class of so-called “ℓ-map graphs,” a generalized notion of planar graphs [57, 58].
Finally, we will also be concerned with graph separator theorems for so-called disk intersection
graphs. This class of graphs will be treated separately in Section 4.3.

Conversely, finding separators is not possible in general graphs, as the example of the
complete graph Kn with n vertices shows.

4.1.2 Algorithms Based on Graph Separation

From an algorithmic point of view, graph separators are important since they can be used to
design divide-and-conquer strategies. We will give a characterization of a whole class of problems
that can be attacked by such a divide-and-conquer strategy. To this end, in a first subsection,
we coin the notions of “glueable vertex selection” graph problems. In a second subsection, we
give a detailed analysis of a divide-and-conquer algorithm for such problems.

66 Graph Separation

4.1.2.1 Glueability

As already Lipton and Tarjan [138] do, we are going to solve graph problems recursively, slicing
the given graph into small pieces with the help of small separators.1 Since we only consider
vertex separators, we restrict ourselves to problems in which the optimal solutions consist of a
subset of vertices.

Definition 4.1.6 Let G = (IG , FG , cG , optG) be an optimization problem on graphs, i.e., IG is
the set of graphs. We say that G is a vertex selection problem if the feasible solutions FG(G) for
a graph G ∈ IG are subsets of the vertices of V(G).

Note that all problems we investigate in this work are vertex selection problems.

We begin with a brief discussion of divide-and-conquer algorithms based on separation. As
a first example, we consider the vertex cover problem for which a straightforward algorithm
will work. We then turn our attention to the (much more) elusive dominating set problem in
order to get insight into the difficulties that we encounter when trying to carry over the strategy
used for vertex cover. This will then lead to a general characterization of problems that
allow for a separation based divide-and-conquer approach.

Suppose now, we wish to compute an optimal vertex cover of a graph G that is given together
with a separation (VA, VS, VB). The general scheme to obtain a solution can be sketched as
follows:

◦ Find a separation (VA, VS, VB) of the current graph.

◦ Consider all possible 0-1-assignments ζ of the vertices in VS (where assigning “color” 1 to
a vertex means to choose the vertex to belong to the vertex cover and “color” 0 means not
to choose the vertex). For each such assignment ζ,

– check whether the 0-1-assignment ζ leads to a feasible solution in G[VS],

– divide the problem into two subproblems on some subgraphs GζA ⊆ G[δVA] and

GζB ⊆ G[δVB],

– recursively compute the optimal vertex cover on GζA and GζB, and

– combine the solutions to obtain a solution for G for the current assignment ζ.

◦ Return the best solution among all choices of ζ.

More precisely, when dealing with a specific 0-1-assignment ζ for VS, then, for X ∈ {A,B}, all
vertices VζX := {v ∈ VX | ∃w ∈ VS∩N(v), ζ(w) = 0} need to belong to a feasible vertex cover for G
under the current assignment ζ. This is clear since each edge {v,w} between vertices in VA and
in VS needs to be covered. Taking these vertices to the solution it remains to find an optimal
solution for the subgraphs GζX := G[VX \ VζX]. We let vc(G[VS], ζ) denote the number of vertices

1Lipton and Tarjan only describe in details a solution for the structurally simple independent set problem.
In contrast, we also deal with more elusive problems here, such as dominating set.

4.1 Background 67

that are assigned color 1 by ζ, if ζ leads to a feasible vertex cover in G[VS], and vc(G[VS], ζ) =∞,
otherwise. The correctness of the divide-and-conquer approach is established by the equation

vc(G) = min
ζ:VS→{0,1}

{
vc(G[VS], ζ) +

∑

X∈{A,B}

(vc(GζX) + |VζX|)
}
,

which is easily seen to hold true by the above given arguments.

When trying to carry over this scheme to the more involved dominating set problem, we
face two immediate difficulties. Firstly, it is not sufficient to assign two colors to the vertices
in VS: If some vertex v ∈ VS is assigned color 0 (i.e, v is not chosen to belong to the dominating
set), v needs to be dominated by some other vertex. There are three possibilities of doing so.
Either, v is dominated by a vertex in VS, or by a vertex in VA, or by a vertex in VB. In this
sense, a more sophisticated color assignment is necessary to express these possibilities. Here, we
could replace the single color 0 by the color set {0A, 0S, 0B} with the semantics that 0X asks for
a domination from the set VX with X ∈ {A, S, B}. Hence, we have to deal with color assignments
ζ : VS → {1, 0A, 0S, 0B}. Secondly, when dividing the problem into two subproblems, both,
the information that vertices in ζ−1({0X}) need to be dominated by some vertex in VX and the
information that vertices in ζ−1({1}) already might dominate vertices in VX, must be handed
down to the recursive calls. Hence, for X ∈ {A,B}, the graph GζX that we use in the recursive call

should bear all this necessary information. We could let GζX := G[VX ∪ ζ−1({0X, 1})] and ask for

a solution on GζX under the constraint that vertices in ζ−1({1}) belong to the dominating set and
all vertices in ζ−1({0X}) do not belong to the dominating set (and, hence, need to be dominated
by some vertex in VX). This forces us to find solutions on so-called “precolored graphs.”

We now build a formal framework which enables us to handle both difficulties. In doing so,
we follow parts of [9].

Definition 4.1.7 A (partial) 0-1-coloring of a graph G is a function ξ : supp(ξ)→ {0, 1} which
assigns colors to some subset supp(ξ) ⊆ V(G), which we call the support of ξ.

A pair (G, ξ) consisting of a graph G and a 0-1-coloring ξ is called a precolored graph.

A vertex selection problem can be extended to precolored graphs in the following way.

Definition 4.1.8 Let G = (IG , FG , cG , optG) be a vertex selection problem. For a precolored
graph (G, ξ), we say that V ′ ∈ FG(G) is consistent with ξ, if

∀v ∈ supp(ξ) : (ξ(v) = 0⇒ v /∈ V ′) ∧ (ξ(v) = 1⇒ v ∈ V ′).

We then define

OPTG(G, ξ) = optG
{
cG(V ′) | V ′ ∈ FG(G) and V ′ is consistent with ξ

}
.

Informally speaking, the value OPTG(G, ξ) is the optimal solution of a vertex selection
problem under the constraint that vertices which are assigned color 0 by the precoloring ξ must
not belong to the solution and vertices which are assigned color 1 by the precoloring ξ must
belong to the solution.

68 Graph Separation

As discussed in the example of dominating set, it will be necessary to also allow larger
color sets for the internal assignments to the vertices of a separator VS in the divide-and-conquer
algorithm: Let C0, C1 be finite, disjoint sets (called the color sets). Extending the notion of 0-1-
colorings for a graph G, we call a function ζ : supp(ζ)→ C0∪C1 with support supp(ζ) ⊆ V(G)

a C0-C1-coloring.

Definition 4.1.9 Let ξ be a 0-1-coloring, and ζ be a C0-C1-coloring for a graph G. We say
that ζ is consistent with ξ if

∀v ∈ supp(ξ), i = 0, 1 : ξ(v) = i⇒ ζ(v) = Ci.

We now define so-called “glueable” vertex selection problems, a formal framework for those
problems that can be solved with separator based divide-and-conquer techniques as described
above. We apply the rather abstract notion to concrete graph problems afterwards (see Lemma
4.1.11). However, compared to [9], where this notion was coined, our definition here is signifi-
cantly simplified.

Definition 4.1.10 A vertex selection problem G is glueable with λ colors if there exists a color
set C := C0∪̇C1 with |C| = λ such that, if we are given a precolored graph (G, ξ) together with a
separation (VA, VS, VB) of G, we find for each C0-C1-coloring ζ : VS→ C, precolored subgraphs

• (Gξ,ζA , η
ξ,ζ
A) with Gξ,ζA ⊆ G[δVA] and some partial 0-1-coloring ηξ,ζA of Gξ,ζA ,

• (Gξ,ζS , η
ξ,ζ
S) with Gξ,ζS ⊆ G[VS] and some partial 0-1-coloring ηξ,ζS of Gξ,ζS , and

• (Gξ,ζB , η
ξ,ζ
B) with Gξ,ζB ⊆ G[δVB] and some partial 0-1-coloring ηξ,ζB of Gξ,ζB ,

such that

OPTG(G, ξ) = optG
{ ∑

X∈{A,S,B}

fξ,ζX (OPTG(Gξ,ζX , η
ξ,ζ
X))

∣∣ ζ : VS→ C, ζ is consistent with ξ
}

(4.1)
for some polynomial time computable functions fξ,ζX : N ∪ {∞}→ N ∪ {∞}.

We give some examples for glueable vertex selection problems.

Lemma 4.1.11 Vertex cover and independent set are glueable with 2 colors and domi-
nating set is glueable with 4 colors.

Proof: For the vertex cover problem we choose the simple color sets Ci := {i} (i = 0, 1).
Now, suppose we are given a precolored graph (G, ξ) together with a separation (VA, VS, VB),
and some coloring ζ : VS→ {0, 1}. Compare the following construction with the example given
in Fig. 4.1.

Firstly, we let (Gξ,ζS , η
ξ,ζ
S) = (G[VS], ζ), i.e., G[VS] is fully colored. Then OPT(G[VS], ζ)

is the number of vertices assigned color 1 if the coloring ζ is a valid vertex cover, otherwise
opt(G[VS], ζ) =∞. Simply let fξ,ζS (x) = x.

4.1 Background 69

VS VBVA

0

1

1

0 0

0

1

1

1

1

1

1

1

1

Figure 4.1: Glueability of vertex cover with 2 colors (according to Definition 4.1.10). The left-hand
diagram shows a separation of a graph with a 0-1-coloring ζ of VS. The right hand diagram illustrates
the three precolored subgraphs (Gξ,ζX , ηξ,ζX) with X ∈ {A, S, B} into which the problem is subdivided.

Secondly, the precolored subgraphs (Gξ,ζX , η
ξ,ζ
X) (with X ∈ {A,B}) are constructed in such

a way that all edges going from VX to VS will be covered. Hence, let Gξ,ζX := G[VX] with a
precoloring according to the following scheme (see Fig. 4.1): If there is an edge {v,w} with v ∈ VX
and w ∈ VS, then v is assigned color 1, if vertex w is assigned color 0 by ζ. This forces us to cover
the edge {v,w} by v. Conversely, if w is assigned color 1 by ζ, the edge {v,w} is already covered
by w and we leave it open, whether v will belong to the vertex cover or not. By this construction,
OPT(G[VX], η

ξ,ζ
X) is the size of a minimal vertex cover of G[VX] under the assumption that all

neighbors of vertices w in VS with ζ(w) = 0 will belong to the vertex cover. In addition, to
keep the coloring consistent with ξ, every vertex v ∈ VX ∩ supp(ξ) will keep the color assigned
by ξ. If it happens that a vertex in VX that is assigned color 0 by ξ and at the same time has
a neighbor in VS being assigned color 0 by ζ, then we will not get a feasible solution, so, in this
case we set, fξ,ζX (x) =∞. Otherwise let fξ,ζX (x) = x.

It is clear that
∑
X∈{A,S,B} f

ξ,ζ
X (OPT(Gξ,ζX , η

ξ,ζ
X)) then gives the size of a minimal vertex cover

of the graph G precolored by ξ and ζ.

Independent set is shown to be glueable with 2 colors by a similar idea.

To show that dominating set is glueable with 4 colors, we use the color sets C1 := {1}

and C0 := {0A, 0S, 0B}. The semantics of these colors were already discussed at the beginning
of this subsection: Assigning the color 0X, for X ∈ {A, S, B}, to vertices in VS means that the
vertex is not in the dominating set and will be dominated by a vertex in X. Clearly, 1 will mean
that the vertex belongs to the dominating set. Suppose we are given a precolored graph (G, ξ)

together with a separation (VA, VS, VB) and let ζ : VS→ C0 ∪ C1 be some C0-C1-coloring. For
the following construction the example given in Fig. 4.2 is helpful.

Firstly, we let (Gξ,ζS , η
ξ,ζ
S) be the graph G[ζ−1({1, 0S})] ⊆ G[VS] that is (fully) precolored

with the coloring induced by ζ. Then, the value OPT(Gξ,ζS , η
ξ,ζ
S) tells us whether ζ is a feasible

coloring in the sense that all vertices that are assigned color 0S really are dominated by vertices
in VS. More precisely, if the coloring is feasible, then this value equals the number of vertices
assigned color 1, and if this is not the case, this value will be ∞.

70 Graph Separation

VS VBVA

1

0S

0B

0A

1 1

0

0

1

0

Figure 4.2: Dominating set is glueable (according to Definition 4.1.10) with 4 colors {1, 0A, 0S, 0B}.
The left-hand diagram shows a separation of a graph together with a coloring ζ of VS. The right hand
diagram illustrates the three precolored subgraphs (Gξ,ζX , ηξ,ζX), X ∈ {A, S, B}, into which the problem is
subdivided.

Secondly, the precolored subgraphs (Gξ,ζX , η
ξ,ζ
X) (with X ∈ {A,B}) are constructed as follows.

When dividing the problem into subproblems, we need to hand down the information whether
a vertex in VS is assigned color 1 by ζ (and, hence, its neighbors in VX can be assumed to be
dominated) and the information whether a vertex in VS is assigned color 0X by ζ (and, hence, one
of its neighbors in VX needs to dominate this vertex). Thus, we let Gξ,ζX := G[VX ∪ ζ−1({1, 0X})]

together with the obvious precoloring ηξ,ζX that assigns color 1 to vertices in ζ−1({1}) and color 0
to vertices in ζ−1({0X}). Moreover, to keep the coloring consistent with ξ, every vertex v ∈
VX ∩ supp(ξ), will keep the color assigned by ξ. The term OPT(Gξ,ζX , η

ξ,ζ
X) then computes (for

each C0-C1-coloring ζ) the size of a minimum dominating set in G[VX] under the constraint that
some vertices in δVX still need to be dominated (namely, the vertices in δVX ∩ ζ−1({0X})) and
some vertices in δVX can already be assumed to be in the dominating set (namely, the vertices
in δVX ∩ ζ−1({1})).

Finally, to satisfy Equation (4.1), we let fξ,ζS (x) = x and, for X ∈ {A,B}, we let fξ,ζX (x) =

x−|ζ−1({1})|. By this, we assure that vertices from VS which are assumed to be in the dominating
set are not counted multiple times. 2

Remark 4.1.12 Dominating set was shown to be glueable with λ = 4 colors. We remark
that—for algorithmic purposes—it can be dropped to λ = 3 by following argument: Recall
the color set C = {1, 0A, 0S, 0B} and its semantics from the proof of Lemma 4.1.11. Instead of
assigning all colors from C to the vertices in the separator, we use only a color assignment ζ :

VS→ C ′ with the three colors C ′ = {1, 0A, 0B}. For each such coloring, we then “overwrite” the
set

{ v ∈ VS | ζ(v) ∈ {0A, 0A} and ∃w ∈ N(v) ∩ VS : ζ(w) = 1 }

with the color 0S, since the vertices in this set are the ones that are already dominated by
vertices in VS.

Remark 4.1.13 We mention in passing that—besides the problems stated in the preceding
Lemma 4.1.11—many more vertex selection problems are glueable. For example, weighted ver-
sions and variations of the problems discussed in Lemma 4.1.11, such as the par-dominating

4.1 Background 71

double compute OPT (precolored graph (G, ξ))

/* input: a precolored graph (G, ξ) instance of */
/* a vertex selection problem G = (IG , FG , cG , optG). */
/* output: the solution OPTG((G, ξ)) as defined in Definiton 4.1.8. */

◦ if (supp(ξ) = V(G)) then

– return cG(V ′) for V ′ ⊆ V(G) that is consistent with ξ and exit.

◦ use a
√·-separator theorem to find a separation (VA, VS, VB) for G.

◦ for all C0-C1-colorings ζ : VS → C0∪̇C1 that are consistent with ξ do

– construct the three precolored graphs (Gξ,ζX , ηξ,ζX) with X ∈ {A, S, B}.

– recursively compute cξ,ζX := compute OPT(Gξ,ζX , ηξ,ζX) with X ∈ {A, S, B}.

– evaluate cξ,ζ :=
∑
X∈{A,S,B} f

ξ,ζ
X (cξ,ζX).

◦ return opt{ cξ,ζ | ζ : VS → C, ζ is consistent with ξ }.

Figure 4.3: Divide-and-conquer algorithm for a glueable vertex selection problem.

set with property P problems which are listed in Subsection 1.3.4 are glueable. As an
example for a problem where more than one color in C1 is needed, we highlight the total
dominating set problem, for which we can use the color sets Ci := {iA, iS, iB} (i = 0, 1) where
the semantics of assigning color iX (X ∈ {A, S, B}) to a vertex in a separator VS is that this vertex
either is taken in the dominating set (i = 1) or not (i = 0), and that we require to dominate the
vertex by a neighbor in VX.

4.1.2.2 Divide-and-Conquer

The notion of glueable vertex selection problems is tailored in a way such that divide-and-
conquer approaches can be used to solve such problems. In this subsection, we provide the basic
framework of a divide-and-conquer algorithm based on the concepts we introduced so far.

Fix a graph class G for which a
√·-separator theorem for the counting measure and with

constants α and β (see Definition 4.1.4) is known. We consider a vertex selection graph prob-
lem G that is glueable with the color sets C0 and C1. Let (G, ξ) be a precolored graph. The
evaluation of the term OPT(G, ξ) (see Definition 4.1.8) can be done recursively according to the
strategy given in Fig. 4.3. The correctness of this algorithm is immediate since, by definition of
glueability, we know that Eq. (4.1) from Definition 4.1.10 holds for OPT(G, ξ).

We now give a precise running time analysis of this algorithm. For this analysis, the sizes of
the subproblems, i.e., the sizes of the precolored graphs (Gξ,ζA , η

ξ,ζ
A) and (Gξ,ζB , η

ξ,ζ
B) which are

used in the recursion, play a crucial role. A particularly nice situation is given for the following
problems.

72 Graph Separation

Definition 4.1.14 A glueable vertex selection problem is called slim if, for X ∈ {A,B} the
subgraphs Gξ,ζX in Definition 4.1.10 can be chosen such that they are only by a constant number

of vertices larger than G[VX], i.e., if there exists an γ ≥ 0 such that |V(Gξ,ζX)| ≤ |VX| + γ for all
ξ and ζ.

Note that the proof of Lemma 4.1.11 shows that both vertex cover and independent set
are slim with γ = 0, whereas dominating set is not.

The following proposition gives the running time of the algorithm in Fig. 4.3 in terms of the
parameters of the separator theorem used and the vertex selection problem considered. In order
to assess the time required for the given divide-and-conquer algorithm, we use the following
abbreviations for the running times of certain subroutines:

• TS(n) denotes the time to find a separator in an n-vertex graph from the class G.

• TM(n) denotes the time to construct the precolored subgraphs (Gξ,ζA , η
ξ,ζ
A) (for X ∈ {A, S, B}

and fixed ζ, ξ) of an n-vertex graph from the class G.

In the following, we assume that all these functions are polynomials.

Proposition 4.1.15 Let G be a graph class for which a
√·-separator theorem for the counting

measure with constants α and β is known and let G be a vertex selection problem with λ colors.

Then, for a precolored graph (G, ξ) with G ∈ G, OPTG(G, ξ) can be computed in time

O(dε · 2θ(α
′,β,λ)

√
n · q(n)), where θ(α ′, β, λ) = log(λ) · β

1−
√
α ′ .

Here, α ′ = α + ε for any ε ∈ (0, 1 − α), dε is some constant depending on ε, and q(·) is some
polynomial.

If, however, G is slim then the running time for the computation is

O(2θ(α,β,λ)
√
nq(n)).

Proof: Let T(n) denote the running time to compute OPTG(G, ξ) for a precolored graph (G, ξ)

with n vertices. In general, the recurrence we have to solve in order to compute an upper bound
on T(n) for the divide-and-conquer algorithm in Fig. 4.3 then reads

T(n) ≤ λβ
√
n · (TM(n) + 2 T(αn+ β

√
n) + T(β

√
n)) + TS(n),

which can be seen as follows. By assumption, a separation (VA, VS, VB) of G can be found in time
TS(n). Since the size of the separator is upperbounded by β

√
n and there are λ colors, there are

λβ
√
n many passes through a loop which checks all possible assignments to separator vertices. In

each pass through the loop, three instances of smaller subproblems have to be constructed and
evaluated; the subinstances of A and B having size bounded by αn+β

√
n and the subinstance

of S having size bounded by β
√
n. This yields the term TM(n) + 2 · T(αn + β

√
n) + T(β

√
n).

Note that the functions TM(n) and TS(n) are polynomials by our general assumption.

4.2 Planar Graphs: 2O(
√
k)-Algorithms Based on Separation 73

For every ε ∈ (0, 1− α), letting nε := (β
ε
)2, we have

(α+ ε)n ≥ αn+ β
√
n (4.2)

for n ≥ nε. Hence, by setting α ′ = α+ ε, we can simplify the above recurrence to

T(n) ≤ λβ
√
n (3 · T(α ′n) + TM(n)) + TS(n)

for some α ′ < 1. The recursion depth is n ′ = log1/α′(n), and we get the upper bound

T(n) ≤ λβ
∑n ′
i=0

√
α′in· 3n

′
T(1) TM(n) + n ′ · TS(n)

≤ λβ/(1−
√
α′)·√n· q(n),

which holds for all n ≥ nε for the polynomial

q(n) := 3log1/α ′ nT(1) TM(n) + log1/α′(n) · TS(n). (4.3)

The claim follows with dǫ := T(nε).

Now, consider the case where G is slim. In this situation the recursive subproblems all have
size bounded by αn+ γ. Hence, we have

T(n) ≤ λβ
√
n · (3T(αn+ γ) + TM(n)) + TS(n).

The size of the problem after r recursion steps obviously is:

αrn+ αr−1γ+ · · · + αγ+ γ ≤ αrn+
1

1− α
γ.

Since the recursion will stop after n ′ = log1/αn recursive calls (leaving us with subproblems of
at most constant size), we can further estimate:

T(n) ≤ λβ
∑n ′
i=0

√
αin+γ/(1−α) 3n

′
T(1) TM(n) + n ′ · TS(n)

≤ λβ·(
∑n ′
i=0

√
αin+(n′+1)·

√
γ/(1−α)) 3n

′
T(1) TM(n) + n ′ · TS(n)

≤ λβ/(1−
√
α)·√nq(n)

for some polynomial q(·). More precisely, we can estimate

q(n) ≤ λβ
√
γ/(1−α)(n′+1)3n

′
T(1) TM(n) + log1/α′(n) · TS(n) .

2

4.2 Planar Graphs: 2O(
√
k)-Algorithms Based on Separation

We now investigate the design of fixed-parameter algorithms using the considerations we have
made up to this point: If the considered parameterized problem has a problem kernel of size dk,
we will see that we can easily obtain fixed-parameter algorithms whose exponential part of the

running time is of the form 2O(
√
k). In particular, this means that we obtain fixed-parameter

algorithms for all glueable vertex selection problems that admit a linear problem kernel on planar
graphs. Examples for such problems are given by par-vertex cover, par-independent set,
or par-dominating set on planar graphs. We follow parts of [9].

74 Graph Separation

4.2.1 How (Linear) Problem Kernels Help

Combining problem kernel reduction (see Chapter 2) with the divide-and-conquer approach for
glueable vertex selection problems (see Subsection 4.1.2), we obtain the following result.

Theorem 4.2.1 Assume the following:

• Let G be a graph class for which a
√·-separator theorem for the counting measure with

constants α and β is known,

• let G be a vertex selection problem which is glueable with λ colors, and

• suppose that par-G admits a problem kernel of size p(k) on G computable in time qkernel(n, k).

Then, there is an algorithm to solve par-G in time

O
(
dε · 2θ(α

′,β,λ)
√
p(k) · q(k) + qkernel(n, k)

)
, where θ(α ′, β, λ) = log(λ) · β

1−
√
α ′ . (4.4)

Here, α ′ = α+ε for any ε ∈ (0, 1−α), dε is a constant depending on ε, and q(·) is a polynomial.

If, however, G is slim then par-G can be solved in time O
(
2θ(α,β,λ)

√
p(k)q(k)+qkernel(n, k)

)
.

Proof: The claim directly follows from Proposition 4.1.15 applied to the problem kernel. 2

In particular, Theorem 4.2.1 shows that for glueable and slim vertex selection problems that
admit a linear problem kernel of size dk on planar graphs, we get an algorithm of running time

O
(
2θ(α,β,λ,d)

√
kq(k) + qkernel(n, k)

)
, where θ(α,β, λ, d) = log(λ) · β

1−
√
α
·
√
d. (4.5)

Obviously, the choice of the separator theorem has a decisive impact on the constants of
the corresponding algorithms. In particular, our running time analysis shows that the ratio
r(α,β) := β/(1 −

√
α) has a direct and significant influence on the running time. In Table 4.1,

this ratio is computed for the various
√·-separator theorems. The best ratio obtained there is

due to the theorem of Djidjev and Venkatesan [77] with α = 2/3 and β =
√
2/3+

√
4/3. Here,

we get r(α,β) ≈ 10.74. This ratio is used explicitly in the following corollary.2

Corollary 4.2.2 Letting q(k) = k · log(k), we obtain that:

(i) par-Vertex cover on planar graphs can be solved in time O(215.19
√
kq(k) + kn).

(ii) par-Independent set on planar graphs can be solved in time O(221.48
√
kq(k) + n2).3

(iii) par-Dominating set on planar graphs can be solved in time O(2340.79
√
kq(k) + n3).

2As usual, in the following corollary, n will always denote the number of vertices of an input graph and k will
refer to the corresponding problem parameter according to Definition 1.3.2.

3Using the problem kernelization in Remark 2.1.5, we even get a running time of the form O(2O(
√
k) + n)

(with a slightly worse constant in the exponent).

4.2 Planar Graphs: 2O(
√
k)-Algorithms Based on Separation 75

Proof: The running times are obtained by plugging in the various problems specific values in
Eq. (4.5): We use the problem kernels, where d = 2 for par-vertex cover (see Corollary 2.1.8),
d = 4 for par-independent set (see Proposition 2.1.4), and d = 335 for par-dominating
set. Besides, we take the constants λ = 2 for vertex cover and independent set (see
Lemma 4.1.11), and λ = 3 for dominating set (see Remark 4.1.12).

To obtain the claimed running times for par-vertex cover and par-independent set we
can directly plug in the corresponding values in Eq. (4.5). Since dominating set is not slim,
we have to use a value r(α ′, β) for some α ′ = α + ε. Hence, for a suitable ε > 0, we might use
r(α ′, β) ≈ 10.75. The polynomial term q(k) can be obtained from Equation (4.3). It is easy to
see that in our setting we get q(k) = k · log(k). 2

As explained in the following remark, Theorem 4.2.1 is not only interesting in the case of
planar graph problems.

Remark 4.2.3 Theorem 4.2.1 yields a time O(2O(
√
gk) + k3 + kn) algorithm for par-vertex

cover on the class G(Sg) of graphs of genus bounded by g (see Section 1.2). This is true
since par-vertex cover admits a linear problem kernel (on Gg) and since the existence of a
separator of size O(

√
gn) for n-vertex graphs from G(Sg) was proven by Djidiev [76].

We finish this subsection by a brief discussion of the practical and theoretical value of

the “2O(
√
k)-algorithms” obtained in Theorem 4.2.1. Here, “2O(

√
k)-algorithm” shall refer to

sublinear-exponential fixed-parameter algorithm with running time of the form 2O(
√
k)nO(1).

On the negative side, the bases of the exponential terms in the running time obtained there
(see the concrete running times in Corollary 4.2.2) are admittedly (very) bad and, hence, will
most likely be too large for practical purposes. We mention in passing that some attempts
to (somewhat) improve the bases of the running times can be found in [9, Technical Report]

or [94]. However, even after these slight improvements these 2O(
√
k)-algorithms probably remain

uninteresting from a practical point of view. We will reconsider the design of 2O(
√
k)-algorithms

for planar graph problems in Chapter 5. There, we will derive such algorihms with considerably
smaller bases of the exponential term in the running time using the concept of tree decompo-
sitions. This concept is more powerful and seems to be much more promising from a practical
point of view.

On the positive side, the results in Theorem 4.2.1 and Corollary 4.2.2 are of theoretical
importance for two reasons:

• Fristly, these are—to the best of our knowledge—the first fixed-parameter algorithms which
have a sublinear term in the exponent of the exponential term of the running time, i.e.,
where the running time is of the form 2o(k)nO(1).

• Secondly, we will see in the next subsection, that the algorithms given in Corollary 4.2.2
are asymptotically optimal. There we will prove that an algorithm of running time

2o(
√
k)nO(1) is not possible for any of the problems given in Corollary 4.2.2, unless 3 sat ∈

DTIME(2o(n)), n being the number of variables of a 3 sat formula (see Theorem 4.2.10 be-
low). In classical complexity theory, this fact, i.e., that 3 sat can be solved in exponential
time with a sublinear exponent in n, is considered to be unlikely.

76 Graph Separation

4.2.2 Lower Bounds

Recall from the Introduction (see Section 1.1) that the questions whether sat or 3 sat can be
solved in running time 2o(n) are fundamental in the theory of parameterized complexity, since
they are closely related to the question whether FPT = W[1]. More precisely, FPT = W[1]

implies that 3 sat ∈ DTIME(2o(n)), n being the number of variables [1]. Conversely, it is stated
as the main result in [53] that sat ∈ DTIME(2o(n)), n being the number of variables, implies
FPT = W[1].

We now provide a lower bound for the running time of a fixed-parameter algorithm for par-
vertex cover. Our working hypothesis for these lower bounds again will be the assumption
that 3 sat /∈ DTIME(2o(n)), where n is the number of variables. This will then lead to similar
lower bounds for fixed-parameter algorithms for par-vertex cover, par-independent set,
and par-dominating set on planar graphs. Our first result relies on a close investigation of the
classical reduction of 3 sat to vertex cover on graphs of degree bounded by three (abbreviated
by vertex cover-3) that is due to Garey, Johnson, and Stockmeyer [101, Theorem 2.6]. The
following result was first observed by Cai and Juedes [53, Lemma 4.2].4

Proposition 4.2.4 If par-vertex cover-3 can be solved in time 2o(k)nO(1) then 3 sat ∈
DTIME(2o(m)), where m is the number of clauses in a 3 sat formula.

Proof: Assume that there is a time 2o(k)nO(1) algorithm for par-vertex cover-3. Since k ≤ n
we, thus, have a time 2o(n) algorithm for vertex cover-3.

Suppose we are given a 3 sat formula φ with m clauses. In the classical reduction of 3 sat
to vertex cover [101, Theorem 2.6], it is shown how φ can be transformed in time polynomial
in m to a graph G of degree at most three with n = 9m vertices in such a way that φ has a
satisfying assignment if and only if G has a vertex cover of size 5m. Hence, in order to solve
3 sat on the instance φ, we only have to find a minimum vertex cover of G. Assuming the
time 2o(n) algorithm for vertex cover-3, this can be done in time 2o(9m). This shows that
3 sat ∈ DTIME(2o(m)). 2

In order to get a similar lower bound based on the assumption that 3 sat /∈ DTIME(2o(n)),
where n is the number of variables in a 3 sat formula, we use a “Sparsification Lemma” due
to Imagliazzo, Paturi, and Zane [119]. This lemma states that for every ε > 0, there exists a
constant dε such that any 3 sat formula φ (with n variables) can be expressed as φ =

∨t
i=1φi

with t ≤ 2εn, where each φi is a 3 sat formula with at most dεn clauses. Using this Sparsification
Lemma it is not hard to show the following statement (see [53, Lemma 4.3] for a proof).

Lemma 4.2.5 If 3 sat ∈ DTIME(2o(m)), m being the number clauses in a formula, then
3 sat ∈ DTIME(2o(n)), where n is the number of variables in a formula. 2

Combining Lemma 4.2.5 with Proposition 4.2.4 we get the following.

Proposition 4.2.6 If par-vertex cover-3 can be solved in time 2o(k)nO(1) then 3 sat ∈
DTIME(2o(n)), where (in the latter case) n is the number of variables in a 3 sat formula. 2

4As usual, in the following results for a parameterized graph problem, n will always denote the number of
vertices of an input graph and k will refer to the corresponding problem parameter according to Definition 1.3.2.

4.2 Planar Graphs: 2O(
√
k)-Algorithms Based on Separation 77

Remark 4.2.7 In fact, Cai and Juedes showed that the converse is also true, i.e., if 3 sat ∈
DTIME(2o(n)), n being the number of variables, then there is a time 2o(k)nO(1) algorithm for
par-vertex cover-3 [53, Theorem 4.3]. Moreover, a similar statement can be easily gener-
alized to all problems that are MAXSNP-complete (under so-called L-reduction as introduced
in [162]). More precisely, Cai and Juedes [53, Theorem 4.4] show that, for a MAXSNP-complete
problem Q, the induced parameterized problem par-Q can be solved in time 2o(k)nO(1) with
witness if and only if 3 sat ∈ DTIME(2o(n)), where n is the number of variables. Examples for
MAXSNP-hard problems are given by vertex cover, independent set, dominating set
(on graphs of degree bounded by 3), or max c-sat.

To obtain the corresponding lower bounds for our planar graph problems, we need the
following notion of a parameterized reduction.

Definition 4.2.8 Let L1 ⊆ Σ∗
1× N and L2 ⊆ Σ∗

2× N be parameterized problems. We say that
L1 is parameterized reducible to L2 if there exist a computable function Ψ : N→ N, k 7→ k ′ and
a function Φ : Σ∗

1× N→ Σ∗
2, (x, k) 7→ x ′ such that

(i) Φ is computable in time f(k) · |x|O(1) for some function f, and

(ii) (x, k) ∈ L1 if and only if (x ′, k ′) ∈ L2.

If such a parameterized reduction exists, we write L1 ≤Ψ L2.

In the original (classical) reductions from vertex cover to vertex cover on planar
graphs, to independent set on planar graphs, or to dominating set on planar graphs, Garey,
Johnson, and Stockmeyer [101, Theorem 2.7] use the idea of so-called “crossover gadgets.” By
a careful investigation on how the problem parameter k transforms in this classical reduction,
it is not hard to show the following result which was first observed by Cai and Juedes [53]. We
refer to [53, Lemma 5.1] for an easy proof.

Lemma 4.2.9 There exist parameterized reductions

(i) par-vertex cover-3 ≤k7→k2 (par-vertex cover on planar graphs),

(ii) par-vertex cover-3 ≤k7→k2 (par-independent set on planar graphs), and

(iii) par-vertex cover-3 ≤k7→k2 (par-dominating set on planar graphs).

All reductions can be carried out in polynomial time.

These parameterized reductions in combination with Proposition 4.2.6 yield the mentioned
lower bounds for our threesome of planar graph problems (see [53, Lemma 5.1]).

Theorem 4.2.10 If par-vertex cover, par-independent set, or par-dominating set is

solvable in time 2o(
√
k)nO(1) on planar graphs, then 3 sat ∈ DTIME(2o(n)), where (in the latter

case) n is the number of variables in a 3 sat formula.

78 Graph Separation

Proof: Using the parameterized reduction given in Lemma 4.2.9, it is easy to see that an algo-

rithm of running time 2o(
√
k)nO(1) can be used to solve the par-vertex cover-3 problem in

time 2o(
√
k2)nO(1). This implies, by Proposition 4.2.6, that 3 sat ∈ DTIME(2o(n)). 2

4.3 Beyond Planar Graphs: Algorithms on Disk Graphs

We now turn our attention to so-called disk graphs. A disk graph is an intersection graph (i.e.,
a graph in which the vertices correspond to geometric objects and there is an edge between two
objects if the objects intersect) in the two-dimensional space, where the intersecting objects are
disks. A famous result by Koebe [130] shows that planar graphs are equivalent to the class of coin
graphs, i.e., disk graphs where disks are not allowed to overlap, but only to touch. In this sense,
disk graphs are a generalization of planar graphs. Note that not all graphs can be represented
by disks. A brief introduction to disk graphs is given in Subsection 4.3.1. For the case of disk
graphs, as in the previous section, we will pursue the strategy of combining a geometric version
of reduction to problem kernel (see Subsection 4.3.2) with a divide-and-conquer approach based
on an appropriate separator theorem.

Unfortunately, for disk graphs, so far such separator theorems are known only for intersection
graphs of so-called “τ-ply neighborhood systems” [88, 147, 148] (see Subsection 4.3.3.1). With
respect to general disk graphs, we quote from the introduction of Hunt et al. [118]:

“The [...] drawback is that problems such as maximum independent set and minimum
dominating set [...] cannot be solved at all by the separator approach. This is because
an arbitrary (unit) disk graph of n nodes can have a clique of size n.”

The key result in this section is to show a way out of this dilemma by proving a new type
of “geometric separator theorem” which holds for disk graphs with bounded radius ratio (see
Subsection 4.3.3). Our geometric separator theorem can be seen as a generalization of (classical)
separator theorems, where the guarantee is not on the size of the separator in terms of its number
of vertices but in terms of the space occupied by its disks.

In Subsection 4.3.4 the results are used to optimally solve par-independent set on disk
graphs of bounded radius ratio. The problem is motivated by numerous applications ranging
from map labeling problems [2] to the area of frequency assignment problems in cellular net-
works [142]. In the latter case, one considers a set of antennas which transmit data on a given
frequency to their local environment. Assuming that this environment can be modeled by a disk
centered at the position of the antenna, the task to determine the maximum number of antennas
which can operate simultaneously without any conflicting interferences using the same frequency
becomes a maximum independent set problem on a disk graph.5 We provide an algorithm

running in time 2O(
√
k log(n)), which is—to our knowledge—the first algorithm with running time

bounded by a function with a the exponent sublinear in k. Clearly, the algorithm’s running time

5Note that we always consider disk graphs with given representation, i.e., with given set of disks in the plane.
This makes sense, since most applications which are modeled by disk graphs already provide this representation
in a very natural way.

4.3 Beyond Planar Graphs: Algorithms on Disk Graphs 79

must be considered to be impractical, but it is relevant from a theoretical point of view, since
in the worst-case (i.e., when k equals n) we obtain a running time which is considered to be
very unlikely on general graphs. More precisely, we obtain an algorithm of running time 2e(n)

with the sublinear term e(n) =
√
n log(n); this cannot be achieved for general graphs unless

3 sat ∈ DTIME(2o(n)), where n is the number of variables in a 3 sat formula [119].

Moreover, in the special case of disk graphs with ϑ-precision (i.e., the centers of all disks are
at mutual distance at least ϑ > 0)6, we can even show that par-independent set is in FPT.

As in the planar case, we obtain a running time of O(2O(
√
k) + n). A similar result holds for

par-vertex cover, and par-dominating set on disk graphs with ϑ-precision. In this section,
we partly follow [10].

4.3.1 Disk Graphs, Lebesgue Graph Measure and Covering Grids

(Disk) Intersection Graphs. Our subject to explore are intersection graphs of geomet-
ric objects in the plane, namely of disks. We assume that each point z of the plane is de-
termined by its x any y coordinates and the plane is equipped by the standard distance
d(z, z ′) =

√
(x− x ′)2+ (y− y ′)2. The plane distance of two geometric objects S and S ′ is

determined as the infimum distance among all pairs of z ∈ S and z ′ ∈ S ′. If S = {S1, . . . , Sn},
Si ⊆ R2 is a collection of geometric objects, we denote by

⋃S =
⋃n
i=1Si the union of S.

Definition 4.3.1 For a collection S of ngeometric objects, let GS = (VS , ES) denote the inter-
section graph of S, i.e., VS = {v1, . . . , vn} and ES = {(vi, vj) | Si ∩ Sj 6= ∅}. The collection S
is called the representation of GS . Moreover, for a subset S ′ ⊆ S, we denote by VS ′ ⊆ VS the
subset of vertices induced by S ′, i.e., VS ′ = {vi | Si ∈ S ′}. Finally, GS ′ := GS [S ′] := GS [VS ′] is
the subgraph of GS induced by the set of vertices VS ′.

In our setting, a diskD ⊆ R2 is specified by a triple (r, x, y) ∈ R3, where (x, y) are coordinates
of the center of the disk in the Euclidean plane and r is its radius.

Definition 4.3.2 The graph class of disk graphs, denoted by DG is the set of all graphs G, for
which we find a collection of disks D = {D1, . . . ,Dn} such that G = GD.

Note that for given collection D, the graph GD is given with a natural embedding in the
plane, where vi sits in the position of the center of Di.

Disk graphs are a generalization of planar graphs: A coin graph is a disk graph GD ∈ DG,
where the intersection of any two disks D1,D2 ∈ D contains at most one point in R2, i.e., the
disks can only touch each other. It is not hard to see that every coin graph is a planar graph.
A remarkable result by Koebe [130] states that the converse is also true, i.e., that every planar
graph is a coin graph. This result implies that every planar graph admits a so-called “straight-
line embedding” in the plane, i.e., an embedding in the plane where each edge is mapped to a
straight line segment (for details see Fáry [90] and Tutte [185, 186]).

We want to focus on another subclass of general disk graphs.
6From an application point of view this is a realistic scenario, since, e.g., for the frequency assignment problem,

we may assume that all antennas have a certain width.

80 Graph Separation

Definition 4.3.3 The class of disk graphs of bounded radius ratio ρ is the subclass DGρ ⊂ DG
of all graphs G ∈ DG which admit a representation D = {D1, . . . ,Dn}, such that

(max
i=1,...n

ri)/(min
i=1,...n

ri) ≤ ρ,

where ri denotes the radius of disk Di. The parameter ρ is called radius ratio.

By a rescaling argument, for a graph G ∈ DGρ with representation D, we can always achieve,
that the smallest disk in D has radius one and, hence, all radii being upper bounded by ρ. The
following restriction of DGρ was introduced in [118, Definition 3.2].

Definition 4.3.4 A collection D is said to have ϑ-precision (for some ϑ > 0) if all centers of
disks are pairwise at least ϑ apart.7 By DGρ,ϑ we denote the subclass of DGρ of disk graphs GD
that allow a representation D with radii in [1, ρ] and ϑ-precision.

Throughout the rest of this section, we assume that a disk graph G is given together with
its representation witnessing its membership in DG, DGρ or DGρ,ϑ, respectively. This make
sense from an application point of view, since the graph is usually derived from the placement
of real objects in the space, and it is natural that these objects have bounded size as well as
distinguishable placement.

The Lebesgue Graph Measure. Recall Definition 4.1.2 of a graph measure. Disk graphs
allow for a specific graph measure. We use the standard Lebesgue measure µ in R2 as follows:
For a Lebesgue measurable set S ⊆ R2, µ(S) denotes the size of S, i.e., the space in R2 occupied
by S. In particular, for a collection of disks D = {D1, . . . ,Dn}, let µ(D) = µ(

⋃D) be the space
covered by the union of the disks D1, . . . ,Dn.

Definition 4.3.5 The Lebesgue measure µ(·) assigning to a disk graph GD with representa-
tion D the value µ(GD) = µ(D) is a graph measure for DG, when we restrict the subgraph
ordering to GD ⊆ GD ′ ⇔ D ⊆ D ′.

Remark 4.3.6 The value µ(GD) can be computed in time polynomial in n := |D|. In a naive
approach8, we could compute all (at most 2n2) intersection points of the n disks. Then, one
forms a grid consisting of O(n4) rectangles, by drawing a horizontal and a vertical line through
each of the intersection points. Now each of the rectangles either is completely covered by the
disks, does not intersect with any disk, or is partially covered by disks (that do not intersect in
this rectangle!). Hence, we can compute the space covered by the disks for each rectangle (by a
simple formula) in linear time.

7It is clear, that, by a rescaling argument, all disk graphs have a representation with ϑ-precision. However,
only some of them allow a representation with radii in [1, ρ] and ϑ-precision.

8 A sweep-line algorithm could perform much better. For the rest of the section, however, it is sufficient that
we can compute µ(GD) in polynomial time.

4.3 Beyond Planar Graphs: Algorithms on Disk Graphs 81

Figure 4.4: The left-hand diagram shows the construction of the covering grid HδD induced by a collection
of disks D. The right-hand diagram illustrates the construction of a geometric separator according to
the algorithm in Fig. 4.5 (see Theorem 4.3.19): In a first step, a

√·-separator theorem on planar graphs
determines a small separator WS for the covering grid. Assume that corresponding vertices WS are
the ones that are highlighted. In this particular example, the disks that will be used for the geometric
separator DS are the marked ones. Observe that this geometric separator is not small in the number of
disks used, but in the area covered by the disks.

Covering Grids For the proof of our geometric separator theorem it will be important to
“translate” a set of disks into a planar graph. This will be established by the so-called “covering
grid,” which is a subgraph of an infinite grid.

Fix an arbitrary constant δ > 0, and consider the infinite grid of span δ as the planar
graph Hδ = (Wδ, Eδ) with vertices Wδ = {wi,j | i, j ∈ Z } and edges Eδ = { (wi,j,wk,l) |

|i− j|+ |k−l| = 1 }. The canonical (straight-line) embedding of Hδ is given by putting vertex wi,j
at the coordinates (iδ, jδ). In the following, for convenience, we will not distinguish between a
vertex w ∈Wδ and the corresponding point in the plane. The set of faces Fδ of Hδ contains all
closed squares Fδi,j = [iδ, (i+1)δ]×[jδ, (j+1)δ] ⊆ R2. For a grid vertexw ∈Wδ, we define the face

neighborhood N̂(w) := {F ∈ Fδ | w ∈ F}. Similarly, for W ′ ⊆Wδ, let N̂(W ′) =
⋃
w∈W′ N̂(w).

Definition 4.3.7 For a collection of disks D = {D1, . . . ,Dn}, we define HδD to be the smallest
subgraph of the infinite grid Hδ induced by a set of grid points which completely covers all disks
in D. We call HδD the covering grid (of span δ) for D.

In other words, if we define the set of faces hit by D as FδD = { F ∈ Fδ | F∩⋃D 6= ∅ }, and if
Wδ

D is the set of all grid points of FδD, then the covering grid HδD is the subgraph of Hδ induced
by Wδ

D.

An example which illustrates the construction of the covering gridHδD is given in the left-hand
diagram in Fig. 4.4.

82 Graph Separation

4.3.2 Geometric Problem Kernelizations

We already investigated par-vertex cover, par-independent set, and par-dominating set
on planar graphs and observed that all problems admit a linear problem kernel (see Corol-
lary 2.1.8, Proposition 2.1.4 and Theorem 2.2.1). For par-vertex cover, the planarity as-
sumption was indispensable. In contrast, for par-independent set and par-dominating set,
the existence of a linear kernel relied on this assumption.

On disk graphs, we can prove a geometric version of a problem kernel for these problems. By
this, we mean that the size of the reduced instance is upper bounded by O(k), when measured
by the (Lebesgue) measure µ(·) instead of the counting measure | · | (see Example 4.1.3).

Proposition 4.3.8 For par-independent set on DGρ there exists a “geometric” problem ker-
nel, i.e., there is a procedure that in polynomial time transforms an instance (GD, k) to an
instance (GD ′ , k), such that (GD, k) ∈ par-independent set if and only if (GD ′ , k) ∈ par-in-
dependent set and

πk ≤ µ(GD ′) ≤ 9πρ2k.

Proof: Let be given an instance (GD, k), together with the representation D. Recall, that due
to our assumptions all disks have radius in the range [1, ρ] and GD is naturally embedded in the
plane with respect to D.

Observe first, that µ(GD) > 9πρ2k implies that (GD, k) ∈ par-independent set. We use
the fact that µ(D[N(v)]) ≤ (3ρ)2π for any vertex v ∈ V, i.e., the neighborhood of any vertex
may occupy the space at most 9πρ2.

And, secondly, if µ(GD) < πk, then (GD, k) /∈ par-independent set, since the representa-
tion of any independent set of k vertices needs space at least πk.

Hence,

Φ((GD, k)) :=






(GD ′ , k) if µ(GD) > 9πρ2k

(G∅, k) if µ(GD) < πk

(GD, k) otherwise,
(4.6)

where D ′ is the set of k disjoint disks of radius one, yields the desired transformation. The time
needed to compute the transformation Φ is determined by the time needed to compute µ(GD),
which is polynomial according to Remark 4.3.6. 2

Proposition 4.3.9 For par-dominating set on DGρ there is a procedure that in polynomial
time transforms an instance (GD, k) to an instance (GD ′ , k), such that (GD, k) ∈ par-domina-
ting set if and only if (GD ′ , k) ∈ par-dominating set and

πk ≤ µ(GD ′) ≤ 9πρ2k.

Proof: Let (GD, k) be given together with the representation D. If µ(GD) > 9πρ2k then
(GD, k) /∈ par-dominating set, since k disks can cover at most space 9πρ2k. Conversely,
if µ(GD) < πk, then (GD, k) ∈ par-dominating set: The simple procedure to greedily find
a dominating set of size at most k chooses, in each step, an arbitrary disk D to belong to the

4.3 Beyond Planar Graphs: Algorithms on Disk Graphs 83

dominating set and removes D together with its neighbors. Since, in each step, we reduce the
space occupied by the current graph by at least π, the procedure stops in at most k steps.

The claimed transformation uses a case distinction similar to (4.6). 2

Again, note that neither the result in Proposition 4.3.8 nor in Proposition 4.3.9 is a problem
kernel according to Definition 2.1.1, since the size of GD is measured by the (Lebesgue) mea-
sure µ(·), which, in general, is not related to the (instance) size of G. However, for disk graphs
with ϑ-precision we can upper bound the counting measure by the Lebesgue measure.

Lemma 4.3.10 Let the collection of disks D have ϑ-precision. Then, it holds

|D| ≤ 4

π ϑ2
µ(D).

Proof: Observe that, for given set of n disks D with radius at least one and centers of mutual
distance at least ϑ, the smallest value µ(D) is obtained by optimally placing all centers in the

interior of a disk. However, such a disk must have radius at least ϑ
√
n
2

. Hence, since every disk
has radius at least one, we have

µ(D) ≥
(
ϑ
√
n

2
+ 1

)2
π ≥ π

4
ϑ2n.

2

Combining this result with Propositions 4.3.8 and 4.3.9 we get the following corollaries.

Corollary 4.3.11 par-Independent set on disk graphs DGρ,ϑ (with ϑ-precision) admits a
problem kernel of size 36(ρ

ϑ
)2k, hence, it is in FPT.

Corollary 4.3.12 par-Dominating set on disk graphs DGρ,ϑ (with ϑ-precision) admits a
problem kernel of size 36(ρ

ϑ
)2k, hence, it is in FPT.

Remark 4.3.13 The problem kernel reduction needs polynomial time. We can bring this down
to linear time (at the expanse of a slightly worse problem kernel size) if the computation of µ(GD)

is done in an approximate way: Recall the notion from Definition 4.3.7. For some constant δ > 0,
let HδD be the covering grid (of span δ) for D and let FδD be its faces, i.e., the set of faces of the
infinite grid Hδ hit by D. Observe that the set F ′ := {F ∈ FδD | F ⊆ D} can be constructed in
time O(|D|) since, for each disk D ∈ D, we need to check at most O((πρ2)/δ2) many faces of the
covering grid. Using |F ′|δ2 ≤ µ(GD) and the arguments given in the proofs of Propositions 4.3.8
and 4.3.9, we know that (GD, k) ∈ par-independent set and (GD, k) /∈ par-dominating set
if |F ′|δ2 > 9πρ2k, which means that we only have to deal with the case that |F ′|δ2 ≤ 9πρ2k.
An easy computation shows that for a disk of radius at least one, the ratio between fully and
partially covered grid squares of span δ is at most cδ := (1 +

√
2δ)2/(1 −

√
2δ)2. Hence, in the

remaining case where |F ′|δ2 ≤ 9πρ2k we get

µ(GD) ≤ |FδD |δ2 ≤ cδ|F ′|δ2 ≤ cδ9πρ2k.

(Observe that cδց 1 as δ→ 0.)

84 Graph Separation

4.3.3 A New Geometric
√·-Separator Theorem

In the following, we prove the key result—a new geometric
√·-separator theorem for general

disk graphs of bounded radius ratio—that makes a divide-and-conquer strategy work.

4.3.3.1
√·-Separator Theorem on Disk Graphs with ϑ-Precision

For geometric graphs, a
√·-separator theorem for the counting measure | · | (see Example 4.1.3

and Definition 4.1.4) was—to the best of our knowledge—so far only proven on the class of
intersection graphs of so-called τ-ply neighborhood systems as studied in a series of papers by
Miller, Teng, Thurston and Vavasis (see [148] for an overview).

Definition 4.3.14 A (2-dimensional) τ-ply neighborhood system is a collection D of disks such
that the intersection of any (τ+1) distinct disks in D is empty. By DGτ-ply we denote the subclass
of DG of disk graphs GD which have a representation by a τ-ply neighborhood system D.

The following result was proven in [147, Theorem 5.1] and [88, Theorems 4.3 and 5.1].9

Theorem 4.3.15 On the class DGτ-ply there exists a
√·-separator theorem for the measure | · |

with constants α = 3
4

and β = O(
√
τ). The corresponding separation can be found in linear

time.

There is a close relation of τ-ply neighborhood systems to disks of bounded radius ratio with
ϑ-precision. This relation will then establish a separator theorem on DGρ,ϑ.

Lemma 4.3.16 For every ρ ≥ 1 and ϑ > 0 there exists constant τ with τ = O((ρ
ϑ
)2) such that

DGρ,ϑ ⊆ DGτ-ply.

Proof: Let D be a collection of disks with radii in [1, ρ] and ϑ-precision. A given disk D ∈ D
of radius ρ and center z can be intersected only by other disks from D having their center in
a cycle of radius 2ρ centered around z. Since D has ϑ-precision there can be at most τ many
centers inside this cycle of radius 2ρ where τ is some constant with τ = O((ρ

ϑ
)2). 2

Theorem 4.3.15 then directly implies the following.

Theorem 4.3.17 On the class DGρ,ϑ of disk graphs with bounded radius ratio and ϑ-precision
there exists a

√·-separator theorem for the measure | · | with constants α = 3
4

and β = O(ρ
ϑ
). 2

This means, that we can directly apply Theorem 4.2.1 from Section 4.2.1 to the problems
par-vertex cover, par-independent set, and par-dominating set for which we established
linear problem kernels on DGρ,ϑ in Corollaries 2.1.8, 4.3.11, 4.3.12 and Remark 4.3.13.

Corollary 4.3.18 (i) par-Vertex cover on DGρ,ϑ can be solved in time O(2O(
√
k) + n).10

9The result in [88, 147] was stated for the d-dimensional case.
10The constant hidden in the O-notation of the exponent depends on (ρ

ϑ
)2 .

4.3 Beyond Planar Graphs: Algorithms on Disk Graphs 85

(ii) par-Independent set on DGρ,ϑ can be solved in time O(2O(
√
k) + n).10

(iii) par-Dominating set on DGρ,ϑ can be solved in time O(2O(
√
k) + n).10

4.3.3.2
√·-Separator Theorem on Disk Graphs with Bounded Radius Ratio

We now prove an analogue to the classical
√·-separator theorems for the class DGρ of disk graphs

with bounded radius ratio. Note that graphs in DGρ may contain arbitrary large cliques, which
means that a

√·-separator theorem cannot hold for the counting measure | · | (see Example 4.1.3
and Definition 4.1.4). This contrasts to the class of disk graphs DGρ,ϑ with bounded radius
ratio and ϑ-precision (see Theorem 4.3.17). However, if we use the (Lebesgue) measure µ(·) (see
Definition 4.3.5) for disk graphs with bounded radius ratio, we obtain the following result.

Theorem 4.3.19 On the class DGρ of disk graphs with bounded radius ratio, there exists a√·-separator theorem for the Lebesgue graph measure µ(·).
More precisely, there exist constants α < 1 and β > 0 such that, for every graph GD ∈

DGρ with representation D, we find three sets DA,DS,DB ⊆ D, such that (VDA , VDS , VDB) is a
separation for GD, satisfying

(i) µ(DS) ≤ ρ2β
√
µ(D),

(ii) µ(DA), µ(DB) ≤ αµ(D).

Moreover, this separation can be found in time O(ρ2|VD |).

In order to prove the Theorem, we need the following result which relates the size of the
covering grid HδD = (Wδ

D, E
δ
D) (see Definition 4.3.7) to the space occupied by the disks D.

Lemma 4.3.20 For any ε > 0 there exists δ > 0 such that for any set of disks D, each of radius
at least one, it holds11

|Wδ
D | ≤ 1+ ε

δ2
µ(D).

Proof: We first of all claim that if we multiply all radii of disks in D by an arbitrary factor
η ≥ 1, the total area of the new set is at most η2µ(D). To see this, we use the theorem of Bern
and Sahai [37] stating that if any set of disks is shifted in the plane by a continuous motion such
that the center-to-center distance does not increase in time, then the total area of the union of
disks is also non-increasing.

If we first multiply the coordinates of the centers of D as well as their radii by η, the new
set of disks covers the space η2µ(D). We now shift all disk centers to the original position by
the continuous mapping corresponding to the continuous application of magnification factor of
the range η→ 1. The claim follows by applying Bern and Sahai’s theorem to this motion.12

11Note that this is a non-trivial result since |Wδ
D | grows with decreasing δ.

12Jǐŕı Matoušek suggested the elegant argument for this proof.

86 Graph Separation

procedure geometric separator

/* input: a set of disks D of bounded radius ratio. */
/* output: three sets DS, DA and DB corresponding to */
/* a separation (VDA

, VDS
, VDB

) of GD (with properties stated in Theorem 4.3.19). */

◦ scale D such that the smallest disk has unit radius.

◦ fix any ε < 1
2

and select δ according to Lemma 4.3.20 (e.g., ε = 1
4
, δ = 1

20
)

and construct the covering grid HδD = (Wδ
D, E

δ
D) (see Definition 4.3.7)

◦ run the algorithm of Lipton and Tarjan (see Theorem 4.1.5) on the graph HδD to obtain
a separation (WA,WS,WB) with

a) |WS| ≤ β ′
√

|Wδ
D | and

b) |WA|, |WB| ≤ α ′|Wδ
D |,

for the constants β ′ = 2
√
2 and α ′ = 2

3
.

◦ return the three setsa

DS := D[N̂(WS)],
b DA := D[WA] \ DS, DB := D[WB] \ DS.

a Let D be a collection of disks and consider a set S ⊆ R2 (e.g. a set of grid vertices or a set of
faces). Then D[S] = {D ∈ D | D ∩ S 6= ∅} is called the set of disks induced by S.

bFor the definition of the face neighborhood N̂(·), refer to Subsection 4.3.1.

Figure 4.5: Separator algorithm corresponding to Theorem 4.3.19. For an example of the construction,
we refer to the right-hand diagram in Fig. 4.4.

Now, fix an arbitrary positive δ ≤ 1
3
(
√
2(1+ ε) −

√
2) and consider the set Wδ

D. Each point
w of Wδ

D, could be represented as a unique square of side size δ with w placed at the center.
(These squares correspond to the grid squares shifted by δ

2
in both coordinates.) All these new

squares could be covered by the original disks if we enlarge all radii of the disks by the factor

(1+ 3
√
2
2
δ). Then, applying the claim above, we get

δ2|Wδ
D | ≤

(
1+

3
√
2

2
δ

)2
µ(D) ≤ (1+ ε)µ(D).

2

Proof (of Theorem 4.3.19):

The key idea is to apply Lipton and Tarjan’s planar separator theorem to the covering
grid HδD = (Wδ

D, E
δ
D) (see Definition 4.3.7) for D and to construct the sets DS, DA and DB in a

suitable manner from the separation obtained by Lipton and Tarjan’s algorithm. The procedure
which determines the sets DS, DA and DB is given in Fig. 4.5. An example for the construction
is illustrated in the right-hand diagram in Fig. 4.4. We now prove that, indeed (VDA , VDS , VDB)

is a separation of G and that properties (i) and (ii) of the theorem for the computed sets DS,DA,
and DB hold:

4.3 Beyond Planar Graphs: Algorithms on Disk Graphs 87

(VDA , VDS , VDB) is a separation of G: Showing that (VDA , VDS , VDB) is a separation of GD is
equivalent to proving that (

⋃DA) ∩ (
⋃DB) = ∅. Recall that (WA,WS,WB) is the separation

of HδD obtained by the algorithm of Lipton and Tarjan. First of all we claim that

(⋃
DA
)
∩Wδ

D ⊆ WA, and
(⋃

DB
)
∩Wδ

D ⊆ WB. (4.7)

To see this, note that (
⋃DA) ∩WS = ∅, since if there is a disk D ∈ DA containing a point

w ∈WS—by construction of DS—we had D ∈ DS. Suppose now that there is a vertex wB ∈WB
which lies in a disk D ∈ DA. By definition of the set DA, we find a vertex wA ∈ WA inside D
as well. Then, there exists a path P in HδD which connects wA and wB and is completely placed
inside the disk D. Since (WA,WS,WB) is a separation of HδD there exists a vertex of WS on P,
contradicting (

⋃DA)∩WS = ∅. Since Wδ
D = WA∪WS∪WB, we get (

⋃DA)∩Wδ
D ⊆WA. The

property (
⋃DB) ∩Wδ

D ⊆ WB follows similarly.

Assume now, for contradiction, that two vertices vA and vB which correspond to disks
DA ∈ DA and DB ∈ DB form an edge in GD. That means there exists some point z in DA∩DB.
Let Fz ∈ Fδ be any of the (at most four) squares containing z, and let Wz be the four grid
vertices adjacent to Fz in HδD.

We claim that we can find two grid points wA ∈ DA, wB ∈ DB, that are in HδD at distance
at most two. W.l.o.g. we may assume that DA intersects at least one corner vertex wA of Fz
(otherwise we symmetrically exchange subscripts A and B). We now consider three cases (all
cases are depicted in Fig. 4.6). Either DB also intersects a corner vertex wB of Fz (see the two
left-most cases in Fig. 4.6) or DB does not intersect any of the corner vertices of Fz (see the
right-hand case in Fig. 4.6). In case DB intersects a corner vertex wB, this vertex either is
adjacent to wA (see the left-hand diagram in Fig. 4.6) or it lies opposite to wA (see the middle
diagram in Fig. 4.6). In any case, wA and wB are at distance at most two. Now consider the
case, where DB does not intersect any of the corner vertices of Fz (see the last case depicted
in Fig. 4.6). In this case, it intersects one side of Fz, and since δ ≪ 1, it contains two grid
vertices of the square sharing this side. In particular, there is one grid vertex wB ∈ DB which
has distance at most two to wA ∈ DA.

By Eq. (4.7), we have wA ∈ WA and wB ∈ WB and, hence, wA and wB must be separated
by WS. If wA and wB are neighbors this is a contradiction. If they have distance two in HδD,
the vertex w connecting wA and wB must lie in WS. Since w lies on the boundary of Fz,
we have Fz ∈ N̂(WS). Thus, since by construction DS := D[N̂(WS)], we get DA,DB ∈ DS, a
contradiction.

ad property (i): Consider a vertex w ∈WS and the face neighborhood N̂(w) consisting of all four
faces of the covering grid that are adjacent to w. We claim that all disks in D which intersect
N̂(w) must lie inside a cycle of radius (2ρ+

√
2δ) centered at w. This is clear, since the covering

grid has span δ and, hence, N̂(w) lies in a cycle of radius
√
2δ centered at w. Moreover, all disks

in D have diameter bounded by 2ρ. Thus, a disk that intersects N̂(w) must lie inside a cycle of
radius (2ρ+

√
2δ) centered at w.

88 Graph Separation

wB

DB

z

Fz

wA

DA
DB

wB

z

DA

Fz
wA

z

DA DB

Fz

wA wB

Figure 4.6: Intersecting disks select two vertices wA and wB from HδD at distance at most two.

This implies that

µ(DS) = µ(D[N̂(WS)]) = µ

(⋃

w∈WS
D[N̂(w)]

)
(4.8)

≤
∑

w∈WS
µ(D[N̂(w)]) ≤

(
(2ρ+

√
2δ)2π

)
|WS| ≤ 5ρ2π|WS|.

In the last step we used the following argument. If we choose ε < 1
2
, by the choice of δ according

to Lemma 4.3.20, we have
√
2δ < 1

6
≤ ρ
6
. Using property (a) of the third step of the algorithm

in Fig. 4.5 and Lemma 4.3.20, we have |WS| ≤ β ′
√

|Wδ
D | ≤ β ′

√
1+ε
δ2
µ(D) which together with

the estimate (4.8) establishes

µ(DS) ≤ ρ2β
√
µ(D) for β :=

5πβ ′

δ

√
(1+ ε). (4.9)

ad property (ii): First of all, observe that the set
⋃DA is completely covered by the square

faces of the subgraph HδD[WA], induced by the vertices of WA. To see this, suppose there is a
point z ∈ D (for some D ∈ DA) which lies in some square Fz ∈ Fδ of HδD but not of HδD[WA].
As above, if the four vertices adjacent to Fz host a vertex of WB or WS, we get D∩ N̂(WS) 6= ∅,
a contradiction.

By this observation and by the fact that |WA| ≤ α ′|WD |, we get

µ(DA) ≤ µ(HδD[WA]) ≤ δ2|WA| ≤ δ2α ′|Wδ
D | ≤ α ′(1+ ε)µ(D),

where Lemma 4.3.20 was used in the last step. Note that α := α ′(1+ ε) < 1 since ε < 1
2
.

Similarly, one proves µ(DB) ≤ α ′(1+ ε)µ(D).

running time: The running time of the algorithm is determined by the time needed to apply
Lipton and Tarjan’s algorithm to the graph HδD which is O(Wδ

D). Using Lemma 4.3.20, we get

|Wδ
D | ≤ (1+ ε)δ−2µ(D) ≤ (1+ ε)δ−2πρ2|D| = O(ρ2|D|).

2

4.3 Beyond Planar Graphs: Algorithms on Disk Graphs 89

Observe that the choice of ε affects the tradeoff of getting small α on the one hand (it may
be arbitrary close to α ′ as ε→ 0) which on the other hand causes the growth of β according to
equation (4.9) as well as the growth of |Wδ

D |. E.g., by our choice of ε = 1
4

and δ = 1
20

, we get

α = α ′(1+ ε) = 5
6
, but β > 460 and any disk of unit radius intersects at least 1250 grid points.

4.3.4 An Exact Algorithm for par-Independent set on Disk Graphs

As an application of the new geometric separator theorem we give an algorithm for par-indepen-
dent set on disk graphs DGρ of bounded radius ratio. It is known [62] that independent set
is NP-hard even for unit disk graphs DG1 by a reduction from vertex cover on planar graphs
with maximum degree three. The reduction in [62] can be adapted easily to obtain NP-hardness
for independent set on the more restricted class of unit disk graphs with 1-precision. Heuristic
approaches for independent set on unit disk graphs are studied in [143]. Another way to cope
with this hardness was proposed by approximation theory [89, 118, 144]. Very recently, Erlebach
et al. [89] gave a PTAS for independent set on disk graphs, which is based on a sophisticated
use of so-called shifting techniques as they were introduced in Baker’s work [31] for deriving
polynomial time approximation schemes for various planar graph problems.

Here, we are interested in exact solutions for the given problem. In a first subsection, we
give an exact algorithm for par-independent set on disk graphs of bounded radius ratio with
exponential running time that is sublinear in the exponent. In a second subsection, we compare
our results for disk graphs with known upper and lower bounds on planar and general graphs.

4.3.4.1 The Algorithm

We use the geometric kernelization of Subsection 4.3.2 and a divide-and-conquer approach based
on the new geometric separator theorem from Subsection 4.3.3.

Theorem 4.3.21 The par-independent set problem on disk graphs DGρ of bounded radius

ratio can be solved in time 2O(
√
k log(n)),13 where k is the size of the independent set we seek for.

Proof: On input instance (GD, k), in a first step, perform the geometric kernelization explained
from Proposition 4.3.8. After this step, without loss of generality, we may assume that µ(D) ≤ ck
for some constant c, depending on ρ2.

In a second step, the divide-and-conquer procedure indep set shown in Fig. 4.7 is applied
to the disks D of the kernel GD.

Denote by T(n, s) the time needed to compute indep set(D) of a collection of n disks D
with µ(D) ≤ s. Let p(|D|) be the polynomial time needed to compute the sets DS,DA, and
DB according to Theorem 4.3.19, and let q(|D|) be the polynomial time needed to perform the

constructions of D ′
A and D ′

B. Note that in DS at most ⌊ρ2β
√
s

π
⌋ many disks can be independent,

since µ(DS) ≤ ρ2β
√
s and every disk has radius at least one. Hence, the total number of

13The constant hidden in the O-notation depends on ρ3 .

90 Graph Separation

procedure indep set (disks D)

/* input: a set of disks D of bounded radius ratio. */
/* output: a maximal independent set for the corresponding disk graph GD. */

◦ if (D = ∅) then return ∅ else

◦ run geometric separator(D) to obtain sets DS, DA, and DB (see Fig. 4.5).

◦ for all independent sets IS of vertices in GDS
do

D ′
A := DA \ {D ∈ DA | ∃D ′ ∈ D[IS] : D ∩D ′ 6= ∅ }

D ′
B := DB \ {D ∈ DB | ∃D ′ ∈ D[IS] : D ∩D ′ 6= ∅ }

I ′S := IS ∪ indep set(D ′
A) ∪ indep set(D ′

B)

◦ return (I ′S)opt, for which

|(I ′S)opt| = min { |I ′S| | IS is an independent set in GDS
}

Figure 4.7: Divide-and-conquer algorithm for independent set on disk graphs of bounded radius ratio
based on the new geometric separator theorem. Note that for a fixed independent set IS of GDS

, no
further disk from DA and DB intersecting disks from D[IS] can be chosen. This explains the construction
of D ′

A and D ′
B.

independent sets in GDS is upper bounded by

⌊ρ
2β

√
s

π
⌋∑

i=0

(
n

i

)
≤ nβ̂

√
s,

where β̂ is some constant, depending on ρ2.14 Then, the recursion we have to solve in order to
compute an upper bound on T(n, s) reads as follows:

T(n, s) ≤ p(n) + nβ̂
√
s · q(n) · 2 T(n,αs).

Hence, for n large enough, and a suitable constant β̃ we have

T(n, s) ≤ nβ̃
√
s · T(n,αs) ≤

log 1
α

(s)
∏

i=0

nβ̃
√
αis · T(n, 1)

≤ nβ̃
√
s(
∑∞
i=0 α

i
2) · T(n, 1) = n

β̃
√
s

1−
√
α · T(n, 1).

Note that T(n, 1) is constant, since µ(D) ≤ 1 implies D = ∅, because for every disk D we
have µ(D) ≥ π. By plugging in the values n = |D| and s = ck, we obtain the running time

14Observe that this is an argument which solely works for independent set and cannot be carried over to
other problems. E.g., in the case of dominating set, the fact that µ(DS) ≤ c

√
s does not imply an upper bound

of the form nc
′
√
s on the total number of dominating sets in GDS

.

4.3 Beyond Planar Graphs: Algorithms on Disk Graphs 91

graph class (classical) complexity parameterized complexity

20.25n [174, 175]
general graphs

lower bound: 2Ω(n) [119]
W[1]-complete [81, 82]

2O(
√
n log(n)) 2O(

√
k log(n)) [Thm. 4.3.21]

disk graphs DGρ
[Rem. 4.3.22] open: FPT or W[1]-hard ?

disk graphs DGρ,ϑ 2O(
√
n) O(2O(

√
k) + n) [Cor. 4.3.18]

(with ϑ-precision) [Cor. 4.3.18, k = n] hence: FPT

2O(
√
n) [138] O(2O(

√
k) + n) [Cor. 4.2.2]

planar graphs
lower bound: 2Ω(

√
n) [Thm. 4.2.10, Prop. 2.1.4] hence: FPT

Table 4.2: Relating our results on par-independent set on disk graphs to known results for general
graphs and for planar graphs. (Lower bounds are under the assumption that 3 sat 6∈ DTIME(2o(n)),
where n is the number of variables of a 3 sat formula.) For disk graphs DGρ,ϑ and planar graphs, similar
results also hold true for par-vertex cover and par-dominating set (see Corollaries 4.2.2 and 4.3.18).

2O(
√
k log(n)) as we have claimed. Since β̃ and c both depend on ρ2, the constant hidden in the

O-notation depends on ρ3. 2

Remark 4.3.22 In the worst-case k = n, we have a time 2O(
√
n log(n)) algorithm.

4.3.4.2 Summary and Comparison

We briefly summarize our results on the parameterized and classical complexity of the inde-
pendent set problem for disk graphs and give a comparison to known results on general and
planar graphs (which are equivalent to the class of coin graphs); see Table 4.2 for an overview.

In classical complexity study, the best known algorithm for independent set on general
graphs running in time 20.276n is due to Robson [174] which he recently improved to 20.25n [175].

Impagliazzo, Paturi, and Zane [119] investigated the syntactic class SNP (as originally
defined by Papadimitriou and Yannakakis [162]) under so-called Subexponential Reduction
Families (SERF). They showed that the existence of a “subexponential” algorithm for any
problem that is SNP-hard under SERF-reduction implies that every problem in SNP has
a “subexponential” algorithm [119, Lemma 9]. In particular, since independent set and
3 sat are proven to be SNP-complete under SERF-reduction [119, Theorem 3], it follows that
independent set ∈ DTIME(2o(n)) is impossible unless 3 sat ∈ DTIME(2o(n)), n being the
number of variables in the latter case.15 This fact, i.e., that 3 sat can be solved in exponential
time with a sublinear exponent, is generally considered to be very unlikely.16

15Basically, the implication independent set ∈ DTIME(2o(n)) ⇒ 3 sat ∈ DTIME(2o(n)) can be proven in
a very similar way to the proof of Proposition 4.2.4 combined with Lemma 4.2.5.

16 So far, the best known algorithm for 3 sat has running time O(1.481n)[115].

92 Graph Separation

From parameterized complexity theory, we know that par-independent set isW[1]-complete
on general graphs [81, 82].

If restricted to planar graphs, Lipton and Tarjan applied their well-known planar separator
theorem [137] to get an algorithm with running time 2O(

√
n) (also see Proposition 4.1.15). In

parameterized complexity study, par-independent set on planar graphs is in FPT, and for

the (asymptotically) best known algorithm we get running time O(2O(
√
k) +n), the exponential

term being sublinear in k (see Corollary 4.2.2). Moreover, recall that this algorithm matches the
lower bound given in Theorem 4.2.10, which states that there is no fixed-parameter algorithm for

par-independent set with running time 2o(
√
k)nO(1) unless 3 sat ∈ DTIME(2o(n)), n being

the number of variables. In addition, this result provides a lower bound of 2Ω(
√
n) for indepen-

dent set on planar graphs under the hypothesis that 3 sat /∈ DTIME(2o(n)): an algorithm
of running time 2o(

√
n) for independent set on planar graphs in combination with the linear

problem kernel reduction (see Proposition 2.1.4), would lead to an algorithm for par-indepen-
dent set on planar graphs that would be better than the given relative lower bound.

The results that could be established for planar graphs also hold for disk graphs DGρ,ϑ with
bounded radius ratio and ϑ-precision. Similarly to the planar case, for par-independent set

on DGρ,ϑ, we derived an algorithm of running time O(2O(
√
k) + n) (see Corollary 4.3.18.(ii)).

Letting k = n, we obtain a time 2O(
√
n) algorithm.

On the class DGρ of disk graphs with bounded radius ratio, applying our new geometric

separator theorem lead to an algorithm of running time 2O(
√
k log(n)) (see Theorem 4.3.21),

which translates to a time 2O(
√
nlog(n)) algorithm if k = n (see Remark 4.3.22). The exponent

O(
√
n log(n)) is a sublinear term and, hence, cannot be achieved for general graphs, unless

3 sat ∈ DTIME(2o(n)), n being the number of variables [119]. We leave it as an open problem
whether par-independent set on DGρ or even on general disk graphs is in FPT or complete
for the class W[1].

Finally, we want to mention that completely independent of our work, Lev-Tov and Pe-
leg [136] gave (among others) exact algorithms for the independent set problem on unit disk
graphs with similar running times. Namely, they gave a time 2O(

√
nlog(n)) algorithm for unit disk

graphs and a time 2O(
√
n) algorithm if in addition the centers of the unit disks are required to

sit on a given grid of span δ. Our results generalize these results with respect to various aspects:
Firstly, our algorithms are stated in the parameterized complexity setting and our results, for
the classical complexity setting, are only derived as sideproduct. It might be—as in the case
of a large clique—that even though n could be huge, the size of the largest independent set of
a disk graph (i.e., the parameter k) can be very small. In this sense, a time nO(

√
n) algorithm

is inferior to an nO(
√
k) algorithm. Secondly, our results are given for a much broader class of

graphs than the ones in [136]. Lev-Tov and Peleg restricted their studies to the case of unit
disk graphs, whereas our setting allows disks of distinct radii (as long as the ratio of largest and
smallest radii is bounded). Their 2O(

√
n) only holds if the centers of the unit disks are assumed

to sit on a given grid of span δ, which is more restrictive than the class of ϑ-precision graphs
considered in our setting.

Chapter 5

Tree Decomposition Based
Algorithms

The notions of “tree decomposition” and “treewidth” have their origin in the deep theoretical
work of Robertson and Seymour on graph minors. From an algorithmic point of view, tree de-
compositions provide an interesting concept for designing fixed-parameter algorithms. Typically,
treewidth based algorithms proceed according to the following scheme in two stages:

Phase 1: Find a tree decomposition of bounded width for the input graph, and then

Phase 2: solve the problem using dynamic programming approaches on the tree decomposition.

After providing some background on tree decompositions in Section 5.1, we take a closer look
at both stages.

As to the first phase, it is generally considered to be a hard task to compute a tree decompo-
sition of provably “small” width quickly. In Section 5.2, we introduce the abstract notion of the
so-called “Layerwise Separation Property” (LSP) which holds for a broad class of parameterized
problems including, e.g., par-vertex cover, par-independent set, par-dominating set,
and various variations of these problems. For such LSP-problems, we develop a general method-
ology that allows the fast construction of tree decompositions of width bounded by O(

√
k),

where k is the problem parameter.

As to the second phase, the running time of the dynamic programming typically is polyno-
mial or even linear in the size of the input graph, but exponential in the width of the given tree
decomposition. Hence, the latter turns out to be the computational bottleneck. For our three-
some vertex cover, independent set, dominating set, the best running time behavior so
far was obtained by Telle and Proskurowski [183, 184]. In Section 5.3, we revisit their work, and
demonstrate how their algorithms can be improved significantly by an argument on a certain
“monotonicity” in the table updating process during dynamic programming.

Finally, the results are put together in Section 5.4 to derive time O(2O(
√
k)n) algorithms for

LSP-problems, where the constant hidden in the exponent can be computed by various problem

94 Tree Decomposition Based Algorithms

specific numbers. In combination with problem kernel reduction most of the given algorithms

can be sped up to a running time of the form 2O(
√
k) + nO(1).

5.1 Background

We shortly review the notion of “tree decompositions” together with the graph parameter
“treewidth.” Besides, we introduce the so-called “layer decomposition” for planar graphs.

5.1.1 Tree Decompositions and Treewidth

Since Robertson and Seymour defined the graph parameter treewidth together with the asso-
ciated graph structure tree decomposition in their seminal work [171], this notion played an
important role in both graph theory, as well as algorithm theory.

5.1.1.1 Definition and First Properties

Informally speaking, the treewidth measures how “tree-like” a graph is. For a detailed intro-
duction to tree decompositions we refer to [128] and to the very good survey [45].

Definition 5.1.1 Let G = (V, E) be a graph. A tree decomposition X of G is a pair 〈{Xi | i ∈
V(T)}, T 〉, where each Xi is a subset of V, called a bag, and T is a tree with the elements of V(T)

as nodes. The following three properties must hold:

(i)
⋃
i∈IXi = V;

(ii) for every edge {u, v} ∈ E, there is an i ∈ V(T) such that {u, v} ⊆ Xi;

(iii) for all i, j, k ∈ V(T), if j lies on the path between i and k in T , then Xi ∩ Xk ⊆ Xj.

The width tw(X) of X is defined to be the size of the largest bag minus one, i.e.,

tw(X) := max { |Xi| | i ∈ V(T) } − 1.

The treewidth tw(G) of a graph G is the minimum ℓ such that G has a tree decomposition of
width ℓ.

It is not hard to verify that the last property (iii) is equivalent to the following:

(iii)’ for every vertex v ∈ V the graph Tv ⊆ T induced by all nodes i which contain v in their
bag Xi is a tree.

An example of a graph together with a tree decomposition is given in Fig. 5.1. Using
properties (ii) and (iii)’, it is not difficult to derive the lower bound tw(G) ≥ cl(G)−1, where cl(G)

denotes the size of the largest clique in a graph G.

A tree decomposition with a particularly simple structure is given by the following.

5.1 Background 95

1

2

3

5

8

9
4

6

7

4,5,6

5,6,72,4,5

2,3,4

1,2,4

5,7,8

6,9

4,5,6

4,5,6

1,2,4

4,5

2,4,5

2,4

2,3,4

2,4

4,5,64,5,6

4,5,6

5,6

5,7

5,7,8

5,6

5,6,76

6,9

original graph G tree decomposition for G nice tree decomposition for G

Figure 5.1: The diagram in the middle shows a tree decomposition of width two for the graph G in

the left-hand diagram. Since G contains a clique of size three, this tree decomposition has the smallest

possible width. The right-hand diagram shows a nice tree decomposition for G of the same width.

Definition 5.1.2 A tree decomposition 〈 {Xi | i ∈ V(T)}, T 〉 is called a nice tree decomposition
if the tree T is rooted and the following conditions are satisfied:

(i) Every node of the tree T has at most two children.

(ii) If a node i has two children j and k, then Xi = Xj = Xk
(in this case i is called a join node).

(iii) If a node i has one child j, then either

(a) |Xi| = |Xj| + 1 and Xj ⊂ Xi (in this case i is called an introduce node), or

(b) |Xi| = |Xj| − 1 and Xi ⊂ Xj (in this case i is called a forget node).

It is not hard to transform a given tree decomposition into a nice tree decomposition. More
precisely, the following result holds (see [128, Lemma 13.1.3]).

Lemma 5.1.3 Given a tree decomposition of a graph G that has width ℓ and O(n) nodes,
where n is the number of vertices of G. Then, we can find a nice tree decomposition of G that
has also width ℓ and O(n) nodes in time O(n). 2

Fig. 5.1 shows an example that illustrates how a given tree decomposition can be turned into
a nice tree decomposition.

We finish this paragraph by informally introducing the robber-cop game on a graph which
gives us an alternative characterization of the treewidth. This characterization is is due to
Seymour and Thomas [176]. The game is played by two players; one player being a robber who
can—at any time—move along the edges of a graph at arbitrary speed and one player controlling
the moves of ℓ cops who either sit on a vertex or in a helicopter each by which a cop can move

96 Tree Decomposition Based Algorithms

to an arbitrary other vertex. The robber may not pass through a vertex occupied by a cop and
the aim of the player controlling the moves of the cops is to land a cop on the vertex on which
the robber sits. For a precise definition of the game we refer to [176], where the authors also
prove the following min-max theorem.

Proposition 5.1.4 A graph G has treewidth at most ℓ if and only if ℓ+ 1 cops have a winning
strategy in the robber-cop game on G. 2

There is a serious application of this seemingly playful result.

Corollary 5.1.5 For the complete grid G = Pm×Pm with m×m vertices, we have tw(G) = m.

Proof (Sketch): It is not hard to see thatm+1 cops do have a winning strategy in the robber-cop
game on G, however, using m cops the robber always has an escape strategy. Proposition 5.1.4
then yields the claim. 2

5.1.1.2 The Importance of Tree Decompositions

The importance of tree decompositions from a graph-theoretical point of view. The
notion of tree decompositions played a central role in a long series of papers of Robertson and
Seymour proving Wagner’s conjecture which states that every minor closed family G of graphs
admits a finite obstruction set, i.e., a finite set Forb(G) of graphs, such that G ∈ G if and only
if G does not contain any graph from Forb(G) as a minor (see [172]).

The following lemma shows that, for every ℓ, the class of graphs Gtw≤ℓ of treewidth bounded
by ℓ is minor closed.

Lemma 5.1.6 If H is a minor of some graph G, then tw(H) ≤ tw(G).

Proof: If H is a subgraph of G and 〈 {Xi | i ∈ V(T)}, T 〉 is a tree decomposition for G, then it is
easy to see that 〈 {V(H) ∩ Xi | i ∈ V(T)}, T 〉 is a tree decomposition for H. Now suppose there
is a vertex v ∈ V(H) which was obtained by contracting the edge {v1, v2} ∈ E(G), then a tree
decomposition of G can be turned into a tree decomposition of H by replacing all occurrences
of v1 and v2 in bags Xi with the vertex v. 2

A first and decisive step in Robertson and Seymour’s theorem was to prove Wagner’s con-
jecture for the class Gtw≤ℓ. The finite obstruction sets Forb(Gtw≤ℓ) are explicitly known only
for the cases ℓ = 1, 2, 3 [26].

The importance of tree decompositions from an algorithmic point of view. Many in
general NP-complete graph problems do have polynomial or even linear time solving algorithms
when the underlying graph has a tree decomposition of width bounded by a constant. In fact,
Courcelle’s theorem [67] states that every language that is expressible in so-called monadic
second order logic can be solved in polynomial time when given a tree decomposition of the
input graph of width bounded by a constant. Note that the running time is exponential in the
width of the given tree decomposition.

5.1 Background 97

Hence, the limiting factor in most of these algorithms, is the efficient construction of tree
decompositions with small width. When given a graph G and an integer ℓ, the problem to
determine whether the treewidth of G is at most ℓ, is NP-complete [23]. When the parameter ℓ
is a fixed constant, however, a lot of work was done on polynomial time solutions, culminating
in Bodlaender’s linear time algorithm [43]—with a running time O(2Θ(ℓ3)n) that (even for very
small values of ℓ) still seems much too large for practical purposes. Even the time O(nℓ+1)

algorithm of Arnborg et al. [23] is more practical. That is why also heuristic approaches (see [131]
for an up-to-date account), data reduction (see [86]), or approximation results (see, e.g., [46, 49,
70, 167]) for constructing tree decompositions are in use. From the viewpoint of approximation,
an O(log(n))-approximation algorithm is known [46] for treewidth on general graphs. An open
problem is whether treewidth can be approximated by a constant factor in polynomial time. A
1.5-approximation algorithm (with polynomial running time) has recently been proven [70] on
the class of graphs that exclude a single-crossing graph, i.e., a graph that can be embedded in
the plane with a single edge-crossing.

The main contribution of this chapter will be to give new upper bounds for the treewidth of
a planar graph of the form tw(G) = O(

√
k), where k is a graph problem parameter, such as the

vertex cover number, the domination number, or the stability number. Moreover, we will see
how to construct the corresponding tree decompositions very quickly, i.e., in time O(

√
kn).

5.1.2 Layer Decompositions

We now introduce a decomposition of the vertices of a plane graph (G,φ), according to the
level of the “layer” in which they appear in an embedding φ. We will study the relation of this
so-called “layer decomposition” and tree decompositions in Subsection 5.2.2.

The notion of graph layers was first introduced in Baker’s influential work [31].

Definition 5.1.7 Let (G = (V, E), φ) be a plane graph.

(i) The layer decomposition of (G,φ) is a disjoint partition of the vertex set V into sets
L1, . . . , Lr, which are recursively defined as follows:

• L1 is the set of vertices on the exterior face of G.

• Li is the set of vertices on the exterior face of G[V −
⋃i−1
j=1 Lj] for all i = 2, . . . r.

We denote the layer decomposition of (G,φ) by L(G,φ) := (L1, . . . , Lr).
1

(ii) The set Li is called the ith layer of (G,φ).

(iii) The (uniquely defined) number r of different layers is called the outerplanarity of (G,φ),
denoted by out(G,φ) := r.

1Due to technical reasons, for a layer-decomposition L(G,φ) := (L1 , . . . , Lr), we set Li := ∅ for all indices i < 1
and i > r.

98 Tree Decomposition Based Algorithms

C1,1

C2,1
C2,2 C2,3

C1,2

C2,4

C3,5
C3,1 C3,2 C3,3

C4,1

C3,4

Figure 5.2: The layer decomposition forest of a plane graph with four layers.

(iv) We define out(G) to be the smallest outerplanarity possible among all plane embeddings,
i.e., minimizing over all plane embeddings φ of G we set

out(G) := min
φ

out(G,φ).

Taking into account that each layer Li may consist of different components, we observe that
the layer decomposition in fact has a forest structure. We may define the layer decomposition
forest as follows (Fig. 5.2 provides an example for a layer decomposition forest.): For each layer
with vertex set Li, suppose the connected components of the subgraph of G[Li] induced by Li
have vertex sets Ci,1, . . . , Ci,ℓi , i.e., Li =

⋃pi
j=1Ci,j. The nodes of the layer decomposition forest

will be the vertex sets Ci,j, with 1 ≤ i ≤ q and 1 ≤ j ≤ pi, which will be called layer component.
Two layer component nodes will be adjacent in the layer decomposition forest if they contain
vertices that are adjacent. This means that a layer component node Ci,j can only be adjacent
to layer component nodes of the form Ci−1,j′ or Ci+1,j′′ ; if Ci,j is adjacent to Ci−1,j′ , then the
vertices of Ci,j lie within the area formed by the subgraph induced by Ci−1,j′ . Note that the
layer component nodes on the i’th level of the forest correspond to the layer components of the
form Ci,j. Each layer component node C1,j will be the root of a tree in the forest, so we will have
one tree per connected component of G, representing the exterior vertices of the component.

Computing the layers of a plane graph can be done efficiently.

Lemma 5.1.8 Given a plane graph (G = (V, E), φ), then the layer decomposition can be com-
puted in time O(|V |).

Proof: The proof is deferred to the Appendix at the end of the chapter. 2

Remark 5.1.9 For a given planar graph G, an embedding φ0 with out(G,φ0) = out(G), i.e.,
an embedding which minimizes the number of layers, can be computed in polynomial time [40].
Our algorithms work, however, for any planar embedding of G.

5.2 Constructing Tree Decompositions for Planar Graphs 99

5.2 Constructing Tree Decompositions for Planar Graphs

In this section, we are concerned with “Phase 1” of the general scheme for tree decomposition
based algorithms as presented at the beginning of this chapter. We present a general methodol-
ogy how to construct tree decompositions for planar graphs with a guaranteed upper bound on
the width of the constructed decomposition that is sublinear in a given graph parameter. This
method uses a combination of graph separation (as discussed in Subsection 5.2.1) on the one
hand, and known results for graphs of bounded outerplanarity (as discussed in Subsection 5.2.2)
on the other hand. Moreover, we introduce the so-called “Layerwise Separation Property” (see
Subsection 5.2.3) for a parameterized problem on planar graphs which guarantees that our ap-
proach will work. Besides, we give various examples of problems having this property. The
methodology itself is presented in Subsection 5.2.4.

In the sequel, we follow parts of [4, 8] (also refer to [16]).

5.2.1 Separators and Treewidth

There is a close relation between tree decompositions and graph separators (as discussed in
Subsection 4.1.1). On the one hand, a tree decomposition of a graph G induces in a very natural
way (small) separators of G. On the other hand, in the reverse direction, graph separation can
be used as a tool to construct tree decompositions. We discuss both issues in this Subsection.

Separators obtained from a tree decomposition. A tree decomposition has the property
that the intersection of two adjacent bags is a separator. The following lemma is easy to see
using properties (ii) and (iii) of Definition 5.1.1.

Lemma 5.2.1 Let 〈 {Xi | i ∈ V(T)}, T 〉 be a tree decomposition of G. Consider an edge {i1, i2}

of T and let T1, T2 be the components of T−{i1, i2}. Then S := Xi1∩Xi2 separates (
⋃
j∈V(T1)

Xj)\Xi1
from (

⋃
j∈V(T2)

Xj) \ Xi2 . 2

In particular, every bag Xi where i ∈ V(T) is not a leaf node, yields a separator of the tree.

Using separators to construct a tree decomposition. Here, the main idea is to use small
separators of the graph and to merge the tree decompositions of the resulting subgraphs. For
any given separator splitting a graph into different components, we obtain a simple upper bound
for the treewidth of this graph which depends on the size of the separator and the treewidth of
the resulting components.

Proposition 5.2.2 If a connected graph can be decomposed into components of treewidth of at
most t by means of a separator of size s, then the whole graph has treewidth of at most t+ s.

Proof: The separator splits the graph into different components. Suppose we are given the
tree decompositions of these components of width at most t. The goal is to construct a tree
decomposition for the original graph. This can be achieved by firstly merging the separator

100 Tree Decomposition Based Algorithms

to every bag in each of these given tree decompositions. In a second step, add some arbitrary
connections preserving acyclicity between the trees corresponding to the components. It is
straightforward to check that this forms a tree decomposition of the whole graph of width at
most t+ s. 2

For plane graphs, there is an iterated version of this observation, which will be used for the
construction of tree decompositions of small width in the later sections.

Proposition 5.2.3 For a plane graph (G,φ) be a plane with layer decomposition L(G,φ) =

(L1, . . . , Lr), let

Li = {Lji , Lji+1, . . . , Lji+ni },

where 1 ≤ i ≤ ℓ, be sets of consecutive layers such that Li ∩ Li′ = ∅ for all i 6= i′.

Suppose G can be decomposed into components, each of treewidth of at most t, by means of
separators S1, . . . , Sℓ, where Si ⊆

⋃
L∈Li L, 1 ≤ i ≤ ℓ.

Then, G has treewidth of at most t+ 2s, where s = maxi=1,...,ℓ |Si|.

Proof: The proof again uses the merging-technique illustrated in Proposition 5.2.2: Suppose,
w.l.o.g., the sets Li appear in successive order, i.e., ji < ji+1. For each i = 0, . . . , ℓ, consider the
component Gi of treewidth at most t which is cut out by the separators Si and Si+1 (by default,
we set S0 = Sℓ+1 = ∅). We add Si and Si+1 to every node in a given tree decomposition of Gi. In
order to obtain a tree decomposition of G, we successively add an arbitrary connection between
the trees Ti and Ti+1 of the so-modified tree decompositions that correspond to the subgraphs
Gi and Gi+1. 2

5.2.2 Outerplanarity and Treewidth

The result presented in this subsection concerns the relation between treewidth and outerpla-
narity. An upper bound on the treewidth of the form tw(G) ≤ 3 · out(G) − 1 for planar graphs
can be found in [45, Theorem 83] (also, see [134, Table 2 in Chapter 10]). Here, we sketch a
constructive proof of the result, since it is essential for us, that a corresponding treewidth can
be found quickly. To be more precise, partly following [4, 45], we show:

Theorem 5.2.4 Let (G = (V, E), φ) be a plane graph with r := out(G,φ) and n vertices. Then,
a tree decomposition 〈 {Xi | i ∈ V(T)}, T 〉 of G, with width at most 3r−1 and with at most 2n−1

nodes, can be found in time O(r n).

Let us first of all describe a construction scheme that yields—in a very simple way—a tree
decomposition for a graph that is given together with a maximal spanning forest. The width of
the resulting tree decomposition will depend on the following numbers.

Definition 5.2.5 For a graph G = (V, E), and a forest T = (V, F) that is a subgraph of G, define
the edge remember number er(G, T, e) of an edge e ∈ F (with respect to G and T) as the number
of edges {v,w} ∈ E \ F such that there is a simple path in T from v to w that uses e. The edge

5.2 Constructing Tree Decompositions for Planar Graphs 101

remember number of T (with respect to G) is

er(G, T) := max
e∈F

er(G, T, e).

The vertex remember number vr(G, T, v) of a vertex v ∈ V (with respect to G and T) is the
number of edges {u,w} ∈ E \ F such that there is a simple path in T from u to w that uses v.
The vertex remember number of T (with respect to G) is

vr(G, T) := max
v∈V

vr(G, T, v).

With this notion at hand, the following result follows [42, Theorem 71]. For the sake of
completeness of the whole construction, we outline the easy proof.

Proposition 5.2.6 Let T = (V, F) be a maximal spanning forest for the graph G = (V, E). Then,
a tree decomposition with width at most max(vr(G, T), er(G, T) + 1) and at most 2n − 1 nodes
can be determined in O(vr(G, T) · n) time, n being the number of vertices in G.

Proof: Our aim is to construct a tree decomposition 〈 {Xi | i ∈ V(T ′)}, T ′ 〉 of G. Let T ′ =

(V∪F, F ′) with F ′ = { {v, e} | v ∈ V, e ∈ F,∃w ∈ V : e = {v,w} } be the tree obtained by subdividing
every edge of T . Observe that T ′ has at most 2n− 1 nodes. The bags Xi for i ∈ V(T ′) = V ∪ F
are obtained as follows. For every v ∈ V, add v to Xv. For every e = {v,w} ∈ F, add v and w to
Xe. Now, for every edge e = {v,w} in E but not in F, add v to all sets Xu and Xe, with u ∈ V
or e ∈ F on the path from v to w in T .

Using standard graph algorithmic techniques, the path between two vertices in a tree can be
found in time proportional to the length of that path; since each vertex in T can contribute to
at most vr(G, T) such paths, the running time is bounded by O(vr(G, T) · n).

It is easy to check that this indeed yields a tree decomposition. Its bags have size |Xv| ≤
1+vr(G, T) (for all v ∈ V) and |Xe| ≤ 2+ er(G, T) (for all e ∈ E). Hence, the resulting treewidth
is at most max(vr(G, T), er(G, T) + 1). 2

In order to give an algorithm that proves Theorem 5.2.4, it remains to show that we can find
a suitable maximal spanning tree for G (see [45, Lemma 80]).

Proposition 5.2.7 Let an r-outerplanar graph G = (V, E) with degree bounded by three be given
together with an r-outerplanar embedding. Then, there exists a maximal spanning forest T for G,
such that er(G, T) ≤ 2r and vr(G, T) ≤ 3r − 1. The construction of the spanning forest can be
done in time O(r n), where n is the number of vertices in G.

Proof: The construction of a maximal spanning forest T for G is done inductively along the
different layers proceeding from inside towards the exterior.

Observe that when removing all edges on the exterior face of an s-outerplanar graph of
maximum degree three, we obtain an (s− 1)-outerplanar graph, when s > 1.

Thus, we can partition the edges into r + 1 sets E1, . . . , Er+1, with E1 the edges on the
exterior face, and Ei the edges on the exterior face when all edges in E1∪ . . .∪Ei−1 are removed.
Similar to Lemma 5.1.8, using the dual, this partition can be computed in O(n) time.

102 Tree Decomposition Based Algorithms

Now, we form a sequence of forests. We start with forest Tr+1, which consists of all edges in
Er+1. (Note that these are the interior edges of an outerplanar graph that has, by assumption,
maximum degree 3; so Tr+1 is acyclic.) When we have Ti, 1 < i ≤ r + 1, we form Ti−1 in the
following way: add a maximal set of edges from Ei−1 to Ti such that no cycles are formed. Note
that in this way, each Ti is a maximal spanning forest of the subgraph formed by the edges in
Ei ∪ . . . ∪ Er+1; we call this subgraph Gi. Let T := T1. We claim that for every 1 < i < r, the
following upper bounds hold

er(Gi−1, Ti−1) ≤ er(Gi, Ti) + 2, er(Gr, Tr) = 2,

vr(Gi−1, Ti−1) ≤ vr(Gi, Ti) + 3, vr(Gr, Tr) = 2.

These statements can be derived by induction using a straightforward combinatorial analysis of
the construction (see [45, Lemma 80] for details). Hence, we get er(G, T) = er(G1, T1) = 2r and
vr(G, T) = vr(G1, T1) = 3r− 1

Concerning the claimed running time, it is not hard to see that one such step can be done
in O(n) time; as we do at most r such steps, the time to build T := T1 becomes O(r n). 2

Now, we can complete the proof of Theorem 5.2.4.

Proof (of Theorem 5.2.4): For the construction of the desired tree decomposition we proceed in
the following steps for a given plane graph (G,φ) with r = out(G,φ).

◦ Embed the graph G in an r ′-outerplanar (with r ′ ≤ r) graph H of degree bounded by three,
such that G is a minor of H.2 This can be done by replacing every vertex v of degree d
with d > 4 by a path of d− 2 vertices v1, . . . , vd−2 of degree three.

◦ Construct a maximal spanning forest T for H with er(H, T) ≤ 2r and vr(H, T) ≤ 3r − 1

using Proposition 5.2.7.

◦ According to Proposition 5.2.6, construct a tree decomposition forH with at most 2|V(H)|−

1 nodes and treewidth bounded by max(vr(G, T), er(G, T) + 1) ≤ 3r ′ − 1 ≤ 3r− 1.

◦ Use Lemma 5.1.6 to get a tree decomposition for G. 2

5.2.3 The Layerwise Separation Property (LSP)

We now develop a general scheme how to, given a planar graph problem with parameter k,
construct tree decompositions of width O(

√
k). The idea is to combine the results of Propo-

sition 5.2.3 and Theorem 5.2.4. An approach using these ingredients was first studied in our
work [4]. However, the methods were very problem-specific and tailored towards the par-do-
minating set problem on planar graphs. In this subsection, we partly follow [8] where we
broadened and methodologized the approach in [4] to make it applicable to other planar graph
problems as well.

2This step is necessary, since Proposition 5.2.7 requires degree bounded by three.

5.2 Constructing Tree Decompositions for Planar Graphs 103

5.2.3.1 Definition

In this section, we exploit the layer-structure of a plane graph in order to gain a “nice” separation
of the graph. It is important that a “yes”-instance (G, k) (where G is a plane graph) of the
parameterized graph problem under consideration admits a so-called “layerwise separation” of
small size. By this, we mean, roughly speaking, a separation of the plane graph G (i.e., a
collection of separators for G), such that each separator is contained in the union of constantly
many subsequent layers (see conditions (i) and (ii) of the following definition). For (fixed-
parameter) algorithmic purposes, it will be important that the corresponding separators are
“small” (see condition (iii) of the definition).

Definition 5.2.8 Let (G = (V, E), φ) be a plane graph of outerplanarity r := out(G,φ), and let
L(G,φ) = (L1, . . . , Lr) be its layer decomposition. A layerwise separation of width w and size s
of (G,φ) is a sequence (S1, . . . , Sr) of subsets of V, with the properties that, for 1 ≤ i ≤ r:3

(i) Si ⊆
⋃i+(w−1)
j=i Lj,

(ii) Si separates layers Li−1 and Li+w,

(iii)
∑r
j=1 |Sj| ≤ s.

Example 5.2.9 Trivially, setting Si := Li, every plane graph has a layerwise separation of
width 1 and size n, where n is the number of vertices in the graph.

The crucial property that will guarantee the existence of fast tree decomposition based
algorithms is what we call the “Layerwise Separation Property.”

Definition 5.2.10 A parameterized problem par-G on planar graphs is said to have the Lay-
erwise Separation Property (abbreviated by: LSP) of width w and size-factor d if for each
(G, k) ∈ par-G and every planar embedding φ of G, the plane graph (G,φ) admits a layerwise
separation of width w and size dk.

In the following, we will give some examples of parameterized problems that have the LSP.

5.2.3.2 Linear Problem Kernels and the LSP

The LSP follows almost trivially for all graph problems which admit a linear problem kernel
(see Chapter 2 for details).

Lemma 5.2.11 Let par-G be a parameterized problem on planar graphs that admits a problem
kernel of size dk. Then, the parameterized problem par-G ′ where each instance is replaced by its
problem kernel has the LSP of width 1 and size-factor d.

3By default, we let Si := ∅ for all i < 1 and i > r.

104 Tree Decomposition Based Algorithms

Proof: Let (G ′, k ′) ∈ par-G ′ with k ′ ≤ dk be the problem kernel of (G, k) ∈ par-G, and let
L(G ′, φ ′) = (L ′

1, . . . , L
′
r′) be the layer decomposition of (G ′, φ ′) (where φ ′ is any embedding).

Let r ′ = out(G ′, φ ′). Observe that r ′ ≤ dk
3

since each layer has to consist of at least 3 vertices.
Then, clearly, the sequence Si := L ′

i, 1 ≤ i ≤ r ′, is a layerwise separation of width 1 and size dk
of (G ′, φ ′). 2

Example 5.2.12 (i) With the problem kernel of size 2k for par-vertex cover (Corol-
lary 2.1.8), we derive that par-vertex cover on planar graphs has the LSP of width 1
and size-factor 2 on the set of reduced instances.

(ii) Using the 4k problem kernel for par-independent set on planar graphs (see Proposi-
tion 2.1.4), we see that this problem has the LSP of width 1 and size-factor 4 on the set
of reduced instances.

(iii) By Theorem 2.2.1, we obtain that par-dominating set on planar graphs has the LSP of
width 1 and size-factor 335 on the set of reduced instances.

As already pointed out in Remark 2.2.2, we do not know whether there is a linear problem
kernel for variants of the par-dominating set problem on planar graphs such as some of the
par-dominating set with property P problems presented in Subsection 1.3.4. However, in
the next paragraph, we will establish the LSP for most of these variants. In this sense, the
class of parameterized problems having the LSP is bigger than the one admitting linear problem
kernels.

5.2.3.3 Directly Showing the LSP

It appears to us that directly showing that a parameterized graph problem has the LSP seems
much easier than proving a linear problem kernel for the given problem.

Vertex Cover. As an example, consider par-vertex cover on planar graphs, where we
obtain the LSP in an almost trivial way without applying the heavy Nemhauser and Trotter
machinery (see Corollary 2.1.8) as it is done in Example 5.2.12.(i).

Lemma 5.2.13 par-Vertex cover on planar graphs has the LSP width w = 2 and size-
factor d = 2.

Proof: Let (G, k) ∈ par-vertex cover and let L(G,φ) = (L1, . . . , Lr) be the layer decomposi-
tion for some planar embedding φ of G. For a “witnessing” vertex cover V ′ of size k, the sets
Si := (Li ∪ Li+1) ∩ V ′, 1 ≤ i ≤ r, trivially form a layerwise separation. 2

Dominating Set. From a historical point of view, at the point when we proved the LSP for
par-dominating set on planar graphs in [4], we were not aware of the linear problem kernel
for this problem. Showing a linear problem kernel (see Section 2.2) turned out to be much
harder taking about two more years of research than directly showing the LSP. Besides, the

5.2 Constructing Tree Decompositions for Planar Graphs 105

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

B(C) ⊆ Li+1

z

y

x2
C⊆ Li+2

D∩ Li ∋ x

x1 B(B(C))⊆ Li

upper triple

����
����
����
����
����
����
����

����
����
����
����
����
����
����z

y

x∈D∩ Li+2

B({x}) ⊆ Li+1

z̃

ỹ

C⊆ Li+2

lower triple

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

C⊆ Li+2

B(C) ⊆ Li+1

x∈ D∩ Li+1
yz

Case 1 Case 2

x∈D∩ Li+1
yz

C⊆ Li+2

B(C) ⊆ Li+1

middle triple

Figure 5.3: Construction of an upper triple associated with a vertex x ∈ D∩Li, a lower triple associated

with a vertex x ∈ D ∩ Li+2 and a middle triple associated with a vertex x ∈ D ∩ Li. The union of all

triples form the separator Si.

constants which could be obtained from a direct proof of the LSP are even better than the ones
in Example 5.2.12.(iii).

Proposition 5.2.14 par-Dominating set on planar graphs has the LSP width w = 3 and
size-factor d = 51.

We briefly sketch this direct proof here (for further details the reader is referred to [4]).4

Suppose (G, k) ∈ par-dominating set and let L(G,φ) = (L1, . . . , Lr) be the layer decompo-
sition for some planar embedding φ of G. By Definitions 5.2.8 and 5.2.10, we need to construct
sets Si ⊆ Li ∪ Li+1 ∪ Li+2, 1 ≤ i ≤ r − 2) separating layer Li−1 from layer Li+3 in such a way
that the total size of these sets can be bounded by some linear term in k. Suppose, we are given
some “witnessing” dominating set D of size k. The key idea for proving that Si separates layers
Li−1 from Li+3 relies on a close investigation of the paths leaving layer Li−1 to the interior of
the graph. Each such path passes a “first” vertex in layer Li+1. This particular vertex can be
dominated by vertices from D∩ (Li∪ Li+1∪ Li+2). It turns out that, in order to cut this partic-
ular path, the set Si has to contain the vertices of the sets D ∩ Li, D ∩ Li+1, and D ∩ Li+2 plus
some suitably chosen pairs of neighbors of any of these vertices. This results in letting Si be the

4Note that in the case of par-dominating set on planar graphs a similar construction as employed for par-
vertex cover (i.e., obtaining the separators Si by intersecting a “witnessing” dominating set V ′ of G with a
sequence of subsequent layers, e.g, Si := (Li−1 ∪ Li ∪ Li+1) ∩ V ′), does not fulfill the conditions of a layerwise
separation, since, in general, Si need not be a separator.

106 Tree Decomposition Based Algorithms

union of so-called “upper,” “lower,” and “middle” triples. We will carry out the to some extent
technical step in what follows. For the construction below, it is helpful to consider Fig. 5.3.

Let C be a component of layer Li+2 which is not a leaf in the layer decomposition tree (i.e.,
which contains vertices of layer Li+3 in its interior. Denote by B(C) the unique shortest cycle in
layer Li+1 that encloses C. We call B(C) the boundary cycle for C. By B(B(C)) we denote the
unique shortest cycle in layer Li that encloses B(C).

Upper triples. Let x ∈ D∩ Li be a vertex that has a neighbor in B(C) (see Fig. 5.3).5 Let x1
and x2 be the neighbors of x on the boundary cycle B(B(C)). Starting from x1, we go around
x up to x2 so that we visit all neighbors of x in layer Li+1. We note the neighbors of x on the
boundary cycle B(C). Going around gives two outermost neighbors y and z on this boundary
cycle. The upper triple for layer Li associated with x, then, is the three-element set {x, y, z}.

Middle triple. Let x ∈ D ∩ Li+1 be a vertex that has a neighbor in B(C) (see Fig. 5.3).
Note that, due to the layer model, it is easy to see that a vertex x ∈ D ∩ Li can have at most
two neighbors y, z in B(C). Depending on whether x itself lies on the cycle B(C) or not, we
obtain two different cases which are both illustrated in Fig. 5.3. The middle triple for layer Li
associated with x, then, is the three-element set {x, y, z}.

Lower triple. Let x ∈ D ∩ Li+2 be a vertex such that C is enclosed by the boundary cycle
B({x}) (see Fig. 5.3). For each pair ỹ, z̃ ∈ B({x})∩N(x) (where ỹ 6= z̃), we consider the path Pỹ,̃z
from ỹ to z̃ along the cycle B({x}), taking the direction such that the region enclosed by {z̃, x},
{x, ỹ}, and Pỹ,̃z contains the layer component C. Let {y, z} ⊆ B({x})∩N(x) be the pair such that
the corresponding path Py,z is shortest. The middle triple for layer Li associated with x, then,
is the three-element set {x, y, z}.

Definition 5.2.15 We define the set Si as the union of all upper triples, lower triples and
middle triples of layer Li.

With these definitions we claim the following statement which finishes the proof for Propo-
sition 5.2.14.

Lemma 5.2.16 The sets (S1, . . . , Sr) as defined above yield a layerwise separation for G of
width w = 3 and size-factor d = 51.

Proof: The proof is deferred to the Appendix at the end of the chapter. 2

Note that the size-factor given in Lemma 5.2.16 still leaves room for further improvements.
By a more detailed investigation, our worst-case upper bound probably can be improved. New
attempts in this direction are given in [97, 123] (also refer to Section 7.2).

The following corollary provides examples for parameterized graph problems which have the
LSP, whereas a linear problem kernel is unknown (see Remark 2.2.2).

Corollary 5.2.17 The par-dominating set with property P problem on planar graphs has
the LSP of width 3 and size-factor 51.

5Then, clearly, x ∈ B(B(C)), by definition of a boundary cycle.

5.2 Constructing Tree Decompositions for Planar Graphs 107

Proof: Since every dominating set with property P is, in particular, a dominating set, the above
construction of a layerwise separation can be carried over. 2

5.2.4 New Constructive Upper Bounds for the Treewidth

In this subsection, we summarize the partial results from the previous paragraphs to provide
new upper bounds for the treewidth tw(G) of a planar graph G. The upper bounds will be
given in terms of various graph problem parameters, such as the vertex cover number vc(G), the
domination number ds(G), or the stability number is(G) (see Definitions 1.3.3, 1.3.4, and 1.3.5).
Moreover, we will see that the bounds derived here are asymptotically optimal and that corre-
sponding tree decompositions can be constructed very efficiently. Our approach will work for
all problems that have the LSP.

The following remark gives a (trivial) relation of the treewidth to some problem parameters.

Remark 5.2.18 Let G be a planar graph with layer decomposition L(G,φ) = (L1, . . . , Lr) for
some embedding φ such that out(G) = out((G,φ)). Firstly, observe that, by definition of a
layer, for each 1 ≤ i ≤ r − 1, G[Li] contains a cycle C3 of length three as a minor.6 Since we
need at least two vertices to cover the edges of a C3, we get out(G) ≤ 1

2
vc(G)+1. And secondly,

since each vertex in a dominating set can dominate vertices from the previous, the next, or its
own layer only, we obtain out(G) ≤ 3ds(G). Using the result of Subsection 5.2.2, this implies
the following trivial upper linear bounds for the treewidth:7

tw(G) ≤ 3

2
vc(G) + 2, and

tw(G) ≤ 9ds(G) − 3.

Note that for general graphs, no relation of the form tw(G) ≤ f(ds(G)) (for any function f)
holds; consider, e.g., the clique Kn with n vertices, where tw(Kn) = n− 1, but ds(Kn) = 1.

Our goal, however, is to derive sublinear upper bounds for planar graphs. Alon et al. [20]
gave a first result in this direction.

Proposition 5.2.19 Let G be a graph which excludes Kh as a minor, h being some integer,

then tw(G) ≤ h 32√n, where n is the number of vertices of G.

In particular, for planar graphs (which exclude a K5 as a minor), we get

tw(G) ≤ 5 32
√
n ≈ 11.18

√
n. (5.1)

Unfortunately, the proof for the above relation is non-constructive. Moreover, since we are
interested in designing fixed-parameter algorithms, a major drawback of the above relation is
that this is not an upper bound in terms of the problem parameters.

6 Layer Lr may consist of a single vertex only.
7 It is even true that tw(G) ≤ vc(G) holds for general graphs. This estimate is sharp (which becomes clear

by, again, considering the graph Kn , where vc(Kn) = n − 1).

108 Tree Decomposition Based Algorithms

5.2.4.1 Partial Layerwise Separation

The idea of the following is that, from a layerwise separation of small size (say bounded by
O(k)), we are able to choose a set of separators such that their size is bounded by O(

√
k)

and—at the same time—the subgraphs into which these separators cut the original graph have
outerplanarity bounded by O(

√
k).

In order to formalize such a choice of separators from a layerwise separation, we give the
following fairly technical definition.

Definition 5.2.20 Let (G = (V, E), φ) be a plane graph with layer decomposition L(G,φ) =

(L1, . . . , Lr). A partial layerwise separation of width w is a sequence S = (S1, . . . , Sq) such that
there exist 1 = i0 < i1 < . . . < iq < iq+1 = r such that for 1 ≤ i ≤ q:8

(i) Sj ⊆
⋃ij+(w−1)

ℓ=ij
Lℓ,

(ii) ij+w ≤ ij+1 (so, the sets in S are pairwise disjoint) and

(iii) Sj separates layers Lij−1 and Lij+w.

The sequence CS = (G0, . . . , Gq) with

Gj := G[(

ij+1+(w−1)⋃

ℓ=ij

Lℓ) − (Sj ∪ Sj+1)], j = 0, . . . , q,

is called the sequence of graph chunks obtained by S.

With this definition at hand, we can state the key result needed to establish the new upper
bounds for the treewidth of plane graphs that admit a layerwise separation.

Proposition 5.2.21 Let (G = (V, E), φ) be a plane graph with n vertices that admits a layerwise
separation of width w and size s. Then, for every ψ ∈ R+, there exists a partial layerwise
separation S(ψ) of width w such that

(i) maxS∈S(ψ) |S| ≤ ψ√s and

(ii) out(H) ≤ (
√
s/ψ) +w for each graph chunk H in CS(ψ).

Moreover, there is an algorithm with running time O(
√
s n) which, for a given ψ,

• recognizes whether (G,φ) admits a layerwise separation of width w and size s and, if so,

• computes a partial layerwise separation S(ψ) of width w that fulfills the conditions above.

8Again, by default, we set Si := ∅ for i < 1 and i > q.

5.2 Constructing Tree Decompositions for Planar Graphs 109

procedure partial layerwise separation

/* input: a plane graph (G,φ) which admits a layerwise separation of width w and size s. */
/* and a “trade-off parameter ψ. */
/* output: a partial layerwise separation of width w */
/* that fulfills properties (i)+(ii) from Proposition 5.2.21. */

◦ let s0 := ψ
√
s, and let S(ψ) = emptylist

◦ for j = 1, . . . , r−w do

◦ let Gj(v1, v2) denote the graph G[
⋃j+(w−1)

ℓ=j Lℓ] with two further vertices v1 and v2
and edges from v1 to all vertices in Lj and from v2 to all vertices in Lj+w−1.

◦ if (Gj(v1, v2) admits a v1-v2 separator S of size at most s0) then

◦ S(ψ).append(S)

◦ j← j+w

◦ suppose S(ψ) = (S1, . . . , Sq) is the sequence of all separators of size at most s0.

◦ if (∃j0 : ij0+1 − ij0 >
√
s
ψ

) then

◦ return “(G,φ) admits no layerwise separation of width w and size s”; else

◦ return S(ψ)

Figure 5.4: Construction of a partial layerwise separation according to Proposition 5.2.21.

Proof: For 1 ≤ m ≤ w, consider the integer sequences Im = (m + jw)
⌊r/w⌋−1
j=0 and the corre-

sponding sequences of separators Sm = (Si)i∈Im . Note that each Sm is a sequence of pairwise
disjoint separators. Since (S1, . . . , Sr) is a layerwise separation of size s, this implies that there
exists a 1 ≤ m ′ ≤ w with ∑

i∈Im ′

|Si| ≤
s

w
. (5.2)

For a given ψ, let s0 := ψ
√
s. Define S(ψ) to be the subsequence of Sm′ such that |S| ≤ s0 for

all S ∈ S(ψ), and |S| > s0 for all S ∈ Sm′ −S(ψ). This yields condition (i). As to condition (ii),
suppose that S(ψ) = (Si1 , . . . , Siq). How many layers are two separators Sij and Sij+1 apart?
To answer this, note that the number of separators in Sm′ that appear between Sij and Sij+1
is (ij+1− ij)/w. Since all of these separators have size greater than s0, their number has to be
bounded by s/(ws0), see Eq. (5.2). Therefore, we get ij+1− ij ≤

√
s/ψ for all j = 1, . . . , q − 1.

Hence, the chunks G[(
⋃ij+1+w−1

ℓ=ij
Lℓ) − (Sij ∪ Sij+1)] have outerplanarity at most

√
s/ψ+w.

The algorithm that computes a partial layerwise separation S is depicted in Fig. 5.4. The
correctness of this algorithm is established by the following arguments. Firstly, note that a v1-v2
separator S of the graph Gj(v1, v2) (as defined in the algorithm in Fig. 5.4), by construction, is
a separator of G that lies in the w many consecutive layers Lj ∪ · · · ∪ Lj+(w−1) and separates
layers Lj−1 and Lj+w. In this sense, all separators found by the algorithm in Fig. 5.4 have
properties (i) and (iii) of Definition 5.2.8. Whenever a new separator is found, by letting j ←
j+w, we make sure that the set S(ψ) also has property (ii) of Definition 5.2.8, i.e., S(ψ) indeed

110 Tree Decomposition Based Algorithms

procedure tree decomposition

/* input: a plane graph (G,φ) which admits a layerwise separation of width w and size s */
/* and a trade-off parameter ψ. */
/* output: a tree decomposition Xψ with tw(Xψ) ≤ (2ψ+ 3/ψ)

√
s+ (3w− 1). */

◦ compute a partial layerwise separation S(ψ) = (S1, . . . , Sq) of width w
with corresponding graph chunks CS(ψ) = (G0, . . . , Gq), such that

max
S∈S(ψ)

|S| ≤ ψ
√
s, and out(Gi) ≤

√
s

ψ
+w

for all i = 0, . . . , q (using the algorithm from Proposition 5.2.21).

◦ construct a tree decomposition Xi of width at most 3 out(Gi)−1 for each of the graphs Gi
(using the algorithm from Theorem 5.2.4).

◦ join the tree decompositions X (0)

ψ , . . . ,X (q)

ψ via the separators S1, . . . , Sq
in order to obtain a global tree decomposition Xψ for G
(using the merging technique explained in Proposition 5.2.3).

Figure 5.5: Construction of a tree decomposition according to Theorem 5.2.23.

is a partial layerwise separation. The fact that maxS∈S(ψ) |S| ≤ s0 = ψ
√
s is trivial to see.

Secondly, by the arguments given above, no two separators Sj0 and Sj0+1 of size at most s0
can be more than

√
s/ψ layers apart. Hence, if there was a j0 such that ij0+1− ij0 >

√
s/ψ, the

algorithms correctly exits and returns “no.” Otherwise, we obtain out(H) ≤ (
√
s/ψ) + w for

each graph chunk H in CS(ψ).

Concerning the running time of this algorithm, we remark that a the separator Sj, for
1 ≤ j ≤ r−w, of size at most s0 in the graphs Gj(v1, v2) can be computed in time O(s0n) using
techniques based on maximum flow (see [122] for details). 2

Remark 5.2.22 In what follows, the positive real number ψ of Proposition 5.2.21 is also called
trade-off parameter. This is because it allows us to optimize the trade-off between outerplanarity
and separator size.

5.2.4.2 LSP and Treewidth

Proposition 5.2.21 will help to construct a tree decomposition of treewidth tw(G) = O(
√
k),

assuming that a layerwise separation of some constant width and size dk exists.

Theorem 5.2.23 For a plane graph (G,φ) with n vertices that admits a layerwise separation
of width w and size s, we have

tw(G) ≤ 2
√
6s+ (3w− 1).

A corresponding tree decomposition can be computed in time O(
√
sn).

5.2 Constructing Tree Decompositions for Planar Graphs 111

Proof: Let ψ ∈ R+ be some trade-off parameter (the optimal value to be determined later). An
algorithm which constructs a tree decomposition Xψ is given in Fig. 5.5. We now give an upper
bound on the width of the resulting tree decomposition Xψ. By Proposition 5.2.3, we obtain

tw(Xψ) ≤ 2 max
S∈S(ψ)

|S| + max
i=0,...,q

tw(Gi)

≤ 2 max
S∈S(ψ)

|S| + 3(max
i=0,...,q

out(Gi)) − 1

≤ (2ψ+ 3/ψ)
√
s+ (3w− 1).

This upper bound is minimized for ψ =
√
3/2. Therefore, tw(Xψ) ≤ 2

√
6s + (3w − 1). The

most cost-expensive step is to construct the tree decompositions X (i)

ψ , which can be done in

time O(
∑q
i=0 out(Gi) · |V(Gi)|) = O(

√
sn). 2

Plugging in Example 5.2.9, we obtain the following corollary which outperforms the result
of Alon, Seymour, and Thomas (see Proposition 5.2.19 and Eq. (5.1)) for the planar case.

Corollary 5.2.24 For a planar graph G with n vertices, we have

tw(G) ≤ 2
√
6n+ 2 ≈ 4.90

√
n+ 2.

The following is our main result. It will be used to design fixed-parameter algorithms with

running time O(2O(
√
k)n) for graph problems which have the Layerwise Separation Property.

Corollary 5.2.25 Let par-G be a parameterized problem on planar graphs and assume that
par-G has the LSP of width w and size-factor d. Then there is an algorithm that outputs,
for an instance (G, k), in time O(

√
k |V(G)|) either that (G, k) /∈ par-G, or computes a tree

decomposition X for G of width bounded by

tw(X) ≤ 2
√
6dk+ (3w− 1).

Proof: This is a consequence of Definition 5.2.10, Proposition 5.2.21, and Theorem 5.2.23. 2

In particular, we can derive upper bounds of the treewidth of a planar graph in terms of
several graph specific numbers, which clearly improve the trivial bounds in Remark 5.2.18.

Corollary 5.2.26 Let G be a planar graph with n vertices.

(i) We have

tw(G) ≤ 4
√
3 vc(G) + 5 ≈ 6.93

√
vc(G) + 5, (5.3)

and a corresponding tree decomposition can be constructed in time O(
√

vc(G)n).

(ii) We have

tw(G) ≤ 6
√
34ds(G) + 8 ≈ 34.99

√
ds(G) + 8, (5.4)

and a corresponding tree decomposition can be constructed in time O(
√

ds(G)n).

112 Tree Decomposition Based Algorithms

The upper bounds are both asymptotically optimal in the sense that there exist graphs Gn with
n vertices (n ∈ N) such that tw(Gn) = Ω(

√
vc(Gn)) and tw(Gn) = Ω(

√
ds(Gn)).

Proof: The result follows from Corollary 5.2.25 when plugging in Lemma 5.2.13 (for par-vertex
cover) and Proposition 5.2.14 (for par-dominating set).

For the lower bounds, we use the grid graphs Gn = Pm× Pm with n = m2 vertices, where
tw(Gn) = m (see Corollary 5.1.5). Observe that for the grid graph, we have vc(Gn) = ⌊m2/2⌋
(which is easy to see) and that ds(Gn) ≤ 1

5
(m2+m− 3) (see [63]). 2

5.3 Dynamic Programming on Tree Decompositions

We now turn our attention to “Phase 2” of the general scheme of a tree decomposition based
algorithm as introduced at the beginning of this chapter. It was already mentioned there that
many NP-complete graph problems turn out to be solvable in polynomial or even linear time
when restricted to the class Gtw≤ℓ of graphs of treewidth bounded by ℓ. The corresponding
algorithms typically rely on a dynamic programming strategy [41]. A similar technique that can
be characterized by “computing tables of characterizations of partial solutions” appeared in [25].
An overview over these and other methods—like graph reduction [24] and monadic second order
logic [67]—to obtain polynomial time algorithms for graph problems on Gtw≤ℓ can be found
in [44]. Here, we present new dynamic programming algorithms for domination-like problems
that significantly improve previous work [66, 183, 184].

5.3.1 The Basic Concept

In this short subsection, we sketch a general tree decomposition based dynamic programming
scheme. Moreover, we summarize previous results and relate them to our improved algorithms.

5.3.1.1 Tree Decomposition Based Dynamic Programming

The algorithm in Fig. 5.6 informally describes the general structure of a dynamic programming
strategy on a graph G = (V, E) with a given tree decomposition of width bounded by ℓ in order
to solve some graph problem.

As an example take the vertex cover problem. Here, in each table Ai, we would have 2|Xi|

entries for all possible configurations of whether a vertex in Xi belongs to the vertex cover or
not. For each configuration, one would store how many vertices are needed for a vertex cover
using exactly this configuration. The most cost-expensive part of the algorithm typically is
the updating process for a join node. In the case of vertex cover, a brute force algorithm
would, for a join node i with children i1 and i2, compare each entry of Ai1 with each entry
of Ai2 in order to update Ai, resulting in O(22ℓ) = O(4ℓ) comparisons per join node. By a
more careful comparison procedure this can be brought down to only O(2ℓ) comparisons per
join node (see [14, 15]). We do not go into detail for the (relatively easy) vertex cover
problem but, in the following, describe in a more formal way how to deal with the more involved
dominating set problem.

5.3 Dynamic Programming on Tree Decompositions 113

◦ Transform the tree decomposition into a nice tree decomposition X = 〈 {Xi | i ∈ V(T)}, T 〉
(see Lemma 5.1.3).

◦ For each node i ∈ V(T), we keep a table Ai, which stores all necessary information on
possible solutions of the graph problem restricted to G[Xi].

◦ The dynamic programming is performed in three steps in a bottom-up order of the tree T .

Step 1 (initialization): All tables Ai for the leaf nodes i are initialized.

Step 2 (updating process): A table Ai for an inner node i is computed using the
graph G[Xi] and the information of the tables corresponding to the child(ren) of i.
The updating process depends on the type of the node i (i.e., forget node,
introduce node or join node).

Step 3 (final evaluation): The solution of the problem can be found by inspecting the
table Ar of the root node r of T .

Figure 5.6: General scheme for a dynamic programming on a given tree decompositions.

5.3.1.2 Previous Work and Overview of our Results

Most of the previous work on this subject concentrated on showing that a certain problem can
be solved in polynomial or even linear time on Gtw≤ℓ, the running time typically being some
exponential term in ℓ. So far, only little attention has been paid to a quantitative study of
this exponential growth. Since our concern is to derive efficient fixed-parameter algorithms, a
central question is to get the combinatorial explosion in ℓ as small as possible—this is what we
investigate here.

To our knowledge, the best previous results for (dynamic programming) algorithms on tree
decompositions applied to “domination-like” problems were obtained by Telle and Proskurowski
[183, 184]. For a graph with a tree decomposition of N tree nodes and width ℓ, Telle and
Proskurowski solved dominating set in time O(9ℓN). Ten years earlier, Corneil and Keil
presented a time O(4ℓNℓ+2) algorithm for ℓ-trees [66], an equivalent definition of the class Gtw≤ℓ.
Observe, however, that the latter algorithm is not a fixed-parameter algorithm. Moreover,
Telle and Proskurowski [183, 184] provide a general classification of “domination-like” problems
(which we refer to as dominating set with property P) and give algorithms of running
time O((σ ′)ℓN), where the base σ ′ depends on the graph property P. The last column of
Table 5.1 summarizes the results from [183, 184]. In this section, we will introduce the new, in a
sense general concept of “monotonicity” for dynamic programming for domination-like problems.
Using this concept, we will give a time O(4ℓN) algorithm for dominating set on Gtw≤ℓ, a
significant reduction of the combinatorial explosion.9 Moreover, we improve basically all running
times for domination-like problems given by Telle and Proskurowski (our improved bases σ over
the bases σ ′ from [183, 184] are summarized in Table 5.1). For example, we can solve total
dominating set problem in time O(6ℓN), where Telle and Proskurowski had O(16ℓN).

9Observe that in the conference version of [4] we gave wrong bounds for the dynamic programming algorithm
for dominating set, claiming a running time O(3ℓ N). This was due to a misinterpretation of [184, Theorem 5.7]
where the correct base of the exponential term in the running time is 32 = 9 instead of 3.

114 Tree Decomposition Based Algorithms

Problem λ σ σ ′

(weighted) dominating set 3 4 9
independent dominating set 3 4 9
perfect dominating set 3 4 9
perfect code 3 4 9
total dominating set 4 6 16
total perfect dominating set 4 6 16
red-blue dominating set 4 4 -
vertex cover 2 2 4
independent set 2 2 4

Table 5.1: Summary of our results (Theorems 5.3.1, 5.3.3, 5.3.5) and comparison with previous

work. The entries in the third column give the base σ for our time O(σℓN) algorithm (ℓ being the width

of the given tree decomposition and N being the number of nodes in the tree decomposition). The entries

of the fourth column show the corresponding base values σ ′ of the so far best known algorithms by Telle

and Proskurowski (see [183, Theorem 4, Table 1] and [184, Theorem 5.7]). The second column gives the

number λ of colors used in our dynamic programming step.

To illustrate the significance of our results, in Table 5.2, we compare (hypothetical) running
times of the O(9ℓN) algorithm of Telle and Proskurowski [183, 184] to our O(4ℓN) algorithm.

5.3.2 An Improved Algorithm for Dominating set Based on Monotonicity

In this subsection, we present our main algorithm which is based on a fresh view on dynamic
programming: Compared to previous work, we perform the updating process of the tables in
a more careful, less time consuming way by making use of the “monotonous structure of the
tables.” We partly follow [14].

Theorem 5.3.1 Dominating set can be solved in time O(4ℓN) if an input graph G is given
together with a tree decomposition of width ℓ and N tree nodes.

The outline of the corresponding algorithm and its proof of correctness fill the rest of this
subsection. From now on suppose that the given tree decomposition of our input graph G =

(V, E) is X = 〈 {Xi | i ∈ V(T)}, T 〉. By Lemma 5.1.3, we can assume that X is a nice tree
decomposition.

5.3.2.1 Colorings and Monotonicity

Suppose that V = {x1, . . . , xn}. We assume that the vertices in the bags are ordered by their
indices, i.e., Xi = (xi1 , . . . , xini) with i1 ≤ . . . ≤ ini for all i ∈ V(T).

Colorings. In the following, we use three different “colors” that will be assigned to the vertices
in a bag:

5.3 Dynamic Programming on Tree Decompositions 115

Algorithm ℓ = 5 ℓ = 10 ℓ = 15 ℓ = 20

9ℓN 0.05 sec 1 hour 6.5 years 3.9 · 105 years
4ℓN 0.001 sec 1 sec 18 minutes 13 days

Table 5.2: Comparing our time O(4ℓN) algorithm for dominating set with the O(9ℓN) algorithm of

Telle and Proskurowski in the case N = 1000 (number of nodes of the tree decomposition), we assume

a machine executing 109 instructions per second and we neglect the constants hidden in the O-terms

(which may not be in practice, but which are comparable in both cases).

• “black” (represented by 1, meaning that the vertex belongs to the dominating set),

• “white” (represented by 0, meaning that the vertex is already dominated at the current
stage of the algorithm), and

• “grey” (represented by 0̂, meaning that, at the current stage of the algorithm, we still ask
for a domination of this vertex).

A vector c = (c1, . . . , cni) ∈ {0, 0̂, 1}ni will be called a coloring for the bag Xi = (xi1 , . . . , xini),
and the color assigned to vertex xit by the coloring c is given by the coordinate ct.

According to the general scheme in Fig. 5.6, for each bag Xi (with |Xi| = ni), we will use a
mapping

Ai : {0, 0̂, 1}ni −→ N ∪ {+∞}.

The semantics of the table entries is as follows: For a coloring c = (c1, . . . , cni) ∈ {0, 0̂, 1}ni , the
value Ai(c) stores how many vertices are needed for a minimum dominating set (of the graph
visited up to the current stage of the algorithm) under the restriction that the color assigned to
vertex xit is ct (t = 1, . . . , ni).

A coloring c ∈ {0, 0̂, 1}ni is locally invalid for a bag Xi if

(
∃s ∈ {1, . . . , ni} : cs = 0

)
∧
(
∄t ∈ {1, . . . , ni} : (xit ∈ N(xis) ∧ ct = 1)

)
.

In other words, a coloring is locally invalid if there is some vertex xis in the bag that is colored
white, but this color is not “justified” within the bag, i.e., xis is not dominated by a vertex
within the bag using this coloring.10 Also, for a coloring c = (c1, . . . , cm) ∈ {0, 0̂, 1}m and a color
d ∈ {0, 0̂, 1}, we use the notation #d(c) := | {t ∈ {1, . . . ,m} : ct = d} |.

Monotonicity. On the color set {0, 0̂, 1}, let ≺ be the partial ordering given by 0̂ ≺ 0 and
d ≺ d for all d ∈ {0, 0̂, 1}. This ordering naturally extends to colorings: For c = (c1, . . . , cm), c ′ =

(c ′1, . . . , c
′
m) ∈ {0, 0̂, 1}m, we let c ≺ c ′ iff ct ≺ c ′t for all 1 ≤ t ≤ m.

We call a mapping

Ai : {0, 0̂, 1}ni −→ N ∪ {+∞}

10A locally invalid coloring still may be a correct coloring if the white vertex whose color is not “justified”
within the bag already is dominated by a vertex from other bags.

116 Tree Decomposition Based Algorithms

monotonous from the partially ordered set ({0, 0̂, 1}ni ,≺) to (N∪{+∞},≤) if for c, c ′ ∈ {0, 0̂, 1}ni ,
c ≺ c ′ implies A(c) ≤ A(c ′). It is very essential for the correctness of our algorithm as well as
for the claimed running time that all the mappings Ai will be monotonous.

5.3.2.2 The Algorithm

We use the mappings introduced above to perform the dynamic programming approach as
described in Fig. 5.6 in Subsection 5.3.1.1. Note that at each stage of the algorithm we take
care that the mappings visited up to that stage are monotonous.

Step 1 (initialization). In the first step of the algorithm, for each leaf node i of the tree
decomposition, we initialize the mapping Ai:

for all c ∈ {0, 0̂, 1}ni do

Ai(c) ←
{

+∞ if c is locally invalid for Xi
#1(c) otherwise

(5.5)

By this initialization step, we make sure that only colorings are taken into consideration where
an assignment of color 0 is justified.

Step 2 (updating process). After the initialization, we visit the bags of our tree decompo-
sition bottom-up from the leaves to the root, evaluating the corresponding mappings in each
step according to the following rules.

forget nodes: Suppose i is a forget node with child j and suppose that Xi = (xi1 , . . . , xini).

W.l.o.g.11, we may assume that Xj = (xi1 , . . . , xini , x). Evaluate the mapping Ai of Xi as
follows:

for all c ∈ {0, 0̂, 1}ni do

Ai(c) ← min
d∈{0,1}

Aj(c× {d}) (5.6)

Note that a coloring c× {0̂} for Xj means that the vertex x is assigned color 0̂, i.e., not yet
dominated up to this point of the algorithm. Since, by condition (iii) of Definition 5.1.1,
the vertex x will never appear in a bag for the rest of the algorithm, a coloring c× {0̂} will
remain unresolved and it will not lead to a dominating set. That is why the minimum in
the assignment (5.6) is taken over colors 1 and 0 only.

introduce nodes: Suppose that i is an introduce node with child j and suppose, further-
more, that Xj = (xj1 , . . . , xjnj). W.l.o.g.12, we may assume that Xi = (xj1 , . . . , xjnj , x). Let

N(x) ∩ Xi = {xjp1 , . . . , xjps } be the neighbors of the “introduced” vertex x that appear in

11Possibly after rearranging the vertices in Xj and the entries of Aj accordingly.
12Possibly after rearranging the vertices in Xi and the entries of Ai accordingly.

5.3 Dynamic Programming on Tree Decompositions 117

the bag Xi. We now define a function f : {0, 0̂, 1}nj → {0, 0̂, 1}nj on the set of colorings
of Xj. For c = (c1, . . . , cnj) ∈ {0, 0̂, 1}nj , let f(c) := (c ′1, . . . , c

′
nj

) such that

c ′t =

{
0̂ if t ∈ {p1, . . . , ps} and ct = 0,
ct otherwise.

Then, evaluate the mapping Ai of Xi as follows:

for all c = (c1, . . . , cnj) ∈ {0, 0̂, 1}nj do

Ai(c× {0}) ←
{
Aj(c) if x has a neighbor xjq in Xi with cq = 1,
+∞ otherwise

(5.7)

Ai(c× {1}) ← Aj(f(c)) + 1 (5.8)

Ai(c× {0̂}) ← Aj(c) (5.9)

For the correctness of the Assignments (5.7) and (5.8), we remark the following: It is
clear that, if we assign color 0 to vertex x (see Assignment (5.7)), we again (as already
done in the initializing step of Assignment (5.5)) have to check whether this color can be
justified at the current stage of the algorithm. Such a justification is given if and only
if the coloring under examination already assigns a 1 to some neighbor of x in Xi. This
is true, since condition (iii) of Definition 5.1.1 implies that no neighbor of x has been
considered in previous bags, and, hence, up to the current stage of the algorithm, x can
only be dominated by a vertex in Xi (as checked in Assignment (5.7)).

If we assign color 1 to vertex x (see Assignment (5.8)), we already dominate all vertices
{xjp1 , . . . , xjps }. Suppose now we want to evaluate Ai(c × {1}) and suppose some of these
vertices are assigned color 0 by c, say cp′

1
= . . . = cp′

q
= 0 (where (p ′

1, . . . , p
′
q) is a

subsequence of (p1, . . . , ps)). Since the “1-assignment” of x already justifies the “0-values”
of cp′

1
, . . . , cp′

q
, and since our mapping Aj is monotonous, we obtain Ai(c× {1}) by taking

entry Aj(c
′), where c ′

p′
1

= . . . = c ′p′
q

= 0̂, i.e., where c ′ = f(c).

join nodes: Suppose i is a join node with children j and k and suppose that Xi = Xj =

Xk = (xi1 , . . . , xini). Let c = (c1, . . . , cni) ∈ {0, 0̂, 1}ni be a coloring for Xi. We say that

c ′ = (c ′1, . . . , c
′
ni

), c ′′ = (c ′′1 , . . . , c
′′
ni

) ∈ {0, 0̂, 1}ni divide c if

(i) (ct ∈ {1, 0̂} ⇒ c ′t = c ′′t = ct), and

(ii)
(
ct = 0 ⇒

[
(c ′t, c

′′
t ∈ {0, 0̂}) ∧ (c ′t = 0 ∨ c ′′t = 0)

])
.

Then, evaluate the mapping Ai of Xi as follows:

for all c ∈ {0, 0̂, 1}ni do

Ai(c) ← min {Aj(c
′) +Ak(c

′′) − #1(c) | c ′ and c ′′ divide c } (5.10)

In other words, in order to determine the value Ai(c), we look up the corresponding values
for coloring c in Aj (which gives us the minimum dominating set for c needed for the bags
considered up to this stage in the left subtree) and in Ak (the minimum dominating set

118 Tree Decomposition Based Algorithms

for c needed according to the right subtree), add the corresponding values, and subtract
the number of “1-assignments” in c, since they would be counted twice, otherwise.

Clearly, if coloring c of node i assigns the colors 1 or 0̂ to a vertex x in Xi, we have to
make sure that we use colorings c ′ and c ′′ of the children j and k that also assign the
same color to x. However, if c assigns color 0 to x, it is sufficient to justify this color by
at least one of the colorings c ′ or c ′′. Observe that, by the monotonicity of Aj and Ak we
obtain the same “min” in Assignment (5.10) if we replace condition (ii) in the definition
of “divide”by:

(ii)’
(
ct = 0 ⇒ (c ′t, c

′′
t ∈ {0, 0̂} ∧ c ′t 6= c ′′t)

)
.

Step 3 (final evaluation). Let r denote the root of T . For the domination number ds(G), we
finally get

ds(G) = min {Ar(c) | c ∈ {0, 1}nr }. (5.11)

The minimum in Eq. (5.11) is taken only over colorings containing colors 1 and 0, since a
valid dominating set does not contain “unresolved” vertices of color 0̂. Also, note that, when
bookkeeping how the minima in the assignments (5.6), (5.10), and (5.11) of Step 2 and Step 3
were obtained, this algorithm constructs a dominating set D corresponding to ds(G).

5.3.2.3 Correctness and Time Complexity

For the correctness of the algorithm, we observe the following. Firstly, property (i) of a tree
decomposition (see Definition 5.1.1) guarantees that each vertex is assigned a color. Secondly,
in our initialization Step 1, as well as in the updating process for introduce nodes and join
nodes of Step 2, we made sure that the assignment of color 0 to a vertex x always guarantees
that, at the current stage of the algorithm, x is already dominated by a vertex from previous
bags. Since, by property (ii) of a tree decomposition (see Definition 5.1.1), any pair of neighbors
appears in at least one bag, the validity of the colorings was checked for each such pair of
neighbors at some point of the algorithm. And, thirdly, property (iii) of a tree decomposition
(see Definition 5.1.1), together with the comments given in Step 2 of the algorithm, implies that
the updating of each mapping is done consistently with all mappings that have been visited
earlier in the algorithm.

Claim 5.3.2 The total running time of the algorithm is O(4ℓN).

Proof: It is very easy to see that the evaluations for Step 1 (Assignment (5.5)) and the evaluations
for forget and introduce nodes in Step 2 (Assignments (5.6), (5.7), (5.8), and (5.9)) can be
carried out in time O(3ni ni).

The most time-expensive step is the updating-process for a join node. We claim that the
evaluations in Assignment (5.10) can be carried out in time O(4ni). This basically follows from
the definition of “divide.” Note that the running time of this step is given by

∑

c∈{0,̂0,1}ni

∣∣ { (c ′, c ′′) | c ′ and c ′′ divide c }
∣∣. (5.12)

5.3 Dynamic Programming on Tree Decompositions 119

For given c ∈ {0, 0̂, 1}ni , with z := #0(c), we have 2z many pairs (c ′, c ′′) that divide c (if
we use condition (ii)’ instead of condition (ii) in the definition of “divide” (sic!)). Since there
are 2ni−z

(
ni
z

)
many colorings c with #0(c) = z, again using condition (ii)’ instead of (ii), the

expression in (5.12) equates to

ni∑

z=0

2ni−z
(
ni

z

)
· 2z = 4ni .

The claim follows since we potentially can have O(N) many join nodes and since ni ≤ ℓ + 1

for all nodes i ∈ V(T). 2

This finishes the proof for Theorem 5.3.1.

5.3.3 Further Applications and Extensions

In this subsection, we describe how our new dynamic programming strategy can be carried over
to further “domination-like” problems as, e.g., treated in [181, 183, 184].

5.3.3.1 Dominating Set with Property P

We revisit the dominating set with property P problem (see Subsection 1.3.4) and derive
algorithms where the base σi of the exponential term and the number λi of colors needed for
the mappings in the dynamic programming depend on P.

Theorem 5.3.3 If a width ℓ and N nodes tree decomposition of a graph is known, then we can
solve the subsequent problems Pi in time O(σℓiN), using λi colors in the dynamic programming
step:

• P1 = independent dominating set: σ1 = 4, λ1 = 3;
• P2 = total dominating set: σ2 = 6, λ2 = 4;
• P3 = perfect dominating set: σ3 = 4, λ3 = 3;
• P4 = perfect code: σ4 = 4, λ4 = 3;
• P5 = total perfect dominating set: σ5 = 6, λ5 = 4.

Proof: The proof is deferred to the Appendix at the end of this chapter. 2

Note that our updating technique which makes strong use of the monotonicity of the map-
pings outperforms the results of Telle and Proskurowski. The corresponding constants σ ′

i for
the above listed problems that were derived in [183, Theorem 4, Table 1] and [184, Theorem
5.7] are σ ′

1 = 9, σ ′
2 = 16, σ ′

3 = 9, σ ′
4 = 9, and σ ′

5 = 16 (see Table 5.1 for an overview).

5.3.3.2 Weighted Versions of Dominating Set

Our algorithm can be adapted to the weighted version of dominating set (and its variants):
Take a graph G = (V, E) together with a positive integer weight function w : V → N. The weight
of a vertex set D ⊆ V is defined as w(D) =

∑
v∈Dw(v). The weighted dominating set

120 Tree Decomposition Based Algorithms

problem is the task to determine, given a graph G = (V, E) and a weight function w : V → N, a
dominating set with minimum weight.

Only small modifications in the bookkeeping technique used in Theorem 5.3.1 (or Theo-
rem 5.3.3) are necessary in order to solve the weighted version of dominating set (and its
variations). More precisely, we have to adapt the initialization (5.5) of the mappings Ai for the
bag Xi = (xi1 , . . . , xini) according to:

for all c = (c1, . . . , cni) ∈ {0, 0̂, 1}ni do

Ai(c) ←
{

+∞ if c is locally invalid for Xi
w(c) otherwise,

(5.13)

where w(c) :=
∑ni
t=0,ct=1

w(xit). The updating of the mappings Ai in Step 2 in the algorithm
of Theorem 5.3.1 (or Theorem 5.3.3) is adapted similarly.

5.3.3.3 Red-Blue Dominating Set

We finally turn our attention to the following version of dominating set, called red-blue
dominating set13 which is closely related to the face cover problem as defined in Subsec-
tion 1.3.4 [39, 166].

Definition 5.3.4 Red-blue dominating set is the optimization problem (I, F, c,min) which
is defined as follows:

(i) The set of instances I consists of all bipartite graphs G = (Vred ∪̇Vblue, E).

(ii) A feasible solution for a bipartite graph is a set V ′ ⊆ Vred. which dominates all vertices in
Vblue, i.e., Vblue ⊆ N(V ′).

(iii) The cost for a feasible solution V ′ is given by cQ(V ′) := |V ′|.

The following result will be used to obtain a fixed-parameter algorithm for par-face cover
(see Subsection 5.4.1).

Theorem 5.3.5 Let a bipartite graph G = (Vred ∪̇Vblue, E) be given together with a tree decom-
position of width ℓ. Then, red-blue dominating set can be solved in time O(3ℓN), where N
is the number of nodes of the tree decomposition.

Proof: The proof is deferred to the Appendix at the end of this chapter. 2

13Observe that red-blue dominating set is not a variant of dominating set in the sense of the first subsec-
tion, because a solution V ′ is not a dominating set, since red vertices cannot and hence need not be dominated
by red vertices.

5.4 Putting it all Together: 2O(
√
k)-Algorithms for LSP-Problems 121

5.4 Putting it all Together: 2O(
√
k)-Algorithms for LSP-Problems

We now piece together the results obtained in Sections 5.2 and 5.3 to derive fixed-parameter

algorithms running in time O(2O(
√
k)n) for problems which have the Layerwise Separation Prop-

erty and admit a dynamic programming approach on tree decompositions. The constant hidden
in the O-notation of the exponent depends on the given problem and we will provide a formula
to compute these constants from problem-specific parameters. The corresponding result is given
in Subsection 5.4.1. Besides, in Subsection 5.4.2 similar results will be derived by pursuing a
slightly different strategy.

5.4.1 Using Tree Decompositions

Melting our results on “Phase 1” (the construction of tree decompositions, see Section 5.2) with
our results on “Phase 2” (dynamic programming on tree decompositions 5.3) yields the following
main result.

Theorem 5.4.1 Let par-G be a parameterized problem on planar graphs. Suppose that

(i) par-G has the LSP of width w and size-factor d, and

(ii) there exists a time O(σℓN) algorithm to solve G if the input graph G is given together with
an N node tree decomposition of width ℓ.

Then, there is an algorithm to solve par-G in time

O(σ3w−1 · 2θ1(σ,d)
√
kn), where θ1(σ, d) = 2 (logσ)

√
6d.

Proof: Given an instance (G, k), in a first phase, we use the algorithm of Corollary 5.2.25 to
decide either if (G, k) /∈ par-G, or compute a tree decomposition with O(n) nodes and of width
bounded by

2
√
6dk+ (3w− 1).

This first phase takes O(
√
kn) time.

In a second phase, we use the given tree decomposition algorithm to solve the problem in

time O(σ2
√
6dk+(3w−1)n). 2

For concrete examples, we revisit our threesome of graph problems. The algorithms in
the next corollary14 again match our lower bounds given in Theorem 4.2.10. As usual, in the
following, n will always denote the number of vertices of an input graph and k will refer to the
corresponding problem parameter according to Definition 1.3.2.

14We remark that the running times in Corollary 5.4.2 are pure worst-case upper bounds. In particular, in
the case of par-dominating set there seems much room for problem-specific improvements. Also, we want to
emphasize that our main goal was to pursue a general methodology with the concept of the Layerwise Separation
Property. Following this aim, we deliberately sacrificed a more-fine grained, problem-specific analysis.

122 Tree Decomposition Based Algorithms

Corollary 5.4.2

(i) par-Vertex cover on planar graphs can be solved in time O(24
√
3kk+ kn).15

(ii) par-Independent set on planar graphs can be solved in time O(24
√
6kk+ n2).16

(iii) par-Dominating set on planar graphs can be solved in time O(212
√
34kk+ n3).17

Proof: As a first step, we apply linear problem kernelization to the given input instance (see
Corollary 2.1.8 for par-vertex cover, Proposition 2.1.4 for par-independent set, and The-
orem 2.2.1 for par-dominating set). The given running times are immediate consequences
of Theorem 5.4.1, if we plug in the corresponding values for size-factor and width of the LSP
for par-vertex cover (see Lemma 5.2.13), for par-independent set (see Example 5.2.12),
and for par-dominating set (see Proposition 5.2.14), and if we use the corresponding running
times for the dynamic programming on tree decompositions (see Table 5.1). 2

Compare the running times in Corollary 5.4.2 with the ones that were derived using the
divide-and-conquer strategy based on separation (see Corollary 4.2.2 in Subsection 4.2.1). The
improvements are remarkable, and, moreover, the tree decomposition based approach is appli-
cable to a wider class of graph problems since we do not need to assume the existence of a linear
problem kernel. The following remark extends the list for which fixed-parameter algorithms
with a sublinear term in the exponent are possible (and for which we are not aware of a linear
problem kernel).

Remark 5.4.3 By Corollary 5.2.17, the result of Corollary 5.4.2.(iii) extends to all variants of
the par-dominating set problem that are listed in Theorem 5.3.3. More precisely, we obtain

time O(2O(
√
k)n) algorithms for the following problems: par-independent dominating set,

par-total dominating set, par-perfect dominating set, par-perfect code, par-total
dominating set.

We finish this subsection with a glance at the par-face cover problem (see Definition 1.3.6).
These considerations are meant to demonstrate that—even if we may not be able to directly
prove the LSP for a graph problem—the previously established techniques can be directly used

to derive a time O(2O(
√
k)n) algorithm. We need the following auxiliary notion.

Let G = (V, E) be a plane graph. Let F denote the set of faces of G. A mapping r : F → V

is called a c-bounded face representation if and only if (i) for all v ∈ r(F), we have |r−1(v)| ≤ c,
and (ii) for all f ∈ r−1(v), v lies on the boundary of f.

Lemma 5.4.4 Each plane graph has a 5-bounded face representation. Moreover, such a face
representation function can be constructed in time O(n).

15Alternatively, not using linear problem kernelization as preprocessing, we would obtain running time

O(24
√
3k n).

16 Alternatively, using the five-coloring algorithm (see Remark 2.1.5) as a base of the linear problem kernel
instead of a four-coloring, the running time for the preprocessing is linear instead of quadratic, but the size-
factor of the LSP on the set of reduced instances is five instead of four. Hence, we would obtain running time

O(22
√
30k k + n).

17 Alternatively, not using linear problem kernelization as preprocessing, we obtain running time O(212
√
34k n).

5.4 Putting it all Together: 2O(
√
k)-Algorithms for LSP-Problems 123

Proof: The proof is deferred to the Appendix at the end of this chapter. 2

Proposition 5.4.5 par-Face cover can be solved in time O(336
√
34kn).

Proof: Let (G = (V, E), φ) be a plane graph with face set F. Due to Lemma 5.4.4, we can find a
5-bounded face representation r : F→ V in time O(n).

Consider the following graph: Add a new vertex in the interior of each face of G, and make
each such “face vertex” adjacent to all vertices that are on the boundary of that face. These
are the only edges of the bipartite graph G ′ = (V ′, E ′). Write V ′ = VF ∪ V, where VF is the set
of face vertices, i.e., each v ∈ VF represents a face fv in G. In other words, V and VF form the
bipartition of G ′. Observe that G ′ can be viewed as an instance of red-blue dominating set:
the face vertices VF are “red” and the other vertices V are “blue.” Now, we would like to apply
Theorem 5.3.5 on a suitable tree decomposition of G ′ to finish the proof.

To this end, consider the graph Ĝ = (V, Ê) obtained from G ′ by contracting each edge
connecting a face vertex v ∈ VF of G ′ with r(fv). In other words, Ĝ is obtained from G by firstly
removing all “original” edges from E, and then inserting, for every f ∈ F, edges between r(f) and
each other vertex v adjacent to f in G.

Assume that G has a face cover C ⊆ F of size k. Then, r(C) is a dominating set of Ĝ of
size k ′ ≤ k. Hence, by Corollary 5.2.26.(ii), tw(Ĝ) ≤ 6

√
34k + 8, and a corresponding tree

decomposition can be found in time O(
√
kn). In order to be able to apply Theorem 5.3.5, we

observe that a tree decomposition of G ′ of width at most 36
√
34k + 48 can be obtained from

the tree decomposition of Ĝ by enhancing the bags of Ĝ’s tree decomposition according to the
following rule: if r(f) is in some bag for some face f ∈ F, then put all v ∈ VF into that bag which
satisfies r(fv) = r(f). The reader should verify that this, indeed, yields a tree decomposition of
G ′, and the claimed width bound follows from Lemma 5.4.4. 2

5.4.2 Using Bounded Outerplanarity

We sketch an alternative approach to obtain time O(2O(
√
k)n) algorithms for LSP-problems in

a slightly different context. The presentation here will be informal and the reader is referred
to [4] for details.

Recall that in the approach followed in the previous subsection, the LSP was used to derive
an appropriate partial layerwise separation of a given input graph. From this partial layerwise
separation, a tree decomposition was computed (see Theorem 5.2.23), on which we performed a
dynamic programming strategy. We now use an appropriate partial layerwise separation for a
direct dynamic programming without doing the detour via tree decompositions.

Assume that the underlying graph problem G is a vertex selection problem which is glueable
with λ colors (see Definition 4.1.10 in Subsection 4.1.2.1). Very informally speaking, this means
that if a graph instance G = (V, E) is given together with a separation (VA, VS, VB), a divide-and-
conquer algorithm can check all possible assignments of the λ colors to the vertices in VS and then
combine the optimal solutions for G[VA∪VS] and G[VB∪VS] in a suitable manner. Suppose we
are given a partial layerwise separation S = (S1, . . . , Sq) (see Definition 5.2.8) with corresponding

124 Tree Decomposition Based Algorithms

graph chunks CS = (G0, . . . , Gq). The glueability assumption then makes it possible to pursue a
dynamic programming which—by sweeping over the separators S1, . . . , Sq—successively compute
(partial) solutions of G on the graphs Gi := G[V(G0)∪S1∪· · ·∪Si−1∪V(Gi−1)∪Si] (for 1 ≤ i ≤ q).
Carrying out this method in detail, we obtain the following result.

Theorem 5.4.6 Let G be a vertex selection problem on planar graphs. Suppose that

(i) par-G has the LSP of width w and size-factor d,

(ii) G is glueable with λ colors, and

(iii) there exists an algorithm that solves G for a given precolored graph G in time O(τout(G)n).

Then, there is an algorithm to solve par-G in time

O(τw · 2θ2(λ,τ,d)
√
kn), where θ2(λ, τ, d) = 2

√
2d log(λ) log(τ).

Proof: A sketch of the proof is given in the Appendix at the end of the Chapter. 2

A source for algorithms that fulfill condition (iii) in Theorem 5.4.6 is given in [31].

Which of the two algorithms (presented in this and the previous subsection, respectively) on
layerwisely separated graphs should be preferred? For that purpose, let us compare the results
obtained in Theorems 5.4.1 and 5.4.6. Clearly, both results rely on the LSP assumption. Besides
that, Theorem 5.4.1 requires the existence of a linear time algorithm for bounded treewidth
graphs, whereas in Theorem 5.4.6 one needs (besides the glueability assumption) the existence
of a linear time algorithm for graphs with bounded outerplanarity. The interrelation between
these assumptions is given by the following observation, which is a consequence of Theorem 5.2.4.

Lemma 5.4.7 Let G be a problem on planar graphs. Suppose that there exists a time O(σℓn)

algorithm that solves G for a (precolored) graph that is given together with a tree decomposition of
width ℓ. Then, there is an algorithm that solves G for a (precolored) graph G in time O(τout(G)n)

for τ = σ3. 2

Using this result we obtain a version of Theorem 5.4.6 that is directly comparable to Theo-
rem 5.4.1.

Theorem 5.4.8 Let G be a vertex selection problem on planar graphs. Suppose that

(i) par-G has the LSP of width w and size-factor d,

(ii) G is glueable with λ colors, and

(iii) there exists a time O(σℓN) algorithm to solve G for a precolored graph G if G is given
together with an N node tree decomposition of width ℓ.

Then, there is an algorithm to solve par-G in time

O(σ3w · 2θ3(λ,σ,d)
√
kn), where θ3(λ, σ, d) = 2

√
6d log(λ) log(σ).

5.4 Putting it all Together: 2O(
√
k)-Algorithms for LSP-Problems 125

The exponential factor of the algorithm in Theorem 5.4.8, i.e., θ3(λ, σ, d), is related to the
corresponding exponent of Theorem 5.4.1, i.e., θ1(σ, d) in the following way:

√
log λ · θ1(σ, d) =

√
logσ · θ3(λ, σ, d).

From this we derive that

• if λ > σ, the algorithm in Theorem 5.4.1 outperforms the result of Theorem 5.4.8,

• if λ < σ, the algorithm in Theorem 5.4.8 outperforms the result of Theorem 5.4.1.

However, in order to apply Theorem 5.4.8, we need the two extra assumptions that we have a
glueable vertex selection problem and that we can deal with precolored graphs in the treewidth
algorithm.

Remark 5.4.9 Whereas, for par-vertex cover and par-independent set on planar graphs,
we have λ = σ = 2 and, hence, the approaches in Theorem 5.4.1 and Theorem 5.4.8 yield the
same worst-case upper bounds, the situation is slightly different for par-dominating set on
planar graphs: Here, we have σ = 4. On the other hand, we already argued that—for algorithmic
purposes—the constant λ = 4 (see Lemma 4.1.11) can be dropped to λ = 3 (see Remark 4.1.12).
All in all, Theorem 5.4.8 gives us an algorithm running in time

O(212
√
17·log(3)·kn)

for par-dominating set on planar graphs, which slightly beats the O(212
√
34kn) from Corol-

lary 5.4.2.(iii). Alternatively, if we use the linear problem kernelization for par-dominating
set on planar graphs (see Theorem 2.2.1) as a preprocessing, the running time of the algorithm

becomes O(212
√
17·log(3)·kk+ n3).

126 Tree Decomposition Based Algorithms

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

x

C⊆ Li+2

B(B(C))⊆ Li

d1

d13

y2

z

d23

d2

y1

d3

B(C) ⊆ Li+1

Figure 5.7: Si separates layer Li−1 from layer Li+3.

Appendix

Proof of Lemma 5.1.8:
W.l.o.g. we assume G is connected. We make the assumption that with the embedding, for each
vertex v, the incident edges of v are given in clockwise order as they appear in the embedding.
Most (linear time) graph planarity testing and embedding algorithms yield such orderings of
the edge lists (see [72]). With the help of these orderings, one can build, in O(|V |) time, the
dual graph G∗, with pointers from edges of G to the two adjacent faces in the dual. We first
partition the set of faces into ‘layers’: put a face f in layer L∗i+1 if the distance of this face in
the dual graph to the exterior face is i. This distance can be determined in linear time using
breadth-first search on the dual graph.

Now, a vertex v of G belongs to layer Li for the smallest i such that v is adjacent to a face
fv in L∗i . Note that faces can belong to layer L∗r+1, but not to layers L∗s with s > r+ 1. 2

Proof of Lemma 5.2.16:
We prove the three properties of Definition 5.2.8 separately. Recall the construction of Si via
lower, middle, and upper triples.

ad property (i): By construction, it is clear, that Si ⊆ Li ∪ Li+1 ∪ Li+2.
ad property (ii): We have to show that Si separates vertices of layers Li−1 and Li+3. Suppose
there is a path P (with no repeated vertices) from layer Li+3 to layer Li−1 that avoids Si. This
clearly implies that there exists a path P′ from a vertex x in a layer component C of layer Li+2
which is not a leaf in the layer decomposition tree to a vertex z ∈ B(B(C)) in layer Li which has
the following two properties (see Fig. 5.7):

• P′ ∩ Si = ∅.

• All vertices between x and z belong to layer Li+1.

Appendix 127

This can be achieved by simply taking a suitable subpath P′ of P. Let y1 (and y2, respectively) be
the first (last) vertex along the path P′ from x to z that lies on the boundary cycle B(C) ⊆ Li+1.

Obviously, y2 cannot be an element of D since, then, it would appear in a middle triple of
layer Li and, hence, in Si. We now consider the vertex that dominates y2. This vertex can lie
in layer Li, L+1, or Li+2.

Suppose first that y2 is dominated by a vertex d1 ∈ D ∩ Li. Then, d1 is in B(B(C)), simply
by definition of the boundary cycle (see Fig. 5.7). Since G is planar, this implies that y2 must
be an “outermost” neighbor of d1 among all elements in N(d1)∩B(C). If this were not the case,
then there would be an edge from d1 to a vertex on B(C) that leaves the closed region bounded
by {d1, y2}, the path from y2 to z, and the corresponding path from z to d1 along B(B(C)).
Hence, y2 is in the upper triple of layer Li which is associated with d1. This contradicts the
assumption that P′ avoids Si.

Now, suppose that y2 is dominated by a vertex d2 ∈ D∩Li+1 (see Fig. 5.7). By definition of
the middle triples, this clearly implies that y2 is in the middle triple associated with d2. Again,
this contradicts the fact that P′ ∩ Si = ∅.

Consequently, the dominating vertex d3 of y2 has to lie in layer Li+2. Let {d3, d
1
3, d

2
3}, where

d13, d
2
3 ∈ N(d3)∩B(C), be the lower triple associated with d3 and the component C (see Fig. 5.7).

By definition of a lower triple, C is contained in the region enclosed by {d13, d3}, {d3, d
2
3}, and

the path from d23 to d13 along B(C), which—assuming that y2 /∈ {d3, d
1
3, d

2
3}—does not hit y2

(see Fig. 5.7). We now observe that, whenever the path from y1 to y2 leaves the cycle B(C)

to its exterior, say at a vertex q, then it has to return to B(C) at a vertex q′ ∈ N(q) ∩ B(C).
Otherwise, we would violate the fact that, by definition, B(C) ⊆ Li+1. This, however, shows
that the path P′ has to hit either d13 or d23 on its way from y1 to y2. Since d13, d

2
3 ∈ Si, this case

also contradicts the fact that P′ ∩ Si = ∅.

ad property (iii): We will show that
∑r
i=1 |Si| ≤ 51k. For this purpose, let ki := |D ∩ Li|,

and let ci denote the number of layer components in layer Li which are not a leaf in the layer
decomposition tree (i.e., which have vertices from layer Li+1 inside). Our first claim is that

|Si| ≤ 5(ki+ ki+1+ ki+2) + 12ci+2. (5.14)

To see this, we give bounds for the number of vertices in upper, middle, and lower triples,
separately.

Firstly, we discuss the upper triples of layer i, which are associated with a vertex x ∈ D∩ Li
and a layer component C of layer Li+2 (that has further vertices from Li+3 inside). Consider
the bipartite graph G′ which has vertices for each such layer component C in layer Li+2 and for
each vertex in D ∩ Li. Whenever a vertex in D ∩ Li has a neighbor in B(C), an edge is drawn
between the corresponding vertices in G′. Each edge in G′, by construction, may correspond to
an upper triple of layer Li. Note that G′ is a planar bipartite graph whose bipartition subsets
consist of ki and ci+2 vertices, respectively. Thus, the number of edges of G′ is linear in the
number of vertices; more precisely, it is bounded by 2(ki+ci+2) (see [159, Corollary 1.2.]). From
this, we obtain an upper bound for the number of vertices in upper triples of layer Li as follows:
Potentially, each vertex of D∩Li appears in an upper triple and, for each edge in G′, we possibly

128 Tree Decomposition Based Algorithms

obtain two further vertices in an upper triple. This shows that the total number of vertices in
upper triples is bounded by ki+ 4(ki+ ci+2).

A similar analysis can be used to show that the number of vertices in the lower triples is
bounded by ki+2+ 4(ki+2+ ci+2) and that the number of vertices in the middle triples can be
bounded by ki+1+ 4(ki+1+ ci+2). By definition of Si, this proves the claim in Eq. 5.14.

Our second claim is that, for the number ci of layer components in layer i which are not
leaves in the layer decomposition tree, it holds

ci ≤ ki+ ki+1+ ki+2. (5.15)

To see this, observe that there is at least one vertex of layer Li+1 contained within each such
layer component. Such a vertex can only be dominated by a vertex from layer Li, Li+1, or Li+2.
In this way, we get the claimed upper bound.

Combining Equations (5.14) and (5.15) and using the fact that
∑r
i=1ki = k, some simple

arithmetic shows that
∑r
i=1 |Si| ≤ 51k. 2

Proof (Sketch) of Theorem 5.3.3:
For problem P1, the algorithm is identical to the one in Theorem 5.3.1 (see Subsection 5.3.2.2)
except for a slight modification. In contrast to the algorithm given in the proof of Theorem 5.3.1,
after each update of a mapping Ai for bag Xi, we check, for each coloring c ∈ {0, 0̂, 1}ni , if there
exist two vertices x, y ∈ Xi that both are assigned color 1 by c, and, if so, set Ai(c)← +∞.

For problem P2, one must also distinguish for the vertices in the domination set whether or
not they have been dominated by other vertices from the dominating set. We may use 4 colors:

• 1, meaning that the vertex is in the dominating set and it is already dominated;

• 1̂, meaning that the vertex is in the dominating set and it still needs to be dominated;

• 0, meaning that the vertex is not in the dominating set and it is already dominated;

• 0̂, meaning that the vertex is not in the dominating set and it still needs to be dominated.

The partial ordering ≺ on C := {0, 0̂, 1, 1̂}, according to which our mappings will be monotonous,
is given by 1̂ ≺ 1, 0̂ ≺ 0, and d ≺ d for all d ∈ C.

The various steps of the algorithm for updating the mappings are similar the ones given in
the algorithm of Theorem 5.3.1 (see Subsection 5.3.2.2). The most cost-expensive part again
is a join node. Here, in the Assignment (5.10), we have to adapt the definition of “divide”
as follows: For a coloring c = (c1, . . . , cni) ∈ {0, 0̂, 1, 1̂}ni for Xi, we say that the two colorings
c ′ = (c ′1, . . . , c

′
ni

), c ′′ = (c ′′1 , . . . , c
′′
ni

) ∈ {0, 0̂, 1, 1̂}ni divide c if

(i)
(
ct = 0 ⇒ (c ′t, c

′′
t ∈ {0, 0̂} ∧ c ′t 6= c ′′t)

)
, and

(ii)
(
ct = 1 ⇒ (c ′t, c

′′
t ∈ {1, 1̂} ∧ c ′t 6= c ′′t)

)
.

Appendix 129

Similar to the proof of Claim 5.3.2 the running time for updating a join node is given by
∑

c∈{0,̂0,1,̂1}ni

∣∣ { (c ′, c ′′) | c ′ and c ′′ divide c }
∣∣. (5.16)

We use a combinatorial argument to compute this expression. For a fixed coloring c ∈ {0, 0̂, 1, 1̂}ni ,
we have #0(c) ∈ {0, . . . , ni}, and #1(c) ∈ {0, . . . , ni − #0(c)}. The number of colorings c ∈
{0, 0̂, 1, 1̂}ni with #0(c) = z0 and #1(c) = z1 is given by 2(ni−z0−z1)

(
ni
z0

)(
ni−z0
z1

)
. Since, by defi-

nition of “divide,” for each position in c with ct = 0 or ct = 1, we have to consider two different
divide pairs, we get

∑

c∈{0,̂0,1,̂1}ni

∣∣ { (c ′, c ′′) | c ′ and c ′′ divide c }
∣∣

=

ni∑

#0(c)=0

ni−#0(c)∑

#1(c)=0

2#0(c) 2#1(c)
(
2(ni−#0(c)−#1(c))

(
ni

#0(c)

)(
ni− #0(c)

#1(c)

))

= 2ni
ni∑

#0(c)=0

(
ni

#0(c)

)
2ni−#0(c) = 6ni

This determines the running time of the algorithm.

For problem P3, we again use the algorithm given in the proof of Theorem 5.3.1 (see Subsec-
tion 5.3.2.2) except for the following modification in the semantics of the color sets. A vertex is
colored “grey” if it is dominated by exactly one “black” vertex which either lies in the “current”
bag of the tree decomposition algorithm or in one of its child bags. It is easy to see how to
adapt the updating process in a suitable manner.

For problem P4, and problem P5, respectively, we can use appropriate combinations of the
arguments for problems (P1, P3), and problems (P2, P3), respectively. 2

Proof (Sketch) of Theorem 5.3.5:
Basically, the technique exhibited in Theorem 5.3.1 (see Subsection 5.3.2.2) can be applied.
Due to the bipartite nature of the graph, only two “states” have to be stored for each vertex:
red vertices are either within the dominating set or not (represented by colors 1red and 0red,
respectively), and blue vertices are either already dominated or not yet dominated (represented
by colors 0blue and 0̂blue, respectively).

We consider our bags as bipartite sets, i.e.,

Xi := Xi,red ∪ Xi,blue,

where Xi,red := Xi∩Vred and Xi,blue := Xi∩Vblue. Let ni,red := |Xi,red| and ni,blue := |Xi,blue|, i.e.,
|Xi| =: ni = ni,red + ni,blue.

The partial ordering ≺ on the color set C = Cred ∪ Cblue, where Cred := {1red, 0red} and
Cblue := {0blue, 0̂blue}, is given by 0̂blue ≺ 0blue and d ≺ d for all d ∈ C.

A valid coloring for Xi is a coloring where we assign colors from Cred to vertices in Xi,red
and colors from Cblue to vertices in Xi,blue. The various steps of the algorithm for updating the
mappings are similar to the ones given in the algorithm of Theorem 5.3.1 (see Subsection 5.3.2.2).

130 Tree Decomposition Based Algorithms

Again, the most cost-expensive part is the updating of a join node. For a correct updating
of join nodes, we adapt the definition of “divide” that appears in the Assignment (5.10)
according to: For a valid coloring c = (c1, . . . , cni) ∈ Cni of Xi, we say that the valid colorings
c ′ = (c ′1, . . . , c

′
ni

), c ′′ = (c ′′1 , . . . , c
′′
ni

) ∈ Cni divide c if

(i)
(
ct 6= 0blue ⇒ (c ′t, c

′′
t = ct)

)
, and

(ii)
(
ct = 0blue ⇒ (c ′t, c

′′
t ∈ {0blue, 0̂ blue} ∧ c ′t 6= c ′′t)

)
.

For a fixed valid coloring c that contains z := #0blue
(c) many colors 0blue, the number of pairs

that divide c is 2z. Since there are 2ni,red
(
ni,blue

z

)
many colorings with #0blue

(c) = z, the total
number of pairs that divide a fixed coloring c is upperbounded by

ni,blue∑

z=0

2ni,red
(
ni,blue

z

)
· 2z = 2ni,red · 3ni,blue ≤ 3ni .

This determines the running time of the algorithm. Note that in the worst-case, for a bag Xi,
we may have ni,red = 0 and ni,blue = ni. 2

Proof of Lemma 5.4.4:
Let (G0 = (V0, E0), φ0) be a plane graph. We are going to define a 5-bounded face representa-
tion r of G0 in a step-by-step fashion.

Since G0 is planar, there exists a vertex v0 of degree at most five, hence, there are at most
five faces adjacent to v0. For all these faces f, we define r(f) = v0. Consider, then, the graph
G1 = (V1, E1), where G1 = G0− v0. We assume the “same” planar embedding for G1 as for G0.
As before, we can find a vertex v1 ∈ V1 with at most five adjacent faces (in G1). Therefore, v1
has at most five adjacent faces in G0 to which no vertices have yet been assigned. For all these
faces f, we define r(f) = v1.

Inductively, Gi+1 is obtained as Gi− vi, where vi has degree of at most five in Gi. Here, vi
represents all adjacent faces in G0 which are not already represented by the previously selected
vertices v0, . . . , vi−1. This loop is repeated until all faces f ofG0 have one representing vertex r(f),
i.e., until r is completely defined.

We obtain time bound O(n) as follows. Maintain for every vertex its degree and maintain
a data structure that contains all vertices of degree at most 5. Now, repeatedly, pick a vertex v
from the data structure, and take that as the vertex in the iteration; update the degrees of its
neighbors (O(1) work) and add these to the data structure if their degree is at most 5. 2

Proof (Sketch) of Theorem 5.4.6:
We only give a sketch of the algorithm, for a fully detailed proof we refer to [4, Section 5.2].
The overall structure of the algorithm is as follows:

◦ Compute some planar embedding φ of G.

◦ Find a partial layerwise separation S(ψ) = (S1, . . . , Sq) of (G,φ) for some suitable trade-off
parameter ψ (to be determined later) (see Proposition 5.2.21). Let CS(ψ) = {G0, . . . , Gq}

Appendix 131

be the graph chunks obtained by this separation, and let Gi := G[V(G0)∪S1∪ · · · ∪Si−1∪
V(Gi−1) ∪ Si] (0 ≤ i ≤ q).

◦ For each separator Si, we now keep a table Ai of size λ|Si|. In this table we store, for all
possible assignments of the λ colors to vertices of Si, an optimal solution for Gi with the
vertices in Si being precolored according to their current color assignment.

◦ Use the given algorithm A to compute the table A1 for S1.

◦ For i := 2, . . . , q do:

◦ For all possible assignments of the λ colors to vertices of Si compute the table
entry corresponding to this color assignment for the table Ai as follows:

◦ For all possible assignments of the λ colors to vertices in Si−1 do:

◦ use algorithm A to compute an optimal solution for G[Si−1∪V(Gi−1)∪Si]
(where the vertices in Si−1 and Si are precolored according to their current
color assignment).

◦ combine this optimal solution with the optimal solution for Gi−1 under the
current color-assignment for Si−1 (which is stored in table Ai−1).

◦ The optimal solution is obtained as the optimum under the following computations:

◦ For all possible assignments of the λ colors to vertices in Sq do:

◦ use algorithm A to compute an optimal solution for G[Sq ∪ V(Gq)] (the
vertices in Sq being precolored according to their current color assignment).

◦ combine the optima obtained in this manner with the optimal solution for Gq

under the current color assignment.

The correctness of this algorithm can be proven by an inductive argument using the for-
mulation of glueability. The running time, for updating the entries in table Ai is bounded
by

λ|Si | · λ|Si−1 | · τout(G[Si−1∪VGi−1∪Si]) · n,
simply because, for all possible assignments of the λ colors to the vertices in Si−1 and Si, we
run algorithm A on the (precolored) graph G[Si−1 ∪ VGi−1 ∪ Si]. Hence, the total running time

of the algorithm is bounded by O(2θ(ψ)n), where

θ(ψ) ≤ 2 log(λ) max
i=1,...,q

|Si| + log(τ) max
i=1,...,q

out(G[Si−1 ∪ V(Gi−1) ∪ Si])

≤ 2 log(λ)ψ
√
dk + log(τ)

(√
dk

ψ
+w

)

=

(
2 log(λ)ψ+

log τ

ψ

)√
dk + log(τ)w

This upper bound is minimized for ψ =
√

log(τ)/(2 log(λ)), which gives us the claimed value
θ2(λ, τ, d) = 2

√
2d log(λ) log(τ) and the constant τw for the running time. 2

132 Tree Decomposition Based Algorithms

Chapter 6

Experimental Studies

In this chapter, we demonstrate that the algorithms designed and analyzed in the previous
chapters provide a valuable way of exactly solving various NP-hard problems on planar graphs

in practice. The focus of the experimental study lies on the 2O(
√
k)-algorithms based on tree

decompositions1 (see Chapter 5) and on the application potential of combining these with data
reduction by preprocessing (see Chapter 2). Our investigations are based on a software package
that implements these methods. Besides we experimented with the search tree method based
on the degree-branching strategy (see Chapter 3). In a first Section 6.1, we present the soft-
ware package (for the tree decomposition based approach). Section 6.2 discusses a first serious
round of empirical studies with this package, demonstrating the practical usefulness of the tree
decomposition concept for, e.g., par-vertex cover on planar graphs. In Section 6.3, we report
on the evaluation of the degree-branching search tree for par-dominating set. Finally, the
impressive and probably underestimated power of problem kernelization as an extremely useful
data reduction tool to speed-up algorithms is studied in Section 6.4.

Our findings, in general, show that the average-case behavior is much better than what is
indicated by the worst-case bounds given in the theoretical analysis. We used combinatorial
random graphs as test instances. It is important to note that all observations made in this
setting do not necessarily carry over to other applications using real-world data arising from
various sources. However, the results of our tests indicate that there are grounds of evidence
that the algorithms have a big potential for practical applications.

6.1 The FPT-Toolbox for Planar Graph Problems

Based on LEDA [145], we designed and implemented a software package for exactly solving NP-
hard problems on planar graphs. More precisely, this package offers algorithms for parameterized

1The reasons for favoring the 2O(
√
k)-algorithms derived from tree decompositions to the algorithms based on

graph separation (see Chapter 4) are twofold. Firstly, the tree decomposition technique applies to a wider range
of problems (namely, all problems that have the Layerwise Separation Property). And, secondly, our worst-case
analysis already suggested that the potential of tree decomposition based algorithms is higher than the one of
separation techniques.

134 Experimental Studies

Figure 6.1: Screenshot of the graphical user interface that allows to adjust the settings of the “FPT-

Toolbox.”

graph problems that fit into the framework of Chapter 5, i.e., that have the so-called “Layerwise
Separation Property.” These include par-vertex cover, par-independent set, par-domi-
nating set, par-face cover, and variations thereof, such as par-independent dominating
set, par-perfect dominating set, par-total dominating set, or par-perfect code.

6.1.1 Design and Use

The usage of the package is fairly easy. The program interacts with the user through a graphical
user interfaces. We provide a panel for the various settings of the algorithm (see Fig. 6.1 for
a screenshot). The user selects the type of problem that (s)he wants to solve among the list
of graph problems which have the Layerwise Separation Property (LSP). Then, the parameter
value k is chosen (i.e., the size of the desired vertex cover, independent set, dominating set,
etc. the algorithm is checking for). In addition, we leave it to the user to adjust the trade-off
parameter ψ (described in Remark 5.2.22). Besides, some extra optional features for the output
can be adjusted. For example, it is possible to trace the algorithm by asking for outputs of
the layer decomposition, the “layerwise” separators, the tree decomposition, or the tables of the
dynamic programming.

The planar input graph can be drawn either directly or may be given as a file. The algorithm
then solves the problem, i.e., it outputs that there is no optimal solution of size at most k (for
minimization problems) or at least k (for maximization problems), or it computes an optimal
solution and highlights the set of vertices corresponding to it. An example for par-vertex

6.1 The FPT-Toolbox for Planar Graph Problems 135

Figure 6.2: The “FPT-Toolbox,” a software package for hard planar graph problems. The diagram

illustrates an example for par-vertex cover. The user provides the input graph (left-hand diagram)

and the algorithm outputs an optimal vertex cover (right-hand diagram).

cover is given in Fig. 6.2.

Assume that the parameterized graph problem the user wishes to solve has the LSP of
width w and size-factor s. Recall from Chapter 5 that the tree decomposition based algorithm
that solves the problem proceeds in two phases according to the following scheme:

Phase 1: Compute a tree decomposition for the given graph (according to Corollary 5.2.25):

(i) compute the layer decomposition of the graph (see Lemma 5.1.8).

(ii) find a layerwise separation S(ψ) (see Proposition 5.2.21), where

(a) each separator S ∈ S(ψ) has size at most S := ψ
√
dk, and

(b) each graph chunk has at most (
√
dk/ψ) +w many layers.

if such a layerwise separation does not exist, we can answer “no.”

(iii) construct a tree decomposition for each graph chunk (see Lemma 5.1.8).

(iv) merge the tree decomposition for the graph chunks to a global tree decomposition
(see Proposition 5.2.3).

Phase 2: Use problem-specific dynamic programming to solve the problem on the given tree
decomposition (according to the scheme given in Subsection 5.3.1.1).

136 Experimental Studies

Figure 6.3: The left-hand diagram shows the layer decomposition of the input graph from Fig. 6.2. The

right-hand diagram shows a tree decomposition for this graph. The tree is displayed in the upper part of

the window. The bags are displayed in the extra window. There, each line corresponds to a single bag.

The number in front of the semicolon of each line refers to a tree node corresponding to this bag. The

numbers following the semicolon represent the graph vertices that belong to the bag.

Phase 1 of the algorithm, i.e., the construction of a tree decomposition of the given plane
graph, is common to all problems offered by our software package. Phase 2 of the algorithm,
i.e., the dynamic programming, is a problem-specific step.

As already mentioned above, the user can adjust the setting in such a way that the partial
results, e.g., the layer decomposition of the tree decomposition, are displayed by the program.
Examples for a layer decomposition and for a tree decomposition that were computed by the
software package are depicted in Fig. 6.3.

6.1.2 Implementation

Our software package consists of more than 5000 lines of C++ code based on the LEDA pack-
age [145] ((non-commercial) version 4.2). Most of the implementation work was done by Frederic
Dorn in a student project under my supervision [78].

The implementation is done in an object-oriented way and offers, among others, the fol-
lowing main procedures (for a manual of the package, we refer to [78]). Concerning the tree
decomposition phase, we have, e.g.,

• layer decomposition(GraphWin& gw), creating a layer decomposition of a plane graph
given in an object GraphWin& gw of LEDA (see Lemma 5.1.8);

6.1 The FPT-Toolbox for Planar Graph Problems 137

• separator(GraphWin& gw), determining “layerwise separation” of a plane graph, which
depends on the parameter value k, the trade-off parameter and the specified graph problem
(see Proposition 5.2.21);

• tree decomp(GraphWin& gw), creating a tree decomposition for all subgraphs generated
by the graph separators and melting them into a global tree decomposition of the plane
graph (see Theorem 5.2.23).

Concerning the dynamic programming phase, we implemented a class TD for tree decompositions
with various subroutines, e.g.,

• TD.make nice(), transforming a tree decomposition into a “nice tree decomposition” (see
Lemma 5.1.3);

• TD.reduce(), reducing the size of the tree decomposition by combining two neighboring
bags, whenever one appears to be a subset of the other.

• TD.solve(problem Q), being the main procedures in the dynamic programming part for
solving the currently chosen graph problem par-Q on the tree decomposition TD.this.

Although the LEDA package made many things much easier, the implementation work was
fairly challenging, needing several new algorithmic ideas of problems not considered in the
underlying theoretical papers. As memory quickly becomes a bottleneck, it was essential to
encode the table entries of the dynamic programming as bit words, thus making it necessary to
operate with “bit-masking” and dealing with bit parallelism at the word level. Another thing
worth pursuing in order to save memory is to make a refined analysis of which tables have to
be kept open (i.e., to be kept in main memory) during the dynamic programming process. In
this context, it might be beneficial to experiment with choosing different root vertices of the
tree decomposition. These and several more fine tunings were necessary to make the program
competitive (see [5, 78]). Notably, all of these tunings are simple by themselves, but they are
indispensable as a whole in order to get running times as gathered in the following.

Practical Challenges. Our implementation still has to be called a prototype—numerous future
fine-tuning improvements are foreseeable. Examples for such improvements that we are about
to incorporate are, e.g., given by

• experimenting with different planar embeddings (other than the straight-line embedding
used so far) in order to further optimize Phase 1,

• making the construction of the tree decomposition more efficient (using heuristics, e.g.,
the ones proposed in [49, 131]) and also trying to further lower bag and thus table sizes,

• reducing the memory requirement for the tables in the dynamic programming, perhaps
using ideas from [29] or [36], and also trying to bring the number of tables kept simulta-
neously in main memory at a minimum, and

• further easing the use of the software, e.g., by also providing meta-information such as
expected remaining running time during the execution (so-called “progress indicators”,
see [38]).

138 Experimental Studies

6.1.3 Test Data

As test instances, we created a set of sample graphs using the LEDA [145] standard function

void random planar graph (graph& G, int n, int m)

for generating combinatorial random planar graphs. Here, n and m (with m ≤ 3n− 6) specify
the number of vertices and edges of the graph. The function, in a first step, generates a random
maximal planar graph in an inductive way: For n = 3, as the induction base, a triangle is
created. For n > 3, a random maximal planar graph of order n − 1 is generated, an additional
vertex v is added to a random face f, and all edges from v to the boundary of f are drawn. In
a second step, all but m edges are randomly removed. We remark that this method does not
generate graphs according to the uniform distribution.

We created sample sets PGn (PG is short for “planar graphs”) of random planar graphs
with n vertices (where n = 100, 500, 750, 1000, 1500, 2000, 3000, 4000). Each sample set PGn
contains 100 sample graphs. Here, for each graph in PGn, we chose m as a random number
in the interval [n− 1, 3n− 6]. All graphs were given together with a “straight-line embedding”
that was computed using the corresponding LEDA standard function [145].

Various graph structural data for the sample sets PGn is given in the first block of rows (see
“Graph data”) in Table 6.1. We measured for each graph G individually the following figures:

• # vertices: number of vertices in G;

• # edges: number of edges in G;

• # layers: number of layers of G using the straight-line embedding offered by LEDA;

• max. degree: maximum degree in G;

• avg. degree: average degree of G;

• size of VC: size of minimum vertex cover of G (as computed by our algorithm);

• size of DS: size of minimum dominating set of G (as computed by our algorithm);

Table 6.1 contains the average values over these figures for each graph sample set PGn.

We remark that we would have appreciated to also pursue intensive experiments on real-world
instances. But, as a matter of fact,—despite numerous efforts—it turned out to be extremely
difficult to obtain meaningful, non-commercial, and publicly available real-world data, such as,
e.g., models of transportation networks or models of socio-economic networks. As an alter-
native set of (randomly generated) test instances we worked with instances from an Internet
topology generators (see [121]), which creates random network topologies based on the so-called
“Autonomous System” connectivity in the Internet. In general, we might say that these graphs,
however, turned out to be less challenging than the sample sets PGn. This is why we concentrate
on the sample sets PGn in what follows.

The underlying machine for all tests in Sections 6.2, 6.3, and 6.4 is a conventional LINUX PC
with 750MHz Pentium III processor and 720 MB main memory.

6.2 Evaluation of Tree Decomposition Based Algorithms 139

Tree Decomposition Based Algorithms

sample set PG100 PG500 PG750 PG1000 PG1500 PG2000 PG3000 PG4000

Graph data:
vertices 100 500 750 1000 1500 2000 3000 4000
edges 201.5 974.6 1483.7 1978.9 2992.0 3960.8 6070.6 8264.5
layers 3.92 5.12 5.36 5.61 5.84 6.11 6.29 6.86
max. degree 23.2 50.8 61.2 73.3 90.6 104.9 129.6 146.6
avg. degree 4.03 3.90 3.96 3.96 3.99 3.96 4.05 4.13
size of VC 47.2 225.2 342.0 453.9 683.6 917.3 1373.8 1856.8
size of DS 24.2 126.4 183.6 247.3 360.9 472.9 719.1 989.4

Tree decompositions obtained (by Phase 1):
width of tree dec. 6.99 9.33 10.32 11.11 12.24 12.85 13.91 15.31
highest occurring width 11 15 14 19 20 20 22 21
avg. bagsize 4.20 4.22 4.33 4.37 4.46 4.57 4.62 4.72
tree nodes 75.7 389.9 583.2 779.6 1167.2 1552.3 2327.7 3087.1
depth of tree 19.1 52.8 70.6 82.5 115.2 122.6 163.0 196.3
max. degree in tree 7.0 29.1 37.0 54.3 66.3 89.3 150.1 185.7

Time needed:
time (sec): Phase 1 0.34 2.96 6.90 12.46 30.20 48.73 128.38 253.05
time (sec): Phase 2 0.06 5.41 12.35 34.46 116.40 192.17 402.36 1015.91
total time (sec) 0.40 8.37 19.25 46.92 146.60 240.90 530.74 1268.96

Table 6.1: Summary of experimental results for tree decomposition based algorithms. The table shows

various data on the structure of the tree decompositions generated by our algorithm. The numbers in

the various rows are taken as the averages over 100 graphs in PGn of the corresponding column.

6.2 Evaluation of Tree Decomposition Based Algorithms

In this subsection, we report on an empirical evaluation of the tree decomposition based algo-
rithms provided by the “FPT-Toolbox” described in Section 6.1. In particular, we want to gain
insight on the structure of the tree decompositions generated by our algorithms. As test data we
used the samples PGn of combinatorial random planar graphs that were generated as described
in Subsection 6.1.3. To keep the discussion within reasonable length, we restrict ourselves to the
par-vertex cover problem on planar graphs. At the time being, the implementation concern-
ing this problem is the one that achieved the highest level of maturity. We ran the combination
of both, Phase 1 (i.e., the construction of a tree decomposition of the given plane graph) and
Phase 2 (i.e., the dynamic programming on the obtained tree decompositions) in order to solve
par-vertex cover. In the sequel, we partly follow [5].

Settings Recall the general outline of the algorithm (see Subsection 6.1.1). The tradeoff-
parameter ψ allows us to tune this algorithm in two opposing directions. For a large value of ψ,
the algorithm allows for large separators, but only graph chunks with few layers. Conversely, for
a small value of ψ the algorithm only uses small separators, but admits graph chunks with many
layers. In the extremal case (i.e., when the tradeoff-parameter ψ is set to zero), no separation
is done and the graph is considered as a single “big” chunk which is processed by the algorithm

140 Experimental Studies

in Theorem 5.2.4. In this extremal case, we get

tw(X) ≤ 3 · out(G,φ) − 1, (6.1)

where X is the tree decomposition obtained for the plane graph (G,φ) (see Theorem 5.2.4).

From a theoretical point of view, the optimal tradeoff-parameter is given by ψopt :=
√
3/2

(see the proof of Theorem 5.2.23). Here, “optimal” means that the worst-case upper bound on
the width of the resulting tree decomposition X is smallest possible, namely

tw(X) ≤ 2
√
6dk+ (3w− 1), (6.2)

where d and w are the size-factor and the width of the underlying LSP-problem (see Theo-
rem 5.2.23). One can construct examples (see Remark 5.2.18), where the parameter k (i.e., the
size of an optimal vertex cover) is linearly related to out(G,φ). In this sense, the upper bound
given in Eq. (6.2) is (asymptotically) superior to the one in Eq. (6.1)

From a practical point of view, the situation seems different: It turned out that, on the
one hand, the graphs generated in our setting had few layers only using a simple straight-line
embedding φ, i.e., the number out(G,φ) is small. In nearly all cases we had less than 10 layers.
On the other hand, the size of an optimal vertex cover or an optimal dominating set, i.e., the
parameter value for k seemed to be large: As a rule of thumb, for the graphs generated in our
setting, we may say that an optimal vertex cover contained about half of the vertices of the
graph. Hence, for our combinatorial random graphs, the upper bound in Eq. (6.1) yields smaller
values than the upper bound from Eq. (6.2). As a consequence, trading the parameter k for
the parameter out(G,φ) seems reasonable in our setting. In deed, our experiments showed that
the widths of the tree decompositions obtained without doing separation were much smaller
compared to the ones obtained after separation. Hence, for all tests, the tradeoff-parameter ψ
was set to zero.

Evaluation. In this setting, we measured the following figures for each given random input
graph G individually:

• width of tree dec.: width of tree decomposition X obtained for G (by Phase 1);

• avg. bagsize: average size of the bags of the tree decomposition X ;

• # tree nodes: number of tree nodes of tree decomposition X ;

• depth of tree: depth of the tree in tree decomposition X ;

• max. degree in tree: maximum degree of the tree in tree decomposition X ;

The averages of these values over all graphs from a given sample set are summarized in the
second block of rows (see “Tree decompositions obtained”) in Table 6.1. Moreover, the table
shows, the highest width of a tree decomposition that occurred in a given sample set.

Besides, we recorded the running time for the two phases. The corresponding values can be
seen in the third block of rows in Table 6.1 (see “Time needed”).

In addition, for each input graph, we investigated the distribution of the various sizes of
different bags that appeared in the tree decomposition. More precisely, for each graph G and

6.2 Evaluation of Tree Decomposition Based Algorithms 141
q
u
an

ti
ty

in
%

bagsize
1 5 10 15 20

5

10

15

20

25

PG100
PG750
PG1500

tr
ee

w
id

th
graph sample PGn

100 500 1000 1500 2000 3000 4000
n

5

10

15

average treewidth

(without data reduction)

average treewidth

(after data reduction)

Figure 6.4: Bag Distribution and Treewidth. The left diagram illustrates the distribution of sizes of

bags in tree decompositions obtained by Phase 1 (without data reduction). The right diagram compares

the treewidth values obtained without running preprocessing Phase 0 to the values obtained after the

data reduction Phase 0.

the tree decomposition X obtained, we explored the percentage of bags having size s (where
s ∈ [1, tw(X) + 1]). This distribution is fundamental for the running time of Phase 2 of the
algorithm. The left-hand diagram in Fig. 6.4 shows this distribution averaged over the graphs
of selected sample sets PGn.

Discussion. Our main observation concerning Phase 1 of the algorithm is that the widths of
the tree decompositions obtained in practice (see row “treewidth” in Table 6.1) are much lower
than predicted from the theoretical bounds. The upper bound from Eq. (6.1) and, in particular,
the one from Eq. (6.2) are much too pessimistic. Take, e.g., the sample set PG750 where the
average treewidth is 10.3. Observing that the average number of layers of these graphs is 5.36,
and using this value in the worst-case upper bound from Eq. (6.1), we expect treewidth around
3 · 5.36 − 1 ≈ 15. The actual value of 10.3 obtained for our combinatorial random graphs is
by a factor 1.46 lower than this value. The same holds true for the graph in PG750 which has
the highest treewidth of 14. This graph, however, has 7 layers which means that the worst-
case upper bound would have guaranteed a width of 20 (by a a factor 1.43 worse than what
we obtained). Note that the average size of a minimum vertex cover for the sample PG750 is
around 342 (see row “size of VC” in Table 6.1). For such a value, the theoretical worst-case
upper bound in Eq. (6.2) would yield 4

√
3 · 342+5 ≈ 133, which is by a factor 12.9 (sic!) higher

than what we achieved in practice.

Moreover, we made two further interesting observations:

• The average size of the bags in the tree decompositions in all of the samples PGn is very
small, namely around 4.5 (seemingly independent of the width of the tree decompositions
and the size of the input graphs). To illustrate this, consider the left-hand diagram of
Fig. 6.4, which shows the distribution of the sizes of the bags for various sample sets PGn.

142 Experimental Studies

Note that the size of a very high percentage of the bags is in the range of {1, . . . , 6}, and
only few bags are large (determining the width of the tree decomposition).

• The number of nodes in the tree decomposition is lower than the guarantee given in
Theorem 5.2.4. There, we would expect 2n − 1 tree nodes. The tree decompositions in
average turn out to have only around 0.75n many bags. This improvement by a factor of
2.7 over the expected number of bags is due to an implemented heuristic which reduces the
size of the tree decomposition by combining two neighboring bags, whenever one appears
to be a subset of the other.

Both, the distribution of the bagsizes and the number of bags have a direct influence on the
running time of Phase 2 of the algorithm: Very recently, the notion of f-cost was introduced as
a more refined measure for the quality of a tree decomposition [47]. Here, f : N → R+ is some
function and the f-cost of a tree decomposition X = 〈{Xi | i ∈ I}, T〉 is defined to be Σi∈If(|Xi|).
Since, in Phase 2, the time (and space) needed to process a node of the tree decomposition whose
associated bag has size k roughly is f(k) = 2k, the time needed for Phase 2 is f(X) := Σi∈If(|Xi|).
In this sense, the distribution of the bag sizes (and the low average bag size) measured in our
experiments contribute to a small f-cost and, hence, a fast running time for Phase 2.

Note that we found vertex covers of average size 1370 in PG3000 in less than ten min-
utes average time. This might be compared with recent experimental results of Dehne et
al. [69], where search tree algorithms for vertex cover on general graphs were parallelized
on 10 Sun SPARC workstations. Within a similar time range, they optimally solved vertex
cover instances for parameter values k only around 400.

We only briefly mention that we carried out similar tests for par-dominating set. Recall
that for this problem Phase 2 (see Section 5.3.2) is more time and space consuming. Thus, the
width and the structure of the tree decomposition obtained by Phase 1 play a more important role
here. In addition, since the the dynamic programming presented in Section 5.3.2 relies on a nice
tree decomposition, the original decomposition needs to be transformed generating considerably
more tree nodes. On the positive side, our observations revealed that we can proceed Phase 2
for graphs from the sample set PG1000, in case the width of the nice tree decomposition is
around 10, in an average of around five minutes. On the negative side, the limits in terms of
memory requirements were exceeded for higher width. Concerning space efficiency, it is an open
challenge to incorporate and explore further ideas such as, e.g., the ones from [29] or [36].

Summary. To put it in a nutshell, the key message from the experimental studies in this
subsection is that—at least on the random planar graphs used in our setting—Phases 1 and 2
perform much better than could have been expected by their worst-case analysis in Chapter 5.
The low total running time for solving par-vertex cover on these instances is mainly due to
the relatively well-behaving tree decompositions (both in terms of width and structure). The
pure worst-case upper bounds derived from our theoretical analysis seems much too pessimistic
for practical purposes. We hereby reinforced grounds for the practical significance of the concept
of tree decompositions of graphs.

6.3 Evaluation of a Search Tree Based Algorithm 143

Figure 6.5: Example for the search tree algorithm for par-dominating set. The left-hand diagram

shows a (planar) graph drawn in a circular layout for which an optimal dominating set (red vertices)

was computed by our degree-branching search tree algorithm. The right-hand diagram illustrates the

corresponding search tree. It has depth 11 and contains 778 search tree nodes. The labels on the edges

correspond to the vertices of the original graph that were chosen to belong to the dominating set in the

specific branch.

6.3 Evaluation of a Search Tree Based Algorithm

Accompanying the realization of the “FPT-Toolbox” which mainly uses the tree decomposition
based algorithms of Chapter 5 for various LSP-problems, the search tree algorithm for par-do-
minating set from Chapter 3 was implemented by Simone Lehnert [135] in a student project
under my supervision. We now very briefly report on a test series for this algorithm.

An example of the computation of an optimal dominating set using our search tree method
is given in Fig. 6.5.

Recall the search tree algorithm for par-(annotated) dominating set from Section 3.2:
It is based on the degree-branching method, i.e., in each node of the search tree we determine
a (black) “branching vertex” v of lowest degree. Then, we branch according to this low-degree
vertex, i.e., we take v or one of its neighbors in the dominating set we seek for. The neighbors
of the vertices that are already determined to belong to the dominating set are marked (white).
White vertices can be assumed to be dominated but still are candidates for the dominating to be
constructed. To guarantee the existence of a black vertex of degree at most seven (and, thus, a
bounded branching degree), in each search tree node, the corresponding graph has to be reduced

144 Experimental Studies

Search Tree Algorithm

sample set PG25 PG50 PG75 PG100

Graph data:
vertices 25 50 75 100
edges 47.0 98.0 148.1 201.5
max. degree 10.7 15.9 20.0 23.2
avg. degree 3.76 3.92 3.95 4.03

Search tree obtained:

size of search tree 28.7 307.9 3447.2† 15808.3‡

maximum branching number 2.36 2.61 2.79† 2.99‡

average branching number 1.62 1.57 1.56† 1.62‡

depth of search tree 7.6 13.9 20.2† 24.0‡

time (sec) 0.07 3.54 172.44 948.5‡
† 3 test runs were interrupted after 50000 search tree nodes.
‡ 25 test runs were interrupted after 50000 search tree nodes.

Application of bw-Rules per search tree node:
bw-Rule 1 9.8 22.2 33.9 46.4
bw-Rule 2 8.8 18.7 29.9 38.2
bw-Rule 3 0.7 1.0 1.1 1.4
bw-Rule 4 0.002 0.001 0.004 0.001

Table 6.2: Summary of experimental results for the search tree based algorithm for par-dominating

set. The numbers in the various rows are taken as the average over graphs in PGn of the corresponding

column.

with respect to bw-Rules 1, 2, 3, and 4 (see Subsection 3.2.2).

Evaluation. The tests were performed on combinatorial planar graph samples PG25, PG50,
PG75 and PG100 (of 100 graphs each) that were created as described in Subsection 6.1.3.2 For
each graph in a given sample set PGn, a search tree was built as described in Subsection 3.2.1
(also refer to the general scheme in Fig.3.1)—using the branching rule (3.7). In addition, we
incorporated a trivial branch and bound strategy for degree-one branching vertices.3 Recall
that the branching number of a specific search tree node corresponds to the number of children
generated at this search tree node. This branching number is given by deg(v) + 1, where v is
the corresponding branching vertex used in this search tree node.4

Our main motivation was to get insight into the branching numbers that are used through
the algorithm. For this reason, we did not limit the height of the search tree a priori by some
parameter k, but we computed the search tree (in a breadth first manner) until an optimal dom-
inating set was found. To keep the running time in reasonable time, we aborted the algorithm
after a limit of 50000 search tree nodes.

For each graph, we measured the following figures.

2Compared to Section 6.2, we had to use smaller test instances since otherwise the search trees would have
been too large.

3If the branching vertex v has degree one, then, the branch that would (formally) be created for v is discarded,
since it is always optimal to take the neighbor of v into the dominating set.

4Since we do not branch if deg(v) = 1, the branching vector in such a situation is 1 instead of 2.

6.3 Evaluation of a Search Tree Based Algorithm 145

• size of search tree: number of search tree nodes needed to find an optimal dominating set;

• maximum branching number: maximum branching number that occurred in the search
tree, i.e., the maximum number of children of a search tree node;

• average branching number: average branching number that occurred in the search tree,
i.e., the average number of children of a search tree node;

• depth of search tree: depth of the search tree which corresponds to the size of an optimal
dominating set if the search tree node limit has not yet been reached;

In addition, we recorded the time (in seconds) that was needed to construct the search tree.
Moreover, we measured how often the bw-Rules 1, 2, 3, and 4 were applied per search tree node
in the corresponding reduction step.

The averages of these values over all graphs from a given sample are summarized in in
Table 6.2.

Discussion. It is interesting to see that the search trees generated in our setting had consider-
ably fewer nodes than could have been expected from the worst-case bound. According to the
worst-case scenario, for a search tree of height k, we can have

k∑

i=0

8i =
1

7
(8k+1− 1) (6.3)

many search tree nodes, because the theoretical upper bound on the branching number is 8.
Consider the sample set PG25. Observing that the average depth of a search tree here is 7.6 and
plugging this value in the Formula (6.3) of the worst-case analysis yields 8.35 · 106 search tree
nodes. Compare this number with the average of 28.7 search tree nodes obtained for PG25. The
situation is more drastic in the case of PG100: Using the average depth of 24.0, the worst-case
analysis in (6.3) yields 5.40 ·1021 search tree nodes. Assuming the same type of machine we used
(with 109 operations per second) and assuming that each search tree node could be processed
by a single operation, constructing such a search tree would theoretically take around 228000
years. Instead, we measured approximately 950 seconds average time in our tests.

This huge gap between worst-case analysis and average-case behavior on our test sets can
be explained by the branching numbers measured in the tests. Recall that the worst-case upper
bound on the branching number is tight. In Fig. 3.4 we presented a generic example of a reduced
graph for which all black vertices have degree 7, resulting in a branching vector of 8. However,
such a worst-case scenario never appeared in our combinatorial random graphs. Moreover,
the worst-case branching vector that occurred over all graphs in the sample set is 4 (sic!). In
average, the branching number is as low as 1.6, seemingly independent of the size of the graphs
considered. The average of the maximum branching number that occurred within a sample set
ranges from 2.36 (for PG25) to 2.99 (for PG100). The moderate running times can be explained
by the surprisingly low values for the branching numbers.

Still, the practicability of this search tree algorithm has its limits. The running time grows
exponentially with the size of the dominating set. Despite of a low average branching number,
we were not able to compute dominating sets for the sample set PG500 (from Section 6.2) within

146 Experimental Studies

a few minutes range, whereas—due to the low outerplanarity number of these graphs—this was
easily possible using the tree decomposition based approach.

Finally, we observe that, in the reduction step, bw-Rules 1 and 2 were applied more frequently
than the slightly more involved bw-Rules 3 and 4. From a practical point of view, it might be
reasonable to omit the latter rules, since one of the most time-consuming steps in each search
tree node is to detect situations in which bw-Rules 3 and 4 can be applied. Then, however, a
low-degree black branching vertex cannot be guaranteed from a theoretical point of view, and
we lose the guaranteed upper bound on the running time.

Summary. Though the worst-case upper bound on the branching number for the search tree
algorithm for par-dominating set is tight, it seems to be much too pessimistic for the test
graphs used in our setting. The algorithm appears to be practical for moderate parameter values
and, hence, for exactly solving (annotated) dominating set on graphs of moderate sizes of
an optimal dominating set.

6.4 The Influence of Data Reduction by Preprocessing

We now focus on analyzing the potential of data reduction by preprocessing. On the one hand,
we investigate the strength of the well-known problem kernelization for par-vertex cover
attributed to Nemhauser and Trotter (see Theorem 2.1.7 and Corollary 2.1.8); the theoretical
upper bound on the size of the problem kernel, here, being 2 vc(G). On the other hand, our
interest lies in the practical usefulness of our linear problem kernelization for par-dominating
set on planar graphs (see Theorem 2.2.1); the theoretical upper bound on the problem kernel,
in this case, being 335ds(G). Our findings in this section reveal that, for the combinatorial
random graph test instances, the reduction rules for par-dominating set seem to be more
powerful than the problem kernel reduction due to Nemhauser and Trotter.

6.4.1 Nemhauser-Trotter Kernelization for Vertex cover

A similar series of experiments as described in Section 6.2 was carried out with an additional
preprocessing Phase 0 to perform data reduction. We again used the sample sets PGn of
combinatorial random graphs (see Subsection 6.1.3) to evaluate the power of the problem kernel
reduction due to Nemhauser and Trotter (see Theorem 2.1.7). It is important to note that by
applying this preprocessing we are no longer able to generate all minimum vertex covers.

Evaluation. For each graph in a set PGn, we iteratively applied the data reduction due to
Nemhauser and Trotter5 until the graph could not be reduced any further. Recall that the
construction of Nemhauser and Trotter (see Theorem 2.1.7) computes on input G = (V, E) two
disjoint subsets of the vertices: a set C0 that can be assumed to belong to an optimal vertex
cover, and a set V0 of possible further candidates for an optimal vertex cover. All other vertices,
i.e., V \ (C0 ∪ V0), can be removed from the graph. We measured the following figures:

5In fact, we slightly heuristically tuned the data reduction algorithm suggested by Nemhauser and Trotter.

6.4 The Influence of Data Reduction by Preprocessing 147

Data Reduction for Vertex Cover

sample set PG100 PG500 PG750 PG1000 PG1500 PG2000 PG3000 PG4000

Preprocessing Nemhauser-Trotter:
vertices removed 56.2 337.9 518.1 684.2 1054.9 1347.1 1963.9 2507.1
(percentage) 56.2% 67.6% 69.1% 68.4% 70.3% 67.4% 65.5% 62.7%
edges removed 103.7 642.7 1045.0 1372.3 2166.2 2660.8 3999.3 5467.0
(percentage) 51.5% 65.9% 70.4% 69.3% 72.4% 67.2% 65.9% 66.1%
vertices for VC found 23.1 133.8 209.7 273.9 429.3 544.9 783.8 1007.1
(percentage) † 48.9% 59.4% 61.3% 60.3% 62.8% 59.4% 57.1% 54.2%
time (sec) 0.30 1.38 2.63 4.06 8.60 12.24 30.90 60.45

† percentage with respect to an optimal vertex cover.

Table 6.3: Summary of experimental results for the data reduction due to Nemhauser and Trotter. All

values in a row are taken as the average over graphs in PGn of the corresponding column.

Data Reduction + Tree Decomposition Based Algorithm for Vertex Cover

sample set PG100 PG500 PG750 PG1000 PG1500 PG2000 PG3000 PG4000

Tree decompositions obtained (for remaining reduced instances):
width of tree dec. 4.22 4.53 4.42 4.65 4.67 5.19 5.34 5.92
highest occurring width 10 9 10 12 16 14 14 16
avg. bagsize 3.70 3.50 3.43 3.41 3.37 3.48 3.46 3.54
tree nodes 27.7 97.9 136.8 188.9 287.8 399.8 626.5 912.3
depth of tree 8.1 15.6 15.3 17.1 17.6 25.0 26.3 33.8
max. degree in tree 3.2 11.9 19.7 24.7 39.9 49.4 71.9 94.3

Time needed:
time (sec): Phase 0 0.30 1.38 2.63 4.06 8.60 12.24 30.90 60.45
time (sec): Phase I 0.15 0.63 1.02 1.52 3.97 7.54 20.51 49.15
time (sec): Phase II 0.08 0.20 0.21 0.17 0.22 0.16 0.13 0.24
total time (sec) 0.53 2.21 3.86 5.75 12.79 19.93 51.54 109.84

Table 6.4: Summary of experimental results for the combination of data reduction and tree decomposition

based algorithms. The table shows various data on the structure of the tree decompositions of the reduced

instances. In addition, the running times measured for Phase 0 (data reduction), Phase 1 (construction

of tree decompositions), and Phase 2 (dynamic programming on tree decomposition) are recorded. The

numbers in the various rows are taken as the average over graphs in PGn of the corresponding column.

Compare these results with the ones obtained without the data reduction (see Table 6.1).

• # vertices removed: the number of vertices removed by the data reduction;

• # edges removed: the number of edges removed by the data reduction;

• # vertices for VC found: the number of vertices that could be determined by the prepro-
cessing to be in an optimal vertex cover (i.e., the size of C0);

Besides, we recorded the time needed to perform this data reduction. Table 6.3 summarizes
these values averaged over each sample set PGn individually.

After the data reduction (Phase 0), we are left with the reduced, computationally challenging

148 Experimental Studies

ru
n
n
in

g
ti

m
e

in
10

0s
e
c

graph sample PGn

Without data reduction

100 500 1000 1500 2000 3000 4000
n

5

10

15
total

Phase II

Phase I ru
n
n
in

g
ti

m
e

in
10

0s
e
c

graph sample PGn

With data reduction

100 500 1000 1500 2000 3000 4000
n

0.5

1.0

1.5

total

Phase II

Phase 0
Phase I

Figure 6.6: Running time. The left-hand and the right-hand diagram, respectively, show (the various

contributions for) the running times without the preprocessing (see Section 6.2) and with the preprocess-

ing (see Subsection 6.4.1), respectively. Note that the time-axis is scaled down by a factor of 10 in the

right-hand diagram.

graphs from our sample set PGn. On these reduced instances we ran Phases 1 and 2 of the tree
decomposition based algorithms, while—analogously to the tests in Section 6.2—recording the
relevant figures for the structure of the tree decompositions. Table 6.4 gives an overview on the
structure of the tree decompositions that were computed for the reduced graphs.

Finally, the running times for the various phases are collected in the second block of rows in
Table 6.4.

Discussion. The data reduction has an impressive impact on both the size of the remaining
reduced graphs and the width of their tree decompositions: In average,

• around 67% of the vertices, and

• around 66% of the edges of the original graphs

were removed by the preprocessing phase (see Table 6.3). Moreover, the preprocessing detected
a very high percentage (in average, around 58%) of vertices that can be guaranteed to belong
to an optimal vertex cover.

The width of the tree decompositions for the reduced problem kernels (see Table 6.4) are
considerably smaller than the width of the tree decompositions obtained for the original graphs
(see Table 6.1). As an example, again take the (reduced) graphs from PG750, where the width
of the computed tree decompositions in average now is 4.42, whereas the average width for the
original graphs was 10.32, a decrease by more than 57%. We refer to Fig. 6.4 for a comparison
of the average treewidths obtained with and without data reduction, respectively. The number
of layers decreased from an average of 5.36 to 2.57. In all sample sets (seemingly independent
of the size of the original graphs) we observed an average bagsize of around 3.5 for the reduced
graphs (compared to 4.5 for the original graphs).

As a result of the well-behaving tree decompositions for the reduced graph instances, we
obtain a drastic improvement of the running times for Phase 1 and, especially, for Phase 2.

6.4 The Influence of Data Reduction by Preprocessing 149

Whereas in the setting of Section 6.2, Phase 2 played a crucial role in the overall running time,
the contribution of this phase is almost negligible when running the preprocessing (see Fig. 6.6
for an illustration). The major part of the overall running time now is given by the preprocessing
Phase 0 itself.

The key message is that, considering the overall running time of the algorithm, data reduction
pays off. The larger the graphs are, the better the speed-up gained by the preprocessing:
Whereas we get an average speed-up by a factor of approximately 3.8 for smaller graphs from
PG500, the corresponding factor is around 11.6 for the graphs in PG4000.

Summary. The tests in this section revealed that—at least on the random planar graphs used
here—the data reduction suggested by Nemhauser and Trotter allows significant improvement
concerning the width of the tree decompositions and, thus, drastically speeds-up the overall
running time for the whole algorithm. The only negative point herein is that no more all
optimal vertex covers can be generated.

6.4.2 Kernelization for Dominating Set

Finally, we investigated the strength of the problem kernelization for par-dominating set on
planar graph (see Section 2.2). Recall that the problem kernelization was based on two simple
reduction rules (see Subsection 2.2.1) that are repeatedly applied to an input graph.

We remark that, in our experiments, we used a slight modification of the reduction rules:
Formally, when Rule 1 or Rule 2 (see Subsection 2.2.1) is applied and some vertex v is determined
to belong to an optimal dominating, the reduction rules attach a gadget vertex v ′ of degree one
to v. In our setting here, we simply removed the vertex v from the graph and “marked” its
neighbors as being already dominated. In this sense, we dealt with the variant of par-domi-
nating set called par-annotated dominating set (see Definition 3.2.2), where the input
instances are black and white graphs consisting of two types of vertices: black vertices which
still need to be dominated; and white vertices which are assumed to be already dominated. A
slight modification makes Rule 1 and Rule 2 applicable to such instances as well.

These two reduction rules then were enriched by the four very simple bw-Rules for par-
annotated dominating set that were developed in the search tree construction (see Subsec-
tion 3.2.2 for details).

An example of a problem kernel reduction as performed by our software package is given
in Fig. 6.7.

Evaluation. The potential of the aforementioned reduction rules was tested separately. We
ran a series of tests using Rule 1 only, using Rule 2 only, using a combination of Rule 1 and
Rule 2, and, finally, using Rules 1 and Rule 2 together with the four bw-Rules.

For each test run, we measured the following figures:

• # vertices removed: the number of vertices removed by the data reduction;

• # edges removed: the number of edges removed by the data reduction;

150 Experimental Studies

Figure 6.7: Example for the power of our data reduction through preprocessing. The planar graph (with

around 1500 vertices) in the left-hand side window is reduced to a black and white graph instance with

16 vertices (shown in the right-hand side window).

• # vertices for DS found: the number of vertices that could be determined by the prepro-
cessing to be in an optimal dominating set;

In addition, the time needed in order to reduce the graph with respect to the given set of rules
was recorded.

The results of the tests are summarized in Table 6.5.

Discussion. The preprocessing seems to be very effective—at least on the given random sample
sets. Using the combination of reduction Rules 1 and 2, as they were used to proof the linear
problem kernel, we may say that, in average,

• more than 79% of the vertices and

• more than 88% of the edges

were removed from the graph. Moreover, the reduction rules determined a very high percentage
(in average, more than 89%) of the vertices of an optimal dominating set—seemingly independent
of the size of the input graphs. The overall running time for the reduction ranged from less than
one second (for small graph instances with 100 vertices) to around 30 seconds (for larger graph
instances with 4000 vertices).

6.4 The Influence of Data Reduction by Preprocessing 151

Data Reduction for Dominating Set

sample set PG100 PG500 PG750 PG1000 PG1500 PG2000 PG3000 PG4000

Rule 1:
vertices removed 68.0 358.3 528.3 716.8 1058.8 1431.6 2183.0 2887.6
(percentage) 68.0% 71.7% 70.4% 71.7% 70.6% 71.6% 72.8% 72.2%
edges removed 151.6 771.8 1174.6 1577.9 2388.5 3164.2 4918.4 6774.1
(percentage) 75.2% 79.2% 79.2% 79.7% 79.8% 79.9% 81.0% 82.0%
vertices for DS found 19.3 104.2 149.3 203.2 292.1 388.9 594.9 826.8
(percentage)† 79.9% 82.4% 81.1% 82.2% 80.9% 82.2% 82.7% 83.6%
time (sec) 0.22 0.91 3.48 6.36 3.51 4.76 10.33 14.69

Rule 2:
vertices removed 73.9 358.4 530.8 711.8 1054.0 1415.6 2141.9 2833.1
(percentage) 73.9% 71.7% 70.8% 71.2% 70.3% 70.8% 71.4% 70.8%
edges removed 176.3 837.0 1265.3 1696.3 2553.9 3386.8 5232.3 7157.8
(percentage) 87.5% 85.9% 85.3% 85.7% 85.4% 85.5% 86.2% 86.6%
vertices for DS found 18.8 95.4 137.7 185.7 267.1 354.3 540.2 744.8
(percentage)† 78.0% 75.5% 75.0% 75.1% 74.0% 74.9% 75.1% 75.3%
time (sec) 0.26 1.28 4.97 7.73 9.27 8.45 23.31 35.94

Rule 1+2:
vertices removed 78.6 398.4 585.9 793.5 1167.8 1585.1 2397.2 3160.7
(percentage) 78.6% 79.7% 78.1% 79.4% 77.9% 79.3% 80.0% 79.0%
edges removed 178.3 866.4 1305.2 1755.7 2634.5 3515.5 5427.5 7386.9
(percentage) 88.5% 88.9% 88.0% 88.7% 88.1% 88.8% 89.4% 89.4%
vertices for DS found 21.5 113.1 162.5 220.8 316.9 423.3 640.2 890.2
(percentage)† 89.2% 89.5% 88.5% 89.3% 87.8% 89.5% 89.0% 90.0%
time (sec) 0.58 1.86 10.19 14.55 16.07 10.21 27.35 33.90

Rule 1+2 + bw-Rules 1, 2, 3, 4:
vertices removed 99.9 498.2 747.1 997.4 1496.2 1994.5 2992.3 3987.1
(percentage) 99.9% 99.6% 99.6% 99.7% 99.7% 99.7% 99.7% 99.7%
edges removed 201.4 971.9 1478.9 1974.9 2986.7 3962.0 6059.2 8245.7
(percentage) 99.9% 99.7% 99.7% 99.8% 99.8% 99.8% 99.8% 99.8%
vertices for DS found 24.1 125.9 182.8 246.5 359.4 471.1 717.5 985.5
(percentage)† 99.8% 99.6% 99.6% 99.7% 99.6% 99.6% 99.8% 99.6%
time (sec) 0.01 0.43 0.94 2.35 4.14 4.80 6.91 9.50

† percentage with respect to an optimal dominating set.

Table 6.5: Summary of experimental results for the data reduction of par-dominating set instances.

The numbers in the various rows are taken as the average over graphs in PGn of the corresponding

column.

Surprisingly, using Rule 1 or Rule 2 alone already resulted in a very powerful data reduction.
In both cases, in average, more than 71% of the vertices could be removed from the graph.
Clearly, reducing a graph with respect to Rule 1 is less time-consuming than reducing a graph
with respect to the more complex Rule 2. Moreover, Rule 1 seemed to be stronger than Rule 2
in the detection of vertices of an optimal dominating (in average, 81% compared to 75%).
Conversely, we noticed a subtle tendency that Rule 2 removed more edges compared to Rule 1
(in average, 86% compared to 80%).

Finally, enriching Rules 1 and 2 with the four simple bw-Rules led to an extremely powerful
data reduction on our set of random instances. Most interestingly, the combination of these

152 Experimental Studies

rules removed, in average,

• more than 99.7% of the vertices and

• more than 99.8% of the edges

of the original graph. More than 99.6% of the vertices that belong to an optimal dominating
set could be detected. These percentages again seem to be independent of the size of the input
graph. We observed that in this extended setting, the running times for the data reduction went
down to less than half a second (for graphs of 100 vertices) and less than ten seconds (for graphs
of 4000 vertices) in average. This is due to the fact that we tried to apply simple reduction
rules (such as the easy bw-Rules) with a higher priority than more complicated rules (such as
Rule 2). Hence, the time-consuming sophisticated steps had to be carried out on small graphs
only.

Finally, let us compare our data reduction for par-dominating set with the data reduction
for par-vertex cover attributed to Nemhauser and Trotter (see Section 6.4.1). In practice,
the data reduction for par-vertex cover reduced a considerably smaller percentage of the
vertices than our data reduction for par-dominating set. This, however, could not have been
expected from the corresponding worst case analysis: recall that Nemhauser and Trotter yields
a problem kernel of size 2k, whereas for our data reduction a problem kernel size of 335k was
shown.

Summary. Our experimental studies underpin the big potential of the presented reduction rules
for par-dominating set, leading to graph size reductions of more than 99% when experimenting
with random graphs. An optimal par-dominating set for the small remaining reduced graphs
can easily be computed using either a tree decomposition based algorithm (see Section 6.2)
or a search tree based algorithm (see Section 6.3). Hence, we anticipate that every future
algorithm for dominating set, whether approximation, fixed-parameter, or purely heuristic,
always should take into consideration the data reduction method proposed here.

Chapter 7

Conclusion

The aim of this work was to investigate the potential of exact fixed-parameter algorithms for
combinatorially hard graph problems under three criteria: design, analysis, and implementation.
The main focus lay on the study of the power of various tools and techniques—such as data
reduction, bounded search trees, graph separation, or tree decompositions—and their applicabil-
ity to various (planar) graph problems. As running examples we concentrated on par-vertex
cover, par-independent set, and par-dominating set, respectively, which—according to
the intensity by which they appear in the literature—must be considered to be the three most
fundamental parameterized graph problems representing the three most relevant parameterized
complexity classes FPT, W[1], and W[2], respectively.

We conclude by giving a sketchy overview on the new results provided in this work, by
hinting to ongoing work in this specific research area, and, finally, by describing open questions
and horizons for future research.

7.1 Brief Summary of Results

This section is meant as a very brief one-page listing of the main new results presented in this
work. For a more detailed summary of the results we refer to Section 1.4: We came up with ...

• ... data reduction rules for par-dominating set leading to a linear problem kernel for
par-dominating set on planar graphs of size 335k (→ Chapter: “Data Reduction”).

• ... a time O(8kn) search tree algorithm for par-dominating set on planar graphs based
on degree-branching (→ Chapter: “Bounded Search Trees”).

• ... the notion of glueable vertex selection problems that allows for a general method to

obtain time O(2O(
√
k)n) algorithms for parameterized problems on a graph class that ad-

mits a
√·-separator theorem; these include par-vertex cover, par-independent set,

or par-dominating set on planar graphs. These fixed-parameter algorithms are asymp-
totically optimal, unless 3 sat ∈ DTIME(2o(n)), n being the number of variables
(→ Chapter: “Graph Separation”).

154 Conclusion

• ... a new geometric
√·-separator theorem for disk graphs of bounded radius ratio

(→ Chapter: “Graph Separation”).

• ... a time 2O(
√
k log(n)) algorithm for par-independent set on disk graphs of bounded

radius ratio (→ Chapter: “Graph Separation”).

• ... fixed-parameter algorithms with running timeO(2O(
√
k)+n) for par-independent set,

par-dominating set on disk graphs with ϑ-precision (→ Chapter: “Graph Separation”).

• ... new constructive and asymptotically optimal upper bounds for the treewidth tw(G) of
a planar graph G of the form tw(G) = O(

√
vc(G)) and tw(G) = O(

√
ds(G)) (where vc(G)

and ds(G) denote the vertex cover number and the domination number, respectively)
(→ Chapter: “Tree Decomposition Based Algorithms”).

• ... the notion of “Layerwise Separation Property (LSP)” for parameterized planar graph

problems that allows for efficient time O(2O(
√
k)n) algorithms based on tree decomposi-

tions; the list of problems with LSP includes par-vertex cover, par-independent set,
par-dominating set, par-independent dominating set, par-total dominating set,
perfect dominating set, par-perfect code, or par-face cover on planar graphs
(→ Chapter: “Tree Decomposition Based Algorithms”).

• ... improved dynamic programming on tree decompositions for domination-like problems;
in particular, we exhibited a time O(4ℓN) algorithm for dominating set, independent
dominating set, and perfect dominating set (where ℓ is the width of the underlying
tree decomposition and N being the number of tree nodes), an O(3ℓN) algorithm for red-
blue dominating set, and an O(5ℓN) algorithm for total dominating set
(→ Chapter: “Tree Decomposition Based Algorithms”).

• ... the design and implementation of the software package called “FPT-toolbox”including
data reduction procedures as well as tree decomposition based methods for various hard
planar graph problems (→ Chapter: “Experimental Studies”).

• ... a series of experimental studies and an empirical evaluation of the implemented algo-
rithms (→ Chapter: “Experimental Studies”).

7.2 Ongoing research

The results of this work were well received in the parameterized complexity community and
already had some impact on ongoing work of other research groups. Especially our work [4, 8]
on fixed-parameter algorithms exposing—seemingly for the first time—a running time behavior

with a sublinear term in the exponent (i.e., that is of the form 2O(
√
k)nO(1)) received much

attention and may be counted to one of the most often cited papers in parameterized complexity
during the last year (see, e.g., [53, 70, 71, 87, 94, 96, 97, 98, 123, 129, 160, 182]). Regarding
parameterized planar graph problems we, thus, initiated and opened new research horizons that
might be grouped into three different categories.

7.2 Ongoing research 155

Further improvements of current algorithms. Very recently, we have seen new contri-

butions dealing with improvements on the running time of our time O(2O(
√
k)n) algorithm for

par-dominating set on planar graphs.1 Recall that the constant hidden in the exponent we
derived in our analysis was c = 12

√
17 log(3) ≈ 62 (see Remark 5.4.9).

Kanj and Perkovic [123] recently reduced this constant to c ≈ 27 by using a more fine-grained
analysis of our methods. They slightly modified the concept of our partial layerwise separation
(see Subsection 5.2.4.1). In their context only separators are used which separate so-called
“non-shallow” components2 of successive layers (instead of the layers themselves). With these
modifications they show that every “yes”-instance of the problem admits a layerwise separation
of width 3 and size 15k +

√
k (thus, improving our Corollary 5.2.17 which guaranteed width 3

and size 51k). This yields an upper bound for the treewidth tw(G) of a planar graph G of the
form

tw(G) ≤ 15.6
√

ds(G) + 50,

ds(G) being the domination number of G (thus, improving our Corollary 5.2.26). Then, basically

our Theorem 5.4.6 is used to derive a time O(227
√
kn) algorithm for par-dominating set on

planar graphs.

In a very recent paper due to Fomin and Thilikos [97], this running time was further improved

to O(215.13
√
kk+ k4+ n3). Instead of giving a direct upper bound on the treewidth of a planar

graph in terms of the domination number, Fomin and Thilikos use the concept of so-called
branch decompositions (see [172] for details): The authors prove—making use of the heavy
machinery of Robertson and Seymour’s graph minor theory—a non-trivial and non-constructive
upper bound of bw(G) ≤ 3

√
4.5ds(G) (here, bw(G) is the branchwidth of G), which is not far

from the optimal (they provide a lower bound of 3
√

ds(G) +O(1)). In fact, as a consequence,
since tw(G) ≤ 1.5bw(G) holds for every graph G with at least three edges [172], they even get
the upper bound

tw(G) ≤ 4.53/2
√

ds(G) ≈ 9.55
√

ds(G).

The algorithmic consequences are as follows: In a first phase, Fomin and Thilikos apply our
linear problem kernelization (see Theorem 2.2.1) which takes time O(n3). In a second phase,
the fact is used that on planar graphs an optimal branch decomposition can be computed in
time O(n4) [177]. Despite the high degree of the polynomial this algorithm is claimed to be
practical [113, 114]. Moreover, in a third phase, according to the authors, a derivation of
our new dynamic programming algorithm that was used to solve dominating set on a given
tree decomposition (see Theorem 5.3.1) can be straight-forwardly adapted to solve the problem
on a given branch decomposition in time O(2(3 log4 3)ℓn) (where ℓ is an upper bound on the
branchwidth of the given decomposition and n is the number of vertices in the graph). This

results in a total running time of O(215.13
√
kk+ k4+ n3).

It is not very surprising that the constant derived in our analysis could be improved in a
problem-specific manner for a problem like par-dominating set. The aim of our approach,
in first place, was to give a general method that is applicable to various graph problems. For

1With the linear problem kernel as a preprocessing, we alternatively obtained a timeO(2O(
√
k)k+n3) algorithm.

2A connected component of a layer is defined to be non-shallow if it has height at least ⌈
√
k⌉ + 1 in the layer

decomposition tree (as defined in Subsection 5.1.2).

156 Conclusion

this purpose and for the sake of conceptual simplicity we deliberately sacrificed problem-specific
fine-tuning of the analysis. Finally, we remark that the improved theoretical worst-case upper
bounds of the exponential bases from [123] and [97] still are far away from being practical. Our
(ultimate) goal should be the design of an algorithm with a worst-case upper bound on the

running time of O(2
√
kn)! The work initiated by us together with the presented improvements

might be seen as a first step in this direction.

Extension of algorithm to broader graph classes. Some efforts have already been made
to generalize some of our results on planar graphs to a wider class of graphs:

As a first example, we mention the recent work of Demaine et al. [71] who considered so-called
α-recognizable clique-sum graphs (see [73]). An s-(clique-)sum is an operation for two graphs G1
and G2 that formally can be defined as follows: For i = 1, 2 find a clique Wi ⊆ V(Gi) of size s.
Choose a bijection h : W1 → W2. Let G ′

i be obtained from Gi by deleting some (possibly no)
edges from Gi[Wi]. Then, the graph obtained from the disjoint union of G ′

1 and G ′
2 where each

vertex w ∈W1 is identified with h(w) ∈W2 is called an i-(clique-)sum of G1 and G2. A graph
class G is called a clique-sum class with defining pair (C, s) (here, C is a set of graphs and s is
some integer), if each graph in G can be obtained by a finite set of s-(clique-)sum operations
applied to planar graphs or graphs from C. A clique-sum class is said to be α-recognizable if,
for each graph, the corresponding set of clique-sum operations can be found in time O(nα).

Demaine et al. carried our tree decomposition based approach (see Chapter 5) over to such
clique-sum graph classes by using standard-techniques to compute a tree decomposition for
clique-sums. In particular, they showed that the upper bound

tw(G) ≤ 6
√
34ds(G) + max{8, d}

(compare with our Corollary 5.2.26) also holds if G is from an α-recognizable clique-sum class G
with defining pair (C, s). Here, d = maxH∈C tw(H) is called the base of G. A corresponding
tree decomposition can be constructed in time O(nα). Using our Theorem 5.3.1, this results in

a time O(212
√
34kn + nα) algorithm for par-dominating set on an α-recognizable clique-sum

class. Examples for such graphs are given by the class of graphs that exclude a single-crossing
graph H as a minor which is a clique-sum class with base dH that depends only on H [173]. In
particular, the class of K3,3-minor-free graphs is a clique-sum class with defining pair ({K5}, 2)

and base d = 4 that is 1-recognizable [28]. Similarly, the class of K5-minor-free graphs is a
clique-sum class with defining pair ({V8}, 3)

3 and base d = 4, that is 2-recognizable [126]. Since,
by Kuratowski’s theorem [159], planar graphs are equivalent to the set of graphs that exclude a
K3,3 and a K5 as a minor, the results in [71] are a generalization of our results. Note, however,
that a clique-sum graph with bounded base cannot contain arbitrary large cliques.

As a second example, we mention the work of Ellis et al. [87] who extended our search
tree algorithm (see Theorem 3.2.3) to the class G(Sg) of graphs of bounded genus, i.e., of
graphs that can be drawn without any edge-crossing on the surface Sg of genus g. The authors
prove a branching theorem that is similar to the corresponding theorem for the planar case
(see Theorem 3.2.10). The overall running time of their algorithm is O(d(g)kn2), where d(g) =

3Here, V8 is a cycle of length eight in which each pair of diagonally opposite vertices is joined by an edge.

7.3 Open Problems and Future Research 157

24g2+24g+1 (for g ≥ 1) grows quadratically with the genus g. As in the planar case, their proof
is based on topological arguments using the (generalized) Euler formula for graphs of bounded
genus. Again, as for the graph classes studied in [71], we remark that the class G(Sg), for
fixed g, cannot contain arbitrary large cliques. It would be interesting to see a fixed-parameter
algorithm for par-dominating set on a non-trivial graph class which may contain arbitrary
large cliques (as, e.g., the class of general disk graphs). Such a result so far is unknown.

Extension of algorithms to further problems. Since we provided first examples of fixed-
parameter algorithms with a sublinear term in the exponent for several problems on planar
graphs, the “pool” of such problems seems to increase steadily. Various papers are concerned
with the design of fixed-parameter algorithms that have running time 2e(k) · nO(1) where the
function e grows sublinearly in the exponent. Mostly, the techniques used are a derivation of our
tree decomposition based approach, where, in a first phase, one shows that a tree decomposition
of width O(e(k)) (k being the problem parameter) can be constructed efficiently, and, in a
second phase, one solves the problem in polynomial time on graphs of bounded treewidth.
Such an approach is, e.g., followed in [129], for the par-feedback vertex set or the par-
disjoint cycle problems on planar graphs. In the first problem, one is given an undirected
graph G = (V, E) and a parameter k, and the task is to decide whether there is a vertex set
V ′ ⊆ V of size at most k such that each cycle of G contains at least one point in V ′. In the
latter problem, one is given an undirected graph G = (V, E) and a parameter k and the question
is whether there are at least k vertex disjoint cycles in G. For both problems, an algorithm with

running time O(2O(
√
klog(k))n) is given [129].

These were improved by Demaine et al. [71] who gave time O(2O(
√
k)n+nα) algorithms for

these problems on α-recognizable clique-sum classes. Moreover, Demaine et al. address various
other graph problems on clique-sum classes which all allow for such “sublinear-exponential”
fixed-parameter algorithms. The list of problem studied there includes par-Y-dominating set,
par-edge dominating set, par-clique-transversal set, par-minimum maximal match-
ing, par-kernel on digraphs, and various so-called vertex removal problems (see [71] for details).
Most notably, all results are established by our fundamental upper bound tw(G) = O(

√
ds(G)).

7.3 Open Problems and Future Research

This work provides various starting points for future research. We formulate some of the
prospects in this area.

It is a challenging project to continue the ongoing work (see Section 7.2) on the design
of “sublinear-exponential” fixed-parameter algorithms, i.e., fixed-parameter algorithms which
have a sublinear term in the exponent: In first place, ameliorating some of the admittedly

bad worst-case constants in the time O(2O(
√
k)n) algorithms needs and deserves future work.

In particular, it would be interesting to know whether the more elusive par-dominating set
problem on planar graphs admits an exponential base comparable to the one derived for the
seemingly much less elusive par-vertex cover problem on planar graphs. The two “follow-up”
papers [71, 123] can only be considered as a first step in this direction. Secondly, just as we

158 Conclusion

did for planar graphs, we should find other graph classes which allow for general methods to
design sublinear-exponential fixed-parameter algorithms. Maybe our concept of the Layerwise
Separation Property (LSP) can be carried over to, e.g., graphs of bounded genus. A first
attempt to extend the LSP to a wider class of graphs was provided by Demaine et al. [71]
who considered graphs of locally bounded treewidth. Possibly, an approach based on other
decomposition techniques, such as branch decompositions [97], is even more fertile in this respect.
Thirdly, the list of problems that allow for sublinear-exponential fixed-parameter algorithms
should be further completed. At the same time and to a similar extent the studies on lower
bounds (see Subsection 4.2.2) for such problems is an area that is worth further consideration.

Our investigations on sublinear-exponential fixed-parameter algorithms, together with the
lower bounds given in Subsection 4.2.2 stirred up new questions concerning the structure of
the complexity class FPT: The notion of fixed-parameter tractability is maybe—in a sense—
inadequate from a practical point of view since it allows arbitrary exponential growth in the
exponential running time component for the parameter k. It is clear that for a fixed-parameter
algorithm with running time f(k) · nO(1), a function f(k) = 2O(k) is more desirable than, e.g.,

a function f(k) = 2O(22
2k

). However, this is not taken care of in the notion of fixed-parameter
tractability as it is. Besides, there is a new structural aspect within the class FPT: We can

solve par-dominating set on planar graphs in time O(2O(
√
k)n) whereas, according to Theo-

rem 4.2.10, par-vertex cover on general graphs does not allow for such an algorithm unless
the unlikely fact that 3 sat ∈ DTIME(2o(n)) holds, where n is the number of variables of a
3 sat formula. These results might motivate the following refinement of the class FPT according
to the asymptotic behavior of the exponential term in the running time:

FPT(g) :=

{
L ⊆ Σ∗ × N

∣∣∣∣
∃ an algorithm to decide (x, k) ∈ L in time

2O(g) · nα, for some α ∈ R+

}
.

It might be interesting to exploit a hierarchy in these classes and to investigate a completeness
program for these classes FPT(g)—similar to the studies of Impagliazzo, Pazuri, and Zane [119]
on strongly exponential problems. The corresponding notion of reduction would be the re-
fined parameterized reduction (see Definition 4.2.8) which precisely takes care of the way the
parameter k is transformed.

Our experiments with combinatorially generated random graphs revealed the great potential
of data reduction by problem kernelization. Specifically, data reduction based on simple (and
easy to implement) reduction rules—such as the ones for par-dominating set (see Subsec-
tion 2.2.1)—seemed to be very successful and competitive. Clearly, the worst-case bound on
the kernel size for par-dominating set on planar graphs needs further improvement, too. This
could be done by providing further (more fine-grained) reduction rules that take into account
not only the local structure given by two vertices, but also by considering the neighborhood of
some fixed number of vertices. We deliberately neglected these generalizations, for the proof of
the linear problem kernel would have become even more intricate and lengthy. Besides, since
we used only topological arguments, a straight-forward generalization of a linear problem kernel
for graphs of genus bounded by some constant g seems possible. Then, a similar argument as in
Remark 4.2.3, would establish an O(c

√
gkn) algorithm which would improve on [87]. In addi-

tion, it could be a promising project to design—on a purely heuristic base or even with provable

7.3 Open Problems and Future Research 159

worst-case upper bounds—similar reduction rules, e.g., for par-vertex cover. The hope is
that such rules, from a practical point of view, could even outperform the data reduction due to
Nemhauser and Trotter. Moreover, it is still a long-standing open problem whether par-vertex
cover on planar graphs has a problem kernel of size smaller than 2k. Maybe the planarity as-
sumption can be exploited in Nemhauser and Trotter’s theorem? Moreover, it seems likely that
the Nemhauser and Trotter theorem could be generalized to hypergraphs to improve the prob-
lem kernel for the parameterized d-hitting set problem (the generalization of vertex cover
to hypergraphs) [158]. Finally, are there lower bound results on problem kernels? Can we find a
non-artificial parameterized problem for which a problem kernel of size o(p(n)), where p(n) is
some polynomial, cannot exist unless some unlikely complexity-theoretical collapses hold true?
Efficient data reduction for parameterized problems probably has the potential to develop into
a research area on its own.

Most of our fixed-parameter results concerning par-independent set on planar graphs
make use of the linear problem kernel. This problem kernel was obtained by using the four-
color theorem which already guarantees that we can find an independent set of size ⌈n

4
⌉. In a

way—even though perfectly correct from a theoretical point of view—this is not in the sense of
designing parameterized algorithms, where we assume the problem parameter k (here, the size
of an optimal independent set) to be small. A more reasonable and maybe more honest formu-
lation of par-independent set on planar graphs would be given by parameterizing above this
guaranteed value (see Remark 2.1.6). Given a parameter k, the question then becomes whether
there exists an independent set of size at least ⌈n

4
⌉ + k. With respect to this parameterization,

the parameterized complexity of independent set on planar graphs still is open.

Dealing with disk graphs (see Section 4.3), we opened a new source for parameterized study.
While we now well understand the parameterized complexity of our threesome of graph problems
(par-vertex cover, par-independent set, and par-dominating set) on ϑ-precision disk
graphs, the situation is less clear for the class DGρ of disk graphs bounded radius ratio, or even

for general disk graphs DG. We came up with a time 2O(
√
klog(n)) algorithm for par-indepen-

dent set on DGρ, yet, the parameterized complexity (i.e., whether the problem is in FPT or
W[1]-complete) is still open. We want to emphasize that we are not aware of a (non-artificial)
W[1]-hard problem which can be solved in time bounded by an exponential with a sublinear
exponent. Similarly, its W[1]-hardness would expose—to our knowledge—the first example of
a fixed-parameter intractable problem that simultaneously allows a PTAS (where the problem
parameter and the the approximation guarantee refer to the same cost function). Finally, from
an application point of view, it might be interesting to study parameterized graph problems on
other geometric graphs such as, e.g., intersection graphs of rectangles (the par-independent
set problem on these graphs is important for applications like map labeling [2]). It seems
possible that our techniques based on geometric separation carry over to these graphs as well.

In order to obtain statistically relevant empirical results more extensive experimental studies
on a broader range of test samples (including more real world data) would be necessary. Tuning
algorithms for real applications, further aspects should be taken into consideration. E.g., so far
we hardly dealt with the memory requirements for our algorithms, yet this might be a crucial
bottleneck in practice. In particular, space consumption for tree decomposition based algorithms
(see [29]) is a so far widely underrated area to which hardly any innovative contributions were

160 Conclusion

made. Generally speaking, in designing fixed-parameter algorithms as a theorist we always
tend to focus on provable worst-case upper bounds. In order to derive an optimal performance
behavior in practice more knowledge on the actual input data (arising from a given application)
should be collected and further (heuristic) fine-tuning should be developed and incorporated.

Bibliography

[1] K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter tractability and completeness
IV: On completeness for W[P] and PSPACE analogs. Annals of Pure and Applied Logic, 73:235–276,
1995. 3, 76

[2] P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum independent set in
rectangles. Computational Geometry: Theory and Applications, 11(3–4):209–218, 1998. 10, 78,
159

[3] J. Alber. On implemented semigroups. Semigroup Forum, 63(3):371–386, 2001. 173

[4] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parameter algorithms
for dominating set and related problems on planar graphs. Algorithmica, 33(4):461–493, 2002.
Extended abstract (of the authors J. Alber, H. L. Bodlaender, H. Fernau, and R. Niedermeier) in
Proceedings 7th SWAT , Springer-Verlag LNCS 1851, pages 97–110, 2000. 99, 100, 102, 104, 105,
113, 123, 130, 154, 162, 173

[5] J. Alber, F. Dorn, and R. Niedermeier. Experimental evaluation of a tree decomposition based
algorithm for vertex cover on planar graphs. Manuscript, March 2002. Accepted for publication in
Discrete Applied Mathematics. 137, 139, 173

[6] J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. Rosamond, and U. Stege. Refined
search tree technique for dominating set on planar graphs. In Proceedings 26th MFCS , Springer-
Verlag LNCS 2136, pages 111–122, 2001.
Long version submitted to Journal of Computer and System Sciences. 46, 49, 173

[7] J. Alber, M. R. Fellows, and R. Niedermeier. Efficient data reduction for dominating set: a lin-
ear problem kernel for the planar case. In Proceedings 8th SWAT , Springer-Verlag LNCS 2368,
pages 150–159, 2002. 22, 173

[8] J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponential speed-up for planar
graph problems. In Proceedings 28th ICALP , Springer-Verlag LNCS 2076, pages 261–272, 2001.
Long version available as Technical Report TR01-023, Electronic Colloquium on Computational
Complexity (ECCC), Trier, March 2001. 99, 102, 154, 173

[9] J. Alber, H. Fernau, and R. Niedermeier. Graph separators: a parameterized view. In Proceedings
7th COCOON , Springer-Verlag LNCS 2108, pages 318–327, 2001.
Long version available as Technical Report WSI-2001-8, Wilhelm-Schickard-Institut für Informatik,
Universität Tübingen. Accepted for publication in Journal of Computer and System Sciences. 67,
68, 73, 75, 173

[10] J. Alber and J. Fiala. Geometric separation and exact solutions for independent set on disk graphs.
In Proceedings 2nd IFIP TCS (Foundations of Information Technology in the Era of Network and
Mobile Computing), Kluwer Academic Publishers, pages 26–37, 2002.

162 BIBLIOGRAPHY

Long version available as Technical Report ITI Series 2002-79, Institute for Theoretical Computer
Science, Charles University, Prague. 79, 173

[11] J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Towards optimally solving the longest common
subsequence problem with nested arc annotations in linear time. In Proceedings 13th CPM , Springer-
Verlag LNCS 2373, pages 99–114, 2002. 173

[12] J. Alber, J. Gramm, and R. Niedermeier. Faster exact solutions for hard problems: a parameterized
point of view. Discrete Mathematics , 229(1): 3–27, 2001. 3, 173

[13] J. Alber and R. Niedermeier. On multi-dimensional curves with Hilbert property. Theory of Com-
puting Systems, 33(4):295–312, 2000.
Extended abstract under the title “On multi-dimensional Hilbert indexings” in Proceedings 4th CO-
COON , Springer-Verlag LNCS 1449, pages 329–338, 1998. 173

[14] J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for domination-like
problems. In Proceedings 5th LATIN , Springer-Verlag LNCS 2286, pages 613–627, 2002. 112, 114,
173

[15] J. Alber and R. Niedermeier. Parametrisierte Algorithmen. Lecture notes and slides (in German).
WSI für Informatik, Universität Tübingen, February 2001. 3, 112, 173

[16] J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for parameterized planar
dominating set. Reading guide for [4]. In KAM-DIMATIA Series, report no. 2001-514, Faculty of
Mathematics and Physics, Charles University, Praha, Czech Republic, 2001. 99, 173

[17] L. G. Aleksandrov and H. N. Djidjev. Linear algorithms for partitioning embedded graphs of bounded
genus. SIAM Journal on Discrete Mathematics, 9:129–150, 1996. 65

[18] N. Alon, P. D. Seymour, and R. Thomas. A separator theorem for graphs with an excluded minor
and its applications. In Proceedings 22nd ACM STOC, pages 293–299, ACM Press, 1990. 65

[19] N. Alon, P. D. Seymour, and R. Thomas. A separator theorem for nonplanar graphs. Journal of the
AMS, 3:801–808, 1990. 65

[20] N. Alon, P. D. Seymour, and R. Thomas. Planar separators. SIAM Journal on Discrete Mathematics,
2:184–193, 1990. 65, 107

[21] K. Appel, W. Haken. Every planar map is four-colorable. Part I. Discharging. Illinois J. Math.,
21:429–490, 1977. 20

[22] K. Appel, W. Haken. Every planar map is four-colorable. Part II. Reducibility. Illinois J. Math.,
21:491–567, 1977. 20

[23] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic Discrete Methods, 8:277–284, 1987. 97

[24] S. Arnborg, D. G. Corneil, A. Proskurowski, and D. Seese. An algebraic theory of graph reduction.
Journal of the ACM , 40:1134–1164, 1993. 112

[25] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial
k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989. 112

[26] S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors characterization of partial 3-trees.
Discrete Mathematics, 80:1–19, 1990. 96

[27] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM , 45:501–555, 1998. 11

BIBLIOGRAPHY 163

[28] T. Asano. An approach to the subgraph homeomorphism problem. Theoretical Computer Science,
38(2-3):249–267, 1985. 156

[29] B. Aspvall, A. Proskurowski, and J. A. Telle. Memory requirements for table computations in partial
k-tree algorithms. Algorithmica, 27: 382–394, 2000. 137, 142, 159

[30] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Com-
plexity and Approximation. Springer-Verlag, 1999. 1, 11

[31] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal of the
ACM, 41(1):153–180, 1994. 9, 10, 12, 22, 89, 97, 124

[32] R. Balasubramanian, M. R. Fellows, and V. Raman. An improved fixed parameter algorithm for
vertex cover. Information Processing Letters, 65(3):163–168, 1998. 9, 43

[33] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex cover
problem. Annals of Discrete Mathematics , 25:27–46, 1985. 9, 20, 22

[34] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-approximability towards tight
results. SIAM Journal on Computing, 27:804–915, 1998. 10

[35] C. Berge. Graphs and Hypergraphs. American Elsevier, 1973. 11

[36] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of optimal subgraphs of
decomposable graphs. Journal of Algorithms, 8:216–235, 1987. 137, 142

[37] M. Bern and A. Sahai. Pushing disks together—the continuous-motion case. Discrete and Compu-
tational Geometry, 20(4):499–514, 1998. 85

[38] D. A. Berque, J. A. Edmonds, and M. K. Goldberg. Implementing progress indicators for recursive
algorithms. In Proceedings 8th ACM/SIGAPP Symposium on Applied Computing (SAC), pages
533–538, 1993. 137

[39] D. Bienstock and C. L. Monma. On the complexity of covering vertices by faces in a planar graph.
SIAM Journal on Computing, 17:53–76, 1988. 13, 120

[40] D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs to minimize certain
distance measures. Algorithmica, 5:93–109, 1990. 98

[41] H. L. Bodlaender. Dynamic programming on graphs of bounded treewidth. In Proceedings 15th
ICALP, Springer-Verlag LNCS 317, pages 105–118, Springer-Verlag, 1988. 112

[42] H. L. Bodlaender. A tourist guide through treewidth. In Acta Cybernetica, 11:1–23, 1993. 101

[43] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. SIAM
Journal on Computing, 25:1305–1317, 1996. 97

[44] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proceedings 22nd MFCS,
Springer-Verlag LNCS 1295, pages 19–36, 1997. 112

[45] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer
Science, 209:1–45, 1998. 65, 94, 100, 101, 102

[46] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth, pathwidth,
frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238–255, 1995. 97

[47] H. L. Bodlaender and F. V. Fomin. Tree decompositions with small cost. In Proceedings 8th SWAT,
Springer-Verlag LNCS 2368, pages 378–387, 2002. 142

[48] R. Boppana and M. M. Halldórsson. Approximating maximum independent sets by excluding sub-
graphs. BIT, 32(2):180–196, 1992. 10

164 BIBLIOGRAPHY

[49] V. Bouchitté, D. Kratsch, H. Müller, and I. Todinca. On treewidth approximations. Cologne-Twente
Workshop on Graphs and Combinatorial Optimization (CTW), 2001. 97, 137

[50] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey. SIAM Monographs on Discrete
Mathematics and Applications. Society for Industrial and Applied Mathematics, 1999. 4

[51] J. F. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal on Computing, 24:873–921,
1993. 21, 22

[52] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. Preprocessing of intractable problems.
Information and Computation, 176:89–120, 2002. 17

[53] L. Cai and D. Juedes. On the existence of subexponential parameterized algorithms. Manuscript,
submitted for publication. October 2001. Revised version of: Subexponential parameterized algo-
rithms collapse the W-hierarchy. In Proceedings 28th ICALP, Springer-Verlag LNCS 2076, pages
273–284, 2001. This conference version contains some major flaws, see [84]. 3, 76, 77, 154

[54] T. Y. Chang and W. E. Clark. The domination number of the 5 × n and the 6 × n grid graphs.
Journal of Graph Theory, 17:81–107, 1993. 12

[55] T. Y. Chang, W. E. Clark, and E. O. Hare. Domination numbers of complete grid graphs I. Ars
Combinatorica, 38:97–111, 1994. 12

[56] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and further improvements.
Journal of Algorithms, 41:280–301, 2001. 9, 20, 21, 43

[57] Z.-Z. Chen. Approximation algorithms for independent sets in map graphs. Journal of Algorithms,
41:20–40, 2001. 65

[58] Z.-Z. Chen, M. Grigni, and C. Papadimitriou. Map graphs. Journal of the ACM, 49(2):127–138,
2002. 65

[59] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar graphs
using PQ-trees. Journal of Computer and System Sciences, 30:54–76, 1985. 5

[60] N. Chiba, T. Nishizeki, and N. Saito. A linear 5-coloring algorithm of planar graphs. Journal of
Algorithms, 2:317–327, 1981. 20

[61] B. Chor and M. Sudan. A geometric approach to betweenness. SIAM Journal on Discrete Mathe-
matics, 11(4):511–523, 1998. 21

[62] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics , 86:165–
177, 1990. 12, 89

[63] E. J. Cockayne, E. O. Hare, S. T. Hedetniemi, T. V. Wimer. Bounds for the domination number of
grid graphs. Congressus Numerantium, 47:217–228, 1985. 12, 112

[64] S. A. Cook and R. A. Reckhow. Time bounded random access machines. Journal of Computer and
System Sciences, 7:354–375, 1976. 6

[65] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT
Press, 2nd edition, 2001. 6

[66] D. G. Corneil and J. M. Keil. A dynamic programming approach to the dominating set problem on
k-trees. SIAM Journal on Algebraic Discrete Methods, 8: 535–543, 1987. 112, 113

[67] B. Courcelle. Graph rewriting: an algebraic and logic approach. In Handbook of Theoretical Computer
Science, Vol. B: Formal Models and Semantics, pages 193–242. North Holland, 1990. 96, 112

BIBLIOGRAPHY 165

[68] P. Crescenzi and V. Kann. How to find the best approximation results—a follow-up to Garey and
Johnson. ACM SIGACT News, 29(4):90–97, 1998. 9, 11

[69] F. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Taillon. Solving large FPT problems on coarse
grained parallel machines. Manuscript, July 2001. Submitted to Journal of Computer and System
Sciences. 142

[70] E. D. Demaine, M. T. Hajiaghayi, and D. M. Thilikos. 1.5-Approximation for treewidth of graphs
excluding a graph with one crossing as a minor. In Proceedings 5th APPROX 2002, Springer-Verlag
LNCS 2462, pages 67–80, 2002. 97, 154

[71] E. D. Demaine, M. T. Hajiaghayi, and D. M. Thilikos. Exponential speedup of fixed-parameter algo-
rithms on K3,3-minor-free or K5-minor-free graphs To appear in Proceedings 13th ISAAC, Springer-
Verlag LNCS, Vancouver, Canada, December 2002. Preliminary version appear as Technical re-
port LSI-02-29-R , Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de
Catalunya, Barcelona, Spain, 2002. 154, 156, 157, 158

[72] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing: Algorithms for the Visual-
ization of Graphs, Prentice Hall, 1999. 126

[73] R. Diestel. Simplicial decompositions of graphs: a survey of applications. Discrete Mathematics,
75:121–144, 1989. 156

[74] R. Diestel. Graph Theory. Springer-Verlag, 2nd edition, 2000. 4

[75] H. N. Djidjev. On the problem of partitioning planar graphs. SIAM J. Algebraic Discrete Methods,
3(2):229–240, 1982. 65

[76] H. N. Djidjev. A separator theorem for graphs of fixed genus. Serdica, 11:319–329, 1985. 65, 75

[77] H. N. Djidjev and S. Venkatesan. Reduced constants for simple cycle graph separation. Acta
Informatica, 34:231–243, 1997. 65, 74

[78] F. Dorn. Tuning Algorithms for Hard Graph Problems. Study work in preparation, Universität
Tübingen, Germany. 2002. 136, 137

[79] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness. Congressus
Numerantium, 87:161–187, 1992. 12

[80] R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In P. Clote, J. Remmel
(eds.): Feasible Mathematics II, pages 219–244. Birkhäuser, 1995. 12, 46

[81] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II: On completeness
for W[1]. Theoretical Computer Science, 141:109–131, 1995. 10, 91, 92

[82] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer Science,
Springer-Verlag, 1999. II, 2, 3, 4, 7, 9, 10, 12, 13, 14, 46, 91, 92

[83] R. G. Downey and M. R. Fellows. Parameterized complexity after (almost) ten years: Review
and open questions. In Combinatorics, Computation & Logic (DMTCS and CATS’99), Australian
Computer Science Communications, 21(3):1–33, Springer-Verlag Singapore, 1999. 3

[84] R. G. Downey, M. R. Fellows, R. Niedermeier, and P. Rossmanith (eds.). Parameterized Complexity.
Dagstuhl-Seminar-Report No. 316, August 2001. 3, 164

[85] R. G. Downey, M. R. Fellows, and U. Stege. Parameterized complexity: A framework for sys-
tematically confronting computational intractability. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 49:49–99, 1999. 3, 9

166 BIBLIOGRAPHY

[86] F. v. d. Eijkhof and H. L. Bodlaender. Safe reduction rules for weighted treewidth. To appear in
Proceedings 28th WG, Springer-Verlag LNCS, Cesky Krumlov, Czech Republic, June 2002. 97

[87] J. Ellis, H. Fan, and M. R. Fellows. The dominating set problem is fixed parameter tractable for
graphs of bounded genus. In Proceedings 8th SWAT, Springer-Verlag LNCS 2368, pages 180-189,
2002. 154, 156, 158

[88] D. Eppstein, G. L. Miller, and S. H. Teng. A deterministic linear time algorithm for geometric
separators and its applications. In Proceedings 9th ACM Symposium on Computational Geometry,
pages 99–108, 1993. 78, 84

[89] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for geometric graphs.
In Proceedings 12th ACM-SIAM SODA, pages 671–679, 2001. 89

[90] I. Fáry. On straight line representation of planar graphs. Acta Scientiarum Mathematicarum,
11:229–233, 1948. 79

[91] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45:634–652, 1998.
11

[92] M. R. Fellows. Parameterized complexity: the main ideas and some research frontiers. In Proceed-
ings 12th ISAAC, Springer-Verlag LNCS 2223, pages 291–307, 2001. 3

[93] M. R. Fellows and M. A. Langston. Nonconstructive advances in polynomial-time complexity. In-
formation Processing Letters , 28:157–162, 1987. 9

[94] H. Fernau. graph separator algorithms: a refined analysis. To appear in Proceedings 28th WG,
Springer-Verlag LNCS, Cesky Krumlov, Czech Republic, June 2002. 75, 154

[95] H. Fernau and R. Niedermeier. An efficient exact algorithm for constraint bipartite vertex cover.
Journal of Algorithms, 38(2):374–410, 2001. 9

[96] F. V. Fomin and D. M. Thilikos. New upper bounds on the decomposability of planar graphs and
fixed parameter algorithms. Technical report LSI-02-56-R, Departament de Llenguatges i Sistemes
Informàtics, Universitat Politècnica de Catalunya, Barcelona, Spain, 2002. 154

[97] F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs: branch-width and exponential
speed-up. To appear in Proceedings 14th ACM-SIAM SODA, Baltimore, MD, USA, 2003. 106, 154,
155, 156, 158

[98] M. Frick, and M. Grohe. Deciding first-order properties of locally tree-decomposable structures.
Journal of the ACM, 48:1184–1206, 2001. 12, 154

[99] M. Galota, C. Glaßer, S. Reith, and H. Vollmer. A polynomial-time-approximation scheme for base
station positioning in UMTS networks. In Proceedings 5th Discrete Algorithms and Methods for
Mobile Computing and Communications, pages 52–59, 2001. 11

[100] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. Freeman, 1979. 9, 10, 11

[101] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theo-
retical Computer Science, 1:237–267, 1976. 76, 77

[102] C. Glaßer, S. Reith, and H. Vollmer. The complexity of base station positioning in cellular networks.
In Proceedings of the ICALP Workshops , Carleton Press, pages 167–177, 2000. 11

[103] D. H. Greene and D. E. Knuth. Mathematics for the Analysis of Algorithms. Progress in Computer
Science and Applied Logic, Birkhäuser, 3rd edition, 1990. 41

BIBLIOGRAPHY 167

[104] M. Grohe. Local tree-width, excluded minors, and approximation algorithms. Manuscript, January
2000. To appear in Combinatorica. 9, 10, 12

[105] T. Hagerup. Personal communication. July, 2002. 49

[106] F. Harary, R. Z. Norman, and D. Cartwright. Structural Models: An Introduction to the Theory of
Directed Graphs. John Wiley, 1965. 11

[107] E. O. Hare, W. R. Hare, and S. T. Hedetniemi. Algorithms for computing the domination number
of the k× n complete grid graph. Congressus Numerantium, 55:81–92, 1986. 12

[108] J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48:798–859, 2001. 9

[109] T. W. Haynes. Domination in graphs: a brief overview. Journal of Combinatorial Mathematics
and Combinatorial Computing, 24:225–237, 1997. 11

[110] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs . Mono-
graphs and textbooks in Pure and Applied Mathematics Vol. 208, Marcel Dekker, 1998. 7, 11,
12

[111] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater (eds.). Domination in Graphs; Advanced Topics .
Monographs and textbooks in Pure and Applied Mathematics Vol. 209, Marcel Dekker, 1998. 11,
168

[112] M. A. Henning. Domination in graphs, a survey. Surveys in graph theory. Congressus Numerantium,
116:139–179, 1996. 11

[113] I. V. Hicks. Branch Decompositions and their Applications. PhD thesis, Rice University, 2000. 155

[114] I. V. Hicks. Planar branch decompositions. Manuscript, 2002. Submitted to Discrete Applied
Mathematics. 155

[115] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan,
and U. Schöning. A deterministic (2 − 2/(k + 1))n algorithm for k-SAT based on local search. To
appear in Theoretical Computer Science, 2001. 3, 91

[116] D. S. Hochbaum, editor. Approximation algorithms for NP-hard problems. Boston, MA: PWS
Publishing Company, 1997. 1, 11, 22

[117] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM , 21(4):549–568,
1974. 5

[118] H. B. Hunt, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns.
NC-approximation schemes for NP– and PSPACE–hard problems for geometric graphs. Journal of
Algorithms , 26:238–274, 1998. 78, 80, 89

[119] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63(4):512–530, 2001. 63, 76, 79, 91, 92, 158

[120] M. S. Jacobson and L. F. Kinch. On the domination number of products of graphs: I. Ars
Combinatorica, 18:33–44, 1984. 12

[121] C. Jin, Q. Chen, and S. Jamin. Inet: internet topology generator. Technical Report Research
Report CSE-TR-433-00, University of Michigan at Ann Arbor, 2000. 138

[122] A. Kanevsky. Finding all minimum-size separating vertex sets in a graph. Networks, 23:533–541,
1993. 110

[123] I. A. Kanj and L. Perkovic. Improved parameterized algorithms for planar dominating set. In
Proceedings 27th MFCS 2002, Springer-Verlag LNCS 2420, pages 399–410, 2002. 12, 106, 154, 155,
156, 157

168 BIBLIOGRAPHY

[124] R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer Computations,
Plenum Press, pages 85–103, 1972. 9

[125] L. L. Kelleher. Domination in Graphs and its Application to Social Network Theory. PhD thesis,
Northeastern University, Boston, 1985. 11

[126] A. Kézdy and P. McGuiness. Sequential and parallel algorithms to find a K5 minor. In Proceedings
3rd ACM-SIAM SODA, pages 345–356, 1992. 156

[127] S. Khuller. Algorithms column: the vertex cover problem. ACM SIGACT News, 33(2):31–33,
2002. 21

[128] T. Kloks. Treewidth: Computations and Approximations. Springer-Verlag LNCS 842, 1994. 94, 95

[129] T. Kloks, C. M. Lee, and J. Liu. New algorithms for k-face cover, k-feedback vertex set, and
k-disjoint cycles on plane and planar graphs. To appear in Proceedings 28th WG, Springer-Verlag
LNCS, Cesky Krumlov, Czech Republic, June 2002. 154, 157

[130] P. Koebe. Kontaktprobleme der konformen Abbildung. Ber. Verh. Saechs. Akad. Leipzig, 88:141–
164, 1936. 78, 79

[131] A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. Hoesel. Treewidth: computational experiments.
Electronic Notes in Discrete Mathematics 8, Elsevier Science Publishers, 2001. 97, 137

[132] D. Kratsch. Algorithms. Chapter 8 in [111]. 12, 13

[133] S.-Y. Kuo and W.K. Fuchs. Efficient spare allocation for reconfigurable arrays. IEEE Design and
Test, 4:24–31, 1987. 9

[134] J. van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer Science, Vol. A: Algo-
rithms and Complexity, pages 525–631. North Holland, 1990. 100

[135] S. Lehnert. Experimental Analysis of a Search Tree Algorithm for Dominating Set. Study work in
preparation, Universität Tübingen, Germany. 2002. 143

[136] N. Lev-Tov and D. Peleg. Exact algorithms and approximation schemes for base station placement
problems. In Proceedings 8th SWAT, Springer-Verlag LNCS 2368, pages 90–99, 2002. 92

[137] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal of Applied
Mathematics, 36(2):177–189, 1979. 65, 92

[138] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM Journal on
Computing, 9(3):615–627, 1980. 66, 91

[139] M. Livingston and Q. Stout. Constant time computation of minimum dominating sets. Congressus
Numerantium, 105:116–128, 1994. 12

[140] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. Journal
of the ACM , 41:960–981, 1994. 12

[141] M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and MaxCut.
Journal of Algorithms, 31:335–354, 1999. 21

[142] E. Malesińska. Graph-Theoretical Models for Frequency Assignment Problems. PhD thesis, Tech-
nische Univerität Berlin, 1997. 10, 78

[143] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics for
unit disk graphs. Networks , 25:59–68, 1995. 89

BIBLIOGRAPHY 169

[144] T. Matsui. Approximation algorithms for maximum independent set problems and fractional col-
oring problems on unit disk graphs. In Proceedings 2nd JCDCG, Springer-Verlag LNCS 1763,
pages 194–200, 2000. 89

[145] K. Mehlhorn and S. Näher. LEDA: A Platform of Combinatorial and Geometric Computing .
Cambridge University Press, Cambridge, England, 1999. 133, 136, 138

[146] Z. Michalewicz and D. B. Fogel. How to solve it: Modern Heuristics. Springer-Verlag, 2000. 1

[147] G. L. Miller, S. H. Teng, and S. A. Vavasis. A unified geometric approach to graph separators. In
Proceedings 32nd IEEE FOCS, pages 538–547, 1991. 78, 84

[148] G. L. Miller, S. H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere packings and
nearest neighbor graphs. Journal of the ACM, 44(1):1–29, 1997. 78, 84

[149] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM Journal
on Discrete Mathematics , 12(1):6–26, 1999. 6

[150] B. Mohar, and C. Thomassen. Graphs on Surfaces. The Johns Hopkins University Press, 2001. 6

[151] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algorithm for the vertex
cover problem. Acta Informatica, 22:115–123, 1985. 9

[152] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995. 1

[153] G. L. Nemhauser and L. E. Trotter. Vertex packing: structural properties and algorithms. Mathe-
matical Programming , 8:232–248, 1975. 20, 21

[154] J. v. Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton Univer-
sity Press, 3rd edition, 1953. 11

[155] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Habilitationsschrift, Universität
Tübingen, Germany. 2002. 3

[156] R. Niedermeier and P. Rossmanith. Upper bounds for vertex cover further improved. In Proceedings
16th STACS, Springer-Verlag LNCS 1563, pages 561–570, 1999. 9, 43

[157] R. Niedermeier and P. Rossmanith. A general method to speed up fixed-parameter algorithms.
Information Processing Letters , 73:125–129, 2000. 19, 39

[158] R. Niedermeier and P. Rossmanith. An efficient fixed parameter algorithm for 3-Hitting Set. Journal
of Discrete Algorithms , 2(1):93–107, 2002. 159

[159] T. Nishizeki and N. Chiba. Planar graphs: theory and applications. Annals of Discrete Mathemat-
ics , volume 32, North-Holland, 1988. 4, 5, 127, 156

[160] A. Pagourtzis, P. Penna, K. Schlude, K. Steinhöfel, D. S. Taylor, and P. Widmayer. Server place-
ments, roman domination, and other dominating set variants. In Proceedings 2nd IFIP TCS (Foun-
dations of Information Technology in the Era of Network and Mobile Computing), Kluwer Academic
Publishers, pages 280–291, 2002. 11, 154

[161] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. 6, 11

[162] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.
Journal of Computer and System Sciences, 43:425–440, 1991. 11, 77, 91

[163] V. T. Paschos. A survey of approximately optimal solutions to some covering and packing problems.
ACM Computing Surveys, 29(2):171–209, 1997. 20

[164] A. Paz and S. Moran. Nondeterministic polynomial optimization problems and their approxima-
tions. Theoretical Computer Science, 15:251–277, 1981. 12

170 BIBLIOGRAPHY

[165] V. Raman. Parameterized complexity. In Proceedings 7th National Seminar on Theoretical Com-
puter Science (Chennai, India), pages I-1–I-18, June 1997. 3

[166] R. C. Read. Prospects for graph theory algorithms. Annals of Discrete Mathematics , 55:201–210,
1993. 13, 120

[167] B. Reed. Finding approximate separators and computing tree-width quickly. In Proceedings 24th
ACM STOC, pages 221–228, 1992. 97

[168] G. Ringel and J. W. T. Youngs. Solution of the Heawood map-coloring problem. Proc. Nat. Acad.
Sci. U.S.A., 60:438–445, 1968. 44

[169] F. S. Roberts. Graph Theory and Its Applications to Problems of Society. SIAM Press, 1978. Third
printing, Odyssey Press, 1993. 11

[170] N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas. Efficiently four-coloring planar
graphs. In Proceedings 28th ACM STOC, pages 571–575, 1996. 20

[171] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of
Algorithms, 7:309–322, 1986. 94

[172] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-decomposition. Journal
of Combinatorial Theory, Series B, 52:153–190, 1991. 96, 155

[173] N. Robertson and P. D. Seymour. Excluding a graph with one crossing. Graph structure theory
(Seattle, WA, 1991), Amer. Math. Soc., Providence, RI, pages 669–675, 1993. 156

[174] J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms, 7(3):425–440,
1986. 91

[175] J. M. Robson. Finding a maximum independent set in time O(2n/4). Technical Report 1251-01,
Université Bordeaux, LaBRI, January 2001. 91

[176] P. D. Seymour and R. Thomas. Graph searching and a minmax theorem for treewidth. Journal of
Combinatorial Theory, Series B, 58:239–257, 1993. 95, 96

[177] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14:217–241, 1994.
155

[178] H. G. Singh and R. P. Pargas. A parallel implementation for the domination number of grid graphs.
Congressus Numerantium, 59:297–312, 1987. 12

[179] D. A. Spielman and S.-H. Teng. Disk packings and planar separators. In Proceedings 12th Annual
ACM Symposium on Computational Geometry (SCG), pages 349–358, 1996. 65

[180] U. Stege and M. R. Fellows. An improved fixed-parameter-tractable algorithm for vertex cover.
Technical Report 318, ETH Zürich, Department of Computer Science, April 1999. 9, 43

[181] J. A. Telle. Complexity of domination-type problems in graphs. Nordic Journal of Computing
1:157–171, 1994. 13, 119

[182] J. A. Telle. Tree-decompositions of small pathwidth. Manuscript, 2002. To appear in Discrete
Applied Mathematics. 154

[183] J. A. Telle and A. Proskurowski. Practical algorithms on partial k-trees with an application to
domination-like problems. In Proceedings 3rd WADS, Springer-Verlag LNCS 709, pages 610–621,
1993. III, 12, 15, 93, 112, 113, 114, 119

[184] J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial k-trees.
SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997. III, 12, 15, 93, 112, 113, 114, 119

BIBLIOGRAPHY 171

[185] W. T. Tutte. Convex representation of graphs. Proc. London Math. Soc., 10(3):304–320, 1960. 79

[186] W. T. Tutte. How to draw a graph. Proc. London Math. Soc., 13(3):743–768, 1963. 79

[187] S. M. Venkatesan. Improved constants for some separator theorems. Journal of Algorithms, 8:572–
578, 1987. 65

[188] K. Weihe. Covering trains by stations or the power of data reduction. In Proceedings 1st ALEX ,
pages 1–8, 1998. http://rtm.science.unitn.it/alex98/proceedings.html. 17

[189] K. Weihe. On the differences between “practical” and “applied” (invited paper). In Proceedings
4th WAE , Springer-Verlag LNCS 1982, pages 1–10, 2000. 17

[190] J. Wu and H. Li. Domination and its applications in ad hoc wireless networks with unidirectional
links. In Proceedings 29th ICPP, IEEE Computer Society online publication, pages 189–200, 2000.
11

Lebens- und Bildungsgang

Name: Jochen Alber
Familienstand: verheiratet (seit 2.8.2002)

28.6.1973 geboren in Göppingen

1980 – 1984 Besuch der Grundschule in Ebersbach an der Fils

1984 – 1993 Besuch des Raichberg-Gymnasiums Ebersbach (RGE)

1991 – 1992 Schülersprecher am RGE

05/1993 Abitur (Note: 1,0)
Leistungskurse: Mathematik und Physik

07/1993 – 10/1994 Zivildienst in der Geschwister-Scholl Jugendherberge in Ulm

10/1994 – 12/1999 Studium der Mathematik mit Nebenfach Informatik
an der Eberhard-Karls-Universität Tübingen

10/1996 Vordiplom in Mathematik, Nebenfach Informatik (Note: 1,0)

07/1997 Studienarbeit (bei Prof. K.-J. Lange) im Fach Informatik (vgl. [13]):
“Lokalitätseigenschaften diskreter raumfüllender Kurven:

Informatikrelevante Ergebnisse”

08/1997 – 08/1998 Auslandsstudium an der University of Washington, Seattle, USA,
im Rahmen des ISM (Internationaler Studiengang Mathematik)

08/1998 – 10/1998 Beschäftigung bei IBM Global Services in Böblingen im Projekt:
“Genetische Algorithmen zur Optimierung von Laserschweißprozessen”

07/1999 Diplomarbeit (bei Prof. R. Nagel) im Fach Mathematik (vgl. [3]):
“Von der Struktur implementierter Halbgruppen

mit Anwendungen in der Stabilitätstheorie”

12/1999 Diplom in Mathematik, Nebenfach Informatik
(Note: “mit Auszeichnung”)

seit 02/2000 Promotion an der Fakultät für Informatik, Universität Tübingen,
Lehrstuhl für Theoretische Informatik/Formale Sprachen
(Prof. K.-J. Lange)

Gutachter für: Journal of Computer and System Sciences,
Information Processing Letters,
STACS 2002, MFCS 2002, WG 2002, SODA 2003

Publikationen: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

