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Abstract

Schelling games are a game-theoretic formulation of Schelling’s model of segregation,
which aims at explaining some of the dynamics of individual behavior leading to resi-
dential segregation. In the simplest formulation of Schelling games, agents of two types
are to be positioned each on its own vertex of a given graph, called topology. Each
agent aims at maximizing the fraction of agents of its type in its occupied neighborhood.
Agents swap positions or jump to free vertices if doing so is profitable. We say that an
assignment is an equilibrium if no two agents want to swap positions (swap-equilibrium)
or no agent wants to jump to a free vertex (jump-equilibrium).
The contribution of this thesis is threefold. First, we show that deciding the existence of
equilibria in our model is NP-hard, thereby extending results by Agarwal et al. [Aga+20]
and Elkind et al. [Elk+19]. Second, we study the robustness of equilibria with regard to
changes to the topology and define a measure for the robustness of an equilibrium as the
minimum number of edges that need to be deleted to make an equilibrium unstable. We
study the existence of equilibria with a certain robustness and provide tight lower and
upper bounds on the robustness of equilibria for topologies from various graph classes.
We find that the robustness of equilibria heavily depends on the underlying topology.
Third, we study the existence of equilibria in so-called multimodal Schelling games, that
are, Schelling games on multilayer graphs. A multilayer graph is a graph with multiple
edge sets on a fixed set of vertices. An assignment is an equilibrium in a multimodal
game if it is an equilibrium on every one of the layers. We find that swap-equilibria may
fail to exist even on very simple multilayer graphs.

Zusammenfassung

Schelling Games sind ein spieltheoretisches Modell von Schellings Segregationsmodell,
welches versucht, das Entstehen von Segregation durch die Modellierung von individuel-
lem Verhalten zu erklären. In der einfachsten Form von Schelling Games werden Agenten
von zwei Typen jeweils auf einem eigenen Knoten eines gegebenen Graphen, der Topo-
logie, positioniert. Jeder Agent möchte den Anteil der Agenten seines Typs unter den
benachbarten Agenten maximieren. Agenten tauschen ihre Positionen oder springen zu
freien Knoten, wenn dies für sie profitabel ist. Eine Zuordnung der Agenten zu den
Knoten ist ein Equilibrium, wenn keine zwei Agenten Positionen tauschen wollen (Swap-
Equilibrium) oder kein Agent zu einem freien Knoten springen will (Jump-Equilibrium).
Der Beitrag dieser Arbeit ist dreiteilig. Erstens beweisen wir, dass es NP-schwer ist, die
Existenz eines Jump- oder Swap-Equilibriums in unserem Modell zu entscheiden und
erweitern damit Ergebnisse von Agarwal u. a. [Aga+20] und Elkind u. a. [Elk+19]. Zwei-
tens untersuchen wir die Robustheit von Equilibria in Bezug auf Änderungen in der
Topologie und definieren ein Maß für die Robustheit eines Equilibriums als die minimale
Anzahl von Kanten, die gelöscht werden müssen, um ein Equilibrium instabil zu machen.
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Wir untersuchen die Existenz von Equilibria mit einer bestimmten Robustheit und zei-
gen untere und obere Schranken für die Robustheit von Equilibria auf Topologien aus
verschiedenen Graphklassen. Wir stellen fest, dass die Robustheit von Equilibria stark
von der zugrundeliegenden Topologie abhängt. Drittens untersuchen wir die Existenz von
Equilibria in sogenannten multimodalen Schelling Games, das heißt Schelling Games auf
Multilayer-Graphen. Ein Multilayer-Graph ist ein Graph mit einer festen Knotenmenge
und mehreren Kantenmengen. Eine Zuordnung ist ein Equilibrium in einem multimo-
dalen Spiel, wenn sie ein Equilibrium auf jedem der Layer ist. Wir geben Beispiele für
einfache Instanzen von Multilayer-Graphen, die kein Swap-Equilibrium besitzen.
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Chapter 1

Introduction

Residential segregation, that is, the occurrence of large separated and homogeneous
areas inhabited by residents from the same social group has been of major interest in
sociology (see, e.g., [Cha03; MD88]). A real-world example is depicted in Figure 1.1.
Segregation has been observed to be problematic, as it can, for example, lead to inequal
access to health-care resources [WC01; WHW12]. While the reasons for the emergence
of segregation patterns are likely complex and multi-causal in reality, Thomas Schelling
proposed a deliberately simplistic random process [Sch69; Sch71] that models individual
behavior and thereby aims at explaining some of the dynamics leading to residential
segregation.

Schelling’s Model of Segregation. In Schelling’s model, we consider agents of two
types that are to be positioned on the vertices of a given graph (called topology). Each
vertex v can be occupied by at most one agent and is called unoccupied if no agent is
positioned on v. Initially, each agent is placed uniformly at random on an individual
vertex of the topology (in the original model, usually a grid graph). We say an agent
is happy if at least a τ -fraction of its occupied neighborhood is occupied by agents of
its type for some given tolerance parameter τ ∈ (0, 1]. Happy agents do not change
location, while, depending on the model, unhappy agents either randomly swap vertices
with other unhappy agents or randomly jump to empty vertices. A surprising observation
made by Schelling [Sch69; Sch71] is that even for relatively tolerant agents with τ ∼ 1

3 ,
segregation patterns are likely to occur. This shows that individual (local) preferences
of moderately tolerant agents can lead to the emergence of global segregation patterns.
Over the last 50 years, Schelling’s model has been thoroughly studied both from an
empirical (see, e.g., [CF08; CT18]) and a theoretical (see, e.g., [BEL14; BMR14; Bra+12;
Imm+17]) perspective in various disciplines including computer science, economics, and
sociology. Most works focused on explaining under which circumstances and how quickly
segregation patterns occur. Moreover, extensions and variants of the original model have
been considered, see for example the works by Benard and Willer [BW07] and Mantzaris
[Man20] that incorporate financial aspects.
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10 CHAPTER 1. INTRODUCTION

Figure 1.1: Residential Segregation in Los Angeles. Every dot represents a citizen and
is colored by ethnicity. Taken from the Racial Dot Map [Cab13] (created using 2010 US
Census data).

Game-Theoretic Formulations of Schelling’s Model. As described above, in
Schelling’s model, the movement of unhappy agents is random. This, however, seems
unrealistic, as real-world agents would realistically only change their location if doing
so is profitable. Recently, motivated by the assumption that agents behave strategi-
cally, game-theoretic formulations of Schelling’s model (so-called Schelling games) have
attracted considerable attention [Aga+20; Bil+20; CLM18; Ech+19; Elk+19; KKV20;
KKV21]. In these models, agents have a utility that depends on the composition of
their neighborhood, and they swap positions or jump to unoccupied vertices if doing so
increases their utility (we call such a jump or swap profitable). However, there is no
unified formalization of the agents’ utilities in the different game-theoretic models. For
example, in the first game-theoretic works by Chauhan, Lenzner, and Molitor [CLM18]
and Echzell et al. [Ech+19], the utility of an agent a depends on the minimum of the
threshold parameter τ and the fraction of agents of a’s type in the occupied neighbor-
hood of a. That is, a only aims to maximize the fraction of agents of the same type in a’s
neighborhood up to τ . Additionally, in the model by Chauhan, Lenzner, and Molitor
[CLM18], each agent has a favorite vertex and wants to minimize its distance to this
vertex (in addition to maximizing the fraction of agents of the same type). Elkind et al.
[Elk+19] introduced a simpler model where the utility of an agent only depends on the
fraction of agents of the same type in the occupied neighborhood (i.e., τ = 1 and the
agents do not have favorite vertices). In this model, there are strategic agents that aim
to maximize their utility and stubborn agents that are positioned on a fixed vertex which
they never leave. In this work, we consider a simpler variant of this model in that we
assume that all agents behave strategically (i.e., there are no stubborn agents).



11

i

j

(a) The depicted assignment is not a swap-
equilibrium, as agents i and j can both in-
crease their utility by swapping. The re-
sulting assignment is a swap-equilibrium.

i

w

(b) The depicted assignment is not a jump-
equilibrium, as agent i can increase its
utility by jumping to the unoccupied ver-
tex w. The resulting assignment is a jump-
equilibrium.

Figure 1.2: Examples for assignments in our game-theoretic model where a profitable
jump or swap exists. The color of a vertex represents the type of the agent occupying
this vertex, unoccupied vertices are uncolored. Recall that the utility of an agent is
given by the fraction of agents of the same type in its occupied neighborhood.

Notions of Stability. As we want to model the individual behavior of residents, a
natural way to define stability in these models is to consider, given a placement of the
agents, if there exists an agent that has an incentive to jump to an unoccupied vertex
or a pair of agents that want to swap positions. The central game-theoretic solution
concept of (Nash) equilibria captures this notion and has been applied to these models
[Aga+20; Bil+20; CLM18; Ech+19; Elk+19]. We say that an assignment of the agents to
vertices is an equilibrium if there is no profitable swap for two agents (swap-equilibrium)
or no profitable jump to an unoccupied vertex (jump-equilibrium). We give examples in
Figures 1.2a and 1.2b. Investigating when these equilibria are guaranteed to exist has
been one of the main focuses in previous work (see Section 1.1). Since the existence of
an equilibrium clearly depends on the topology, most works investigate the influence of
the structure of the topology thereon. While we also follow this approach in this work,
we argue for a more fine-grained view on equilibria in Schelling games: As Schelling’s
model was originally designed for modeling segregation in an urban setting, edges might
resemble roads or bus routes that can be unavailable at certain times (due to roadworks
or bus timetables). Hence, viewing the topology as static seems unrealistic. In this
setting, we might thus be interested in finding equilibria that remain stable when the
underlying topology is subject to a certain number of changes. In this thesis, we cap-
ture this perspective as the robustness of an equilibrium (with regard to edge deletions),
and study the existence of equilibria from this perspective. We find that the robust-
ness of equilibria in Schelling games heavily depends on the structure of the underlying
topology. An example for this is given in Figure 1.3, where we provide a topology with
a swap-equilibrium that can be made unstable by deleting a single edge, and another
topology with a swap-equilibrium that remains stable after deleting any arbitrary set of
edges.
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(a) After deleting the edge {u,w}, agents i
and j want to swap.

(b) A swap-equilibrium that remains robust
after deleting any set of edges.

Figure 1.3: A swap-equilibrium that can be made unstable by deleting a single edge and
a swap-equilibrium that remains robust after deleting any set of edges.

Furthermore, while urban networks can be naturally modeled as simple graphs, one
might be interested in distinguishing different kinds of connections in such networks. For
example, in a city, there are usually both public (e.g., buses or trains) and private (e.g.,
cars) means of transportation. Moreover, in reality, residents often only have access to
(or choose to use) some of the available transport systems. Thus, if we do not distinguish
these different kinds of connections, then an agent could be adjacent to other agents even
if she does not use the type of connection connecting them. Hence, we may want to find
placements that are stable with regard to every one of the different systems. One way
to model such networks with different kinds of connections are multilayer graphs. A
multilayer graph is a graph with multiple sets of edges (representing the different kinds
of connections) over a fixed vertex set. A layer of a multilayer graph is the simple graph
given by the vertex set and one of the edge sets. We study Schelling games on multilayer
graphs, which we call multimodal Schelling games. As motivated before, we say that an
assignment is an equilibrium in a multimodal Schelling game if it is an equilibrium on
every one of the layers. We study the existence of such multimodal equilibria and show
that swap-equilibria in multimodal Schelling games may fail to exist even on very simple
multilayer graphs.

1.1 Related Work

As mentioned above, many game-theoretic formulations of Schelling’s model have been
considered [Aga+20; Bil+20; CLM18; Ech+19; Elk+19; KKV20; KKV21]. In the fol-
lowing, we restrict our attention to the works by Agarwal et al. [Aga+20], Bilò et al.
[Bil+20], and Elkind et al. [Elk+19], as the models considered therein are identical to
the model in this work, with the exception of the existence of stubborn agents (all agents
in our model are strategic).
All three works focus on the following aspects: existence and complexity of computing
equilibria, and social welfare and price of anarchy and stability. We first review the
results in the area most closely related to this work, which is the existence and com-
putational complexity of equilibria. Elkind et al. [Elk+19] consider jump-equilibria and
show that a jump-equilibrium is guaranteed to exist on stars and graphs with maximum
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degree of at most 2. However, on the negative side, they show that even on a tree a
jump-equilibrium may fail to exist. Furthermore, they study the computational com-
plexity and prove that it is NP-hard to decide whether a given Schelling game admits a
jump-equilibrium. Importantly, their model allows for stubborn agents that remain fixed
on a given position and their results do not imply hardness in the absence of stubborn
agents (which is the model considered in this work). For swap-equilibria, Agarwal et al.
[Aga+20] show that in a Schelling game on a tree a swap-equilibrium may also fail to ex-
ist. Moreover, they show the NP-hardness of deciding whether a Schelling-game admits
a swap-equilibrium, however again the reduction does not imply NP-hardness without
stubborn agents. We prove that finding jump- and swap-equilibria remains NP-hard in
the absence of stubborn agents in Chapter 3. Bilò et al. [Bil+20] extend the analysis
of swap-equilibria existence and prove that a swap-equilibrium always exists on paths,
almost regular graphs, and 4- and 8-grids. Furthermore, they investigate the impact of
restricting the game to local swaps, where only neighboring agents are allowed to swap
positions. In contrast to general swap-equilibria, when restricted to local swaps a local
swap-equilibrium is guaranteed to exist on a tree.
As mentioned above, Agarwal et al. [Aga+20] and Bilò et al. [Bil+20] additionally study
the social welfare and price of anarchy and stability of assignments. The social welfare
of an assignment is the sum of the utilities of all agents. The price of anarchy is given
by the ratio between the optimal social welfare of any assignment and the social welfare
in the worst equilibrium assignment. While the results therein are not directly relevant
to this thesis, Bilò et al. [Bil+20] use a similar approach in their analysis, as they also
consider games on topologies from different graph classes.

1.2 Our Contribution

The main contributions of this work can be divided as follows: In the first, more tech-
nical, part of this thesis, we prove that deciding jump- and swap-equilibria existence
remains NP-hard in the absence of stubborn agents. We later use these more general
results to prove hardness results for robustness and multimodal Schelling games. In the
second, more conceptual, part of this thesis, we introduce the notion of robustness and
analyze the existence of equilibria from this perspective. Moreover, we study multimodal
Schelling games on multilayer graphs. In the analysis of both of these aspects, we study
the impact of the underlying topology.

Complexity of Finding Equilibria. We generalize the results by Elkind et al.
[Elk+19] and Agarwal et al. [Aga+20] on the NP-hardness of deciding jump- and swap-
equilibria existence to our simpler model (i.e., to the case without stubborn agents; see
Chapter 3). This notably answers an open question posed by Elkind et al. [Elk+19],
asking whether deciding jump-equilibrium existence remains NP-hard in this case.

Robustness. As mentioned before, with the robustness of an equilibrium, we introduce
a new perspective for the analysis of equilibria in Schelling games in Chapter 4. We say
that an equilibrium has robustness r ∈ N0 if it remains stable upon the deletion of any
set of edges of size at most r but not under the deletion of r + 1 edges. We study the
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existence of equilibria with a given robustness. In addition to proving the (non-)existence
of equilibria with a certain robustness, we also consider the robustness-ratio, which is
given by the fraction between the least and most robust equilibrium on a topology. The
robustness-ratio quantifies how the robustness of different equilibria in a fixed Schelling
game may vary. From a practical perspective, a large robustness-ratio might justify
putting more effort into finding a more robust equilibrium. We mostly restrict our
analysis to swap-equilibria, but also shortly apply robustness to local swap-equilibria
(where only adjacent agents are allowed to swap) and jump-equilibria.
In the analysis of the existence of swap-equilibria with a certain robustness, we follow
the approach from most previous works and investigate the influence of the structure
of the topology (e.g., [Bil+20; Elk+19]), as the robustness of equilibria clearly depends
on the given topology. That is, we show upper and lower bounds on the robustness of
swap-equilibria for topologies from various graph classes (see Section 4.1), summarized
in Table 1.1. We analyze cliques and cycles, where we find that any swap-equilibrium
can be made unstable by deleting only one edge. Turning to paths, we prove that on
any (large enough) path, there exists a swap-equilibrium that can be made unstable
by deleting a single edge and a swap-equilibrium that remains stable upon the deletion
of any set of edges. This shows that the robustness-ratio of a Schelling game can be
arbitrarily large. Moreover, for all graph classes mentioned above, we show that on
any game on a graph from these classes, swap-equilibria with robustness matching both
the upper and lower bounds are guaranteed to exist. We furthermore investigate grids
(one of the graph classes most often considered in Schelling’s original model), where we
prove an upper bound for the robustness of a swap-equilibrium on a grid, and provide
an infinite subclass of Schelling games on grids with robustness-ratio larger than one.
In order to find a graph class where every swap-equilibrium has robustness larger than
zero, we define α-star-constellation graphs. These graphs (formally defined in Chapter 2)
consist of stars, where the central vertices of the stars can be arbitrarily connected such
that it holds that every central vertex of a star is adjacent to at least α more degree-one
vertices than other central vertices. We prove that every swap-equilibrium on an α-star-
constellation graph has at least robustness α and find a subclass of α-star-constellation
graphs where a swap-equilibrium is guaranteed to exist. Lastly, we apply robustness
to local swap-equilibria (Section 4.1.3) and jump-equilibria (Section 4.2) and observe
some differences between the different settings. We show that on a connected topology,
contrary to swap-equilibria, the robustness of jump-equilibria is upper bounded by the
maximum degree of the topology.
Our results for paths show that the robustness-ratio between the robustness of the most
and least robust swap-equilibrium can be arbitrarily large. As more robust equilibria
might be desirable in many real-world settings, we investigate computational aspects of
robustness in Section 4.3. Here, we find both a positive and a negative result. On the
positive side, we provide an efficient algorithm for deciding whether a given swap- or
jump-equilibrium has at least robustness r for a given integer r ∈ N0. However, on the
negative side, we show that deciding whether there exists a swap- or jump-equilibrium
with at least a given robustness is NP-complete, using the general hardness results from
Chapter 3.
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Table 1.1: Overview of robustness bounds for swap-equilibria for various graph classes.
For each considered class, there exists a Schelling game on a graph from this class with
a swap-equilibrium whose robustness matches the depicted lower and upper bound. For
bounds marked with †, on a graph from this class an equilibrium with this robustness
is guaranteed to exist in every Schelling game. For the bound marked with ‡, this only
holds if we have at least four agents of one of the types. Note that we add one to both
the numerator and the denominator for the robustness-ratio, since an equilibrium can
have a robustness of zero (for the formal definitions, see Chapter 4).

Lower Bound Upper Bound Robustness-Ratio

Cliques (Prop. 4.7) 0† 0† = 1

Cycles (Prop. 4.8) 0† 0† = 1

Grids 0 (Prop. 4.13) 1 (Thm. 4.11) ∈ [1, 2]

Paths 0‡ (Prop. 4.10) |E(G)|† (Prop. 4.9) = |E(G)|+ 1

α-star-constellation graphs α (Thm. 4.14) |E(G)| (Prop. 4.18) ∈ [1, |E(G)|+1
α+1

]

Multimodality. We introduce multimodal Schelling games in Chapter 5. We observe
that our results from Chapter 3 also imply NP-hardness for deciding the existence of
multimodal jump- and swap-equilibria (see Section 5.2). Furthermore, we analyze the
existence of multimodal swap-equilibria on some simple graphs in Section 5.1. Here, we
find that a multimodal swap-equilibrium may fail to exist even when all layers are iso-
morphic (i.e., structurally identical). This indicates that only considering the structure
of the layers independently seems to be insufficient for analyzing equilibrium existence
in multimodal Schelling games. Thus, we define an additional property of a multimodal
graph, which captures the correspondence between the vertices of the layers. By incor-
porating this property, we are then able to define a subclass of multilayer graphs where
a multimodal swap-equilibrium is guaranteed to exist.





Chapter 2

Preliminaries

Let N be the set of positive integers and N0 the set of non-negative integers. For two
integers i < j ∈ N0, we denote by [i, j] the set {i, i + 1, . . . , j − 1, j} and by [i] the set
[1, i].

Graph theory

Let G = (V,E) denote an undirected graph, where V denotes the set of vertices
and E ⊆ {{v, w} | v, w ∈ V, v 6= w} denotes the set of edges. For a graph G, we also
write V (G) and E(G) to denote the set of vertices and the set of edges of G, respectively.

We denote by:

NG(v) The neighborhood of v, formally, NG(v) := {u ∈ V | {u, v} ∈ E(G)}.

degG(v) The degree of v, formally, degG(v) := |NG(v)|.

∆(G) The maximum degree of G, formally, ∆(G) := max
v∈V
{degG(v)}.

G[V ′] The induced subgraph of G on V ′ ⊆ V . Formally, G[V ′] := (V ′, {{v, w} ∈
E(G) | v, w ∈ V ′}).

G− S The graph obtained from G by deleting the edges S ⊆ E(G), formally, G−S :=
(V (G), E(G) \ S).

Schelling Games

A Schelling game I consists of a set N = [n] of n ≥ 4 agents partitioned into two disjoint
types T1 and T2, and an undirected graph G = (V,E) with |V | ≥ n, called the topology.
The strategy of agent i ∈ N consists of picking some position vi ∈ V (G) with vi 6= vj
for i, j ∈ N and i 6= j. The assignment vector v = (v1, . . . , vn) defines the positions of
all agents. A vertex v ∈ V (G) is unoccupied if v 6= vi for all i ∈ N . In the following,
we refer to an agent i and its position vi ∈ V (G) interchangeably. For example, we say
agent i has an edge to an agent j, if {vi, vj} ∈ E(G). For some agent i ∈ Tl, we call all

17
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other agents of the same type Fi = Tl\{i} friends of i and define the set of neighbors as
Ni(v) := {j 6= i | {vi, vj} ∈ E}. We define ai(v) := |Ni(v)∩Fi| as the number of friends
in the neighborhood of agent i and bi(v) := |Ni(v) \Fi| as the number of neighbors of a
different type.
Given some assignment v, the utility of agent i on topology G is:

uGi (v) :=

{
0 if Ni(v) = ∅,
ai(v)
|Ni(v)| otherwise.

If the topology is clear from the context, then we omit the superscript G. Observe that
if |Tj | = 1, then the only agent i ∈ Tj has no friends and ui(v) = 0 on any vertex. We
therefore assume |Tj | ≥ 2 for all j ∈ {1, 2}.
Given some assignment v, agent i ∈ N and an unoccupied vertex v, we denote by
vi→v = (vi→v

1 , . . . , vi→v
n ) the assignment obtained from v where i jumps to v: vi→v

i = v
and vi→v

j = vj for all j ∈ N \ {i}. Note that vi is now unoccupied in vi→v. We call a
jump local if vi is a neighbor of v. Agent i jumps to v if and only if the jump is profitable,
that is, it holds that ui

(
vi→v

)
> ui(v). An assignment v is a (local) Nash equilibrium

if no profitable (local) jump exists. An example is given in Figure 2.2. We refer to Nash
equilibria as jump-equilibria to differentiate from another equilibrium concept defined
below. Given a game I, let JE(I) and LJE(I) denote the sets of jump-equilibria and
local jump-equilibria for I. Note that if n = |V |, every assignment is a jump-equilibrium
since no unoccupied vertex exists and no jump is possible. We therefore assume n < |V |
in the analysis of jump-equilibria.
For two agents i, j ∈ N and some assignment v, we define vi↔j = (vi↔v

1 , . . . , vi↔v
n ) as

the assignment that is obtained by swapping the vertices of i and j. That is, vi↔j
i = vj ,

vi↔j
j = vi, and vi↔j

k = vk for all k ∈ N \ {i, j}. A swap is local if i and j are neighbors.

Agents i and j swap their positions if and only if the swap is profitable: ui
(
vi↔j

)
> ui(v)

and uj
(
vi↔j

)
> uj(v). We call v a (local) swap-equilibrium if no (local) profitable swap

exists. See Figure 2.1 for an example. We denote the sets of swap-equilibria and local
swap-equilibria for a game I by SE(I) and LSE(I), respectively. Note that unoccupied
vertices cannot be involved in a swap and do not contribute to the utility of agents.
Hence, for the analysis of swap-equilibria, we assume that all vertices are occupied,
formally n = |V |.
For a l-modal Schelling game, we consider a multilayer graph G = (V, {E1, . . . El}), that
is, we consider l ≥ 2 topologies with edge sets E1, . . . , El on a fixed set V of vertices. We
define Gj = (V,Ej) for some j ∈ {1, . . . , l}. Since the set of vertices remains fixed for all
topologies, an assignment v defines the positions on all graphs. For some Gj , the induced
game is the Schelling game on topology Gj . An assignment v is called a multimodal
(local) jump- or swap-equilibrium, if v is an equilibrium in all induced games on Gj for
all j ∈ {1, . . . l}.
Finally, we call equilibrium assignments stable and refer to non-equilibrium assignments
as unstable.
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i

j

Figure 2.1: Schelling game with |T1| = 8 and |T2| = 7. Agents from T1 are drawn in blue
and agents from T2 in red. Let v be the depicted assignment. It holds that ui(v) = 0
and uj(v) = 1

2 . Thus, swapping i and j is profitable, as ui(v
i↔j) = 1

2 > 0 = ui(v)
and ui(v

i↔j) = 1 > 1
2 = uj(v). Hence, v is not a swap-equilibrium, as i and j have a

profitable swap. However, the assignment resulting from this swap is a swap-equilibrium.

w
i

Figure 2.2: Schelling game with |T1| = |T2| = 7. Let v be the depicted assignment. In v,
the vertex w is the only unoccupied vertex. It holds that ui(v) = 0 and ui(v

i→w) = 1.
Thus, v is not a jump-equilibrium, as i has a profitable jump. The assignment resulting
from this jump is a jump-equilibrium.

Graph Classes

Finally, we define the following graph classes which will play a prominent role in our
analysis of the robustness of equilibria.

Path. A path of length n is a graph G = (V,E) with V = {v1, . . . vn} and E =
{{vi, vi+1} | i ∈ [n− 1]}.

Cycle. A cycle of length n is a graph G = (V,E) with V = {v1, . . . vn} and E =
{{vi, vi+1} | i ∈ [n− 1]} ∪ {vn, v1}.

Clique. We call a graph G = (V,E) with n vertices where every pair of vertices is
connected by an edge a clique of size n. Formally, V = {v1, . . . vn} and E = {{v, w} |
v, w ∈ V, v 6= w}.

Grid. For x, y ≥ 2, we define the (x × y)-grid G = (V,E) as the graph formed by a
lattice with x rows and y columns. That is, V = {(a, b) ∈ N × N | a ≤ x, b ≤ y} and
E = {{(a, b), (c, d)} | |a− c|+ |b− d| = 1}.

Star. An x-star with x ∈ N is a graph G = (V,E) with V = {v0, . . . , vx} and E =
{{v0, vi} | i ∈ [x]}. The vertex v0 is called the central vertex of the star.
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Figure 2.3: An example for a 1-star-constellation graph.

Star-constellation graph. We say a graph G = (V,E) without isolated vertices is an
α-star-constellation graph1 for some α ∈ N0, if every vertex with degree more than one
is adjacent to at least α more degree-one vertices than vertices of degree at least two.
Formally, it holds for all v ∈ V with degG(v) > 1 that |{w ∈ NG(v) | degG(w) = 1}| ≥
|{w ∈ NG(v) | degG(w) > 1}|+α. That is, G consists of stars, where the central vertices
of the stars can be connected by edges such that every central vertex is adjacent to at
least α more degree-one vertices than other central vertices. The graph in Figure 2.1 is
an example for a 2-star-constellation graph, and a 1-star-constellation graph is depicted
in Figure 2.3.

1A graph from this class consist of (connected) stars that form a constellation of stars, giving it
its name.



Chapter 3

NP-Hardness of Equilibria
Existence

In this chapter, we investigate the computational complexity of deciding the existence
of jump- or swap-equilibria. Elkind et al. [Elk+19] and Agarwal et al. [Aga+20] proved
that deciding jump- and swap-equilibria existence is NP-hard in a Schelling game with
stubborn and strategic agents. A stubborn agent is positioned on a fixed vertex which it
never leaves (such agents do not exist in our model). By “simulating” stubborn agents,
we show that both problems remain NP-hard in the absence of stubborn agents.

3.1 Swap-Equilibria

First, we investigate the computational complexity of deciding whether a Schelling game
admits a swap-equilibrium. Agarwal et al. [Aga+20] showed that it is NP-hard to decide
whether a Schelling game with stubborn agents admits a swap-equilibrium. However,
their result does not imply NP-hardness for the case where all agents are strategic, which
is the model considered in this work. In order to prove the NP-hardness for this case,
we reduce SWAP-EQ-STUB to SWAP-EQ. The decision problems are defined below.
We first define the decision problem with stubborn agents which is NP-hard by Agarwal
et al. [Aga+20].

Swap-Equilibrium Existence with stubborn agents (SWAP-EQ-STUB)

Input: A connected topology G, a set of agents [|V (G)|] = N = R∪̇S parti-
tioned into types T1 and T2, and a set of vertices VS = {si ∈ V (G) | i ∈
S}.

Question: Does the Schelling game on G with types T1 and T2, strategic agents
from R, and stubborn agents i ∈ S on si ∈ VS admit a swap-
equilibrium?

The decision problem for Schelling games without stubborn agents is almost identical,
the only difference is that we do not partition the agents into R and S, and we do not
have a set VS of fixed positions for the stubborn agents, since all agents are strategic.

21
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Swap-Equilibrium Existence (SWAP-EQ)

Input: A topology G and a set of agents [|V (G)|] = N partitioned into types
T1 and T2.

Question: Does the Schelling game on G with types T1 and T2 admit a swap-
equilibrium?

In our reduction, we reduce from a slightly restricted version of SWAP-EQ-STUB as
defined in the following corollary. The NP-hardness of this version follows directly from
the reduction by Agarwal et al. [Aga+20].

Corollary 3.1. SWAP-EQ-STUB remains NP-hard if the following two properties
hold.

1. For every vertex v /∈ VS not occupied by a stubborn agent, there exist two adjacent
vertices si, si ∈ VS occupied by stubborn agents i ∈ T1 and j ∈ T2.

2. There are at least 5 strategic agents and 3 stubborn agents of each type.

Proof. The corollary follows directly from the reduction by Agarwal et al. [Aga+20],
since, in their reduction, all constructed instances satisfy both properties. To verify that
these properties hold, we give a short description of their construction below.
The reduction is from Clique. An instance of Clique consists of a connected graph
H = (X,Y ) and an integer λ. Without loss of generality, they assume that λ > 5.
Given an instance of Clique, they construct a Schelling game with agents N = R∪̇S
partitioned into types T1 and T2 on a topology G. R contains λ strategic agents of
type T1 and |X| + 5 strategic agents of type T2. Note that we thus have at least five
strategic agents from each type. The stubborn agents will be defined together with
the topology.
The graph G consists of three subgraphs G1, G2 and G3, which are connected by single
edges. G1 is an extended copy of the given graph H with added degree-one vertices Wv

for every v ∈ X. The vertices in Wv are occupied by stubborn agents from both types.
The subgraph G2 is a complete bipartite graph, where one of the partitions is fully
occupied by stubborn agents from both types. G3 is constructed by adding degree-one
vertices to a given tree T . For every vertex v ∈ V (T ), at least ten vertices are added,
half of which are occupied by stubborn agents from T1 and the other half are occupied
by stubborn agents from T2. Thus, we have (more than) three stubborn agents of each
type. Furthermore, it is easy to see that every vertex not occupied by a stubborn agent
is adjacent to at least one stubborn agent from each type.

Idea behind our Reduction. Before giving the full proof, we sketch the idea behind
our reduction. Given an instance of SWAP-EQ-STUB on a topology G′, we construct
a Schelling game that simulates the given game without stubborn agents on a topol-
ogy G. All stubborn agents are simulated by strategic agents in the constructed game.
The topology G of the constructed instance is an extended copy of the given G′ (see Fig-
ure 3.1). Moreover, we replace each stubborn agent by a strategic agent and add further
strategic agents. In the construction, we ensure that if there exists a swap-equilibrium v′

in the given game, then v′ can be extended to a swap-equilibrium in the constructed
game by replacing each stubborn agent with a strategic agent of the same type and filling
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empty vertices with further strategic agents. One particular challenge here is to ensure
that the strategic agents that replace stubborn agents do not have a profitable swap.
For this, recall that by Corollary 3.1, we assume that in G′, every vertex not occupied
by a stubborn agent in v′ is adjacent to at least one stubborn agent of each type. Thus,
in v′ each strategic agent i is always adjacent to at least one friend and has utility:

uG
′

i (v′) ≥ 1

∆(G′)
.

Conversely, by swapping with agent i, an agent j of the other type can get utility at
most

uG
′

j (v′
i↔j

) ≤ ∆(G′)− 1

∆(G′)
.

Our idea is now to “boost” the utility of a strategic agent j that replaces a stubborn
agent in v by adding enough degree-one neighbors only adjacent to vj in G, which we
fill with agents of j’s type when extending v′ to v such that

uGj (v) ≥ ∆(G′)− 1

∆(G′)
≥ uGj (vi↔j).

Additionally, we ensure that if the constructed game admits a swap-equilibrium v in
the constructed game, then v restricted to V (G′), where some (strategic) agents are
replaced by the designated stubborn agents of the same type, is a swap-equilibrium in
the given game. The neighborhoods of all vertices in V (G′) \ VS′ are the same in G
and G′ and thus every swap that is profitable in the assignment in the given game would
also be profitable in v. So the remaining challenge here is to design G in such a way
that the vertices occupied by stubborn agents of some type in the input game have to be
occupied by agents of the same type in every swap-equilibrium in the constructed game.
We achieve this by introducing an asymmetry between the types in the construction.

Theorem 3.2. SWAP-EQ is NP-complete.

Proof. We first observe that SWAP-EQ is in NP: To verify that an assignment v is
a swap-equilibrium, we check if any pair of agents wants to swap by calculating their
utilities before and after swapping.
For NP-hardness, we reduce from SWAP-EQ-STUB. An instance of SWAP-EQ-
STUB consists of a connected topology G′, a set of agents [|V (G′)|] = N ′ = R′ ∪ S′
partitioned into types T ′1, T

′
2, and a set of vertices VS′ = {vi ∈ V (G′) | i ∈ S′}. The

agents in R′ are strategic and the agents from S′ are stubborn agents, with stubborn
agent i ∈ S′ occupying si ∈ VS′ in any assignment. By Corollary 3.1, we can as-
sume without loss of generality that there are at least 5 strategic agents and at least
3 stubborn agents of each type in the input game. Furthermore, we assume that for
every vertex v /∈ VS not occupied by a stubborn agent, there exist two adjacent vertices
si, sj ∈ VS occupied by stubborn agents i ∈ T1 and j ∈ T2. Denote the sets of vertices
occupied by stubborn agents from T ′1 and T ′2 as VS′

1
and VS′

2
, respectively. We construct

an instance of SWAP-EQ consisting of a topology G = (V,E) and types T1 and T2 as
follows.
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G′
p = |T2| − 2

VS′
1

. . .. . .X1
|V (G)|2

VS′
2

. . .. . .

A B

Figure 3.1: The constructed topology G. Modifications made to the given graph G′ are
colored light blue. Note that the vertices in VS′

1
∪X1 and VS′

2
each form a clique.

• The graphG (sketched in Figure 3.1) is a modified copy of the givenG′ and contains
all vertices and edges from G′. Additionally, we add three sets of vertices M1, X1,
and M2 as specified below. That is, V = V (G′) ∪ M1 ∪ X1 ∪ M2. For every
vertex v ∈ VS′

2
, we add |V (G′)|2 degree-one vertices only adjacent to v to M2.

We connect all vertices in VS′
2

such that they form a clique by adding the edges
E2 = {{v, w} | v, w ∈ VS′

2
} to G.

Let q := ∆(G′) + |V (G′)|2 + |VS′
2
|. In order to achieve that |VS′

1
∪X1| = q · (|T ′2|+

|M2|+∆(G))+1 =: s (we use this property to introduce the mentioned asymmetry
between the two types), let X1 be a set of s − |VS′

1
| vertices. We add the edges

E1 = {{v, w} | v, w ∈ VS′
1
∪X1} such that the vertices in VS′

1
∪X1 form a clique.

Let p := |T ′2| + |M2| − 2 > ∆(G′)2 (this choice of p is important to ensure that
vertices in VS′

1
are occupied by agents from T1). For every vertex v ∈ VS′

1
∪X1, we

add p degree-one vertices only adjacent to v to M1. Notably, the neighborhood of
all vertices in V (G′) \ VS′ is the same in G′ and G.

• The set of agents N = T1∪̇T2 is defined as follows. We have |T1| = |T ′1|+|M1|+|X1|
agents in T1 and |T2| = |T ′2|+ |M2| agents in T2. By the construction of X1 above,
we have that |VS′

1
∪X1| = q · (|T ′2|+ |M2|+ ∆(G′)) + 1 = q · (|T2|+ ∆(G′)) + 1. It

also holds that p = |T ′2|+ |M2| − 2 = |T2| − 2.

It is easy to see that the given construction can be computed in polynomial-time.
Next, we address the correctness of the reduction. We define the sets A,B ⊆ V as
A := M1 ∪ VS′

1
∪X1 and B := M2 ∪ VS′

2
(vertices from A should be occupied by agents

from T1, while vertices from B should be occupied by agents from T2). Observe that the
subgraph G[A] (see Figure 3.2a) consists of q · (|T2|+ ∆(G′)) + 1 stars which each have
(|T2| − 1) vertices. The central vertices of these stars are connected such that they form
a clique. Recall that q = ∆(G′) + |V (G′)|2 + |VS′

2
| > |VS′

2
| ≥ 3, hence we have at least 3

stars in G[A]. Note that V \ A = (V (G′) \ VS′) ∪ B = (V (G′) \ VS′) ∪ (M2 ∪ VS′
2
). The

subgraph G[V \A] (shown in Figure 3.2b) is connected, since every vertex in V (G′)\VS′
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VS′
1
∪X1

|T2| − 2

(a) The subgraph G[A]. Observe that G[A]
consists of q·(|T2|+∆(G′))+1 stars which each
have |T2| − 1 vertices and that are connected
such that the central vertices form a clique.

V (G′) \ VS′ VS′
2

M2

(b) The subgraph G[V \A]. Note that G[V \A]
is connected, since every vertex in V (G′)\VS′

is adjacent to at least one vertex in VS′
2
.

Figure 3.2: The induced subgraphs G[A] and G[V \A]. Recall that A = VS′
1
∪M1 ∪X1.

is connected to a vertex in VS′
2

(by our assumption) and the vertices in VS′
2

form a clique
(by the construction of G). Additionally, all vertices in M2 are adjacent to exactly
one vertex in VS′

2
. We start by proving Claims 1 and 2, which state that in every

swap-equilibrium, the vertices in A and B have to be occupied by agents from T1 and
T2, respectively. Using these claims, we will prove that every swap-equilibrium in the
constructed game can be restricted to a swap-equilibrium for the given game.

Claim 1. In any swap-equilibrium v, all vertices in A are occupied by agents from T1.

Proof. Suppose there are x > 0 agents from T2 in A. We distinguish the following three
cases and prove that such an assignment can not be stable.

Case 1: Assume that x < |T2| − 1. Since all stars in G[A] have |T2| − 1 > x vertices,
at least one of the stars has to contain agents from both types. Thus, there exists an
agent i ∈ Tt for some t ∈ {1, 2} on a degree-one vertex in A with ui(v) = 0. Since
|T2| − x > 0 and |T1| > |A|, there have to be agents from both T1 and T2 in G[V \ A].
As observed before, G[V \ A] is connected. Thus, there exist agents i′ ∈ Tt and j′ ∈ Tt′
with t′ 6= t in G[V \ A] that are adjacent and hence have ui′(v) < 1 and uj′(v) < 1.
Then, swapping i and j′ is profitable, since we have ui(v) = 0 < ui(v

i↔j′) and uj′(v) <
1 = uj′(v

i↔j′).

Case 2: Assume that x = |T2|. Again, note that all stars in G[A] have |T2| − 1 < x
vertices. Thus, there have to be agents from T2 on at least two stars. Since it also
holds that x < 2 · (|T2| − 1), there are agents from both types on at least one of the
stars. Let vj be the central vertex of this star occupied by some agent j. There exists
an agent i ∈ Tt for some t ∈ {1, 2} on a degree-one vertex adjacent to vj with ui(v) = 0.
The agent j is from type Tt′ with t′ 6= t. As noted before, G[A] contains at least 3 stars.
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Since x < 2 · (|T2| − 1), there also have to be agents from T1 on at least two of the stars.
Now consider the remaining central vertices in G[A].
First, suppose that all central vertices are occupied by agents from Tt′ . As noted above,
it holds for both types that agents of this type occupy vertices from at least two stars.
Hence, there exists an agent i′ ∈ Tt on a degree-one vertex adjacent to another central
vertex w 6= vj with ui′(v) = 0. Let j′ ∈ Tt′ be the agent on w. Then, swapping i and j′

is profitable, since uj′(v) < 1 = uj′(v
i↔j′) and ui(v) = 0 < ui(v

i↔j′).
Now, consider that all remaining central vertices are occupied by agents from Tt. Then,
there exists an agent j′ ∈ Tt′ with uj′(v) = 0 on a degree-one vertex adjacent to another
central vertex w 6= vj that is occupied by an agent from Tt. Swapping i and j′ is
profitable, since uj′(v) = 0 < 1 = uj′(v

i↔j′) and ui(v) = 0 < 1 = ui(v
i↔j′).

Therefore, the central vertices different from vj have to be occupied by agents from
both types. That is, there exists an agent j′ ∈ Tt′ on a central vertex vj′ 6= vj and an
agent i′ ∈ Tt on another central vertex vi′ 6= vj . We have uj′(v) < 1, since vj′ is adjacent
to vi′ . Then however, swapping i and j′ is profitable, since uj′(v) < 1 = uj′(v

i↔j′) and
ui(v) = 0 < ui(v

i↔j′).

Case 3: Assume that x = |T2| − 1. If the x agents from T2 occupy vertices from two
or more stars, then at least two stars contain agents from both types (illustrated in
Figure 3.3). That is, there exists an agent i ∈ Tt1 for some t1 ∈ {1, 2} with ui(v) = 0
on a degree-one vertex adjacent to an agent j ∈ Tt′1 with t′1 6= t1. The agent j on the
central vertex has uj(v) < 1. Without loss of generality, assume that t1 = 1 and thus
t′1 = 2. As argued above, another star has to contain agents from both types. Thus, there
exists another agent i′ ∈ Tt2 for some t2 ∈ {1, 2} with ui(v) = 0 on a degree-one vertex
adjacent to an agent j′ ∈ Tt′2 with t′2 6= t2. Again, the agent j′ on the central vertex has

uj′(v) < 1. If t2 = 1, then swapping i and j′ is profitable. We have ui(v) = 0 < ui(v
i↔j′)

and uj′(v) < 1 = uj′(v
i↔j′). Otherwise, if t2 = 2, then swapping i and i′ is profitable.

It holds that ui(v) = 0 < 1 = ui(v
i↔i′) and ui′(v) = 0 < 1 = ui′(v

i↔i′). Summarizing,
if the x agents from T2 occupy vertices from two or more stars, then the assignment can
not be a swap-equilibrium.
Hence, the agents from T2 have to occupy all |T2| − 1 vertices of one of the stars in A.
Let agent i ∈ T2 be the agent on the central vertex vi of this star. Observe that
degG(vi) ≥ (|T2| − 2) + q · (|T2| + ∆(G′)), since vi is adjacent to |T2| − 2 degree-one
neighbors and the q ·(|T2|+∆(G′)) vertices in (S1∪X1)\{vi}. It follows that agent i ∈ T2
has utility:

ui(v) ≤ |T2|
(|T2| − 1) + q · (|T2|+ ∆(G′))

<
|T2|
|T2| · q

=
1

q
.

Since x = |T2| − 1, there is one agent i′ ∈ T2 outside of A. As noted above, G[V \ A] is
connected. Thus, agent i′ is adjacent to an agent j ∈ T1 on vj ∈ V \A. Recall that V \A =
(V (G′)\VS′)∪(M2∪VS′

2
). If vj ∈ VS′

2
, then we have degG(vj) ≤ ∆(G′)+|V (G′)|2+|VS′

2
|. If

vj ∈M2, then we have degG(vj) = 1. If vj ∈ V (G′)\VS′ , then we have degG(vj) ≤ ∆(G′).
In any case, it holds that degG(vj) ≤ ∆(G′) + |V (G′)|2 + |VS′

2
| = q. Since vj is adjacent

to vi′ , agent i has at least one adjacent friend after swapping to vj .
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j j′

i ∈ Tt1 i′ ∈ Tt2

. . . . . .

t1 = t2

j j′

i ∈ Tt1 i′ ∈ Tt2

. . . . . .

t1 6= t2

Figure 3.3: Case 3: There are exactly |T2|−1 agents from T2 in A. If the agents from T2
occupy two or more stars, then at least two of the stars have to contain agents from
both types. That is, we have two agents i ∈ Tt1 and i′ ∈ Tt2 on degree-one vertices with
no adjacent friends.

The utility of agent i after swapping with j is:

ui(v
i↔j) ≥ 1

q
> ui(v).

Note that at least one of the at most q neighbors of j (specifically, agent i) is not a friend
of j. Observe that the neighborhood of vi consist of the |T2|−2 degree-one neighbors, the
q · (|T2|+ ∆(G′)) vertices in (S1∪X1)\{vi} and at most ∆(G′) neighbors in V (G′)\VS′

1
.

Thus, we have degG(vi) ≤ q · (|T2|+ ∆(G′)) + |T2| − 2 + ∆(G′) < (q+ 1) · (|T2|+ ∆(G′)).
Additionally, there are at least q · (|T2| + ∆(G′)) agents of type T1 adjacent to vi (all
agents in (S1 ∪X1) \ {vi}). Therefore, it holds that agent j ∈ T1 has utility:

uj(v
i↔j) ≥ q · (|T2|+ ∆(G′))

(q + 1) · (|T2|+ ∆(G′))
=

q

q + 1
>
q − 1

q
≥ uj(v).

Hence, swapping i and j is profitable and the assignment can not be a swap-equilibrium.
Since we have exhausted all possible cases, the claim follows. �

Next, we prove that all vertices in B have to be occupied by agents from T2.

Claim 2. In any swap-equilibrium v, all vertices in B are occupied by agents from T2.

Proof. By Claim 1, A only contains agents from T1 in any swap-equilibrium. The re-
maining y := |T1| − |A| = |T ′1| − |VS′

1
| < |V (G′) \ VS′ | agents from T1 and all agents

from T2 occupy vertices in G[V \A]. Since it holds that y < |V (G′)\VS′ |, there exists an
agent j ∈ T2 with vj ∈ V (G′) \ VS′ . Recall that we assumed that in our input instance,
every vertex not occupied by a stubborn agent is adjacent to at least one stubborn agent
of each type. Thus, vj is adjacent to vi ∈ VS′

1
occupied by agent i. It holds that vi ∈ A,

hence we have that agent i must be from T1. The agents i and j have ui(v) < 1 and
uj(v) < 1.
Suppose there are x agents of type T1 in B, with y ≥ x > 0. We prove that such an
assignment v can not be a swap-equilibrium. As noted before, we have x ≤ y < |V (G′)|.
Observe that the subgraph G[B] consists of |VS′

2
| stars where the central vertices form a
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clique. Each star contains |V (G′)|2 + 1 > x vertices. Therefore, at least one of the stars
has to contain agents from both types. That is, there exists an agent i′ ∈ Tt for some t ∈
{1, 2} on a degree-one vertex in B with ui′(v) = 0. If t = 1, then swapping agent i′ and
agent j is profitable, since ui′(v) = 0 < ui′(v

i′↔j) and uj(v) < 1 = uj(v
i′↔j). Otherwise,

if t = 2, then swapping agent i′ and agent i is profitable, since ui′(v) = 0 < ui′(v
i′↔i)

and ui(v) < 1 = ui(v
i′↔i). Therefore, there exists a profitable swap and the assignment

can not be a swap-equilibrium. �

Having established these two claims, we are now able to prove that the input game
with stubborn agents admits a swap-equilibrium if and only if the constructed Schelling
game admits a swap-equilibrium.
(⇒): First, assume there exists a swap-equilibrium v′ for the Schelling game with
stubborn agents. Note that the vertices in VS′

1
and VS′

2
are occupied by stubborn agents

from T ′1 and T ′2. We define an assignment v for the Schelling game without stubborn
agents and prove that it is a swap-equilibrium. The vertices in V ∩V (G′) are occupied by
agents of the same type as the agents in v′. The vertices in X1 are occupied by agents
from T1. For t ∈ {1, 2}, the added degree-one vertices in Mt are occupied by agents
from Tt. Hence, the vertices in A = M1 ∪ VS′

1
∪X1 are occupied by agents from T1 and

the vertices in B = M2 ∪ VS′
2

are occupied by agents from T2.
Next, we prove that v is a swap-equilibrium on G by showing that no profitable swap
exists. We first observe that the utility of an agent i on a vertex w ∈M1∪X1 is ui(v) = 1,
since NG(w) ⊆ A and all agents in A are friends of i. The same holds analogously for
any agent on a vertex in M2. Therefore, the agents on vertices in M1 ∪M2 ∪ X1 can
not be involved in a profitable swap. Note that the utility of any agent on a vertex v ∈
V (G′) \ VS′ is the same for v and v′. Since v′ is a swap-equilibrium, a profitable swap
must therefore involve at least one agent i with vi ∈ VS′ .
Let Y = VS′

1
∪X1 if vi ∈ VS′

1
and Y = VS′

2
otherwise. Denote the number of added degree-

one neighbors adjacent to vi by x. By construction of G, it holds that x > ∆(G)2. The
agent i is adjacent to the vertices in Y \ {vi} and the x > ∆(G′)2 degree-one neighbors,
which are all occupied by friends. It holds that degG(vi) ≤ x+ |Y \{vi}|+ ∆(G′). Thus,
the utility of agent i on vi is:

uGi (v) ≥ x+ |Y \ {vi}|
x+ |Y \ {vi}|+ ∆(G′)

>
x

x+ ∆(G′)
>

∆(G′)2

∆(G′)2 + ∆(G′)
=

∆(G′)

∆(G′) + 1
.

We now distinguish between swapping i with an agent j with vj ∈ VS′ and with vj ∈
VS′ (note that this exhausts all cases as we have already argued above that all agents
placed on newly added vertices can never be part of a profitable swap). First, consider
swapping i with an agent j of the other type with vj ∈ VS′ . On vertex vj , agent i can at
most have ∆(G′) adjacent friends, as all vertices that are connected to vj by edges added
in the construction (that are, vertices in A or B) are occupied by friends of j. It holds
that degG(vj) ≥ ∆(G′)2, since vj is adjacent to at least ∆(G′)2 degree-one neighbors.
Therefore, the swap can not be profitable:

uGi (v) ≥ ∆(G′)

∆(G′) + 1
>

1

∆(G′)
=

∆(G′)

∆(G′)2
≥ uGi (vi↔j).
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Hence, consider swapping i with an agent j of the other type on vj ∈ V (G′)\VS′ . Recall
that we assumed that every vertex not occupied by a stubborn agent is adjacent to at
least one stubborn agent of each type in the input game. Since vj ∈ V (G′) \ VS′ , the
agent j is adjacent to at least one friend. More precisely, we have:

uG
′

j (v′) ≥ 1

∆(G′)
.

As noted above, the neighborhood of vj is identical in G and G′. We therefore have
uGj (v) = uG

′
j (v′). By swapping with agent j, agent i can at most get the following utility:

uGi (vi↔j) ≤ ∆(G′)− 1

∆(G′)
.

It follows that swapping i and j can not be profitable:

uGi (v) ≥ ∆(G′)

∆(G′) + 1
>

∆(G′)− 1

∆(G′)
≥ uGi (vi↔j).

Summarizing, no profitable swap is possible and v is a swap-equilibrium for the con-
structed Schelling game.
(⇐): Conversely, assume there exists a swap-equilibrium v for the constructed game.
We define an assignment v′ and prove that it is a swap-equilibrium for the given Schelling
game with stubborn agents on G′. In v′, a vertex v ∈ V (G′)\VS′ is occupied by a strate-
gic agent of the same type as the agent on v in v. The vertices in VS′ have to be occupied
by the respective stubborn agents. Note that by Claims 1 and 2, in v, the vertices in
VS′

1
⊆ A and VS′

2
⊆ B have to be occupied by agents from T1 and T2, respectively. Thus,

in v′, all vertices are occupied by agents of the same type as in v.
Now, we will prove that v′ is a swap-equilibrium on the given G′. Since stubborn agents
never swap position, a profitable swap has to involve two strategic agents i ∈ T ′1 and
j ∈ T ′2 with vi, vj ∈ V (G′) \ VS′ . However, by construction of G, the neighborhoods
of vi and vj are identical in G and G′. Additionally, it holds that in v′, all vertices
are occupied by agents of the same type as in v. Since v is a swap-equilibrium on G,
swapping i and j can not be profitable. It follows that v′ is a swap-equilibrium, which
completes the proof.

3.2 Jump-Equilibria

We now turn to proving the NP-hardness of deciding the existence of a jump-equilibrium.
Elkind et al. [Elk+19] already proved that this problem is NP-hard in a Schelling game
with stubborn agents, as defined below.

Jump-Equilibrium Existence with stubborn agents (JUMP-EQ-STUB)

Input: A connected topology G, a set of agents [n] = N = R∪̇S for some
n < |V (G)| partitioned into types T1 and T2 and a set of vertices VS =
{si ∈ V (G) | i ∈ S}.

Question: Does the Schelling game on G with types T1 and T2, strategic agents
from R and stubborn agents i ∈ S on si ∈ VS admit a jump-equilibrium?
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Note that we now require that n < |V (G)| such that there are unoccupied vertices. We
show that deciding jump-equilibria existence remains NP-hard in the absence of stubborn
agents, as conjectured by Elkind et al. [Elk+19]. The decision problem is defined below.

Jump-Equilibrium Existence (JUMP-EQ)

Input: A topology G and a set of agents [n] = N = R∪̇S for some n < |V (G)|
partitioned into types T1 and T2.

Question: Does the Schelling game on G with types T1 and T2 admit a jump-
equilibrium?

Again, we reduce from a restricted version of JUMP-EQ-STUB, as defined in the
following lemma. The hardness of this restricted version does not directly follow from
the reduction by Elkind et al. [Elk+19], but can be proven by slightly modifying their
reduction.

Lemma 3.3. Let λ = |V (G)| − n be the number of unoccupied vertices in an instance
of JUMP-EQ-STUB. We call an instance of JUMP-EQ-STUB regularized, if the
following five properties hold.

1. Every vertex v /∈ VS is adjacent to at least one stubborn agent of each type.

2. Every vertex v ∈ VS has degG(v) < λ.

3. Every vertex v ∈ VS is adjacent to a vertex v /∈ VS.

4. It holds that λ > 0.

5. There are at least two stubborn agents of each type.

JUMP-EQ-STUB remains NP-hard when restricted to regularized instances.

Proof. We prove this statement by giving a reduction that is heavily based on the re-
duction by Elkind et al. [Elk+19], which is modified such that the constructed instance
is always regularized. Most importantly, we modify the original construction such that
the first property holds. All other properties already hold or are trivial to achieve.
We reduce from Clique. An instance of Clique consist of an undirected graph H =
(X,Y ) and an integer s. It is a yes-instance if and only if H contains a clique of size s.
Without loss of generality, we assume that s ≥ 6. We construct an instance of JUMP-
EQ-STUB as follows:

• There are two types T1 and T2. There are s strategic agents from T1. All other
agents are stubborn and will be defined along with the topology.

• The topology G = (V,E) consists of three disjoint components G1, G2, and G3,
which are constructed as described below.

– To define the graph G1 = (V1, E1), let Wv be a set of s vertices for every
v ∈ X. Out of the vertices in Wv, one vertex is occupied by a stubborn agent
from T1 and the remaining s − 1 vertices are occupied by stubborn agents
from T2. We set V1 = X ∪

⋃
v∈X Wv and E1 = Y ∪

⋃
v∈X{{v, w} | w ∈ Wv}.
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That is, G1 is an extended copy of the given H, where every v ∈ X is adjacent
to s degree-one vertices in Wv, which are occupied by stubborn agents from
both types.

– The graph G2 is a bipartite graph with parts L and R. Let L be a set of s−2
vertices. For every v ∈ L, the set R contains 4s vertices only connected to v.
Out of these 4s vertices, 2s+ 1 are occupied by stubborn agents from T1 and
the remaining 2s− 1 vertices are occupied by stubborn agents from T2.

– in G3, only three vertices x, y, and z are not occupied by stubborn agents.
The vertices x and y are connected by an edge. The remaining vertices are
occupied by stubborn agents and defined in the following. First, the vertex x is
connected to one degree-one vertex occupied by a stubborn agent from T1 and
two degree-one vertices occupied by stubborn agents from T2. The vertex y
is connected to 41 degree-one vertices occupied by stubborn agents from T1
and 80 degree-one vertices occupied by stubborn agents from T2. Finally, z is
connected to 5 degree-one vertices occupied by stubborn agents from T1 and
7 degree-one vertices occupied by stubborn agents from T2.

Lastly, we pick an arbitrary vertex occupied by a stubborn agent from each of the three
components G1, G2, G3 and connect the three vertices to form a clique.
It is easy to verify that the constructed instance is regularized. The correctness of the
reduction follows analogously to the proof by Elkind et al. [Elk+19]. The only difference
is the exact utility of agents on G1; however, the same inequalities still hold.

We now reduce this restricted version of JUMP-EQ-STUB to JUMP-EQ. This
reduction is based on the same underlying idea as the reduction for SWAP-EQ, as we
also simulate the game with stubborn agents using a similar construction. However, the
proof for JUMP-EQ is more involved, since in every assignment some vertices remain
unoccupied. For instance, we do not only need to prove that only agents from T1 are
placed on vertices from A (which is more challenging because we have to deal with
possibly unoccupied vertices), but also that all vertices from A are occupied.

Theorem 3.4. JUMP-EQ is NP-complete.

Proof. First, observe that JUMP-EQ is in NP, since we can iterate over all pairs of
agents and unoccupied vertices and check if there exists a profitable jump. For NP-
hardness, we reduce from JUMP-EQ-STUB. An instance of JUMP-EQ-STUB con-
sists of a connected topology G′, a set of agents N ′ = R′∪S′ partitioned into types T ′1, T

′
2,

and a set of vertices VS′ = {si ∈ V (G′) | i ∈ S′}. The agents in R′ are strategic and the
agents from S′ are stubborn agents, with stubborn agent i ∈ S′ occupying si ∈ VS′ in
any assignment. Without loss of generality, we assume that the given instance is regular-
ized and fulfills the properties from Lemma 3.3. Denote the sets of vertices occupied by
stubborn agents from T ′1 and T ′2 as VS′

1
and VS′

2
, respectively. We construct an instance

of JUMP-EQ consisting of a topology G = (V,E) and types T1 and T2 as follows.

• The graph G (depicted in Figure 3.4) is a modified copy of the given G′ and
contains all vertices and edges from G′. Additionally, we add three sets of vertices
M1, X1 and M2. That is, V = V (G′)∪M1∪X1∪M2. For every vertex v ∈ VS′

2
, we
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add |V (G′)|2 degree-one vertices only adjacent to v to M2. We connect all vertices
in VS′

2
such that they form a clique by adding the edges E2 = {{v, w} | v, w ∈ VS′

2
}

to G.
Next, we define q, which, as argued later, is an upper bound for the degree of a
vertex in (V (G′) \ VS′

1
) ∪M2:

q := ∆(G′) + |V (G′)|2 + |VS′
2
|.

We define s and z, this choice of parameters is important in the proof of Claim 2.1.

s := q · (|T ′2|+ |M2|+ ∆(G)) + 1

z := s+ |V (G′)|+ |M2|

Let X1 be a set of z − |VS′
1
| vertices, such that |X1 ∪ VS′

1
| = z. We add the edges

E1 = {{v, w} | v, w ∈ VS′
1
∪X1} such that the vertices in VS′

1
∪X1 form a clique.

Finally, we define the number p of added degree-one neighbors for vertices in VS′
1
∪

X1. Again, the choice of p is used in Claim 2.1.

p := |T ′2|+ |M2| − 2 > |V (G′)|2

For every vertex v ∈ VS′
1
∪X1, we add p degree-one vertices only adjacent to v to

M1.

• The set of agents N = T1∪̇T2 is defined as follows. We have |T1| = |T ′1|+|M1|+|X1|
agents in T1 and |T2| = |T ′2|+ |M2| agents in T2. By the construction of X1 above,
we have that:

s = q · (|T ′2|+ |M2|+ ∆(G′)) + 1 = q · (|T2|+ ∆(G′)) + 1.

It also holds that p = |T ′2|+ |M2|−2 = |T2|−2. Finally, note that there are equally
many unoccupied vertices in the constructed and the given instance, since it holds
that |V (G)|−|V (G′)| = |M1|+ |X1|+ |M2| = |N |−|N ′|. That is, λ = λ′ < |V (G′)|.

It is easy to see that the given construction can be computed in polynomial-time. Next,
we address the correctness of the reduction. We approach the proof in three steps. First,
we make some basic observations about the constructed G. Then, we prove Claims 1
to 3, which state useful properties of jump-equilibria for the constructed game. Finally,
using these claims, we prove that the constructed game admits a jump-equilibrium if
and only if the given game admits a jump-equilibrium.

We define the sets A,B ⊆ V as A := M1 ∪ VS′
1
∪ X1 and B := M2 ∪ VS′

2
. Observe

that the subgraph G[A] can be partitioned into z stars which each have |T2| − 1 vertices
as follows. The vertices in X1 ∪ VS′

1
are the central vertices and are connected such

that they form a clique. Each central vertex is adjacent to |T2| − 2 degree-one vertices
in M1. Recall that z > |V (G′)| ≥ |VS′ | > 3, hence we have at least 3 stars in G[A]. Note
that V \ A = (V (G′) \ VS′) ∪ B = (V (G′) \ VS′) ∪ (M2 ∪ VS′

2
). The subgraph G[V \ A]

is connected, since every vertex in V (G′) \ VS′ is connected to a vertex in VS′
2

(by our
assumption that the given instance is regularized) and the vertices in VS′

2
form a clique

(by the construction of G). Additionally, all vertices in M2 are adjacent to exactly one
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G′
p = |T2| − 2

VS′
1

. . .. . .X1
|V (G)|2

VS′
2

. . .. . .

A B

Figure 3.4: The constructed topology G. Modifications made to the given graph G′ are
colored light blue. Note that the vertices in VS′

1
∪X1 and VS′

2
each form a clique.

vertex in VS′
2
.

First, we show the following claim, which states that no agent on a degree-one vertex
in A or B can have no adjacent friends and all central vertices have to be occupied. This
property of jump-equilibria is then later used in the proof of Claims 2 and 3, where we
prove that all vertices in A are occupied by agents from T1 and all vertices from B are
occupied by agents from T2.

Claim 1. In a jump-equilibrium v, all agents on a degree-one vertex v ∈ M1 ∪M2 are
adjacent to a friend and all central vertices w ∈ VS′

1
∪X1 ∪ VS′

2
are occupied.

Proof. Suppose for the sake of a contradiction that there exists an agent i ∈ Tt for
some t ∈ {1, 2} on a degree-one vertex v with no adjacent friend in v. Let S be the
set of vertices of the star which contains v. Recall that every star contains at least
|V (G′)|2 + 1 ≥ |V (G′)|+ 3 ≥ λ+ 3 vertices. Thus, at least three vertices in S have to be
occupied. Since i has no adjacent friends, the central vertex w ∈ S is either unoccupied
or occupied by an agent of the other type. We distinguish these two cases and prove
that there exists a profitable jump in both cases.

Case 1: First, assume that w is unoccupied. As mentioned above, at least three
vertices in S have to be occupied by agents. Since w is unoccupied, all occupied vertices
are degree-one vertices. By the pigeonhole principle, there exist two agents of the same
type on degree-one vertices in S. Both agents have no adjacent friends in v and can
increase their utility by jumping to w. This concludes the first case and furthermore
proves that no central vertex can be unoccupied.

Case 2: Second, we consider the case where w is occupied by an agent j ∈ Tt′ with
t′ 6= t. Note that both |T1| > |S| and |T2| > |S|, thus there are agents from both types
in G[V (G) \ S]. Next, we argue that G[V (G) \ S] is connected. Let Y = A if S ⊆ A
and Y = B otherwise. It is easy to see that G[V (G) \ Y ] is connected (as argued for
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w′

. . .

(a) Case 1: Central vertex is unoccupied.

S

j ∈ Tt′

i ∈ Tt

. . .

G[V (G) \ S]

w′

(b) Case 2: Central vertex is occupied.

Figure 3.5: Illustration for Claim 1: In a jump-equilibrium, there can not exist an agent
on a degree-one vertex with no friends in A or B.

G[V (G) \ A] above and analogous for G[V (G) \ B]). The connected subgraph G[Y \ S]
consists of the remaining stars in Y \ S, where the central vertices form a clique. Note
that there is at least one vertex x ∈ VS′ in Y \S, since by Lemma 3.3, we have assumed
that there are at least two stubborn agents of each type. Furthermore, by Lemma 3.3, we
have assumed that x ∈ VS′ is adjacent to a vertex y ∈ V (G′)\VS′ in G[V (G)\Y ]. Thus,
as G[V (G) \Y ] and G[Y \S] are each connected and connected by an edge, G[V (G) \S]
is connected.
First, suppose that there is no unoccupied vertex in V (G) \ S, which implies that there
need to be unoccupied vertices in S. Then, there are two adjacent agents i′ ∈ Tt and
j′ ∈ Tt′ in G[V (G) \ S]. It holds that uj′(v) < 1. Agent j′ can increase its utility to 1
by jumping to any unoccupied vertex in S.
Therefore, there has to exist at least one unoccupied vertex in G[V (G)\S]. If one of the
unoccupied vertices in G[V (G) \ S] is adjacent to an agent in Tt, then agent i ∈ Tt can
increase its utility by jumping to this vertex. Thus, the unoccupied vertices inG[V (G)\S]
can only be adjacent to agents in Tt′ and unoccupied vertices. Since G[V (G) \ S] is
connected, there exists an unoccupied vertex w′ that is adjacent to at least one agent
in Tt′ on a vertex in G[V (G) \ S]. Note that agent j on the central vertex in S has
uj(v) < 1, since j ∈ Tt′ is adjacent to i ∈ Tt. Hence, agent j can increase its utility by
jumping to w′, where j is only adjacent to friends. �

Next, we prove that all vertices in A are occupied by agents from T1.

Claim 2. In every jump-equilibrium v, A is fully occupied by agents from T1.

Proof. We prove this claim by splitting it into Claims 2.1 and 2.2. First, we prove that
there are no agents from T2 in A. Then, we prove that all vertices in A are occupied.

Claim 2.1. In every jump-equilibrium v, A only contains agents from T1.

Proof. Recall that by the construction, we have that |T1| ≥ |A| = |X1∪VS′
1
| · (|T2|−1) =

z · (|T2| − 1) = (s+ |V (G′)|+ |M2|) · (|T2| − 1). Thus, even if all vertices in V (G) \A =
(V (G′) \VS′

1
)∪M2 are occupied by agents from T1, there are at least s · (|T2|− 1) agents

from T1 in A. Since each star in A contains |T2| − 1 vertices, there have to be agents
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from T1 on at least s stars. By Claim 1, it holds that at least s central vertices are
occupied by agents from T1.
Now suppose there are x > 0 agents from T2 in A. We distinguish the following three
cases based on the value of x (see Figure 3.6) and prove that such an assignment can
not be a jump-equilibrium.

Case 1: First, assume there are x < |T2| − 1 agents from T2 in A. Recall Claim 1,
which states that no agent on a degree-one vertex in A can have no adjacent friends in
any jump-equilibrium. Thus, there exists an agent i ∈ T2 on a central vertex in A. Let S
be the set of vertices of the star which contains vi. Since it holds that x < |T2|−1 = |S|,
not all vertices in S can be occupied by agents from T2. By Claim 1, these vertices
have to be unoccupied. Summarizing, there exists an unoccupied degree-one vertex w
adjacent to the central vertex occupied by i.
Next, we upper bound the utility of agent i. Note that i ∈ T2 is adjacent to all other
central vertices in A, of which at least s = q · (|T2|+ ∆(G)) + 1 are occupied by agents
from T1. It therefore holds that:

ui(v) ≤ |T2|
q · (|T2|+ ∆(G)) + 1 + |T2|

<
1

q
.

Since x < |T2| and |T1| ≥ |A|, there are agents from both types in G[V (G) \ A]. Fur-
thermore, note that G[V (G) \ A] is connected. Now consider a path between two
arbitrary agents from T1 and T2 in G[V (G) \ A]. If there are two adjacent agents
i′ ∈ T1 and j′ ∈ T2 on this path, then it holds that uj′(v) < 1 and jumping to w
is profitable for j′. Thus, no such two agents can exist. However then, there exists
an unoccupied vertex w′ on the path that is adjacent to an agent in T2. Note that
degG(w′) ≤ ∆(G′) + |V (G′)|2 + |VS′

2
| = q. Jumping to w′ is profitable for agent i:

ui(v
i→w′

) ≥ 1

q
> ui(v).

Case 2: Next, we consider the case where x = |T2|. Since 2 · (|T2| − 1) > x > |T2| − 1,
the agents from T2 occupy vertices on at least two stars in A, but can not occupy all
vertices of these stars. With Claim 1, there exists an unoccupied degree-one vertex w
adjacent to a central vertex occupied by an agent from T2. Now consider an agent i ∈ T2
on another central vertex in A not adjacent to w. We have that ui(v) < 1, since i is
adjacent to agents from T1 on other central vertices. Then, agent i can increase her
utility to 1 by jumping to w.

Case 3: Finally, we address the case where x = |T2| − 1. Again, by Claim 1, at least
one of the central vertices in A has to be occupied by an agent i ∈ T2. Furthermore, if
there are agents from T2 on two or more stars, then there exists an unoccupied degree-
one vertex adjacent to a central vertex occupied by an agent from T2 and an agent
from T2 on another central vertex with utility less than 1. Analogous to Case 2, such
an assignment can not be a jump-equilibrium. Therefore, the |T2| − 1 agents from T2
occupy all vertices of one star in A. Denote the set of vertices of this star by S.
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All central vertices in A and B have to be occupied by Claim 1. Note that there is only
one agent from T2 outside of A. This agent can not occupy a degree-one vertex in B,
since she would have no adjacent friends on such a vertex. If she occupies a central
vertex, then there are agents from T1 with no adjacent friends on degree-one vertices
in this star (recall that at least three vertices of each star have to be occupied). Both
possibilities contradict Claim 1. Hence, this agent occupies a vertex in G[V (G′) \ VS′ ]
and all central vertices in B are occupied by agents from T2.
Next, we argue that both A and B are fully occupied. First, suppose there exists an
unoccupied vertex w in A. By Claim 1, w has to be a degree-one vertex. Furthermore,
since all |T2| − 1 agents from T2 in A fully occupy one star, w is adjacent to a central
vertex occupied by an agent from T1. Then, any agent from T1 on a central vertex in A
not adjacent to w can increase her utility to 1 by jumping to w. If there is an unoccupied
degree-one vertex w in B, then this vertex is adjacent to a central vertex occupied by an
agent from T1 (recall that all central vertices in B are occupied by agents from T1). Then
again, any agent from T1 on a central vertex in A has a profitable jump to w. Thus,
both A and B are fully occupied and all λ unoccupied vertices are in G[V (G′) \ VS′ ].
Now consider the central vertex vi of the star in A occupied by the agents from T2. Recall
that we assumed that degG′(v) < λ for all v ∈ VS′ in our input instance (by Lemma 3.3).
In our construction, we only add edges within A to a vertex in A. Hence, as all λ
unoccupied vertices need to be from V (G′) \ VS′ , there exists an unoccupied vertex w
in G′− VS′ which is not adjacent to vi. If w is adjacent to an agent in T2, jumping to w
is profitable for agent i. With an argument analogous to Case 1, we get that:

ui(v
i→w) ≥ 1

q
> ui(v).

Hence, w is not adjacent to any agent from T2. Recall that (by Lemma 3.3) we assume
that every vertex not occupied by a stubborn agent is adjacent to a stubborn agent of
each type in our input instance. Thus, since w ∈ V (G′) \ VS′ , the vertex w is adjacent
to a central vertex in B, which is occupied by an agent from T1. Then again, any agent
from T1 on a central vertex in A can increase her utility to 1 by jumping to w. This
concludes Case 3. Since we have exhausted all possible cases, Claim 2.1 follows. �

Next, we prove the second part of Claim 2 by proving that all vertices in A are
occupied.

Claim 2.2. In every jump-equilibrium v, A is fully occupied.

Proof. Suppose there exists an unoccupied vertex v ∈ A. Again, v has to be a degree-one
vertex by Claim 1 and by Claim 1 and Claim 2.1 v needs to be adjacent to a vertex
occupied by an agent from T1. Note that |T2| > |V (G′)|, therefore there have to be
agents from T2 in B (as there are no agents from T2 in A by Claim 2.1). By Claim 1,
this implies that a central vertex in B is occupied by an agent from T2. Since we also
have that |T1| ≥ |A|, there are agents from T1 outside of A (see Figure 3.7). If there
is an agent from T1 in B, there also exists an agent i ∈ T1 on a central vertex in B.
We have that ui(v) < 1, since i is adjacent to the central vertex occupied by an agent
from T2. However, agent i can then increase her utility to 1 by jumping to v. Hence,
all remaining agents from T1 not in A are in V (G′) \ VS′ . Since all central vertices in B
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A

s T1-neighb.

G[V (G) \A]

w′

(a) x < |T2| − 1.

A

(b) x = |T2|.

A G[V (G′) \ VS′ ]

w

B

(c) x = |T2| − 1.

Figure 3.6: Claim 2.1: If there are x > 0 agents from T2 in A, then a profitable jump
exists.

have to be occupied, there are agents from T2 on all central vertices in B.
Now consider an arbitrary agent i ∈ T1 in V (G′) \ VS′ . As we assume that the given
instance is regularized (by Lemma 3.3), i is adjacent to a central vertex in B, which is
occupied by an agent from T2. We thus have ui(v) < 1. Agent i can increase her utility
to 1 by jumping to v, which completes the proof. �

With Claims 2.1 and 2.2, Claim 2 follows. �

Next, we prove the following analogous claim for B, where we show that all vertices
in B are occupied by agents from T2.

Claim 3. In every jump-equilibrium v, B is fully occupied by agents from T2.

Proof. Again, we prove this claim by dividing it into Claims 3.1 and 3.2.

Claim 3.1. In every jump-equilibrium v, B only contains agents from T2.

Proof. Since A is fully occupied by agents from T1 by Claim 2, there are y := |T1|−|A| <
|V (G′)| agents from T1 outside of A. Suppose there are agents from T1 in B. By Claim 1,
there exists a central vertex v ∈ B which is occupied by an agent from T1. Furthermore,
since y < |V (G′)|2 (recall that every star in B contains |V (G′)|2+1 vertices), there exists
an unoccupied degree-one vertex w adjacent to v. Note that |T2| ≥ |B|. Since not all
vertices in B are occupied by agents from T2, there exists an agent j ∈ T2 on a vertex
in V (G′) \ VS′ . This agent is adjacent to a central vertex in A. Let i′ ∈ T1 be the agent
on this central vertex. We have ui′(v) < 1, since i′ ∈ T1 is adjacent to j ∈ T2. Then,
jumping to w is profitable for agent i′, since ui′(v) < 1 = ui′(v

i′→w). �

Claim 3.2. In every jump-equilibrium v, B is fully occupied.

Proof. Suppose there exists an unoccupied vertex v ∈ B. By Claim 2, the vertex v has
to be a degree-one vertex. Since all central vertices have to be occupied and B only
contains agents from T2 (by Claim 3.1), the vertex v is adjacent to a central vertex
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A

v

G[V (G′) \ VS′ ]

. . .

B

i

(a) Agents from T2 in B.

A

v

G[V (G′) \ VS′ ]

i

B

(b) No agents from T2 in B.

Figure 3.7: Claim 2.2: If not all vertices in A are occupied, there exists an agent from T2
outside of A that has a profitable jump.

occupied by an agent from T2. It holds that |T2| ≥ |B|. Since at least one vertex in B
is unoccupied, there exists an agent i ∈ T2 on a vertex in V (G′) \ VS′ . We have that
ui(v) < 1, since i is adjacent to a central vertex in A, which is occupied by an agent
from T1 by Claim 2. Agent i can increase her utility to 1 by jumping to v. �

Claim 3 follows from Claims 3.1 and 3.2. �

Finally, we prove that the input game with stubborn agents admits a jump-equilibrium
if and only if the constructed game admits a jump-equilibrium.
(⇒): First, assume there exists a jump-equilibrium v′ for the Schelling game with
stubborn agents. Note that the vertices in VS′

1
and VS′

2
are occupied by stubborn agents

from T ′1 and T ′2. We define an assignment v for the Schelling game without stubborn
agents and prove that it is a jump-equilibrium. The occupied vertices in V ∩ V (G′) are
occupied by agents of the same type as the agents in v′. If a vertex is unoccupied in v′,
then it is also unoccupied in v. The vertices in X1 are occupied by agents from T1.
For t ∈ {1, 2}, the added degree-one vertices in Mt are occupied by agents from Tt.
Hence, the vertices in A = M1 ∪ VS′

1
∪ X1 are all occupied by agents from T1 and the

vertices in B = M2 ∪ VS′
2

are all occupied by agents from T2.
Next, we prove that v is a jump-equilibrium on G by showing that no profitable jump ex-
ists. We first observe that the utility of an agent i on a vertex w ∈M1∪X1 is ui(v) = 1,
since NG(w) ⊆ A and all agents in A are friends of i. The same holds analogously for
any agent on a vertex in M2. Therefore, the agents on vertices in M1 ∪M2 ∪X1 do not
want to jump to an unoccupied vertex. Furthermore, note that all unoccupied vertices
are in V (G′) \ VS′ and that the neighborhood of all vertices in V (G′) \ VS′ is identical
for v and v′. Therefore, no agent on a vertex in V (G′) \ VS′ can have a profitable jump,
since this jump would then also be profitable on G′, contradicting that v′ is a jump-
equilibrium. Thus, a profitable jump can only exist for an agent i on a vertex vi ∈ VS′
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to an unoccupied vertex v ∈ V (G′) \ VS′ .
Let Y = VS′

1
∪X1 if vi ∈ VS′

1
and Y = VS′

2
otherwise. Denote the number of degree-one

neighbors adjacent to vi added in the construction of G by x. By construction of G, it
holds that x > ∆(G)2. The agent i is, among others, adjacent to the vertices in Y \ {vi}
and the x > ∆(G′)2 degree-one neighbors, which, by construction of v, are all occupied
by friends. It holds that degG(vi) ≤ x+ |Y \ {vi}|+ ∆(G′). Thus, the utility of agent i
on vi is:

uGi (v) ≥ x+ |Y \ {vi}|
x+ |Y \ {vi}|+ ∆(G′)

>
x

x+ ∆(G′)
>

∆(G′)2

∆(G′)2 + ∆(G′)
=

∆(G′)

∆(G′) + 1
.

Now consider an unoccupied vertex v ∈ V (G′) \ VS′ . Recall that we assume that vertex
not occupied by a stubborn agent is adjacent to at least one stubborn agent of each type
in the input game. Since v ∈ V (G′) \ VS′ , the vertex is adjacent to agents from both
T1 and T2 in A and B, respectively. By construction of G, the neighborhood of v is
identical in G and G′. We thus have that degG(v) = degG′(v) ≤ ∆(G′). Since at least
one agent adjacent to v is not a friend of i, the jump can not be profitable:

uGi (vi→v) ≤ ∆(G′)− 1

∆(G′)
<

∆(G′)

∆(G′) + 1
≤ uGi (v).

To sum up, no profitable jump is possible and v is a jump-equilibrium for the constructed
Schelling game.
(⇐): Conversely, assume there exists a jump-equilibrium v for the constructed game.
We define an assignment v′ on G′ and prove that it is a jump-equilibrium for the given
Schelling game with stubborn agents. In v′, an occupied vertex v ∈ V (G′) \ VS′ is
occupied by a strategic agent of the same type as the agent on v in v. If a vertex is
unoccupied in v, then it is also unoccupied in v′. The vertices in VS′ have to be occupied
by the respective stubborn agents. Note that by Claims 2 and 3, in v, the vertices in
VS′

1
⊆ A and VS′

2
⊆ B have to be occupied by agents from T1 and T2, respectively. Thus,

in v′, all occupied vertices are occupied by agents of the same type as in v.
Next, we prove that v′ is a jump-equilibrium on G′. Since the agents on vertices in VS′

are stubborn, only agents on vertices in V \ V (G′) can be involved in a profitable swap.
However, all unoccupied vertices are in V (G′) \ VS′ and the neighborhood of an agent
on such a vertex is the same for v and v′. A profitable swap for an agent on a vertex
in V (G′)\VS′ in v′ would therefore also be a profitable jump in v, thereby contradicting
that v is a jump-equilibrium. Thus, no profitable jump is possible and v′ is a jump-
equilibrium on G′, which completes the proof.





Chapter 4

Robustness of Equilibria

In this chapter, we introduce the perspective of robustness for analyzing equilibria. To
motivate this perspective, we revisit Schelling’s original motivation of modeling segre-
gation in cities. In such a setting, vertices would resemble locations and edges could
resemble roads or bus routes. Assume that the residents of a city are positioned in an
equilibrium such that no resident has an incentive to move. Now, suppose there are some
roadworks in this city that make some roads (i.e., edges of the topology) unavailable. We
might now be interested in the following questions: Does our initially stable placement
of the residents remain stable? Which types of edges can potentially affect the stability
of an equilibrium? Are there some cases for which we can guarantee that an equilibrium
remains stable if we only remove a certain number of edges? In order to find answers to
these questions, we begin by formalizing this view as the robustness of an equilibrium.
We restrict our analysis to the deletion of edges and capture this notion in a worst-case
measure: We say that an equilibrium is r-robust if it remains stable under the deletion
of any set of at most r edges.

Definition 4.1. A (local) jump- or swap-equilibrium v is called r-robust for some r ∈ N0

if v is also a (local) jump- or swap-equilibrium for the topology G− S for all S ⊆ E(G)
with |S| ≤ r. The robustness of v is the largest r ≤ |E(G)| for which v is r-robust. We
denote the robustness of v as rob(v).

The robustness of an equilibrium can also be interpreted as providing a budget for
modifications (deletion of edges) such that the equilibrium is guaranteed to remain stable.
Regarding Definition 4.1, note that we can make an assignment v that becomes unstable
after deleting a certain set of edges stable again by deleting all edges S = E(G), as we
then only have isolated vertices and any assignment is an equilibrium. Thus, we require
v to be stable for all S with |S| ≤ r and not only for all S with |S| = r.
As there might exist multiple equilibria for a given Schelling game, we are naturally
interested in quantifying how much their robustness may vary. We formalize this in the
notion of the robustness-ratio. In the following definition, we define this notion first for
swap-equilibria and then extend it to the other types of equilibria.

Definition 4.2. The robustness-ratio for swap-equilibria for a Schelling game I on topol-

ogy G is defined as
maxv∈SE(I) rob(v)+1

minv∈SE(I) rob(v)+1 , where SE(I) is the set of all swap-equilibria in I.

41
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Analogously, for local swap-equilibria and (local) jump-equilibria, the robustness-ratio
is defined as the same ratio, where SE(I) is replaced by the respective set of equilibria.

Note that we add one to both the numerator and the denominator, as the robustness
of an equilibrium can be zero. The robustness-ratio might also be of interest from a
practical perspective. If the gap is low (in particular, if the gap is equal to one), then
one might be satisfied with finding an arbitrary equilibrium. On the other hand, a high
robustness-ratio might justify putting more effort into finding a more robust equilibrium.
In the following section, we mostly focus on analyzing the robustness of swap-equilibria.
However, we also shortly study local swap-equilibria (see Section 4.1.3) and jump-
equilibria (see Section 4.2).

4.1 Swap-Equilibria

This section is divided into two parts. First, we make some general observations about
the robustness of swap-equilibria. Then, we study the influence of the structure of the
topology on the robustness of swap-equilibria and show bounds for the robustness of
swap-equilibria on graphs from different graph classes.

4.1.1 General Observations

First, we study which types of edges can make a swap-equilibrium unstable by deleting
them. Interestingly, we find that deleting edges between agents of different types can
never make a swap-equilibrium unstable.

Lemma 4.3. Let v be a swap-equilibrium for a Schelling game on a topology G. Let S ⊆
E(G) be a set of edges such that all edges {vi, vj} ∈ S only connect agents of different
types, that is, i ∈ Tl and j ∈ Tl′ with l 6= l′. Then, v is also a swap-equilibrium on G−S.

Proof. Consider the game on topologyG−S and assume for the sake of contradiction that
v is not a swap-equilibrium on G− S, that is, there exist agents i ∈ T1 and j ∈ T2 that
want to swap. We therefore have uG−Si (v) < uG−Si (vi↔j) and uG−Sj (v) < uG−Sj (vi↔j).
Since v is a swap-equilibrium on the original topology G, swapping i and j is not
profitable for at least one of i or j on G. Without loss of generality, assume that the
swap is not profitable for i, that is, it holds that uGi (v) ≥ uGi (vi↔j). As all edges in S
are between agents of different types, no edges to friends of i are deleted in G − S and
it therefore holds that uGi (v) ≤ uG−Si (v). Hence, we have:

uGi (vi↔j) ≤ uGi (v) ≤ uG−Si (v) < uG−Si (vi↔j) (?)

Consider the vertex vj that is occupied by agent j ∈ T2 in assignment v. Since all
edges in S are between agents of different types, the only edges incident to vj that have
been deleted in G − S are edges to agents in T1. Therefore, the utility of agent i ∈ T1
on vj is lower on topology G − S, formally uG−Si (vi↔j) ≤ uGi (vi↔j). This contradicts
Equation (?) and completes the proof.

Next, we derive a useful corollary from the lemma above. By this corollary, given a
set of edges S such that a swap-equilibrium v is unstable on G − S, it holds that v is
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also not a swap-equilibrium on G− S′ where S′ ⊆ S is the subset of edges from S that
connect agents of the same type. Thus, this corollary allows us to only consider edges
between agents of the same type when analyzing the robustness of swap-equilibria.

Corollary 4.4. Let v be a swap-equilibrium for some Schelling game on topology G.
Let S ⊆ E(G) be a set of edges such that v is not a swap-equilibrium on G− S. Then,
v is also not a swap-equilibrium on G− S′, where S′ ⊆ S is the subset of edges from S
that connect agents of the same type, formally, S′ = {{vi, vj} ∈ S | i, j ∈ Tl for some l ∈
{1, 2}}.

Proof. Assume for the sake of contradiction, that v is a swap-equilibrium assignment on
G − S′. Notice that X = S \ S′ only contains edges between agents of different types.
Hence, we can apply Lemma 4.3 and get that v is a swap-equilibrium on G− S′ −X =
G− S. This contradicts that, by definition of S, v is not a swap-equilibrium on G− S.
Thus, v is also not a swap-equilibrium on G− S′.

Regarding Definition 4.1, we discussed above that we can make a swap-equilibrium
that is made unstable by deleting a set of edges stable again by deleting additional edges.
In fact, if we delete all edges, any assignment is a swap-equilibrium on the topology that
only consists of isolated vertices. In contrast to this, we show below that by only deleting
additional edges between agents of the same type, a swap-equilibrium can not be made
stable again.

Proposition 4.5. Let v be a swap-equilibrium for some Schelling game on topology G.
Let S ⊆ E(G) be a set of edges such that v is not a swap-equilibrium on G− S. Then,
for any set A ⊆ {{vi, vj} ∈ E(G) | i, j ∈ Tl for some l ∈ {1, 2}} of edges between agents
of the same type, v is also not a swap-equilibrium on G− (S ∪A).

Proof. Consider a set of edges A that only contains edges between agents of the same
type. Let i ∈ T1 and j ∈ T2 be a pair of agents that has a profitable swap on G−S. We
will now argue that the swap is also profitable on G − (S ∪ A). Consider the vertex vi
that is occupied by agent i. Since A only contains edges between agents of the same
type, we only delete edges to friends of i in the neighborhood of vi. Hence, the utility of
agent i before swapping with j on topology G− (S ∪A) is at most as high as the utility
on G − S. In the neighborhood of vj , we only delete edges to agents in T2. Therefore,
the utility of i after swapping to vj on G− (S∪A) has to be at least as high as on G−S.
By symmetry, the same holds for agent j. Hence, the swap is profitable and v is also
not a swap-equilibrium on G− (S ∪A).

We conclude our general observations with the lemma below, which describes a simple
condition that directly implies that the swap-equilibrium in question has robustness zero.
Concretely, we capture the situation depicted in Figure 4.1, where an agent i ∈ T1 with
only one adjacent friend and another agent j ∈ T2 with utility less than 1 exist.

Lemma 4.6. A swap-equilibrium v has robustness zero if there exists some agent i ∈ T1
on vertex vi with ai = |Ni(v) ∩ Fi| = 1 and |Ni(v)| > 1 and another agent j ∈ T2 on
vertex w with uj(v) < 1, |Nj(v)| ≥ 1 and w /∈ NG(vi).
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i ∈ T1

x ∈ T1

j ∈ T2

Figure 4.1: Lemma 4.6: There exists an agent i ∈ T1 with one friend and an agent j ∈ T2
with uj(v) < 1. After deleting {vi, vx}, agents i and j want to swap.

Proof. Let {x} = Ni(v) ∩ Fi. After deleting {vi, vx}, agents i and j want to swap:

ui(v) = 0 < ui(v
i↔j), since w has neighbors in T1.

uj(v) < 1 = uj(v
i↔j), since all neighbors of vi are in T2.

4.1.2 Topological Influence on Robustness

In this section, we analyze the influence of the structure of the topology on the ro-
bustness of swap-equilibria. We prove upper and lower bounds on the robustness of
swap-equilibria on topologies from various graph classes and find that the robustness of
swap-equilibria heavily depends on the structure of the underlying topology. We first
analyze cliques, cycles, paths and grids and find that on all (large enough) topologies
from these classes there exist equilibria that can be made unstable by deleting a single
edge. For paths, we observe that the robustness-ratio between the most and least robust
swap-equilibrium can be arbitrarily large. Finally, with star-constellation graphs, we
provide an infinite class of graphs where every swap-equilibrium has robustness larger
than 0.

Cliques

For swap-equilibria on cliques, we show that deleting any edge between two agents of
the same type makes every swap-equilibrium unstable.

Proposition 4.7. For Schelling games where the topology is a clique, every swap-
equilibrium has robustness of 0.

Proof. Fix some Schelling game with |T1| = a, |T2| = b, and a topology G which is a
clique of size a + b ≥ 4. Let v be a swap-equilibrium. Consider some agent i ∈ T1 on
vertex v. Since G is fully connected, it holds that ui(v) = a−1

a+b−1 and there exists an

edge e = {vi, vj} to some other agent j ∈ T1. All agents l ∈ T2 have ul(v) = b−1
a+b−1 .
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After deleting e, we have ui(v) = a−2
a+b−2 . Now, i and some agent l ∈ T2 want to swap:

ui(v) =
a− 2

a+ b− 2
<

a− 1

a+ b− 1
= ui(v

i↔l)

ul(v) =
b− 1

a+ b− 1
<

b− 1

a+ b− 2
= ul(v

i↔l)

Summarizing, v is not a swap-equilibrium for the topology G − {e}, which completes
the proof.

Cycles

Turning to cycles, we find that in every swap-equilibrium there exists an agent from
one type that has only one adjacent friend and an agent from the opposite type that
has utility less than 1, as depicted in Figure 4.2. Thus, we can apply Lemma 4.6 and
conclude that every swap-equilibrium has robustness zero.

Proposition 4.8. For Schelling games where the topology G is a cycle, every swap-
equilibrium has robustness zero.

Proof. Let v be a swap-equilibrium. First, we show that there always exists a sequence
of l ≥ 2 vertices w1, . . . , wl occupied by agents of the same type that induce a path in G,
where the agents at both ends of the path on w1 and wl are each adjacent to a different
agent of the other type (see Figure 4.2). Assume that no two agents of the same type
are neighbors, hence we have ui(v) = 0 for all i ∈ N . Then, any swap of two agents
i ∈ T1 and j ∈ T2 is profitable: Since both neighbors of i and j respectively are of the
other type, after swapping, both agents have at least one friend in their neighborhood.
It therefore holds that ui(v) = 0 < ui(v

i↔j) and uj(v) = 0 < uj(v
i↔j). Hence, in any

equilibrium assignment v, there exists a sequence as defined above with l ≥ 2. Now
consider a maximal path w1, . . . , wl of vertices occupied by agents of the same type.
Without loss of generality, assume that all agents are from T1. Since we have at least
two agents from T2, the agents on wl and w1 need to be adjacent to agents j ∈ T2 and
j′ ∈ T2 with j 6= j′.
It follows that there always exists agent i ∈ T1 with only one adjacent friend and
agent j ∈ T2 that is outside of the neighborhood of i and has utility of less than 1.
We can therefore apply Lemma 4.6 and conclude that v has robustness zero.

Paths

Next, we analyze swap-equilibria on paths. Interestingly, in contrast to cycles, we
find that there always exists a swap-equilibrium with robustness |E(G)| (i.e., a swap-
equilibrium that remains stable after deleting any set of edges). The reason for this is
that on a path, we can always position the agents such that there exists only one edge
between agents of different types, yielding a swap-equilibrium with robustness |E(G)|
(depicted in Figure 4.3a). This is not possible on a cycle.
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j′ ∈ T2

w1

i ∈ T1

w2 wl−1 wl

j ∈ T2

. . .

. . .

Figure 4.2: Sequence of vertices w1, . . . , wl on the cycle considered in Proposition 4.8. By
Lemma 4.6, the agents i ∈ T1 and j ∈ T2 want to swap after deleting {w1, w2} ∈ E(G).

Proposition 4.9. For Schelling games where the topology is a path of length n = |T1|+
|T2|, there exists a swap-equilibrium with robustness |E(G)|.

Proof. Fix some 2-swap game with |T1| = x, |T2| = y and x, y ≥ 2, and a topology G
which is a path on vertices (w1, w2, . . . , wn) with n = x + y ≥ 4. We define an assign-
ment v (see Figure 4.3a) as follows: The x agents from T1 occupy the first x vertices
w1, . . . , wx and the agents of type T2 are placed on the remaining y vertices wx+1, . . . , wn.
The assignment v is a swap-equilibrium, since only the agents on wx and wx+1 have util-
ity less than 1 and swapping these two agents results in a utility of zero for both agents.
We now show that v is |E(G)|-robust:
Let S ⊆ E(G) be any set of edges and consider the topology G−S. Note that an agent i
on vertex wl, l 6= x and l 6= x+ 1, only has neighbors of the same type in G. Hence, for
the topology G − S, we have ui(v) = 1 if i has remaining neighbors and ui(v) = 0 if i
occupies an isolated vertex. Therefore, only the agents j on vertex wx and j′ on wx+1 can
be involved in a swap. Swapping j and j′ results in Nj(v

j↔j′)∩Fj = Nj′(v
j↔j′)∩Fj′ = ∅,

since in G the vertex wx = vj↔j′

j′ is only connected to an agent from T1 on wx−1 and

to wx+1 = vj↔j′

j with j ∈ T1, the same holds for wx+1. Thus, the utility of both agents
cannot be strictly greater and no swap is possible.

However, by placing the agents such that there are two agents from each type that
are adjacent to agents from the opposite type (as shown in Figure 4.3b), we can construct
a swap-equilibrium with robustness zero in a Schelling game on a path with sufficiently
many agents.

Proposition 4.10. For Schelling games where the topology is a path and it holds that
|T1| ≥ 4 or |T2| ≥ 4, there exists a swap-equilibrium with robustness zero.

Proof. Let x = |T1|, y = |T2|, and n = x + y. Assume without loss of generality
that x ≥ 4. The topology G is a path on vertices w1, . . . , wn. We define the following
assignment v (shown in Figure 4.3b). The vertices w1 and w2 are occupied by two agents
from T1. The y ≥ 2 agents from T2 are positioned on the vertices w3 to wy+2 and the
remaining x− 2 ≥ 2 agents from T1 are placed on the vertices wy+3 to wn.
Since, by definition of v, every agent has at least one friend and it holds that ∆(G) = 2,
we have ui(v) ≥ 1

2 for all agents i ∈ N . We also observe that any agent has at most
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w1 w2 wx

j ∈ T1

wx+1

j′ ∈ T2

wn−1 wn. . . . . .

(a) The swap-equilibrium with robustness |E(G)| constructed in Proposition 4.9. Note that only
agents j and j′ have neighbors of a different type.

w1 w2

i ∈ T1

w3 wy+2

j ∈ T2

wy+3 wn. . . . . .

|T2| ≥ 2 |T1| − 2 ≥ 2

(b) The swap-equilibrium with robustness zero from Proposition 4.10. After deleting {w1, w2} ∈
E(G), swapping i and j is profitable.

Figure 4.3: Two swap-equilibria on paths with robustness zero and |E(G)|. This shows
that the gap between the robustness of different swap-equilibria on a fixed topology can
be arbitrarily large.

one neighbor of the other type. Therefore, by swapping agents i ∈ T1 and j ∈ T2 we
get at most ui(v

i↔j) = 1
2 ≤ ui(v). Hence, no profitable swap is possible and v is a

swap-equilibrium.
To show that v has robustness zero, observe that there exists an agent i ∈ T1 on vertex w2

with only one adjacent friend and an agent j ∈ T2 on vertex wy+2 (outside of the
neighborhood of vi) with utility less than 1. Thus, with Lemma 4.6, it follows that v
has robustness zero.

Moreover, this shows that every Schelling game on a path with sufficiently many
agents from both types has robustness-ratio |E(G)| + 1. Hence, the robustness-ratio
can become arbitrarily large. As, from a practical perspective, more robust equilibria
might be desirable in many settings, this raises the question whether one can efficiently
check the robustness of an equilibrium or decide the existence of equilibria with a certain
robustness. We study these computational aspects in Section 4.3.

Grids

Next, we turn to grids, which are one of the graph classes which have been most often
considered in Schelling’s original model. We first prove that every swap-equilibrium on a
grid has robustness of at most 1. To prove this, we define the concept of frames of a grid
(this notion also appears in the analysis of the price of anarchy of swap-equilibria on grids
by Bilò et al. [Bil+20]). Let G be an (x×y)-grid with V (G) = {(a, b) ∈ N×N | a ≤ x, b ≤
y}. We refer to the set B(G) of vertices in the top row, bottom row, left column and right
column as border vertices (formally, B(G) = {(a, b) ∈ V (G) | a ∈ {1, x} or b ∈ {1, y}}).
The first frame F1 of G is the set of border vertices. The second frame F2 of G is the set
of border vertices of the grid that results from deleting the first frame from G. Further,
for all i > 1, the frame Fi of G is the set of border vertices of the grid that results from
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Figure 4.4: The two frames of a (4×4)-grid. The first frame F1 is colored in a light blue
and the second frame F2 is colored in red.

deleting the frames F1, . . . , Fi−1 from G. An example for the frames of a (4× 4)-grid is
given in Figure 4.4.

Theorem 4.11. Let v be a swap-equilibrium on a grid G. Then, v has robustness
at most one.

Proof. For the sake of contradiction, assume that there exists a swap-equilibrium v
which is 2-robust. By induction over the frames of G, we show that all vertices have to
be occupied by agents from the same type in v, which contradicts that we have at least
two agents from both types.

Base case: First, consider the frame F1 and assume that there are agents from both
types. Then, there exist two adjacent agents i ∈ T1 and j ∈ T2. Since G is a grid, there
exist two other adjacent agents i′ ∈ Tt1 and j′ ∈ Tt2 in G with t1, t2 ∈ {1, 2} such that
i′ is adjacent to i and j′ is adjacent to j. First, suppose that t1 6= t2. Note that the (at
most two) adjacent friends of i can only be on vi′ and, if it exists, the other adjacent
vertex u 6= vj of vi on F1. If we delete the edges to vi′ and u (if it exists), then we have
ui(v) = 0. If t1 = 1, then swapping i and j′ is profitable, since ui(v) = 0 < ui(v

i↔j′)
and uj′(v) < 1 = uj′(v

i↔j′). Otherwise, if t1 = 2, swapping i and i′ is profitable. This
contradicts that v has robustness 2.
Therefore, it has to hold that t1 = t2. By symmetry, assume that t1 = t2 = 1. Then,
agent j is adjacent to two agents of the opposite type (i and j′). Consider another
agent x ∈ T2 with x 6= j and an arbitrary agent from T1. Since G is a grid, there exists
a path from x to this agent that does not go through vj . On this path, there exists
an agent x′ ∈ T2 with x′ 6= j that is adjacent to an agent y ∈ T1. We distinguish the
following three cases and prove that in every case, there exists a profitable swap after
deleting two edges.

Case 1: First, suppose that y = i. Note that in this case, both i and j are adjacent
to at most one friend, since they both have at most degree three and are each adjacent
to two agents of the opposite type. Thus, after deleting the at most two edges to their
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respective adjacent friends, we have that ui(v) = 0 and uj(v) = 0. Swapping i and j is
profitable, since vi is adjacent to agent x′ ∈ T2 and vj is adjacent to j′ ∈ T1.

Case 2: Second, suppose that y = j′. Note that agent j has at most one adjacent
friend. Thus, after deleting at most one edge, we have that uj(v) = 0. Additionally,
after deleting the edge between j′ = y and i′, we have that uj′(v) ≤ 1

3 , since j′ has
at most three remaining neighbors and two of those agents are of the opposite type (x′

and j). Then, swapping j and j′ is profitable. It holds that uj(v) = 0 < uj(v
j↔j′) and

uj′(v) ≤ 1
3 <

1
2 ≤ uj′(v

j↔j′).

Case 3: Finally, assume that y 6= i and y 6= j′. Again, since j has at most one adjacent
friend, after deleting at most one edge, we have that uj(v) = 0. Then, swapping j and
y is profitable, since uj(v) = 0 < uj(v

j↔y) and uy(v) < 1 = uy(vj↔y).

Since we have exhausted all possible cases, it follows that F1 is fully occupied by
agents from only one type Tt with t ∈ {1, 2}.

Induction step: Assume that it holds for some i ∈ N, that all Fj with j ≤ i are
occupied only by agents from Tt.
We now show that then Fi+1 also needs to be occupied only by agents from Tt. We do
so by showing that if there are agents from the other type Tt′ in Fi+1, then there exists
a profitable swap after deleting at most two edges. Without loss of generality, assume
that |Fi+1| ≥ 2. If |Fi+1| < 2, then we have already reached a contradiction, since all
other layers are occupied by agents from one type Tt only, but there are at least two
agents from the other type Tt′ that have to be positioned.
First, suppose that there are only agents from Tt′ in Fi+1. Let i ∈ Tt′ be the agent in
the bottom-left corner of Fi+1. Formally, let i ∈ Tt′ with vi = (a, b) ∈ Fi+1 such that it
holds for all other (a′, b′) ∈ Fi+1 that a′ ≥ a and b′ ≥ b. Note that i is adjacent to two
agents of the other type in Fi and has at most two adjacent friends. Thus, after deleting
at most two edges, we have that ui(v) = 0. Now consider another agent i′ ∈ Tt′ in Fi+1.
Agent i′ is adjacent to an agent j ∈ Tt in Fi. It holds that uj(v) < 1. Then, swapping i
and j is profitable, since uj(v) < 1 = uj(v

i↔j) and ui(v) = 0 < ui(v
i↔j).

Therefore, there have to be agents from Tt in Fi+1. Next, suppose that there are at
least two agents from Tt′ in Fi+1. From this it follows that there exists an agent i ∈ Tt′
which is adjacent to an agent j ∈ Tt in Fi+1, and that there exists a different agent
i′ ∈ Tt′ in Fi+1. Let j′ ∈ Tt be an agent in Fi adjacent to i′. We have that uj′(v) < 1.
Note that agent i has at most two adjacent friends, since i is adjacent to two agents
of the other type. If we delete all (at most two) edges to adjacent friends of i, then it
holds that ui(v) = 0. Swapping i and j′ is profitable, since uj′(v) < 1 = uj′(v

i↔j′) and
ui(v) = 0 < ui(v

i↔j′).
Thus, there can be at most one agent i ∈ Tt′ in Fi+1. Observe that i has at most
one friend, since all other agents in Fi+1 and Fi are of the other type. Using the same
argument as above and the fact that G is a grid, we obtain that there exists another
agent i′ ∈ Tt′ with i′ 6= i which is adjacent to an agent j ∈ Tt. If j is not adjacent
to i, swapping i and j is profitable after deleting the edge to the adjacent friend of i
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(if it exists). Otherwise, we have that j has at most two adjacent friends, since it
is adjacent to both i and i′. Then, we again delete the edge to the adjacent friend
of i (if it exists), and an edge between j and an adjacent friend of j. We have that
ui(v) = 0 and uj(v) ≤ 1

3 . Swapping i and j is profitable, since ui(v) = 0 < ui(v
i↔j)

and uj(v) ≤ 1
3 <

1
2 ≤ uj(v

i↔j). Since we have exhausted all possibilities, it follows that
Fi+1 is also only occupied by agents from Tt.
Thus, the induction step follows and it follows that in case there exists a swap-equilibrium
which is 2-robust all vertices need to be occupied by agents from the same type. As,
however, we assume that |T1|, |T2| ≥ 2, this leads to a contradiction and shows that the
robustness of any swap-equilibrium on a grid is upper bounded by one.

Next, we study Schelling games on grids with an equal number of agents for both
types. We show that in such games, on any grid (x × y)-grid with even x ≥ 4, there
exist swap-equilibria with robustness of one and zero. Hence, there exists an infinite
class of Schelling games on grids with robustness-ratio two. First, we consider the swap-
equilibrium with robustness one, which is shown in Figure 4.5.

Proposition 4.12. In a Schelling games with |T1| = |T2| on an (x× y)-grid with even
x ≥ 4, there exists a swap-equilibrium with robustness one.

Proof. We first construct an assignment v and prove that it is always a swap-equilibrium:
The agents from T1 occupy the first x

2 columns and the agents from T2 are placed on
the remaining columns. Observe that only the agents on columns x

2 and x
2 + 1 have a

utility of less than 1. Therefore, only these agents can be involved in a profitable swap.
Consider some agent i from column x

2 . Since x
2 ≥ 2, we have ui(v) = 2

3 if i occupies the
vertex on the top or bottom of the column and ui(v) = 3

4 otherwise. If i swaps with
some agent j from column x

2 + 1, then ui(v
i↔j) ≤ 1

3 if vj is the vertex at the top or
bottom of the column and ui(v

i↔j) ≤ 1
4 otherwise. Hence, no profitable swap involving

an agent from T1 exists and thus v is a swap-equilibrium.
We now show that v has robustness one. First, we observe that v is not 2-robust. If we
take the first vertex from column x

2 occupied by agent i ∈ T1 and delete both edges to
the two friends of i, agent i and agent j ∈ T2 positioned on the vertex at the bottom of
column x

2 + 1 want to swap:

ui(v) = 0 <
1

3
= ui(v

i↔j), since i has no edges to friends.

uj(v) =
2

3
< 1 = ul(v

i↔j), since the only neighbour of vj is now in T2.

To show that v is 1-robust, consider deleting an edge e ∈ E(G). From Lemma 4.3, we
know that deleting an edge between agents of different types can not make v unstable.
Therefore, we only consider edges between agents of the same type. Hence, by symmetry,
let e be an edge between two agents from T1. Still, only the agents on columns x

2 and x
2 +1

have utility of less than 1. If an agent i ∈ T1 on vertex vi incident to e is positioned on the
top or bottom of column x

2 , then ui(v) = 1
2 and ui(v) = 2

3 otherwise. By swapping with
some agent j ∈ T2, agent i can get at most ui(v

i↔j) = 1
3 , as argued above. Therefore,

the swap can not be profitable and v is 1-robust and hence has robustness one.
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i ∈ T1

..
.

j ∈ T2
..
.

x
2

x
2

Figure 4.5: Equilibrium assignment v from Proposition 4.12. After deleting the edges
to the two friends of i ∈ T1, i and agent j ∈ T2 want to swap.

However, by slightly modifying this swap-equilibrium, we can construct a swap-
equilibrium that can be made unstable by deleting a single edge (i.e., that has robustness
zero). This swap-equilibrium is depicted in Figure 4.6.

Proposition 4.13. In a Schelling games with |T1| = |T2| on an (x× y)-grid with even
x ≥ 4, there exists a swap-equilibrium with robustness zero.

Proof. We define an assignment v as follows: The first column is occupied by agents
from T1, the following columns up to column x

2 + 1 are occupied by the agents from T2
and the remaining agents from T1 are placed on columns x

2 + 2 to x.
We now show that v is a swap-equilibrium. Observe that it holds for all agents i ∈ T2
that ui(v) ≥ 1

2 . An agent j ∈ T1 has at most one neighbor in T2. Therefore, agent i
could at best achieve ui(v

i↔j) = 1
2 ≤ ui(v) by swapping with an agent j ∈ T1. Since no

profitable swap exists, the assignment v is an equilibrium.
in v, there exists an agent i ∈ T1 on the vertex at the top of the first column with only
one adjacent friend and agent j ∈ T2 at the bottom of the second column with utility
of less than one. Hence, we can apply Lemma 4.6 and it follows that v has robustness
zero.
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i ∈ T1

j ∈ T2

..
.

..
.

x
2

x
2 − 1

Figure 4.6: Equilibrium assignment v from Proposition 4.13. After deleting the edge to
the only adjacent friend of i ∈ T1, i and agent j ∈ T2 want to swap.

Star-constellation Graphs

Recall that for all graph classes considered so far, we showed that there exists a swap-
equilibrium with robustness zero on a graph from each one of these classes. We are thus
interested in finding an infinite class of graphs such that any swap-equilibrium on a graph
from this class has non-zero robustness. To this end, we consider α-star-constellation
graphs. These graphs consist of stars, where the central vertices of the stars can be
connected by edges such that every central vertex is adjacent to at least α more degree-
one vertices than other central vertices. An example is given in Figure 4.7. Formally,
it holds for all v ∈ V with degG(v) > 1 that |{w ∈ NG(v) | degG(w) = 1}| ≥ |{w ∈
NG(v) | degG(w) > 1}| + α. Moreover, such graphs seem quite natural in the context
of social networks, as the central vertices could resemble organizations or groups with
the members being the adjacent degree-one vertices, and the edges between the central
vertices resembling interactions between these entities.
In this section, we show that every swap-equilibrium on an α-star-constellation graph
has robustness at least α. We find that swap-equilibria may fail to exist on α-star-
constellation graphs but that we can precisely characterize swap-equilibria assignments
on such graphs. Moreover, we derive a polynomial-time algorithm for deciding the exis-
tence of swap-equilibria on α-star-constellation graphs using this characterization, and
provide a subclass of α-star-constellation graphs where a swap-equilibrium is guaranteed
to exist. We begin by showing that every swap-equilibrium on an α-star-constellation
graph is α-robust.
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Figure 4.7: An example for a 1-star-constellation graph.

Theorem 4.14. Let G be an α-star-constellation graph for some α ∈ N0. Then, every
swap-equilibrium for a Schelling game on G is α-robust.

Proof. Let v be a swap-equilibrium on G. We distinguish the following two cases.

Case 1: There exists a vertex v with degG(v) = 1 occupied by an agent i such that
the only adjacent vertex w is occupied by an agent j of the other type. Assume without
loss of generality that i ∈ T1 and j ∈ T2. We have ui(v) = 0. Then, every other
agent j′ ∈ T2 with j 6= j′ has to have utility uj′(v) = 1. Otherwise, swapping i and j′

is profitable: Since uj′(v) < 1, the vertex vj′ is adjacent to at least one agent in T1 and
we have ui(v

i↔j′) > 0 = ui(v). We also have uj′(v
i↔j′) = 1 > uj′(v), because j ∈ T2 is

the only neighbor of agent i in v. It follows that each agent i′ ∈ T1 with vi′ /∈ NG(vj)
also has ui′(v) = 1, since no agent j′ ∈ T2 with j′ 6= j is adjacent to an agent in T1.
Summarizing, we have that the agent j is the only agent from T2 that is adjacent to an
agent from the other type.
Now, we show that v is α-robust. Consider deleting a set of edges S ⊆ E with |S| ≤ α.
On the topology G − S, for all j′ ∈ T2 with j 6= j′ we have uG−Sj′ (v) = 1 if vj′ has
remaining neighbors or vj′ is an isolated vertex. The same holds for all i′ ∈ T1 with
vi′ /∈ NG(vj). Hence, only agent j ∈ T2 and an agent x ∈ T1 with vx ∈ NG(vj) can be
involved in a profitable swap. We however have uG−Sj (vx↔j) = 0, since j ∈ T2 is only

adjacent to agents from T1 in vx↔j. Therefore, no profitable swap is possible.

Case 2: Now assume that it holds for all vertices v with deg(v) = 1 that v and the
only vertex adjacent to v are occupied by agents of the same type. In the following,
we show that v is α-robust. Let S ⊆ E be a set of edges with |S| ≤ α and consider
the game on G − S. Note that only agents i ∈ T1 and j ∈ T2 with degG(vi) > 1 and
degG(vj) > 1 in the original topology can be involved in a profitable swap, since all other
agents either occupy an isolated vertex or only have one neighbor of the same type. If
vi or vj is an isolated vertex in G − S, swapping i and j can not be profitable. We
therefore assume that both vertices have remaining neighbors. Recall that by definition
of G, we have |{w ∈ NG(v) | degG(w) = 1}| ≥ |{w ∈ NG(v) | degG(w) > 1}|+ α for all
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v ∈ V with degG(v) > 1. Since we delete at most α edges and it holds that degG(vi) > 1
and degG(vj) > 1, it follows that |{w ∈ NG−S(v) | degG(w) = 1}| ≥ |{w ∈ NG−S(v) |
degG(w) > 1}| for v ∈ {vi, vj}. By our assumption, the agents on the vertices w with
degG(w) = 1 in the neighborhoods of vi and vj are friends of i and j. We hence have
that uG−Si (v) ≥ 1

2 and uG−Si (vi↔j) ≤ 1
2 , the same holds for agent i. Thus, the swap is

not profitable and v is α-robust.

Note that the theorem above has no implications for the existence of swap-equilibria
on α-star-constellation graphs. Indeed, we observe that on general α-star-constellation
graphs, a swap-equilibrium may fail to exist (see Figure 4.8).

Proposition 4.15. A Schelling game on an α-star-constellation graph G may fail to
admit a swap-equilibrium.

Proof. Consider the graph G (shown in Figure 4.8) that consists of three 3-stars with
central vertices x, y, z, where the vertices x, y, z form a clique. Note that G is a 1-star-
constellation graph. Next, we will show that the Schelling game with |T1| = 5 and
|T2| = 7 does not admit a swap-equilibrium on G. Observe that all stars in G consist
of four vertices and |T1| = 5 and |T2| = 7 are not divisible by four. Therefore, in any
assignment v, there exists a degree-one vertex occupied by an agent i ∈ Tl such that
the adjacent central vertex is occupied by an agent j ∈ Tl′ of the other type with l 6= l′.
Let v 6= v′ ∈ {x, y, z} be the remaining two central vertices. We distinguish the following
two cases.

Case 1: The agents on the degree-one vertices adjacent to v and v′ have the same
type as their respective neighbor on the central vertex. Since we have |T1| < 8 and
|T2| < 8, the vertices v and v′ can not be occupied by agents of the same type. Assume by
symmetry that an agent j′ ∈ Tl′ occupies vertex v and v′ is occupied by i′ ∈ Tl. Then, we
have uj′(v) < 1 and swapping i and j′ is profitable. It holds that ui(v) = 0 < ui(v

i↔j′)
and uj′(v) < 1 = uj′(v

i↔j′).

Case 2: There exists an agent on a degree-one vertex that has a different type than the
agent on the adjacent central vertex v or v′. One of the agents has to be of type Tl and
the other agent has to be of type Tl′ . In any case, there exists an agent j′ 6= j from T2
with uj′(v) < 1. Then, similarly to the case above, swapping i and j′ is profitable. It
holds that ui(v) = 0 < ui(v

i↔j′) and uj′(v) < 1 = uj′(v
i↔j′).

Note that the graph we used as a counterexample is a split graph, that is, the vertices
can be partitioned into a clique and an independent set. Intuitively, in the proof above,
we exploited that there always exists an agent i on a degree-one vertex without adjacent
friends and an agent of the other type with utility less than 1 that is not adjacent to
i and thus wants to swap with i. In the following theorem, we generalize this idea to
derive a precise characterization of swap-equilibria on α-star-constellation graphs. We
show that, in every swap-equilibrium on an α-star-constellation graph, all stars are each
only occupied by agents from one type (i.e., there is no agent on a degree-one vertex with
no adjacent friends) or for one of the types there exists only one agent that is adjacent
to agents of the opposite type.



4.1. SWAP-EQUILIBRIA 55

x

y z

Figure 4.8: An example for a 1-star-constellation graph that does not admit an equi-
librium for the Schelling game with |T1| = 5 and |T2| = 7.

Theorem 4.16. Let G be an α-star-constellation graph G = (V,E) with α ∈ N0 and
let v be an assignment for some Schelling game on G. The assignment v is a swap-
equilibrium if and only if at least one of the following two conditions holds.

1. Every vertex v ∈ V with degG(v) = 1 is occupied by an agent from the same type
as the agent on the only adjacent vertex.

2. There exists an agent i ∈ Tl for one of the types l ∈ {1, 2} such that all other
agents i′ ∈ Tl \ {i} of type Tl are only adjacent to friends.

Proof. First, we prove that any assignment that fulfills at least one of the two conditions
is a swap-equilibrium. Let v be an assignment satisfying the first condition, that is,
every v ∈ V with degG(v) = 1 is occupied by an agent from the same type as the agent
on the only adjacent vertex. For all i ∈ N with degG(vi) = 1, we have ui(v) = 1. Thus,
no such agent i can be involved in a profitable swap. Recall that by definition of G, we
have |{w ∈ NG(v) | degG(w) = 1}| ≥ |{w ∈ NG(v) | degG(w) > 1}| + α for all v ∈ V
with degG(v) > 1. Since all agents on vertices adjacent to vj with degree one are friends,
we have uj(v) ≥ 1

2 for all j ∈ N with degG(vj) > 1. Now consider an agent j ∈ Tl and
an agent j′ ∈ Tl′ of the other type l′ 6= l on vertices vj , vj′ with degree larger than one.
If we swap j and j′, we have uj(v

j↔j′) ≤ 1
2 ≤ uj(v). The same holds for j′. Thus, no

profitable swap is possible and v is a swap-equilibrium.
Now, we consider an assignment that fulfills the second condition. Let v be an assignment
such that there exists an agent i ∈ Tl for one of the types l ∈ {1, 2} such that all other
agents i′ ∈ Tl \ {i} of type Tl are only adjacent to friends. Assume without loss of
generality that l = 1. For all i′ ∈ T1 \ {i}, we have ui′(v) = 1. Similarly, for all
j ∈ T2 with vj /∈ NG(vi), we also have uj(v) = 1. Hence, only agent i ∈ T1 and an
agent j′ ∈ T2 with vj′ ∈ NG(vi) can have a profitable swap. However, after swapping i
and j′, agent i ∈ T1 is only adjacent to agents from T2 and has ui(v

i↔j) = 0. Therefore,
no profitable swap is possible.
Next, we will argue that any assignment v for which both conditions do not hold can
not be a swap-equilibrium. Thus, in assignment v, there exists an agent i ∈ N with
degG(vi) = 1 such that the only adjacent agent is of the other type. Assume without loss
of generality that i ∈ T1. Additionally, for both types there exist two agents x, x′ ∈ T1
with x 6= x′ and y, y′ ∈ T2 with y 6= y′ such that {vx, vy} ∈ E and {vx′ , vy′} ∈ E. We
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have ui(v) = 0. Furthermore, since degG(vi) = 1, at least one of the agents y, y′ ∈ T2 has
to be positioned outside of the neighborhood of vi. Assume without loss of generality
that vy /∈ NG(vi) and thus also x 6= i. Then, swapping i and y is profitable. We have
ui(v) = 0 < ui(v

i↔y), since i is adjacent to x in vi↔y. It also holds that uy(v) < 1 =
uy(vi↔y), since y ∈ T2 is adjacent to x ∈ T1 in v and the only neighbor of y in vi↔y has
the same type. Hence, the assignment v can not be a swap-equilibrium.

Next, we aim to use the theorem above to find a subclass of α-star-constellation
graphs where a swap-equilibrium is guaranteed to exist. Especially for the second con-
dition, it is clear that the existence of an assignment that satisfies this condition heavily
depends on the structure of the underlying graph formed by the central vertices (i.e.
the non-degree-one vertices). Thus, we capture this notion as the core of an α-star-
constellation graph.

Definition 4.17. The core of an α-star-constellation graph G is the subgraph G′ of G
where all degree-one vertices are deleted. Formally, G′ = G[V (G) \ L] with L = {v ∈
V (G) | degG(v) = 1}.

The core of the graph from Figure 4.8 is induced by the vertices x, y and z. In
Proposition 4.15, we saw that a swap-equilibrium may fail to exist if the core is a clique or
cycle. We now study graphs where the core is a path. These graphs are special caterpillar
graphs. A caterpillar is an acyclic graph, where every vertex is adjacent to or on a central
path. If the core is a path, one can easily construct an assignment that satisfies the second
condition from the theorem above (an example is given in Figure 4.9a). Furthermore,
in the following proposition, we show that this swap-equilibrium has robustness |E(G)|,
and that for some games on such α-star-constellation graphs there also exists a swap-
equilibrium with robustness only α (see Figure 4.9b). This implies that the upper bound
for the robustness of swap-equilibria on α-star-constellation graphs differs from the lower
bound of α (by Theorem 4.14), and for every α ∈ N there exists a Schelling game on an
α-star-constellation graph with robustness-ratio larger than one.

Proposition 4.18. For every Schelling game on an α-star-constellation graph where
the core is a path, there exists a swap-equilibrium with robustness |E(G)|. For every
α ∈ N0, there is a Schelling game on an α-star-constellation graph where the core is a
path that admits a swap-equilibrium with robustness α.

Proof. We start with the first part of the proposition. Consider a Schelling game on an
α-star-constellation graph G with w1, . . . , w` being the non-degree-one vertices forming
a path. It is easy to construct a swap-equilibrium v by assigning for each i ∈ {1, . . . , `}
agents from T1 first to wi and then to the degree-one vertices adjacent to wi, until there
are no remaining unassigned agents from T1. In this case the remaining vertices are
filled with agents from T2. By Theorem 4.16, v is a swap-equilibrium (as it satisfies the
second condition). Note that in v there exists only one agent from T1, say i ∈ T1, who is
adjacent to an agent from T2. Let S ⊆ E be a subset of edges of arbitrary size. We now
argue that v is a swap-equilibrium on G − S. First, note that i is still the only agent
from T1 who is adjacent to an agent from T2 in v on G−S. For all i′ ∈ T1 \{i}, we have
uG−Si′ (v) = 1 or vi′ is an isolated vertex. Similarly, for all j ∈ T2 with vj /∈ NG−S(vi),
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(a) An example for a swap-equilibrium on a 2-star-constellation graph where there core is a path
for a Schelling game with |T1| = 9 and |T2| = 6. By Proposition 4.18, this swap-equilibrium has
robustness |E(G)|.

(b) An example for a swap-equilibrium on a 2-star-constellation graph where there core is a
path for a Schelling game with |T1| = 6 and |T2| = 10. As shown in Proposition 4.18, this
swap-equilibrium has robustness only α.

Figure 4.9: Two swap-equilibria on α-star-constellation graphs with robustness α and
|E(G)|, as constructed in Proposition 4.18.

we also have uG−Sj (v) = 1 or vj is an isolated vertex. Hence, only agent i ∈ T1 and an
agent j′ ∈ T2 with vj′ ∈ NG−S(vi) can have a profitable swap. However, after swapping
i and j′, agent i ∈ T1 is only adjacent to agents from T2 and has uG−Si (vi↔j) = 0.
Therefore, no profitable swap is possible and v has robustness |E(G)|.

Let us now come to the second part of the proposition. For α ∈ N0, let G be an α-
star-constellation graph where the core is a path formed by the non-degree-one vertices
w1, . . . , w4. For i ∈ {1, 4}, wi is adjacent to α+ 1 degree-one vertices, and for i ∈ {2, 3},
wi is adjacent to α + 2 degree-one vertices. We consider the Schelling game on G with
|T1| = 2 · (α + 1) and |T2| = 2 · (α + 2). Let v be the assignment where agents from T1
occupy the 2 · (α+ 1) vertices from the stars with central vertices w1, w4 and the agents
from T2 occupy the 2 · (α+ 2) vertices from the stars with central vertices w2, w3. Note
that v fulfills the first condition from Theorem 4.16 and is thus a swap-equilibrium which
is by Theorem 4.14 α-robust. To show that v has robustness α it remains to provide a
set of α + 1 edges whose deletion make v unstable (i.e., v is not α + 1-robust). Let S
be the set of α+ 1 edges containing all edges between w1 and its degree-one neighbors.
Then, on G − S, swapping agent i ∈ T1 on w1 and agent j ∈ T2 on w3 is profitable, as
uG−Si (v) = 0 < uG−Si (vi↔j) and uG−Sj (v) < 1 = uG−Sj (vi↔j).

Note that the swap-equilibria constructed above are somewhat similar to the swap-
equilibria on paths with robustness zero and |E(G)| from Propositions 4.9 and 4.10.
Finally, we will sketch how we can efficiently decide whether an assignment that satisfies
at least one of the conditions from Theorem 4.16 exists on an α-star-constellation graph.
For this, we introduce the star-partition of an α-star-constellation graph G. Recall that
α-star-constellation graph can be thought of as graphs consisting of stars with additional
edges between the central vertices of the stars. The star-partition partitions G into the
sets of vertices of these stars.
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Definition 4.19. The star-partition of an α-star-constellation graph is the collection of
sets {{v} ∪ {w ∈ NG(v) | degG(w) = 1} | degG(v) > 1}.

We note that the star-partition is unique, since every vertex w with degG(w) = 1
is adjacent to only one vertex and can thus be in only one set. Additionally, it can
easily be computed in polynomial-time by iterating over all vertices with degree of at
least two. Next, we observe that an assignment v that meets the first condition from
Theorem 4.16 exists if and only if the star-partition of G can be partitioned into two
sets A and B such that |

⋃
S∈A S| = |T1| and |

⋃
S∈B S| = |T2|. Whether such a partition

exists reduces to solving an instance of subset sum with integers bounded by n, which
can be solved in polynomial-time by using dynamic programming. To decide whether
an assignment v exists that fulfills the second condition, the following naive approach
yields a polynomial-time algorithm. For each vertex v ∈ V , compute the connected
components C1, . . . , Cm of G − v. Since vertex v has to be occupied by an agent from
either T1 or T2, we check whether the components can be partitioned into two subsets A
and B such that |

⋃
C∈A V (C)| = |T1|−1 and |

⋃
C∈B V (C)| = |T2| or |

⋃
C∈A V (C)| = |T1|

and |
⋃

C∈B V (C)| = |T2| − 1. Again, this can be solved by using dynamic programming
in polynomial-time. This allows us to conclude the following corollary.

Corollary 4.20. For a Schelling game on an α-star-constellation graph, it can be decided
in polynomial-time whether a swap-equilibrium exists.

4.1.3 Influence of Locality

In this section, we turn to local swap-equilibria, where only adjacent agents are allowed
to swap. We study whether restricting the game to local swaps influences the robustness
of swap-equilibria. Since every swap-equilibrium is also a local swap-equilibrium, our
lower bounds on the robustness of swap-equilibria from Section 4.1 also apply to local
swap-equilibria. This raises the question whether we can improve these bounds for local
swap-equilibria. In the following, we provide a simple case where this is indeed possible:
In Proposition 4.8, we showed that the robustness of non-local swap-equilibria on a cycle
is zero. In contrast to this, we show that every local swap-equilibrium on a topology
with maximum degree of two has robustness |E(G)|.

Proposition 4.21. If the topology G has ∆(G) ≤ 2, then every local swap-equilibrium v
has robustness |E(G)|.

Proof. Let S ⊆ E(G) be any set of edges and consider the topology G′ = G−S. Suppose
for the sake of contradiction that a profitable local swap is possible, that is, there exist
agents i ∈ T1 and j ∈ T2 that want to swap with {vi, vj} ∈ E(G′). It has to hold that
degG′(vi) = degG′(vj) = 2: If degG′(vi) = 1, then after swapping to vi agent j only has
one neighbor i of the other type and uj(v

i↔j) = 0. Consequently, the swap cannot be
profitable. The same holds if vj has degree one.
Since G has ∆(G) ≤ 2, no edge incident to vi or vj is in S and has been deleted from G.
Hence, the neighborhoods of i and j in G and G′ are identical and i and j have the
same utility in the topologies G and G′. This contradicts our assumption that v is a
swap-equilibrium for the topology G, since swapping i and j would also be a profitable
swap in G.
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4.2 Jump-Equilibria

In the following, we shortly study the robustness of jump-equilibria and highlight dif-
ferences to swap-equilibria. We show that on a connected topology, contrary to swap-
equilibria (see Proposition 4.9 for paths), the robustness of jump-equilibria is upper
bounded by the maximum degree of the topology.
An important difference between jump- and swap-equilibria is the role of agents on iso-
lated vertices. For swap-equilibria, no agent wants to swap with an agent on an isolated
vertex, since swapping would result in a utility of 0. However, for jump-equilibria, any
agent on an isolated vertex (or more generally, an agent without adjacent friends) wants
to jump to an arbitrary unoccupied vertex where she has utility larger than 0.

Observation 4.22. If an agent i ∈ Tj with no adjacent friends and an unoccupied
vertex w adjacent to another agent from Tj exist in an assignment v, then v is not a
jump-equilibrium.

Proof. Observe that ui(v) = 0. Since w is adjacent to at least one agent from Tj , we have
that ui(v

i→w) > 0. Thus, the jump is profitable and v is not a jump-equilibrium.

We now aim to exploit this observation in order to prove that the robustness of
jump-equilibria on a connected topology is upper bounded by the maximum degree. It
is easy to see that we can “isolate” an agent i by deleting all edges to friends. However,
we also have to show that a suitable unoccupied vertex w exists, where i has utility
larger than 0. To this end, we show the following lemma.

Lemma 4.23. Let v be a jump-equilibrium assignment for some Schelling game where
the topology G is connected, then one of the following two properties holds.

1. There exist agents i ∈ T1 and j ∈ T2 on vertices vi and vj that are both adjacent
to unoccupied vertices.

2. There exists an agent i ∈ N such that i is the only agent that is adjacent to
unoccupied vertices.

Proof. Let G be a connected graph and let v be a jump-equilibrium for some Schelling
game on G. Assume for the sake of contradiction that v does not satisfy any one of
the two conditions. Specifically, it holds without loss of generality that no unoccupied
vertex is adjacent to an agent in T2. Consider two agents i ∈ T1 and i′ ∈ T2. Since G
is connected, there exists a path between vi and vi′ . By our assumption, there exists
no edge between an unoccupied vertex and some vertex occupied by an agent from T2.
Therefore, there has to be some vertex vj on the path with j ∈ T1 that has an edge
{vj , vj′} to some agent j′ ∈ T2 on the path. We have uj(v) < 1, since j is adjacent
to at least one agent from T2. Now, j can increase its utility to 1 by jumping to any
unoccupied vertex with occupied neighbors other than j which by our assumption are
from T1. Such a vertex exists, since G is connected, so at least one occupied vertex has
to be adjacent to some unoccupied vertex. Furthermore, not all unoccupied vertices that
are adjacent to agents can be adjacent only to j, since assignment v does not satisfy
the second property (by our assumption). This contradicts that v is a jump-equilibrium
and completes the proof.
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Using this lemma, we can now prove that the robustness of a jump-equilibrium on a
connected topology is upper bounded by the maximum degree of the topology.

Proposition 4.24. The robustness of a jump-equilibrium v on a connected topology G
is upper bounded by min ai(v) − 1 ≤ degG(vi) − 1 for i ∈ N such that i ∈ Tt is not the
only agent from Tt that is adjacent to an unoccupied vertex.

Proof. Let G be a connected graph and let v be a jump-equilibrium for some Schelling
game on G. Let i ∈ Tt be an agent that minimizes ai(v) and that is not the only agent
from Tt that is adjacent to unoccupied vertices. Such an agent always exists, since we
have at least two agents from each type. Let r := ai(v). Without loss of generality,
assume that i ∈ T1. If we delete the r edges to all friends of i, then we have ui(v) = 0.
According to Lemma 4.23 and our assumption that i is not the only agent from T1
adjacent to some unoccupied vertex, there exists some unoccupied vertex w adjacent to
at least one other agent in T1, so i can increase its utility by jumping to w. Therefore,
v is no longer a swap-equilibrium and has at most robustness r − 1 = ai(v).

Note that Proposition 4.24 only holds if the topology is connected. Otherwise, we can
not apply Lemma 4.23 which guarantees that an unoccupied vertex exists that agent i
wants to jump to. For example, consider the case where all unoccupied vertices are
isolated vertices. Finally, we apply the proposition above to paths and derive an upper
bound for the robustness of jump-equilibria. This shows a difference between jump-
equilibria and swap-equilibria, as we proved in Proposition 4.9 that there always exists
a swap-equilibrium with robustness of |E(G)| on a path.

Corollary 4.25. The robustness of jump-equilibria on a path is upper bounded by 1.

Proof. On paths, we have ∆(G) = 2, hence it holds that degG(vi)− 1 ≤ 1 for all i ∈ N .
Therefore, the upper bound follows from Proposition 4.24

4.3 Computational Aspects

For paths, we observed that the robustness-ratio between the robustness of the most
and least robust swap-equilibrium can be arbitrarily large. Since equilibria with high or
even low robustness might be desirable in certain settings, this motivates studying the
computational aspects of robustness. In this section, we address two questions: First,
we show that we can efficiently check whether a given equilibrium is r-robust. However,
we also proof that it is NP-complete to decide whether an equilibrium with a given
robustness r exists.

4.3.1 Computing the Robustness of Swap-Equilibria

To begin, we address the first question and provide a polynomial-time algorithm to
determine whether a given swap-equilibrium v has robustness r ∈ N0. Recall that if the
assignment is not r-robust, then for some set of edges S with |S| ≤ r, there exist two
agents i, j ∈ N that want two swap on G− S. Hence, our goal is to check whether such
a pair of agents and set S exist. Here, we make the following observation: Whether a



4.3. COMPUTATIONAL ASPECTS 61

swap is profitable only depends on the utilities of the involved agents before and after the
swap. These utilities again only depend on the neighborhoods of both agents. Deleting
edges outside of their neighborhoods does not impact whether the swap is profitable.

Observation 4.26. Let v be a (local) swap-equilibrium for a Schelling game on topol-
ogy G and let S ⊆ E(G) be a set of edges. A pair of agents i, j ∈ N has a prof-
itable swap on G − S if and only if it holds that the swap is profitable on G − S′ with
S′ = {e ∈ S | e ∩ {vi, vj} 6= ∅}.

Moreover, combining this with the observation that no profitable swap can involve
an agent on an isolated vertex, it follows that if a swap-equilibrium cannot be made
unstable by deleting 2 · (∆(G)− 1) edges, then it cannot be made unstable by deleting
an arbitrary number of edges:

Observation 4.27. Let v be a swap-equilibrium for a Schelling game on topology G. If
v is 2 · (∆(G)− 1)-robust, then v has robustness |E(G)|.

As whether a swap is profitable only depends on the neighborhoods of the involved
agents (see Observation 4.26), we simply iterate over all pairs of agents i and j and
check whether we can delete at most r edges between vi and adjacent vertices occupied
by friends of i and between vj and adjacent vertices occupied by friends of j such that
the swap of i and j becomes profitable (note that the stability of v only depends on the
number of such deleted edges in the neighborhood of each agent, not the exact subset
of edges).

Theorem 4.28. For a given Schelling-game with n agents, a swap-equilibrium v and
an integer r ∈ N0, we can decide whether v is r-robust in running time O(n2 · r).

Proof. Recall the definition of ai(v) as the number of adjacent friends of agent i for an
assignment v and bi(v) as the number of agents of a different type in the neighborhood
of i. We define 1i,j = 1 if the agents i and j are neighbors and 1i,j = 0 otherwise.
We solve the problem using Algorithm 1 for which we prove the correctness and running
time in the following: First, we prove that Algorithm 1 outputs yes if v is r-robust and
no otherwise. Assume that v is r-robust. It therefore holds for all i ∈ T1 and j ∈ T2
and S ⊆ E(G) with |S| ≤ r that swapping i and j is not profitable in G − S. Hence,
it holds that the swap of i and j is not profitable if we delete x edges between vi and
vertices that are occupied by friends of i and y edges between vj and vertices that are
occupied by friends of j for all x, y ∈ N0 with x + y ≤ r and x ≤ ai(v) and y ≤ aj(v).

After deleting these edges, the utilities of i and j are given by u′i(v) = ai(v)−x
|Ni(v)|−x and

u′j(v) =
aj(v)−y
|Nj(v)|−y . Swapping positions results in utility u′i(v

i↔j) =
bj(v)−1i,j
|Nj(v)|−y for i and

u′j(v
i↔j) =

bi(v)−1i,j
|Ni(v)|−x for j. Notice that we subtract 1i,j = 1 in the numerator if i and j

are adjacent, since the vertex previously occupied by i or j in v is occupied by the other
agent of a different type in vi↔j . Since, by our assumption, v is r-robust, it has to hold
that u′i(v) ≥ u′i(vi↔j) or u′j(v) ≥ u′j(vi↔j). Hence, Algorithm 1 outputs yes.
Assume that v is not r-robust. Then, there exists a pair of agents i, j ∈ N and a set of
edges S ⊆ E(G) with |S| ≤ r such that the swap involving i and j is profitable on G−S.
Note that, as argued before, we only have to consider deleting edges to friends in the
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Algorithm 1 Robustness of a Swap-Equilibrium

Input: topology G, equilibrium v, sets of agents T1, T2 and r ∈ N0

Output: yes if v is r-robust and no otherwise
1: function Robustness(G,v, r, T1, T2)
2: for each pair i ∈ T1 and j ∈ T2 do . Iterate over all possible swaps
3: for x = min{r, ai(v)} to 0 do . Number of edges we delete in NG(vi)
4: y ← min{r − x, aj(v)} . Delete remaining edges in NG(vj)

5: u′i(v)← ai(v)−x
|Ni(v)|−x . Utility of i after deleting edges to x friends

6: u′i(v
i↔j)← bj(v)−1i,j

|Nj(v)|−y . Utility of i on vj after deleting y edges in NG(vj)

7: u′j(v)← aj(v)−y
|Nj(v)|−y

8: u′j(v
i↔j)← bi(v)−1i,j

|Ni(v)|−x
9: if u′i(v) < u′i(v

i↔j) and u′j(v) < u′j(v
i↔j) then

10: return no . Swapping i and j is profitable
11: end if
12: end for
13: end for
14: return yes . No profitable swap is possible
15: end function

neighborhoods of i and j. Therefore, there exist w, z ∈ N0 with w + z ≤ r, w ≤ ai(v)
and z ≤ aj(v) such that swapping i and j is profitable after deleting w edges to adjacent
friends of i and z edges to adjacent friends of j. As proven in Corollary 4.4, deleting
additional edges between i and friends of i and j and friends of j cannot make v stable
again. Thus, it holds for all w′, z′ ∈ N0 with w ≤ w′ ≤ ai(v) and z ≤ z′ ≤ aj(v) that
swapping i and j is profitable after deleting w′ edges to adjacent friends of i and z′ edges
to adjacent friends of j. Thus, in Algorithm 1 with x = w and y = min{r−x, aj(v)} ≥ z,
we have u′i(v) < u′i(v

i↔j) and u′j(v) < u′j(v
i↔j) and therefore return no.

Next, we analyze the running time. We first iterate over all pairs of agents i ∈ T1 and
j ∈ T2 that can potentially be involved in a profitable swap, the number of pairs is
upper bounded by n2. For each pair, we iterate over at most r possible values for x
from min{r, a} to zero. All other operations are simple arithmetic operations that can
be computed in constant time (assuming we precomputed all |Ni(v)| and ai(v) in linear
time), hence our algorithm runs in O(n2 · r) time.

Note that a very similar algorithm is also possible for jump-equilibria. Instead of
iterating over pairs of vertices, we iterate over all pairs of agents and unoccupied vertices.

4.3.2 NP-Hardness of r-Robust Equilibrium Existence

Next, we answer the second question and prove that it is NP-hard to decide whether
a Schelling game admits a swap- or jump-equilibrium with robustness at least r. The
decision problem for swap-equilibria is formally defined below.
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Robust Swap-Equilibrium Existence (ROB-SWAP-EQ)

Input: A topology G, a set N = [n] of agents with |V (G)| = n partitioned into
types T1 and T2, and an integer r ∈ N0.

Question: Does the Schelling game on G admit a swap-equilibrium with robustness
at least r?

The decision problem for jump-equilibria is defined analogously, except that we require
that |V (G)| > n such that there are unoccupied vertices.

Robust Jump-Equilibrium Existence (ROB-JUMP-EQ)

Input: A topology G, a set N = [n] of agents with |V (G)| > n partitioned into
types T1 and T2, and an integer r ∈ N0.

Question: Does the Schelling game onG admit a jump-equilibrium with robustness
at least r?

We first prove the hardness of ROB-SWAP-EQ, as the hardness of ROB-JUMP-
EQ follows analogously. In order to prove that ROB-SWAP-EQ is NP-hard, we observe
that for r = 0, ROB-SWAP-EQ reduces to deciding whether the given game admits
any swap-equilibrium (as every swap-equilibrium has at least robustness zero).

Observation 4.29. For r = 0, ROB-SWAP-EQ and SWAP-EQ are equivalent.

From this, it is easy to follow that ROB-SWAP-EQ is NP-complete.

Corollary 4.30. ROB-SWAP-EQ is NP-complete.

Proof. With Observation 4.29, the NP-hardness of ROB-SWAP-EQ follows directly
from Theorem 3.2. Observe that ROB-SWAP-EQ is in NP since we can verify in
polynomial-time that an assignment v is a swap-equilibrium: For any pair of agents,
check if the agents want to swap by calculating their utilities before and after swapping.
Additionally, we can check in polynomial-time if a swap-equilibrium v is r-robust by
Theorem 4.28.

The NP-hardness of ROB-JUMP-EQ follows analogously from the NP-hardness of
JUMP-EQ by Theorem 3.4. Thus, we conclude with the following corollary.

Corollary 4.31. ROB-JUMP-EQ is NP-complete.





Chapter 5

Multimodal Schelling Games

In this chapter, we analyze multimodal Schelling games on multilayer graphs. A mul-
tilayer graph is a graph with multiple sets of edges over a fixed set of vertices. We
refer to the graph given by the fixed vertex set and one of the edge sets as a layer. In
an urban setting, the different layers could represent different means of transportation,
some of which might only be accessible to certain agents. As defined in Chapter 2,
we say that an assignment is a multimodal swap-equilibrium if it is an equilibrium on
every one of the layers. An example for a swap-equilibrium in a 2-modal game is given
in Figure 5.1. We study the existence of multimodal swap-equilibria and find that a
multimodal swap-equilibrium may fail to exist even on very simple multilayer graphs.
Furthermore, we show that deciding whether a multimodal swap- or jump-equilibrium
exists is NP-complete.

5.1 Existence of Equilibria

We begin by analyzing the existence of swap-equilibria in multimodal Schelling games.
A first naive approach would be to analyze the structure of the different layers indepen-
dently and to try to identify conditions for the existence of multimodal swap-equilibria
based on the relationship between the structure of the different layers. However, if we
only consider the structure of the individual layers, then we do not take into account
which vertices correspond to each other in the different layers. By showing that a multi-
modal swap-equilibrium for a 2-modal game may fail to exist even when both layers are
isomorphic and paths, the following result suggests that only considering the structure
of the layers independently seems to be insufficient.

Theorem 5.1. A multimodal swap-equilibrium for a 2-modal Schelling game may fail
to exist, even when G1 and G2 are isomorphic and paths.

Proof. Consider a 2-modal Schelling game with T1 = {i1, i2} and T2 = {i3, i4}. The
multilayer graph with vertices V = {w1, . . . , w4} is given by two isomorphic paths G1 =
(V, {{w1, w2}, {w2, w3}, {w3, w4}}) and G2 = (V, {{w1, w4}, {w4, w3}, {w3, w2}}) as in
Figure 5.2. Now consider a swap-equilibrium v on G1. It holds that the vertices w1 and
w2 have to be occupied by agents of the same type: Assume without loss of generality
for the sake of contradiction that agent i1 ∈ T1 is positioned on w1 and agent i3 ∈ T2

65
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w1 w2

w3 w4

Layer G1

w1 w2

w3 w4

Layer G2

Figure 5.1: An example of a swap-equilibrium on a 2-layer graph with layers G1 and G2.
Note that the depicted assignment is stable on both layers (i.e., there exists no profitable
swap).

w1 w2 w3 w4

Layer G1

w1 w4 w3 w2

Layer G2

Figure 5.2: The only swap-equilibrium on G1. On G2, the agents on vertices w1 and w3

want to swap.

occupies w2. We have ui1(v) = 0. Now, since the remaining agents i2 ∈ T1 and
i4 ∈ T2 are neighbors, we have ui4(v) < 1. Therefore, swapping i1 and i4 is profitable:
ui4(vi1↔i4) = 1 > ui4(v) and ui1(vi1↔i4) ≥ 1

2 > 0 = ui1(v). This contradicts our
assumption that v is an equilibrium.
Hence, it holds without loss of generality that in any equilibrium v on G1, the vertices w1

and w2 are occupied by the agents i1, i2 ∈ T1 and the remaining two agents i3, i4 ∈ T2
occupy w3 and w4. However, on topology G2, we have ui1(v) = 0 and ui3(v) = 1

2 .
Therefore, the swap of i1 and i3 is profitable: ui1(vi1↔i3) = 1

2 > 0 = ui1(v) and
ui3(vi1↔i3) = 1 > 1

2 = ui3(v). Hence, assignment v is not a swap-equilibrium on G2

and no swap-equilibrium for the multimodal game exists.

In the theorem above, we exploited that we can ”reorder” the vertices on the path
to obtain an isomorphic graph, where no swap-equilibrium for the first layer is sta-
ble. It therefore seems reasonable that to derive useful conditions for multimodal swap-
equilibrium existence, we have to also incorporate which vertices correspond to each
other in the layers (i.e., in this case, how the vertices are ordered). This motivates the
following definition, which we later use to show a positive result.

Definition 5.2. Let G = (V, {E1, . . . , El}) be a multilayer graph. We call a layer
Gi = (V,Ei) with i ∈ {1, . . . , l} a top-layer of G, if it holds that Ej ⊆ Ei for all
j ∈ {1, . . . , l}. A multilayer graph that has a top-layer is called top-layered.

Observe that the multilayer graph in Figure 5.2 is an example for a multilayer graph
without a top-layer. Informally, we can think of the top-layer as the graph out of which
all other layers can be built by deleting edges. This intuitive view is somewhat similar to
the perspective of robustness, where we analyzed whether equilibria remain stable when
edges are removed. We now show that some results from our analysis of robustness
translate to multimodal games on top-layered multilayer graphs. Recall that we proved
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in Section 4.1.2 that for topologies from some graph classes, there always exists a swap-
equilibrium with robustness |E(G)|. If the top-layer is from such a graph class, then
we know that a swap-equilibrium with robustness |E(G)| is guaranteed to exist on the
top-layer. As a swap-equilibrium with robustness |E(G)| remains stable after deleting
any set of edges, this swap-equilibrium is therefore also stable on any other layer (since
all other layers contain a subset of the edges of the top-layer). Thus, if the top-layer
of a top-layered multilayer graph is from a graph class where a swap-equilibrium with
robustness |E(G)| is guaranteed to exist, then there exist a multimodal swap-equilibrium
on the multilayer graph. Analogously, the same holds for other types of equilibria.

Proposition 5.3. Let G = (V, {E1, . . . , El}) be a multilayer graph with top-layer Gi =
(V,Ei) with i ∈ {1, . . . , l}. It there exists a (local) swap- or jump-equilibrium with
robustness |E(Gi)| for the induced game on Gi, then the multimodal game on G admits
a multimodal (local) swap- or jump-equilibrium.

Proof. Let v be the (local) swap- or jump-equilibrium with robustness |E(Gi)| on the
top-layer Gi. We have to show that v is also a (local) swap- or jump-equilibrium for the
induced game on all Gj for j ∈ {1, . . . , l} with j 6= i. Consider a layer Gj = (V,Ej) with
j ∈ {1, . . . , l} and j 6= i. Since Gi is the top-layer of G, it holds that Ej ⊆ Ei. That is,
Gj = Gi − S for some S ⊆ E(Gi). Since v is |E(Gi)|-robust by definition, v is also a
(local) swap- or jump-equilibrium on Gj .

This allows us to use results from Section 4.1.2. For example, we showed that on
any path there exists a swap-equilibrium with robustness |E(G)| (see Proposition 4.9).
Thus, we can conclude the corollary below.

Corollary 5.4. For multimodal games on top-layered multilayer graphs where the top-
layer is a path, there always exists a swap-equilibrium.

It is easy to see that the condition that the top-layer Gi admits a swap-equilibrium
with robustness |E(Gi)| is not a necessary condition for the existence of a multimodal
swap-equilibrium. Consider a 2-modal game on a 2-layer graph G where the first layer
G1 is a clique and the second layer G2 is any arbitrary topology that admits a swap-
equilibrium. Note that G is a top-layered multilayer graph with top-layer G1. As any
assignment is a swap-equilibrium on a clique, any swap-equilibrium on G2 is also a swap-
equilibrium for the 2-modal game. However, the clique top-layer G1 is not |E(G1)|-robust
(see Proposition 4.7).
Thus, one could study further conditions for the existence of multimodal swap-equilibria
on top-layered multilayer graphs. Moreover, the analysis of multimodal equilibrium
existence could be extended to multilayer graphs without a top-layer.

5.2 Computational Complexity

Next, we show that deciding whether a multimodal Schelling game admits a jump- or
swap-equilibrium is NP-complete. We first prove this statement for the decision problem
for swap-equilibria, as defined below.
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l-modal Swap-Equilibrium Existence (l-MODAL SWAP-EQ)

Input: A multilayer graph G = (V, {E1, . . . , El}) and a set N = [n] of agents
with |V (G)| = n partitioned into types T1 and T2.

Question: Does the l-modal Schelling game on G admit a multimodal swap-
equilibrium?

We first observe that l-MODAL SWAP-EQ is in NP: To verify that an assignment v
is a swap-equilibrium, for all layers G1 to Gl, we check if any pair of agents wants to
swap by calculating their utilities before and after swapping.
The NP-Hardness follows directly from the NP-Hardness of SWAP-EQ by Theorem 3.2.
Given a Schelling game on topology G′ = (V ′, E′) with types T ′1 and T ′2, we construct an
l-modal Schelling game with the same types on G = (V, {E1, . . . , El}). We set V = V ′

and E1 = E′, that is, it holds that G1 = G. For the remaining layers, set Ej = ∅ for all
j ∈ {2, . . . , l}. Note that every assignment is a swap-equilibrium on a topology which
only consist of isolated vertices. Therefore, the constructed l-modal game admits a swap-
equilibrium if and only if the given Schelling game on G admits a swap-equilibrium. We
summarize our results in the following observation.

Observation 5.5. l-MODAL SWAP-EQ is NP-complete for all l ≥ 2.

The decision problem for multimodal jump-equilibria is analogously defined as fol-
lows.

l-modal Jump-Equilibrium Existence (l-MODAL JUMP-EQ)

Input: A multilayer graph G = (V, {E1, . . . , El}) and a set N = [n] of agents
with |V (G)| > n partitioned into types T1 and T2.

Question: Does the l-modal Schelling game on G admit a multimodal jump-
equilibrium?

Analogously to the argument for swap-equilibria, we can reduce an instance of JUMP-
EQ with topology G to l-MODAL JUMP-EQ by constructing a multilayer graph where
the first layer is equal to G and all other layers only consist of isolated vertices. This
allows us to conclude the following.

Observation 5.6. l-MODAL JUMP-EQ is NP-complete for all l ≥ 2.
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Conclusion

Answering an open question by Elkind et al. [Elk+19], we showed that deciding the
existence of swap- and jump-equilibria remains NP-hard in our simpler variant of their
model, where all agents are strategic. Regarding the robustness of equilibria, we found
that the robustness of swap-equilibria in Schelling games heavily depends on the struc-
ture of the underlying topology along the following two dimensions. First, we showed
that the minimum and the maximum robustness of swap-equilibria on topologies from
various graph classes vary significantly. For most of the analyzed graph classes, we found
that there exist swap-equilibria that can be made unstable by deleting a single edge (i.e.
the robustness is zero). However, with α-star-constellation graphs for any α ∈ N0 we
provided a graph class where each swap-equilibrium has robustness at least α. Second,
the structure of the topology influences the robustness-ratio between the robustness of
the most and least robust swap-equilibrium on a given topology. More precisely, we
showed that on topologies from some graph classes any swap-equilibrium has the same
robustness (e.g., cycles), while the robustness-ratio can be arbitrarily large on topologies
from other graph classes (e.g., paths). From a practical perspective, one may thus be
interested in finding more robust equilibria. However, we proved that deciding the exis-
tence of equilibria with at least a given robustness is NP-hard. On the positive side, we
showed that one can efficiently determine the robustness of an equilibrium. Moreover,
we studied the robustness of jump- and local swap-equilibria and observed differences
between these models.
Turning to multimodal games, we showed that a multimodal swap-equilibrium may fail
to exist even on a simple 2-layer graph where both layers are isomorphic and paths.
In this multilayer graph, we exploited that we can reorder the vertices in the second
path layer to obtain an isomorphic graph where no swap-equilibrium for the first layer
is stable. This result shows that the existence of multimodal equilibria does not only
depend on the structure of the individual layers, but also on the correspondence between
the vertices of the different layers (in our example above, how the vertices are ordered
in the different layers). Motivated by this observation, we defined top-layered multilayer
graphs. Using this notion, we were then able to prove that on a top-layered multilayer
graph where the top-layer is a path a swap-equilibrium is guaranteed to exist. Interest-
ingly, this also allowed us to translate some results from our analysis of robustness to
multimodal Schelling games.
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For future research, an immediate direction based on our analysis of the robustness
of swap-equilibria on different graph classes is to study more thoroughly why swap-
equilibria are more or less robust on certain graph classes and to try to identify the un-
derlying structural properties that influence the robustness of swap-equilibria. It would
also be interesting to investigate the robustness of equilibria with regard to different
kinds of changes to the topology, such as adding edges or deleting vertices. Further-
more, one could consider other notions of robustness. For example, given a topology
that admits an equilibrium, one natural question would be to ask how many edges have
to be deleted such that the resulting topology no longer admits an equilibrium. We
conjecture that this notion of robustness also heavily depends on the structure of the
topology: It is easy to construct examples where deleting a single edge is sufficient, on
the other hand, a graph from a graph class for which equilibrium existence is guaranteed
and that is closed under edge deletion (e.g., the class of graphs with maximum degree
of two) would be arbitrarily robust with regard to the existence of equilibria. Moreover,
given a topology that does not admit an equilibrium, one could consider the distance to
an equilibrium, that is, the minimum number of changes such that the resulting topol-
ogy admits an equilibrium. A first approach to prove upper bounds for the distance to
an equilibrium could be to consider simple graph classes where equilibrium existence is
guaranteed and then to upper bound the number of changes that have to be made to a
given topology to obtain a graph from this class.
In this work, we have taken an adversarial perspective and considered a worst-case ap-
proach to robustness. It would also be interesting to investigate which kinds of changes
can be safely made such that an equilibrium remains stable. For example, we proved
that only the deletion of edges between agents of the same type can make a swap-
equilibrium unstable.
With regard to multimodal Schelling games, the analysis of multimodal equilibria exis-
tence can be extended in two directions. First, one could study additional conditions for
the existence of equilibria on top-layered multilayer graphs. Second, the analysis can be
extended to non-top-layered multilayer graphs.
To conclude, in our analysis of multimodality and the robustness of equilibria in Schelling
games, we found that both aspects are strongly influenced by the underlying topology.
Our results paint a contrasted picture of the robustness of swap-equilibria based on the
structure of the underlying topology. As described above, there is an abundance of di-
rections to extend and to better understand this picture, and there are many alternative
notions of robustness to consider.
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