
Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Recognition, Generation, and Application
of Binary Matrices with the
Consecutive-Ones Property

Dissertation

zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik

der Friedrich-Schiller-Universität Jena

von Dipl.-Inform. Michael Dom

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Gutachter:

• Prof. Dr. Rolf Niedermeier (Friedrich-Schiller-Universität Jena)

• Prof. Dr. Martin Mundhenk (Friedrich-Schiller-Universität Jena)

• Prof. Dr. Henning Fernau (Universität Trier)

Datum der letzten Prüfung des Rigorosums: 04. 12. 2008

Datum der öffentlichen Verteidigung: 10. 12. 2008

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Zusammenfassung iii

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Komplexität mehrerer kombinatorischer
Probleme, die alle eng mit der

”
Consecutive-Ones“-Eigenschaft binärer Matrizen

(d. h. 0/1-Matrizen) zusammenhängen: Eine binäre Matrix hat die Consecutive-
Ones-Eigenschaft (C1P), wenn ihre Spalten so geordnet werden können, dass in
jeder Zeile sämtliche 1-Einträge direkt hintereinander stehen und somit in jeder
Zeile nur ein

”
Einserblock“ vorkommt.

Die C1P hat eine lange Geschichte und spielt eine wichtige Rolle in vielen
Anwendungen, die von der algorithmischen Biologie bis hin zur Eisenbahnop-
timierung reichen. Das Ziel der vorliegenden Arbeit ist es, einerseits zu unter-
suchen, wie die C1P erlangt werden kann, wenn eine Matrix diese Eigenschaft
ursprünglich nicht hat, und andererseits zu analysieren, wie die C1P und

”
abge-

schwächte“ Varianten der C1P bei der Behandlung von Matrixproblemen helfen
können, die im Allgemeinen nur schwer zu lösen sind.

Typischerweise gilt es bei der Analyse kombinatorischer Probleme zunächst
zu untersuchen, ob ein vorliegendes Problem in Polynomzeit bezüglich der Ein-
gabegröße gelöst werden kann, was für viele Anwendungen ausreichend schnell
wäre. Kann man hingegen zeigen, dass das Problem NP-schwer ist, so bedeutet
dies vermutlich, dass es keinen Polynomzeitalgorithmus geben kann. Doch auch
für NP-schwere Probleme können oft positive Resultate erzielt werden. Dazu gibt
es im Wesentlichen zwei Ansätze (Heuristiken, deren Laufzeit oder Lösungsgüte
nicht bewiesen werden kann, außer Acht gelassen). Einerseits kann man versu-
chen, Approximationsalgorithmen für das Problem zu finden. Ein solcher Ap-
proximationsalgorithmus löst das Problem nicht exakt, er findet jedoch stets in
Polynomzeit eine Lösung, die nur um einen konstanten Faktor von der optima-
len Lösung abweicht. Bei manchen Problemen ist allerdings schon die Appro-
ximierung einer Lösung NP-schwer. Die zweite Möglichkeit ist, die zur Lösung
des Problems benötigte Zeit exakter zu bestimmen, indem man diese nicht nur
bezüglich der Eingabegröße analysiert, sondern einen zusätzlichen

”
Parameter“ k

wählt, den man ebenfalls in die Laufzeitanalyse mit einfließen lässt. Das Ziel ist
dabei, die kombinatorische Explosion auf diesen Parameter zu beschränken. Dem-
zufolge wird ein Problem als festparameterhandhabbar bezüglich der gewählten
Parametrisierung bezeichnet, wenn jede Probleminstanz der Größe n und mit Pa-
rameter k innerhalb von höchstens f(k) · nc Rechenschritten gelöst werden kann,
wobei f eine berechenbare Funktion und c eine Konstante ist. Ein entsprechender
Algorithmus heißt Festparameteralgorithmus. Ist ein Problem festparameterhand-
habbar, so können selbst große Probleminstanzen schnell gelöst werden, voraus-
gesetzt, der Wert des Parameters ist klein. Kann man allerdings zeigen, dass
ein Problem W[1]-schwer ist, so bedeutet dies vermutlich, dass es bezüglich der
betrachteten Parametrisierung nicht festparameterhandhabbar ist.

Die Arbeit behandelt, nach einer breitgefächerten Übersicht über die C1P und
ihre Verbindungen zur Graphentheorie und Algorithmik, vier Problembereiche.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

iv Zusammenfassung

Finden kleiner verbotener Teilmatrizen. Bei diesem Problem geht es dar-
um, innerhalb einer Matrix M , die nicht die C1P hat, eine kleinstmögliche Teil-
matrix ohne die C1P zu finden. Eine solche Teilmatrix wird verbotene Teilmatrix
genannt, da sie der C1P in M entgegensteht. Das Problem, möglichst kleine ver-
botene Teilmatrizen zu finden, ergibt sich insbesondere, wenn eine Matrix durch
Anwendung möglichst weniger Modifikationen die C1P erhalten soll.

Aus der Graphentheorie gibt es ein Ergebnis, welches die C1P mittels so-
genannter asteroidaler Tripel charakterisiert. Mit Hilfe dieser Charakterisierung
zeigen wir, dass man in Polynomzeit eine verbotene Teilmatrix finden kann, de-
ren Anzahl an Zeilen und Spalten höchstens um einen konstanten Betrag größer
ist als die einer optimalen Lösung, sprich, einer kleinsten verbotenen Teilmatrix.
Darüberhinaus können wir, auf Kosten einer etwas höheren (aber immer noch po-
lynomiellen) Laufzeit, auch verbotene Teilmatrizen mit einer minimalen Anzahl
an Zeilen und Spalten finden.

Erzeugen der C1P mittels Zeilen- oder Spaltenlöschungen. Die zwei
Probleme, eine gegebene Matrix durch eine kleinstmögliche Anzahl von Zeilen-
bzw. Spaltenlöschungen in eine Matrix mit der C1P umzuformen, heißen Min-
COS-R bzw. Min-COS-C. Die entsprechenden Maximierungsprobleme, bei de-
nen es darum geht, eine Teilmatrix zu finden, welche die C1P hat und aus
möglichst vielen Zeilen bzw. Spalten der gegebenen Matrix besteht, heißen Max-
COS-R bzw. Max-COS-C. Alle diese vier Probleme sind bekanntermaßen selbst
auf sehr dünn besetzten Matrizen, welche nur zwei Einsen pro Zeile und drei Ein-
sen pro Spalte enthalten, NP-schwer.

Unsere Hauptergebnisse für diese Probleme sind Approximations- und Festpa-
rameteralgorithmen für Eingabematrizen, die nur eine beschränkte Anzahl ∆ an
Einsen pro Zeile enthalten: Sowohl Min-COS-R als auch Min-COS-C können
auf solchen Matrizen in Polynomzeit approximiert werden, wobei sowohl der Grad
des Polynoms der Laufzeit als auch der Approximationsfaktor von ∆ abhängen.
Daneben sind beide Probleme festparameterhandhabbar bezüglich der kombinier-
ten Parameter ∆ und

”
Lösungsgröße“. Sämtliche Ergebnisse beruhen auf einem

neuen strukturellen Ergebnis, welches eine Verfeinerung einer bereits bekannten
Charakterisierung der C1P darstellt.

Für Matrizen, die nur zwei Einsen pro Zeile oder pro Spalte enthalten, erhalten
wir Nichtapproximierbarkeits- und W[1]-Schwerebeweise für Max-COS-R und
Max-COS-C sowie diverse Resultate zur Approximierbarkeit und Festparame-
terhandhabbarkeit von Min-COS-R, Min-COS-C, Max-COS-R und Max-
COS-C.

Abdeckungsprobleme bei Matrizen mit der C1P. Hier betrachten wir
zwei Varianten des Set Cover-Problems. Genauso wie Set Cover können
diese zwei Varianten als Matrixprobleme modelliert werden, welche auf Matrizen,
die keiner Einschränkung unterliegen, NP-schwer sind. Wir untersuchen, ob die

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Zusammenfassung v

Probleme in Polynomzeit gelöst werden können, wenn in manchen oder gar in
allen Zeilen der Eingabematrix nur jeweils ein Einserblock vorkommt.

Die beiden betrachteten Probleme heißen Minimum-Degree Hypergraph
und Red-Blue Set Cover, und in beiden Fällen besteht die Eingabe aus
einer Matrix, die aus

”
roten“ und

”
blauen“ Zeilen besteht. Während man bei

Minimum-Degree Hypergraph nach einer Teilmenge der Spalten sucht, wel-
che mindestens eine Eins aus jeder blauen Zeile, jedoch möglichst wenige Einsen
aus jeder roten Zeile enthält, sucht man bei Red-Blue Set Cover nach einer
Teilmenge der Spalten mit mindestens einer Eins aus jeder blauen Zeile, jedoch
Einsen aus möglichst wenigen roten Zeilen. Durch Techniken aus dem Bereich
des ganzzahligen linearen Programmierens bzw. durch dynamisches Programmie-
ren können wir zeigen, dass sowohl Minimum-Degree Hypergraph als auch
Red-Blue Set Cover in Polynomzeit gelöst werden können, wenn die Ein-
gabematrix die C1P hat. Hat hingegen nur die aus den blauen oder den roten
Zeilen bestehende Teilmatrix die C1P, so können wir zeigen, dass die entspre-
chenden Probleme NP-schwer sind. Indem wir zusätzlich die Anzahl der Einsen
pro Zeile und pro Spalte in Betracht ziehen, können wir die Grenze zwischen
polynomzeitlösbaren und NP-schweren Problemvarianten genau ausloten.

Schneiden von Rechtecken und Hyperrechtecken. (2-Dimensionales)
Rectangle Stabbing ist ein geometrisches Problem, bei dem die Eingabe
aus einer Menge von achsenparallelen Rechtecken und einer Menge von ach-
senparallelen Geraden besteht und die Aufgabe ist, eine kleinstmögliche Anzahl
an Geraden auszuwählen, so dass jedes Rechteck mindestens einmal geschnit-
ten wird. Die Verallgemeinerung dieses Problems auf d Dimensionen heißt d-
Dimensionales Rectangle Stabbing, hier besteht die Eingabe aus Hyper-
rechtecken und Hyperebenen anstatt Rechtecken und Geraden. Das Problem kann
für jeden Wert d ≥ 2 als ein Spezialfall des Set Cover-Problems und somit als
ein Spaltenauswahlproblem auf speziellen Matrizen aufgefasst werden: Die Einga-
be besteht dann aus einer Matrix mit höchstens d Einserblöcken pro Zeile, und die
Aufgabe ist, eine möglichst kleine Teilmenge der Spalten zu bestimmen, welche
mindestens eine Eins aus jeder Zeile enthält.

d-Dimensionales Rectangle Stabbing ist unter Approximationsgesichts-
punkten sehr gut studiert, die parametrisierte Komplexität blieb jedoch bislang
unerforscht. Wir entwickeln eine Reduktion von einem Problem namens Multi-
colored Clique, welche für jeden Wert d ≥ 2 die W[1]-Schwere des Problems
d-Dimensionales Rectangle Stabbing bezüglich des Parameters

”
Anzahl

der benötigten Geraden“ beweist. Dieses Ergebnis wird ergänzt durch Festpa-
rameteralgorithmen für verschiedene eingeschränkte Varianten des Problems (2-
Dimensionales) Rectangle Stabbing.

Zusammengefasst, entwickeln wir einerseits zahlreiche neue Polynomzeitalgo-
rithmen, Approximationsalgorithmen und Festparameteralgorithmen und erzie-
len andererseits NP-Schwere-, Nichtapproximierbarkeits- und W[1]-Schwereergeb-

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

vi Zusammenfassung

nisse. Unser Hauptaugenmerk liegt auf einer systematischen und differenzierten
Analyse der Komplexität der betrachteten Probleme und ihrer zahlreichen Vari-
anten. Dies soll es zukünftigen Forschungen in Richtung praktikabler Algorithmen
ermöglichen, sich auf diejenigen Problemvarianten zu konzentrieren, die wir als
polynomzeitlösbar, mit konstantem Faktor approximierbar oder festparameter-
handhabbar identifiziert haben.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Abstract vii

Abstract

This thesis is about the computational complexity of several combinatorial prob-
lems closely related to the consecutive-ones property of binary matrices (0/1-
matrices). Herein, a binary matrix has the consecutive-ones property (C1P) if
there is a permutation of its columns that places the 1s consecutively in every
row.

The C1P has a long history and plays an important role in many applications,
ranging from computational biology to railway optimization. This thesis aims,
on the one hand, to investigate how the C1P can be established when a given
binary matrix initially does not have this property, and, on the other hand, to
analyze how the C1P and “relaxed” variants of the C1P can help to tackle matrix
problems that are hard to solve in general.

Typically, when analyzing computational problems, the first question to an-
swer is whether the problem of interest can be solved in polynomial time with
respect to the input size, which would be sufficiently fast for many applications.
If, however, one can prove that the problem is NP-hard, this presumably im-
plies that no polynomial-time algorithm can exist. For those problems that are
NP-hard one can often provide positive results anyway—there are mainly two
possibilities of doing so: On the one hand, one can try to develop an approxima-
tion algorithm for the problem. Such an approximation algorithm does not solve
the problem exactly, but produces in polynomial time a solution that is only a
constant factor away from the optimum. However, some problems are even NP-
hard to approximate. On the other hand, one can examine the time needed for
exactly solving the problem in a more fine-grained way. To this end, one consid-
ers, in addition to the size of the input, a “parameter” k and tries to confine the
combinatorial explosion to this parameter. In this two-dimensional framework, a
problem is called fixed-parameter tractable with respect to the chosen parameter-
ization if any size-n instance with parameter k can be solved in f(k) ·nc time for
a computable function f and a constant c. An algorithm running in this time is
called a fixed-parameter algorithm. If a problem is fixed-parameter tractable, then
even large problem instances can be solved quite fast provided that the value of
the parameter is small. If, in contrast, one can prove that a problem is W[1]-hard,
this presumably implies that the problem is not fixed-parameter tractable with
respect to the considered parameterization.

Apart from giving an overview on the C1P and its connections to graph theory
and algorithmics, the thesis examines four problem complexes.

Finding small forbidden submatrices. Here, one has given a binary ma-
trix M without the C1P, and the task is to find a minimum-size submatrix of M
that does not have the C1P. Such a submatrix is called a forbidden submatrix
because it is a cause for the absence of the C1P in M . The problem of finding
small forbidden submatrices arises when a matrix shall be modified to obtain the

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

viii Abstract

C1P, but it is also of independent interest.
By exploiting a known result from graph theory, which characterizes the C1P

by using so-called asteroidal triples, we show that we can find in polynomial time
a forbidden submatrix of M whose number of rows and columns differs at most by
an additive constant from the number of rows and columns of an optimal solution,
that is, of a minimum-size forbidden submatrix. Moreover, at the cost of a slightly
increased (but still polynomial) running time, we can find not only a forbidden
submatrix of almost minimum size, but a forbidden submatrix consisting of a
minimum number of rows and columns.

Obtaining the C1P by row or column deletions. The problems of deleting
a minimum number of rows or columns to transform a given matrix into a ma-
trix with the C1P are called Min-COS-R and Min-COS-C, respectively. The
corresponding maximization problems, where one has to find a submatrix that
has the C1P and consists of a maximum number of rows or columns, are called
Max-COS-R and Max-COS-C, respectively. All four problems are known to
be NP-hard even on very sparse matrices, containing only two 1-entries per row
and at most three 1-entries per column.

Our main results for these problems are approximation and fixed-parameter
algorithms for matrices that have only a bounded number ∆ of 1-entries per
row: Both Min-COS-R and Min-COS-C on such matrices can be approxi-
mated in polynomial time, where both the approximation factor and the degree
of the polynomial in the running time depend on ∆. Moreover, Min-COS-R
and Min-COS-C on such matrices are fixed-parameter tractable with respect
to the combined parameters ∆ and “solution size.” All these results are based
on a new structural result, which refines an already known “forbidden submatrix
characterization” for binary matrices with the C1P.

Concerning matrices that have only two ones either per row or per column,
we provide non-approximability and W[1]-hardness proofs for Max-COS-R and
Max-COS-C, among various approximation and fixed-parameter tractability re-
sults for Min-COS-R, Min-COS-C, Max-COS-R, and Max-COS-C.

Covering problems on input matrices with the C1P. Here, we consider
two variants of the subset selection problem Set Cover. Both of these two
problems can be modelled as matrix problems and are NP-hard on general bi-
nary matrices; we investigate if they become polynomial-time solvable when some
or all rows in the input matrix contain only one block of 1s each. The con-
sidered problems are called Minimum-Degree Hypergraph and Red-Blue
Set Cover; in both cases the input consists of a matrix consisting of “red” and
“blue” rows. Whereas Minimum-Degree Hypergraph asks for a subset of
columns that contains at least one 1-entry from every blue row but only a min-
imum number of 1-entries from every red row, Red-Blue Set Cover asks for
a subset of columns that contains at least one 1-entry from every blue row but

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Abstract ix

1-entries from a minimum number of red rows. Using integer linear programming
and dynamic programming, respectively, we show that both Minimum-Degree
Hypergraph and Red-Blue Set Cover are solvable in polynomial time on
matrices with the C1P. If, however, only the submatrix consisting of the blue
rows or only the submatrix consisting of the red rows has the C1P, then we can
show that the resulting problems are NP-hard. By taking into account the num-
ber of red and blue rows and the number of 1-entries per row and per column, we
explore a sharp border between the polynomial-time solvable and the NP-hard
restrictions of the problems.

Rectangle stabbing in d dimensions. (2-Dimensional) Rectangle
Stabbing is a geometric problem where the input consists of a set of axis-parallel
rectangles and a set of axis-parallel lines, and the task is to select a minimum
number of the given lines to intersect every rectangle at least once. The gener-
alization of this problem to d dimensions is called d-Dimensional Rectangle
Stabbing; here, hyperrectangles and hyperplanes are given instead of rectangles
and lines. For any number d ≥ 2 of dimensions, the problem can be interpreted as
a special case of the problem Set Cover, and, therefore, as a column selection
problem on specially structured binary matrices: Herein, the input consists of a
binary matrix that has at most d blocks of 1s per row, and the task is to find a
minimum-cardinality subset of columns that contains at least one 1-entry from
each row.

d-Dimensional Rectangle Stabbing is well-studied from the approxima-
tion point of view; however, the parameterized complexity remained unexplored
so far. We give nontrivial reductions from a problem called Multicolored
Clique to show that d-Dimensional Rectangle Stabbing is W[1]-hard for
the parameter “number of selected lines” for d ≥ 2. This result is comple-
mented by fixed-parameter algorithms for several restrictions of (2-Dimensio-
nal) Rectangle Stabbing.

In summary, we develop a number of new polynomial-time exact algorithms,
polynomial-time approximation algorithms, and fixed-parameter algorithms on
the one hand, and NP-hardness, non-approximability, and W[1]-hardness results
on the other hand. Thereby, our main focus lies on providing a systematic and
differentiated analysis of the computational complexity of the problems and their
various restrictions. This should allow future research aiming towards practical
algorithms to concentrate on those problem variants that we have identified as
“tractable”, that is, as polynomial-time solvable, constant-factor approximable,
or fixed-parameter tractable.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

x Abstract

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Preface xi

Preface

This dissertation covers most of my research on the consecutive-ones property
(C1P) of binary matrices and on the computational complexity of combinatorial
problems related to the consecutive-ones property. I have done this research in
the group of Prof. Rolf Niedermeier at the Friedrich-Schiller-Universität Jena,
where I have been working as a scientific assistant since October 2004.

I am deeply grateful to Rolf Niedermeier, who supported and encouraged me
throughout the time of my dissertation and who spent an immense amount of time
and effort on suggesting research topics, proof-reading my results, and teaching
me how to improve my writing style and presentation skills. Without having Rolf
as supervisor and motivator, I would not have managed to write this work.

I also thank my colleagues Jiong Guo, Falk Hüffner, and Sebastian Wernicke
for the enjoyable and productive cooperations—in particular, Jiong Guo and
Falk Hüffner are co-authors of several of the publications where my name also
appears in the author list. Furthermore, I am thankful to Nadja Betzler, Christian
Komusiewicz, Hannes Moser, Johannes Uhlmann, and all the other people from
Rolf Niedermeier’s group for the pleasant and stimulating working atmosphere.

The co-authors I have not mentioned so far, but whom I also want to thank for
the cooperations are Michael R. Fellows (University of Newcastle, Australia), Uwe
Krüger (Universität Jena), Daniel Lokshtanov (University of Bergen, Norway),
Frances A. Rosamond (University of Newcastle, Australia), Harald Sack (Uni-
versität Jena), Saket Saurabh (University of Bergen, Norway), Somnath Sikdar
(The Institute of Mathematical Sciences, Chennai, India), Anke Truß (Univer-
sität Jena), and Yngve Villanger (University of Bergen, Norway). Mike Fellows
and Frances Rosamond have been staying in Jena for almost one year, and Mike
never got tired to share his ideas and a lot of anecdotes with us.

Finally, I owe thanks to the DAAD (Deutscher Akademischer Austauschdi-
enst) and the DST (Department of Science and Technology, Government of India)
for financing my stay at The Institute of Mathematical Sciences in Chennai, In-
dia, in October 2007 (DAAD-DST exchange program D/05/57666), and to the
DFG (Deutsche Forschungsgemeinschaft), who sponsored three of my conference
trips in the past four and a half years.

In this thesis, I present only results that concern the C1P and some combina-
torial problems that are related to the C1P and to which I have made substantial
contributions. Further research topics to which I have contributed and which
are not part of this thesis are leaf roots [DGHN06, DGHN08] and tree roots
[DGN05], feedback set problems [DGH+10], dominating and covering problems
[DLS09, DLSV08], and online databases for NP-hard problems [SKD06]. More-
over, I have worked on some book chapters and surveys [DHN08, Dom07, Dom08].

The thesis is structured into seven chapters. After a general introduction in
Chapter 1, the C1P is introduced in Chapter 2; this chapter also provides an
overview of the literature concerning the C1P. Chapters 3–6 consider four com-

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

xii Preface

binatorial problems: Finding a minimum-size submatrix that does not have the
C1P (Chapter 3), deleting a minimum number of rows or columns to obtain the
C1P (Chapter 4), and some variants of the Set Cover problem on input matri-
ces that almost have the C1P (Chapters 5 and 6), where the variant considered in
Chapter 6 can also be interpreted as a geometric stabbing problem. The findings
are summarized in Chapter 7. Since I have collaborated with several co-authors,
I will briefly describe my contributions to the results of every chapter.

Chapter 2 provides an overview over the literature concerning the C1P.1 More-
over, I found and fixed a small error in Theorem 6.1 of [McC04].

Chapter 3 describes how in a given binary matrix without the C1P a small
submatrix can be found that conflicts with the C1P. All results in this chapter
were found by me; some of the results were presented at the 3rd Algorithms and
Complexity in Durham (ACiD ’07) Workshop [DN07], together with the results
from Section 4.5.2.1

Chapter 4 considers the problem of deleting a minimum number of rows or
columns from a given matrix in order to obtain the C1P. Jiong Guo had the main
idea for proving the hardness of the column deletion problem in Section 4.3, I ex-
tended the hardness proof to the row deletion problem. The algorithmic results
for the maximization problems in Section 4.4 were found by me. Section 4.5
considers the minimization variant of the problem. The algorithmic framework
presented in Section 4.5.1 was designed by Jiong Guo and me, the transformation
of matrices with the circular-ones property into matrices with the C1P described
in Section 4.5.2 was developed by me. All algorithms in Section 4.5 are based
on Theorem 4.7. I came up with the proof of this theorem; this proof is pre-
sented in Section 4.7. The problem kernel for the column deletion problem in
Section 4.6.1 was found by Jiong Guo, the adaption to the row deletion prob-
lem was done by me. The results in Section 4.6.2 were found by Jiong Guo and
me. Most of the results from Sections 4.3, 4.5, 4.6, and 4.7 were presented at
the 4th Annual Conference on Theory and Applications of Models of Computa-
tion (TAMC ’07) [DGN07], the results from Section 4.5.2 were presented at the
ACiD ’07 [DN07].1

Chapter 5 deals with two variants of the problem Set Cover; our work on
this topic was initiated by me. The greedy algorithm in Section 5.3.2 is due to
Jiong Guo; the dynamic programming algorithm in Section 5.3.3 was designed by
me. I thank an anonymous journal referee for pointing us to the negative cycle
approach in Section 5.3.1. The hardness results in Section 5.4 were achieved
by Jiong Guo, Sebastian Wernicke, Rolf Niedermeier and me in a number of
discussions. The results of Chapter 5 were presented at the 10th Scandinavian
Workshop on Algorithm Theory (SWAT ’06) and appeared in Journal of Discrete
Algorithms [DGNW08].

Chapter 6 considers the problem d-Dimensional Rectangle Stabbing.
I initiated our research on this topic. Except for Section 6.4, the work on this
chapter was done by Somnath Sikdar and me, mostly during my stay at The In-

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Preface xiii

stitute of Mathematical Sciences in Chennai, India, in October 2007. All main
results in Sections 6.3 and 6.5 were found by me, in each case after many fruit-
ful discussions with Somnath Sikdar. Concerning the hardness proof for 3-Di-
mensional Rectangle Stabbing in Section 6.3, I thank Michael R. Fellows
for explaining me the at that time unpublished “Multicolored Clique re-
duction technique”, which we used in our proof. The results from Sections 6.3
and 6.5 were presented at the 2nd International Frontiers of Algorithmics Work-
shop (FAW ’08) [DS08]. For proving the hardness of 2-Dimensional Rect-
angle Stabbing in Section 6.4, I have been working together with Michael
R. Fellows. The central idea for the reduction was brought up by him; this is,
apart from its more complicated structure, one of the reasons for presenting this
reduction separately from the hardness proof for 3-Dimensional Rectangle
Stabbing in Section 6.3, which is a weaker result. The reduction found by
Michael R. Fellows was quite involved; I significantly simplified the construction.
The hardness result of Section 6.4 was published at the 3rd International Work-
shop on Algorithms and Computation (WALCOM ’09) [DFR09], together with
some recent positive results for 2-Dimensional Rectangle Stabbing, which
are not part of this thesis.

Jena, July 2008 / March 2009 Michael Dom

1The overview given in Chapter 2 has meanwhile appeared in Bulletin of the European

Association for Theoretical Computer Science, 98:27–59, 2009; the results from Chapters 3
and 4 have appeared in Journal of Computer and System Sciences, 76(3–4):204–221.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

xiv Preface

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Contents

1 Introduction 1
1.1 Introductory Examples . 1
1.2 Basic Definitions . 6
1.3 Computational Complexity Theory 9

2 The Consecutive-Ones Property 27
2.1 Basic Facts and Definitions . 27
2.2 Graph Classes and the C1P/Circ1P 30
2.3 Recognizing the C1P . 38
2.4 Integer Linear Programming and the C1P/Circ1P 48
2.5 Set Cover and the C1P/Circ1P 59

3 Finding Forbidden Submatrices 63
3.1 Introduction and Overview . 63
3.2 An Approximation Algorithm . 64
3.3 Exact Algorithms . 68
3.4 Conclusion . 77

4 The C1P Submatrix Problem 79
4.1 Introduction and Overview . 79
4.2 Basics Facts and Definitions . 84
4.3 Hardness Results . 88
4.4 Maximization on (∗, 2)- and (2, ∗)-Matrices 91
4.5 Minimization on (∗, ∆)-Matrices 96
4.6 Minimization on (∗, 2)- and (2, ∗)-Matrices 107
4.7 Proof of the Structural Theorem 114
4.8 Conclusion . 118

5 Red-Blue Covering Problems 119
5.1 Introduction and Overview . 119
5.2 Basic Facts and Definitions . 122
5.3 Input Matrices with the C1P . 124
5.4 Input Matrices with Partial C1P 129
5.5 Conclusion . 138

xv

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

xvi Contents

6 Rectangle Stabbing 139
6.1 Introduction and Overview . 139
6.2 Basics Facts and Definitions . 142
6.3 W[1]-Hardness for d ≥ 3 . 145
6.4 W[1]-Hardness for d = 2 . 151
6.5 Algorithms for Restricted Variants with d = 2 154
6.6 Conclusion . 161

7 Conclusion 163

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Chapter 1

Introduction

This thesis deals with combinatorial problems that are all closely related to the
consecutive-ones property of binary matrices. Herein, the consecutive-ones prop-
erty (C1P) means that the columns of a binary matrix can be ordered in such a
way that the 1s appear consecutively in every row, that is, every row contains at
most one block of 1s.

In this first chapter, we start with giving three short examples for the occur-
rence of the C1P in practical applications. In the remainder of the chapter, we
introduce the notation used throughout the thesis and provide a short overview
of the basic concepts of algorithmics and computational complexity theory.

1.1 Introductory Examples

This section presents, as a motivation and warm-up, three short examples that il-
lustrate how the C1P can play a role in practical applications. The examples shall
also demonstrate how problems from practical applications can be formulated in
a compact and precise mathematical form that abstracts from all information
that is unnecessary for solving the problem. Since our goal here is to give a
rather intuitive understanding, we do not prove the correctness of the approaches
described in the three examples.

Physical mapping of DNA. Our first example application has its background
in computational biology, where the construction of physical maps for the hu-
man DNA was a central issue in the past years [ABH98, AM96, GGKS95, LH03,
WR00]. A physical map is a map that describes the relative order of markers
on a chromosome. A chromosome is basically a long sequence of DNA, and a
marker is a short DNA sequence that appears only once on the chromosome and,
therefore, is of special interest. To create a physical map, the chromosome is cut
into shorter pieces, which are duplicated and called clones. Thereafter, one tests
for each of the clones which of the markers appears on it. These tests, however,
can only find out whether a marker appears on a clone, but it is not possible to

1

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2 Chapter 1. Introduction

AA BB CC DD EE FF GG

11
22
33
44
55
66
77
88

11111111
1111

1
11

1
1

1
1

1
1

1

1

1
1

1
1

1
1
1

1

1

1

111
1111

1111
11

1111
1111

000000
0000000000

0
0

0
0

0
0
0

0

0

0

0
0

0

0
00

0
0

0

0
0

0000
000

000
00000

000
000

Figure 1.1: An application from physical mapping.

determine the order of the markers on the clone. The result is a binary matrix
as shown in the left part of Figure 1.1: Every row corresponds to a clone, and
every column corresponds to a marker. If a marker appears on a clone, then the
corresponding entry of the matrix is 1, otherwise it is 0. Now, the crucial obser-
vation for finding the correct order of the markers is that if two markers A and B
appear on a clone x, but another marker C does not appear on x, then C cannot
lie between A and B on the chromosome. Therefore, to figure out the order of
the markers on the chromosome, all one has to do is to order the columns of the
matrix in such a way that in every row the 1s appear consecutively. In concrete
practical applications, however, the biochemical methods always produce errors
such that it is often impossible to order the columns in the resulting matrices
as described. One way to deal with these errors is to discard a smallest possible
number of clones such that the remaining clones lead to a consistent order of the
markers. On the level of binary matrices, this approach means that one has to
delete a minimum number of rows such that in the resulting matrix the 1s can
be placed consecutively by reordering the columns. This matrix problem is the
subject of Chapter 4 of this thesis. The right part of Figure 1.1 shows that in our
example we do not have to delete more than two rows.

Placing sender stations in cellular networks. Cellular networks are net-
works that consist of two types of participants: base stations and client stations.
For example, cell phone towers and cell phones form a cellular network. The
operator of a such a network can be confronted with the following problem (see
also [KRW+05]): To guarantee the network coverage of an area with several set-
tlements, new base stations have to be built. Taking into account the landscape,
and, since the stations should be accessible by car, there exist only a certain
number of locations that are suitable for planting new base stations. Once a base
station is built, it has a certain transmission range. The left part of Figure 1.2
demonstrates the situation: there are eight settlements 1–8 and five suitable lo-
cations A–E; each location is drawn as a point together with a cycle denoting the

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.1. Introductory Examples 3

A

B

C

D

E

1

2

3
4

5

6

7

8

A B C D E

1

2

3

4

5

6

7

8

3

4 111

111

1

1

11

111

111

111

111

11

00

00

0000

0000

000

00

00

00

00

000

Figure 1.2: The problem of placing base stations in cellular networks.

transmission range of a base station that could be placed at this point. The task
of the network operator now is to select a sufficient large number of the locations
for building his new base stations there, such that an optimal network coverage of
all settlements is obtained. Thereby, two constraints have to be regarded: First,
every settlement should lie within the transmission range of at least one base
station. Second, there are some client stations that are sensitive to interferences.
In our example, let us assume that such client stations exist in the settlements 3
and 4. Therefore, each of the settlements 3 and 4 should lie within the trans-
mission range of at most two base stations—receiving signals from three or more
base stations would disturb the client stations there.

The right part of Figure 1.2 shows how to translate this problem into a matrix
problem. The corresponding matrix consists of an upper part and a lower part.
The upper part has one row for every settlement 1–8, and the lower part has one
row for each of the settlements 3 and 4. Furthermore, the matrix has one column
for every location A–E. If a settlement lies within the transmission range of a
potential base station, then the corresponding entry of the matrix is 1, otherwise
it is 0. The problem that now has to be solved on this matrix is: Find some
columns that contain at least one 1 from every row of the upper part and at
most two 1s from every row of the lower part. In our example, the columns B,
D, and E would form a solution for this problem. One can easily verify that
building base stations at the corresponding locations yields a network coverage
for the settlements as desired.

Note that the matrix resulting from the base station problem typically has a
very special structure (see also [MSW05, MW04, RS04]): it is “close” to having

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4 Chapter 1. Introduction

the C1P—in our example, there are only two blocks of 1s in every row. This
is due to the facts that the transmission ranges of the base stations are cycles
and that the locations A–E of the base stations all are close to some street and,
therefore, are arranged in a special way.

Sensor selection in multi-sensor fusion applications. Our third example is
adapted from Koushanfar et al. [KSPS02] and deals with minimizing the number
of sensors in a multi-sensor fusion application. In this application, one has to
classify objects by using a set of sensors. Herein, classifying means to determine
for every object that is detected to which of six given object types A–F the object
belongs. Every object has two properties—we will call them size and wavelength
here—, which can be expressed as a number each. By considering these two
properties, every object can uniquely be assigned to one of the six object types. In
particular, no two object types have the same combination of these two properties.
See parts a) and c) of Figure 1.3 for two examples; the object types are displayed
as points in a two-dimensional coordinate system where one coordinate stands
for the size and the other for the wavelength of the corresponding object type.
The object type C in part a) of Figure 1.3, for example, consists of objects of
size 2.7 µm and a wavelength of 420 nm.

Now assume that there are a huge number of different sensors available; each
of these sensors has a certain threshold value t and can either detect whether the
size of an object is at least t, or whether the wavelength is at least t (in particular,
a sensor cannot measure both size and wavelength). For several reasons (costs,
simplicity,. . .), as few as possible sensors shall be bought and installed, such
that with these few sensors it is possible to identify the type of every object
that passes the sensors. For the object types displayed in part a) of Figure 1.3
one needs five sensors; part b) of Figure 1.3 shows one (of several) possibilities
how these five sensors can be selected—every vertical or horizontal line in this
illustration corresponds to one sensor. These five sensors indeed have the ability
to classify every object: If, for example, the sensors report that an object has
a size between 200 and 400 µm and a wavelength of at least 500 nm, then this
object must be of type D. Part d) of Figure 1.3 shows that three sensors are
sufficient for the object types shown in part c) of the figure.

Given a set of object types, how can one find a suitable set of as few as
possible sensors? Parts b) and d) of Figure 1.3 illustrate a way how to interpret
this task as a geometric problem: The problem of selecting sensors is equivalent to
the problem of finding a minimum-size set of axis-parallel lines in the coordinate
systems of parts a) and c) of Figure 1.3, such that every pair of points is divided
by these lines. In other words, one has to find a minimum-size set of axis-parallel
lines that divide the coordinate system into several areas, such that no two points
lie within the same area. In order to solve the problem of dividing points with
lines, we transform this problem into another geometric problem. To this end,
for every pair of points in the coordinate system, we insert a rectangle such that

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.1. Introductory Examples 5

a)

size [µm]

wavelength [nm]

A

B
C

D

E

F

1 2 3 4 5

300

400

500

600

700

800

b)

size [µm]

wavelength [nm]

A

B
C

D

E

F

1 2 3 4 5

300

400

500

600

700

800

c)

size [µm]

wavelength [nm]

1 2 3 4 5

300

400

500

600

700

800

d)

size [µm]

wavelength [nm]

1 2 3 4 5

300

400

500

600

700

800

e)

size [µm]

wavelength [nm]

1 2 3 4 5

500

600

700

800

f)

size [µm]

wavelength [nm]

1 2 3 4 5

500

600

700

800

g)

size [µm]

wavelength [nm]

1 2 3 4 5 6

500

600

700

800

h)

size [µm]

wavelength [nm]

1 2 3 4 5

500

600

700

800

Figure 1.3: Selecting a minimum number of sensors.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6 Chapter 1. Introduction

the two points lie on two opposite edges of the rectangle [CDKW05].
Part e) of Figure 1.3 shows an example which consists, for the ease of presen-

tation, of only four object types. Part f) of Figure 1.3 shows how to insert the
rectangles. Since rectangles that contain other rectangles can be omitted, there
are five rectangles. (In the figure, two rectangles are grey-colored, two rectangles
are drawn with a diagonal top right to bottom left hatching, and one is drawn
with a diagonal top left to bottom right hatching.) The problem that has to
be solved now is the following: Find a set of axis-parallel lines such that every
rectangle is intersected by at least one of these lines. This problem is known as
(2-Dimensional) Rectangle Stabbing, and it is identical to a column selec-
tion problem on matrices that have at most two blocks of 1s per row. Part g) of
Figure 1.3 shows that all rectangles in the example can be intersected with only
two lines, and part h) shows the corresponding solution for dividing the four given
points in the coordinate system. Hence, for classifying objects, in this example
two sensors would suffice: one sensor with a size threshold of 3 µm and one sensor
with a wavelength threshold of 600 nm.

All problems occurring in these three application examples are subject of this
thesis. The problem of obtaining the C1P by row or column deletions is addressed
in Chapter 4. For solving this problem, we also have to identify those parts of
a matrix that conflict with the C1P; in Chapter 3 we provide our results in this
direction. Selecting columns from a matrix in order to hit at least one 1-entry
from some of the rows but not too many 1-entries from the other rows is the
subject of Chapter 5, and in Chapter 6, finally, we consider the (d-Dimensio-
nal) Rectangle Stabbing problem.

1.2 Basic Definitions

A set S properly contains a set S ′ if S ′ ⊆ S and S \ S ′ 6= ∅; we also say that
S ′ is a proper subset of S. A set S is called minimal (maximal) with respect to a
property if no proper subset (no proper superset) of S also has this property. In
contrast, a set is called minimum (maximum) with respect to a property if there
exists no set of smaller (greater) cardinality that has the property.

As usual, we often write iff instead of “if and only if.” With log(x) we denote
the logarithm of x to the base 2. By N, we refer to the set of positive integers.
For two integers i, j with j > 0, the remainder of the division i by j is denoted
by i mod j; for example, 17 mod 5 = 2. We define i mod j as

i mod j := ((i − 1) mod j) + 1,

that is,

i mod j =

{
i mod j if i mod j > 0
j if i mod j = 0

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.2. Basic Definitions 7

Moreover, for an integer n > 0 we define

predn, succn : {1, . . . , n} → {1, . . . , n}

as the two functions given by

predn(x) := (x − 1) modn, succn(x) := (x + 1) modn,

that is,

predn(x) =

{
x − 1 if x > 1
n if x = 1

and

succn(x) =

{
x + 1 if x < n
1 if x = n.

The Big-O-Notation allows to ignore constants when describing functions:
Given two functions f, g : N→ R, then f ∈ O(g) if ∃c > 0 ∃n0 ∀n > n0 : |f(n)| ≤
c · |g(n)|. One often writes f = O(g) instead of f ∈ O(g), and if f ∈ O(g), one
often writes O(g(x)) to denote the value f(x).

The O∗-Notation is a notation similar to the Big-O-Notation; it was intro-
duced by Woeginger [Woe03] for describing running times of algorithms and
thereby omitting all polynomials in the input size. We use the following defi-
nition: Given two functions f, g : Nd → R, then f ∈ O∗(g) if there exists a
polynomial p : Nd → R such that ∃n0 ∀n1, . . . , nd > n0 : |f(n1, . . . , nd)| ≤
|p(n1, . . . , nd) · g(n1, . . . , nd)|.

For basic introductions to discrete mathematics and algorithmics, we refer
to [Ros06, CLRS01].

Graphs. An (undirected) graph is a tuple (V, E), where V is a finite set and E
is a set of size-two subsets from V . An element from V is called a vertex, and
an element from E is called an edge. For a graph G, we denote with V (G) the
set of G’s vertices and with E(G) the set of G’s edges. In a graph G = (V, E),
two vertices v and w are adjacent (or connected by an edge) if E contains the
edge {v, w}; in this case v and w are neighbors of each other. The edge {v, w}
is incident to v and w, and the vertices v, w are the endpoints of {v, w}. The
degree deg(v) of a vertex v denotes the number of its neighbors. The (open)
neighborhood of a vertex v is the set of all neighbors of v and is denoted by N(v).
The closed neighborhood of v, denoted by N [v], is defined as N [v] := N(v)∪ {v}.
A subgraph of G is a graph G′ := (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E. For
V ′ ⊆ V , the subgraph of G that is induced by V ′ is the graph G′ = (V ′, E ′)
with E ′ = {{v, w} ∈ E | v ∈ V ′ ∧ w ∈ V ′}; this subgraph is denoted by G[V ′].
Deleting a vertex v ∈ V from a graph G = (V, E) means deleting v from V and
deleting every edge from E where v is one of the endpoints.

A path is a graph P = (V, E) with vertex set V = {v1, . . . , vn} and edge set
E = {{v1, v2}, {v2, v3}, . . . , {vn−2, vn−1}, {vn−1, vn}}; the vertices v1 and vn are

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

8 Chapter 1. Introduction

called the endpoints of P . A cycle is a graph consisting of a path v1, . . . , vn and
the additional edge {vn, v1}. Sometimes we describe a path or a cycle by giving
only the sequence v1, . . . , vn of its vertices. The length of a path or cycle is the
number of its edges, that is, the length of a path P equals the number of P ’s
vertices minus 1 and the length of a cycle C equals the number of C’s vertices.
With Pn we denote a path with n vertices, and with Cn we denote a cycle with
n vertices. A chord of a cycle is an edge e that is not part of the cycle but connects
two vertices of the cycle. A hole is an induced cycle of length at least 5, that is, a
cycle of length at least 5 where no chords exist. A graph is chordal if it contains
no induced cycle (that is, no chordless cycle) of length greater than three. Two
vertices vi, vj in a graph G are called connected (by a path) if G contains a path as
subgraph whose endpoints are vi and vj . A graph is called a connected graph if all
of its vertices are pairwisely connected by paths. A maximal connected subgraph
of a graph G is called a connected component of G. A tree is a connected graph
without cycles; a vertex of degree one in a tree is called a leaf. A rooted tree is
a tree where one vertex is marked as the root of the tree. A clique is a complete
graph, that is, a graph G = (V, E) with E = {{v, w} | v, w ∈ V ∧ v 6= w}.
With Kn we denote a clique with n vertices. An independent set is a set of
vertices that are not connected by edges.

A graph G = (V, E) is bipartite if V can be partitioned into two vertex
sets V1, V2 such that every edge in E has one endpoint in V1 and one endpoint
in V2. A bipartite graph G = (V, E) together with a partition of V into V1 and V2

is often denoted by a triple (V1, V2, E). A hole in a bipartite graph is an induced
cycle of length at least 6.

A directed graph is a tuple (V, E), where the edges from E are ordered
pairs (instead of size-2 sets) of vertices from V . Directed paths and cycles
are defined analogously to the undirected case, that is, a directed path is a
directed graph P = (V, E) with vertex set V = {v1, . . . , vn} and edge set
E = {(v1, v2), . . . , (vn−1, vn)}, and a directed cycle is a graph consisting of a
path v1, . . . , vn and the additional edge (vn, v1).

For a general introduction to graph theory, we refer to [Die05, Wes01]; for
more about directed graphs, see [BG02].

Matrices. A matrix is a rectangular table of numbers, which are called the
entries of the matrix. An m×n matrix contains m ·n entries, which are arranged
in m rows and n columns. The entry in the ith row and jth column of a matrix M
is denoted by mi,j; moreover, we usually use ri and cj to denote the ith row and
the jth column, respectively, of a matrix. One can also regard a matrix as a
set of columns (or rows) together with an order on this set; the order of the
columns (rows) is called the column ordering (row ordering) of the matrix. Two
matrices M and M ′ are called isomorphic if M ′ is a permutation of the rows and
columns of M . In particular, if two matrices consist of the same set of columns
(rows) but only differ in their column orderings (row orderings), these matrices

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.3. Computational Complexity Theory 9

are isomorphic (however, the reverse is not always true, since two isomorphic
matrices may consist of differing rows and columns). We use the term line of a
matrix M to denote a row or column of M .

A matrix M ′ is usually called a submatrix of a matrix M if one can select
a subset of the rows and columns of M in such a way that deleting all but the
selected rows and columns from M results in M ′. We extend this notion and
call M ′ also a submatrix of M if we can select a subset of the rows and columns
of M in such a way that deleting all but the selected rows and columns results in
a matrix that is isomorphic to M ′. If one can find a submatrix M ′ of M in this
way, we say that M contains M ′ as a submatrix and that M ′ is induced by the
selected rows and columns. A matrix M is M ′-free if M ′ is not a submatrix of M .
Let ri denote the ith row and let cj denote the jth column of M , and let M ′ be
the submatrix of M that results from deleting all rows except for ri1 , . . . , rip and
all columns except for cj1, . . . , cjq

from M . Then, a row ri of M belongs to M ′,
denoted by ri ∈ M ′, if i ∈ {i1, . . . , ip}. Analogously, a column cj of M belongs
to M ′ if j ∈ {j1, . . . , jq}. A submatrix of a matrix M is called a proper submatrix
of M if not all rows or not all columns of M belong to M ′.

A matrix whose entries are all from {0, 1} is called a binary matrix or 0/1-
matrix ; a matrix whose entries are all from {0, 1,−1} is called a 0/±1-matrix. A
column of M that contains only 0-entries is called a 0-column. Complementing a
line ℓ of a matrix means that all 1-entries of ℓ are replaced by 0s and all 0-entries
are replaced by 1s.

A square matrix is an m × n matrix with m = n; the main diagonal of an
n × n square matrix M denotes the entries m1,1, m2,2, . . . , mn,n. A unit matrix
is a square matrix where the entries of the main diagonal are 1 and all other
entries are 0. The transpose of an m × n matrix M , denoted by MT, is the
n×m matrix M ′ with m′j,i = mi,j . A vector ~x is an m× 1 matrix, its entries are
usually denoted with x1, . . . , xm.

The half adjacency matrix of a bipartite graph G = (V1, V2, E) with V1 =
{v1, . . . , vn1} and V2 = {w1, . . . , wn2} is the n1×n2 binary matrix M with mi,j = 1
iff {vi, wj} ∈ E. Every 0/1-matrix M can be interpreted as the half adjacency
matrix of a bipartite graph; this graph is called the representing graph GM of M .
In other words, for every row and every column of a matrix M , there is a vertex
in its representing graph GM , and for every 1-entry mi,j in M , there is an edge
in GM connecting the vertices corresponding to the ith row and the jth column
of M .

1.3 Computational Complexity Theory

The main chapters of this work deal with the question whether there are efficient
algorithms for certain combinatorial problems. Herein, “efficient” means that
the running time of an algorithm is a slowly growing function in the size of the
input. This question, or, more generally, the analysis of the amount of required re-

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

10 Chapter 1. Introduction

sources (not only time but also, for example, memory space or bits of information
exchanged between several processors) for solving problems is one of the main is-
sues in computational complexity theory and theoretical computer science. When
considering a problem (we will define later what exactly we mean with the term
“problem”), hence, the task is typically to find either an efficient algorithm for
the problem, or, contrariwise, a proof for the non-existence of such an algorithm.
Unfortunately, in most cases where we are not able to find an efficient algorithm,
there are no methods known how to prove that an efficient algorithm cannot exist.
Therefore, we are usually satisfied with comparing such a difficult problem with
other problems. To this end, we sort problems into complexity classes, which
allows to say that a problem is “at least as difficult as many other problems that
are already assumed to be difficult.” There are many “hardness predicates” of
this kind (for example, NP-hardness, APX-hardness, W[1]-hardness, . . .), and
the ways they are defined are very similar in most cases: First, define a class C
that contains many problems that are already assumed to be “difficult” (which
means that after a long period of research there is still no efficient algorithm
known for them). Second, show that if there was an efficient algorithm for one of
the “difficult” problems in C, then for all problems in C there would exist efficient
algorithms (this affirms the “difficulty” of each of the “difficult” problems). Now,
a problem X can be called “C-hard” if one can show that the existence of an
efficient algorithm for X would imply the existence of efficient algorithms for all
problems in C.

In this section, we give a more formal description of the types of problems
we are dealing with, and we introduce some of the most important complexity
classes and notions of hardness. We restrict ourselves to the resource “time”, that
is, we only consider the time that is needed by an algorithm; on the one hand,
because this is the resource that is studied most extensively in literature, and, on
the other hand, because time seems to be the resource most relevant in practice.1

1.3.1 “Classical” Complexity Theory

Here, we introduce the main concepts of complexity theory as described by Pa-
padimitriou [Pap94]. We start with considering decision problems and the corre-
sponding complexity classes and will then turn over to other problem types.

Decision problems. The first type of problems to describe are decision prob-
lems. A decision problem has a (usually infinitive) set of possible inputs, which are
called (problem) instances and consist of mathematical objects. For every given
instance of a particular problem, a question is posed, which asks if the instance
has a certain property and which can be answered with yes or no. This question

1If an algorithm needs only a limited amount of time for its computation, then, of course,
the memory space it needs is also bounded because for every memory access a certain amount
of time has to be spent.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.3. Computational Complexity Theory 11

Figure 1.4: Example for Vertex Cover. The black vertices form a vertex cover
of size three: Every edge has at least one black endpoint.

is specific for each decision problem, which means that every decision problem is
uniquely defined by the allowed inputs and the question that is asked for each of
the inputs. Therefore, we consider a decision problem X as a pair (IX , qX) con-
sisting of a (usually infinitive) set IX of instances and a question qX . A problem
instance x ∈ IX is called a yes-instance of X if the answer to the question qX is
yes for x, and a no-instance otherwise.2

As an example for a decision problem, consider the problem Vertex Cover,
which is defined as follows and will be used as a running example throughout this
section.Vertex Cover

Input: An undirected graph G = (V, E) and a nonnegative inte-
ger k.

Question: Is there a subset C ⊆ V of at most k vertices such that
each edge in E has at least one endpoint in C?

In the case of Vertex Cover, every problem instance consists of a pair (G =
(V, E), k); a vertex set C ⊆ V with the property that every edge in E has at least
one endpoint in C is called a vertex cover for the graph G (see Figure 1.4).

Running Times and the Turing Machine Model. Problems can be clas-
sified by considering the running times that are needed to solve them. To this
end, an abstract computer model is used which is called (deterministic) Turing
machine and whose computational power is identical to that of most relevant
real-world computer programs—for example, each problem that can be solved by
a Java program can also be solved within a “similar” running time by an adequate
Turing machine and vice versa. The running time needed to solve a problem X
is measured in terms of how many steps a Turing machine M has to perform
to solve the problem. This number of steps is always given as a function tM(n)
in the size n of the input. (For example, the running time of a Turing machine
solving Vertex Cover would be given as a function in the number of vertices

2An alternative point of view is the definition of a decision problem as a language: A
language, in the sense of complexity theory, is a set of binary strings, the so-called words ;
instead of defining a decision problem X as a pair (IX , qX), one can define X by a language
that contains as words all yes-instances of X , encoded as binary strings.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

12 Chapter 1. Introduction

and edges of the input graph.) More exactly, the function tM (n) always expresses
the so-called worst-case running time of the Turing machine M , that is, tM(n) is
the maximum running time needed by M , taken over all inputs of size n.

The Complexity Class P. In order to constitute a classifying tool, problems
that can be solved within similar running times are grouped together and sorted
into complexity classes, with P and NP being two of the most important of these
classes. The class P contains all decision problems that can be solved within a
polynomial running time. That is, for every problem X ∈ P there is a Turing
machine MX whose running time tMX

(n) is a polynomial in n. For most practical
applications such a polynomial running time means that the problem is solvable
within a reasonable amount of time. However, there are a lot of problems of
practical relevance for which no polynomial-time algorithms are known.

Nondeterminism. For defining the complexity class NP, a modified computer
model called nondeterministic Turing machine is introduced: In contrast to de-
terministic Turing machines, a nondeterministic Turing machine has the freedom
to guess in every step. By definition, a nondeterministic Turing machine solves a
problem if for every no-instance it always answers correctly with no, and if for ev-
ery yes-instance it answers correctly with yes provided that it has made the right
guess in every step. One can imagine a nondeterministic Turing machine as a ran-
domized machine that answers correctly for every no-instance and that answers
correctly with a probability greater than zero for every yes-instance. Typically, a
nondeterministic Turing machine solves a problem with the following two-phase
approach: In the first phase, it guesses a “witness” that proves the correctness of
the answer yes (for example, in the case of Vertex Cover it guesses a vertex
set C of size k). In the second phase, it checks—without guessing—whether the
witness is correct (in our example, it checks whether C is indeed a vertex cover)
and answers according to the result of the check. A correct witness is usually
called a certificate or solution.

The Complexity Class NP. Like in the case of deterministic Turing machines,
the running time of a nondeterministic Turing machine M for a problem X is
expressed as a function tM(n) in the input size n; it gives the maximum number
of steps the Turing machine can need for solving a problem instance of size n.
The class NP is defined as the class of all decision problems X that can be
solved nondeterministically within a polynomial running time. That is, for every
problem X ∈ NP there is a nondeterministic Turing machine MX whose running
time tMX

(n) is a polynomial in n. Therefore, the class NP contains exactly those
problems where each yes-instance has a certificate whose size is polynomial in the
input size and whose correctness can be checked deterministically in polynomial
time. (Note that the class P contains those problems of NP where a certificate of

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.3. Computational Complexity Theory 13

each yes-instance can not only be checked, but also constructed deterministically
in polynomial time.)

Polynomial-Time Reductions, NP-Hardness, and NP-Completeness.
Due to the power of guessing, the class NP contains an enormous number of
problems (although there exist problems that are even too hard to be solved
nondeterministically in polynomial time), many of them of substantial practical
relevance. In particular, all problems that belong to P are also contained in NP
(which directly follows from the definitions). However, there are a lot of impor-
tant problems in NP that seem not to be solvable deterministically in polynomial
time: Replacing the powerful guessing by deterministic steps—for example, by
trying several possibilities—often results in exponential running times (the so-
called “combinatorial explosion”), which often makes these problems intractable
in practice. In order to unite such “difficult” problems into a class of their own,
and to produce evidence for their intractability by showing that either all or none
of these problems are solvable deterministically in polynomial time, the concept of
reductions is introduced: A problem X is (polynomial-time) reducible to a prob-
lem Y , denoted by X ≤P Y , if there is a function Φ that maps every problem
instance x of X to a problem instance y = Φ(x) of Y such that y is a yes-instance
of Y iff x is a yes-instance of X. Moreover, there must be a polynomial tΦ such
that the time for computing Φ(x)—and, hence, also the size of Φ(x)—does not
exceed tΦ(|x|). Intuitively speaking, the problem Y is “as least as hard” as the
problem X, because a problem instance x of X can be solved in polynomial time
by using any polynomial-time algorithm for the problem Y : First, compute the
problem instance y = Φ(x) of Y , and then solve y using the algorithm for Y —the
output of this algorithm is the answer for y as well as for x.3

The concept of reducing one problem to another can be illustrated by the very
simple reduction of the problem Independent Set to Vertex Cover: The
problem Independent Set asks, given a graph G = (V, E) and a nonnegative
integer k, whether G has an independent set V ′ ⊆ V of at least k vertices. (An
independent set is a set of vertices that are pairwise not connected by edges.)
Independent Set can be reduced to Vertex Cover by mapping each prob-
lem instance (G, k) of Independent Set to a problem instance (G, |V | − k)
of Vertex Cover. If (G, |V | − k) is a yes-instance of Vertex Cover, then G
has a vertex cover C of size at most |V |−k and, therefore, (G, k) is a yes-instance
of Independent Set: The vertices not belonging to C are not connected by

3Polynomial-time reductions as described here are also called many-one reductions or Karp

reductions. There are also other types of reductions (see [LLS75]), of which the most common
is called Turing reduction: A problem X is called Turing reducible to a problem Y if there is a
deterministic Turing machine M that can solve X in polynomial time provided that M has a
built-in subroutine—called oracle—that solves Y in constant time. For solving X in polynomial
time, M can construct polynomially many polynomial-size instances of Y and call the oracle
on these instances. The class that contains all problems that are Turing reducible to problems
in NP is called PNP.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

14 Chapter 1. Introduction

edges and form an independent set of size at least k (to see this, consider the
white vertices in Fig 1.4). If, however, the instance (G, |V | − k) is a no-instance
of Vertex Cover, then (G, k) is a no-instance of Independent Set, because
if there was an independent set V ′ of size at least k, then the vertices in V \ V ′

would form a vertex cover of size at most |V | − k.
The definition of polynomial-time reductions directly implies that if X ≤P Y

and Y ∈ P, then also X ∈ P (“the class P is closed under polynomial-time re-
ductions”). The other way round, if X ≤P Y and if X is one of the “difficult”
problems, it is unlikely that Y can be solved in polynomial time (because oth-
erwise the reduction would constitute a polynomial-time algorithm for X). A
problem Y is called NP-hard if every problem X ∈ NP can be reduced to Y .
If, in addition, the problem Y itself belongs to NP, the problem Y is called NP-
complete. For example, Vertex Cover is an NP-complete problem. Note that
to show the NP-hardness of a problem Y it suffices to give a reduction from
one NP-hard problem X to Y , because the composition of two polynomial-time
reductions is again a polynomial-time reduction.

NP-complete problems are, by definition, the “most difficult” problems of the
class NP, and no algorithms are known that solve these problems efficiently. In
fact, it is very unlikely that a polynomial-time algorithm for any NP-hard problem
can ever be found, because this would immediately imply that all problems in
NP (in particular, all NP-complete problems) could be solved in polynomial time,
meaning that NP = P. There are thousands of NP-complete problems, and they
arise in all areas of life [GJ79, Pap97]; the question whether NP = P is one
of the seven “Millennium Prize Problems” named by The Clay Mathematics
Institute [Cla09].

Function Problems. So far, we have only considered decision problems. How-
ever, in practical applications one often does not only want to know whether a
problem instance has a solution (that is, whether it is a yes-instance), but one is
interested in finding such a solution. For example, in the case of Vertex Cover,
the following problem definition could be more useful for many applications.Vertex Cover II

Input: An undirected graph G = (V, E) and a nonnegative integer k.
Task: Find a vertex cover C for G that consists of at most k vertices,

or report that no such vertex cover exists.

Problems of this kind are called function problems. Since the definitions of P
and NP do not apply to these problems, there are specific complexity classes
for function problems: In particular, the class of problems where the task is
to compute a certificate for an instance of a decision problem X from NP is
called FNP (Vertex Cover II would be a typical representative for this class).
If a problem in FNP can be solved deterministically in polynomial time, that is,
a certificate for a given instance can be computed in polynomial time if existing,
then it belongs to the class FP.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.3. Computational Complexity Theory 15

Many (see also [BG94]) function problems in FNP are not really “more dif-
ficult” than their corresponding decision versions in NP, a fact, which is called
self-reducibility : A certificate for an instance x of a decision problem X from NP
can often be constructed by calling polynomially many times an algorithm for X
answering only with yes or no. For example, to construct a vertex cover of size k
for a graph G, try every vertex v ∈ V and ask whether there is a vertex cover of
size k−1 for the graph G with v deleted. If for a vertex v the answer is yes, then
put v into the solution to be constructed and continue by constructing a vertex
cover of size k − 1 for the graph G with v deleted.4,5

Of course, if a Turing machine M solves a function problem from FNP, then M
can also be used to solve the corresponding decision problem from NP: just check
whether M has returned a certificate or not. Function problems whose Turing
machines can be used in this way to solve NP-hard decision problems are usually
called NP-hard (although the term “NP-hard” was originally defined for decision
problems only6) and we cannot hope to find polynomial-time algorithms for them.

Optimization Problems. The last sort of problems we will introduce are op-
timization problems. Here the task usually consists of finding a solution of min-
imum or maximum cost—a so-called optimal solution— from a set of possible
solutions—the so-called feasible solutions—for a given problem instance. A prob-
lem is called a minimization problem if a solution of minimum cost is required,
and a maximization problem if a solution of maximum cost is required. The de-
scription of what exactly a feasible solution is and how its cost has to be computed
belongs to the definition of the problem. The optimization version of Vertex
Cover, for example, is defined as follows.

4If G is a yes-instance then there is always a vertex v such that G with v deleted has a
vertex cover of size k − 1.

5The class containing all function problems that can be solved by calling polynomially many
times an algorithm for a problem in NP is called FPNP (in analogy to PNP); it contains, in
particular, the problem Vertex Cover II.

6There is a specific notion of hardness for function problems, which directly corresponds
to NP-hardness for decision problems and which is based on a special type of reduction: A
function problem X is called (polynomial-time) reducible to a function problem Y if there is a
polynomial-time computable function Φ that maps every instance x of X to an instance y =
Φ(x) of Y , and a polynomial-time computable function that takes as input a solution for y
and outputs a solution for x. A problem Y is called FNP-hard if every problem X ∈ FNP
can be reduced to Y . This notion allows to define FNP-complete problems, that is, FNP-
hard problems in FNP, as the most difficult problems in FNP. Using the term “NP-hard” for
function problems neglects that a reduction for decision problems has to map yes-instances to
yes-instances and no-instances to no-instances. Mapping yes-instances to no-instances and no-
instances to yes-instances does not conform to the definition of a polynomial-time reduction for
a decision problem, and the class NP, which is defined as the class of problems with polynomial-
time checkable witnesses for yes-instances, is not closed under such reductions.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

16 Chapter 1. IntroductionVertex Cover III
Input: An undirected graph G = (V, E).
Task: Find a minimum-size vertex cover C for G.

Here, the set of feasible solutions consists of all vertex covers for the input graph,
and the cost of a solution is simply the number of its vertices. Formally, an
optimization problem X consists of a tuple (IX , SOLX , costX , typeX) consisting
of a set IX of instances, a function SOLX assigning to every instance x ∈ IX a
set SOLX(x) of feasible solutions, a function costX determining the cost of every
solution in SOLX(x) for all instances x ∈ IX , and a string typeX ∈ {MIN, MAX}
specifying whether X is a minimization problem or a maximization problem.
We just mention in passing that optimization problems can also occur in other
“flavors” than the one described so far: Instead of asking for the computation
of an optimal solution, the task can be to compute only the cost of an optimal
solution or to decide whether the cost of an optimal solution equals a given value.
Here we will concentrate on the kind of optimization problems where one has to
compute an optimal solution.

The complexity class that contains the optimization problems of our interest
is NPO. This class contains all optimization problems X = (IX , SOLX , costX ,
typeX) where for every x ∈ IX the following three statements apply: The size of
every solution in SOLX(x) is polynomial in the size of x, one can verify in poly-
nomial time that a solution indeed belongs to SOLX(x), and the function costX is
computable in polynomial time. The class PO contains those problems from NPO
that can be solved deterministically in polynomial time, that is, those problems
where an optimal solution for a given instance can be found in polynomial time.

The class NPO is closely connected to the class NP: The decision prob-
lem where, given an instance x ∈ IX of a minimization (maximization) prob-
lem X ∈ NPO and a number k, the task is to decide whether x has a feasible
solution s ∈ SOLX(x) whose cost is at most (at least) k, clearly belongs to NP
and is called the “decision problem in NP that corresponds to X.”7 Many opti-
mization problems X ∈ NPO can be solved by calling polynomially many times
an algorithm for the corresponding decision problem in NP. In the case of Ver-
tex Cover III, for example, one can first compute the size of a minimum vertex
cover for the given graph by repeatedly calling an algorithm for Vertex Cover
and setting k to 1, 2, 3, . . . until it answers with yes. The vertex cover can then
be constructed by using the approach described in the paragraph about func-
tion problems.8 The other way round, a Turing machine M that solves Vertex
Cover III can also be used to solve the NP-hard decision problem Vertex

7In contrast, the problem of deciding whether the optimal solution for a x has cost exactly k
is not necessarily in NP; however, for X ∈ NPO it always belongs to a class called DP, which
is a subset of PNP [Pap94].

8Although both problems Vertex Cover II and Vertex Cover III can be solved by using
polynomially times an algorithm for Vertex Cover (both Vertex Cover II and Vertex
Cover III, as well as all problems in NPO, belong to FPNP), there is a slight difference between
the complexities of these two problems: While in the case of Vertex Cover II (and, by

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.3. Computational Complexity Theory 17

Cover: just check whether the vertex cover returned by M has a size of at
most k. Such optimization problems are called NP-hard,9 and, again, we cannot
hope to find polynomial-time algorithms for them.

The fact that algorithms for NP-complete problems can be used to solve prob-
lems in FNP and in NPO and vice versa is also expressed in the following no-
tion: Vertex Cover, Vertex Cover II, and Vertex Cover III, as well
as all other NP-complete decision problems and all “NP-hard” problems in FNP
and NPO are called polynomially equivalent, meaning that, on the one hand, they
are not expected to be polynomial-time solvable, but, on the other hand, if one of
these problems turns out to be polynomial-time solvable, then the other problems
are polynomial-time solvable, too.10

1.3.2 Ways to Cope with NP-hard Problems

As mentioned in the previous section, it seems impossible to find exact algorithms
that solve NP-hard problems efficiently, that is, in polynomial time. However,
many problems of high practical relevance are NP-hard [GJ79, Pap97], and so
there have been developed several ways to cope with these problems. The most
common concepts to this end are

• heuristics,

• approximation algorithms, and

• fixed-parameter algorithms.

For the sake of completeness, we also mention the concept of

• randomized algorithms,

which at first sight also seems to be an appropriate tool to handle problems
that are too difficult to be solved exactly within a reasonable amount of time.
However, from the theoretical point of view, randomized algorithms could so far
not obtain satisfying results for exactly solving NP-hard problems.

Roughly speaking, heuristics are algorithms that work well for many instances
of a problem, but not for all. Approximation algorithms are algorithms for opti-
mization problems that do not solve the problem exactly, but compute a solution

definition, all problems in FNP) the correctness of a solution can be checked deterministically
in polynomial time, we do not have any polynomial-checkable “witness” for the correctness
of a solution for Vertex Cover III, because it is not clear how to prove its minimality (see
footnote 7 on page 16). In fact, the existence of such a witness would imply that the complexity
classes NP and coNP (the class of problems having polynomial-time checkable witnesses for no-
instances) coincide, which is considered unlikely.

9There are other notions of hardness (FNP-hardness, FPNP-hardness) that would be more
meaningful here, see footnote 6 on page 15.

10This polynomial equivalence also includes all problems that are “complete” for the
classes coNP, DP, PNP, and FPNP .

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

18 Chapter 1. Introduction

whose cost is never too far away from the optimum. Fixed-parameter algorithms
are exact algorithms whose running time is measured not only in the input size,
but also in some other property of the instance called the parameter, and whose
running time is small for instances with small parameter values. Randomized
algorithms are algorithms where either the output may be wrong with a certain
probability or the running time is random.

Sections 1.3.3–1.3.6 will describe each of these four concepts. In the subse-
quent chapters of the thesis, we will then concentrate on approximation algo-
rithms and fixed-parameter algorithms.

1.3.3 Heuristics

For many problems, there are algorithms that seem to be clever, but cannot guar-
antee to solve every problem instance correctly or within a predictable amount
of time. Such algorithms are called heuristics (see also [GK03, MF04]). In the
case of Vertex Cover III, for example, it seems to be a good idea to repeat-
edly take a vertex that covers a maximum number of edges, which leads to the
following “greedy” heuristic:

1: C := ∅; // the vertex cover to be constructed
2: while G contains an edge: {
3: let v be a vertex of maximum degree;
4: C := C ∪ {v};
5: delete v and all edges incident to v from G; }
6: return C;

However, for many instances of Vertex Cover III this algorithm does not out-
put an optimal solution. Even worse, although for many instances the algorithm
outputs a solution whose cost is not far from the optimum value, there are also
instances for which not even this is the case: For every constant c, there is an
instance of Vertex Cover III where the output of the algorithm consists of
more than c times the number of vertices compared to an optimal solution.11

Typically, heuristics are easy to understand and to implement. Moreover, for
many practical applications there exist heuristics that produce good results for
most of the occurring problem instances, despite their bad worst-case behavior.

1.3.4 Approximation Algorithms

In the case of an NP-hard optimization problem one cannot hope to find a
polynomial-time algorithm solving the problem exactly. However, for some of
these problems there exist algorithms that run in polynomial time and, although

11More exactly, for every positive integer k there exists an instance of Vertex Cover III
with |V | = O(k ln(k)) such that the output of the algorithm consists of at least k · (ln(k) −
1) vertices, but k vertices would be optimal (see [PS98]).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.3. Computational Complexity Theory 19

they do not find an optimal solution for every input instance, that always find
at least an approximate solution. This means that even in the worst case the
ratio between the cost of the solution produced by the algorithm and the cost of
an optimal solution is bounded. Consider the following algorithm for Vertex
Cover III.

1: C := ∅; // the vertex cover to be constructed
2: while G contains an edge: {
3: let {v, w} be an arbitrary edge in G;
4: C := C ∪ {v, w};
5: delete v and w and all edges incident to v or w from G; }
6: return C;

This algorithm seems to be much less clever than the heuristic in the paragraph
before (and for many instances it will produce worse results—that is, larger vertex
covers—than the heuristic). However, for any instance of Vertex Cover III the
output of the algorithm does not contain more than twice the number of vertices
than an optimal solution, which means that in the worst-case this algorithm
performs better than the heuristic. To see this, consider the set of all those edges
that have been selected in line 3 of the algorithm: No two of these edges have a
common endpoint, and, therefore, every optimal solution must contain at least
one endpoint of each of these edges, whereas the algorithm takes both.

More exactly, for an algorithm A that approximately solves an optimization
problem X we define the approximation factor of A for an instance x of X as

ρA(x) =
costX(A(x))

optX(x)
,

where A(x) is the solution found by the algorithm and optX(x) is the cost of
an optimal solution for x. The algorithm A is called a polynomial-time factor-r
approximation algorithm (or, more general, a constant-factor approximation) if
there exists a constant r > 0 such that for all x ∈ IX it holds that

ρA(x)

{
≤ r if X is a minimization problem
≥ r if X is a maximization problem.

The number r is then called the approximation factor of A. The algorithm above,
for example, is a factor-2 approximation algorithm for Vertex Cover III. Sim-
ilarly, if there is a function f such that for all x ∈ IX it holds that ρA(x) ≤ f(|x|)
for minimization problems and ρA(x) ≥ f(|x|) for maximization problems, the
algorithm A is called a factor-f approximation, and f is called the approximation
factor of A.12

12For example, one can prove [Joh74, Lov75] that the heuristic for Vertex Cover III pre-
sented in Section 1.3.3 is a factor-(ln(d)+1) approximation algorithm, where d is the maximum
degree of a vertex in the input graph (see also [Hoc97]).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

20 Chapter 1. Introduction

While for some optimization problems not even constant-factor approxima-
tions are known, some other problems can be approximated arbitrarily closely. In
such a case, a family of polynomial-time algorithms Ar, r ∈ Q, for an optimiza-
tion problem X is called a polynomial-time approximation scheme (PTAS) if for
every given approximation factor r the algorithm Ar is a factor-r approximation
algorithm for X.13

All optimization problems for which a constant-factor approximation exists
form the class APX (which is basically equivalent [KMSV98] to the independently
introduced class MAXSNP [PY91]), and all problems for which a PTAS exists,
form the class PTAS.

Unfortunately, there are optimization problems for which no PTAS or even
no constant-factor approximation could ever be found. In order to combine such
hard to approximate problems into classes of their own, there have been defined
notions of hardness (with respect to the approximability) for optimization prob-
lems. In analogy to the concept of NP-completeness for decision problems, these
hardness predicates are defined by using reductions between problems. While
in the case of decision problems a reduction from a problem X to a problem Y
allows to solve X by using an algorithm for Y , a reduction as we need it here
allows to approximate an optimization problem X by using an approximation al-
gorithm for Y . If a problem X that is assumed to be hard to approximate can be
reduced to a problem Y , then Y must also be hard to approximate. There have
been defined several different variants of such so-called approximation-preserving
reductions (see [AP06] for an overview), but the basic idea is always the same: An
approximation-preserving reduction from an optimization problem X to an opti-
mization problem Y consists of a polynomial-time computable function Φ1 that
maps every instance x of X to an instance y = Φ1(x) of Y , and a polynomial-time
computable function Φ2 that takes as input a feasible solution for y and outputs
a feasible solution for x. Moreover, if A is a constant-factor approximation for Y ,
then computing y = Φ1(x), calling A on y, and computing Φ2(A(y)) leads to a
constant-factor approximation for X.

A problem Y is called APX-hard (NPO-hard) if every problem X ∈ APX
(X ∈ NPO) can be reduced to Y with an approximation-preserving reduction.
If, in addition, the problem Y itself belongs to APX (NPO), the problem Y is
called APX-complete (NPO-complete). Provided that P 6= NP, it holds [ACG+99]
that

PO (PTAS (APX (NPO,

and, consequently, under this assumption NPO-complete optimization problems
are those problems in NPO where no approximation algorithms at all exist, and
APX-complete optimization problems are those problems where constant-factor

13If the running times are not only polynomial in the input size, but also in 1/(|1 − r|), the
family of algorithms is called a fully polynomial-time approximation scheme (FPTAS).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.3. Computational Complexity Theory 21

approximations, but no PTAS exist.14 To show that an optimization problem Y is
APX-hard (NPO-hard), is suffices to give an approximation-preserving reduction
from an APX-hard (NPO-hard) problem X to Y .

We close this section with pointing out that the existence of a constant-factor
approximation algorithm for a minimization (maximization) problem does not
imply the approximability for the corresponding “dual” maximization (minimiza-
tion) problem: For example, Vertex Cover III can be approximated with a
factor of 2, but the problem of finding a maximum-cardinality independent set
(see Section 1.3.1), which is the “dual” of Vertex Cover III because the
vertices not belonging to a maximum independent set form a minimum vertex
cover, can probably not be approximated within a factor of O(|V |(1−ǫ)) for any
ǫ > 0 [H̊as99].

For more details about approximation algorithms and approximation-related
complexity we refer to [ACG+99, Pap94, JM08, Vaz01].

1.3.5 Fixed-Parameter Algorithms

When exact solutions are needed (in particular, in the case of decision problems),
heuristics and approximations cannot be used. However, parameterized complex-
ity analysis [DF99, FG06, Nie06] can help here. The main idea is to exploit the
fact that the “classical” complexity, which measures the running time of an algo-
rithm only with respect to the input size and which always considers the worst
case, is somewhat coarse-grained: Vertex Cover, for example, can be solved
“fast” if k is very small compared to the size of G—just try all

(
|V |
k

)
possibilities

of selecting k vertices from V . So it would be natural to measure the running
time of an algorithm for Vertex Cover not only in the input size (which is
dominated by the size of G), but also in the value of k. However, using the
means of expression of “classical” complexity theory, one could only state that
“the restricted version of Vertex Cover, where k is bounded from above by a
constant, is in P”—a quite imprecise statement, because it says nothing about the
relation between k and the running time needed to solve the problem. In contrast,
parameterized complexity theory offers the mathematical framework, including
complexity classes and reductions, for a fine-grained “multidimensional” running-
time analysis.

In the framework of parameterized complexity, a parameterization of a deci-
sion problem X is a polynomial-time computable function κ that assigns to every
problem instance a nonnegative integer; the pair (X, κ) is called a parameteri-
zed problem. The running time of an algorithm is then viewed as a function of
two quantities: the size |x| of the problem instance and the parameter κ(x). A

14There are also classes (log-APX, poly-APX, exp-APX) that lie “between” APX and NPO:
The class log-APX, for example, contains those minimization (maximization) problems that
can be approximated with a factor of O(log(|x|)) (a factor of O(1/ log(|x|))); the so-called
log-APX-complete problems belong to log-APX, but have no constant-factor approximation
unless P = NP.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

22 Chapter 1. Introduction

possible parameterization for Vertex Cover, for example, could be the func-
tion that maps every problem instance (G, k) to the number k, meaning that the
parameter is the size of the desired vertex cover.

As mentioned above, Vertex Cover could be solved by trying all possibil-
ities of selecting k vertices from V . The running time of this algorithm would
be

(
|V |
k

)
·nO(1) ≤ |V |k ·nO(1). Hence, for every fixed k the problem Vertex Cover

is solvable in polynomial time, where the degree of the polynomial depends on k.
Parameterized problems of this kind are comprised in the complexity class XP:
This class consists of all parameterized problems (X, κ) for which there exists
a computable function that assigns to every positive integer k a polynomial pk

such that an instance x of X can be solved in pκ(x)(|x|) time. Clearly, if one can
show that there is a constant k such that the problem X, restricted to instances
with κ(x) ≤ k, is NP-hard, then (X, κ) does not belong to XP unless P = NP.

For many practical applications where large problem instances occur, a run-
ning time of the form |x|κ(x) is too slow even for quite small parameters, because
the degree of the polynomial depends on the parameter. A running time whose
exponential part depends only on the parameter, but not on the input size would
be much more desirable. Thus, a parameterized problem (X, κ) is called fixed-
parameter tractable (FPT) (equivalently: “X is fixed-parameter tractable with
respect to the parameter κ”) if there exists an algorithm for X that runs in
f(κ(x)) · |x|O(1) time, where f is a computable (usually exponential) function
only depending on κ(x). We call such an algorithm an FPT algorithm, and a
running time of the form f(κ(x)) · |x|O(1) is called FPT time. The complex-
ity class that contains all fixed-parameter tractable parameterized problems is
denoted by FPT.

The problem Vertex Cover, for example, is fixed-parameter tractable with
respect to the parameter κ((G, k)) = k because it can be solved in 2k ·nO(1) time
with the following recursive algorithm:

1: if G contains no edge: return yes;
2: if k = 0: return no;
3: let {v, w} be an arbitrary edge in G;
4: test recursively if there is a size-(k − 1) vertex cover for G with v deleted;
5: if so, return yes; // G has a size-k vertex cover that contains v
6: test recursively if there is a size-(k − 1) vertex cover for G with w deleted;
7: if so, return yes; // G has a size-k vertex cover that contains w
8: return no;

Currently, the best known algorithm for Vertex Cover with parameter k runs
in O(1.2738k + kn) time [CKX06], such that even large instances of Vertex
Cover with “quite big” values of k can be solved exactly.

An important tool to prove fixed-parameter tractability on the one hand and
to tackle problem instances in practice on the other hand is polynomial-time data
preprocessing by so-called data reduction rules (see [GN07]). A data reduction

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.3. Computational Complexity Theory 23

rule is a polynomial-time algorithm that takes as input a problem instance x
and outputs an instance x′ such that x′ is a yes-instances iff x is a yes-instance;
moreover, since the purpose of the data preprocessing is to decrease the size
of the problem instance, the instance x′ typically has |x′| ≤ |x| and κ(x′) ≤
κ(x). An instance to which none of a given set of data reduction rules applies
is called reduced with respect to these rules. In certain cases, the performance
of a set of data reduction rules can be proven: If every problem instance x can
be transformed into a reduced instance x′ with |x′| ≤ f(|x|) and κ(x′) ≤ g(κ(x))
for some computable functions f, g, then the data reduction rules are called a
kernelization and x′ is called a problem kernel. That is, the size of a problem
kernel x′ is bounded from above by a function f depending only on κ(x);15 a
kernelization, hence, is a polynomial-time data preprocessing with guaranteed
worst-case performance. If there is a kernelization for a decidable parameterized
problem (X, κ), then (X, κ) is clearly fixed-parameter tractable:16 To solve X in
f(κ(x)) · |x|O(1) time, first apply the data reduction rules and then run a brute-
force algorithm for X on the reduced instance.

As an example for a kernelization, consider the following data reduction rules
for Vertex Cover:

Rule 1: If there is an isolated vertex, delete it.

Rule 2: If there is a vertex v with more than k neighbors, delete v and all edges
incident to v from G, and decrease k by 1.

Rule 3: If neither Rule 1 nor Rule 2 can be applied and there are more than
k+k2 vertices or more than k2 edges, report that there is no vertex cover
of size at most k.

Clearly the first two rules are correct, that is, they never transform a yes-instance
into a no-instance or vice versa: Isolated vertices can be deleted, because it never
makes sense to take them into a vertex cover, and vertices with more than k
neighbors have to be selected into any vertex cover of size at most k and, therefore,
one can just delete them and decrease k. To see the correctness of Rule 3, consider
an instance (G, k′) that is reduced with respect to Rules 1 and 2: The reduced
graph G′ contains only vertices of degree at most k, and, hence, if there is a size-k
vertex cover C for G′, then G′ can contain at most k2 vertices outside C and at
most k2 edges. Rule 3 implies that any reduced instance consists of at most k+k2

vertices and k2 edges, meaning that Vertex Cover with parameter k admits a
quadratic problem kernel.17

15If, in addition, κ(x′) ≤ κ(x), then the problem kernel is called proper [AF06].
16The reverse direction of this statement also holds: If there is an algorithm A that solves

a problem (X, κ) in f(κ(x)) · |x|c time for some constant c, then the following “data reduction
rule” yields a problem kernel of size f(κ(x)): If f(κ(x)) ≤ |x|, then solve x in f(κ(x)) · |x|c ≤
|x|c+1 time by using A. Otherwise return x, whose size is at most f(κ(x)).

17There exist other reduction rules that even yield a linear number of vertices for Vertex
Cover with parameter k [ACF+04, AFLS07, BG93, CFJ04, CKJ01, Fel03, Khu02, NT75].

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

24 Chapter 1. Introduction

x
k

y
k′

Figure 1.5: Parameterized reduction from (X, κ1) to (Y, κ2). An instance x with
parameter k := κ1(x) is transformed within g(k) · |x|O(1) time into an instance y
with parameter k′ := κ2(y). The parameter k′ must only depend on k, but not
on |x|. In contrast, the size of y is only bounded by the time needed for the
reduction, that is, by g(k) · |x|O(1).

As a second example for a problem with a kernel, consider the problem of
separating points in the plane with axis-parallel lines—this problem was intro-
duced in Section 1.1. Formulated as a decision problem, the question is whether
one can separate all given points by inserting at most k axis-parallel lines. The
argumentation that leads to the problem kernel is quite simple: With k lines,
the plane can be divided into at most ⌊k/2⌋ · ⌈k/2⌉ areas. Hence, if there
are more than ⌊k/2⌋ · ⌈k/2⌉ points, the answer must be no. The point sepa-
ration problem, therefore, has a quadratic kernel with respect to the parame-
ter k = “maximum number of line insertions.”

Unfortunately, there are also parameterized problems that seem not to be
fixed-parameter tractable. In analogy to the concept of NP-hardness in the
“classical” complexity theory, there is a hardness predicate for parameterized
problems, which is based on reductions between parameterized problems. The
idea is, in analogy to the definition of NP-hardness, to define a class that con-
tains many of these “difficult” problems and to call a problem Y hard if it is
“at least as hard” as all problems in this class, meaning that all problems in this
class can be reduced to Y and thus be solved by any algorithm for Y . While in
the case of decision problems in “classical” complexity theory a polynomial-time
reduction from a problem X to a problem Y allows to solve X in polynomial
time by using a (fictive) polynomial-time algorithm for Y , a reduction from a
parameterized problem (X, κ1) to a parameterized problem (Y, κ2) as we need
it here has to allow for solving a problem X in FPT time by using a (fictive)
FPT algorithm for Y . Hence, a parameterized problem (X, κ1) is parameterized
reducible to a parameterized problem (Y, κ2), denoted by (X, κ1) ≤FPT (Y, κ2),
if there are two computable functions f, g : N → N and an algorithm Φ which
transforms an instance x of X into an instance y of Y in g(κ1(x)) · |x|O(1) time
such that κ2(y) = f(κ1(x)) and y is a yes-instance of Y iff x is a yes-instance
of X. See Figure 1.5 for an illustration.

Note that the polynomial-time reduction from Vertex Cover to Indepen-
dent Set described in Section 1.3.1 is not a parameterized reduction for the
parameters “size of the desired vertex cover” and “size of the desired indepen-
dent set”, respectively: The size of the independent set does not only depend on
the size of the vertex cover, but also on the number of all vertices in the input

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

1.3. Computational Complexity Theory 25

graph of the Vertex Cover instance.
The complexity hierarchy that is used for defining the hardness of parame-

terized problems and that contains many “difficult” parameterized problems is
the W-hierarchy, which is defined quite unintuitively by using Boolean circuits
(see also [Ces03, CM08]) and consists of the classes W[1], W[2], . . . , W[Sat], W[P]
interrelated as follows:

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[Sat] ⊆ W[P] ⊆ XP .

There is strong evidence that all these subset inclusions are strict, which, in
particular, presumably means that there are problems in W[1] that are not fixed-
parameter tractable. Thus, a parameterized problem Y to which all problems
in W[1] can be reduced with a parameterized reduction is called W[1]-hard and
assumed not to be fixed-parameter tractable. A W[1]-hard problem that belongs
to W[1] is called W[1]-complete and belongs to the “most difficult” problems
in W[1]. For the other classes of the W-hierarchy, hardness and completeness are
defined in complete analogy. For example, the problem Independent Set is
W[1]-complete with respect to the parameter κ((G, k)) = k.

For the same reasons as in the case of NP-hardness and polynomial-time
reductions, it suffices to give a parameterized reduction from one W[1]-hard pa-
rameterized problem X to a parameterized problem Y to show the W[1]-hardness
of Y .

More details about FPT algorithms can be found in [Nie06]; for more details
about parameterized complexity theory we refer to [DF99, FG06].

1.3.6 Randomized Algorithms

Randomized algorithms are algorithms whose outcome depends on chance. We
distinguish two types of such algorithms: Monte Carlo algorithms, where the
output may be wrong with a certain probability, and Las Vegas algorithms, which
always produce correct results but where the running time is random. Consider,
for example, the following Monte Carlo algorithm for Vertex Cover:

1: s := 0; // size of the vertex cover found
2: while G contains an edge: {
3: randomly select an edge e;
4: randomly select one of the endpoints of e; let v be this vertex;
5: delete v and all edges incident to v from G; s := s + 1; }
6: if s ≤ k return yes; else return no;

Clearly this algorithm runs in polynomial time. Moreover, if the input to this
algorithm is a no-instance, the algorithm always answers correctly with no. If,
however, the input is a yes-instance, then all we can say is that the probability
for a correct answer is at least (1

2
)|E|. Of course, such a behavior is unsatisfying

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

26 Chapter 1. Introduction

because for large yes-instances the probability for a correct answer tends towards
zero. Instead, it would be desirable to have an algorithm where the probabil-
ity for a correct answer is constant for all yes-instances. Problems that admit
such algorithms are comprised in the complexity class RP: This class contains
all decision problems for which there is a polynomial-time algorithm A and a
constant cA such that for every no-instance the answer of A is correct and for
every yes-instance the probability for a correct answer is at least cA.18

Clearly RP ⊆ NP because, as mentioned in Section 1.3.1, every nondeter-
ministic Turing machine can be seen as a randomized algorithm where for every
no-instance the answer is correct and for every yes-instance the probability for a
correct answer is greater than zero.19 However, there are a lot of problems in NP
(in particular, the NP-complete problems) that are not known to be in RP. There-
fore, randomized complexity classes have been defined that make lower demands
on the corresponding algorithms: The class BPP contains all decision problems
for which there is a polynomial-time algorithm A and a constant cA > 1/2 such
that for every instance the probability for a correct answer is at least cA. For
membership in the even “more weak” class PP it suffices that for every no-instance
the probability for a correct answer is at least 1/2 and for every yes-instance the
probability for a correct answer is greater than 1/2.

There is also a complexity class for Las Vegas algorithms, which is defined in
a very natural way: The class ZPP contains those decision problems for which
there is an algorithm that always answers correctly and where for every problem
instance the expectation value of the running time is polynomial in the size of
the instance.

Clearly ZPP ⊆ RP,20 RP ⊆ NP ⊆ PP, and RP ⊆ BPP ⊆ PP. One could say
that ZPP, RP and BPP contain those problems that can be solved satisfactorily
by using randomized algorithms. Unfortunately, it seems that NP-hard problems
belong to neither of these classes and, hence, that randomization is useful for
tackling NP-hard problems only in combination with heuristics, approximation
algorithms or fixed-parameter algorithms.

For more details about randomized algorithms and randomized complexity we
refer to [Pap94, MR95, MU05].

18Analogously, a problem belongs to the class coRP if for every yes-instance the answer of A
is correct and for every no-instance the probability for a correct answer is at least cA.

19For the same reason, coRP ⊆ coNP.
20Indeed, ZPP = RP∩ coRP, see [Pap94].

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Chapter 2

The Consecutive-Ones Property

Chapter 2 provides an overview on the consecutive-ones property. The chapter
describes connections to graph theory, algorithms for recognizing the C1P, char-
acterizations of the C1P, and consequences of the C1P appearing in integer linear
programs and instances of the problem Set Cover.

2.1 Basic Facts and Definitions

The consecutive-ones property of binary matrices appears in many practical ap-
plications, such as scheduling [BOR80, HL06, HM91, KS01, VW62], information
retrieval [Kou77], railway optimization [MSW05, MW04, RS04], and computa-
tional biology [ABH98, ACE+08, AM96, COR98, GGKS95, LH03, WR00]—some
examples have been presented in Section 1.1. Moreover, the C1P has close con-
nections to graph theory (see Section 2.2) and plays an important role in the area
of solving (integer) linear programs [HT02, HL06, OR00, OR03a, VW62] (see also
Section 2.4). The formal definition of the C1P and some related concepts reads
as follows.

Definition 2.1. 1. A block of 1s (block of 0s) in a row of a binary matrix M
is a maximal set of consecutive 1-entries (0-entries) in this row.

2. A binary matrix has the strong consecutive-ones property (strong C1P) if
in every row the 1s appear consecutively, that is, if every row contains at
most one block of 1s.

3. A binary matrix has the consecutive-ones property (C1P) if its columns can
be permuted in such a way that the resulting matrix has the strong C1P.

4. If an ordering for the columns of a binary matrix yields the strong C1P, it
is called a C1-ordering.

See Figure 2.1 for examples of matrices with and without the C1P. The terms
introduced in Definition 2.1 can be defined analogously for 1-entries appearing

27

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

28 Chapter 2. The Consecutive-Ones PropertyPSfrag

c1c1 c2c2 c3c3 c4c4

1

1

1

1

11

1

1 1

1

11

1

1

1

1

11

0

0

0

0

00

0

00

0

0

0

0

0

0

0

00

Figure 2.1: Example for the C1P: The matrix on the left has the C1P because
by permuting its columns (labeled with c1–c4) one can obtain the matrix shown
in the middle where the 1s in each row appear consecutively. The matrix on the
right, in contrast, does not have the C1P [Tuc72].

consecutively in the columns of a matrix instead of the rows: If in every column
of a binary matrix M the 1s appear consecutively, then M has the strong C1P for
columns. If M ’s rows can be permuted such that the strong C1P for columns is
obtained, then M has the C1P for columns. In order to avoid confusions between
the C1P for columns and the C1P as defined in Definition 2.1, we sometimes
write strong C1P for rows and C1P for rows to emphasize that the terms of
Definition 2.1 are meant.

A property that is very similar to the C1P but less restrictive is called the
circular-ones property : Here one imagines the matrix as wrapped around a verti-
cal cylinder and demands that, possibly after some column permutations, in every
row the 1s appear consecutively on the cylinder (which implies that the 0s also
appear consecutively). In Chapter 4 we will use this property as an intermediate
concept for dealing with the harder to achieve C1P. The formal definition reads
as follows.

Definition 2.2. 1. A binary matrix has the strong circular-ones property
(strong Circ1P) if in every row the 1s appear consecutively or the 0s appear
consecutively (or both).

2. A binary matrix has the circular-ones property (Circ1P) if its columns can
be permuted in such a way that the resulting matrix has the strong Circ1P.

3. If an ordering for the columns of a binary matrix yields the strong Circ1P,
then it is called a Circ1-ordering.

See Figure 2.2 for an example. When imagining a matrix as wrapped around a
vertical cylinder, it makes no sense to declare one of its columns as the “leftmost”
or “rightmost” column. Therefore, we say that two column orderings are shift-
equivalent1 if one column ordering can be obtained from the other by repeatedly
taking the column that is currently placed at the leftmost position and moving it

1The term “shift-equivalent” may have a different meaning in other publications and other
contexts.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.1. Basic Facts and Definitions 29

c1 c1c1c1c2 c2c2c2c3 c3c3c3c4 c4c4c4

A: B: C: D:

1

1

1

1

11

1

1

1

1

11

1

1 1

1

1

11

1

1 1

1

1

11

0

0

0

0

00

0

0

0

0

00

0

00

00

0

00

00

Figure 2.2: Example for the Circ1P: The matrix A has the Circ1P because by
permuting its columns (labeled with c1–c4) one can obtain the matrix B where
in each row the 1s or the 0s appear consecutively. The matrices C and D in
contrast, do not have the Circ1P [Tuc71, Tuc72].

from there to the rightmost position. As an example, for any matrix consisting
of 13 columns, the column orderings

c1, . . . , c13 (2.1)

and

c7, c8, . . . , c12, c13, c1, c2, . . . , c5, c6 (2.2)

are shift-equivalent. The relation “shift-equivalent” is obviously an equivalence
relation on the column orderings for a matrix; we call its equivalence classes
circular (column) orderings. The column orderings displayed in (2.1) and (2.2),
hence, represent the same circular column ordering. Intuitively, the the circular
column ordering of a matrix M describes the order of M ’s columns when M is
imagined as wrapped around a vertical cylinder; it defines for every column c
of M a predecessor and a successor, but it does not declare any of M ’s columns
as the “leftmost” or “rightmost” column.

Definition 2.3. If a circular column ordering of a binary matrix M is the equiv-
alence class of at least one C1-ordering for M ’s columns, it is called a C1-circular
ordering. If it is the equivalence class of at least one Circ1-ordering for M ’s
columns, it is called a Circ1-circular ordering.

As an example, the circular column ordering [c1, c4, c2, c3] is a C1-circular
ordering for the columns of the matrix on the left of Figure 2.1: The circular
ordering [c1, c4, c2, c3] is identical to the circular ordering [c3, c1, c4, c2], and the
column ordering c3, c1, c4, c2 is a C1-ordering. Analogously, the circular column
orderings [c3, c2, c4, c1] and [c1, c3, c2, c4] for the columns of matrix B in Figure 2.2
are identical and form a Circ1-circular ordering.

We use the term “shift-equivalent” not only for column orderings, but also
for matrices: Two matrices are shift-equivalent if one can be obtained from the
other by repeatedly taking the column that is currently placed at the leftmost
position and moving it from there to the rightmost position.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

30 Chapter 2. The Consecutive-Ones Property

There exist several characterizations for matrices having the C1P (see Sec-
tions 2.2 and 2.3). Together with the following theorem due to Tucker [Tuc71],
these characterizations can also be used to recognize matrices with the Circ1P.
We will make use of the theorem in Chapter 4.

Theorem 2.1 ([Tuc71, Theorem 1]). Form the matrix M ′ from a matrix M by
complementing all rows with a 1 in the first column of M . Then, M has the
Circ1P if and only if M ′ has the C1P.

The following corollary is a direct consequence of Theorem 2.1.

Corollary 2.1. Let M be an m × n matrix and let j be an arbitrary integer
with 1 ≤ j ≤ n. Form the matrix M ′ from M by complementing all rows with a 1
in the jth column of M . Then, M has the Circ1P if and only if M ′ has the C1P.

To see the correctness of the corollary, one just has to apply Theorem 2.1
to the matrix that is shift-equivalent to M and whose leftmost column is the
jth column of M . An example for Corollary 2.1 can be seen in Figure 2.2:
Complementing in one of the matrices C and D all rows with a 1 in column c4

yields the matrix D, which does not have the C1P (this can easily be seen by
considering the columns c1–c3); hence, the matrices C and D do not have the
Circ1P.

Corollary 2.1 implies the following conclusion.

Corollary 2.2. Let M be a 0/1-matrix and M ′ be the matrix obtained by in-
serting a column that contains only 0s to M . Then the following statements are
equivalent.

1. M ′ has the Circ1P.

2. M ′ has the C1P.

3. M has the C1P.

2.2 Graph Classes and the C1P/Circ1P

A description of the C1P would be incomplete if the close relationship to some
elementary graph classes was not mentioned: Matrices can be represented by
graphs and vice versa, and, therefore, the C1P is related to certain properties of
graphs. Many findings can be transferred from matrices to graphs or from graphs
to matrices. For example, the task of recognizing matrices with the C1P can easily
be reduced to recognizing so-called interval graphs. Also several characterizations
for matrices with the C1P are formulated in terms of graph properties, or they
are derived from characterizations for certain graph classes. In particular, in
Chapter 4 we will use the connection between sparse matrices having the C1P on
the one hand and certain kinds of graphs on the other hand to obtain hardness

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.2. Graph Classes and the C1P/Circ1P 31

proofs, algorithms and problem kernels for submatrix problems. Moreover, a
characterization due to Tucker [Tuc72] for matrices with the C1P, which is a
direct consequence of a characterization (also due to Tucker [Tuc72]) for so-called
convex bipartite graphs, will be useful in Chapter 3 for finding submatrices that
conflict with the C1P as well as in Chapter 4 for eliminating such submatrices.

We first give a short overview over some elementary graph classes that are
closely related to the C1P or the Circ1P, and then describe Tucker’s characteri-
zation for matrices with the C1P.

Graph classes closely related to the C1P or the Circ1P. Given a
graph G, there are several “natural” ways to map G to a matrix that represents
all information about G. The following definition describes the most common
types of such matrices that represent graphs. (The half adjacency matrix of a
bipartite graph was already introduced in Section 1.2. Nevertheless, in order to
provide a list of all relevant matrix types that are related to graphs, Definition 2.4
contains the definition of the half adjacency matrix again.)

Definition 2.4. Let G = (V, EG) be a graph with V = {v1, . . . , vn} and EG =
{e1, . . . , em}, and let H = (V1, V2, EH) be a bipartite graph with V1 =
{u1, . . . , un1} and V2 = {w1, . . . , wn2}.

1. The adjacency matrix of G is the symmetric n × n binary matrix M with
mi,j = 1 if and only if {vi, vj} ∈ EG.

2. The augmented adjacency matrix of G is the matrix obtained from G’s ad-
jacency matrix by setting the entries of the main diagonal to 1.

3. The edge-vertex incidence matrix of G is the m × n binary matrix M
with mi,j = 1 if and only if vj is an endpoint of ei. The transpose of
the edge-vertex incidence matrix is called the vertex-edge incidence matrix
of G.

4. Let c1, . . . , ck be the maximal cliques of G. The maximal clique matrix (also
called vertex-clique incidence matrix) of G is the n × k binary matrix M
with mi,j = 1 if and only if vi belongs to cj.

5. The half adjacency matrix of H is the n1×n2 binary matrix M with mi,j = 1
if and only if {ui, wj} ∈ EH .

Figures 2.3 and 2.6 show the matrix types introduced in Definition 2.4.
Clearly, a matrix M is the half adjacency matrix of a bipartite graph H iff H is
the representing graph of M .

Some elementary graph classes that are directly related to the properties C1P
and Circ1P are defined as follows.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

32 Chapter 2. The Consecutive-Ones Property

w1

w2

w3

w4

u1

u2

u3

u4

u5

v1

v4

v5

v6

v6

v1

v2

v2

v3

v3

v4

v5

v1

v1v1

v2

v2v2

v3

v3v3

v4

v4v4

v5

v5v5

v6

v6v6

v1

v1v1

v1

v2

v2v2

v2

v3

v3v3

v3

v4

v4v4

v4

v5

v5v5

v5

v6

v6v6

v6

c1 c2 c3 c4

w1 w2 w3 w4

u1

u2

u3

u4

u5

G1:

G2:

H :A: B:

C:D:

E:

1

1

1

1

11

1

1 1

1

1

1

1

1

11

1

1

1

11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

111

111

111

11111

11111

11111

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

00

0

00

00

0

0 0

0

0

0

0

0

0

000

000

000

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0 0

0

0

Figure 2.3: Matrices defined in Definition 2.4. Matrix A is the adjacency matrix of
the graph G1, and Matrix B is the augmented adjacency matrix of G1. Matrix C
is obtained from B by permuting the rows and columns; the shapes enclosing its
1-entries illustrate the quasi Circ1P (see Definition 2.6), which will be used in
Table 2.1. (Actually, the matrix C shows not only that B has the quasi Circ1P,
but also that B has the Circ1P.) Matrix D is the maximal clique matrix of G2, and
Matrix E is the half adjacency matrix of the bipartite graph H . Matrix C shows
that G1 is a concave-round graph (see Definition 2.5) as well as a circular-arc
graph (see Table 2.1), Matrix D shows that G2 is an interval graph (see Table 2.1),
and Matrix E shows that H is a convex bipartite graph (see Definition 2.5).

Definition 2.5. 1. A graph is convex-round if its adjacency matrix has the
Circ1P, and it is concave-round if its augmented adjacency matrix has the
Circ1P [BHY00].

2. A graph G is an interval graph if its vertices can be mapped to intervals
on the real line such that two vertices are adjacent if and only if their
corresponding intervals overlap [Ben59, Haj57]. If all intervals have the
same length, then G is a unit interval graph; if no interval properly contains
another interval, then G is a proper interval graph.

3. A graph G is a circular-arc graph if its vertices can be mapped to a set A
of arcs on a circle such that two vertices are adjacent if and only if their
corresponding arcs overlap. A circular-arc graph G is a Helly circular-arc
graph if for every subset A′ ⊆ A it holds that (∀a1, a2 ∈ A′ : a1 ∩ a2 6= ∅) ⇒
⋂

a∈A′ a 6= ∅.

4. A bipartite graph is convex if its half adjacency matrix has the C1P, it
is biconvex if its half adjacency matrix has the C1P both for rows and

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.2. Graph Classes and the C1P/Circ1P 33

v1

v2 v3 v4

v5 v6

v1

v2

v3

v4

v5

v5

v6

v6

v6

v1

v1

v2

v2

v3

v3

v4v4

v5

Figure 2.4: Top: An interval graph (which is not a proper or unit interval graph)
and a set of intervals representing its vertices as described in Definition 2.5.
Bottom: A circular-arc graph (which is not a Helly circular-arc graph) and a set
of arcs representing its vertices as mentioned in Definition 2.5.

for columns, and it is circular convex if its half adjacency matrix has the
Circ1P.

See Figures 2.3 and 2.4 for illustrations. Interval graphs and circular-arc
graphs are known in graph theory for a long time; they are well-studied (alone
for the recognition problem of these graphs there exists a number of results, see
[BL76, COS98, FG65, HM99, HMPV00, Hsu92, KM89, KMMS06] for the recog-
nition of interval graphs and [ES93, Hsu95, KN06, McC03, Tuc80] for the recogni-
tion of circular-arc graphs) and have applications in many fields [BLS99, Gol04].
One reason for the attention that these two graph classes attract is that many
problems that are NP-complete on general graphs (for example, Independent
Set) are polynomial-time solvable on interval graphs and circular-arc graphs
and also on the other graph classes mentioned in Definition 2.5 (see [BLS99,
Gol04, ISG08]). This important fact carries over to matrices with the C1P or
the Circ1P, where many in general NP-hard matrix problems can be solved in
polynomial time [CLRS01, ELR+08, LBI+01, NW88, VW62] (see also Section 5.3
and [MSW05, MW04, RS04]). We summarize the relationships between the graph
classes of Definition 2.5 on the one hand and the C1P or Circ1P occurring in the
matrices of Definition 2.4 on the other hand in Table 2.1. Note that, since proper
interval graphs coincide with unit interval graphs [Rob69, Gar07], there is only
one row for both classes. The property “quasi Circ1P” occurring in the table is
defined as follows.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

34 Chapter 2. The Consecutive-Ones Property

Figure 2.5: An example for a caterpillar.

Definition 2.6 ([Tuc71]). A symmetric matrix has the quasi Circ1P if (pos-
sibly after permuting the rows and columns without destroying the symmetry)
for every 1-entry mi,j it holds that mi,i = mi,(i+1)mod n = mi,(i+2)mod n = . . . =
mi,(j−1) mod n = mi,j = 1 or that mj,j = m(j+1)mod n,j = m(j+2)mod n,j = . . . =
m(i−1) mod n,j = mi,j = 1.

The quasi Circ1P is illustrated in Figure 2.3. One can show that the Circ1P
always implies the quasi Circ1P [Tuc71].

Table 2.1 contains only rather “prominent” graph classes; however, graphs
whose vertex-edge incidence matrix or edge-vertex-edge incidence matrix has the
C1P have also a very special structure.

Definition 2.7. A caterpillar is a tree in which every non-leaf vertex has at most
two non-leaf neighbors.

See Figure 2.5 for an illustration.
The two characterizations given in the following theorem follow directly from

the results of Tucker [Tuc72] described in the following paragraph and from the
considerations of Hajiaghayi and Ganjali [HG02] and Tan and Zhang [TZ07].

Theorem 2.2. 1. A graph is a union of vertex-disjoint paths if and only if its
edge-vertex incidence matrix has the C1P.

2. A graph is a union of vertex-disjoint caterpillars if and only if its vertex-edge
incidence matrix has the C1P.

See Figure 2.6 for an illustration.

Tucker’s characterization of matrices having the C1P. Matrices with
the C1P can be characterized by a set of forbidden submatrices: A matrix has
the C1P iff it does not contain a matrix from this set as a submatrix. Such
a characterization is very helpful when regarding matrix modification problems
where one has to modify a matrix to achieve the C1P. This will be the subject
of Chapter 4.

The characterization by Tucker [Tuc72] is based on a characterization of con-
vex bipartite graphs in terms of so-called asteroidal triples defined as follows.

Definition 2.8. Let G = (V, E) be a graph. Three vertices from V form an
asteroidal triple if between any two of them there exists a path in G that does
not contain any vertex from the closed neighborhood of the third vertex.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.2. Graph Classes and the C1P/Circ1P 35

Table 2.1: Relationship between graph classes and matrix properties. The symbol
“⇒” expresses that the membership in a graph class implies the matrix property
for the matrix associated with the corresponding graph; the symbols “⇐” and
“⇔” denote implications in the back direction and in both directions, respectively.
The abbreviation “C1P r+c” stands for “C1P for rows and for columns.” Of
course, due to its symmetry an (augmented) adjacency matrix has the C1P or
the Circ1P for rows iff it has the C1P or the Circ1P, respectively, for columns.

graph
class

adjacency
matrix

augmented
adjacency
matrix

half
adjacency
matrix

maximal
clique
matrix

convex-
round

⇔ Circ1P
(per def.)

concave-
round

⇔ Circ1P
(per def.)

⊇

circular-arc

⇔ quasi Circ1P
[Tuc71]

⇐ Circ1P
[Tuc71]

⇐ Circ1P

⊆

Helly
circular-arc

⇒ quasi Circ1P
⇐ C1P

⇔ Circ1P
[Gav74]

⊆

interval
⇒ quasi Circ1P
⇐ C1P

⇔ C1P [FG65]

⊆

proper / unit
interval

⇔ C1P [Rob69]
⇔ C1P r+c

[Fis85]

circular
convex bipart.

⇔ Circ1P
(per def.)

⊆

convex bipart.
⇔ C1P

(per def.)

⊆

biconvex

bipart.
⇔ C1P r+c

(per def.)

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

36 Chapter 2. The Consecutive-Ones Property

v5

v12

v1

v2

v9

v1
v2

v3

v3

v4

v4

v5

v6

v6

v7

v7

v8

v10

v11

v13

v14

v1 v2 v3 v4 v5 v6 v7

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

1 1

1 1

1 1

1 1

1 1

1

1

1 1

1

1

1 1

1

1

1

1

1

1

1 11

1

1

1 111

1

0

0 0 00

0 0 00

00 0

0

00

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0 0

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

00

0

00

00

0

0

0

0

0

0

0

0

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

00

00

00

00

0

0

0

0

00 00

000

000

0

0

Figure 2.6: Top: A graph that is a union of vertex-disjoint paths, and its edge-
vertex incidence matrix. Bottom: A graph that is a union of vertex-disjoint
caterpillars, and its vertex-edge incidence matrix. Both matrices have the C1P.

For example, every cycle of length at least six contains several asteroidal
triples. More examples for graphs containing asteroidal triples are shown in
Figure 2.7.

In his characterization, Tucker does not use the term “convex bipartite graph”;
however, convex bipartite graphs are identical to “graphs with a V2-consecutive2

arrangement.” The following two theorems, hence, characterize convex bipartite
graphs.

Theorem 2.3 ([Tuc72, Theorem 6]). A bipartite graph G = (V1, V2, E) has a
V2-consecutive2 arrangement if and only if V2 contains no asteroidal triple of G.

Theorem 2.4 ([Tuc72, Theorem 7]). In a bipartite graph G = (V1, V2, E) the
vertex set V2 contains no asteroidal triple2 if and only if G contains none of the
graphs GIk , GIIk , GIIIk (with k ≥ 1), GIV, and GV as shown in Figure 2.7.

2Tucker considers the C1P for columns, whereas we are interested in the C1P for rows.
Hence, the roles of V1 and V2 are interchanged here compared to Tucker’s publication [Tuc72].

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.2. Graph Classes and the C1P/Circ1P 37

GIk
: GIIk

: GIIIk
:

GIV: GV:
xx

xx

y

yy

y z

zz

z

· · ·· · ·· · ·

k k + 1 k + 1

Figure 2.7: Forbidden induced subgraphs due to Tucker [Tuc72]: The vertex set V2

of a bipartite graph G = (V1, V2, E) contains an asteroidal triple iff G contains one
of the displayed graphs as an induced subgraph, where white vertices correspond
to vertices in V2. The numbers k and k+1 refer to the number of black vertices in
the lower parts of the first three graphs. In the case of the graph GIk ∈ T , every
triple of white vertices is an asteroidal triple. In all other cases, there is exactly
one asteroidal triple consisting of white vertices; this triple is denoted by x, y, z.

A characterization that is very similar to the one given in Theorem 2.3 is
also known for interval graphs: A graph is an interval graph iff it is chordal and
contains no asteroidal triple [LB62].

The following theorem, which finally characterizes matrices with the C1P, is
a direct consequence of Theorems 2.3 and 2.4.

Theorem 2.5 ([Tuc72, Theorem 9]). A matrix M has the C1P if and only if it
contains none of the matrices MIk , MIIk

, MIIIk
(with k ≥ 1), MIV, and MV as

shown in Figure 2.8 as a submatrix.3

The matrices in Figure 2.8 are obtained from the graphs given in Figure 2.7 by
considering the half adjacency matrices of these graphs, that is, the graphs given
in Figure 2.7 are the representing graphs of the matrices given in Figure 2.8.

We will use the symbol T throughout the whole thesis to denote the set of
matrices MIk , MIIk , MIIIk (with k ≥ 1), MIV, and MV given in Theorem 2.5. The
set T is called a set of forbidden submatrices for the C1P.

3The roles of rows and columns are interchanged here compared to Tucker’s publica-
tion [Tuc72].

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

38 Chapter 2. The Consecutive-Ones Property

k + 2

k + 2

MIk
, k ≥ 1

k + 3

k + 3

MIIk
, k ≥ 1

k + 3

k + 2

MIIIk
, k ≥ 1

MIV MV

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

111
11

11
11

111
1111
11

11

11

1 1

11
11

1 11

1 1

11
11

1 1
11

1

1 1

11
11

000
0000

00
0

0
00

0
0

00
0

00 0
0 00

0 0

0

0
0

0

00
0

00

0 00

0
0

00
0

0
0

0 00

0
0

00
0

Figure 2.8: The forbidden submatrices for the C1P due to Tucker [Tuc72], given
in Theorem 2.5.

2.3 Recognizing the C1P

Here we demonstrate some of the most prominent algorithms known for rec-
ognizing matrices with the C1P. Hand in hand with these algorithms, several
characterizations for matrices having the C1P have been developed; we will also
present some of these characterizations. Moreover, we fix a small error in Theo-
rem 6.1 of [McC04]. As we will see (Theorem 2.7), every algorithm that recognizes
interval graphs can also be used to recognize matrices with the C1P. However,
here we mention only those results that explicitly deal with matrices and the
C1P, because first transforming a matrix into a graph and then testing whether
this graph is an interval graph does not automatically yield an efficient (that is,
linear-time) algorithm for recognizing the C1P. Note that some of the presented
results concern the C1P for rows and some the C1P for columns; clearly, due to
the symmetry of these two properties, all algorithms can be used for recognizing
both of these properties.

The following definition introduces some terms needed in this section.

Definition 2.9. Two columns c1, c2 of a 0/1-matrix overlap if there exist three
rows r1, r2, r3 such that row r1 contains a 1 in both columns c1 and c2, row r2

contains a 1 in c1 but not in c2, and row r3 contains a 1 in c2 but not in c1.

A column c1 contains a column c2 if for every row r it holds that if c2 has a 1
in row r then c1 also has a 1 in row r. If a column is not contained in any other
row, it is maximal.4

All terms can be defined analogously for rows.

4Note that this definition of a maximal column does not allow the existence of two identical
maximal columns.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.3. Recognizing the C1P 39

Using overlapping columns. The first polynomial-time algorithm to recog-
nize matrices having the C1P (for columns) was presented by Fulkerson and
Gross [FG65]. Their idea is to decompose the input matrix M into disjoint col-
umn sets in such a way that the whole matrix has the C1P for columns iff each
matrix induced by one of the column sets has the C1P for columns. The par-
titioning of M ’s columns into different column sets is performed by defining an
overlap graph G(M): Every vertex of this graph corresponds to a column of M ,
and two vertices are connected iff their corresponding columns overlap. Every
connected component of this graph defines one column set of the partition of M
needed by the algorithm. Now, for the rows of every submatrix of M that is
induced by one of the column sets of the partition, a C1-ordering can easily be
found, if existing, by considering one column after the other in a certain order
and re-arranging the rows if necessary. If, however, the considered submatrix does
not have the C1P for columns, this can easily be detected because in this case
one always encounters a column whose 1-entries cannot be placed consecutively
without destroying the C1P for columns in the already considered columns. In
the last phase of the algorithm, the row orderings computed for the submatrices
are combined, while possibly re-arranging some of the rows, by using a directed
graph called the component graph D(M), which defines a partial order on the
connected components of G(M). The whole matrix M has the C1P for columns
iff all of the submatrices have the C1P for columns [FG65, Theorem 4.1]. The
whole procedure takes polynomial time. A more recent linear-time algorithm by
Hsu [Hsu02] for recognizing the C1P is based on very similar ideas.

PQ-Trees. Booth and Lueker were the first to present a linear-time algorithm
for recognizing matrices with the C1P for columns [BL76]. Linear time means a
running time that is linear in the number of rows plus the number of columns
plus the number of 1-entries of the given matrix. Booth and Lueker introduced
so-called PQ-Trees, which are not only useful for recognizing matrices with the
C1P, but also, for example, for recognizing matrices with the Circ1P and for
recognizing interval graphs and planar graphs. In the context of recognizing
matrices with the C1P for columns, a PQ-tree is an ordered rooted tree that
represents a C1-ordering for the rows of a matrix M . To this end, the inner
nodes of the PQ-tree are labeled as P-nodes and Q-nodes, and the leaves one-
to-one correspond to the rows of the underlying matrix M . Ordering the rows
of M in the same way as their corresponding leaves in the PQ-tree yields the
strong C1P for columns. In addition, any PQ-tree for M implicitly represents
all possible C1-orderings for M ’s rows, because by applying a series of certain
node reordering operations, every possible PQ-tree for the set of M ’s rows can be
transformed into any other possible PQ-tree for this row set. Therefore, PQ-trees
have the following properties.

1. If T is a PQ-tree for a matrix M , then the sequence of T ’s leaves from left
to right describes a C1-ordering for M ’s rows.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

40 Chapter 2. The Consecutive-Ones Property

r1

r1

r2

r2

r3

r3

r4

r4

r5

r5r6 r6

r7

r7

r8

r8

P

PPQ

Q

1

111

1

11 1

11

1

1

1 1

11

00

0

0

0

0

0 0

000

0

0

00

0

Figure 2.9: A matrix M and the PQ-tree representing the row ordering of M .

2. Each C1-ordering for M ’s rows one-to-one corresponds to a PQ-tree.

3. The set of PQ-trees for the rows of a matrix is closed under the following
two operations:

• Arbitrarily reordering the children of a P-node.

• Putting the children of a Q-node in reverse order.

In particular, none of these two operations destroys property 1.

See Figure 2.9 for an illustration.
In order to either construct a PQ-tree for a given matrix M or decide that M

does not have the C1P for columns, the algorithm of Booth and Lueker starts
with a tree (the so-called universal PQ-tree) consisting of one P-node forming the
root and one leaf node for every row of M . The algorithm considers the columns
of M one after the other, and in every step it either reports that M does not
have the C1P for columns, or it modifies the tree, by using a complicated case
distinction, in such a way that the resulting tree is a PQ-tree for the matrix that
is induced by the columns considered so far.

Variations of PQ-Trees. Several variations of PQ-trees have been proposed
since their first appearance. Korte and Möhring [KM89] introduced MPQ-trees
(“modified PQ-trees”), where the inner nodes contain some additional infor-
mation, which results in a simpler construction of these trees. Meidanis et
al. [MPT98] defined PQR-trees, which are a generalization of PQ-trees in the
following sense: For every matrix M that has the C1P for columns, the set of
PQR-trees for M ’s rows is identical with the set of PQ-trees for M ’s rows. How-
ever, in contrast to PQ-trees, PQR-trees are also defined for matrices that do
not have the C1P for columns; in this case they contain, in addition to P-nodes
and Q-nodes, inner nodes labeled as R-nodes, which can be useful for identi-
fying why the matrix does not have the C1P. A similar approach was used by
McConnell [McC04]. He introduced generalized PQ-trees in order to determine

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.3. Recognizing the C1P 41

c1 c2 c3 c4

(1, 2) (2, 1)

(1, 3) (3, 1)

(1, 4)(4, 1)

(2, 3)(3, 2)

(2, 4) (4, 2)

(3, 4)(4, 3)1

1

1

1

1

1

00

0

0

0

0

Figure 2.10: The matrix MIII1 and its incompability graph [McC04]. The graph
contains several odd cycles of length 7.

if a matrix has the C1P for rows and, if it does not, to generate a “certificate”
therefor: Such a certificate is a small (compared to the size of the input matrix)
proof that can be verified by a “fast and uncomplicated” polynomial-time algo-
rithm (for more details about such certificates see [KMMS06]). The certificate
produced by the algorithm of McConnell [McC04] for an m × n input matrix M
consists of an odd cycle of length at most n + 3 in the so-called incompatibility
graph of M . This graph is defined as the graph G = (V, E) with

V ={(j1, j2) | 1 ≤ j1 ≤ n ∧ 1 ≤ j2 ≤ n ∧ j1 6= j2}

E ={{(j1, j2), (j2, j1)} | 1 ≤ j1 < j2 ≤ n} ∪

{{(j1, j2), (j2, j3)} | j1 6= j3 ∧

∃i ∈ {1, . . . , m} : (mi,j1 = mi,j3 = 1 ∧ mi,j2 = 0)}.

Intuitively speaking, the incompability graph contains two vertices for every pair
of columns of M : one vertex for every possible relative ordering of the two
columns. If two vertices (j1, j2) and (j3, j4) in the incompatibility graph are
connected by an edge, then the corresponding two orderings conflict in the sense
that there is no C1-ordering for M ’s columns that places the column j1 to the
left of j2 and the column j3 to the left of j4. See Figure 2.10 for an example. The
connection between the incompability graph of a matrix and the C1P is speci-
fied in the following theorem. The original formulation of this theorem is due to
McConnell [McC04] and contains a minor error concerning the cycle length. We
will describe this error as well as a sketch how to fix it at the end of this section.

Theorem 2.6 ([McC04, Theorem 6.1]). An m× n matrix M has the C1P iff its
incompatibility graph is bipartite. If M does not have the C1P, then its incom-
patibility graph has an odd cycle of length at most n + 3.

See Figure 2.10. In order to use an odd cycle as mentioned in Theorem 2.6
as a certificate for the absence of the C1P, one encodes the cycle as a list of at
most n + 3 pairs (ei, di), where ei is the ith edge in the cycle and di, which

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

42 Chapter 2. The Consecutive-Ones Property

can either be null or an integer, describes the “reason” for the existence of ei:
if ei is an edge of the kind {(j1, j2), (j2, j1)}, then di is null; if ei is an edge of
the kind {(j1, j2), (j2, j3)} with j1 6= j3, then di contains the index of a row that
contains a 1 in the columns j1 and j3 and a 0 in column j2. Clearly, the correctness
of this certificate can be checked in O(n) time.

PC-Trees. A remarkable simplification for building PQ-trees was exhibited by
Hsu and McConnell [HM03], who introduced PC-trees. These trees can be seen
as unrooted PQ-trees that represent Circ1-circular orderings for the columns or
rows of a matrix instead of C1-orderings. Instead of Q-nodes, PC-trees contain
C-nodes; the order of the leaves of a PC-tree describes a Circ1-circular ordering
for the columns of the underlying matrix. PC-trees have the following properties.

1. If T is a PC-tree for a matrix M , then any sequence obtained by considering
T ’s leaves in clockwise or counter-clockwise order describes a Circ1-circular
ordering for M ’s columns.

2. Each Circ1-circular ordering for M ’s columns one-to-one corresponds to a
PC-tree.

3. The set of PC-trees for the columns of a matrix is closed under the following
two operations:

• Arbitrarily reordering the neighbors of a P-node.

• First rooting T at a neighbor of a C-node v, then “flipping” the subtree
whose root is v, and finally un-rooting the tree. Herein, “flipping” a
subtree means putting the children of every node of the subtree in
reverse order.

In particular, none of these two operations destroys property 1.

See Figure 2.11 for an illustration.
Like in the case of PQ-trees, there is a linear-time algorithm that either con-

structs a PC-tree for a given matrix M or decides that M does not have the
Circ1P [HM03]. Similarly to the algorithm of Booth and Lueker [BL76], this
algorithm starts with a tree consisting of one P-node which has one leaf neighbor
for every column of M . The algorithm considers the rows of M one after the
other, and in every step it either reports that M does not have the Circ1P, or
it modifies the tree. These modifications, however, are much simpler than those
proposed by Booth and Lueker for updating a PQ-tree.

Due to Corollary 2.2, the PC-tree algorithm can not only be used to decide
whether a matrix has the Circ1P, but also to decide whether it has the C1P: Just
add a column that contains only 0s to the given matrix. Rooting the PC-tree
for the resulting matrix at the neighbor of the leaf node that corresponds to the
newly inserted column and then deleting this leaf node yields a PQ-tree for the
original matrix.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.3. Recognizing the C1P 43

c1c1c1 c2c2c2
c3c3

c3

c4

c4

c4

c5c5

c5

c6

c6

c6

c7c7

c7

c8c8

c8 c9

c9c9

c10

c10c10

PP

C

CC

C

CC

1

11

11

11

11

11

1111111

11

11

0
0
0
0

00000000

0

0

0
0

0
0 0 00

0 00

0 00
0 00

00

000000
0

0 0
00
000

0

0
00000000

0
0

Figure 2.11: PC-trees for a matrix. Left: a matrix M . Middle: the PC-tree
representing the circular column ordering of M . Right: The PC-tree obtained
from the PC-tree in the middle by “flipping” the subtree rooted at the bottom-
right C-node.

Further recognition algorithms. A simple linear-time algorithm without us-
ing any variant of PQ-trees was presented by Habib et al. [HMPV00]: They use
a so-called “Lex-BFS ordering” of the vertices of a graph to decide in linear time
whether the graph is an interval graph. Habib et al. also prove Theorem 2.7
below, which implies that any algorithm recognizing interval graphs can also be
used for recognizing matrices with the C1P. Habib et al. show that the recognition
of matrices with the C1P in this way is possible in linear time.

For describing how an algorithm recognizing interval graphs can be used to
decide whether a given matrix M has the C1P, let Gra(M) denote the graph that
has one vertex for every row of M and where two vertices are adjacent iff their
corresponding rows in M have a 1 in a common column; we call this graph the
row adjacency graph of M . Note that several matrices can have identical row
adjacency graphs; moreover, if a matrix M is the maximal clique matrix of a
graph G, then G is the row adjacency graph of M . The latter observation leads
to the following finding.

Theorem 2.7 ([HMPV00, Theorem 2]). For a 0/1-matrix M the following state-
ments are equivalent:

1. The row adjacency graph Gra(M) is an interval graph and M is its maximal
clique matrix.

2. The columns of M are maximal and M has the C1P for rows.

By appending a size-n × n unit matrix I to a matrix M , a matrix

M̃ =

(
M
I

)

can be constructed, which obviously has the following properties.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

44 Chapter 2. The Consecutive-Ones Property

1. M̃ has the C1P iff M has the C1P,

2. every column of M̃ is maximal, and

3. Gra(M̃) is an interval graph and M̃ is its maximal clique matrix iff M has
the C1P for rows (this follows from Theorem 2.7).

Testing whether M has the C1P now obviously reduces to checking whether
Gra(M̃) is an interval graph and M̃ is its maximal clique matrix. However, note
that using Theorem 2.7 in combination with a linear-time algorithm for recog-
nizing interval graphs does not automatically yield a linear-time algorithm for
recognizing matrices with the C1P. Nevertheless, Habib et al. give an algorithm
using Theorem 2.7 for recognizing matrices with the C1P in linear time.

Finally, we like to point out that recognizing matrices that have “almost
the C1P” is much more difficult than recognizing matrices with the C1P: While
matrices with the C1P can be recognized in linear time, the problem of deciding
whether the columns of a matrix M (not having the C1P) can be permuted in such
a way that the overall number of blocks of 1s is at most k is NP-complete [GJ79,
Had02] (see also [HL08]); deciding whether M ’s columns can be permuted such
that the number of blocks of 1s in each row is at most c is NP-complete for every
constant c ≥ 2 [AM96, FGS96, GGKS95, WLZ07] (see also [BGRS04, WR00]).
However, there are algorithms for recognizing matrices that are “close” to having
the C1P in some other sense [Hsu97, LH03].

An Error in Theorem 6.1 of McConnell [McC04]

The original version [McC04, Theorem 6.1] of Theorem 2.6 contains an error
concerning the cycle length. In this subsection, we describe the error and prove
the correct cycle length.

The original theorem is formulated in terms of subset families instead of ma-
trices. From this point of view, a matrix is represented by a domain V , which
is a set and contains one element for every column of M , and a set family F ,
which represents the rows of M and contains one subset of V for every row of M :
a row i of M is represented by a set in F that contains those elements of V
that correspond to columns of M with a 1 in row i, see Figure 2.12. Clearly,
all terms defined for matrices, like the C1P or incompability graphs, can be di-
rectly applied to such set families. In particular, a consecutive ordering for V
orders the elements of V in such a way that the members of every set Y ∈ F
appear consecutively in this ordering. The original version of Theorem 2.6 reads
as follows.

[McC04], Theorem 6.1. Let F be an arbitrary set family on domain V . Then F
has the consecutive-ones property if and only if its incompatibility graph is bipar-
tite, and if it does not have the consecutive-ones property, the incompatibility
graph has an odd cycle of length at most n + 2 (where n = |V |).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.3. Recognizing the C1P 45

c1 c2 c3 c4

11

1 1

1

11

0

0

0

0

0 V = {c1, c2, c3, c4}

F = {{c1, c3}, {c2, c4}, {c1, c3, c4}}

Figure 2.12: A matrix can be represented by a set family F on a ground set (“do-
main”) V whose elements correspond to the columns of the matrix. The shown
set family has the C1P, because there is an ordering (for example c3, c1, c4, c2) for
V ’s elements such that the members of every set from F appear consecutively.

A counterexample for this theorem is shown in Figure 2.10: The matrix MIII1

does not have the C1P; however, the shortest odd cycle in its incompability graph
does not have a length of n + 2 as claimed by the theorem, but a length of n + 3.
Indeed, replacing “n + 2” by “n + 3” in Theorem 6.1 of [McC04] makes the
statement correct.

We will shortly explain the reason for the error and then sketch how to prove
the correct Theorem 2.6 along the lines of McConnell’s proof for Theorem 6.1
of [McC04].

The error in the proof for Theorem 6.1 of [McC04]. The proof of Mc-
Connell for Theorem 6.1 uses the following approach. By using a generalized
PQ-tree, the set family F is partitioned into sub-families in such a way that if F
does not have the C1P, then there is at least one such sub-family Q that also
does not have the C1P. Now, an algorithm is proposed that considers the sets
in Q one after the other in a specific order and updates in each step some data
structures, which finally allow to prove an odd cycle of the claimed length in the
incompability graph.

During the execution of the algorithm, let F ′ ⊆ Q denote all sets considered
so far. In every step, the algorithm updates an ordered list P of pairwise disjoint
subsets X1, . . . , Xk of V such that X1 ∪ . . . ∪ Xk =

⋃
F ′. Herein, the following

invariants are maintained: First, every set Xi in P forms a block for F ′, which
means that Xi is a maximal subset of

⋃
F ′ with the property that

∀a, b ∈ Xi ∀Y ∈ F ′ : (a ∈ Y ⇔ b ∈ Y).

See Figure 2.13 for an illustration of the blocks for a set family. Second, the
ordering of the sets Xi in P is consistent with a consecutive ordering for

⋃
F ′.

This means that when the elements of
⋃
F ′ are ordered in such a way that for

every 1 ≤ i < j ≤ k the elements of Xi appear before the elements of Xj , one
obtains a consecutive ordering for

⋃
F ′ (see Figure 2.13). The order in which

the algorithm considers the sets of Q guarantees that X1, . . . , Xk and Xk, . . . , X1

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

46 Chapter 2. The Consecutive-Ones Property

Y1 = { c1 c2 c3 c4 c5 }
Y2 = { c4 c5 c6 c7 c8 c9 c10 }
Y3 = { c8 c9 c10 c11 c12 }

︸ ︷︷ ︸

X1

︸ ︷︷ ︸

X2

︸ ︷︷ ︸

X3

︸ ︷︷ ︸

X4

︸ ︷︷ ︸

X5

Figure 2.13: A sequence P = (X1, . . . , X5) of five blocks for a set family F ′ =
{Y1, Y2, Y3} with

⋃
F ′ = {c1, . . . , c12}. Such a sequence is computed by the algo-

rithm used in the proof for Theorem 6.1 of [McC04]. The shown order c1, . . . , c12

of the elements is a consecutive ordering for
⋃
F ′. The sequence P and its re-

verse are the only orderings of the blocks that are consistent with a consecutive
ordering for

⋃
F ′.

are the only two block orderings that fulfill this invariant—this is crucial for the
argumentation used in the proof.

If Q does not have the C1P, then the algorithm must clearly perform a step
in which a set Z ∈ Q is selected such that the set family F ′, which contains the
sets considered in the previous steps, has the C1P, but F ′ ∪ {Z} does not. This
implies that it is impossible to find a sequence P of blocks as mentioned above
for F ′ ∪ {Z}. Following the argumentation in [McC04], this can only be the case
if there are three elements a, b, c in

⋃
F ′ and three indices 1 ≤ p < q < r ≤ k

such that a ∈ Xp, b ∈ Xq, c ∈ Xr, and a ∈ Z, b /∈ Z, c ∈ Z. As a consequence, an
odd cycle of the claimed length n + 2 in the incompability graph can be found.

However, there can also be another situation, which has not been considered
in [McC04]: It is as well impossible to find a sequence P of blocks for F ′ ∪ {Z}
if there are three elements a, b, c in

⋃
F ′, an index 1 < p < k and an element z ∈

V \
⋃

F ′ such that a ∈ X1, b ∈ Xp, c ∈ Xk, and a /∈ Z, b ∈ Z, c /∈ Z, z ∈ Z.
In this case, an odd cycle of length n + 2 in the incompability graph cannot be
guaranteed.

We mention in passing that there is also a fault in Corollary 6.1 of [McC04]:
The path length claimed in the corollary is k − 1, whereas the correct length
is k. The proof of Corollary 6.1, however, is correct (that is, it proves the correct
length k of the path).

Proof for Theorem 2.6. To prove Theorem 2.6, it suffices to show the follow-
ing lemma because the case that is not covered by this lemma is proven correctly
in [McC04].

Lemma 2.1. Assume that F ′ ∪ {Z} does not have the C1P and that there are
three elements a, b, c in

⋃
F ′, an index 1 < p < k and one element z ∈ V \

⋃
F ′

such that a ∈ X1, b ∈ Xp, c ∈ Xk, and a /∈ Z, b ∈ Z, c /∈ Z, z ∈ Z. Then there is
an odd cycle of length at most n + 3 in the incompability graph of F ′ ∪ {Z}.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.3. Recognizing the C1P 47

Proof. Due to Theorem 2.5, it suffices to prove that the lemma is true if F ′∪{Z}
represents one of the matrices MIk , MIIk , MIIIk (with k ≥ 1), MIV, and MV (see
Figure 2.8).

For the matrices MIk and MIIk with k ≥ 1 we do not have to prove anything,
because, given the situation described in the lemma, the set family F ′ ∪ {Z}
cannot represent one of these matrices. The reason is that every column of MIk

and MIIk contains at least two 1s. Hence, when the set Z is considered by the
algorithm, the set V \

⋃
F ′ is already empty, and the element z cannot exist.

(To see this, note that F ′ represents all but one rows of the matrix and V \
⋃
F ′

represents those columns that contain only 0s in the rows corresponding to F ′.)
In the case of MIV or MV one can easily verify that the incompability graph of

these matrices contains an odd cycle of length at most n + 3: The incompability
graph of MIV contains a C9, the incompability graph of MV contains a C5. It
remains to show that the incompability graph of the matrix MIIIk

, k ≥ 1, contains
an odd cycle of length at most n + 3. We distinguish the two cases where n is
even and n is odd.

If n is even, then one can easily verify that there is a path

(n, n − 1), (n − 2, n), (n, n − 3), . . . , (2, n), (n, 1)

of length n−2 from (n, n−1) to (n, 1) in the incompability graph because of the
rows m − 1, m − 2, . . . , 1. In addition, the incompability graph contains

• the edge {(n, 1), (1, n − 2)} because of row m,

• the edge {(1, n − 2), (n − 1, 1)} because of row m − 1,

• the edge {(n − 1, 1), (2, n − 1)} because of row 1,

• the edge {(2, n − 1), (n − 1, n)} because of row m, and

• the edge {(n − 1, n), (n, n − 1)}.

The path from (n, n − 1) to (n, 1) together with these edges forms an odd cycle
of length n + 3.

If n is odd, then there is a path

(n, n − 1), (n − 2, n), (n, n − 3), . . . , (n, 2), (1, n)

of length n−2 from (n, n−1) to (1, n) in the incompability graph because of the
rows m − 1, m − 2, . . . , 1. In addition, the incompability graph contains

• the edge {(1, n), (n − 2, 1)} because of row m,

• the edge {(n − 2, 1), (1, n − 1)} because of row m − 1,

• the edge {(1, n − 1), (n − 1, 2)} because of row 1, and

• the edge {(n − 1, 2), (n, n − 1)} because of row m,

such that there is an odd cycle of length n + 2.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

48 Chapter 2. The Consecutive-Ones Property

2.4 Integer Linear Programming on Coefficient

Matrices having the C1P/Circ1P

In this section, we consider the connection between matrices with the C1P or
Circ1P and the hardness of solving integer linear programs (ILPs). Integer linear
programs (see [Sch86]) are inequation/function systems that can be used to model
a huge number of decision and optimization problems (see [KW97, Sie96]) and for
which many solving algorithms and implementations exist (for example, GLPK
(see [GLP08]) or CPLEXR©).

While solving ILPs in general is NP-hard (see Section 2.4.1), we are here
interested in the solvability of ILPs in the special case where the matrix consisting
of the coefficients of the inequations has the C1P—such ILPs occur, for example,
in biological applications [ACE+08] and in Section 5.3.1—or the Circ1P. We first
consider some classes of polynomial-time solvable ILPs and show that ILPs whose
coefficient matrices have the C1P belong to these classes. Then we describe some
more specific algorithms for ILPs with coefficient matrices having the C1P or the
Circ1P.

The algorithms that we consider do not only work for ILPs with 0/1-coefficient
matrices, but also for ILPs whose coefficient matrices consist of entries from
{0, 1,−1}. Therefore, we extend the definition of the C1P, which was defined
only for 0/1-matrices so far, to 0/ ± 1-matrices as follows: A 0/ ± 1-matrix has
the C1P if every row contains only entries either from {0, 1} or from {0,−1} and
the columns can be permuted such that in every row the non-zero entries appear
consecutively. Analogously, a 0/± 1-matrix has the Circ1P if every row contains
only entries either from {0, 1} or from {0,−1} and the columns can be permuted
such that in every row the non-zero entries appear consecutively when the matrix
is wrapped around a vertical cylinder.

We will only give a very basic introduction to (integer) linear programming
and refer to Schrijver [Sch86] for more details wherever no other references are
given (see also [MG06, PS98] for introductions).

2.4.1 (Integer) Linear Programming Basics

A linear program (LP) is an instance of the following optimization problem.Linear Programming
Input: A set x1, . . . , xn of variables, a set of m linear inequations

ai,1x1 + . . . + ai,nxn ≤ bi, 1 ≤ i ≤ m,

and a linear objective function

c1x1 + . . . + cnxn

with ai,j , bj, cj ∈ Q for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.4. Integer Linear Programming and the C1P/Circ1P 49

Task: Assign values to x1, . . . , xn such that all given inequations
are satisfied and that the value of the objective function is
maximized.5

An assignment of values to the variables that satisfies the given inequations is
called a (feasible) solution for the LP. Equivalently, the problem can formulated
in a more compact form as follows.

Input: An m × n matrix A = (ai,j), an n-entry column vector ~b and

an m-entry row vector ~c T with all entries in A,~b,~c T from Q.

Task: Find an m-entry column vector ~x that satisfies A~x ≤ ~b and
maximizes ~c T~x.

A vector containing only integers is called integral. The variant of Linear
Programming where only integral solutions are allowed is called Integer Lin-
ear Programming; its instances are called integer linear programs (ILPs).
There are also decision problems corresponding to the optimization problems
Linear Programming and Integer Linear Programming. The instances
of these decision problems contain no objective function (no vector c); the task
is to decide if there is any feasible solution.

Linear Programming can be solved in polynomial time. In particular,
there is an algorithm for solving LPs that needs O((n3/ lnn)L) arithmetic op-
erations [Ans99] (see also [PW00] for an overview over efficient algorithms for
solving LPs), where L is the total bit number of the input. In contrast, it is easy
to see that Integer Linear Programming is NP-hard. For example, Ver-
tex Cover III (see Section 1.3.1) can easily be reduced to Integer Linear
Programming by transforming an instance G = ({v1, . . . , vn}, E) of the latter
problem into an ILP

Maximize n −
∑n

j=1 xj

subject to
−xj1 − xj2 ≤ −1, ∀{vj1 , vj2} ∈ E

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}.

Actually, the decision version of Integer Linear Programming is NP-com-
plete [BT76, GS78, KM78, HU79].

An LP (ILP) is called feasible if it admits a feasible solution, and unfeasible
otherwise. Even if an LP (ILP) is feasible, it is possible that there is no optimal
solution: the optimum value of the objective function may be unbounded, mean-
ing that for every feasible solution there exists another feasible solution yielding

5This is the standard form for LPs. To express an inequation of the form ai,1x1 + . . . +
ai,nxn ≥ bi, multiply it with −1; to express an equation ai,1x1 + . . . + ai,nxn = bi, replace it by
the two inequations ai,1x1 + . . . + ai,nxn ≤ bi and −ai,1x1 − . . .− ai,nxn ≤ −bi. Analogously, a
minimization problem can be turned into a maximization problem by multiplying the objective
function with −1.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

50 Chapter 2. The Consecutive-Ones Property

a higher value of the objective function. Given an LP on n variables, one can
interpret its solution space as an n-dimensional Eukledian space; every inequa-
tion of the LP defines a half-space that contains all value-to-variable assignments
satisfying this inequation. The intersection of all the half-spaces defined by the
inequations of an LP is called the polyhedron defined by the LP. If the polyhedron
defined by an LP is integral, which means that each of its corners corresponds to
an integral solution, then the ILP defined by the inequations and the objective
function of the LP can be solved in polynomial time by solving the LP. The rea-
son is that for any feasible LP with bounded optimum value there is an optimal
solution that corresponds to a corner of the polyhedron defined by the LP, and
this corner can be found in polynomial time.

Given an LP
Maximize ~c T~x
subject to

A~x ≤ ~b,

then the problem

Minimize ~z T~b
subject to
~z TA = ~c T

~z T ≥ ~0 T

is called the dual (problem) for the given LP6—here the task is to find an optimal
row vector ~z T. The dual problem is feasible and its optimum value is bounded iff
the original LP is feasible and has a bounded optimum value; if this is the case
then it holds that

max{~c T~x | A~x ≤ ~b} = min{~z T~b | ~z TA = ~c T ∧ ~z T ≥ ~0 T}.

For ILPs, there is no such equation, and it only holds that max{~c T~x | A~x ≤
~b ∧ ~x is integral} ≤ min{~z T~b | ~z TA = ~c T ∧ ~z T ≥ ~0 T ∧ ~z T is integral}.

6The dual of an LP of the (non-standard) form

Maximize c1x1 + . . . + cnxn

subject to
ai,1x1 + . . . + ai,nxn = bi, 1 ≤ i ≤ p,
ai,1x1 + . . . + ai,nxn ≤ bi, p + 1 ≤ i ≤ m,

xj ≥ 0 1 ≤ j ≤ q

with 0 ≤ p ≤ m and 0 ≤ q ≤ n can be defined as

Minimize b1z1 + . . . + bmzm

subject to
a1,jzj + . . . + am,jzm ≥ cj , 1 ≤ j ≤ q,
a1,jzj + . . . + am,jzm = cj , q + 1 ≤ j ≤ n,

zi ≥ 0 p + 1 ≤ i ≤ m.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.4. Integer Linear Programming and the C1P/Circ1P 51

2.4.2 Balanced and Totally Unimodular Matrices

The problem Integer Linear Programming is NP-hard. However, there
are special cases that can be solved in polynomial time. Here, we consider the
two special cases where the coefficient matrix A of the ILP is “balanced” or
“totally unimodular” and describe how these properties lead to polynomial-time
solvability. We will see that matrices with the C1P have both of these properties.
For a more detailed description of the matrix classes mentioned here see [BLS99,
CCV06, Gol04, Sch86].

Balanced Matrices. Originally, balanced matrices have been defined by Berge
[Ber70] as 0/1-matrices that do not contain a square submatrix of odd order with
exactly two 1s per row and per column—the order of a matrix denotes the number
of its entries. Truemper [Tru78] extended this definition to 0/±1-matrices in the
following way.

Definition 2.10 ([Tru78]). A matrix with entries 0, 1,−1 is balanced if for each
submatrix B of A it holds that if B has exactly two non-zero entries per row and
per column, then the sum of the entries of B is a multiple of four.

Berge also gave an alternative, useful characterization for balanced 0/1-matri-
ces based on a “bicolorability” property of the columns of such a matrix [Ber70].
This characterization was extended by Conforti and Cornuéjols [CC95] to bal-
anced 0/ ± 1-matrices.

Theorem 2.8 ([CC95]). An m × n matrix A with entries 0, 1,−1 is balanced if
and only if each collection of columns from A can be partitioned into two column
sets C1 and C2 such that in each row ri containing more than one non-zero entry

• there are two non-zero entries mi,j1 , mi,j2 such that the columns j1 and j2

either both belong to C1 or both belong to C2 and mi,j1 = −mi,j2, or

• there are two non-zero entries mi,j1, mi,j2 such that the column j1 belongs
to C1 and the column j2 belongs to C2 and mi,j1 = mi,j2.

The following theorem shows that ILPs with balanced coefficient matrices
are polynomial-time solvable for certain vectors ~b; the theorem was originally
formulated for balanced 0/1-matrices only [Ber72, FHO74] and was extended to
balanced 0/ ± 1-matrices by Conforti and Cornuéjols [CC95].

Theorem 2.9 ([CC95]). Let A be a 0/ ± 1-matrix, and for a submatrix B of A,
let ~n(B) denote the column vector whose ith entry equals the number of −1-entries
in the ith row of B. Then the following statements are equivalent:

1. The matrix A is balanced.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

52 Chapter 2. The Consecutive-Ones Property

2. For each m × n submatrix B of A, the polyhedron defined by

B~x ≤ 1m − ~n(B)

0n ≤ ~x ≤ 1n

is integral.7

3. For each m × n submatrix B of A, the polyhedron defined by

B~x = 1m − ~n(B)

0n ≤ ~x ≤ 1n

is integral.

4. For each m × n submatrix B of A, the polyhedron defined by

B~x ≥ 1m − ~n(B)

0n ≤ ~x ≤ 1n

is integral.8

In particular, Theorem 2.9 implies that for any balanced matrix A and any
vector ~c T, the ILP

Maximize ~c T~x
subject to

A~x ≤ ~b
xj ∈ {0, 1} for every entry xj of ~x

can be solved in polynomial time if ~b = 1m − ~n(A). Moreover, if ~c T is integral,
then the optimum value of the ILP, if bounded, is an integer value.

Totally Unimodular Matrices. In the case of balanced coefficient matrices A,
the polyhedron defined by A~x ≤ ~b is integral only for certain vectors ~b. However,
there also exist matrices with the property that the polyhedron is integral for
every integral vector ~b. As we will see, these matrices coincide with so-called
totally unimodular matrices, which are defined as follows.

Definition 2.11. A 0/±1-matrix is totally unimodular if every square submatrix
has determinant 0, 1, or −1.

Similar to Theorem 2.8 for balanced matrices, there is a useful “bicolorability”
characterization for totally unimodular matrices.

7A 0/ ± 1-submatrix B that has the property mentioned in statement 2 is called perfect.
8A 0/ ± 1-submatrix B that has the property mentioned in statement 4 is called ideal.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.4. Integer Linear Programming and the C1P/Circ1P 53

Theorem 2.10 ([Gho62]). An m × n matrix A with entries 0, 1,−1 is totally
unimodular if and only if each collection of columns from A can be partitioned
into two column sets such that in each row the sum of the entries of the first set
and the sum of the entries of the second set differ by at most 1.

Note that Theorems 2.10 and 2.8 immediately imply that every totally uni-
modular matrix is balanced.

The following theorem shows the polynomial-time solvability of ILPs with
totally unimodular coefficient matrices.

Theorem 2.11 ([HK56]). Let A be an m×n integral matrix. Then the polyhedron
defined by

A~x ≤ ~b

~x ≥ ~0

is integral for every integral vector ~b ∈ Zm if and only if A is totally unimodular.

From Theorem 2.11 it follows that for every totally unimodular matrix A,
every integral vector ~b and every vector ~c T the ILP

Maximize ~c T~x
subject to

A~x ≤ ~b

~x ≥ ~0
~x is integral

(2.3)

can be solved with O((n3/ lnn)L) arithmetic operations [Ans99], where L is the
total bit number needed for encoding the ILP.

2.4.3 ILPs with Coefficient Matrices having the C1P

The first method to solve ILPs whose coefficient matrices have the C1P is to
use the fact that any matrix A having the C1P clearly fulfills the conditions of
Theorem 2.10 and, hence, is totally unimodular. To see this, consider an arbitrary
collection of columns from A and order them according to the C1P. Partitioning
the columns by putting every second column, starting with the first, into one
column set and every remaining column into the other column set leads to a
partitioning as required in Theorem 2.10 (see also [NW88, page 544]). Therefore,

if a matrix A has the C1P, then for every integral vector~b and every vector ~c T the
ILP shown in (2.3) can be solved in polynomial time due to Theorem 2.11: just
omit the constraint “~x is integral” and solve the resulting LP, which has always
an integral solution.

Using Theorem 2.11 to solve ILPs with coefficient matrices having the C1P
exploits only the fact that such coefficient matrices are totally unimodular. How-
ever, it is known that an ILP whose coefficient matrix has the C1P can be solved

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

54 Chapter 2. The Consecutive-Ones Property

even faster by transforming it into an edge-weighted graph and solving a shortest-
path problem or a minimum-cost flow problem on this graph, depending on
whether the decision version or the optimization version of Integer Linear
Programming is considered (see [VW62] and [AMO93, pages 304–306] for the
transformation of the optimization version into the flow problem and [AMO93,
pages 310–315] for the connection between minimum-cost flow problems and
shortest-path problems; see also [NW88, pages 546–550]). The running time ob-
tained in this way is O(mn) for the decision version and O(m2 log(n)+mn log(n)2)
for the optimization version; this approach is, therefore, much faster than using
Theorem 2.11, where O((n3/ lnn)L) operations [Ans99] are needed—L is the size
of the ILP and, hence, lower-bounded by mn.

We start with showing how to solve the decision version of Integer Linear
Programming for coefficient matrices with the C1P by reducing it to a shortest
path problem. We assume that the coefficient matrix A of the given ILP has
m rows and that the rows of A and the entries of ~b are sorted in such a way that
the first m′ ≤ m of these rows contain only entries from {0, 1} and the remaining
m−m′ rows contain only entries from {0,−1}. Moreover, we assume that A has
the strong C1P, which is not a restriction since a C1-ordering for A’s columns
can be found in linear time (see Section 2.3). With lx(i) and rx(i) we denote the
column index of the first and the last, respectively, non-zero entry in the ith row
of A. Hence, an instance of the problem to be solved consists of an inequation
system as follows.

xlx(i) + xlx(i)+1 + . . . + xrx(i) ≤ bi ∀i ∈ {1, . . . , m′}
−xlx(i) − xlx(i)+1 − . . . − xrx(i) ≤ bi ∀i ∈ {m′ + 1, . . . , m}

xj ∈ Z ∀j ∈ {1, . . . , n}
(2.4)

To transform the inequation system into a graph, we first drop the constraint
of integrality and replace the n variables x1, . . . , xn by n + 1 variables y0, . . . , yn

such that xj = yj−yj−1 for all j ∈ {1, . . . , n}. This yields the following inequation
system.

−ylx(i)−1 + yrx(i) ≤ bi ∀i ∈ {1, . . . , m′}
ylx(i)−1 − yrx(i) ≤ bi ∀i ∈ {m′ + 1, . . . , m}

(2.5)

In the resulting coefficient matrix, each row contains exactly one 1 and one −1;
hence, each row can be interpreted as a directed edge in a graph G whose vertices
correspond to the variables y0, . . . , yn. More precisely, let G = (V, E) be the
directed edge-weighted graph with

V = {vj | the inequation system (2.5) contains a variable yj},

E = {(vj1, vj2) | the inequation system (2.5) contains an inequation

whose left side is −yj1 + yj2},

where every edge e ∈ E has a weight that is equal to the right side of the
inequation corresponding to e in the inequation system (2.5), see Figure 2.14.

Now consider the following statement known as Farkas’ Lemma (see [Sch86]).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.4. Integer Linear Programming and the C1P/Circ1P 55

−y0 +y1 ≤ 3 (interpreted as edge e1)

−y1 +y2 ≤ 4 (interpreted as edge e2)

−y2 +y3 ≤ 7 (interpreted as edge e3)

y0 −y3 ≤ 8 (interpreted as edge e4)

y0 −y2 ≤ −9 (interpreted as edge e5)

v0 v1

v2v3

e1

e2

e3

e4
e5

3

4

7

8
−9

−z1 +z4 +z5 = 0 (interpreted as flow conservation at v0)

z1 −z2 = 0 (interpreted as flow conservation at v1)

z2 −z3 −z5 = 0 (interpreted as flow conservation at v2)

z3 −z4 = 0 (interpreted as flow conservation at v3)

3z1 +4z2 +7z3 +8z4 −9z5 < 0
z1, . . . , z5 ≥ 0

Figure 2.14: Solving an ILP whose coefficient matrix has the C1P. Top: An
example for the inequation system (2.5) obtained from an ILP with the C1P.
Every row can be interpreted as an edge in a directed, edge-weighted graph G.
This graph is displayed in the middle. Bottom: This inequation system is not
feasible iff the the inequation system displayed at the top of the figure is feasible
(Farkas’ Lemma). The inequation system at the bottom can be interpreted as a
flow problem.

Lemma 2.2. Let A be an m × n matrix with entries from R, and let ~b ∈ Rm be
a vector. Then the inequation system A~y ≤ ~b has a solution ~y ∈ Rn if and only
if the inequation system ~z TA = (0n)T, ~z T~b < 0, ~z ≥ 0m has no solution ~z ∈ Rm.

Applying Farkas’ Lemma to the inequation system (2.5), the lemma says
that the inequation system is feasible iff G contains no negative cycle, that is,
no directed cycle in which the sum of the edge weights is negative. To see this,
observe that by interpreting the edge weights bi as “per-flow-costs”, the inequation
system ~z TA = (0n)T, ~z T~b < 0, ~z ≥ 0m in Farkas’ Lemma can be interpreted as the
following “negative-cost” flow problem on the graph G: Find a flow function f :
E → R such that

• the flow f(ei) along every directed edge ei ∈ E is nonnegative (expressed
by the constraint ~z ≥ 0m),

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

56 Chapter 2. The Consecutive-Ones Property

• for every vertex the sum of the ingoing and the outgoing flow is 0 (expressed
by the constraint ~z TA = (0n)T), and

• the sum
∑m

i=1 bif(ei) of all costs arising from sending flow along the edges

is negative (expressed by the constraint ~z T~b < 0).

See Figure 2.14. If a flow f has these three properties, then setting zi = f(ei)
clearly yields a feasible solution for the LP. It is easy to see that a flow with
negative cost can only exist if the graph G contains a negative cycle: decompose
any negative cost flow, if existing, into a set of cyclic flows (that is, a set of possibly
overlapping directed cycles with each edge in every cycle carrying exactly one
unit of flow); at least one of these flows must go along a cycle in which the sum
of the edge weights is negative. By using the Bellmann-Ford-Moore-Algorithm
(see [CLRS01]), it can be decided in O(|V | · |E|) time whether G contains a
negative cycle. Hence, the decision version of Integer Linear Programming
with C1P can be decided in O(n · m) time.

If G contains no negative cycle and a solution for the inequation system (2.5)
shall be constructed (that is, the values of the yj shall be computed), then just
select an arbitrary k ∈ {0, . . . , n} and set yk to 0. For every j ∈ {0, . . . , n} \ {k}
for which there exists no directed path from vk to vj in G, add an edge (vk, vj) of
weight |E|·max{−bi | i ∈ {1, . . . , m} ∧ bi < 0}. Note that this operation does not
create any negative cycles; note also that in the resulting graph G′ every vertex is
reachable from vk on a directed path. Now, for every j ∈ {0, . . . , n}\{k}, set yj to
the length of the shortest path in G′ from vk to vj . Since G′ contains no negative
cycle, these shortest paths are all well-defined. It is easy to see that this solution
satisfies all inequations of the inequation system (2.5): Consider an arbitrary
inequation from (2.5), and let −yj1 + yj2 be its left side. Then the edge (vj1 , vj2)
ensures that the distance from vk to vj2 is upper-bounded by the distance from vk

to vj1 plus the right side of the inequation, and, thus, the inequation is satisfied
by the the described values of yj1 and yj2. The shortest paths can be computed
by the Bellmann-Ford-Moore-Algorithm in O(|V | · |E|) = O(n · m) time. A
solution for the original ILP (2.4) can be computed by setting xj = yj − yj−1 for
all j ∈ {1, . . . , n}.

Now we turn our attention to the optimization version of the problem, that
is, instances of the form

Maximize c1x1 + c2x2 + . . . + cnxn

subject to
xlx(i) + xlx(i)+1 + . . . + xrx(i) ≤ bi ∀i ∈ {1, . . . , m′}

−xlx(i) − xlx(i)+1 − . . . − xrx(i) ≤ bi ∀i ∈ {m′ + 1, . . . , m}
xj ∈ Z ∀j ∈ {1, . . . , n}

(2.6)

Here we have to use a minimum-cost flow algorithm instead of a shortest path
algorithm. Again, we start with omitting the integrality constraint and replacing

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.4. Integer Linear Programming and the C1P/Circ1P 57

the variables x1, . . . , xn by variables y0, . . . , yn, yielding the following LP.

Maximize − c1y0 + (c1 − c2)y1 + . . . + (cn−1 − cn)yn−1 + cnyn

subject to
−ylx(i)−1 + yrx(i) ≤ bi ∀i ∈ {1, . . . , m′}

ylx(i)−1 − yrx(i) ≤ bi ∀i ∈ {m′ + 1, . . . , m}

(2.7)

Let A′ = (a′i,j) be the coefficient matrix of the inequation system in (2.7) with
exactly one 1 and one −1 in each of its rows. Now consider the dual problem
displayed below, where an m-entry vector ~z T has to be found.

Minimize b1z1 + b2z2 + . . . + bmzm

subject to
a′1,0z1 + a′2,0z2 + . . . + a′m,0zm = −c1

a′1,jz1 + a′2,jz2 + . . . + a′m,jzm = cj − cj+1 ∀j ∈ {1, . . . , n − 1}
a′1,nz1 + a′2,nz2 + . . . + a′m,nzm = cn

zi ≥ 0 ∀i ∈ {1, . . . , m}

(2.8)

Note that the inequation system ~z TA = (0n)T, ~z T~b < 0, ~z ≥ 0m mentioned in
Farkas’ Lemma (Lemma 2.2) can be seen as a special case of the inequation
system in (2.8): just set all cj to 0 in the latter inequation system. The LP (2.8)
can now be interpreted as a minimum-cost flow problem on a directed, vertex-
weighted and edge-weighted graph G = (V, E) with n + 1 vertices v0, . . . , vn

and m edges, where G is constructed in analogy to the graph used for solving the
decision problem: the ith column on the left side of the inequation system in (2.8)
corresponds to a directed edge ei, which is labeled with a “per-flow-cost” bi and
leads from vj1 to vj2 , where j1 and j2 are the two indices that satisfy a′i,j1 = −1
and a′i,j2 = 1. In addition, every vertex vj has a “flow demand” that is equal to
the right side of the jth inequation in the LP (2.8). The flow problem that has
to be solved on G is: Find a flow function f : E → R such that

• the flow f(ei) along every directed edge ei ∈ E is nonnegative,

• for every vertex vj the difference between the sum of the incoming flows
and the sum of the outgoing flows equals the flow demand of vj, that is,

∑

(vi,vj)∈E

f((vi, vj)) −
∑

(vj ,vi)∈E

f((vj, vi)) =







−c1 if j = 0
cn if j = n
cj − cj+1 otherwise,

and

• the sum
∑m

i=1 bif(ei) of all costs arising from sending flow along the edges
is minimized.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

58 Chapter 2. The Consecutive-Ones Property

This flow problem is the optimization version of the flow problem that we have
constructed for the inequation system in Farkas’ Lemma; however, here we cannot
reduce the flow problem to the problem of computing shortest paths.

Computing a minimum-cost flow f as desired and setting zi = f(ei) clearly
yields an optimal solution for the LP (2.8). Such a minimum-cost flow can be
found in O(m2 log(n) + mn log(n)2) time [AMO93]. Moreover, if the vector ~c T is
integral, one can always find an integral minimum-cost flow, and if, in addition,
the vector ~b is integral, then the integral optimal solution ~z T for the LP (2.8)
corresponds to an integral optimal solution for the LP (2.7) and, hence, to an
optimal solution for the ILP (2.6).

2.4.4 ILPs with Coefficient Matrices having the Circ1P

Not all matrices that have the Circ1P are totally unimodular. For example, all
matrices MIk (see Figure 2.8) with even k are totally unimodular, while all matri-
ces MIk with odd k are not (this can easily be seen by using the characterization of
Theorem 2.10). Nevertheless, every ILP whose coefficient matrix has the Circ1P
can be solved in polynomial time by solving a series of ILPs that all have the
C1P [BOR80] (see also [AMO93, page 346–347] and [HT02]).

To solve a given ILP

Maximize c1x1 + c2x2 + . . . + cnxn

subject to
a1,1x1 + a1,2x2 + . . . + a1,nxn ≤ bi ∀i ∈ {1, . . . , m}

xj ∈ Z ∀j ∈ {1, . . . , n}

(2.9)

whose 0/ ± 1-coefficient matrix A = (ai,j) has the Circ1P, define Lk, k ∈ Z, as
the ILP that results from appending the constraint

x1 + x2 + . . . + xn = k (2.10)

to the the ILP (2.9). It is obvious that the ILP (2.9) is feasible iff there is a
value k such that Lk is feasible. Moreover, if the ILP (2.9) is feasible, then
there is a k such that the optimal solution for Lk is an optimal solution for the
ILP (2.9): just set k to the sum of the xi in an optimal solution for the ILP (2.9).
Now, any ILP Lk can be transformed into an ILP having the C1P: Add the
equation (2.10) to every inequation of Lk whose coefficients are from {0,−1} and
in which the non-zero coefficients do not appear consecutively, and subtract the
equation (2.10) from every inequation of Lk whose coefficients are from {0, 1}
and in which the non-zero coefficients do not appear consecutively. The resulting
ILP is equivalent to the ILP Lk (that is, every feasible solution of the latter ILP
is a feasible solution for Lk and vice versa) and has the C1P—therefore, it can
be solved with the approach described in Section 2.4.3. The optimum value of k
can be determined by a binary search [AMO93, BOR80], such that the number
of ILPs that have to be solved is linear in the size of the given ILP (2.9).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.5. Set Cover and the C1P/Circ1P 59

2.4.5 ILPs with Coefficient Matrices having the
C1P/Circ1P for Columns

The methods described in Sections 2.4.3 and 2.4.4 can also be applied to ILPs
whose coefficient matrices have the C1P (Circ1P) for columns instead of the C1P
(Circ1P) for rows. To this end, note that if the coefficient matrix of an LP has
the C1P (Circ1P) for columns, then the coefficient matrix of its dual has the
C1P (Circ1P) for rows. Therefore, an ILP with the C1P (Circ1P) for columns
can be solved by applying the method of Section 2.4.3 (Section 2.4.4) to its dual.
More precisely, since the dual of a maximization LP is a minimization LP and
contains equations instead of inequations, first conform it to the standard form
(as defined in Section 2.4.1) by multiplying the objective function with −1 and
replacing each equation by two inequations, and then solve it.

2.5 Set Cover on Input Matrices having

the C1P/Circ1P

The C1P has attracted interest not least because it often makes hard problems
easy. Our first example substantiating this statement was Integer Linear
Programming in Section 2.4. As a second example, we consider the problem
Set Cover.

Set Cover is a very “general” NP-complete problem; that is, a huge number
of natural NP-complete problems, as for example Vertex Cover and Indepen-
dent Set, can be reduced to Set Cover by very simple reductions. Formulated
as a matrix problem, Set Cover is defined as follows.Set Cover

Input: A binary matrix M and a positive integer k.
Question: Is there a set C ′ of at most k columns of M such that the

submatrix M ′ of M that is induced by these columns has
at least one 1 in every row?

The reader may be familiar with Set Cover as a subset selection problem;
however, the equivalence of our definition and the more common definition of
Set Cover as a subset problem can easily be seen by identifying columns with
subsets and rows with elements to be covered.

Due to its generality, Set Cover has practical applications in almost all dis-
ciplines (see [CLRS01, CP93, CTF00]); unfortunately, Set Cover is not only
NP-hard, but it allows only for a logarithmic-factor polynomial-time approxima-
tion [Fei98]. Moreover, Set Cover is W[2]-complete (that is, parameterized
intractable) with respect to the parameter k = “solution size” [DF99]. In the
weighted version of Set Cover, each column of the given matrix M has a pos-
itive integral weight and one asks for a column set C ′ of weight at most k.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

60 Chapter 2. The Consecutive-Ones Property

Input: A binary matrix M with the strong C1P.
Output: A minimum-cardinality subset C ′ of M ’s columns that contains at least

one 1 from each row of M .

1: C ′ := ∅;
2: while M has at least one row: {
3: r := a row from M with minimum rx(r);
4: C ′ := C ′ ∪ {crx(r)};
5: delete all rows from M that have a 1 in column crx(r); }
6: return C ′;

Figure 2.15: Greedy algorithm for solving Set Cover. We denote the columns
of M with c1, . . . , cn, ordered from left to right. For a row r of M , we denote
with rx(r) the index of the rightmost column having a 1 in row r.

Set Cover with the C1P/Circ1P. Whereas Set Cover in general is NP-
complete, the problem becomes polynomial-time solvable when the input ma-
trix M has the C1P or the Circ1P. To solve such a restricted instance of Set
Cover, one can formulate the problem in a straightforward way as an ILP that
has one variable for each column of M and whose coefficient matrix is M . As
described in Section 2.4, this ILP is polynomial-time solvable. Moreover, there is
a well-known greedy algorithm for Set Cover on input matrices with the C1P:
First order the columns of M such that in each row the 1s appear consecutively
(this takes linear time, see Section 2.3), and then proceed from left to right as
shown in the pseudocode in Figure 2.15. The correctness of the algorithm in
Figure 2.15 is easy to see: The row r selected in line 3 in each execution of the
main loop does not contain a 1 in a column that belongs to the set C ′ constructed
so far—otherwise, r would have been deleted from M already. Therefore, one has
to add a column to C ′ that contains a 1 in row r. Since, due to the selection of r,
no row in M contains a block of 1s whose rightmost column has an index smaller
than rx(r), it is always optimal to choose crx(r).

If the input matrix M has the C1P or the Circ1P, even the weighted version
of Set Cover can be solved in polynomial time: one can either use the ILP
approach or, in case of input matrices having the C1P, use a simple dynamic
programming algorithm. The following theorem summarizes these known results.

Theorem 2.12. Weighted Set Cover can be solved in polynomial time if the
input matrix has the C1P or the Circ1P (for rows or for columns).

A further approach for tackling Set Cover is to use the following well-known
polynomial-time data reduction rules, whose correctness is obvious.

Dominated row: If M contains two rows ri1 , ri2 such that for each column cj

it holds that mi1,j = 1 implies mi2,j = 1, then remove row ri2 from M .

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

2.5. Set Cover and the C1P/Circ1P 61

Dominated column: If M contains two columns cj1, cj2 such that for each
row ri it holds that mi,j1 = 1 implies mi,j2 = 1, then remove column cj1

from M .

Useless column: If M contains a column cj without any 1-entry, then remove
column cj from M .

Unique column: If M contains a row ri that contains exactly one 1-entry mi,j,
then remove ri and all rows ri′ with mi′,j = 1 from M , remove column cj

from M , and decrease k by one.

Yes instance: If k ≥ 0 and M has no rows, then answer “M is a yes-instance.”

No instance: If M contains a row without any 1-entry, or if k < 0, or if k = 0
and M contains at least one row, then answer “M is a no-instance.”

For Set Cover without restrictions, these rules can be used in a preprocessing
step in order to decrease the size of a problem instance before solving it. However,
since there are Set Cover instances to which none of the rules applies, it is not
possible to give any guarantee on the size of the problem instance resulting from
the preprocessing step. If, however, the input matrix M has the C1P (for rows
or for columns), then the instance can be solved by iteratively applying the rules,
that is, eventually one of the rules will output “M is a yes-instance” or “M is a
no-instance.”

Set Cover with “almost C1P”. Motivated by problems arising from railway
optimization, Mecke and Wagner [MW04], Ruf and Schöbel [RS04], and Mecke
et al. [MSW05] consider Weighted Set Cover on input matrices that have
“almost C1P”, which basically means that either the input matrices have been
generated by starting with a matrix that has the C1P and replacing randomly
a certain percentage of the 1s by 0s [MW04], that the average number of blocks
of 1s per row is much smaller than the number of columns of the matrix [RS04],
or that the maximum number of blocks of 1s per row is small [MSW05]. Apart
from heuristics performing well in practice [MW04, RS04], the following results
have been obtained.

Theorem 2.13 ([MW04, MSW05]). 1. Set Cover is NP-complete even if
the input matrix M can be split into two submatrices M1, M2 such that M =
(M1 | M2) and both M1 and M2 have the strong C1P.

2. Weighted Set Cover restricted to input matrices with at most d blocks
of 1s per row can be approximated in polynomial time with a factor d.

3. Weighted Set Cover can be solved in 2ℓ·poly(m, n) time with ℓ denoting
the maximum distance between the topmost and the bottommost 1 in any
column of M .

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

62 Chapter 2. The Consecutive-Ones Property

Note that statement 1 follows also from an earlier result by Gaur et
al. [GIK02]. Chapters 5 and 6 also deal with variants of Set Cover where
the input matrices are “close” to the C1P in some sense: Chapter 5 considers
a generalization of Set Cover on input matrices in which some, but not all
rows contain only one block of 1s. In Chapter 6, we analyze the parameterized
complexity of Set Cover on matrices having a constant number d ≥ 2 of blocks
of 1s per row.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Chapter 3

Finding Forbidden Submatrices

This chapter deals with the problem of finding in a given binary matrix M a
submatrix of small size that does not have the C1P. Each such submatrix is a
cause for the absence of the C1P in M ; we give several algorithms for detecting
these trouble spots.

3.1 Introduction and Overview

From Section 2.2, we know that matrices having the C1P can be characterized by
a set T of forbidden submatrices (see Theorem 2.5 and Figure 2.8): A matrix has
the C1P iff it does not contain a matrix from T as a submatrix. In this chapter,
we show how to find, given a binary matrix M , a submatrix of M that belongs
to the set T and has a minimum number of rows, columns, rows and columns,
or entries. Note that neither the known polynomial-time algorithms for deciding
whether a given matrix has the C1P (see Section 2.3) nor the known algorithms
for finding an asteroidal triple in a graph (see [Köh04]) output a minimum-size
submatrix from T or a minimum-size induced subgraph containing an asteroidal
triple.

One motivation for finding small forbidden submatrices is the following NP-
hard problem: Given a matrix M and an integer k, delete at most k rows or
columns such that the resulting matrix has the C1P. The problem is called
Min-COS-R or Min-COS-C, depending on if we are allowed to delete rows
or columns. We will consider both problems in detail in Chapter 4, where we
use the characterization given in Theorem 2.5 for developing polynomial-time
approximation algorithms and fixed-parameter algorithms for Min-COS-R and
Min-COS-C. All algorithms presented in Chapter 4 for these problems itera-
tively search and destroy in the input matrix every submatrix that is isomorphic
to one of the forbidden submatrices from the set T : In the approximation scenario
all rows or columns belonging to every found forbidden submatrix are deleted,
whereas in the fixed-parameter setting a search tree algorithm branches recur-
sively into several subcases—deleting in each case one of the rows or columns of

63

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

64 Chapter 3. Finding Forbidden Submatrices

the found forbidden submatrix. The approximation factor of the approximation
algorithm as well as the running time of the fixed-parameter-algorithm directly
depend on the maximum number of rows or columns of a forbidden submatrix
found during the execution of the algorithms: If x denotes this number of rows or
columns, then, in the first case, the approximation factor is x and, in the second
case, the number of nodes in the search tree is O(xk). Moreover, the running
times of both algorithms obviously depend also on the time needed for finding a
forbidden submatrix. Therefore, efficiently detecting small forbidden submatrices
from T is a crucial issue concerning the performance of these algorithms.

To state the running times of the algorithms more precisely, we give the run-
ning times as functions not only depending on the size of the input matrix, but
also on the maximum number of 1s occurring in a row of the input matrix; this
number will be denoted with ∆. In the case of sparse matrices as occurring in
many applications [AM96, DER89, KS96, TZ07, WR00], the number ∆ can be
much smaller than the number of columns of the input matrix. We denote ma-
trices that contain at most ∆ 1s per row (but arbitrary many 1s per column) as
(∗, ∆)-matrices (see also Chapter 4).

The remainder of the chapter is structured as follows. In Section 3.2, we
present an algorithm that outputs, given a binary matrix M that contains a
submatrix from T with m′ rows and n′ columns, a submatrix of M that belongs
to T and consists of at most m′ + 5 rows and n′ + 3 columns. In Section 3.3, we
give several algorithms that find a forbidden submatrix from T of minimum size,
at the cost of an increased running time compared to the algorithm presented in
Section 3.2.

3.2 Approximating the Minimum-Size Forbid-

den Submatrix

The approach used here is to exploit the following characterization via asteroidal
triples (see Definition 2.8), which is a direct consequence of Theorem 2.3 due to
Tucker [Tuc72].

Corollary 3.1. A matrix M has the C1P if and only if its representing bipartite
graph GM does not contain an asteroidal triple whose three vertices correspond to
columns of M .

Using Corollary 3.1, a forbidden submatrix from T in a given matrix M can be
found as follows: For every vertex triple u, v, w in GM corresponding to columns
of M , determine the sum of the lengths of three shortest paths connecting u
with v, u with w, and v with w, respectively, each time avoiding the closed neigh-
borhood of the third vertex. If all three paths exist, then the vertices u, v, w
form an asteroidal triple in GM . Select a triple u, v, w where the sum is minimum
compared to all other triples, and return the rows and columns of M that cor-
respond to the vertices of the three shortest paths computed for this triple. The

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

3.2. An Approximation Algorithm 65

Input: A binary matrix M .
Output: A submatrix M ′ from T occurring in M .

1: construct M ’s representing graph GM = (R, C, E); // R corresponds to rows

// and C to columns

2: for each vertex u ∈ C: {
3: Gu := G[(R ∪ C) \ N [u]];
4: for each vertex v ∈ C \ {u}: {
5: compute the lengths of all shortest paths in Gu that start in v; }}

6: choose u, v, w ∈ C such that |P u
G(v, w)|+ |P v

G(u, w)|+ |P w
G (u, v)| is minimum;

7: V ′ := P u
G(v, w) ∪ P v

G(u, w) ∪ P w
G (u, v);

8: M ′ := the submatrix of M whose rows and columns correspond to V ′;
9: while M ′ contains a row r such that M ′ without r does not have the C1P

or a column c such that M ′ without c does not have the C1P: {
10: delete r or c, respectively, from M ′; }
11: return M ′;

Figure 3.1: Algorithm for finding forbidden submatrices.

returned submatrix must contain a submatrix from T because the corresponding
vertices in GM induce a subgraph that contains an asteroidal triple. However,
this procedure does not always return a submatrix of minimum size, because the
sum of the lengths of the three paths computed for a triple u, v, w is not always
the number of vertices in the union of the three paths—some vertices may be
part of more than one path. More specifically, assume that the algorithm selects
a triple u, v, w where the sum of the shortest paths is minimum and where the
shortest paths are vertex-disjoint except for u, v, w. Then there can be another
triple u′, v′, w′ with the same sum but whose three shortest paths have several
vertices in common. Selecting this triple would lead to a submatrix of smaller
size. In what follows, we will analyze the size of the returned matrix and show
that it contains at most five more rows and three more columns than a forbidden
submatrix with minimum number of rows or minimum number of columns.

For a graph G = (V, E) and an asteroidal triple u, v, w ∈ V of G, we denote
with P u

G(v, w) the vertex set of a shortest path in G[V \ N [u]] between v and w
(including v and w). Figure 3.1 contains the pseudocode of the algorithm behind
the above approach. The following proposition gives an upper bound on the
numbers of rows and columns of the submatrix returned by the algorithm.

Proposition 3.1. Let M be a (∗, ∆)-matrix of size m×n that contains a forbid-
den m′×n′ submatrix M ′ from the set T shown in Figure 2.8. Then the algorithm
in Figure 3.1 returns in O(∆mn2 + n3) time a submatrix of M that belongs to T
and has at most

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

66 Chapter 3. Finding Forbidden Submatrices

G1: G2: xx

yy zz

P z
G1

(x, y) P y
G1

(x, z)

P x
G1

(y, z)

P z
G2

(x, y) P y
G2

(x, z)

P x
G2

(y, z)

Figure 3.2: Example showing that the matrix constructed in line 8 of the algo-
rithm in Figure 3.1 is not necessarily minimal: Both graphs G1 and G2 contain ex-
actly one asteroidal triple x, y, z consisting of white vertices, which correspond to
columns. The graph G2 is not minimal, because it contains G1 as an induced sub-
graph. However, the number of vertices in the three paths that are displayed with
bold lines between x, y, and z are the same: |P x

G1
(y, z)|+|P y

G1
(x, z)|+|P z

G1
(x, y)| =

|P x
G2

(y, z)| + |P y
G2

(x, z)| + |P z
G2

(x, y)| = 15.

m′ rows and n′ columns if M ′ = MIk ,
m′ rows and n′ columns if M ′ = MIIk ,
m′ + 3 rows and n′ + 2 columns if M ′ = MIIIk

,
m′ + 5 rows and n′ + 3 columns if M ′ = MIV, and
m′ + 1 rows and n′ columns if M ′ = MV.

Proof. As discussed above, the returned matrix M ′ clearly contains a submatrix
from T . Furthermore, the lines 9 and 10 of the pseudocode in Figure 3.1 ensure
that M ′ is minimal in the sense that the representing graph of no proper sub-
matrix of M ′ contains an asteroidal triple. Since the latter property also holds
for every matrix in T (see [Tuc72, proof of Theorem 7]), the matrix M ′ must be
one of the matrices from T . (Note that the lines 9 and 10 cannot be omitted,
because the matrix M ′ constructed in line 8 must not necessarily be minimal, see
Figure 3.2.)

Next, we prove the claimed row and column numbers of the returned ma-
trix M ′. Since M ′ does not have the C1P, the representing graph GM ′ of M ′

contains an asteroidal triple x, y, z corresponding to three columns of M ′ (Corol-
lary 3.1). If M ′ = MIk , then every triple of vertices corresponding to columns
of M ′ is an asteroidal triple in GM ′. To see this, consider the graph type GIk in
Figure 3.3 showing the representing graphs of the forbidden submatrices from T :
For every triple of white vertices, there is a path between any two of the vertices
of the triple that avoids the closed neighborhood of the third. If M ′ 6= MIk ,
then there is exactly one asteroidal triple in GM ′. This can be seen by consid-
ering the graph types GIIk–GV in Figure 3.3: The white vertices x, y, z form an
asteroidal triple; any other triple of white vertices contains two vertices that
are not connected by a path avoiding the closed neighborhood of the third.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

3.2. An Approximation Algorithm 67

MIk
: MIIk

: MIIIk
:

MIV: MV:

k + 2

k + 2

k + 3

k + 3

k + 3

k + 2

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

· · ·
· · ·

· · ·
· · ·

111

11

11

11

1 11

1 1

11

11

1 1

11

1

1 1

11

11

11

1 1

11

11

111

1111

11

11

000
0000

00
0

0
00

0
0

00

0 00

0
0

00
0

0
0

0 00

0
0

00
0

0 0

0

0
0

0

00
0

00
0

00 0
0 00

GIk
: GIIk

: GIIIk
:

GIV: GV:
xx

x

x

x

x

xx
yy

yy

y

yy

y

zz

zz

z

zz

z

· · ·· · ·· · ·

k k + 1 k + 1

Figure 3.3: Representing graphs of the forbidden submatrices from T due to
Tucker [Tuc72]. Black vertices correspond to rows, white vertices correspond to
columns. The numbers k and k + 1 refer to the number of black vertices in the
lower parts of the graphs GIk–GIIIk . In the case of the graph GIk , every triple
of white vertices is an asteroidal triple. In all other cases, there is exactly one
asteroidal triple consisting of white vertices; this triple is denoted with x, y, z.

Let pxyz := |P x
GM′

(y, z)|+|P y
GM′

(x, z)|+|P z
GM′

(x, y)|. By considering the asteroidal

triples in the graph types GIk–GV (Figure 3.3) one can verify that

pxyz = 2k + 7 if M ′ = MIk ,
pxyz = 2k + 9 if M ′ = MIIk ,
pxyz = 2k + 13 if M ′ = MIIIk

,
pxyz = 21 if M ′ = MIV, and
pxyz = 13 if M ′ = MV.

For example, if M ′ = MIIIk
, then |P x

GM′
(y, z)| = 2k + 3, |P y

GM′
(x, z)| = 5, and

|P z
GM′

(x, y)| = 5, and, hence, pxyz = (2k + 3) + 5 + 5 = 2k + 13.
Let u, v, w ∈ C be the vertices chosen in line 6 of the algorithm, and let puvw :=

|P u
G(v, w)| + |P v

G(u, w)| + |P w
G (u, v)|. Clearly, puvw ≤ pxyz because u, v, w are

selected such that |P u
G(v, w)|+ |P v

G(u, w)|+ |P w
G (u, v)| is minimized. The returned

submatrix consists of at most (puvw − 3)/2 ≤ (pxyz − 3)/2 rows because each
of the vertices u, v, w is counted twice in puvw and because every second vertex
in each of the vertex sets P u

G(v, w), P v
G(u, w), P w

G (u, v) corresponds to a column

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

68 Chapter 3. Finding Forbidden Submatrices

in M . It follows that the row number of the submatrix returned by the algorithm
is upper-bounded by

((2k + 7) − 3)/2 = k + 2 = m′ if M ′ = MIk (where m′ = k + 2),
((2k + 9) − 3)/2 = k + 3 = m′ if M ′ = MIIk

(where m′ = k + 3),
((2k + 13) − 3)/2 = k + 5 = m′ + 3 if M ′ = MIIIk

(where m′ = k + 2),
(21 − 3)/2 = 9 = m′ + 5 if M ′ = MIV (where m′ = 4), and
(13 − 3)/2 = 5 = m′ + 1 if M ′ = MV (where m′ = 4).

With a completely analogous argumentation it follows that the column num-
ber of the submatrix returned by the algorithm is upper-bounded by

((2k + 7) − 3)/2 = k + 2 = n′ if M ′ = MIk (where n′ = k + 2),
((2k + 9) − 3)/2 = k + 3 = n′ if M ′ = MIIk

(where n′ = k + 3),
((2k + 13) − 3)/2 = k + 5 = n′ + 2 if M ′ = MIIIk

(where n′ = k + 3),
(21 − 3)/2 = 9 = n′ + 3 if M ′ = MIV (where n′ = 6), and
(13 − 3)/2 = 5 = n′ if M ′ = MV (where n′ = 5).

To see the claimed running time, note that lines 2–5 can be executed in O(n2 ·
(n + ∆m)) time by using breadth-first search (running on a graph G = (V, E)
in O(|V | + |E|) time [CLRS01]) in line 5: the number of vertices in C is n,
and the input graph Gu for the breadth first search has m + n vertices and at
most ∆m edges. For considering all triples u, v, w in line 6, the algorithm needs
O(n3) time. The test in line 9 can be executed in linear time (see Section 2.3),
that is, in O(m′ + n′ + ∆m′) time, and, hence, the time needed for lines 9–10 is
dominated by the time needed for lines 1–8.

3.3 Exact Algorithms for Finding Minimum-

Size Forbidden Submatrices

In the previous section, we have seen how to find a forbidden submatrix whose
number of rows and columns is close to be minimum. Now we turn our attention
to the problem of finding a forbidden submatrix from T whose number of rows,
columns, rows and columns, or entries is actually minimum, at the cost of an
increased running time compared to the procedure presented in the previous
section.

We first present in Section 3.3.1 two rather straightforward brute-force ap-
proaches, which are able to find any submatrix in a given matrix. These algo-
rithms are efficient for finding submatrices of the types MIV and MV and for
finding any submatrix from T in (∗, ∆)-matrices where ∆ is small compared to
the number of columns. In Section 3.3.2 we show how to find submatrices of
the types MIk , MIIk , and MIIIk in polynomial time even in matrices with a large
number of 1s per row. Finally, in Section 3.3.2 we combine the algorithms of
Sections 3.3.1 and 3.3.2.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

3.3. Exact Algorithms 69

Input: An m×n matrix M , an m′×n′ matrix M ′ without duplicate columns.
Output: A submatrix of M that is isomorphic to M ′.

1: for each m′-tuple of rows from M : {
2: for each column c′ of M ′: {
3: check whether c′ appears at least once in the submatrix of M that is

induced by the rows selected in line 1; }
4: if for every column c′ of M ′ the check was successful: {
5: return the corresponding rows and columns of M ; }}

6: return ∅;

Figure 3.4: Algorithm for finding a given submatrix. The algorithm could eas-
ily be modified such that it also works for submatrices M ′ containing duplicate
columns: in the case of a successful check in line 3, memorize which column in
the submatrix of M was identical to c′; ignore this column during the subsequent
checks.

3.3.1 Finding Forbidden Submatrices with Brute Force

By using a straightforward brute-force approach, one can find a size-m′×n′ sub-
matrix M ′ in an m × n matrix M in O(mm′

· nn′
· m′n′) time—just try every

possibility of selecting an m′-tuple of rows and an n′-tuple of columns from M
and compare the entries in the selected rows and columns with the entries in
the desired submatrix. However, one can do faster, and we will demonstrate two
ways how to do so.

First, instead of trying every combination of m′ rows and n′ columns of M , it
suffices to try every combination of m′ rows or n′ columns: Assume without loss
of generality that m′ ≤ n′. Then try every possibility of selecting an m′-tuple of
rows from M . For each of the selected tuples, one can check in O(nm′n′) time
whether every column of M ′ appears at least once in the submatrix of M that is
induced by the selected rows: For every column of M ′, consider every column of
the submatrix induced by the selected rows and check if the entries in this column
are identical to the entries in the current column of M ′. The pseudocode for
finding a submatrix with this method is displayed in Figure 3.4; the proposition
below follows.

Proposition 3.2. Let M be a matrix of size m × n and M ′ be a matrix of
size m′ × n′. Then the algorithm in Figure 3.4 returns in O(mm′

· nm′n′) time a
submatrix in M that is isomorphic to M ′.

Applying Proposition 3.2 to the matrix types MIV and MV, which are the
matrix types from T that are, due to their small row number, most suitable for
the algorithm of Figure 3.4, yields the following corollary.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

70 Chapter 3. Finding Forbidden Submatrices

Input: An m × n binary matrix M , an m′ × n′ binary matrix M ′ without
duplicate rows.

Output: A submatrix of M that is isomorphic to M ′.

1: n′1 := maximum number of 1s occurring in a row of M ′;
2: n′0 := n′ − n′1;
3: for every row r of M : {
4: for each n′1-tuple of columns that have a 1 in row r and each n′0-tuple of

columns that have a 0 in row r: {
5: for each row r′ of M ′: {
6: check whether r′ appears at least once in the submatrix of M that

is induced by the columns selected in line 4; }
7: if for every row r′ of M ′ the check was successful: {
8: return the corresponding rows and columns of M ; }}}

9: return ∅;

Figure 3.5: Algorithm for finding a given submatrix. The algorithm could easily
be modified such that it also works for submatrices M ′ containing duplicate rows:
in the case of a successful check in line 6, memorize which row in the submatrix
of M was identical to r′; ignore this row during the subsequent checks.

Corollary 3.2. Let M be a binary matrix of size m× n. A submatrix in M that
is isomorphic to MIV (or to MV) can be found in O(m4n) time.

Our second brute-force approach is suitable if M ′ contains a row with only
few 0s, whereas M contains only a few number of 1s in every row, that is, M is
a (∗, ∆)-matrix with small ∆. In such a case, let r′max be the row of M ′ that
contains the maximum number of 1s, let n′1 be the number of 1s in r′max, and
let n′0 be the number of 0s in r′max. For example, if M ′ = MIIIk

, then the row r′max

is the (k +2)nd row, and we have n′1 = k +1 and n′0 = 2. Since there are at most
∆ 1s in every row of a (∗, ∆)-matrix M , the number of the possibilities to select
n′1 columns from M that all contain a 1 in a specific row is bounded by O(∆n′

1).
Therefore, the idea for searching a forbidden submatrix in M is to iterate over
all rows ri of M and test whether M contains M ′ as a submatrix in such a way
that ri forms the row r′max of M ′; this test can be performed by considering every
n′1-tuple of columns from M having a 1 in row ri in combination with every n′0-
tuple of columns from M having a 0 in row ri. For each of these combinations,
check in O(m′ · n′ ·m) time whether every row of the matrix M ′ appears at least
once in the submatrix induced by the selected columns. The pseudocode of this
algorithm is displayed in Figure 3.5, and we get the following proposition.

Proposition 3.3. Let M be a (∗, ∆)-matrix of size m × n and M ′ be a binary
matrix of size m′ × n′ that contains a row where the number of 1s is n′1 and the
number of 0s is n′0. Then the algorithm in Figure 3.5 returns in O(∆n′

1 · nn′
0 ·

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

3.3. Exact Algorithms 71

m2m′n′) time a submatrix in M that is isomorphic to M ′.

Applying Proposition 3.3 to those submatrices from T that are most suitable
for the algorithm of Figure 3.5 yields the following corollary.

Corollary 3.3. Let M be a binary (∗, ∆)-matrix of size m×n and M ′ be a binary
matrix from T . A submatrix in M that is isomorphic to M ′ can be found in

O(∆∆+2 · m2n) time if M ′ = MIIk , 1 ≤ k ≤ ∆ − 2,
O(∆∆+2 · m2n2) time if M ′ = MIIIk

, 1 ≤ k ≤ ∆ − 1,
O(∆3m2n3) time if M ′ = MIV, and
O(∆4m2n) time if M ′ = MV.

3.3.2 Finding MIk, MIIk, or MIIIk via Induced Paths and
Holes

In Section 3.3.1, we have considered exponential-time algorithms that can find
any given submatrix M ′ within a given matrix M . In contrast, we will now
consider the problem where we have given a matrix M and one of the matrix
types MIk , MIIk , and MIIIk , and the task is to find a minimum-size submatrix
of this type in M . We present polynomial-time algorithms for each of these
three matrix types. All three algorithms are based on the observation that the
representing graphs of the matrices MIk , MIIk , and MIIIk contain, after certain
modifications, either a hole or an induced path, and that the rows and columns
in M corresponding to this hole or path induce an MIk , MIIk , or MIIIk

, respectively.
Since finding a minimum-size hole or induced path can be done in polynomial
time, we can use this observation to obtain polynomial-time algorithms for finding
minimum-size submatrices of the types MIk , MIIk

, and MIIIk
.

For finding an induced MIk , we use the following observation (see Figure 3.3).

Observation 3.1. The representing graph of an MIk is a chordless cycle of
length 2k + 4.

Observation 3.1 immediately implies that finding a minimum-size submatrix of
the type MIk reduces to finding a minimum-length hole in a bipartite graph. The
latter task can be solved in polynomial time, as demonstrated by the pseudocode
in Figure 3.6. The idea of the algorithm shown in Figure 3.6 is to try all 4-
tuples (ri1 , cj1, ri2, cj2) of vertices (line 2) and search for the shortest hole on which
these four vertices appear consecutively (lines 3–8). To find such a hole, the two
vertices cj1 and ri2 are deleted together with their neighbors except for ri1 and cj2

(line 4), and in the remaining graph a shortest path from cj2 to ri1 is sought
(line 6). Since a shortest path in an unweighted graph G = (V, E) can be found
in O(|V | + |E|) time with a breadth first search [CLRS01], we get the following
result.

Proposition 3.4. Let M be a (∗, ∆)-matrix M of size m×n. Then a minimum-
size submatrix of the type MIk in M can be found in O(∆3m3 + ∆2m2n) time.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

72 Chapter 3. Finding Forbidden Submatrices

Input: A bipartite graph G = (R, C, E).
Output: A subset H ⊆ R ∪ C inducing a minimum-length hole in G.

1: H := ∅;
2: for each 4-tuple (ri1 , cj1, ri2, cj2) with ri1 ∈ R, cj1 ∈ N(ri1), ri2 ∈ N(cj1),

cj2 ∈ N(ri2): {
3: if ri1 , cj1, ri2, cj2 is an induced P4 in G: {
4: G′ := G[(R ∪ C) \ ((N [cj1] ∪ N [ri2]) \ {ri1 , cj2})];
5: if cj2 and ri1 are connected by a path in G′: {
6: P := the vertices of the shortest path in G′ from cj2 to ri1;
7: if |{ri1, cj1, ri2, cj2} ∪ P | < |H|: {
8: H := {ri1 , cj1, ri2, cj2} ∪ P ; }}}}

9: return H ;

Figure 3.6: Algorithm for finding a minimum-length hole. The algorithm can
easily be modified such that, if a vertex r ∈ R is given in the input, it finds a
minimum-size hole containing r: just set ri1 := r in line 2 and iterate over all
3-tuples (cj1, ri2, cj2) instead of all 4-tuples (ri1 , cj1, ri2, cj2). This modification is
useful for finding submatrices of the type MIIIk

, whereas we use the algorithm as
shown in the figure for finding submatrices of the type MIk .

Finding an induced MIIk of minimum size is more complicated; however, we
can use a similar approach as for searching submatrices of the type MIk . The main
observation in this direction is that the upper left part of an MIIk is identical to
the upper part of an MIk , that is, the submatrix of an MIIk that is induced by the
first k + 1 rows and k + 2 columns is identical to the submatrix of an MIk that
is induced by the first k + 1 rows and all k + 2 columns (the difference between
an MIIk

and an MIk lies in the rightmost column and the two bottommost rows of
the MIIk , see Figure 3.3). We can formulate this finding more precisely as follows.

Observation 3.2. Let M be the (k + 3) × (k + 3) matrix that results from com-
plementing the (k + 2)-nd and (k + 3)-rd rows of an MIIk . Then the representing
graph of M consists of an isolated vertex, corresponding to the (k + 3)-rd column
of M , and an induced path with 2k + 5 vertices whose first vertex corresponds to
the (k + 2)-nd row of M and whose last vertex corresponds to the (k + 3)-rd row
of M .

As a consequence of Observation 3.2, we get the following lemma.

Lemma 3.1. Let M be a binary matrix and k be a positive integer. Then the
following two statements are equivalent:

1. The matrix M contains an MIIk as a submatrix.

2. There exist a column cj and two rows ri1 and ri2 in M with the following
properties:

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

3.3. Exact Algorithms 73

• The rows ri1 and ri2 have a 1 in column cj.

• If M̃ is the matrix consisting of

– the row that results from complementing ri1,

– the row that results from complementing ri2, and

– all rows of M that have a 0 in column cj,

then the representing graph of M̃ contains an induced path P with
2k + 5 vertices whose first vertex corresponds to the complemented
row ri1 and whose last vertex corresponds to the complemented row ri2.

Moreover, statement 2 implies the following:

3. The column cj and the rows and columns corresponding to the vertices of
the path P together induce an MIIk in M .

Proof. 1 ⇒ 2: Let cj be the column of M that contains the (k + 3)-rd column
of the MIIk submatrix, and let ri1 and ri2 be the two rows of M that contain the
(k + 2)-nd and (k + 3)-rd rows of the MIIk submatrix. Then the claim follows
from Observation 3.2.

2 ⇒ 1 ∧ 3: This claim follows from the fact that the vertex corresponding
to column cj cannot be part of P , because in M̃ (after complementing rows ri1

and ri2) column cj contains only 0s. Therefore, the submatrix of M that is induced
by the column cj and the rows and columns corresponding to the vertices of the
path P induce an MIIk .

Lemma 3.1 indicates how to find an induced MIIk of minimum size: Try
all combinations of two rows ri1 , ri2 and one column cj from M such that ri1

and ri2 contain a 1 in column cj . For each of these combinations, complement
the rows ri1 and ri2 , take all rows having a 0 in cj , and search in the representing
graph of the resulting matrix for the shortest induced path that has the properties
mentioned in part 2 of Lemma 3.1—in particular, since k ≥ 1, this path must have
length 2k + 4 ≥ 6. Each representing graph to be considered has at most m + n
vertices and less than ∆m + 2n edges. Figure 3.7 shows the pseudocode of this
approach, and Figure 3.8 shows how to find a shortest induced path with length
at least six from a given vertex r1 to a vertex r2. The approach of the algorithm
displayed in Figure 3.8 is the same as in the algorithm of Figure 3.6 for finding
a hole: By trying all possibilities, we select the vertices (cj1 , ri1, cj2) that shall
be located next to r1 on the desired path, and for each of these possibilities, we
search for the shortest path from cj2 to r2 containing no neighbor (except for cj2)
of the vertices r1, cj1, ri1 (lines 4–6). Again we use a breadth first search [CLRS01]
for finding shortest paths (line 6), which leads to the following result.

Proposition 3.5. Let M be a (∗, ∆)-matrix M of size m×n. Then a minimum-
size submatrix of the type MIIk in M can be found in O(∆3m4n + ∆2m3n2) time.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

74 Chapter 3. Finding Forbidden Submatrices

Input: A binary matrix M .
Output: A minimum-size submatrix of the type MIIk

occurring in M .

1: M ′ := ∅;
2: for each pair ri1 , ri2 of rows of M : {
3: for each column c having a 1 in rows ri1 and ri2: {
4: R0 := the set of rows having a 0 in column c;
5: ri1 := ri1 complemented; ri2 := ri2 complemented;
6: M̃ := the matrix consisting of ri1 , ri2, and all rows from R0;
7: G̃ := the representing graph of M̃ ;
8: search for a path H in G̃ that has a minimum length under the property

that it contains at least seven vertices and its endpoints are the vertices
corresponding to ri1 and ri2 ;

9: if H exists and |V (H)| + 1 < number of rows and columns in M ′: {
10: M ′ := the submatrix of M that is induced by the column c and the

rows and columns corresponding to the vertices of H ; }}}

11: return M ′;

Figure 3.7: Algorithm for finding a minimum-size submatrix of the type MIIk .

Finding an induced MIIIk of minimum size is very similar to finding an in-
duced MIIk . We start with the following observation (see Figure 3.3).

Observation 3.3. Let M be the (k + 2) × (k + 3) matrix that results from com-
plementing the (k + 2)-nd row of an MIIIk

. Then the representing graph of M
consists of an isolated vertex, corresponding to the (k + 3)-rd column of M , and
a chordless cycle.

The following lemma can be obtained from Observation 3.3 in complete anal-
ogy to the way how Lemma 3.1 was obtained from Observation 3.2.

Lemma 3.2. Let M be a binary matrix and k be a positive integer. Then the
following two statements are equivalent:

1. The matrix M contains an MIIIk
as a submatrix.

2. There exist a column cj and a row ri in M with the following properties:

• The row ri has a 1 in column cj.

• If M̃ is the matrix consisting of

– the row that results from complementing ri and

– all rows of M that have a 0 in column cj,

then the representing graph of M̃ contains a chordless cycle H of length
2k + 4 that contains the vertex corresponding to the complemented
row ri.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

3.3. Exact Algorithms 75

Input: A bipartite graph G = (R, C, E) and two vertices r1, r2 ∈ R.
Output: A subset H ⊆ R ∪ C inducing a path from r1 to r2 in G whose length

is minimum under the property that it contains at least seven vertices.

1: H := ∅;
2: for each 3-tuple (cj1, ri1 , cj2) with cj1 ∈ N(r1), ri1 ∈ N(cj1), cj2 ∈ N(ri1): {
3: if r1, cj1, ri1 , cj2 is an induced P4 in G and none of the vertices cj1, cj2

belongs to N(r2): {
4: G′ := G[(R ∪ C) \ ((N [r1] ∪ N [cj1] ∪ N [ri1]) \ {cj2})];
5: if cj2 and r2 are connected by a path in G′: {
6: P := the vertices of the shortest path in G′ from cj2 to r2;
7: if |{r1, cj1, ri1, cj2, r2} ∪ P | < |H|: {
8: H := {r1, cj1, ri1, cj2, r2} ∪ P ; }}}}

9: return H ;

Figure 3.8: Algorithm for finding a minimum-length induced path with at least
seven vertices.

Moreover, statement 2 implies the following:

3. The column cj and the rows and columns corresponding to the vertices of
the hole H together induce an MIIIk

in M .

According to Lemma 3.2, an induced MIIIk
of minimum size can be found very

similarly to the method presented above for finding an induced MIIk ; the only
differences are that one only has to complement one row instead of two and that
one has to search for a hole containing a given vertex instead of a path containing
two given vertices—such a hole can be found as described in Figure 3.6. This
leads to the algorithm in Figure 3.9, which outputs an induced MIIIk of minimum
size, and to the following proposition.

Proposition 3.6. Let M be a (∗, ∆)-matrix M of size m×n. Then a minimum-
size submatrix of the type MIIIk

in M can be found in O(∆3m3n+∆2m2n2) time.

3.3.3 Combining the Algorithms

The algorithms in Section 3.3.1 lead to fast running times when searching a
submatrix of one of the types MIIIk , MIV and MV, whereas every algorithm in
Section 3.3.2 efficiently finds a submatrix of one of the types MIk , MIIk , and MIIIk

.
Now, we combine the algorithms from Sections 3.2, 3.3.1, and 3.3.2 to find a sub-
matrix that is isomorphic to any of the submatrices from T and has a minimum
number of rows, columns, rows and columns, or entries.

Theorem 3.1. Let M be a (∗, ∆)-matrix of size m × n. A forbidden submatrix
from T (see Figure 2.8) in M that has a minimum number of rows can be found in

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

76 Chapter 3. Finding Forbidden Submatrices

Input: A binary matrix M .
Output: A minimum-size submatrix of the type MIIIk

occurring in M .

1: M ′ := ∅;
2: for each row ri of M : {
3: for each column cj of M having a 1 in row ri: {
4: R0 := the set of rows having a 0 in column cj ;
5: ri := ri complemented;
6: M̃ := the matrix consisting of ri and all rows from R0;
7: G̃ := the representing graph of M̃ ;
8: search for a minimum-length hole in G̃ that contains the vertex corre-

sponding to ri;
9: if H exists and |V (H)| + 1 < number of rows and columns in M ′: {
10: M ′ := the submatrix of M that is induced by the column cj and the

rows and columns corresponding to the vertices of H ; }}}

11: return M ′;

Figure 3.9: Algorithm for finding a minimum-size submatrix of the type MIIIk
.

O(∆3m2n · (m + n2)) time. Within the same time, one can also find a forbidden
submatrix from T in M that has a minimum number of columns, a minimum
number of rows and columns, or a minimum number of entries.

Proof. The claimed running time can be obtained as follows: First, run the al-
gorithm from Figure 3.1 (Proposition 3.1), which finds a forbidden submatrix
of “almost minimum” size, and let A be the returned submatrix. Second, run
the algorithm from Figure 3.9 (Proposition 3.6) to find an induced MIIIk

, and
let B be the submatrix found here. Third, run the algorithm shown in Figure 3.5
(Corollary 3.3) two times, once for finding an induced MIV and once for finding
an induced MV, and let C and D, respectively, be the found submatrices. Re-
turn the matrix with the minimum number of rows (columns, rows and columns,
entries) out of A, B, C, and D.

The correctness of this approach is obvious: As shown in the proof of Propo-
sition 3.1, if the forbidden submatrix from T in M with the minimum number
of rows (columns, rows and columns, entries) is of the type MIk or MIIk

, then M
does not contain a submatrix with less rows (columns, rows and columns, entries)
than A. In all other cases, the forbidden submatrix from T in M with the mini-
mum number of rows (columns, rows and columns, entries) must be one of B, C,
and D.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

3.4. Conclusion 77

3.4 Conclusion

We have presented different algorithms for finding a submatrix that belongs to the
set of forbidden submatrices given by Tucker (see Theorem 2.5 and Figure 2.8) and
has a minimum number of rows, columns, rows and columns, or entries. Our main
result is an algorithm finding such a submatrix in polynomial time. However, an
algorithm with a faster running time would be desirable; in particular, it remains
open whether there is an algorithm for this task that runs in linear time.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

78 Chapter 3. Finding Forbidden Submatrices

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Chapter 4

How to Obtain the C1P: The
C1P Submatrix Problem

In this chapter, we develop an algorithmically useful refinement of the forbid-
den submatrix characterization (Theorem 2.5) of Tucker [Tuc72] for 0/1-matrices
with the C1P. As a main result, we obtain, based on this characterization, new
polynomial-time approximation algorithms and fixed-parameter tractability re-
sults for the NP-hard problems Min-COS-R and Min-COS-C. These problems
ask for a minimum number of row or column deletions to transform a given
matrix into a matrix having the C1P. Moreover, we consider the maximization
versions Max-COS-R and Max-COS-C of the problems (where the task is to
find a submatrix that has the C1P and consists of a maximum number of rows or
columns, respectively). We complement already known approximation results for
Max-COS-C by presenting fixed-parameter algorithms for Max-COS-C and
approximation and fixed-parameter results for Max-COS-R.

4.1 Introduction and Overview

The C1P being a desirable property that often leads to efficient algorithms, the
natural problem arises what to do if a given matrix does not have the C1P. As
a consequence, there has been recently increased interest in matrix modification
problems that deal with the transformation of a given 0/1-matrix into a 0/1-
matrix fulfilling the C1P [HG02, TZ07]. Applications for problems of this kind can
also be found in computational biology [ABH98, AM96, GGKS95, LH03, WR00],
see Section 1.1. The following two minimization problems show up naturally in
this context:Min-COS-C: Given a binary matrix M , find a minimum-cardinality set of

columns to delete such that the resulting matrix has the C1P.Min-COS-R: Given a binary matrix M , find a minimum-cardinality set of rows
to delete such that the resulting matrix has the C1P.

79

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

80 Chapter 4. The C1P Submatrix Problem

These problems can also be posed as decision problems—in that case, the input
does not only consist of a matrix M , but it contains also a positive integer d and
the question is whether M can be transformed into a matrix having the C1P by
deleting at most d columns or rows, respectively. We will use the problem names
Min-COS-C and Min-COS-R for the minimization problem as well as for the
corresponding decision problem.

In addition to the two minimization problems defined above, we will also
consider the maximization duals of Min-COS-C and Min-COS-R:Max-COS-C: Given a binary matrix M , find a maximum-cardinality set of

columns that induces a matrix having the C1P.Max-COS-R: Given a binary matrix M , find a maximum-cardinality set of
rows that induces a matrix having the C1P.

Again, we use the names Max-COS-C and Max-COS-R for both the optimiza-
tion and the decision versions of the problems. In case of the decision versions,
we ask whether there is a column set or a row set, respectively, that induces a
matrix with the C1P and whose cardinality is greater than or equal to a given
value d′. Note that we will always use d to denote the number of columns or rows
to be deleted when considering Min-COS-C or Min-COS-R, and d′ to denote
the number of columns or rows to be selected when considering Max-COS-C or
Max-COS-R.

Concerning the computational hardness of these problems in the “classical”
complexity theory, it makes obviously no difference if one considers Min-COS-
C (Min-COS-R) or Max-COS-C (Max-COS-R): the optimum solution for
the maximization problem can be directly derived from the optimum solution
for the minimization problem and vice versa. However, the approximability of
the minimization and the maximization problems may differ, and also from the
parameterized point of view it makes a difference if one considers the problems
Min-COS-C and Min-COS-R, where the standard parameter would be d, or
the problems Max-COS-C and Max-COS-R with the standard parameter d′.

Whereas previous work [Haj00, HG02, TZ07] focussed on the maximization
versions, here we mainly concentrate on the minimization versions of the prob-
lems. In particular, from the parameterized point of view and when expecting
that large submatrices with the C1P exist, this appears to be the more natural
optimization criterion. Unfortunately, even for sparse matrices with few 1-entries,
as they occur in many applications [AM96, DER89, KS96, TZ07, WR00], both the
maximization and minimization problems quickly become NP-hard [HG02, TZ07].
In this chapter, we therefore explore the algorithmic complexity of these problems
in a more fine-grained way, providing new algorithmic results. To this end, based
on the forbidden submatrix characterization for the C1P (Theorem 2.5) due to
Tucker [Tuc72], our main technical result is a structural theorem dealing with the
selection of particularly useful forbidden submatrices.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.1. Introduction and Overview 81

Before we describe our results in more detail, we have to introduce some
notation. Whereas an m × n matrix is a matrix having m rows and n columns,
the term (x, y)-matrix will be used to denote a matrix that has at most x 1s in
any column and at most y 1s in any row. (This notation was used in previous
work [HG02, TZ07].) With x = ∗ or y = ∗, we indicate that there is no upper
bound on the number of 1s in columns or in rows, respectively.

The NP-hardness of Max-COS-C was already mentioned by Garey and
Johnson [GJ79]. However, Hajiaghayi and Ganjali [Haj00, HG02] observed that
in Garey and Johnson’s monograph [GJ79] the reference for the NP-hardness
proof of Max-COS-C is not correct—indeed, the referenced proof shows the
NP-hardness of Max-COS-R on (3, 2)-matrices. Then, Max-COS-C has been
shown NP-hard for (2, 4)-matrices by Hajiaghayi and Ganjali [HG02], and for
(2, 3)- and (3, 2)-matrices by Tan and Zhang [TZ07]. Moreover, Tan and
Zhang [TZ07] proved, independently from the conference publication [DGN07]
of this chapter, that there exists no polynomial-time constant-factor approxi-
mation algorithm for Max-COS-C on (∗, 2)-matrices unless P = NP [TZ07];
their reduction can also be used to show that Max-COS-C on (∗, 2)-matrices is
W[1]-hard with respect to d′. On the positive side, Tan and Zhang [TZ07] pro-
vided polynomial-time approximability results for the sparsest NP-hard cases of
Max-COS-C, that is, for (2, 3)- and (3, 2)-matrices: Restricted to (3, 2)-matrices,
Max-COS-C can be approximated within a factor of 0.5; for (2, ∗)-matrices, it
is approximable within a factor of 0.5; for (2, 3)-matrices, the approximation fac-
tor is 0.8. Concerning the minimization versions of the problems, we are only
aware of positive results for the graph problems 2-Layer Planarization and
Linear Arrangement by Deleting Edges, which are equivalent to Min-
COS-C on (2, ∗)-matrices without identical columns and to Min-COS-R on
(∗, 2)-matrices without identical rows, respectively. In particular, Suderman and
Whitesides [SW05], Fernau [Fer05a, Fer05b] and Suderman [Sud05] gave fixed-
parameter search-tree algorithms, and Dujmovic at al. [DFH+06] gave a linear1

problem kernel for 2-Layer Planarization; moreover, Fernau [Fer05a, Fer08]
presented a fixed-parameter algorithm running in O∗(2.4676d) time and a prob-
lem kernel consisting of 6d vertices and 6d edges for Linear Arrangement by
Deleting Edges.

Besides the above mentioned structural theorem, we show the following main
results.

1. For any constant ∆ ≥ 2, Min-COS-C on (∗, ∆)-matrices is polynomial-
time approximable with a factor of 6 if ∆ = 3 and with a factor of (∆ + 2)
if ∆ 6= 3, and Min-COS-R on (∗, ∆)-matrices is polynomial-time approx-
imable with a factor of (∆ + 1). In particular, this implies a polynomial-
time factor-4 approximation algorithm for Min-COS-C on (∗, 2)-matrices.

1In this context, “linear” means that the number of vertices and the number of edges in the
problem kernel is linear in the parameter.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

82 Chapter 4. The C1P Submatrix Problem

Factor 4 seems to be the best one can currently hope for because a factor-
δ approximation for Min-COS-C restricted to (∗, 2)-matrices implies a
factor-δ/2 approximation for Vertex Cover. It is commonly conjectured
that Vertex Cover is not polynomial-time approximable within a factor
of 2−ǫ, for any constant ǫ > 0, unless P = NP [KR08]. Moreover, on (∗, ∆)-
matrices with ∆ ≥ 2, Min-COS-C and Min-COS-R are fixed-parameter
tractable with respect to the combined parameters ∆, d.

2. On (∗, 2)-matrices, Min-COS-C admits a problem kernel consisting of
O(d2) rows and columns and Min-COS-R admits a problem kernel con-
sisting of O(d2) rows and O(d) columns.

3. For Min-COS-C and Min-COS-R on (2, ∗)-matrices, we give polynomial-
time approximation algorithms achieving approximation factors of 6 and 4,
respectively. Moreover, Min-COS-C and Min-COS-R can be solved
in O(6d · min{m4n, m2n3}) and O(4d · min{m4n, m2n3}) time, respec-
tively. These results follow directly from Theorems 2.3 and 2.4 due to
Tucker [Tuc72].

4. There exists no polynomial-time constant-factor approximation algorithm
for Max-COS-C on (∗, 2)-matrices and Max-COS-R on (2, ∗)-matrices
unless P = NP. Moreover, both problems are W[1]-hard, that is, presum-
ably fixed-parameter intractable, with respect to the desired number d′ of
columns or rows of the submatrix to be found. (A similar reduction showing
the hardness of Max-COS-C on (∗, 2)-matrices was independently given
by Tan and Zhang [TZ07].)

5. Max-COS-C on (2, ∗)-matrices can be solved in 2O(d′) · |M |O(1) time (a
factor-0.5 polynomial-time approximation algorithm for this problem was
already known [TZ07]). Max-COS-R on (∗, 2)-matrices can be solved in
2O(d′) · |M |O(1) time and approximated with a factor of 0.75 in polynomial
time. Both problem variants are, hence, fixed-parameter tractable with
respect to the parameter d′.

We summarize known and new results for Max-COS-C, Min-COS-C, Max-
COS-R, and Min-COS-R in Table 4.1. Moreover, Table 4.2 shows in more detail
our results for Min-COS-C and Min-COS-R on (∗, ∆)-matrices.

The remainder of this chapter is structured as follows. After some basic facts
and definitions, we present in Section 4.3 the hardness results for Max-COS-C
and Max-COS-R, followed by approximation and fixed-parameter algorithms
for these two problems in Section 4.4. Sections 4.5 and 4.6 deal with the min-
imization problems Min-COS-C and Min-COS-R: in Section 4.5 we consider
these problems on (∗, ∆)-matrices, in Section 4.6 we allow only input matrices
that have at most two ones per row or per column. Section 4.7 contains the proof
for our main structural theorem. Section 4.8 concludes the chapter with some
problems that remained open.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.1. Introduction and Overview 83

Table 4.1: Summary of known and new results for Max-COS-C, Min-COS-C,
Max-COS-R and Min-COS-R. The table shows the factors of the approxima-
tion algorithms and the running times of the fixed-parameter algorithms. The
type (x, y) of the input matrix describes the maximum number of 1s per row and
column: An (x, y)-matrix has at most x 1s per column and at most y 1s per row.
With x = ∗ or y = ∗, we indicate that there is no upper bound on the number
of 1s in columns or in rows, respectively; ∆ stands for an any number between 1
and n. We only emphasize the exponential parts of the running times, that is, the
shown running times have to be multiplied with polynomials with respect to the
input size. An empty field means that we are not aware of any results concerning
the corresponding problem variant.

Type Max-COS-C Min-COS-C Max-COS-R Min-COS-R

(3, 2) • 0.5-approx.2

Pos. results: see (∗, 2) Pos. results: see (∗, 2) Pos. results: see (∗, 2)

(∗, 2)
• No const. approx.3

• W[1]-hard3,4
• No 2.72-approx.
• Poly. kernel5

• 0.75-approx.

• 2O(d′)-alg
• Poly. kernel5,6

More pos. results: (∗, ∆) More pos. results: (∗, ∆)

(∗, ∆)
• (∆ + 2)-approx.7

• (∆ + 2)d ·∆O(∆)-alg.7
• (∆ + 1)-approx.
• (∆ + 1)d · (2∆)2d-alg.

Neg. results: see (∗, 2) Neg. results: see (∗, 2)

(2, 3) • 0.8-approx.2

More pos. results: (2, ∗) Pos. results: see (2, ∗) Pos. results: see (2, ∗)

(2, ∗)
• 0.5-approx.2

• 2O(d′)-alg.

• 6-approx.
• 6d-alg.8

• No const. approx.
• W[1]-hard4

• No 2.72-approx.
• 4-approx.
• 4d-alg.

(∆, ∗)

Neg. results: see (2, ∗) Neg. results: see (2, ∗)

2This result is due to Tan and Zhang [TZ07].
3The hardness of approximating Max-COS-C was shown independently by Tan and

Zhang [TZ07]; their reduction allows also to show the W[1]-hardness.
4W[1]-hardness is with respect to the parameter d′.
5The polynomial problem kernel is with respect to the parameter d.
6More results are known for the case where the (∗, 2)-matrix does not have duplicate rows:

the problem is then equivalent to Linear Arrangement By Deleting Edges, for which
fixed-parameter algorithms and smaller problem kernels exist [Fer05a, Fer08].

7For the ease of presentation, at this point the table ignores the case ∆ = 3. Indeed, if ∆ = 3,
then the factor of the approximation algorithm for Min-COS-C is 6, and the running time of
the fixed-parameter algorithm is O∗(6d · ∆O(∆)).

8More results are known for the case where the (2, ∗)-matrix does not have duplicate
columns: the problem is then equivalent to 2-Layer Planarization, for which faster running
times [Fer05a, Fer05b, Sud05, SW05] and problem kernels [DFH+06] are known.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

84 Chapter 4. The C1P Submatrix Problem

Table 4.2: Algorithms for Min-COS-C and Min-COS-R on (∗, ∆)-matrices.

Approximation

algorithms

Fixed-

parameter

algorithms

Min-COS-C Factor Running time Running time

∆ = 2, 4, 5, . . . ∆+2 O∗(1) O∗((∆+2)d · (3∆)min{d,∆})
∆ = 3 6 O∗(1) O∗(6d)

Min-COS-R Factor Running time Running time

∆ ≥ 2 ∆+1 O∗((2∆)8∆
2
) O∗((∆+1)d · (2∆)2 min{d,4∆2})

c1c1 c2

c2
c3

c3 c4c4 c5c5

c6

c6

r1

r1

r2

r2

r3 r3
r4

r4

11

111

1

1

11

0

0

0

0 00

00

0

0

0

00 0

0

Figure 4.1: A matrix with two components and its representing graph.

4.2 Basics Facts and Definitions

We start with some definitions that are directly deduced from very similar terms
in graph theory.

Let M be a binary matrix and GM its representing graph. Two lines ℓ, ℓ′ of M
are connected in M if there is a path in GM connecting the vertices corresponding
to ℓ and ℓ′. A submatrix M ′ of M is called connected if each pair of lines belonging
to M ′ is connected in M ′. A maximal connected submatrix of M is called a
component of M . A shortest path between two connected submatrices M1, M2

of M is the shortest sequence ℓ1, . . . , ℓp of lines such that ℓ1 ∈ M1 and ℓp ∈ M2

and the vertices corresponding to ℓ1, . . . , ℓp form a path in GM . If such a shortest
path exists, then p − 1 is called the distance between M1 and M2.

Note that each submatrix M ′ of M one-to-one corresponds to an induced
subgraph of GM and that each component of M one-to-one corresponds to a
connected component of GM . An illustration of the components of a matrix is
shown in Figure 4.1. If the distance between two lines ℓ1 and ℓp is a positive even
number, then ℓ1 and ℓp are either both rows or both columns; if the distance is
odd, then exactly one of ℓ1 and ℓp is a row and one is a column.

Observation 4.1. Let M be a matrix and let ℓ be a line of M . Then ℓ belongs
to exactly one component M ′ of M , and M ′ contains all 1-entries of ℓ.

The following corollary is a direct consequence of Observation 4.1.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.2. Basics Facts and Definitions 85

k + 2

k + 2

MIk
, k ≥ 1

k + 3

k + 3

MIIk
, k ≥ 1

k + 3

k + 2

MIIIk
, k ≥ 1

MIV MV

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

111
11

11
11

111
1111
11

11

11

1 1

11
11

1 11

1 1

11
11

1 1
11

1

1 1

11
11

000
0000

00
0

0
00

0
0

00
0

00 0
0 00

0 0

0

0
0

0

00
0

00

0 00

0
0

00
0

0
0

0 00

0
0

00
0

Figure 4.2: The set T of forbidden submatrices for the C1P due to Tucker [Tuc72],
given in Theorem 2.5.

Corollary 4.1. Let M be a matrix and let M1, . . . , Mi be the components of M .
If the column (or row) sets F1, . . . , Fi are optimal solutions for Min-COS-C
(or Min-COS-R) on M1, . . . , Mi, respectively, then F1 ∪ . . . ∪ Fi is an optimal
solution for Min-COS-C (or Min-COS-R) on M .

We will make extensive use of Theorem 2.5, which says that a matrix M has
the C1P iff it contains none of the matrices MIk , MIIk

, MIIIk (with k ≥ 1), MIV,
and MV as a submatrix. These matrices have been introduced in Chapter 2, see
Figure 4.2 for an illustration. Like in the previous chapters, we denote this set of
forbidden submatrices with T .

When the input matrix for Min-COS-C, Min-COS-R, Max-COS-C, or
Max-COS-R has exactly two ones per row or two ones per column, then this
matrix can be interpreted as a vertex-edge incidence matrix or an edge-vertex
incidence matrix (see Section 2.2), respectively, and the matrix problem transfers
to a graph problem in a very natural way. In the case of Max-COS-C, for
example, we may assume without loss of generality that the input matrix M
has no two identical rows and that no row of M contains only one 1. (If a
row appears more than once, we can delete all occurrences except for one, and
if a row contains only one 1, we can delete this row; both operations clearly
do not change the size of an optimal solution for Max-COS-C.) Therefore, we
interpret M , where each row contains exactly two 1s, as a graph G = (V, E)
with V corresponding to the set of columns and E corresponding to the set of
rows of M . It is easy to verify that M has the C1P iff G is a union of vertex-
disjoint paths—a fact that was already described in Theorem 2.2. Hence, as
observed by Tan and Zhang [TZ07], Max-COS-C with each row containing at
most two 1s is equivalent to the problem Max-VIDPS defined as follows.9

9With equivalent, we mean that there are two polynomial-time reductions, one from the

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

86 Chapter 4. The C1P Submatrix ProblemMaximum Vertex-Indu
ed Disjoint Paths Subgraph (Max-VIDPS)
Input: A graph G = (V, E).
Task: Find a maximum-cardinality vertex subset V ′ ⊆ V such

that G[V ′] is a union of vertex-disjoint paths.

Analogously, the problem Min-COS-C restricted to matrices with at most two 1s
per row is equivalent to the problem Min-VIDPS, where, given a graph G =
(V, E), we ask for a minimum-cardinality set V ′ ⊆ V whose removal transforms G
into a union of vertex-disjoint paths.

Not only the column selection problem Max-COS-C on (∗, 2)-matrices can be
interpreted as a graph problem, but also the row selection problem Max-COS-R;
in this case the task is to transform a given graph into a union of vertex-disjoint
paths by edge deletions. However, whereas in the case of Max-COS-C duplicate
rows in the input matrix can be ignored (that is, if a row appears several times,
all occurrences except for one can be deleted), in the case of Max-COS-R the
frequency of a row must be taken into account. Therefore, Max-COS-R turns
into the edge-weighted graph problem defined as follows.Maximum-Weight Edge-Indu
ed Disjoint Paths Subgraph

(Max-WEIDPS)
Input: A graph G = (V, E) and a weight function w : E → N.
Task: Find a maximum-weight edge subset E ′ ⊆ E such that the

graph (V, E ′) is a union of vertex-disjoint paths.

Again, one can also consider the minimization problem instead of the maximiza-
tion problem: Min-COS-R, restricted to matrices with at most two 1s per row,
is equivalent to the problem Min-WEIDPS, where, given a graph G = (V, E),
we ask for a minimum-weight set E ′ ⊆ E whose removal transforms G into a
union of vertex-disjoint paths.

In analogy to the close relation between the problems Max-COS-C, Min-
COS-C, Max-COS-R, and Min-COS-R on (∗, 2)-matrices on the one hand and
the graph problems Max-VIDPS, Min-VIDPS, Max-WEIDPS, and Min-
WEIDPS on the other hand, Theorem 2.2 also indicates how to transform the
matrix problems Max-COS-C and Min-COS-C into graph problems when the
input matrix is not a (∗, 2)-matrix, but a (2, ∗)-matrix. In this case, Max-COS-
C translates into the following problem (see also [TZ07]).Maximum-Weight Edge-Indu
ed Disjoint CaterpillarsSubgraph (Max-WEIDCatS)

Input: A graph G = (V, E) and a weight function w : E → N.
Task: Find a maximum-weight edge subset E ′ ⊆ E such that the

graph (V, E ′) is a union of vertex-disjoint caterpillars.

matrix problem to the graph problem and one from the graph problem to the matrix problem,
such that in both mappings columns and rows one-to-one correspond to vertices and edges.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.2. Basics Facts and Definitions 87

Table 4.3: Equivalences between submatrix problems on matrices with only two 1s
per row or per column and graph problems.

Max-COS-C Min-COS-C Max-COS-R Min-COS-R
(∗, 2) Max-VIDPS Min-VIDPS Max-WEIDPS Min-WEIDPS
(2, ∗) Max-WEIDCatS Min-WEIDCatS – –

The minimization version of Max-WEIDCatS is called Min-WEIDCatS; here
a minimum-weight set of edges shall be deleted to obtain a union of vertex-disjoint
caterpillars.

At first sight, one could think that in analogy to the three graph prob-
lems introduced above the problem Min-COS-R on (2, ∗)-matrices is equivalent
to the problem Minimum Vertex-Induced Disjoint Caterpillars Sub-
graph (Min-VIDCatS), where, given a graph G = (V, E), the task is to find
a minimum-cardinality vertex subset V ′ ⊆ V such that G[V \ V ′] is a union of
vertex-disjoint caterpillars. However, this is not the case, and also Max-COS-R
on (2, ∗)-matrices is not equivalent to the maximization variant Max-VIDCatS
of Min-VIDCatS. The reason is that with deleting a vertex v in a graph we also
delete all edges incident to v. Deleting a row r in a (2, ∗)-matrix, however, does
not delete all columns that have a 1 in row r, but just removes one 1 from all of
these columns. Hence, in each of these columns one 1 remains, and the columns
can still be part of an MIV. (When considering Max-COS-C on (∗, 2)-matrices,
the analogous case where one deletes only one 1 from a row behaves differently
because the resulting row with only one 1 cannot be part of any forbidden sub-
matrix.)

Table 4.3 summarizes the connections between submatrix problems on matri-
ces with only two 1s per row or per column and graph problems. We use these
relationships for obtaining hardness proofs for Max-COS-C and Max-COS-R
as well as for demonstrating problem kernels for Min-COS-C and Min-COS-R,
because the graph problems allow for an easier understanding.

We end with a straightforward observation: With respect to (2,2)-matrices,
the problems Min-COS-C and Min-COS-R are polynomial-time solvable. This
holds also for the “editing problem” Min-CO-1E, where, given a binary ma-
trix M , the task is to find a minimum-cardinality set of 1-entries in M that
shall be flipped (that is, replaced by 0-entries) such that the resulting matrix has
the C1P. (The analogous problem where 0-entries have to be flipped is called
Consecutive Ones Augmentation, see [GJ79, Vel85]; the problem where
arbitrary entries can be flipped is considered by Oswald and Reinelt [OR03b].)
The reason is that, as shown above, any (∗, 2)-matrix can be interpreted as the
vertex-edge or edge-vertex incidence matrix of a graph, and, hence, Min-COS-
C, Min-COS-R, and Min-CO-1E on such matrices can be formulated as graph
modification problems. These graph problems are polynomial-time solvable on in-

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

88 Chapter 4. The C1P Submatrix Problem

put graphs with maximum degree 2, which correspond to (2, 2)-matrices. Second,
on (∗, 2)-matrices the problems Min-COS-R and Min-CO-1E are equivalent,
because deleting a row one-to-one corresponds to flipping a 1-entry since a row
with only one 1-entry can be clearly omitted from further consideration.

4.3 Hardness Results

As observed by Tan and Zhang [TZ07], Max-COS-C with each row containing at
most two 1s is equivalent to the problem Max-VIDPS (see Section 4.2), where,
given an undirected graph G = (V, E), we ask for a maximum-size set V ′ ⊆ V
of vertices such that the subgraph of G induced by V ′ is a set of vertex-disjoint
paths.

In what follows, we first show that Max-VIDPS is hard to approximate; due
to the equivalence between Max-VIDPS and Max-COS-C on (∗, 2)-matrices,
this result carries over to the latter problem. Then we show that the reduction
also proves the hardness of approximating Max-VIDCatS and Max-COS-R on
(2, ∗)-matrices and the W[1]-hardness of Max-VIDPS, Max-COS-C on (∗, 2)-
matrices, Max-VIDCatS, and Max-COS-R on (2, ∗)-matrices.

To prove the hardness of approximating Max-VIDPS, we give an approxi-
mation-preserving reduction from the NP-hard Independent Set problem to
Max-VIDPS. (A different reduction from Independent Set to Max-VIDPS
was independently achieved by Tan and Zhang [TZ07].) In Independent Set,
one is given an undirected graph and asks for a maximum-cardinality set of
vertices such that no two vertices in this set are adjacent—such a set of vertices
is called an independent set.

Theorem 4.1. There exists no polynomial-time factor-O(|V |(1−ǫ)) approxima-
tion algorithm, for any ǫ > 0, for Max-VIDPS unless NP = ZPP, and no
polynomial-time factor-O(|V |(1/2−ǫ)) approximation algorithm unless NP = P.

Proof. We give a simple reduction from Independent Set to Max-VIDPS
such that the Independent Set instance has a solution with k vertices iff the
resulting Max-VIDPS instance has a solution with 2k vertices. The theorem
then follows from H̊astad’s result that Independent Set is not approximable
with a factor of |V |(1−ǫ) for any ǫ > 0 unless NP = ZPP and that Independent
Set is not approximable with a factor of O(|V |(1/2−ǫ)) unless NP = P [H̊as99].

Given an instance G = (V, E) of Independent Set, we construct a new
graph H = (VH , EH), where VH contains all vertices from V and for each ver-
tex v ∈ V a copy v of v. That is, VH := V ∪ V with V := {v | v ∈ V }. For
each vertex v ∈ V , the edge set EH contains an edge between v and its copy v.
Furthermore, for each edge {u, v} ∈ E, the graph H contains the four edges
{u, v}, {u, v}, {u, v}, {u, v}.

To prove the correctness of this reduction, we show that G has an indepen-
dent set I of size k iff there is a solution for Max-VIDPS on H consisting of

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.3. Hardness Results 89

2k vertices.
“⇒”: If G has an independent set I, then the subgraph of H that is induced

by I and the copy of I is clearly a union of |I| vertex-disjoint one-edge paths and
contains exactly 2|I| vertices.

“⇐”: For this direction, we show that if there is a solution of size 2k for
Max-VIDPS on H , then there exists always a solution V ′H of the same size
such that H [V ′H] is a set of |V ′H |/2 disjoint edges between the vertices in V ′H ∩ V
and their copies in V . In particular, this implies that H [V ′H ∩ V]—and, thus,
G[V ′H ∩ V]—are edgeless graphs, and, hence, V ′H ∩ V is an independent set of
size |V ′H |/2 in G.

To show the existence of a solution V ′H as described, let V ′′H be an arbitrary
solution for Max-VIDPS on H and let IH[V ′′

H
] be a maximum-cardinality inde-

pendent set in the graph H [V ′′H]. Let

X := {v, v | v ∈ IH[V ′′
H

] ∨ v ∈ IH[V ′′
H

]},

that is, the set X contains all vertices from IH[V ′′
H

] ∩ V together with their copies

from V and all vertices from IH[V ′′
H

] ∩ V together with their original vertices
from V . We show that the set X has the claimed property of V ′H , that is, the
set X is a size-2k solution for Max-VIDPS on H and H [X] is a set of |X|/2
disjoint edges between the vertices in X ∩ V and their copies in V . The latter
follows directly from the fact that IH[V ′′

H
] is an independent set in H [V ′′H]: Assume

that H [X] contains two edges sharing a common endpoint. Then at least one of
these edges has to be of the type {u, v}, {u, v}, {u, v}, or {u, v}. This implies
that IH[V ′′

H
] contains at least one of the vertex pairs u and v, u and v, u and v,

or u and v. However, these vertices are all adjacent in H and, thus, in H [V ′′H],
which contradicts the fact that IH[V ′′

H
] is an independent set in H [V ′′H].

The structure of X clearly implies that X is a feasible solution for Max-
VIDPS on H ; hence, it remains to show the size of X. Since H [V ′′H] is a set
of vertex-disjoint paths, each maximum independent set of H [V ′′H] contains at
least half of the vertices of H [V ′′H], that is, |IH[V ′′

H
]| ≥ |V ′′H |/2. Since IH[V ′′

H
] cannot

contain a vertex v together with its copy v, we have |X| = 2|IH[V ′′
H

]|. Therefore,
it holds that |X| ≥ |V ′′H |, and we obtain the claimed size of X.

Since the argumentation in the proof of Theorem 4.1 works also for caterpil-
lars instead of paths, the reduction used in the proof proves also the hardness
of the problem Maximum Vertex-Induced Disjoint Caterpillars Sub-
graph (Max-VIDCatS): Here the task is, given a graph G = (V, E), to find a
maximum-cardinality vertex subset V ′ ⊆ V such that G[V ′] is a union of vertex-
disjoint caterpillars. Hence, we obtain the following result.

Theorem 4.2. There exists no polynomial-time factor-O(|V |(1−ǫ)) approxima-
tion algorithm, for any ǫ > 0, for Max-VIDCatS unless NP = ZPP, and no
polynomial-time factor-O(|V |(1/2−ǫ)) approximation algorithm unless NP = P.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

90 Chapter 4. The C1P Submatrix Problem

As mentioned in Section 4.2, Max-VIDCatS in general is not equivalent to
Max-COS-R on (2, ∗)-matrices. Therefore, Theorem 4.2 does not immediately
imply the hardness of approximating Max-COS-R on (2, ∗)-matrices. However,
in the special case where we have given an instance of Max-VIDCatS as con-
structed in the proof of Theorem 4.1, we can map this instance to an instance
of Max-COS-R on (2, ∗)-matrices such that the size of an optimal solution is
preserved:

Lemma 4.1. Let G = (V, E) be an instance of Independent Set, and let H =
(VH = V ∪ V , EH) be the graph constructed for G as described in the proof of
Theorem 4.1. Then there is a solution for Max-VIDCatS on H that has car-
dinality d′ iff there is a solution for Max-COS-R on the vertex-edge incidence
matrix M of H that has cardinality d′.

Proof. “⇒”: Assume that there is a solution V ′′H of size d′ for Max-VIDCatS
on H . Then, as argued in the proof of Theorem 4.1, there is also a solution V ′H
of the same size such that H [V ′H] is a set of |V ′H|/2 disjoint edges between the
vertices in V ′H ∩ V and their copies in V . In particular, this implies that every
vertex in H [V ′H] has degree one.

Let M ′ be the submatrix of M that consists of all columns of M and exactly
those rows of M that correspond to the vertices in V ′H , that is, M ′ consists of the
vertex-edge incidence matrix of H [V ′H] plus some additional columns containing
at most one 1 each. Since M contains only two 1s per row, the only submatrices
from T that can occur in M are the matrices MIk , k ≥ 1, and MIV. The subma-
trix M ′ of M can only contain an MIk , k ≥ 1, if H [V ′H] contains a cycle, and M ′

can only contain an MIV if H [V ′H] contains a vertex of degree three; however,
both settings contradict the structure of H [V ′H], and, hence, M ′ must have the
C1P.

“⇐”: Assume that there is a solution—that is, a row set R—of size d′ for
Max-COS-R on M , and let M ′ be the submatrix of M that is induced by R.
Moreover, let V ′′H be the vertices in H corresponding to the rows of R. Then, by
Theorem 2.2, the vertices in V ′′H induce a set of vertex-disjoint caterpillars in H
because the vertex-edge incidence matrix of H [V ′′H] is a submatrix of M ′ and,
hence, has the C1P.

With the equivalence between Max-VIDPS and Max-COS-C on (∗, 2)-
matrices and the reduction from Max-VIDCatS to Max-COS-R on (2, ∗)-
matrices given in Lemma 4.1, Theorems 4.1 and 4.2 imply the following results.

Theorem 4.3. 1. For Max-COS-C on (∗, 2)-matrices as well as for
Max-COS-R on (2, ∗)-matrices, there exists no polynomial-time factor-
O(|V |(1−ǫ)) approximation algorithm for any ǫ > 0 unless NP = ZPP,
and no polynomial-time factor-O(|V |(1/2−ǫ)) approximation algorithm un-
less NP = P.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.4. Maximization on (∗, 2)- and (2, ∗)-Matrices 91

2. Max-COS-C on (∗, 2)-matrices as well as Max-COS-R on (2, ∗)-matrices
is W[1]-hard with respect to the parameter d′ = “number of columns (or
rows, respectively) in the submatrix to be found.”

3. Assuming P 6= NP, Min-COS-C on (∗, 2)-matrices and Min-COS-R on
(2, ∗)-matrices cannot be approximated within a factor of 2.7212.

Proof. Statement 1 of the theorem follows from Theorems 4.1 and 4.2, from
the equivalence between Max-COS-C on (∗, 2)-matrices and Max-VIDPS, and
from Lemma 4.1. For the correctness of statement 2, observe that the reduction
given in the proof of Theorem 4.1 is also a parameterized reduction; the statement
hence follows directly from the W[1]-completeness of Independent Set [DF99].
Since the minimization dual of Independent Set, that is, Vertex Cover, is
not approximable within 1.3606 unless P = NP [DS05], the above reduction also
yields statement 3.

Note that the W[1]-hardness of Max-VIDPS and Max-VIDCatS can also
be inferred from a more general result by Khot and Raman [KR02], and that the
non-existence of a constant-factor approximation for these problem also follows
from a more general result of Lund and Yannakakis [LY93]; however, the above
inapproximability results are stronger.

4.4 Maximization on (∗, 2)- and (2, ∗)-Matrices

In this section, we present a polynomial-time approximation and a fixed-para-
meter algorithm for Max-COS-R on (∗, 2)-matrices and a fixed-parameter algo-
rithm for Max-COS-C on (2, ∗)-matrices—for the latter problem, a polynomial-
time approximation was already known [TZ07]. Like in the previous section, we
use the equivalence between these two problems and the graph problems Max-
WEIDPS and Max-WEIDCatS.

4.4.1 Max-COS-R on (∗, 2)-Matrices

Max-COS-R on (∗, 2)-matrices is equivalent to Max-WEIDPS (see Sec-
tion 4.2). Therefore, to achieve the mentioned results for the former problem,
it suffices to find a polynomial-time approximation and a fixed-parameter algo-
rithm for Max-WEIDPS.

Approximation algorithm. We show that Max-WEIDPS can be approxi-
mated in polynomial time with a factor of 3/4, which immediately implies that
Max-COS-R on (∗, 2)-matrices is approximable with the same factor. For ap-
proximating Max-WEIDPS, we use a part of an algorithm of Serdyukov [Ser84]
(see [BGS02, HR00] for descriptions of the algorithm in English language), which
approximates the problem Max-TSP with a factor of 3/4 in O(|V |3) time.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

92 Chapter 4. The C1P Submatrix ProblemMax-TSP
Input: A complete graph G = (V, E), in which every edge e ∈ E has

a nonnegative weight w(e).
Task: Find a cycle of maximum weight that contains every vertex

from V exactly once.

Serdyukov’s algorithm works on complete graphs, and as an intermediate
step it produces a set of vertex-disjoint paths. The idea for approximating Max-
WEIDPS is, therefore, to construct for a given instance (G, w) an edge-weighted
complete graph G′ such that every set of vertex-disjoint paths in G′ one-to-one
corresponds to a set of vertex-disjoint paths of the same weight in the original
graph G. On this modified instance, we run the first phase of the algorithm of
Serdyukov, which outputs a set of vertex disjoint paths whose weight is at least
3/4 times the weight of an optimal solution for Max-WEIDPS.

More precisely, for a given instance (G, w) of Max-WEIDPS, we construct
an instance (G′ = (V, E ′), w′) of Max-TSP, where G′ is the complete graph with
vertex set V and where the weight of every edge {u, v} ∈ E ′ is given by

w′({u, v}) =

{
w({u, v}) if {u, v} ∈ E
0 if {u, v} /∈ E.

It is obvious that if there is a subgraph H ′ of G′ that consists of vertex-disjoint
paths and has weight d′, then there is also a subgraph H of G consisting of vertex-
disjoint paths and having weight d′: To obtain H , just remove all edges from H ′

that do not exist in G—the weight of these edges is 0.
The approximation algorithm of Serdyukov for Max-TSP constructs two or

three (depending on whether |V | is even or odd) subgraphs—so-called partial
tours—, which consist of vertex-disjoint paths. Out of these partial tours the al-
gorithm selects one with maximum weight and extends it to a cycle of length |V |
by adding some edges, which is always possible because the input graph is com-
plete. The approximation factor of 3/4 is shown by proving that the weight of
at least one of the partial tours is at least 3/4 times the weight of an optimal
solution for Max-TSP [Ser84].

Clearly, the weight of an optimal solution for Max-WEIDPS on (G′, w′) is a
lower bound for Max-TSP on (G′, w′) because every set of vertex-disjoint paths
can be completed to a cycle of length |V |. Therefore, Serdyukov’s algorithm
always finds a set of vertex-disjoint paths whose weight is at least 3/4 times the
weight of an optimal solution for Max-WEIDPS on (G′, w′). As argued above,
from this set of paths we can directly obtain a set of vertex-disjoint paths in G
having the same weight, which yields the following result.

Theorem 4.4. Max-WEIDPS can be approximated in O(|V |3) time with a
factor of 3/4.

With the equivalence between Max-COS-R on (∗, 2)-matrices and Max-
WEIDPS and since the edge-weighted complete graph G′ can be constructed in
O(mn) time for a given m × n matrix, we obtain the following corollary.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.4. Maximization on (∗, 2)- and (2, ∗)-Matrices 93

Corollary 4.2. Max-COS-R on (∗, 2)-matrices can be approximated in O(mn+
n3) time with a factor of 3/4.

Proof. Given an m × n matrix M , we need O(mn) time for constructing an
edge-weighted complete graph G′ as described above. On this graph, which has
n vertices, we run the approximation algorithm of Serdyukov in O(n3) time.

Fixed-parameter algorithm. We show that Max-WEIDPS is fixed-para-
meter tractable with respect to the parameter d′ = “weight of the vertex-disjoint
paths to be found.” As a consequence of the equivalence between Max-WEIDPS
and Max-COS-R on (∗, 2)-matrices, the latter problem is fixed-parameter trac-
table with respect to the number of rows in the desired submatrix.

The fixed-parameter tractability of Max-WEIDPS can easily be shown by
using the color-coding approach introduced by Alon et al. [AYZ95] for the NP-
complete problem Longest Path, which is defined as follows.Longest Path

Input: A graph G = (V, E) and a positive integer d′

Question: Is there a simple path—that is, a path containing no ver-
tex more than once—in G that consists of at least d′ ver-
tices?

The idea of Alon et al. [AYZ95] for solving Longest Path in f(d′)·nO(1) time
is to repeatedly randomly color the vertices of G with d′ colors and to search,
for each coloring, for a simple path of d′ vertices that contains no two vertices
of the same color. For a given coloring, such a path can be found, if existing, in
2O(d′) · |E| time with a dynamic programming approach [AYZ95]; for every vertex
of the input graph the dynamic programming algorithm tries to find a d′-vertex
path that contains no color more than once and that starts at v.

If G contains a simple path P consisting of d′ vertices, then the probability
for the vertices of P being colored with d′ different colors is d′!/d′d

′
because the

number of possibilities for mapping the vertices of P to d′ different colors is d′! and
the number of possibilities for mapping d′ vertices to d′ colors is d′d

′
. Therefore,

after d′d
′
/d′! = 2O(d′) iterations the expected value for the number of returned

simple paths consisting of d′ vertices is 1. The algorithm can be derandomized,
which results in an overhead factor of log(|V |) and, therefore, in a running time
of 2O(d′) · log(|V |) · |E| for solving Longest Path deterministically [AYZ95].

The dynamic programming algorithm given by Alon et al. for finding a path
that contains no two vertices of the same color can easily be adapted such that it
is capable of handling edge weights. Therefore, the problem of finding a simple
path consisting of at most d′ vertices and having maximum edge weight under
this property can also be solved in 2O(d′) · log(|V |) · |E| time (see also [HWZ08]).

To solve Max-WEIDPS, we reduce the problem of finding a set of paths of
total weight d′ to the problem of finding one path of weight d′; to this end, we

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

94 Chapter 4. The C1P Submatrix Problem

use the same idea as described in the previous paragraph about approximating
Max-WEIDPS: Given an instance (G, w) of Max-WEIDPS, we extend the
graph G by adding edges of weight 0 in order to obtain a complete graph G′.
The graph G′ obviously has the property that every path of weight d′ in G′

corresponds to a weight-d′ set of vertex-disjoint paths in G and vice versa. Now we
repeatedly randomly color the graph G′ and search with a dynamic programming
algorithm [AYZ95, HWZ08] for a path of weight at least d′ containing no color
twice. Since we can assume that the desired path contains no two edges of weight 0
with a common endpoint, we only have to consider paths consisting of at most
2d′ vertices, and, therefore, we have to use 2d′ colors. Since the number of edges
in G′ is |V |2 and since a simple path with at most d′ vertices and maximum edge
weight can be found deterministically in 2O(d′)·log(|V |)·|E| time [AYZ95, HWZ08],
we get the following theorem.

Theorem 4.5. Max-WEIDPS, restricted to instances where every edge has a
weight of at least 1, can be solved in 2O(d′) · |V |2 · log(|V |) time, where d′ is the
total weight of the paths to be found.

With the equivalence between Max-COS-R on (∗, 2)-matrices and Max-
WEIDPS and since the edge-weighted complete graph G′ can be constructed in
O(mn) time for a given m × n matrix, we obtain the following corollary.

Corollary 4.3. Max-COS-R on (∗, 2)-matrices can be solved in 2O(d′) · n2 ·
log(n) + O(mn) time, where d′ is the number of rows in the submatrix to be
found.

We just mention in passing that the bases in the exponential parts of the
running times (that is, the constants hidden by the Big-O-Notation in the
terms 2O(d′)) can be optimized by using the methods presented by Hüffner et
al. [HWZ08] for speeding up color-coding algorithms. Moreover, by using the
divide-and-conquer technique described by Chen et al. [CLSZ07, KMRR06] in-
stead of color coding, the factor log(n) can be eliminated.

4.4.2 Max-COS-C on (2, ∗)-Matrices

For Max-COS-C on (2, ∗)-matrices it is known that there is a polynomial-time
factor-0.5 approximation algorithm [TZ07]. We complement this result by show-
ing that Max-COS-C on (2, ∗)-matrices is fixed-parameter tractable with respect
to the parameter d′ = “number of rows in the submatrix to be found.” To this end,
we exploit the equivalence between the problems Max-COS-C on (2, ∗)-matrices
and Max-WEIDCatS and present a fixed-parameter color-coding algorithm for
solving the latter problem.

The basic ideas of our fixed-parameter algorithm for Max-WEIDCatS are
the same as used in the fixed-parameter algorithm for solving Max-WEIDPS in
Section 4.4.1: First, we reduce the problem of searching for a set of caterpillars of

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.4. Maximization on (∗, 2)- and (2, ∗)-Matrices 95

total weight d′ to the problem of searching one caterpillar of weight d′ by adding
edges of weight 0 to the given graph G in order to obtain a complete graph G′.
It is obvious that every caterpillar of weight d′ in G′ one-to-one corresponds to
a weight-d′ set of vertex-disjoint caterpillars in G. Second, we use the technique
of color-coding as described in Section 4.4.1. Again, we have to use 2d′ colors
because we can assume that the desired caterpillar contains no two edges of
weight 0 that have a common endpoint.

It remains to show how, given a graph G′ whose vertices are colored with
2d′ colors, one can determine whether there is a caterpillar of weight at least d′

that contains no color more than once. We solve this task with a dynamic pro-
gramming approach very similar to the one described in Section 4.4.1 for finding
a path containing no color more than once. The pseudocode of the corresponding
algorithm is displayed in Figure 4.3. The algorithm assigns to every vertex v ∈ V
a set Xv of tuples (Cv, ℓv), where Cv is a set of colors and ℓv is an integer. Each
tuple (Cv, ℓv) in Xv corresponds to a caterpillar P that contains no color more
than once and in which the vertex v is an endpoint : this means that v has de-
gree at most 1 in P and that the single neighbor of v, if existing, has at most
one neighbor of degree more than one. The set Cv contains all colors occurring
in P , and ℓv is the total weight of the edges in P . In line 1, the set Xv for every
vertex v ∈ V is initialized with a pair corresponding to the caterpillar consisting
of the single vertex v. In lines 2–13, the algorithm tries, for increasing values of i,
to extend those caterpillars that contain i vertices. To this end, every endpoint v
of each such caterpillar P is considered (line 3), and for each neighbor w of v it
is checked whether the color of w already occurs in P (lines 5–6). If this is not
the case, then every possibility is tried to add the vertex w together with some
other neighbors of v to P , and the information about the resulting caterpillars is
stored in Xw (lines 7–13), because w is an endpoint of every resulting caterpillar.
The difference between this algorithm and the dynamic programming for finding
a maximum-weight simple path [AYZ95, HWZ08] is that in the latter case, when
a neighbor w of an endpoint v of a path is considered and the color of w does
not occur in the path so far, then one just adds w to the path and does not con-
sider the other neighbors of v. The running time of the algorithm in Figure 4.3
is O(|V | + 2O(d′) · |E|), and, with the same considerations as in Section 4.4.1 (in
particular, we have to take into account an overhead factor of log(|V |) for the
derandomization), we get the following theorem.

Theorem 4.6. Max-WEIDCatS, restricted to instances where every edge has
a weight of at least 1, can be solved in 2O(d′) · |V |2 · log(|V |) time, where d′ is the
total weight of the caterpillars to be found.

With the equivalence between Max-COS-C on (2, ∗)-matrices and Max-
WEIDCatS and since a given m×n matrix can be turned into an edge-weighted
complete graph G′ in O(mn) time, we obtain the following corollary.

Corollary 4.4. Max-COS-C on (2, ∗)-matrices can be solved in 2O(d′) · m2 ·

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

96 Chapter 4. The C1P Submatrix Problem

Input: A positive integer d′, a graph G = (V, E) where every vertex v ∈ V is
colored with a color clr(v) chosen from 2d′ colors and every edge e ∈ E
has a nonnegative integral edge weight w(e).

Output: Is there a caterpillar of weight at least d′ that contains no color more
than once?

1: assign to every vertex v a set Xv := {({clr(v)}, 0)};
2: for i := 1 to 2d′ − 1: {
3: while there is a vertex v where Xv contains a pair (Cv, ℓv) with |Cv| = i: {
4: remove (Cv, ℓv) from Xv;
5: for each neighbor w of v: {
6: if clr(w) /∈ Cv: {
7: C :=

⋃

u∈(N(v)\{w}){clr(u)};

8: for each subset C ′ ⊆ C: {
9: if C ′ ∩ (Cv ∪ {clr(w)}) = ∅: {
10: ℓ := ℓv + w({v, w}) +

∑

c∈C′ max{w({v, u}) | u ∈ (N(v) \ {w}) ∧
clr(u) = c};

11: if ℓ ≥ d′: return yes;
12: add the tuple (Cv ∪ {clr(w)} ∪ C ′, ℓ) to Xw;
13: remove all dominated tuples from Xw; }}}}}}

14: return no;

Figure 4.3: Algorithm for deciding whether a graph whose vertices are colored
with 2d′ colors there exists a caterpillar of weight d′ that contains no color more
than once. A pair (Cw, ℓw) ∈ Xw is dominated if there is another pair (C ′w, ℓ′w) ∈
Xw with C ′w = Cw and ℓ′w ≥ ℓw.

log(m) + O(mn) time, where d′ is the number of columns in the submatrix to be
found.

Again, the methods of Hüffner et al. [HWZ08] can be used for improving the
running time of the the algorithm.

4.5 Minimization on (∗, ∆)-Matrices

In this section, we present our main algorithmic results of the chapter: polyno-
mial-time approximations and fixed-parameter algorithms for Min-COS-C and
Min-COS-R on (∗, ∆)-matrices. The section is structured as follows. The main
idea behind the algorithms is explained in Section 4.5.1. In Section 4.5.2 we show
how to deal with a subproblem: handling matrices that already have the Circ1P,
but not the C1P. The analysis of the running times and approximation factors
of our algorithms for (∗, ∆)-matrices is provided in Section 4.5.3. The proof for

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.5. Minimization on (∗, ∆)-Matrices 97

the main structural theorem, which is introduced in Section 4.5.1 and on which
all algorithms presented here are based, is deferred to Section 4.7.

4.5.1 Outline of the Algorithmic Framework

The basic algorithmic approach underlying all our algorithms reads as follows.
In order to derive constant-factor polynomial-time approximation algorithms
or fixed-parameter algorithms for Min-COS-C and Min-COS-R on (∗, ∆)-
matrices, we exploit Theorem 2.5 by iteratively searching and destroying in the
given input matrix every submatrix that is isomorphic to one of the forbidden
submatrices from the set T given in Theorem 2.5: In the approximation scenario
all columns or rows belonging to a forbidden submatrix are deleted, whereas in
the fixed-parameter setting a search tree algorithm [HNW08, Nie06] branches re-
cursively into several subcases, deleting in each case one of the columns or rows
of the forbidden submatrix.

To show the performance guarantees of the thus derived algorithms, observe
that a (∗, ∆)-matrix cannot contain submatrices of types MIIk

and MIIIk
with ar-

bitrarily large sizes. Therefore, the main difficulty is that every problem instance
can contain submatrices of type MIk of unbounded size—the approximation fac-
tor or the number of cases to branch into would therefore not be bounded from
above by ∆. To overcome this difficulty, we use the following two-phase approach:

1. Destroy only those forbidden submatrices that belong to a certain finite
subset X of the set T (and whose sizes are upper-bounded, therefore).

2. Solve Min-COS-C or Min-COS-R for each component of the resulting
matrix. According to Corollary 4.1, these solutions can be combined into a
solution for the whole input matrix.

Concerning phase 2, we will see in Section 4.5.2 that Min-COS-C and Min-
COS-R on these components can be solved in f(∆) · |M |O(1) time because of the
special structure of the components.

The finite set X ⊆ T used in phase 1 is specified in the following theorem, the
main structural contribution of this chapter. The technical proof is presented in
Section 4.7.

Theorem 4.7. Let X := {MIk | 1 ≤ k ≤ ∆−1}∪{MIIk | 1 ≤ k ≤ ∆−2}∪{MIIIk
|

1 ≤ k ≤ ∆−1}∪{MIV, MV}. If a (∗, ∆)-matrix M contains none of the matrices
in X as a submatrix, then each component of M has the Circ1P.

We have already shown in Chapter 3 how small submatrices from T , if existing,
can be found efficiently. Hence, according to Theorem 4.7, there remains the
challenge of transforming a matrix with Circ1P into a matrix with C1P. This
point will be addressed in the next section; a more detailed description of the
algorithmic results for Min-COS-C and Min-COS-R follows in Section 4.5.3.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

98 Chapter 4. The C1P Submatrix Problem

4.5.2 From Circ1P to C1P

Here, we consider the problems Min-COS-C and Min-COS-R restricted to
input matrices that have the Circ1P; these matrices arise in the second phase
of the algorithmic skeleton described in Section 4.5.1. Since a Circ1-ordering for
the columns of a matrix that has the Circ1P can be found in linear time (see
Section 2.3), we can without loss of generality assume that our input matrices do
not only have the Circ1P, but also the strong Circ1P.

Min-COS-C (Min-COS-R) asks to delete a minimum-cardinality set of
columns (rows) in such a way that in the resulting matrix the 1s can be placed
consecutively in every row by permuting the columns. We will show that if the
number n of columns is big enough compared to ∆ and if one starts with a
matrix having the strong Circ1P, then the optimal solutions for Min-COS-C
(Min-COS-R) have a special structure: It is always optimal to delete a set of
columns (rows) in such a way that in the resulting matrix the 1s can be placed
consecutively in every row by a number of “cyclic shifts”; that is, the circular
column ordering of the resulting matrix must be a C1-circular ordering.

We will first prove this special structure of optimal solutions and then show
how to exploit it when solving Min-COS-C and Min-COS-R on matrices with
Circ1P.

Circ1-Orderings and C1-Orderings

In what follows, it is often helpful to imagine the matrices as wrapped around a
vertical cylinder. Therefore, we have to use the concept of the circular column
ordering (see Chapter 2.1) of a matrix M : the circular column ordering describes
the order of M ’s columns when M is imagined as wrapped around a vertical
cylinder. In addition, we need the following notions.

Definition 4.1. 1. If the column ordering of a binary matrix M is shift-
equivalent to a C1-ordering for M ’s columns, then M has the shifted strong
C1P and its column ordering is called a shifted C1-ordering.

2. Let M be a binary matrix with the strong Circ1P. If there is a column
pair (cj, csuccn(j)) such that in every row ri containing both 1s and 0s at
most one of mi,j and mi,succn(j) is 1, then the column pair (cj , csuccn(j)) is
called a C1-cut.

It follows directly from these definitions that a binary matrix M has the
C1P iff there is a shifted C1-ordering for M ’s columns, and this is the case iff
there is a Circ1-ordering for M ’s columns that yields a C1-cut: If the column
ordering c1, . . . , cn of a matrix is a Circ1-ordering and (cj , csuccn(j)) is a C1-cut,
then the column ordering csuccn(j), . . . , cn, c1, . . . , cj places the 1s consecutively in
every row of the resulting matrix (see Fig. 4.4). Intuitively speaking, wrapping M
around a vertical cylinder, cutting the matrix on the cylinder vertically from top

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.5. Minimization on (∗, ∆)-Matrices 99

c1c1 c2c2 c3c3 c4c4 c5 c5

11
11

1 1
11

1
1 1
11

11
1

0
0
0

0
0

000

0
00

0

000

0
00

00
0
0

0
0

Figure 4.4: The matrix on the left has the shifted strong C1P because it is
shift-equivalent to the matrix on the right, which has the strong C1P. For both
matrices, the pair (c2, c3) is a C1-cut.

to bottom between cj and csuccn(j), and unwrapping it from the cylinder places
the 1s consecutively.

To prove the claimed structure of optimal solutions for Min-COS-C and
Min-COS-R on matrices with the strong Circ1P, we show that if a matrix M
has the C1P and the column number is big enough compared to ∆, then every
Circ1-ordering for M ’s columns is a shifted C1-ordering; in other words, if the
matrix has the strong Circ1P, then it also has the shifted strong C1P. To this end,
we show that each Circ1-ordering for the columns of the matrix can be obtained
from a shifted C1-ordering by a series of column reversal operations that do not
destroy the shifted strong C1P. This reversal operation was originally used by
Hsu and McConnell [HM03] to transform a circular column ordering into another
circular column ordering.

Definition 4.2. Let [c1, . . . , cn] be the circular column ordering of a matrix.
Given two column indices j1, j2, the operation reverse(cj1 , cj2), applied to this
circular ordering, reverses the order of the columns cj1, . . . , cj2 if j1 < j2, and it
reverses the order of the columns cj1, . . . , cn, c1, . . . , cj2 if j1 > j2.

The intuition of the reverse operation is that for a given matrix, which is
wrapped around a vertical cylinder and represented by the circular ordering of
its columns, we cut out a vertical stripe of this cylinder, reverse the order of the
columns on this stripe, and put the stripe back into the cylinder. For example,
reverse(c11, c3) applied to the circular ordering

[c1, . . . , c13]

leads to the circular ordering

[c13, c12, c11, c4, c5, c6, c7, c8, c9, c10, c3, c2, c1].

We define the reverse operation analogously for matrices and column orderings
(instead of circular column orderings): For reversing the columns from j1 to j2 in
a matrix M , we first wrap M around a vertical cylinder, then apply the reverse
operation as described in Definition 4.2, and finally cut the matrix on the cylinder
vertically from top to bottom and unwrap it from the cylinder. If c1 and cn are

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

100 Chapter 4. The C1P Submatrix Problem

still neighbors after reversing the columns, then this cut is made between c1

and cn; otherwise, there are two cases: if j2 = n, then the cut is made to the left
of c1, and if j1 = 1, then the cut is made to the right of cn.

Definition 4.3 ([HM03]). Let M be a binary matrix, and let C be the set of
its columns. A subset C ′ ⊆ C is uniform in row r if all entries in row r in the
columns of C ′ are the same. A circular module of M is a subset C ′ ⊆ C such
that in every row r the subset C ′ is uniform in r or C \ C ′ is uniform in r.

Clearly, if a matrix M has the strong Circ1P, then applying the reverse oper-
ation to a set of columns that form a circular module does not destroy the strong
Circ1P:

Observation 4.2. Let M be a binary matrix with the strong Circ1P, and let M ′

be the matrix obtained from M by reversing an arbitrary circular module whose
columns are consecutive in M ’s circular column ordering. Then M ′ has the strong
Circ1P.

Observation 4.2 is strengthened in the following Theorem due to Hsu and
McConnell [HM03].

Theorem 4.8 ([HM03, Theorem 3.8]). Let M be a matrix having the Circ1P.
Then every Circ1-circular ordering for M ’s columns can be obtained by starting
from some Circ1-circular ordering and applying a sequence of reverse operations,
each of them reversing a circular module whose columns are consecutive in the
respective circular column ordering.

Note that reversing a circular module as described in Theorem 4.8 corresponds
to flipping a subtree at a C-node in a PC-tree as described in Section 2.3.

We have defined the reverse operation not only for circular column orderings,
but also for matrices and column orderings. Clearly, Theorem 4.8 also applies to
the Circ1-orderings of M ’s columns instead of the Circ1-circular orderings: Each
Circ1-ordering for the columns of a matrix can be obtained by starting from an
arbitrary Circ1-ordering and applying a sequence of reverse operations, each of
them reversing a circular module.

We can now state a useful relation between the Circ1-orderings and the shifted
C1-orderings for the columns of matrices having the C1P. This observation is
crucial for our algorithms solving Min-COS-C and Min-COS-R, since it implies
that if n is big compared to ∆ then it is optimal to delete a set of columns or
rows, respectively, in such a way that the resulting matrix has the shifted strong
C1P.

Lemma 4.2. Let M be a (∗, ∆)-matrix of size m × n, n ≥ 2∆ − 1, that has the
C1P. Then every Circ1-ordering for M ’s columns is also a shifted C1-ordering.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.5. Minimization on (∗, ∆)-Matrices 101

Proof. Since M has the C1P, its columns can be permuted such that the resulting
matrix M ′ has the shifted strong C1P. By definition, then M ′ also has the strong
Circ1P. We will prove the following claim:

Claim: Let M ′ be a matrix with the shifted strong C1P, and let M ′′ be
a matrix obtained from M ′ by applying the reverse operation to an arbitrary
circular module of M ′. Then M ′′ has the shifted strong C1P.

Due to Theorem 4.8, this claim suffices to prove the lemma, because every
Circ1-ordering for M ’s columns can be obtained from M ′ by a series of reverse
operations, and by the claim, none of these operations destroys the shifted strong
C1P.

Proof of the claim: Let C be the column set of M ′, and let c1, . . . , cn be the
column ordering of M ′ (which is a shifted C1-ordering). Moreover, let C ′ ⊆ C
be the circular module of M ′ whose reversal leads to M ′′. Since M ′ has the
shifted strong C1P, there is at least one C1-cut in M ′. Without loss of generality,
let (cn, c1) be this C1-cut, that is, there is no row ri in M ′ with mi,n = 1 and mi,1 =
1 and mi,j = 0 for at least one j ∈ {2, . . . , n − 1}.

If C ′ does not contain c1 and cn, then (cn, c1) clearly is still a C1-cut after the
reversal. Moreover, in this case M ′′ has also the strong Circ1P because, due to
Observation 4.2, the reversal of C ′ does not destroy this property. The shifted
strong C1P and the existence of a C1-cut together imply the shifted strong C1P
of M ′′. If C ′ contains both of c1 and cn, we can argue analogously because
then (c1, cn) is a C1-cut in M ′′.

Now, assume that C ′ contains exactly one of c1 and cn, say c1. Then C ′ =
{c1, . . . , ch} with h < n, and M ′′ has the column ordering ch, . . . , c1, ch+1, . . . , cn.
Assume for the sake of contradiction that none of (cn, ch) and (c1, ch+1) is a C1-
cut in M ′′. Then there must be two rows ri1 and ri2 such that, on the one hand,
mi1,n = 1 and mi1,h = 1, and, on the other hand, mi2,1 = 1 and mi2,h+1 = 1.
Since (cn, c1) is a C1-cut in M ′, we have mi1,1 = 0 and mi2,n = 0. Therefore,
mi1,j = 1 for every j ∈ {h+1, . . . , n−1} and mi2,j = 1 for every j ∈ {2, . . . , h}—
otherwise, the set C ′ would not be a circular module. Since there are at most
∆ 1s in each row, |{ch, . . . , cn}| ≤ ∆ and, therefore, h > n − ∆ ≥ 2∆ − 1 − ∆ =
∆ − 1. For the same reason |{c1, . . . , ch+1}| ≤ ∆ and, therefore, h ≤ ∆ − 1,
contradicting h > ∆ − 1. Hence, at least one of (cn, ch) and (c1, ch+1) must be
a C1-cut in M ′′, which together with Observation 4.2 implies the shifted strong
C1P of M ′′.

Since deleting rows or columns from a matrix that has the strong Circ1P
does not destroy the strong Circ1P, Lemma 4.2 has the following consequences
for solving Min-COS-C and Min-COS-R: If the input matrix has the strong
Circ1P, then deleting any set of columns or rows such that the C1P is obtained
yields a matrix that has the shifted strong C1P (provided that in the resulting
matrix ∆ is small compared to the column number).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

102 Chapter 4. The C1P Submatrix Problem

Solving Min-COS-C on Matrices with the Circ1P

Here, we show how to use the results of Section 4.5.2 in order to solve Min-
COS-C on matrices that have the Circ1P. We first give an upper bound on
the solution size and then, exploiting Lemma 4.2, characterize the structure of
optimal solutions and show how to find them efficiently.

Lemma 4.3. Let M be a (∗, ∆)-matrix that has the Circ1P. Then Min-COS-C
on input M can be solved by deleting at most ∆ columns.

Proof. Order the rows of M such that the resulting matrix M ′ has the strong
Circ1P. Since each row of M ′ contains at most ∆ 1s, the submatrix resulting
from removing the leftmost ∆ columns from M ′ has the (strong) C1P.

Now we can show that there is always an optimal solution for Min-COS-C
with some nice structure, provided that the input matrix has the strong Circ1P
and ∆ is small enough compared to n.

Lemma 4.4. Let M be a (∗, ∆)-matrix of size m × n, n ≥ 3∆ − 1, that has
the strong Circ1P, let c1, . . . , cn be its column ordering, let the set C ′ of columns
be an optimal solution for Min-COS-C on input M , and let M ′ be the matrix
resulting from deleting C ′ from M .10 Then,

1. M ′ has the shifted strong C1P and

2. the columns from C ′ are consecutive in the circular ordering of M ’s columns,
and if cα and cβ are the two columns to the left and to the right of C ′, (that
is, cα, cβ /∈ C ′ and csuccn(α), cpredn(β) ∈ C ′), then (cα, cβ) is a C1-cut in M ′.

Proof. First, we show that the matrix M ′ fulfills the conditions of Lemma 4.2.
Hence, by deleting C ′ from M , one obtains a matrix M ′ that does not only have
the C1P, but also the shifted strong C1P. More precisely, due to Lemma 4.3,
|C ′| ≤ ∆, and, therefore, M ′ has at least 2∆ − 1 columns. By Lemma 4.2,
this implies that M ′ has the shifted strong C1P, because the strong Circ1P is
preserved when deleting columns. This proves statement 1.

To prove statement 2, let cj1, . . . , cjn′ be the columns of M ′, that is, the
columns of M that do not belong to C ′. Without loss of generality, assume
that (cjn′ , cj1) is a C1-cut of M ′, that is, the column ordering cj1 , . . . , cjn′ places
the 1s consecutively in every row. Suppose, for the sake of contradiction, that
statement 2 does not hold, that is, there exists a column cx ∈ C ′ such that
when M is wrapped around a vertical cylinder, the column cx appears to the
right of cj1 and to the left of cjn′ .

Let M ′′ be the matrix that results from M ′ by inserting the column cx at its
“old position”, that is, M ′′ results from M by deleting the columns C ′ \ {cx}.

10When columns are deleted, the remaining columns retain the numbering scheme of the
original matrix.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.5. Minimization on (∗, ∆)-Matrices 103

Clearly, M ′′ has the strong Circ1P because M has the strong Circ1P. Moreover,
the insertion of cx into M ′ does not affect the fact that (cjn′ , cj1) is a C1-cut.
Hence, the matrix M ′′ also has the shifted strong C1P. This means that C ′ \
{cx} is also a solution of Min-COS-C, contradicting the optimality of C ′ as a
solution.

By Lemma 4.4, the columns of an optimal solution C ′ are consecutive in every
Circ1-ordering for M ’s columns. Hence, an optimal solution can easily be found:

Theorem 4.9. Min-COS-C, restricted to (∗, ∆)-matrices of size m×n that have
the Circ1P, can be solved in O(∆mn) time if n ≥ 3∆−1, and in O((3∆)min{d,∆} ·
∆m) time otherwise, where d is the number of allowed column deletions.

Proof. Let M be a (∗, ∆)-matrix of size m × n that has the Circ1P. Due to
Lemma 4.3, an optimal solution for Min-COS-C on M has size at most ∆.
If n < 3∆ − 1, then an optimal solution can be found by trying all possibilities
to delete at most min{d, ∆} columns (there are

(
n

min{d,∆}

)
= O((3∆)min{d,∆})

possibilities) and checking in O(∆m+n) time [BL76] whether the resulting matrix
has the C1P. If n ≥ 3∆−1, then assume that M has the strong Circ1P (a Circ1-
ordering for M ’s columns can be found in O(∆m + n) time [BL76]). Due to
Lemma 4.4, there exists an optimal solution C ′ that is consecutive in the circular
column ordering of M and that is enclosed by the columns of a C1-cut in the
matrix resulting from the deletion of C ′. This solution can be found by checking,
for every column pair (cj, cj′) with at most ∆ columns lying between cj and cj′ in
the circular column ordering of M , whether the submatrix of M that consists of
the columns c1, . . . , cj, cj′, . . . , cn has the strong C1P with (cj, cj′) being a C1-cut.
For such a check, simply test in O(m) time whether for every row ri at least one
of mi,j and mi,j′ is 0.

Solving Min-COS-R on Matrices with the Circ1P

In the case of Min-COS-R, we cannot upper-bound the size of an optimal so-
lution as we did in Lemma 4.3. However, Lemma 4.2 yields a characterization
of optimal solutions for Min-COS-R that is very similar to the one given in
Lemma 4.4 for Min-COS-C.

Lemma 4.5. Let M be a (∗, ∆)-matrix of size m × n, n ≥ 2∆ − 1, that has
the strong Circ1P, let the set R′ of rows be an optimal solution for Min-COS-
R on input M , let M ′ be the matrix that results from deleting R′ from M , and
let c1, . . . , cn be the column ordering of M and M ′. Then,

1. M ′ has the shifted strong C1P and

2. there is a C1-cut (cj, csuccn(j)) in M ′ such that

R′ = {ri | (1 ≤ i ≤ m) ∧ (ri contains 0s and 1s) ∧ (mi,j = mi,succn(j) = 1)}.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

104 Chapter 4. The C1P Submatrix Problem

Proof. Lemma 4.2 implies that M ′ has the shifted strong C1P because M ′ ob-
viously has the strong Circ1P. This proves statement 1. To prove statement 2,
let (cj , csuccn(j)) be an arbitrary C1-cut in M ′. On the one hand, due to the
definition of a C1-cut, there can be no row in M ′ that contains a 1 in both cj

and csuccn(j) and that contains at least one 0. Hence, all rows ri with mi,j = 1
and mi,succn(j) = 1 and mi,j′ = 0 for at least one j′ must be part of R′. On
the other hand, suppose, for the sake of a contradiction, that there exists a row
in R′ that does not contain a 1 in both cj and csuccn(j) or that contains only 1s or
only 0s. Then, re-inserting this row into M ′ results in a matrix that still has the
strong C1P—a contradiction to the optimality of R′.

In analogy to Min-COS-C (Theorem 4.9), an optimal solution can now easily
be found by exploiting Lemma 4.5.

Theorem 4.10. Min-COS-R, restricted to (∗, ∆)-matrices of size m × n
that have the Circ1P, can be solved in O(mn) time if n ≥ 2∆ − 1, and in
O((2∆)2min{d,4∆2} · ∆m) time otherwise, where d is the number of allowed row
deletions.

Proof. Let M be a (∗, ∆)-matrix of size m×n that has the Circ1P. If n < 2∆−1,
then first eliminate duplicate rows: assign weights to the rows such that every row
gets as weight the number of its occurrences, and delete all occurrences except
for one of every row. The number of rows of the resulting matrix is bounded
from above by (2∆)2 because if M has the strong Circ1P, then every row can
be described uniquely by the index of the first and last column containing a 1 in
this row, which yields (2∆)2 possibilities. The task is now to find a row set of
minimum weight whose deletion yields the C1P. An optimal solution can be found
by trying all possibilities to delete at most min{d, (2∆)2} rows and checking in
O(∆m + n) time [BL76] whether the resulting matrix has the C1P; the number

of possibilities to try is
(

(2∆)2

min{d,(2∆)2}

)
.

If n ≥ 2∆ − 1, then assume that M has the strong Circ1P (a Circ1-ordering
for M ’s columns can be found in O(∆m + n) time [BL76]). Due to Lemma 4.5,
an optimal solution can be found by counting for every column pair (cj, csuccn(j))
in O(m) time the number of rows ri with mi,j = 1 and mi,succn(j) = 1 and mi,j′ = 0
for at least one j′; deleting these rows results in a matrix with C1-cut (cj, csuccn(j)).

4.5.3 The Algorithms in Detail

As sketched in the algorithmic skeleton of Section 4.5.1, our approximation al-
gorithms for Min-COS-C and Min-COS-R consist of two phases: First, they
search in every step for a matrix belonging to the set X of forbidden submatrices
given by Theorem 4.7, and, then, they delete all columns (rows) of the found
submatrix. Since an optimal solution has to delete at least one column (row)

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.5. Minimization on (∗, ∆)-Matrices 105

of every forbidden submatrix from X, the approximation factor is bounded from
above by the maximum number of columns (rows) of a submatrix found during
this phase. Thereafter, due to Theorem 4.7, all components of the remaining
matrix have the Circ1P. In case of Min-COS-C, a solution of size at most ∆
can be found for every component by permuting its columns such that the strong
Circ1P is obtained and then deleting the first ∆ columns (as shown in the proof of
Lemma 4.3)—clearly, this yields a factor-∆ approximation for every component.
The overall approximation factor is determined by the one achieved in the first
phase of the algorithm. In case of Min-COS-R, we do not have such a simple
factor-∆ approximation for solving the problem on the components of the matrix
resulting from the first phase. Hence, we use the approach of Theorem 4.10 for
exactly solving Min-COS-R on every component resulting from the first phase.
Note that to derive polynomial running times for fixed ∆, we can ignore the
term d in the running time of Theorem 4.10.

The fixed-parameter search tree algorithms search in every step for a forbid-
den submatrix of X and then branch on which column (row) belonging to the
found submatrix shall be deleted. A solution for the resulting matrices without
submatrices from X (but possibly still with submatrices of the type MIk , k ≥ ∆)
can be found without branching, see Theorem 4.9 and Theorem 4.10.

To find a submatrix from X, we use the algorithms presented in Chapter 3. If
we use the search algorithm specified in Theorem 3.1, then the maximum number
of columns or rows in a forbidden submatrix found during the first phase of the
algorithm is identical to the maximum number of columns or rows of a matrix
in X. If the (slightly faster) algorithm specified in Proposition 3.1 is used, then
we need the following corollary of Proposition 3.1 to determine this number of
columns or rows.

Corollary 4.5. Let M be a (∗, ∆)-matrix of size m × n.

1. If ∆ = 3 or ∆ = 4 and the algorithm in Figure 3.1 does not find a forbidden
submatrix from T consisting of at most 9 rows (columns), or

2. if ∆ = 2 or ∆ ≥ 5 and the algorithm in Figure 3.1 does not find a forbidden
submatrix from T consisting of at most ∆ + 4 rows (columns),

then M does not contain a forbidden submatrix from the set X specified in The-
orem 4.7.

Proof. Assume that M contains a submatrix M ′ from X consisting of m′ rows
and n′ columns. The number of rows and the number of columns of the matrix
returned by the algorithm is upper-bounded by

k + 2 if M ′ = MIk ,
k + 3 if M ′ = MIIk ,
k + 5 if M ′ = MIIIk

,
9 if M ′ = MIV, and
5 if M ′ = MV,

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

106 Chapter 4. The C1P Submatrix Problem

Table 4.4: Summary of results for Min-COS-C and Min-COS-R on (∗, ∆)-
matrices.

Approximation algorithms

Min-COS-C Factor Running time based on
∆ = 2 4 O(m2n3) Cor. 4.6, Lem. 4.3
∆ = 3 6 O(m3n2 + m2n4) Thm. 3.1, Lem. 4.3
∆ ≥ 4 ∆+2 O(∆3m3n2 + ∆3m2n4) Thm. 3.1, Lem. 4.3
∆ = 2, 5, 6, . . . ∆+4 O(∆mn3 + n4) Cor. 4.5, Lem. 4.3
∆ = 3, 4 9 O(mn3 + n4) Cor. 4.5, Lem. 4.3

Min-COS-R Factor Running time
∆ = 2 3 O(m3n2) Cor. 4.6, Thm. 4.10

∆ ≥ 3 ∆+1 O((2∆)8∆
2

· ∆m2 + ∆3m4n + ∆3m3n3) Thms. 3.1, 4.10

∆ = 2, 5, 6, . . . ∆+4 O((2∆)8∆
2

· ∆m2 + ∆m2n2 + mn3) Cor. 4.5, Thm. 4.10
∆ = 3, 4 9 O(m2n2 + mn3) Cor. 4.5, Thm. 4.10

Fixed-parameter algorithms

Min-COS-C Running time based on

∆ = 2 O(4d · m2n2) Cor. 4.6, Thm. 4.9
∆ = 3 O(6d · (m2n · (m + n2))) Thms. 3.1, 4.9

∆ ≥ 4 O((∆+2)d · ((3∆)min{d,∆} · ∆dm + ∆3m3n + ∆3m2n3)) Thms. 3.1, 4.9
∆ = 2, 5, 6, . . . O((∆+4)d · ((3∆)min{d,∆} · ∆dm + ∆mn2 + n3)) Cor. 4.5, Thm. 4.9
∆ = 3, 4 O(9d · (mn2 + n3)) Cor. 4.5, Thm. 4.9

Min-COS-R Running time
∆ = 2 O(3d · m2n2) Cor. 4.6, Thm. 4.10

∆ ≥ 3 O((∆+1)d · ((2∆)2·min{d,4∆2} · ∆dm + ∆3m3n + ∆3m2n3)) Thms. 3.1, 4.10

∆ = 2, 5, 6, . . . O((∆+4)d · ((2∆)2·min{d,4∆2} · ∆dm + ∆mn2 + n3)) Cor. 4.5, Thm. 4.10
∆ = 3, 4 O(9d · (mn2 + n3)) Cor. 4.5, Thm. 4.10

as described in the proof of Proposition 3.1. Since, on the one hand, the matrices
of the type MIk in X have k ≤ ∆ − 1, the matrices of the type MIIk in X have
k ≤ ∆ − 2, and the matrices of the type MIIIk in X have k ≤ ∆ − 1, and, on the
other hand, the matrix M can contain an MIV as a submatrix only if ∆ ≥ 3, it
follows that the algorithm returns a matrix that has the claimed number of rows
and columns.

A second corollary, following from Proposition 3.3, helps us to find matrices
from X very fast in the case where ∆ = 2:

Corollary 4.6. Let M be a (∗, 2)-matrix of size m × n. A forbidden submatrix
from X in M that has a minimum number of columns (rows) can be found in
O(m2n2) time.

Proof. This corollary follows directly from Proposition 3.3 because X contains
only the matrices MI1 andMIII1 .

Finally, we can precisely analyze the performance of our algorithms.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.6. Minimization on (∗, 2)- and (2, ∗)-Matrices 107

Theorem 4.11. Min-COS-C and Min-COS-R, restricted to (∗, ∆)-matrices,
have constant-factor approximation algorithms as shown in Table 4.4. Moreover,
Min-COS-C and Min-COS-R are fixed-parameter tractable with respect to the
combined parameter ∆, d, where d denotes the number of allowed column deletions
and row deletions, respectively. The running times are given in Table 4.4.

Proof. In the case of the approximation algorithms, the approximation factor is
determined by the number of columns (rows) of the submatrices found in the first
phase of the algorithm. If the algorithm in Figure 3.1 with the running time given
in Proposition 3.1 is used for searching forbidden submatrices from X, then the
column number (row number) is determined by Corollary 4.5. If, otherwise, the
algorithm behind Theorem 3.1 (or Corollary 4.6 in the case of ∆ = 2) is used, then
the column number (row number) is equal to the maximum taken over the column
numbers (row numbers) of the matrices in X. Since at most n columns (m rows)
can be deleted, the running time for every algorithm is n times (m times) the time
needed for searching a forbidden submatrix (see Proposition 3.1, Theorem 3.1,
and Corollary 4.6) plus n times (m times) the time needed for approximating
Min-COS-C (solving Min-COS-R) on a component that has the Circ1P (see
Lemma 4.3, Theorem 4.10).

In case of the search-tree algorithms, the number of branches depends on
the maximum number of columns (rows) of a forbidden submatrix found during
the first phase of the algorithm, which destroys all submatrices from X, and is
either determined by Corollary 4.5 or by the maximum taken over the column
numbers (row numbers) of the matrices in X—depending on which algorithm is
used for searching the forbidden submatrices. The time needed in each node of
the search tree is given by the time needed to search for a submatrix from X
(see Proposition 3.1, Theorem 3.1, and Corollary 4.6) plus, in the case that no
submatrix from X was found, the time needed for solving Min-COS-C (Min-
COS-R) (see Theorems 4.9 and 4.10) on at most d components that have the
Circ1P.

4.6 Minimization on (∗, 2)- and (2, ∗)-Matrices

We turn our attention to the still NP-hard special cases of (∗, 2)- and (2, ∗)-
matrices and present some kernelization and approximation results for Min-
COS-C and Min-COS-R. Section 4.6.1 describes a kernelization for these two
problems in the case of (∗, 2)-matrices; Sect 4.6.2 describes approximation and
fixed-parameter algorithms for (2, ∗)-matrices.

4.6.1 (∗, 2)-Matrices

We show that the problems Min-COS-C and Min-COS-R, restricted to (∗, 2)-
matrices, admit problem kernels with respect to the parameter d = “number of
column/row deletions.”

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

108 Chapter 4. The C1P Submatrix Problem

Min-COS-C

As described in Section 4.2, Min-COS-C with each row containing at most two 1s
is equivalent to the problem Min-VIDPS, where, given a graph G = (V, E) and
a positive integer d, the question is whether there is a vertex subset V ′ ⊆ V
with |V ′| ≤ d whose removal transforms G into a union of vertex-disjoint paths.

We achieve the kernelization result for Min-COS-C by showing a problem
kernel for Min-VIDPS. Without loss of generality, we assume that G is a con-
nected graph because otherwise we can solve the problem on each connected
component separately. Given an instance (G = (V, E), d) of Min-VIDPS, we
perform the following polynomial-time data reduction:

Rule 1: If a vertex v has more than d+2 neighbors, then remove v from G, add v
to V ′, and decrease d by one.

Rule 2: If a degree-two vertex v has two degree-at-most-two neighbors u and w
with {u, w} /∈ E, then remove v from G and connect u, w by an edge.

Rule 3: If a degree-1 vertex v is adjacent to a degree-at-most-two vertex, then
remove v from G.

Rule 4: If there is a vertex of degree 0, delete it.

A graph to which none of the four rules applies is called reduced.

Lemma 4.6. The data reduction rules are correct, and a graph G = (V, E) can
be transformed into a reduced instance in O(|V | · log(|V |) + |E|) time.

Proof. Concerning the correctness of Rule 1, without removing v from G and
adding it to the solution set V ′, we would have to remove at least d + 1 of v’s
neighbors from G to make v a degree-two vertex. However, with at most d vertex
deletions allowed, this is impossible. Thus, Rule 1 is correct.

To see the correctness of Rule 3, let G = (V, E) be a graph containing a
degree-1 vertex v that is adjacent to a degree-at-most-two vertex w. We have to
show that G has a solution of size at most d iff G[V \{v}] has a solution of size at
most d. Clearly, if V ′ is a solution of size at most d for G, then V ′\{v} is a solution
of size at most d for G[V \ {v}]. To see the other direction, let G′′ = (V ′′, E ′′)
be a union of vertex-disjoint paths that results from deleting at set V ′ of at most
d vertices from G[V \{v}]. The vertex w has degree at most 1 in G′′. Adding the
vertex v and the edge {v, w} to G′′ does neither lead to a cycle nor to a degree-
at-least-3 vertex. Hence, the resulting graph is still a union of vertex-disjoint
paths. This implies that every solution V ′ for Min-VIDPS on G[V \ {v}] is also
a solution for Min-VIDPS on G.

The correctness of Rule 2 can be seen in a similar way as the correctness
of Rule 3: Let G = (V, E) be a graph containing a degree-2 vertex v whose
two neighbors u, w are both degree-at-most-two vertices and are not directly

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.6. Minimization on (∗, 2)- and (2, ∗)-Matrices 109

connected by an edge. Here, we have to show that G has a solution of size at
most d iff the graph G̃ := (V \ {v}, E∪{{u, w}} \ {{u, v}, {v, w}}) has a solution
of size at most d. To prove the “only if” direction, let V ′ be a solution of size
at most d for G. Clearly, if v /∈ V ′, then V ′ is also a solution for G̃. For the
case v ∈ V ′, observe that we can assume that V ′ does not contain all three
vertices u, v, w, because if G[V \ {u, v, w}] is a union of vertex-disjoint paths,
then this also holds for G[V \ {u, w}]. Without loss of generality, let u /∈ V ′. It
is easy to see that V ′ ∪ {u} \ {v} is a solution of size at most d for G̃. The “if”
direction can be seen in analogy to the correctness argument for Rule 3.

The correctness of Rule 4 is obvious.
Using a data structure that allows to determine the degree of a vertex in

constant time and to delete a vertex v from G in O(deg(v)) time, G can be
transformed into a reduced instance in O(|V | · log(|V |) + |E|) time: First, try,
once for each vertex, to apply Rule 1; thereby, use a priority queue [CLRS01]
and always select a vertex of highest degree. Thereafter, for every i ∈ {2, 3, 4}
and for every vertex v, try once to apply Rule i to v. Note that, for any i ∈
{1, 2, 3, 4}, if Rule i cannot be applied to a vertex v at a certain point in time,
then Rule i still cannot be applied to v after applying any series of rules from
Rules i, i + 1, . . . , 4 to the other vertices in G. Applying Rule 1 to all vertices
needs O(|V | · log(|V |) + |E|) time when using a priority queue; applying every
other rule to all vertices needs O(|V | + |E|) time.

Theorem 4.12. Minimum Vertex-Induced Disjoint Paths Subgraph
with parameter d denoting the allowed vertex deletions admits a problem kernel
with O(d2) vertices and O(d2) edges.

Proof. Suppose that a given Min-VIDPS instance (G, d) is reduced with respect
to Rules 1–4 and has a solution, that is, by deleting a vertex subset V ′ with |V ′| ≤
d, the resulting graph H = (VH , EH) becomes a union of vertex-disjoint paths.
Then, H only contains degree-one and degree-two vertices, denoted by V 1

H and V 2
H ,

respectively: VH = V 1
H ∪ V 2

H = V \ V ′.
On the one hand, since Rule 1 has removed all vertices of degree greater

than d + 2 from G, the vertices in V ′ are adjacent to altogether at most d2 + 2d
VH-vertices in G. On the other hand, consider a V 1

H-vertex v. If v is not a degree-
one vertex in G, then v is adjacent to at least one vertex from V ′; otherwise, due
to Rule 3, v’s neighbor is adjacent to at least one vertex from V ′. Moreover, due
to Rule 2 and the fact that H is a union of vertex-disjoint paths, at least one
of three consecutive degree-two vertices on a path from H is adjacent in G to
at least one vertex from V ′. Hence, at least |VH |/3 vertices in VH are adjacent
in G to V ′-vertices. Thus, the number of VH-vertices can be upper-bounded
by 3 · (d2 + 2d).

Since H is a union of vertex-disjoint paths, there can be at most |VH | − 1 =
3d2 +6d−1 edges in H . Moreover, as shown above, each vertex from V ′ can have
at most d + 2 incident edges in G. Thus, we can conclude |E| = O(d2).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

110 Chapter 4. The C1P Submatrix Problem

Note that for obtaining the quadratic kernel we do not have to transform G
into a reduced instance; it is sufficient to try once for every i ∈ {1, 2, 3, 4} and
every vertex v to apply Rule i to v—the order in which the vertices are considered
is irrelevant for obtaining the kernel. The resulting graph consists of O(d2) ver-
tices and O(d2) edges, although maybe Rule 1 could be applied to some vertex v
of the kernel. (This can happen if the degree of v is at most d + 2 when trying
to apply Rule 1 during the kernelization. Since the value of d decreases when
Rule 1 is applied to vertices different from v, the degree of v may be greater then
the “new” value of d + 2 after the kernelization.) Thus, the kernelization can be
performed in O(|V | + |E|) time since the priority queue is not needed.

Corollary 4.7. Min-COS-C on (∗, 2)-matrices admits a problem kernel consist-
ing of a matrix with O(d2) rows and columns.

Min-COS-R

The kernelization algorithm for Min-COS-R is based on the equivalence between
Min-COS-R on (∗, 2)-matrices and the graph problem Min-WEIDPS described
in Section 4.2, where the task is to transform an edge-weighted given graph into
a union of vertex-disjoint paths by edge deletions.

A problem kernel for Min-WEIDPS can be obtained as follows. Given an
instance (G = (V, E), d) of Min-WEIDPS, perform the following linear-time
data reduction similar to the data reduction for Min-VIDPS shown above:

Rule 1: If a vertex v has more than d+2 neighbors, then report that the instance
is a no-instance.

Rule 2: If a degree-two vertex v has two degree-at-most-two neighbors u and w
with {u, w} /∈ E, then remove v from G and connect u and w by an edge
of weight min{w({u, v}), w({v, w})}.

Rule 3: If a degree-1 vertex v is adjacent to a degree-at-most-two vertex, then
remove v from G.

Rule 4: If there is a vertex of degree 0, delete it.

Lemma 4.7. The data reduction rules are correct and a graph G = (V, E) can
be transformed into a reduced instance in O(|V | + |E|) time.

Proof. This lemma can be proven analogously to the proof of Lemma 4.6. Note
that we do not have to use a priority queue here; therefore, the data reduction
takes only O(|V | + |E|) time.

Theorem 4.13. Min-WEIDPS admits a problem kernel with at most 8d vertices
and 9d edges.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.6. Minimization on (∗, 2)- and (2, ∗)-Matrices 111

Proof. Suppose that a given Min-WEIDPS-instance (G = (V, E), d) is reduced
with respect to Rules 1–4 and has a solution, that is, deleting an edge subset E ′

of total weight at most d yields a graph H = (VH , EH) that is a union of vertex-
disjoint paths. Let V1 be the set of degree-1 vertices in G, let V2 be the set of
degree-2 vertices in G, and let V3 be the set of degree-at-least-3 vertices in G.
Every vertex in V3 must be incident to at least one edge of E ′, which implies
that |V3| ≤ 2d. Moreover,

∑

v∈V3
(deg(v)− 2) ≤ 2d because otherwise there exists

no solution of weight at most d for G. To see this, assume, for the sake of a
contradiction, that

∑

v∈V3
(deg(v) − 2) > 2d. Note that E ′ consists of at most

d edges because w(e) ≥ 1 for every edge in G. Therefore, after deleting the edges
of E ′ from G, we would have

∑

v∈V3
(deg(v) − 2) > 2d − 2|E ′| ≥ 0, and, hence,

∑

v∈V3
deg(v) > 2|V3|; however, this would be a contradiction to the fact that the

degree of every vertex in H is at most two.

Since, due to Rule 3, every vertex in V1 is adjacent to a vertex in V3, and,
due to Rules 2 and 3, every vertex in V2 is also adjacent to a vertex in V3,
it holds that |V1 ∪ V2| ≤

∑

v∈V3
deg(v) ≤ 6d. Hence, the number of vertices

in V is at most 8d. Since H is a union of vertex-disjoint paths, there can be at
most |VH| − 1 ≤ 8d − 1 edges in H . Therefore, the number of edges in G is at
most |VH | − 1 + d < 9d.

By Theorem 4.13 and the equivalence between Min-COS-R and Min-
WEIDPS, we arrive at the following corollary.

Corollary 4.8. Min-COS-R on (∗, 2)-matrices with parameter d denoting the
number of allowed row deletions admits a problem kernel consisting of a matrix
with with less than 9d different rows, less than 8d columns, and an overall number
of at most 9d2 + 9d rows.

Proof. The first statement follows directly from Theorem 4.13 and the one-to-
one correspondence between Min-COS-R and Min-WEIDPS. Moreover, if a
row appears more than d + 1 times, all occurrences except for d + 1 can be
deleted. To see this, consider a set R′ of at least d + 1 identical rows. Clearly,
with d row deletions allowed, not all rows of R′ can be deleted. This observation
still holds for the problem instance with all but d+1 rows from R′ deleted, which
leads to the upper bound for the overall number of rows.

Similar observations as described here have been used by Fernau [Fer05a,
Fer08] for solving a graph problem called Linear Arrangement by Delet-
ing Edges—this problem is equivalent to Min-WEIDPS without edge
weigths. For this problem, Fernau gives a fixed-parameter algorithm running
in O∗(2.4676d) time and a problem kernel consisting of 6d vertices and 6d edges.

Note that due to the equivalence between Min-COS-R and Min-CO-1E in
the case of (∗, 2)-matrices (see Section 4.2), our kernelization result also applies
to Min-CO-1E (where the parameter is the number of allowed flippings of 1s).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

112 Chapter 4. The C1P Submatrix Problem

4.6.2 (2, ∗)-Matrices

In contrast to Sections 4.5 and 4.6.1, we are now going to examine matrices
that have no bound on the number of 1s per row. We obtain fixed-parameter
tractability and approximation results for matrices having at most two 1s per
column.

By considering the matrices from the set T given in Theorem 2.5, one can
immediately see that if a matrix M does not have the C1P, then M can only
contain an MIV or an MIk (see Figure 4.2), because all other matrices in T contain
a column with more than two 1s. The following lemma is the central observation
for the subsequent results.

Lemma 4.8. Let M be a (2, ∗)-matrix without identical columns. If M neither
contains MIV nor MI1 as submatrices and does not have the C1P, then the matri-
ces of type MIk that are contained in M are pairwise disjoint, that is, they have
no common row or column.

Proof. This lemma can easily be seen by considering the representing graph GM

of a (2, ∗)-matrix M without identical columns. First, note that vertices in the
bipartite graph GM that correspond to columns of M have degree two; the absence
of identical columns in M implies that there are no cycles of length 4 in GM .

Now assume that M neither contains MIV nor MI1 as submatrices, but that M
contains two matrices of type MIk that share at least one common row or column.
This means that in GM there are two induced cycles that have at least one vertex
in common. Since vertices corresponding to columns of M have degree 2, these
two cycles must share at least one vertex corresponding to a row of M . Moreover,
since M contains no MI1 and, therefore, GM contains no cycle of length 6 as an
induced subgraph, the two cycles have length at least 8. It is now easy to see
that GM must contain a GIV (see Figure 2.7) as an induced subgraph such that
the center vertex of the GIV subgraph is one of the vertices shared by the two
cycles in GM . Since GIV is the representing graph of MIV, the matrix M contains
an MIV—a contradiction.

Min-COS-C

Based on Lemma 4.8, we can easily derive a search tree algorithm for Min-COS-
C restricted to (2, ∗)-matrices:

1. Merge identical columns of the given matrix M into one column; assign to
this column a weight equal to the number of columns it represents.

2. As long as M contains an MIV or an MI1 as a submatrix, branch into at
most six subcases, each corresponding to deleting a column from the MIV-
or the MI1-submatrix. By deleting a column, the parameter d is decreased
by the weight of that column.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.6. Minimization on (∗, 2)- and (2, ∗)-Matrices 113

3. If there is no MIV and MI1 contained in M , then, by Lemma 4.8, the
remaining submatrices of type MIk in M are pairwise disjoint. Then, Min-
COS-C is solvable in polynomial time on such a matrix: Delete a column
with minimum weight from each remaining matrix of type MIk .

Clearly, the search tree size is O(6d), and a matrix of type MI1 or MIV can be
found in O(min{m4n, m2n3}) time (see Propositions 3.2 and 3.3). By removing
all columns of every MI1- and MIV-submatrix found in M instead of branching
into several subcases, we get a polynomial-time constant-factor approximation
algorithm. The following theorem summarizes these results.

Theorem 4.14. Min-COS-C, restricted to (2, ∗)-matrices with m rows and
n columns, can be solved in O(6d · min{m4n, m2n3}) time where d denotes the
number of allowed column deletions. Moreover, Min-COS-C, restricted to (2, ∗)-
matrices, can be approximated in polynomial time with a factor of 6.

Note that similar observations have been used for solving a graph problem
called 2-Layer Planarization [Fer05a, Fer05b, Sud05, SW05]—this prob-
lem is equivalent to Min-COS-C restricted to (2, ∗)-matrices without duplicate
columns; the currently fastest algorithm for this problem has a running time
of O(3.562d + |M |) [Sud05]. Note also that there is a linear11 problem kernel for
2-Layer Planarization [DFH+06].

Min-COS-R

The search tree algorithm for Min-COS-R restricted to (2, ∗)-matrices is also
based on Lemma 4.8:

1. If a column of the given matrix M appears more than once, delete all
occurrences except for one.

2. As long as M contains an MIV or an MI1 as a submatrix, branch into at most
four subcases, each corresponding to deleting a row from the MIV- or MI1-
submatrix found in M . By deleting a row, the parameter d is decreased by
one.

3. If there is no MIV and no MI1 contained in M , then, by Lemma 4.8, the
remaining submatrices of type MIk in M are pairwise disjoint. Then, Min-
COS-R is solvable in polynomial time on such a matrix: Delete an arbitrary
row from each remaining matrix of type MIk .

The search tree size is O(4d), and a matrix of type MIV can be found in
O(min{m4n, m2n3}) steps. Again, by removing all rows of every MIV- and MI1-
submatrix instead of branching, we get a polynomial-time approximation algo-
rithm.

11See footnote 1 on page 81.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

114 Chapter 4. The C1P Submatrix Problem

B′ B
1 2 3 45

1

2
3

4

111 1

11

11

1

11

11

11

1

1

1

11

00

00
00

0
00

00 00

00
00

0

0
00

0
00

0
0

0
0

Figure 4.5: Illustration for Case 1 in the proof of Theorem 4.7. Complementing
the second row of an MIV (left matrix) generates an MV (right matrix). (The
rows and columns of the MV are labeled with numbers according to the ordering
of the rows and columns of the MV in Figure 4.2.) Note that complementing also
the fourth row of the matrix B′ does not affect the existence of an MV in B.

Theorem 4.15. Min-COS-R, restricted to (2, ∗)-matrices with m rows and
n columns, can be solved in O(4d · min{m4n, m2n3}) time where d denotes the
number of allowed row deletions. Moreover, Min-COS-R, restricted to (2, ∗)-
matrices, can be approximated in polynomial time with a factor of 4.

4.7 Proof of the Structural Theorem

Finally, we give the proof of Theorem 4.7, which serves as the basis of all algo-
rithms in Section 4.5. The theorem states that if a (∗, ∆)-matrix M contains
none of the matrices from X := {MIk | 1 ≤ k ≤ ∆ − 1} ∪ {MIIk | 1 ≤ k ≤
∆ − 2} ∪ {MIIIk | 1 ≤ k ≤ ∆ − 1} ∪ {MIV, MV} as a submatrix, then each
component of M has the Circ1P.

Proof. We prove Theorem 4.7 by contraposition. More precisely, we show that if a
component of a (∗, ∆)-matrix M does not have the Circ1P, then this component
contains a submatrix from X. To this end, let A be a component of M not
having the Circ1P. Then, by Corollary 2.1, there must be a column c of A such
that the matrix A′, resulting from A by complementing those rows that have a 1 in
column c, does not have the C1P and, therefore, contains one of the submatrices
in T (Theorem 2.5). In the following, we will make a case distinction based on
which of the forbidden submatrices in T is contained in A′ and which rows of A
have been complemented, and show that in each case the matrix A contains a
forbidden submatrix from X.

We denote the forbidden submatrix contained in A′ with B′ and the submatrix
of A that corresponds to B′ with B. Note that the matrix A′ must contain a 0-
column due to the fact that all 1s in column c have been complemented. Since
no forbidden submatrix in T contains a 0-column, column c cannot belong to B′

and, hence, not to B. We call c the complementing column of A.
When referencing to row or column indices of B′, we will always assume that

the rows and columns of B′ are ordered as shown in Figure 4.2.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.7. Proof of the Structural Theorem 115

B′ B

compl.
column

1

11

11

1

1

11

1111

11

1

1

1

11

0

0

0
000

0
00

0
00

000

0
0

0
0

0
0

0

0

0
00

0
0

Figure 4.6: Illustration for Case 2 in the proof of Theorem 4.7. Suppose that only
the third row of B is complemented. Then B together with the complementing
column forms an MIV.

Case 1: The submatrix B′ is isomorphic to MIV.

If no row of B has been complemented, then B = B′, and A also contains a
submatrix MIV, which belongs to X.

If exactly one of the first three rows of B has been complemented such that
the resulting matrix is isomorphic to MIV, then B contains one 0-column, and B
without the 0-column forms an MV, independent of whether the fourth row of B
also has been complemented (see Figure 4.5 for an example). Again, we have
shown that A contains a submatrix from X.

If two or three of the first three rows of B have been complemented, then A
contains an MI1 ∈ X as a submatrix: Assume, for instance, that the first two
rows have been complemented. If the fourth row has also been complemented,
then there is an MI1 consisting of the rows r1, r2, r4 and the columns c2, c4, c5 of B.
Otherwise, there is an MI1 consisting of the rows r1, r2, r4 and the columns c1, c3, c6

of B.

Case 2: The submatrix B′ is isomorphic to MV.

Analogously to Case 1 we can make a case distinction on which rows of A
have been complemented, and in every subcase we can find a forbidden submatrix
from X in A. In some of the subcases the forbidden submatrix can only be found
in A if in addition to B also the complementing column of A is considered. We
will present only one representative example for all subcases of Case 2: If only
the third row of B has been complemented, then the complementing column of A
contains a 0 in all rows that belong to B except for the third. Then B forms
an MIV together with the complementing column of A (see Figure 4.6).

Case 3: The submatrix B′ is isomorphic to MIk with k ≤ ∆ − 1.

Subcase 3.1: No row of B has been complemented. Then B = B′, and A also
contains a submatrix MIk .

Subcase 3.2: Exactly one row of B has been complemented. Then, together
with the complementing column of A, the matrix B forms an MIIIk

.

Subcase 3.3: At least two, but not all rows of B have been complemented.
If k = 1, then B contains a 0-column, and B with the 0-column deleted forms
an MI1 together with the complementing column of A. Otherwise, let ri, ri′

with i′ > i + 1 be two complemented rows where no row ri′′ with i < i′′ < i′

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

116 Chapter 4. The C1P Submatrix Problem

B B c(3)c(2) c(1)

r(2)r(1)

cj1 cj2

rj1

rj2

cici−1 ci+1

ri

ri−1

ri+1

11 1

11

1 1

11

11

11

11

1

11

11

1 1

11

11

11

11

00

0
0
0

0
0

0

000
0

0
00

0 00
0000

0
00

0

0
0

0

00
0

0000

0
0
0

0
0

0

00

000
0

0
00

0 00
0000

0
00

0

0
0

0

00
0

Figure 4.7: Illustration of Case 4 in the proof of Theorem 4.7.

has been complemented. (We can assume that two such rows ri and ri′ exist
because we can permute the rows and columns belonging to B′ in an appropriate
way due to the symmetry of B′.) If i′ = i + 2, then the rows ri, ri+1, ri+2 and
columns ci+1, ci+2 of B form an MI1 together with the complementing column of A.
Otherwise, the rows ri, . . . , ri′ and columns ci+1, . . . , ci′ of B form an MIIi′−i−2

together with the complementing column of A. Note that MIIi′−i−2
∈ X because

i′ − i − 2 ≤ k − 1 ≤ ∆ − 2.
Subcase 3.4: All rows of B have been complemented. If k = 1, then B

forms an MIII1 together with the complementing column of A; if k = 2, then B
forms an MI2 ; otherwise, there is an MI1 consisting of the rows r1, r2, r4 and the
columns c1, c3, c4 of B.

Case 4: The submatrix B′ is isomorphic to MIk with k ≥ ∆.

Then no row of B has been complemented, because otherwise there would be
a row in A that contains more than ∆ 1s (note that the complementing column
of A contains a 1 in every row that is complemented). Therefore, B = B′, and A
also contains an MIk—but note that k ≥ ∆ and, therefore, MIk /∈ X.

Let c be the complementing column of A. Since no row of B has been com-
plemented, the column c contains no 1 in a row that belongs to B—hence, the
distance between c and B is greater than 1. However, column c must be con-
nected to B due to the definition of a component, and, therefore, there must be
a shortest path from c to B.

Now, make a case distinction on the parity of the distance between c and B.
Subcase 4.1: The distance between c and B is even. Then there is a shortest

path c(0), r(1), c(2), . . . , c in A between B and c with c(0) ∈ B. (If the distance
between c and B is two, then c = c(2).) Since the distance between c and B
is even, the line c(0) must be a column. This means that the row r(1) does not
belong to B, but has a 1 in a column that belongs to B and a 1 in column c(2).
Column c(2) does neither belong to B nor does it have a 1 in a row that belongs
to B. This constellation is displayed in the left part of Figure 4.7. Since k ≥ ∆,
the matrix B has at least ∆ + 2 columns, and at least three columns of B must
contain a 0 in row r(1). Without loss of generality, let cj1 and cj2 with j2 >

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

4.7. Proof of the Structural Theorem 117

k + 3 k + 3k + 3

k
+

3

k
+

3

k
+

3

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

· · ·
· · ·

· · ·
· · ·

· · ·

1

1

1

1 1

11

11

1

1

1

1

1 1

11

11

1

1

1

1

1

1

11

1

11

11

11

1

1

0
0

0

0
0

0
0

00

00
0

0

0
0

0
0

0

0
0

0
0

0

00

00
0

0

0

0

0

0
0

0 0

00
0

0

0
0

M M ′ M ′′

Figure 4.8: An illustration of the claim used in Case 5 of the proof of Theorem 4.7.
Matrix M is composed of an MIIk

and a 0-column. Complementing rows r2, rk+1,
and rk+2 of M leads to the matrix M ′. Complementing the rows of M ′ that have
a 1 in column ck+3, namely, r2, rk+1, and rk+3, transforms M ′ to matrix M ′′ which
contains an MIk+1

and a 0-column ck+3.

j1 + 1 be two columns containing a 0 in row r(1) such that all entries of row r(1)

between cj1 and cj2 are 1s. (We can assume that such two columns cj1 and cj2

exist due to the symmetry of B′.) Then there is an MIIIj2−j1−1
consisting of

the rows rj1, . . . , rj2−1, r
(1) and columns cj1, . . . , cj2, c

(2). Since there can be at
most ∆ 1s in a row, we have j2 − j1 − 1 ≤ ∆− 1, and, therefore, MIIIj2−j1−1

∈ X.

Subcase 4.2: The distance between c and B is odd. Then there is a shortest
path r(0), c(1), r(2), c(3), . . . , c in A between B and c with r(0) ∈ B. (If the distance
between c and B is three, then c = c(3).) This means that the column c(1) does
not belong to B, but it has a 1 in a row ri = r(0) that belongs to B. (We can
assume that i > 1 and i < k + 2 due to the symmetry of B′.) Row r(2) neither
belongs to B nor does it have a 1 in a column that belongs to B, but it has 1s in
the columns c(1) and c(3). Column c(3) does neither belong to B nor does it have
a 1 in a row that belongs to B. This constellation is displayed in the right part of
Figure 4.7. If column c(1) contains a 0 in row ri−1 as well as in row ri+1, then there
is an MIV consisting of the rows ri−1, ri+1, r

(2), ri and columns ci−1, . . . , ci+2, c
(1),

c(3). If column c(1) contains a 1 in at least one of the rows ri−1 and ri+1, say
in ri−1, then there is an MIII1 consisting of the rows ri−1, ri, r

(2) and columns
ci−1, ci+1, c

(1), c(3).

Case 5: The submatrix B′ is isomorphic to MIIk
with k ≥ 1.

Here, we can re-use the argumentation for A′ containing an MIk+1
(Case 3

and Case 4), since the matrix type MIIk is closely related to MIk , as shown in the
following claim.

Claim: For an integer k ≥ 1, let M be a (k+3)× (k +4) matrix composed of
an MIIk

and an additional 0-column, and let M ′ be any matrix resulting from M
by complementing a subset of its rows. Then, complementing all rows of M ′ that
have a 1 in column ck+3 results in a matrix containing MIk+1

and an additional
0-column.

Proof of the claim: Let R ⊆ {1, 2, . . . , k + 3} be the set of the indices
of the rows that have been complemented in M in order to form M ′. After
complementing the rows ri with i ∈ R in M , the column ck+3 of M ′ contains 1s

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

118 Chapter 4. The C1P Submatrix Problem

in all rows ri with i ∈ ({1, . . . , k + 1} ∩ R) ∪ ({k + 2, k + 3} \ R). It is easy to
see that complementing these rows in M ′ results in the described matrix, proving
the claim. See Figure 4.8 for an illustration of the claim.

We return to the proof of Case 5. The matrix B′ together with a 0-column has
been created by complementing a subset of the rows belonging to B. Applying the
above claim, regarding B′ together with the 0-column as the matrix M mentioned
in the claim, shows that there is a column cj in A such that complementing all
rows that contain a 1 in column cj results in an MIk+1

and a 0-column. Then, A
must contain a submatrix from X as we have shown in Case 3 and Case 4.

Case 6: The submatrix B′ is isomorphic to MIIIk with k ≥ 1.
Similarly to Case 5, this case can be reduced to Case 3 or Case 4 by applying

the following claim, which reveals the relationship between matrix types MIIIk

and MIk . This claim can be proven in analogy to the claim in Case 5.
Claim: For an integer k ≥ 1, let M = MIIIk , and let M ′ be any matrix

resulting from M by complementing a subset of its rows. Then, complementing
all rows of M ′ that have a 1 in column ck+3 results in a (k + 2) × (k + 3) matrix
containing MIk and an additional 0-column.

4.8 Conclusion

We have presented a systematic analysis of the complexity of various restricted
variants of the in general NP-hard problems Min-COS-C, Min-COS-R, Max-
COS-C, and Max-COS-R. Besides hardness for some of the problem variants,
we could achieve polynomial-time approximation algorithms and exact fixed-
parameter algorithms in many cases. In addition, our algorithms for Min-COS-
C and Min-COS-R on (∗, ∆)-matrices can easily be adapted to work for the
problem of deleting a minimum number of rows and columns. However, there
remain questions unanswered: Our main results focus on Min-COS-C and Min-
COS-R with a restricted number of 1s per row, but no restriction on the number
of 1s in the columns; similar studies would be desirable for the case that we have
a restricted number of 1s per column, but no restriction for the rows. More-
over, it should be investigated whether the running times for Min-COS-R and
Max-COS-C (see Table 4.4) can be improved. In particular, we think that ap-
proximating Min-COS-R with a factor of ∆ + 1 should be possible within a
running time that is polynomial in the input size and has no exponential factor
depending on ∆. An interesting research direction is also to consider the prob-
lem Min-CO-1E (flipping a minimum number of 1-entries). We conjecture that
for (∗, ∆)-matrices the presented approximation and fixed-parameter tractability
results for Min-COS-C should extend to Min-CO-1E—however, we could not
prove that (the reason is that, in the case of Min-CO-1E, we have no state-
ments similar to Lemmas 4.4 and 4.5). Only for ∆ = 2 we have algorithmic
results simply based on the equivalence to Min-COS-R in this case.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Chapter 5

Red-Blue Covering Problems

Chapters 3 and 4 dealt with finding and destroying those parts of a matrix that
conflict with the C1P—the task was to establish the C1P. In contrast, the follow-
ing two chapters study combinatorial problems where the objective has nothing
to do with the C1P. We analyze the behavior of these problems on input matrices
that have the C1P or are “close” to having the C1P.

Chapter 5 deals with variants of the subset selection problem Set Cover.
Each of these Set Cover variants can be modelled as a matrix problem on
a matrix with two types of rows (“red” and “blue” rows) and is NP-complete
in general. We examine whether the problems become polynomial-time solvable
when some or all rows of the input matrix contain at most one block of 1s.
Thereby, we explore a sharp border between polynomial-time solvability and NP-
hardness.

5.1 Introduction and Overview

Covering problems are of central importance in algorithm theory and combinato-
rial optimization. Two of the most prominent examples for this type of problem
are Set Cover and Hitting Set. In both problems, the input consists of
a set S and a collection C of subsets of S. For Set Cover, one tries to find a
minimum-size subcollection C′ ⊆ C that covers S, that is, it satisfies

⋃

C∈C′ C = S
(see Section 2.5 for an alternative definition of Set Cover as a matrix prob-
lem). For Hitting Set, one tries to find a minimum-size subset S ′ ⊆ S that
covers C, that is, each set in C contains at least one element from S ′. It is well-
known that both problems are equivalent1 in this general setting [ADP80]. Due
to their practical importance, there is a lot of literature on Set Cover and
Hitting Set [CLRS01, CP93, CTF00]. Set Cover is NP-hard and only al-
lows for a logarithmic-factor polynomial-time approximation [Fei98]. Moreover,

1Generally, a set cover problem, where elements have to be covered by sets, can be equiva-
lently formulated as a hitting set problem, where sets have to be covered by elements, by simply
exchanging elements and sets.

119

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

120 Chapter 5. Red-Blue Covering Problems

it is W[2]-complete (that is, parameterized intractable) with respect to the pa-
rameter “solution size” [DF99]. Due to the equivalence between Set Cover and
Hitting Set, these results also apply to Hitting Set.

Generalizations as well as restrictions of Set Cover and Hitting Set
played a prominent role in algorithmics. In this chapter, we are going to study
two covering problems with an important generalization called “red-blue” to-
gether with the consecutive-ones property, which we apply to both problems.
The first covering problem is called Minimum-Degree Hypergraph (MDH)
and is defined as follows:Minimum-Degree Hypergraph (MDH)

Input: A set S, two collections Cblue and Cred of subsets of S, and
a nonnegative integer k.

Question: Is there a subset S ′ ⊆ S such that

∀C ∈ Cblue : |S ′ ∩ C| ≥ 1, and

∀C ∈ Cred : |S ′ ∩ C| ≤ k?

Feder et al. [FMZ06] introduced this problem and gave a factor-O(s · log(|Cblue|))
polynomial-time approximation algorithm for its minimization version, where s
denotes the maximum number of occurrences of an element from S in the sets
of Cred. Motivated by applications concerning interference reduction in cellular
networks (see also Section 1.1), Kuhn et al. [KRW+05] introduced the Minimum
Membership Set Cover problem, a special case of MDH. Here, given a set S
and a collection C of subsets of S, one wants to determine a subcollection C′ ⊆ C
that covers S but where the maximum number of occurrences of each element
from S in the subsets in C′ shall be minimized. MMSC is the special case of
MDH where Cblue = Cred.

Our second covering problem within the “red-blue setting”, the so-called
Red-Blue Set Cover (RBSC) problem, has been introduced by Carr et
al. [CDKM00] and is defined as follows.

Input: Two disjoint sets B (blue elements) and R (red elements),
a collection C of subsets of B ∪ R, and a nonnegative
integer k.

Question: Is there a subcollection C′ ⊆ C such that

∀b ∈ B ∃C ∈ C′ : b ∈ C, and
∣
∣
(⋃

C∈C′

C
)
∩ R

∣
∣ ≤ k?

Set Cover is the special case of RBSC where each set in C contains exactly
one red element and no red element is contained in more than one set. Carr
et al. provided several natural application scenarios such as data mining for

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

5.1. Introduction and Overview 121

RBSC and several positive and negative results concerning the polynomial-time
approximability of RBSC.

To emphasize the close relationship between RBSC and MDH, we present
the following, equivalent definition of RBSC.2 This definition will be made use
of in the remainder of this chapter.Red-Blue Set Cover (RBSC)

Input: A set S, two collections Cblue and Cred of subsets of S, and
a nonnegative integer k.

Question: Is there a subset S ′ ⊆ S such that

∀C ∈ Cblue : |S ′ ∩ C| ≥ 1, and

|{C ∈ Cred | S ′ ∩ C 6= ∅}| ≤ k?

The difference between RBSC and MDH is that in the case of RBSC the
number of red sets containing elements of the solution set is restricted, whereas in
the case of MDH the maximum number of elements of a red set being contained
in the solution set is restricted. Consider, for example, the subset system

S = {a, b, c},

Cblue = {{a}, {b, c}},

Cred = {{a, b}, {c}}.

The only solution for RBSC with k = 1 on this subset system is S ′ = {a, b},
whereas the only solution for MDH with k = 1 is S ′ = {a, c}.

As to the consecutive-ones property, this property was defined for matrices
so far. Applied to instances of the problems MDH and RBSC, the C1P means
that the elements of S can be ordered in a linear arrangement such that each
set in Cblue and Cred contains only a whole “chunk” of that arrangement, that is,
without any gaps. This definition of the C1P as a property of a subset system
is consistent with the C1P of matrices as we know it from the previous chapters:
one just has to think of the subset system in an MDH or RBSC instance as a
coefficient matrix M where the elements in the ground set correspond to columns
and the sets in the subset collection correspond to rows (see also Section 2.3,
where the C1P was also applied to subsets of a ground set in this way).

Set Cover instances with the C1P are solvable in polynomial time, a fact
which is made use of in many practical applications [MSW05, MW04, NW88,
RS04, VW62] (see also Sections 2.4 and 2.5). In applications of MDH or RBSC
with geographic background (such as the interference reduction problem consid-
ered by Kuhn et al. [KRW+05] or the very similar problem about cellular networks
that we described in Section 1.1), the problem instances may have the C1P or be

2This equivalence can be seen, similar to the equivalence between Set Cover and Hitting
Set, by exchanging elements and sets. The sets B and R in the original definition correspond
to the collections Cblue and Cred in the equivalent formulation.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

122 Chapter 5. Red-Blue Covering Problems

“close” to having the C1P [MSW05, MW04, RS04]. Katz et al. [KMN05] consid-
ered geometric Set Cover stabbing problems that are also related to covering
problems under the C1P restriction: some of their problems can be reduced to
Set Cover on matrices with the C1P.

Contributions. In this chapter, we bring together the concepts of “red-blue”
and the C1P, that is, we investigate the time complexity of the two red-blue
covering problems with the C1P. The formulations of MDH and RBSC open a
wide field of natural investigations concerning the C1P, the point being that the
C1P may apply to either Cblue, Cred, Cblue ∪ Cred, or none of Cblue and Cred.

On the positive side, we show polynomial-time solvability for MDH and
RBSC in the case that Cblue ∪ Cred possesses the C1P. In addition, we provide
a simple greedy algorithm that approximates RBSC with Cblue ∪ Cred having
the C1P to an additive term of one. On the negative side, we prove several NP-
completeness results in case that at most one of Cred and Cblue has the C1P. More
specifically, we indicate several sharp borders between polynomial-time solvabil-
ity and NP-completeness of MDH depending on the subset sizes (the main point
being, roughly speaking, a distinction between subset sizes two and three). More-
over, we show that if at most one of Cred and Cblue has the C1P, then also RBSC
becomes NP-complete.

5.2 Basic Facts and Definitions

Formally, the consecutive-ones property on subset systems is defined as follows.

Definition 5.1. Given a set S = {s1, . . . , sn} and a collection C of subsets of S,
the collection C is said to have the C1P if there exists a linear order ≺ on S such
that for every set C ∈ C and si ≺ sk ≺ sj, it holds that si ∈ C∧sj ∈ C ⇒ sk ∈ C.

Given a subset system (S, C), the linear order ≺ in Definition 5.1 can be
found in O(|S| + |C| +

∑

C∈C |C|) time (see Section 2.3). Therefore, in all our
algorithmic results except Theorem 5.2 we can without loss of generality assume
that the elements of the set S in the input are already sorted according to the
order ≺.

The following simple observation is useful for our NP-completeness proofs.

Observation 5.1. Given a set S = {s1, . . . , sn} and a collection C of subsets
of S such that all sets in C are mutually disjoint, the collection C has the C1P.

We say that a set S ′ ⊆ S has the minimum overlap property if each set
in Cblue contains at least one element from S ′. (The term “minimum overlap
property” expresses that the solution S ′ must have an “overlap” of at least one
element with every set of Cblue.) Moreover, for a given instance (S, Cblue, Cred, k)
of MDH and RBSC, we will call k the maximum overlap and the maximum

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

5.2. Basic Facts and Definitions 123

intersection, respectively. A set S ′ has the maximum overlap property if each
set in Cred contains at most k elements from S ′. Analogously, a set S ′ has the
maximum intersection property if at most k sets in Cred contain elements from S ′.

It is easy to see that the problems considered in this chapter are all in NP:
just guess a subset S ′ ⊆ S and check in polynomial time whether it is a solution.
Therefore, all our NP-completeness proofs will only show the NP-hardness of the
corresponding problems.

We continue with two observations concerning MDH without C1P. Being a
generalization of Set Cover, MDH is of course NP-hard in general. This even
holds for a rather strongly restricted variant:

Observation 5.2. MDH is NP-complete even if |Cred| = 1 and ∀C ∈ Cblue :
|C| = 2.

The observation can be seen by a reduction from the NP-complete Vertex
Cover problem: Given a graph G = (V, E) and a nonnegative integer k, this
problem asks for a size-k subset V ′ ⊆ V such that for every edge in E, at least one
of its endpoints is in V ′ (see Section 1.3). Given an instance (G, k) of Vertex
Cover, construct an instance of MDH by setting S := V , Cblue := E, Cred := {V }
(that is, the collection Cred consists of one set containing all elements of S), and
setting the maximum overlap equal to k. The correctness of this construction is
straightforward.

Polynomial-time solvable instances of MDH arise when the cardinalities of
all sets in the collection Cblue are restricted to 2 and the maximum overlap k is 1:

Observation 5.3. MDH can be solved in polynomial time if k = 1 and ∀C ∈
Cblue : |C| ≤ 2.

This observation can be shown by stating the restricted MDH instance equiv-
alently as an instance of the 2-Sat problem, where, given a Boolean formula F
in conjunctive normal form with at most two literals per clause, the question is
whether there is a satisfying truth assignment for F . 2-Sat is well-known to
be solvable in linear time [APT79]. For the reduction, construct the following
instance F of 2-Sat for a given instance (S, Cblue, Cred, 1) of MDH:

• For each element si ∈ S, where 1 ≤ i ≤ n, F contains the variable xi.

• For each set {si1 , si2} ∈ Cblue, F contains the clause (xi1 ∨ xi2).

• For each set {si1, . . . , sid} ∈ Cred, F contains d(d−1)/2 clauses (¬xia ∨¬xib)
with 1 ≤ a < b ≤ d.

The correctness of the reduction is obvious: Every satisfying truth assignment
for F yields a solution for MDH by setting S ′ = {si | xi is set to true}. Due to
the construction of the clauses, the set S ′ contains at least one element from every
set {si1 , si2} ∈ Cblue and at most one element from every set {si1 , . . . , sid} ∈ Cred:

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

124 Chapter 5. Red-Blue Covering Problems

if S ′ contained two elements sia , sib from a set {si1, . . . , sid} ∈ Cred, then the
clause (¬xia ∨ ¬xib) would not evaluate to true. Similarly, every solution S ′ for
the MDH instance yields a satisfying truth assignment for F by setting every
variable to true that corresponds to an element in S ′.

Corollary 5.1. MDH can be solved in polynomial time if ∀C ∈ Cblue ∪ Cred :
|C| ≤ 2.

To see this, first note that if k ≥ 2 then the corresponding MDH instance is
trivially solvable by setting S ′ := S, because then no set in Cred has more than k
elements in common with the solution set S ′. Hence, we only need to deal with
the case k = 1, for which the claim is true by Observation 5.3.

Note that the restrictions imposed by Observation 5.3 and Corollary 5.1 are
“tight.” If we allow Cblue to contain cardinality-3 subsets, then MDH becomes
NP-complete (Theorems 5.5 and 5.7). If Cred contains cardinality-3 subsets and
the maximum overlap is 2, then we can also prove the NP-completeness (Theo-
rems 5.6 and 5.8).

5.3 Minimum-Degree Hypergraph and Red-

Blue Set Cover with the C1P

In this section, we require that in all instances (S, Cblue, Cred, k) of MDH or RBSC,
the set C := Cblue ∪ Cred has the C1P. We call these restricted problems variants
“MDH with C1P” and “RBSC with C1P,” respectively.

By using known linear programming techniques, MDH with C1P can be
solved in polynomial time; we will describe this approach in Section 5.3.1, fol-
lowed by a much simpler greedy approximation algorithm in Section 5.3.2. The
polynomial-time solvability of RBSC with C1P is more difficult to see; for this
problem, we will present an exact polynomial-time dynamic programming algo-
rithm in Section 5.3.3.

To simplify our subsequent considerations, we assume that the elements in
S = {s1, . . . , sn} are sorted according to the C1P. This sorting can be done in
O(|S|+ |C|+

∑

C∈C |C|) time (see Section 2.3). For each subset C ∈ Cred∪Cblue, its
left index lx(C) is defined as min{i | si ∈ C} and its right index rx(C) is defined
as max{i | si ∈ C}.

5.3.1 Linear Programming for Minimum-Degree Hyper-
graph

Here, we give a formulation of MDH with C1P as an integer linear program
(ILP). By using the techniques explained in Section 2.4, this ILP can be solved
in polynomial time. Again, we again refer to Schrijver [Sch86] for basics about
(integer) linear programming.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

5.3. Input Matrices with the C1P 125

Given an instance of MDH with the C1P, we introduce for each element si ∈ S
a variable xi which, if set to 1, expresses that si has to be part of an optimal
solution. Every feasible solution for the following integer linear program (ILP)
then obviously yields a solution for MDH with C1P:

−xlx(C) − xlx(C)+1 − . . . − xrx(C) ≤ −1 ∀C ∈ Cblue

xlx(C) + xlx(C)+1 + . . . + xrx(C) ≤ k ∀C ∈ Cred

xi ∈ {0, 1} ∀i ∈ {1, . . . , |S|}

Note that the coefficient matrix of this ILP has the C1P, that is, every row of the
matrix contains only either 0s and 1s or 0s and −1s, and in every row the non-
zero entries appear consecutively. Therefore, as stated in Section 2.4, the ILP is
totally unimodular (Theorem 2.10), and, thus, can be solved in polynomial time
(Theorem 2.11).

In order to solve the ILP faster than by only using the fact that its coefficient
matrix is totally unimodular, one can exploit the C1P by transforming the ILP
into an edge-weighted graph and solving a shortest path problem on this graph
as shown in Section 2.4. For applying this approach to the ILP above, take the
relaxation of the ILP, that is, replace the constraints xi ∈ {0, 1} ∀i ∈ {1, . . . , |S|}
by −xi ≤ 0 ∀i ∈ {1, . . . , |S|} and xi ≤ 1 ∀i ∈ {1, . . . , |S|}. Then, replace the
n variables x1, . . . , xn by n + 1 variables y0, . . . , yn such that xi = yi − yi−1 for
all i ∈ {1, . . . , n}, which yields the following inequation system.

ylx(C)−1 − yrx(C) ≤ −1 ∀C ∈ Cblue

−ylx(C)−1 + yrx(C) ≤ k ∀C ∈ Cred

−yi + yi−1 ≤ 0 ∀i ∈ {1, . . . , |S|}
yi − yi−1 ≤ 1 ∀i ∈ {1, . . . , |S|}

Now interpret every row of this inequation system as a directed edge in an edge
weighted graph G, which yields the directed edge-weighted graph G = (V, E)
with

V = {vi | the ILP contains a variable yi},

E = {(vi, vj) | the ILP contains an inequation whose left side is −yi + yj},

where every edge e ∈ E has a weight that is equal to the right side of the
inequation corresponding to e in the ILP.

Farkas’ Lemma (Lemma 2.2) states that if A is an m× n matrix with entries

from R and ~b ∈ Rm is a vector, then the inequation system A~y ≤ ~b has a
solution ~y ∈ Rn iff the inequation system ~z TA = (0n)T, ~z T~b < 0, ~z ≥ 0m has no
solution ~z ∈ Rm. This implies that the given MDH instance is a yes-instance
iff G contains no directed cycle whose edge weight sum is negative. By using the
Bellmann-Ford-Moore-Algorithm [CLRS01], it can be decided in O(|V | · |E|) time
if G contains such a negative cycle, and, hence, MDH with C1P can be decided
in O(|S| · (|Cblue| + |Cred| + 2 · |S|)) = O(|S|3) time.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

126 Chapter 5. Red-Blue Covering Problems

If G contains no cycle with negative edge weight sum and the values of the yi

shall be computed, then just set y0 to 0 and yi, i ∈ {1, . . . , n}, to the length of
the shortest path in G from v0 to vi, which can be computed by the Bellmann-
Ford-Moore-Algorithm in O(|S|3) time.

Altogether, we summarize our observations in the following theorem.

Theorem 5.1. Minimum-Degree Hypergraph can be solved in O(|S| ·
(|Cblue| + |Cred| + |S|)) = O(|S|3) time if Cblue ∪ Cred has the C1P.

5.3.2 Greedy Algorithm for Minimum-Degree Hyper-
graph

As we have seen, MDH with C1P can be solved in polynomial time with an ILP
approach. By way of contrast, here we describe a simple greedy algorithm for
MDH with C1P that has an absolute approximation guarantee of an additive
term “+1.” To this end, we consider the optimization version of MDH: Given S,
Cblue, and Cred, find a subset S ′ ⊆ S with S ′ ∩ C 6= ∅ for all C ∈ Cblue which
minimizes max{|C ′ ∩ S ′| | C ′ ∈ Cred}.

The idea of the greedy algorithm is to search in each step for the set C ∈ Cblue

with the leftmost right index rx(C) such that no element of C is contained in the
current solution set, and to add the rightmost element of C to the solution:

1: S ′ := ∅; C′
blue

:= Cblue;
2: while C′

blue
6= ∅: {

3: C := set from C′
blue

with minimum right index;
4: S ′ := S ′ ∪ {srx(C)};
5: C′

blue
:= C′

blue
\ {C ∈ C′

blue
: C ∩ S ′ 6= ∅}; }

6: return S ′;

Theorem 5.2. For MDH with C1P, the greedy algorithm approximates an opti-
mal solution within an additive term of one in O(|S| · |Cblue|) time, provided that
the elements in S are sorted such that all subsets in Cblue have the C1P.

Proof. Obviously, the output S ′ of the greedy algorithm has the minimum overlap
property. It is also clear that the algorithm runs in O(|S| · |Cblue|) time. It remains
to determine max{|C ′ ∩ S ′| | C ′ ∈ Cred}.

Let Cmax denote one subset in Cred with |Cmax ∩ S ′| = max{|C ′ ∩ S ′| | C ′ ∈
Cred}. Due to the C1P, all sets C chosen in step 3 are pairwise disjoint, and, hence,
the set Cmax contains at least |Cmax ∩ S ′| − 1 pairwise disjoint sets from Cblue as
subsets. This implies that any solution for this instance has to contain at least
|Cmax ∩ S ′| − 1 elements from Cmax to satisfy the minimum overlap property for
these pairwise disjoint Cblue-sets. Therefore, |Cmax ∩ S ′opt| ≥ |Cmax ∩ S ′| − 1 for
any optimal solution S ′opt.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

5.3. Input Matrices with the C1P 127

5.3.3 Dynamic Programming for Red-Blue Set Cover

In the case of RBSC with C1P, we do not know an ILP formulation whose
coefficient matrix is totally unimodular. We present a polynomial-time dynamic
programming algorithm that solves the optimization version of Red-Blue Set
Cover with C1P: Given S, Cblue, and Cred, find a subset S ′ ⊆ S with S ′ ∩C 6= ∅
for all C ∈ Cblue which minimizes |{C ∈ Cred | S ′ ∩ C 6= ∅}|.

We assume that the sets in Cblue are ordered according to their left indices
and denote them with B1, . . . , B|Cblue|; the sets of Cred are ordered analogously and
denoted with R1, . . . , R|Cred|. If a set in Cblue is a superset of another set in Cblue,
it can be removed. Therefore, for any two sets Bi, Bj ∈ Cblue it holds that

lx(Bi) < lx(Bj) ⇔ rx(Bi) < rx(Bj).

Given a subset S ′ ⊆ S, we denote with w(S ′) the number of sets from Cred that
are covered by S ′.

The idea of the dynamic programming algorithm is to compute so-called op-
timal partial solutions Sopt(i1, i2, j). Each optimal partial solution Sopt(i1, i2, j)
has the following properties:

1. Sopt(i1, i2, j) ⊆ {s1, . . . , si1},

2. Sopt(i1, i2, j) covers all sets B1, . . . , Bj ,

3. if i2 > 0, then Sopt(i1, i2, j) contains at least one element from {si2 , . . . , sn}
(where n := |S|), and

4. the cost w(Sopt(i1, i2, j)) is minimum under all subsets of S that have the
first three properties.

A subset of S that has the first three properties is called a feasible partial
solution.

The algorithm uses a three-dimensional table Sopt(i1, i2, j) with 1 ≤ i1 ≤ n,
0 ≤ i2 ≤ n, and 1 ≤ j ≤ |Cblue| for storing optimal partial solutions, and a
table Wopt(i1, i2, j) of the same size where the cost of every optimal partial solution
is stored. Then, the entry Sopt(n, 0, |Cblue|) contains an optimal solution for the
RBSC instance.

The two tables are filled with three nested loops, iterating over i1, i2, and j. To
compute table entries Sopt(i1, i2, j), Wopt(i1, i2, j) with i1 = 1 is simple. All other
entries are computed as follows: If lx(Bj) > i1 or i2 > i1, then there is no partial
solution Sopt(i1, i2, j), and Wopt(i1, i2, j) is set to ∞. Otherwise, we consider two
cases: the optimal partial solution contains si1 or not. (Note that if i2 = i1, then
all feasible partial solutions have to contain si1 .) In the first case, the optimal
partial solution Sopt(i1, i2, j) can only contain elements from {s1, . . . , si1−1}, and,
hence, Sopt(i1, i2, j) = Sopt(i1 − 1, i2, j). In the second case, the optimal partial
solution Sopt(i1, i2, j) is computed as follows: By choosing si1 , property 3 is clearly

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

128 Chapter 5. Red-Blue Covering Problems

1: if (lx(Bj) > i1) ∨ (i2 > i1): {
2: Wopt(i1, i2, j) := ∞; Sopt(i1, i2, j) := ∅; break; }
3: Wopt(i1, i2, j) := Wopt(i1 − 1, i2, j); // Lines 3–4: partial solution not containing si1

4: Sopt(i1, i2, j) := Sopt(i1 − 1, i2, j);
5: j′ := max{p ∈ {1, . . . , j} | rx(Bp) < i1}; // Lines 5–14: partial sol. containing si1

6: x := Wopt(i1 − 1, 0, j′) + |Cred(i1)|;
7: if x < Wopt(i1, i2, j): {
8: Wopt(i1, i2, j) := x;
9: Sopt(i1, i2, j) := Sopt(i1 − 1, 0, j′) ∪ {si1}; }
10: for k := 1 to |C←

red
(i1)|: {

11: x := Wopt(i1 − 1, lx(R←(i1, k)), j′) + |Cred(i1)| − k;
12: if x < Wopt(i1, i2, j): {
13: Wopt(i1, i2, j) := x;
14: Sopt(i1, i2, j) := Sopt(i1 − 1, lx(R←(i1, k)), j′) ∪ {si1}; }}

Figure 5.1: Dynamic programming algorithm for RBSC. The procedure com-
putes an optimal partial solution Sopt(i1, i2, j) and its cost Wopt(i1, i2, j) for i1 > 1.

obtained because we can assume that i2 ≤ i1. Moreover, all sets in Cblue that
contain si1 are covered by si1 . Therefore, to obtain property 2, it remains to
cover those sets Bp ∈ {B1, . . . , Bj} that have rx(Bp) < i1. Hence, adding si1 to an
optimal partial solution Sopt(i1−1, i′2, j

′), where i′2 is chosen from {0, . . . , i2} and j′

is the maximum possible index such that rx(Bj′) < i1, yields an optimal partial
solution Sopt(i1, i2, j). The value for i′2 has to be chosen such that W (i1, i2, j) =
W (i1 − 1, i′2, j

′) + |Cred(i1)| − |X| is minimum, where Cred(i1) denotes the sets
from Cred that are covered by si1 and X denotes the sets from Cred that are
covered by both si1 and Sopt(i1 − 1, i′2, j

′).
Before showing the details of our algorithm and proving its correctness, we

introduce some more notations:

Cred(i) := {C ∈ Cred | si ∈ C}, 1 ≤ i ≤ n, and

C←
red

(i) := {C ∈ Cred | si ∈ C ∧ si−1 ∈ C}, 1 < i ≤ n.

With R←(i, k) we denote the kth set from C←
red

(i), where we assume that
the sets C ∈ C←

red
(i) are ordered according to lx(C). The pseudocode in Fig-

ure 5.1 shows how an optimal partial solution Sopt(i1, i2, j) together with its
cost Wopt(i1, i2, j) is computed for i1 > 1.

Theorem 5.3. RBSC can be solved in O(|Cblue| · |Cred| · |S|
2) time if Cblue ∪ Cred

has the C1P.

Proof. We show the correctness of the pseudocode shown in Figure 5.1. In
lines 3–4 the algorithm searches for an optimal partial solution Sopt(i1, i2, j) that

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

5.4. Input Matrices with Partial C1P 129

does not contain si1 . Lines 5–14 handle the case that the optimal partial solu-
tion Sopt(i1, i2, j) contains si1. Clearly the procedure outputs a feasible partial
solution, and it is easy to verify that the value of Wopt(i1, i2, j) computed by
the procedure upper-bounds the cost of the partial solution Sopt(i1, i2, j) com-
puted by the procedure. It remains to show that the value of Wopt(i1, i2, j)
computed by the procedure actually equals the cost of an optimal partial so-
lution in the case that the optimal partial solution contains si1 . To this end,
let Sopt(i1, i2, j) be an optimal partial solution where si1 ∈ Sopt(i1, i2, j). More-
over, let S ′ := Sopt(i1, i2, j) \ {si1}, let j′ := max{p ∈ {1, . . . , j} | rx(Bp) < i1},
and let i′ := max{q ∈ {1, . . . , n} | sq ∈ S ′}. We distinguish two cases.

Case 1: For all C ∈ Cred(i1) it holds that si′ /∈ C. Then Wopt(i1, i2, j) =
w(S ′) + |Cred(i1)|. The set S ′ must have the following properties: S ′ consists of
elements from {s1, . . . , si1−1}, and S ′ covers all sets B1, . . . , Bj′. Under all subsets
of S having these two properties, the set Sopt(i1−1, 0, j′) is, by definition, the one
with minimum cost, and, hence, choosing Sopt(i1, i2, j) = Sopt(i1 − 1, 0, j′)∪ {si1}
is optimal. In this case, the procedure finds the correct value of Wopt(i1, i2, j) in
lines 6–9.

Case 2: There exists a k ∈ {1, . . . , |C←
red

(i1)|} such that R←(i1, k) ∩ S ′ 6= ∅.
We assume that k is maximum under this property. Due to the order of the sets
in Cred, we have R←(i1, k

′) ∩ S ′ 6= ∅ for all k′ < k, and, hence, Wopt(i1, i2, j) =
w(S ′) + |Cred(i1)| − k. The set S ′ must have the following properties: S ′ consists
of elements from {s1, . . . , si1−1}, and S ′ covers all sets B1, . . . , Bj′. Moreover,
the maximum index i′ of an element in S ′ has to satisfy i′ ≥ lx(R←(i1, k)),
because otherwise R←(i1, k) would not be covered by S ′. Under all subsets of S
having these three properties, the set Sopt(i1 −1, lx(R←(i1, k)), j′) is the one with
minimum cost, and, hence, choosing Sopt(i1, i2, j) := Sopt(i1−1, lx(R←(i1, k)), j′)∪
{si1} is optimal. In this case, the procedure finds the correct value of Wopt(i1, i2, j)
in lines 10–14.

It remains to show the running time. The table size is O(|S|2 · |Cblue|), and to
compute an entry of the table, at most O(|Cred|) other entries have to be considered
in lines 10–14. Line 5 can be executed in constant time if in a preprocessing step
(which can be implemented similar to bucket sort and needs O(|Cblue|+ |S|) time)
for every possible value of i1 the corresponding value of j′ is computed and stored
in an extra table. This yields the claimed running time.

5.4 Minimum-Degree Hypergraph and Red-

Blue Set Cover with Partial C1P

Whereas the C1P case always leads to polynomial-time solvability, in case of only
partially holding C1Ps we typically face NP-hardness as shown in this section.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

130 Chapter 5. Red-Blue Covering Problems

5.4.1 Minimum-Degree Hypergraph with Partial C1P

Here, we prove that MDH remains NP-complete even under the requirement that
either Cblue or Cred is to have the C1P. To this end, we give reductions from the
following restricted variant of the Satisfiability problem:Restri
ted 3-Sat (R-3Sat)

Input: An n-variable, m-clause Boolean formula F in conjunctive
normal form where each variable xi, 1 ≤ i ≤ n, appears
at most three times, each literal appears at most twice,
and each clause contains at most three literals.

Question: Is there a satisfying truth assignment for F ?

R-3Sat is NP-complete (see, for example, [Pap94, page 183]).3 Without
loss of generality, we assume that no variable appears in F solely positively or
negatively, and F contains no singleton clause.

Our reductions show the NP-completeness of Minimum-Degree Hyper-
graph variants that have several further restrictions apart from the C1P for Cblue

or Cred. To emphasize the correlation between the hardness of the problem and
the value of k and the subset sizes in Cblue and Cred, we summarize some of the re-
sults in the following statement, which is a corollary of Observations 5.2 and 5.3,
Corollary 5.1, and Theorems 5.5, 5.6, 5.7, and 5.8.

Theorem 5.4. MDH is NP-complete even if all of the following restrictions
apply:

1. One of the collections Cblue and Cred has the consecutive-ones property,

2. k = 1, and

3. ∀C ∈ Cblue : |C| ≤ 3 and ∀C ∈ Cred : |C| ≤ 2.

However, replacing restriction 2 by k = 0, replacing restriction 3 by ∀C ∈ Cblue :
|C| ≤ 2, or replacing restriction 3 by ∀C ∈ Cred : |C| ≤ 1 leads to polynomial-time
solvability.

MDH is NP-complete even if all of the following restrictions apply:

1. One of the collections Cblue and Cred has the consecutive-ones property,

2. k = 2, and

3. ∀C ∈ Cblue : |C| ≤ 2 and ∀C ∈ Cred : |C| ≤ 3.

However, replacing restriction 2 by k ≤ 1, replacing restriction 3 by ∀C ∈ Cblue :
|C| ≤ 1, or replacing restriction 3 by ∀C ∈ Cred : |C| ≤ 2 leads to polynomial-time
solvability.

3It is essential for the NP-completeness of R-3Sat that the Boolean formula F may contain
size-2 clauses, otherwise, the problem is solvable in polynomial time [Pap94, page 207].

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

5.4. Input Matrices with Partial C1P 131

Consecutive-Ones Property for Cblue

The following two theorems (Theorems 5.5 and 5.6) show that the requirement
of Cblue obeying the C1P does not make MDH tractable. The theorems com-
plement each other in the sense that they impose different restrictions on the
cardinalities of the sets Cblue and Cred; Theorem 5.5 needs size-3 sets in Cblue and
size-2 sets in Cred (the reduction encodes clauses of a given R-3Sat instance
in Cblue) while the converse holds true for Theorem 5.6 (the reduction encodes
clauses in Cred).

Theorem 5.5. MDH is NP-complete even if all of the following restrictions
apply:

1. The collection Cblue has the consecutive-ones property,

2. k = 1,

3. ∀C ∈ Cblue : |C| ≤ 3 and ∀C ∈ Cred : |C| ≤ 2, and

4. ∀s ∈ S : |{C ∈ Cblue | s ∈ C}| = 1 and |{C ∈ Cred | s ∈ C}| ≤ 2.

Proof. We prove the theorem by a reduction from R-3Sat. Given an m-clause
Boolean formula F that is an instance of R-3Sat, construct the following in-
stance (S, Cblue, Cred, k) of MDH:

• The set S consists of the elements s1
1, s

2
1, s

3
1, . . . , s

1
m, s2

m, s3
m. The element si

j

corresponds to the ith literal in the jth clause of F . If the jth clause has
only two literals, then S contains only s1

j and s2
j .

• Each set in Cblue corresponds to a clause in F , that is, for the ith clause
in F , we add {s1

i , s
2
i , s

3
i } to Cblue if it contains three literals and {s1

i , s
2
i } if it

contains two literals.

• For all variables x and for all pairs of literals l1 = x, l2 = ¬x in F : If l1 is
the ith literal in the jth clause and l2 is the pth literal in the qth clause
of F , then Cred contains the set {si

j, s
p
q}.

• The maximum overlap k is set to one.

The construction is illustrated in Figure 5.2. It is easy to see that, by the def-
inition of R-3Sat, the constructed instance satisfies the restrictions claimed in
the theorem; note that Cblue has the consecutive-ones property due to Observa-
tion 5.1. It remains to be shown that the constructed instance of MDH has a
solution iff F has a satisfying truth assignment T .

“⇒” Assume that the constructed instance of MDH has a solution set S ′.
Let T be a truth assignment such that, for every si

j ∈ S ′, the variable represented
by si

j is set to true if the literal represented by si
j is positive, and false otherwise.

This truth assignment is well defined because S ′ must have the maximum overlap

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

132 Chapter 5. Red-Blue Covering Problems

F = (x1 ∨ x2 ∨ ¬x3)

∧ (x3 ∨ x4)

∧ (¬x1 ∨ ¬x2)

∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

s
2
1s

1
1 s

3
1 s

2
2s

1
2 s

2
3s

1
3 s

2
4s

1
4 s

3
4

Cblue

S

s1
1 s2

1 s3
1 s1

2 s2
2 s1

3 s2
3 s1

4 s2
4 s3

4

s1
1 s1

3

s1
1 s1

4

s2
1 s2

3

s3
1 s1

2

s2
4

s2
2 s3

4

Cred

s1
2

{

{

{

{

{

{

{

}

}

}

}

}

}

}

{ }{ }}{

{ }

Figure 5.2: Example of encoding an instance of R-3Sat into an instance of MDH
(proof of Theorem 5.5). Each clause of the Boolean formula F is represented by
a set in Cblue. The sets in Cred and the maximum overlap k = 1 ensure that
no two elements from S that correspond to conflicting truth assignments of the
same variable can be chosen into a solution. Observe how S ′ = {s1

1, s
1
2, s

2
3, s

3
4}

(grey columns) constitutes a valid solution to the MDH instance; accordingly, a
truth assignment T which makes all the corresponding literals evaluate to true
satisfies F .

property with k = 1—therefore, it cannot happen that two elements si
j, s

p
q ∈ S ′

correspond to different literals of the same variable.
To show that T constitutes a satisfying truth assignment for F , observe that,

for each clause of F , at least one element from S ′ corresponds to a literal in this
clause because S ′ has the minimum overlap property. On the one hand, if this
element corresponds to a positive literal xi, then T (xi) = true, satisfying the
clause. On the other hand, if the element corresponds to a negative literal ¬xi,
then T (xi) = false, satisfying the clause.

“⇐” Let T be a satisfying truth assignment for F . Let S ′ be the set of
elements in S that correspond to literals that evaluate to true under T . Then, S ′

has the minimum overlap property because at least one literal in every clause
of F must evaluate to true under T and each set in Cblue represents exactly one
clause of F . Also, S ′ has the maximum overlap property with k = 1 because T is
well-defined for every variable that occurs in F . Since S ′ has both the minimum
and maximum overlap property, it is a valid solution to the MDH instance.

Theorem 5.6. MDH is NP-complete even if all of the following restrictions
apply:

1. The collection Cblue has the consecutive-ones property,

2. k = 2,

3. ∀C ∈ Cblue : |C| ≤ 2 and ∀C ∈ Cred : |C| ≤ 3, and

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

5.4. Input Matrices with Partial C1P 133

4. ∀s ∈ S : |{C ∈ Cblue | s ∈ C}| = 1 and |{C ∈ Cred | s ∈ C}| ≤ 2.

Proof. We prove the theorem by a reduction from R-3Sat. The reduction is
similar to the one used in the proof of Theorem 5.5, but this time one uses the
sets of Cred instead of those of Cblue to model the clauses of F , and one uses the sets
of Cblue to enforce the consistency between literals representing the same variable.
Moreover, in contrast to the reduction used in the proof of Theorem 5.5, here each
element chosen into the solution set—if a solution exists—stands for a literal that
is set to false by a satisfying truth assignment for F . Hence, not more than two
elements per red set may be chosen into the solution set if the corresponding
truth assignment for F shall be satisfying; this is expressed by setting k to two.
In order to prevent both literals of a size-2 clause from being set to false, we add
to each set in Cred corresponding to a size-2 clause a dummy element which has
to be part of every solution.

The instance (S, Cblue, Cred, k) of MDH is constructed as follows:

• We set S := {s1, s̄1, . . . , sn, s̄n}∪{s
c
1, . . . , s

c
m}. Herein, n denotes the number

of variables in F and m denotes the number of clauses in F . For a variable xi

in F , si represents the literal xi and s̄i represents the literal ¬xi. We use
the elements sc

i to ensure that each set in Cred has size three.

• Cblue :=
(⋃

1≤i≤n{{si, s̄i}}
)
∪ {{sc

1}, . . . , {s
c
m}}.

• For each clause c in F , Cred contains a set C of those elements from S that
represent the literals of c: If the jth clause in F contains only two literals,
then sc

j is added to its representing set in Cred as the third element.

• The maximum overlap k is set to two.

See Figure 5.3 for an illustration of the construction. Clearly, this MDH instance
satisfies all restrictions as claimed by the theorem. The correspondence between
the solutions of the constructed instance and the satisfying truth assignments
for F follows from the following two observations.

First, if the constructed MDH instance is solvable, then it has always a solu-
tion set S ′ such that, for each variable xi, exactly one of si and s̄i is in S ′. This
can easily be seen because if a solution set S ′ contains both of si and s̄i for a
variable xi, then S ′ without si (or S ′ without s̄i) is also a solution for the MDH
instance. This observation guarantees that we can always construct a well-defined
truth assignment for F from S ′ and vice versa as follows: T (xi) = true ⇔ si /∈ S ′.

Second, F is satisfiable with a truth assignment T iff every clause of size three
has at most two literals that are evaluated to false by T and every clause of size
two has at most one literal that is evaluated to false. By the correspondence
between T and S ′, it is then easy to observe that T satisfies F iff S ′ fulfills the
maximum overlap property with k = 2, that is, S ′ meets, for each clause c, the
set in Cred corresponding to c at most twice.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

134 Chapter 5. Red-Blue Covering Problems

F = (x1 ∨ x2 ∨ ¬x3)

∧ (x3 ∨ x4)

∧ (¬x1 ∨ ¬x2)

∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

Cblue

S

Cred

sc
1s1 s̄1 s̄2s2 s̄3s3 s̄4s4

s1 s̄1 s̄2s2 s̄3s3 s̄4s4

s1 s2 s̄3

s3 s4

s̄1 s̄2

s̄1 s̄3 s̄4

sc
2 sc

3 sc
4

sc
4sc

3sc
2sc

1

sc
2

sc
3

{ }

{ }

{ }

{ }

{ } { } { } { } { }

{ }

} } }{ { {

Figure 5.3: Example of encoding an instance of R-3Sat into an instance of MDH
(proof of Theorem 5.6). Each clause of the Boolean formula F is represented by a
set in Cred. The sets in Cblue ensure that for each variable one element of the two el-
ements corresponding to its positive and negative literal is chosen into a solution;
the maximum overlap k = 2 ensures that for each clause at most two elements cor-
responding to its literals are chosen. Observe how S ′ = {s̄1, s2, s̄3, s4, s

c
1, s

c
2, s

c
3, s

c
4}

(grey columns) constitutes a valid solution to the MDH instance; accordingly, a
truth assignment T with T (xi) = true iff si 6∈ S ′ satisfies F .

Consecutive-Ones Property for Cred

Note that by the reduction from Vertex Cover in Section 5.2, MDH is NP-
complete already if Cred contains just a single set and, hence, has the C1P. How-
ever, this requires an unrestricted maximum overlap k and an unrestricted car-
dinality of the (single) set contained in Cred. Therefore, if we want to show the
NP-completeness of MDH with the additional restriction that the maximum
overlap k is fixed and the sets in Cblue and Cred have small cardinality, another
reduction is needed. Analogously to Theorems 5.5 and 5.6, the following two the-
orems impose different restrictions on the cardinalities of the sets in Cblue and Cred.

Theorem 5.7. MDH is NP-complete even if all of the following restrictions
apply:

1. The collection Cred has the consecutive-ones property,

2. k = 1,

3. ∀C ∈ Cblue : |C| ≤ 3 and ∀C ∈ Cred : |C| ≤ 2, and

4. ∀s ∈ S : |{C ∈ Cblue | s ∈ C}| ≤ 2 and |{C ∈ Cred | s ∈ C}| = 1.

Proof. Again, we give a reduction from R-3Sat. For a n-variable Boolean
formula F that is an instance of R-3Sat, construct the following instance
(S, Cblue, Cred, k) of MDH:

• The set S is equal to {s1, s̄1, . . . , sn, s̄n}, that is, for each variable xi in F ,
S contains an element si representing the literal xi and an element s̄i rep-
resenting the literal ¬xi.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

5.4. Input Matrices with Partial C1P 135

F = (x1 ∨ x2 ∨ ¬x3)

∧ (x3 ∨ x4)

∧ (¬x1 ∨ ¬x2)

∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

s1 s̄1

Cred

Ss̄2s2 s̄3s3 s̄4s4

s1 s̄1 s̄2s2 s̄3s3 s̄4s4

Cblue

s1 s2 s̄3

s3 s4

s̄1 s̄2

s̄1 s̄3 s̄4

{

{

{

{

}

}

}

}

}{

{ }

}{ }{ }{

Figure 5.4: Example of encoding an instance of R-3Sat into an instance of
MDH (proof of Theorem 5.7). Each clause of the Boolean formula F is encoded
into one set of Cblue. Observe how S ′ = {s1, s̄2, s3, s̄4} (grey columns) constitutes
a valid solution to the MDH instance; accordingly, a truth assignment T with
T (xi) = true iff si ∈ S ′ satisfies F .

• For each clause in F , Cblue contains a set of those elements from S that
represent the literals of that clause.

• Cred =
⋃

1≤i≤n{{si, s̄i}}.

• The maximum overlap k is set to one.

Observe that this MDH instance satisfies all restrictions claimed in the theorem.
The reduction is illustrated by an example in Figure 5.4. The correctness of the
reduction can be proven in a similar way as in the proof of Theorem 5.5.

Theorem 5.8. MDH is NP-complete even if all of the following restrictions
apply:

1. The collection Cred has the consecutive-ones property,

2. k = 2,

3. ∀C ∈ Cblue : |C| ≤ 2 and ∀C ∈ Cred : |C| ≤ 3, and

4. ∀s ∈ S : |{C ∈ Cblue | s ∈ C}| ≤ 2 and |{C ∈ Cred | s ∈ C}| = 1.

Proof. The reduction used in this proof is a combination of the reductions used in
the proofs of Theorems 5.5 and 5.6: We encode clauses and variables in a similar
way as in the proof of Theorem 5.5. But here clauses are encoded in Cred and
variables in Cblue. As in the proof of Theorem 5.6, each element chosen into the
solution set—if one exists—stands for a literal that is set to false by a satisfying
truth assignment for F .

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

136 Chapter 5. Red-Blue Covering Problems

F = (x1 ∨ x2 ∨ ¬x3)

∧ (x3 ∨ x4)

∧ (¬x1 ∨ ¬x2)

∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

s2
1s1

1 s3
1 s2

2s1
2 s2

3s1
3 s2

4s1
4 s3

4

Cred

S

s1
1 s2

1 s3
1 s1

2 s2
2 s1

3 s2
3 s1

4 s2
4 s3

4

s1
1 s1

3

s1
1 s1

4

s2
1 s2

3

s3
1 s1

2

s2
4

s2
2 s3

4

Cblue

s1
2

sc
4sc

3sc
2sc

1

sc
4sc

3sc
2sc

1

sc
3sc

2

}{

{ }

{ }

{ }

{ }

{ }

{ }

{ } }{ }{ }{

}{ }{ }{ }{

Figure 5.5: Example of encoding an instance of R-3Sat into an instance of
MDH (proof of Theorem 5.8). Each clause of the Boolean formula F is repre-
sented by a set in Cred. Observe how S ′ = {s2

1, s
3
1, s

c
1, s

2
2, s

c
2, s

1
3, s

c
3, s

1
4, s

2
4, s

c
4} (grey

columns) constitutes a valid solution to the MDH instance; accordingly, a truth
assignment T which makes all the literals not corresponding to one of the chosen
elements evaluate to true satisfies F .

• We set S := {s1
1, s

2
1, s

3
1, . . . , s

1
m, s2

m, s3
m} ∪ {sc

1, . . . , s
c
m}. The element si

j rep-
resents the ith literal in the jth clause of F . If the jth clause has only two
literals, then S contains only s1

j and s2
j . The elements sc

i are used to ensure
that each set in Cred has size three.

• For all variables x in F and for all pairs of literals l1 = x, l2 = ¬x in F : If l1
is the ith literal in the jth clause and l2 is the pth literal in the qth clause
of F , Cblue contains the set {si

j, s
p
q}. Moreover, we add {sc

i} with 1 ≤ i ≤ m
to Cblue.

• For each clause in F , Cred contains a set of those elements from S that
represent the literals of that clause. If the jth clause in F contains only
two literals, then sc

j is added to the corresponding set in Cred as the third
element.

• The maximum overlap k is set to two.

An example of the reduction is shown in Figure 5.5. The correctness of the
reduction can be proven in a similar way as in the proof of Theorem 5.6.

5.4.2 Red-Blue Set Cover with Partial C1P

The problem Red-Blue Set Cover was introduced by Carr et al. [CDKM00];
here we use the problem definition given in Section 5.1: Find a subset S ′ ⊆ S
containing at least one element from each blue set, such that the number of red
sets containing elements from S ′ is at most k, We will show the NP-completeness
of RBSC when restricted to instances where the sets in Cblue or the sets in Cred

have the C1P.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

5.4. Input Matrices with Partial C1P 137

Theorem 5.9. RBSC is NP-complete even if

1. |C| ≤ 2 for all C ∈ Cblue, |C| = 1 for all C ∈ Cred (which trivially implies
that Cred has the consecutive-ones property), and for all s ∈ S, |{C ∈ Cblue |
s ∈ C}| ≤ 3 and |{C ∈ Cred | s ∈ C}| = 1, or

2. the collection Cblue has the consecutive-ones property, |C| ≤ 2 for all C ∈
Cblue, |C| ≤ 3 for all C ∈ Cred, and for all s ∈ S, |{C ∈ Cblue | s ∈ C}| = 1
and |{C ∈ Cred | s ∈ C}| = 1.

Proof. We show both cases of the theorem by reductions from Vertex Cover
restricted to cubic graphs, that is, graphs with maximum vertex degree three.
Vertex Cover restricted to cubic graphs is NP-hard [GJ79].

To prove case 1, let G = (V, E) be a cubic graph. For the reduction, set S :=
V , Cblue := E, and Cred := {{v} | v ∈ V }. Clearly, the constructed instance
satisfies all restrictions of this case. The one-to-one correspondence between the
solutions follows directly from the construction.

To show case 2, let G = (V, E) be a cubic graph with V = {v1, v2, . . . , vn}
and E = {e1, e2, . . . , em}. Construct the following instance (S, Cblue, Cred, k) of
RBSC:

• S := {si
l, s

j
l | el = {vi, vj} ∈ E}, that is, S contains, for every edge el, two

elements corresponding to el’s endpoints.

• Cblue := {{si
l, s

j
l } | el = {vi, vj} ∈ E}.

• For every vertex vi ∈ V we add to Cred a set Ci consisting of the at most
three elements “corresponding” to vi. More precisely, si

l ∈ Ci for every
edge el that has vi as one endpoint.

Since the sets in Cblue are pairwise disjoint, Cblue has the consecutive-ones property.
The other restrictions of this case are also clearly satisfied.

It is easy to see that G has a vertex cover with at most k vertices iff the
constructed RBSC-instance has a solution with maximum intersection k: Given
a vertex cover V ′ of G, the RBSC-instance has a solution S ′ := ∪vi∈V ′Ci; con-
versely, given a solution S ′ of the RBSC-instance, the set V ′ := {vi | Ci ∩ S ′ 6=
∅, Ci ∈ Cred} is clearly a size-≤ k vertex cover of G.

The restriction on the cardinality of Cblue-sets in case 1 of Theorem 5.9 is clearly
tight: For cardinality-one Cblue-sets we have only one choice, that is, taking the
element into the solution.

Finally, we mention in passing that our reduction also implies that the op-
timization version of RBSC as restricted above can only be approximated up
to a constant factor unless P = NP, that is, it is APX-hard (and MAXSNP-
hard [PY91]). This is due to the fact that the reductions in the proof of Theo-
rem 5.9 are clearly approximation-preserving reductions. Thus, the claim follows
from the fact that Vertex Cover restricted to cubic graphs still is MAXSNP-
hard [PY91].

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

138 Chapter 5. Red-Blue Covering Problems

5.5 Conclusion

We disclosed a sharp border between the polynomial-time solvable and NP-hard
special cases of Minimum-Degree Hypergraph and Red-Blue Set Cover.
To reduce our findings to a common denominator, one could say that being “close”
to having the C1P does not suffice to obtain polynomial-time solvability—except
for some special cases with extremely sparse input matrices, both problems MDH
and RBSC remain NP-hard when only a part of the input matrix has the C1P.
In contrast, for the case where the input matrix has the C1P, we could find
polynomial-time algorithms for MDH and RBSC where the polynomials have
low degrees (O(|S| · (|Cblue|+ |Cred|+ |S|)) and O(|Cblue| · |Cred| · |S|

2), respectively)
and the O-notation does not hide any big constants.

In the case of MDH, our reductions show that the problem is NP-hard even
if k is constant, the size of the sets in Cblue and Cred is constant, and every element
from S appears only in a constant number of sets from Cblue and Cred. Hence, none
of these measurements can serve as a parameter for developing fixed-parameter
algorithms. However, our reductions do not imply the non-approximability of
MDH. Also, the approximability and the parameterized complexity of the vari-
ants of Minimum-Degree Hypergraph and Red-Blue Set Cover now
proven to be NP-complete could be explored in future research.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Chapter 6

Rectangle Stabbing

This chapter presents a further study of how “almost having the C1P” influences
the complexity of a combinatorial problem. The problem considered here is the
matrix-based formulation of Set Cover, and “almost having the C1P” means
that in every row of the input matrix there are only a small constant number
of blocks of 1s. Set Cover, restricted in this way, can also be interpreted as
a geometric covering problem called (d-Dimensional) Rectangle Stabbing,
which is subject of a number of studies in the literature; our results complement
and complete the already known results about this geometric problem. The in-
put for d-Dimensional Rectangle Stabbing consists of a set of axis-parallel
d-dimensional hyperrectangles, a set of axis-parallel (d − 1)-dimensional hyper-
planes, and a positive integer k, and the task is to select at most k hyperplanes
such that every hyperrectangle is intersected (“stabbed”) by at least one of them.
The problem is well-studied from the approximation point of view, while its pa-
rameterized complexity remained unexplored so far. Here, we show, by giving
a nontrivial parameterized reduction from the W[1]-complete problem Multi-
colored Clique, that for d ≥ 2 the problem is W[1]-hard with respect to the
parameter k. For the case d = 2 we consider several natural restrictions and show
them to be fixed-parameter tractable.

6.1 Introduction and Overview

A geometric covering problem, in the broadest sense, consists of a set of geometric
objects and a set of “resources”; the goal is to find a small set of resources that
“covers” all the objects. Geometric covering problems arise in many practical
applications (for example, train station location, reducing interference in cellu-
lar networks) and are subject of intensive research (see [AS98, CV07, GKW08,
KMN05, KN96, LM05, MT82, Nus97, Seg99, SW96] and the references given
below).

In this chapter, we consider the following problem.

139

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

140 Chapter 6. Rectangle Stabbing

Figure 6.1: Left: An instance of (2-Dimensional) Rectangle Stabbing,
consisting of a set of axis-parallel rectangles and a set of axis-parallel lines. Right:
An instance of 3-Dimensional Rectangle Stabbing, consisting of a set of
axis-parallel boxes and a set of axis-parallel planes.

d-Dimensional Re
tangle Stabbing
Input: A set R of axis-parallel d-dimensional hyperrectangles, a

set L of axis-parallel (d−1)-dimensional hyperplanes, and
a positive integer k.

Question: Is there a set L′ ⊆ L with |L′| ≤ k such that every hyper-
rectangle from R is intersected by at least one hyperplane
from L′?

In the case d = 2, the set R consists of axis-parallel rectangles in the plane,
and L consists of vertical and horizontal lines; we call this variant Rectangle
Stabbing for short. Since even the case d = 2 is NP-hard (see [GIK02, MSW05]),
d-Dimensional Rectangle Stabbing is clearly NP-complete for every con-
stant d ≥ 2. In the polynomial-time approximation setting, the optimization
version of d-Dimensional Rectangle Stabbing is considered, which asks
for a minimum-cardinality set L′ ⊆ L to cover all hyperrectangles from R. See
Figure 6.1 for examples.

Applications of d-Dimensional Rectangle Stabbing range from radio-
therapy [HM91] to embedded sensor networks, spatial data organization, and
statistical analysis [CDKW05, KSPS02] (see also Section 1.1). Moreover, the
problem of stabbing arbitrary connected closed shapes (instead of rectangles)
in the plane with axis-parallel lines can easily be reduced to (2-Dimensional)
Rectangle Stabbing by replacing each shape by its bounding box (that is,
by the smallest possible rectangle containing the shape). Similarly, the stabbing
problem where only the rectangles in the plane are given and k horizontal and
vertical lines shall be inserted that stab all rectangles is equivalent to Rectan-
gle Stabbing: To transform an instance of the former problem into an instance
of Rectangle Stabbing, insert a set of O(|R|) lines. For each given rectangle,

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.1. Introduction and Overview 141

this set contains four lines: two horizontal lines going through the upper and
lower boundary of the rectangle, and two vertical lines going through the left and
right boundary of the rectangle. To reduce in the other direction, shrink each
rectangle until each of its boundaries coincides with a line, and remove all lines.

Concerning d-Dimensional Rectangle Stabbing and its variants, the
literature so far mainly considers polynomial-time approximability. Hassin and
Megiddo [HM91] give a factor-d2d−1 approximation for stabbing d-dimensional,
identical objects (that is, translates of one object) with axis-parallel lines in d-
dimensional space. Gaur et al. [GIK02] describe a factor-d approximation for
d-Dimensional Rectangle Stabbing; the two-dimensional case Rectan-
gle Stabbing, hence, can be approximated with a factor of two. A similar
result was obtained by Mecke et al. [MSW05]; they give a factor-d approximation
algorithm for Set Cover, restricted to instances whose matrix representations
have at most d blocks of 1s per row. This restricted variant of Set Cover,
which we call d-C1P-Set Cover, is a generalization of d-Dimensional Rect-
angle Stabbing (see Section 6.2). The factor-d approximation also works for
the weighted version of d-C1P-Set Cover [MSW05]. Weighted and capaci-
tated versions of d-Dimensional Rectangle Stabbing have been considered
by Even et al. [ELR+08] and by Xu and Xu [XX07], also leading to several
approximation algorithms. A restricted, but still NP-complete variant of (2-Di-
mensional) Rectangle Stabbing is called Interval Stabbing; here, every
rectangle in the input is intersected by at most one horizontal line, but arbitrar-
ily many vertical lines (that is, every rectangle is just a horizontal interval in
the plane). Kovaleva and Spieksma [KS01, KS06] give constant-factor approxi-
mation algorithms for several variants of Interval Stabbing. Approximation
algorithms for the more general variant of Interval Stabbing where the in-
put contains horizontal and vertical intervals have been developed by Hassin and
Megiddo [HM91].

Surprisingly, there are no results concerning the fixed-parameter tractabil-
ity of d-Dimensional Rectangle Stabbing. In this chapter, therefore, we
study d-Dimensional Rectangle Stabbing from the viewpoint of parameter-
ized complexity. More specifically, we analyze whether d-Dimensional Rect-
angle Stabbing is fixed-parameter tractable with respect to the parameter
k = “solution size”, that is, whether there is an algorithm running in f(k) · |R ∪
L|O(1) time. On the one hand, we show in Sections 6.3 and 6.4 that for d ≥ 3
and d = 2, respectively, the problem is W[1]-hard with respect to the parame-
ter k, which presumably means that there is no such algorithm. On the other
hand, we consider several natural restrictions of the case d = 2 in Section 6.5 and
show them to be fixed-parameter tractable with respect to the parameter k.

Note that the known reductions proving the NP-hardness of Rectangle
Stabbing and d-Dimensional Rectangle Stabbing [GIK02, MSW05] do
not show the W[1]-hardness of these problems.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

142 Chapter 6. Rectangle Stabbing

6.2 Basics Facts and Definitions

A graph G = (V, E) is called k-colorable if there is a function c : V → {1, . . . , k}
satisfying ∀{u, v} ∈ E : c(u) 6= c(v); the function c is then called a proper vertex
k-coloring for G.

To achieve our hardness results in Sections 6.3 and 6.4, we consider d-Di-
mensional Rectangle Stabbing as a restriction of the problem Set Cover,
which we introduced in Section 2.5:Set Cover

Input: A binary matrix M and a positive integer k.
Question: Is there a set C ′ of at most k columns of M such that the

submatrix M ′ of M that is induced by these columns has
at least one 1 in every row?

To introduce our restricted versions of Set Cover, we need the following
definitions.

Definition 6.1. 1. A binary matrix M has the d-consecutive-ones property
(d-C1P) if in every row of M there are at most d blocks of 1s.

2. A binary matrix M with columns c1, . . . , cn has the separated d-consecutive-
ones property (d-XC1P) if M can be split into submatrices M1, . . . , Md such
that M = (M1 | M2 | . . . | Md) and each Mi with i ∈ {1, . . . , d} has the
strong C1P; that is, the columns of M can be partitioned into d sets of
consecutive columns C1 = {c1, . . . , cj1}, C2 = {cj1+1, . . . , cj2}, . . . , Cd =
{cjd−1+1, . . . , cn} such that for every i ∈ {1, . . . , d} the submatrix of M
induced by Ci has at most one block of 1s per row.

See Figure 6.2 for an illustration for the d-C1P and d-XC1P.1

If Set Cover is restricted by demanding that the input matrix M must have
the d-C1P, then we call the resulting problem d-C1P-Set Cover; if M must
have the d-XC1P, then we call the resulting problem d-XC1P-Set Cover.

Observation 6.1. The problems d-Dimensional Rectangle Stabbing and
d-XC1P-Set Cover are equivalent: There are two polynomial-time reductions,
one from d-Dimensional Rectangle Stabbing to d-XC1P-Set Cover and
one from d-XC1P-Set Cover to d-Dimensional Rectangle Stabbing,

1To be consistent with the terms C1P, strong C1P, Circ1P, and strong Circ1P, it would
be more appropriate to call the properties introduced in Definition 6.1 strong d-C1P and
strong d-XC1P instead of just d-C1P and d-XC1P, respectively. However, we omit the at-
tribute “strong” here because we assume that in this chapter the columns of every ma-
trix are already ordered in an appropriate way. Note that it is NP-hard to find a permu-
tation of the columns of a binary matrix that minimizes the number of blocks of 1s per
row [AM96, FGS96, GGKS95, WLZ07] (see also [BGRS04, WR00]), and it is also NP-hard
to find a permutation that minimizes the total number of blocks of 1s [GJ79, Had02] (see
also [HL08]).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.2. Basics Facts and Definitions 143

1 1111
1 1 1 11

1111

1111

1111
11 1 11

1111 1
1111

Figure 6.2: Left: A matrix having the 2-C1P, but not the 2-XC1P. Right: A
matrix having the 2-XC1P. In all figures of this chapter, only the 1-entries of the
matrices are displayed (that is, all 0-entries are omitted).

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5 ℓ6 ℓ7 ℓ8

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8

11

11
1 1

111
11

11
1 11

11

Figure 6.3: Illustration of the equivalence between (2-Dimensional) Rectan-
gle Stabbing and 2-XC1P-Set Cover.

such that in both mappings hyperrectangles and hyperplanes one-to-one correspond
to rows and columns.

This observation is easy to see—the ith dimension in a d-Dimensional
Rectangle Stabbing instance can be represented by the column set Ci in
a d-XC1P-Set Cover instance and vice versa (see Figure 6.3).

For some of our fixed-parameter algorithms, we make use of the following
well-known fact: Given a set of axis-parallel rectangles and a set of vertical (hor-
izontal) lines, the task of finding a minimum-cardinality subset of these vertical
(horizontal) lines that intersects all rectangles is polynomial-time solvable:2 Order
the rectangles with respect to their right (bottom) end. Then, repeatedly take the
first rectangle r in this order, include the rightmost vertical (bottommost horizon-
tal) line l that intersects r into the solution, and delete all rectangles intersected
by l, until all rectangles are deleted. The solution obtained is a minimum-size set
of vertical (horizontal) lines that are required to intersect all rectangles. More-
over, all rectangles r that are selected by the algorithm form a “certificate” in
the sense that they cannot be intersected by a set of vertical (horizontal) lines

2This problem is also known under the name Clique Cover on interval graphs, and it is
equivalent to Set Cover on matrices with the C1P (see Section 2.5).

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

144 Chapter 6. Rectangle Stabbing

Input: R: a set of axis-parallel rectangles,
L: a set of lines that are either all vertical or all horizontal,
k: a nonnegative integer.

Output: Either L′ ⊆ L or R0 ⊆ R.
If all rectangles from R can be stabbed with a set L′ of at most k lines
from L, then such a set L′ is returned. Otherwise, a set R0 of k + 1
rectangles from R is returned that cannot be stabbed with at most k
lines from L.

1: function greedy(R, L, k) {
2: R′ := R; R0 := ∅; L′ := ∅;
3: while R′ 6= ∅: {
4: if L contains only vertical lines: {
5: r := a rectangle from R′ with minimum rx(r); l := vrx(r); }
6: else { // L contains only horizontal lines
7: r := a rectangle from R′ with minimum bx(r); l := hbx(r); }
8: R0 := R0 ∪ {r}; L′ := L′ ∪ {l};
9: delete all rectangles from R′ that are intersected by l;
10: if |R0| = k + 1: return R0; }
11: return L′; }

Figure 6.4: Greedy algorithm for stabbing a set R of rectangles with at most k
lines chosen from a given set L of vertical lines or horizontal lines. If L consists
of vertical lines, then we denote the lines in L with v1, . . . , vn ordered from left
to right; otherwise we denote the lines in L with h1, . . . , hm, ordered from top to
bottom. For a rectangle r ∈ R, we denote with lx(r), rx(r), tx(r), bx(r) the index
of the leftmost, rightmost, topmost and bottommost line intersecting r.

that is smaller than the solution found by the algorithm. The pseudocode of this
algorithm is displayed in Figure 6.4. The correctness of the algorithm is easy to
see: Clearly, if the algorithm outputs a set L′ ⊆ L, then each rectangle from R
is intersected by at least one line from L′. Now assume, for the sake of a con-
tradiction, that after executing line 9 it is possible to stab all rectangles in R0

with less than |L′| = |R0| lines from L. Then, there must exist a line in L that
intersects two rectangles r1, r2 ∈ R0. Without loss of generality, assume that
the algorithm considered r1 before r2. When r1 was considered by the algorithm
in line 5 (line 7), the line l chosen in line 5 (line 7) also intersected r2. Hence,
r2 was deleted from R′ in line 9. Therefore, r2 cannot be chosen into R0 in a later
execution of the while loop.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.3. W[1]-Hardness for d ≥ 3 145

1111 1111
111 1 1 11
11111111

1111111

Figure 6.5: Example for an instance of 3-XC1P-Set Cover. The columns of
the input matrix can be partitioned into three sets of consecutive columns, such
that in each of the resulting submatrices there is at most one block of 1s per row.

6.3 W[1]-Hardness of d-Dimensional Rectangle

Stabbing with d ≥ 3

In this section, we prove that d-Dimensional Rectangle Stabbing with pa-
rameter k is W[1]-hard for every constant d ≥ 3. To this end, we exhibit a para-
meterized reduction from Multicolored Clique, which is defined as follows,
to 3-XC1P-Set Cover—the W[1]-hardness of d-Dimensional Rectangle
Stabbing, d ≥ 3, follows from the equivalence between 3-XC1P-Set Cover
and 3-Dimensional Rectangle Stabbing.Multi
olored Clique

Input: A k-colorable graph G = (V, E), a positive integer k, and
a proper vertex k-coloring c : V → {1, . . . , k} for G.

Question: Is there a clique with k vertices in G?

Multicolored Clique is W[1]-complete with respect to the parame-
ter k [FHRV09]. Using the “Multicolored Clique reduction technique” de-
signed by Fellows et al. [FHRV09], a parameterized reduction from Multicol-
ored Clique to 3-C1P-Set Cover can be found in a rather straightforward
way [Fel07], which proves the W[1]-hardness of the latter problem. However, the
W[1]-hardness of 3-XC1P-Set Cover is more difficult to prove because of the
more restricted nature of this problem (see Figure 6.5).

The basic scheme of the reduction. The basic scheme of our reduction
follows the technique described by Fellows et al. [FHRV09]. The key idea is to
use an alternative, equivalent formulation of Multicolored Clique: Given
an undirected k-colorable graph G = (V, E), a positive integer k, and a proper
vertex k-coloring c : V → {1, . . . , k} for G, find a set E ′ ⊆ E with |E ′| =

(
k
2

)
and

a set V ′ ⊆ V with |V ′| = k that satisfy the following three constraints:

Constraint 1: For every unordered pair {a, b} of colors from {1, . . . , k}, the edge
set E ′ contains an edge whose endpoints are colored with a and b.

Constraint 2: For every color from {1, . . . , k}, the vertex set V ′ contains a vertex
of this color.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

146 Chapter 6. Rectangle Stabbing

Constraint 3: If E ′ contains an edge {u, v}, then V ′ contains the vertices u
and v.

Clearly, this formulation of Multicolored Clique is equivalent to the original
definition: On the one hand, if there exist sets E ′ and V ′ satisfying Constraints 1–
3, then V ′ induces a clique of size k. On the other hand, if a vertex set V ′ induces
a size-k clique and E ′ is the edge set of this clique, then V ′ and E ′ satisfy the
three constraints.

Given an instance (G, k, c) of Multicolored Clique, we construct an
equivalent instance (M, k′) of 3-XC1P-Set Cover (see Figure 6.5) based on
this alternative formulation. To this end, define the color of an edge {u, v},
denoted d({u, v}), as the set of colors of its endpoints, that is, d({u, v}) :=
{c(u), c(v)}. We assume that the edges E = {e1, . . . , e|E|} and vertices V =
{v1, . . . , v|V |} of G are ordered in such a way that edges and vertices of the same
color appear consecutively: For every pair p1, p2 ∈ {1, . . . , |E|} with p1 < p2 and
d(ep1) = d(ep2) it holds that ∀p3 ∈ {p1 + 1, . . . , p2 − 1} : d(ep3) = d(ep1) = d(ep2),
and for every pair q1, q2 ∈ {1, . . . , |V |} with q1 < q2 and c(vq1) = c(vq2) it holds
that ∀q3 ∈ {q1 + 1, . . . , q2 − 1} : c(vq3) = c(vq1) = c(vq2). We define for every edge
color {a, b}

E{a,b} := {e ∈ E | d(e) = {a, b}},

first({a, b}) := min{p ∈ {1, . . . , |E|} | d(ep) = {a, b}}, and

last({a, b}) := max{p ∈ {1, . . . , |E|} | d(ep) = {a, b}}.

The idea of the reduction is that every column of M corresponds to an edge
or a vertex of the given graph G; the rows of M are constructed in such a way
that any solution C ′ for 3-XC1P-Set Cover on (M, k′) corresponds to a solu-
tion (E ′, V ′) as described above for Multicolored Clique on (G, k, c). That
is, the rows of M shall enforce that Constraints 1–3 are satisfied. One approach
for such a construction would be to create a matrix M with |V |+|E| columns, one
column for each vertex and one column for each edge of G, and to set k′ = k+

(
k
2

)
.

However, we do not know how to encode Constraints 1–3 into the rows of such
a matrix without violating the 3-XC1P. Therefore, to obtain a matrix that has
the 3-XC1P, we need not only one, but two columns in M for every edge e in G.
Hence, an instance (G, k, c) of Multicolored Clique is mapped to an in-
stance (M, k′), where k′ = 2 ·

(
k
2

)
+ k. The details of the construction of M read

as follows.

The columns of M . The matrix M has 2 · |E| + |V | columns, partitioned
into three sets C1 = {c1

1, . . . , c
1
|E|}, C2 = {c2

1, . . . , c
2
|E|}, and C3 = {c3

1, . . . , c
3
|V |},

ordered as follows: c1
1, . . . , c

1
|E|, c

2
1, . . . , c

2
|E|, c

3
1, . . . , c

3
|V |. Intuitively speaking, for

every p ∈ {1, . . . , |E|}, the columns c1
p ∈ C1 and c2

p ∈ C2 correspond to the
edge ep ∈ E, and for every q ∈ {1, . . . , |V |}, the column c3

q ∈ C3 corresponds to
the vertex vq ∈ V .

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.3. W[1]-Hardness for d ≥ 3 147

C1 C
2

C3

. . .

. . .

.

. . .

. {red, blue}{red, blue} red blue

r1

{red,blue},C1

r1

{red,blue},C2

r2

red

r2

blue

r3

{red,blue},1

r3

{red,blue},2

r3

{red,blue},3

r3

{red,blue},4

r3

{red,blue},5

r3

{red,blue},6

r4

e5,v2

r4

e5,v8

c14 c15 c16 c17 c24 c25 c26 c27 c32 c33 c37 c38 c39

1

1111

1111

1111

1111

1111

1111

111 1

1111

11

11

1111

1111

Figure 6.6: Example for the construction of M in the W[1]-hardness proof for
3-XC1P-Set Cover. We assume that in G there are exactly two red ver-
tices v2, v3 and exactly three blue vertices v7, v8, v9, among vertices of other col-
ors. Moreover, the only edges between red and blue vertices are e4, e5, e6, e7 with
e5 = {v2, v8}.

The rows of M . The rows of M have to ensure that every solution C ′ for
3-XC1P-Set Cover on (M, k′ = 2 ·

(
k
2

)
+ k) corresponds to a subset of edges

and vertices of G satisfying Constraints 1–3. Since there are two columns in M
for every edge in G, we need four types of rows: Rows of Type 1 and 2 ensure
that any size-k′ solution contains exactly

(
k
2

)
columns from C1—one of each edge

color—, exactly
(

k
2

)
columns from C2—one of each edge color—, and exactly k

columns from C3—one of each vertex color. Type-3 rows ensure that the columns
chosen from C1 and C2 are consistent: if a solution contains the column c1

j , then
it must contain c2

j , and vice versa. Finally, Type-4 rows ensure that if a solution
contains the columns c1

j and c2
j corresponding to an edge ej = {u, v} then it also

contains the columns corresponding to the vertices u and v. See Figure 6.6 for
an illustration of the following construction details.

Type-1 rows. For every edge color {a, b}, M contains two rows r1
{a,b},C1

and r1
{a,b},C2 . For x = 1, 2, the row r1

{a,b},Cx has a 1 in every column cx
j ∈ Cx

with d(ej) = {a, b}, and 0s in all other columns.

Type-2 rows. For every vertex color a ∈ {1, . . . , k}, M contains a row r2
a

which has a 1 in every column c3
j ∈ C3 with c(vj) = a, and 0s in all other columns.

Observe that the rows of the Types 1 and 2 together with the value of k′

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

148 Chapter 6. Rectangle Stabbing

force every solution for 3-XC1P-Set Cover on (M, k′) to contain exactly one
column from C1 for every edge color, exactly one column from C2 for every edge
color, and exactly one column from C3 for every vertex color.

Type-3 rows. For every edge color {a, b}, M contains a set of 2 ·(|E{a,b}|−1)
rows r3

{a,b},i, where 1 ≤ i ≤ 2·(|E{a,b}|−1). A row r3
{a,b},i with i ∈ {1, . . . , |E{a,b}|−

1} has a 1 in

• every column c1
j ∈ C1 with d(ej) = {a, b} and j < first({a, b}) + i and

• every column c2
j ∈ C2 with d(ej) = {a, b} and j ≥ first({a, b}) + i,

and 0s in all other columns. A row r3
{a,b},i with i ∈ {|E{a,b}|, . . . , 2 · (|E{a,b}| − 1)}

has a 1 in

• every column c1
j ∈ C1 with d(ej) = {a, b} and j ≥ first({a, b})+i−(|E{a,b}|−

1) and

• every column c2
j ∈ C2 with d(ej) = {a, b} and j < first({a, b})+i−(|E{a,b}|−

1),

and 0s in all other columns.
To see that the columns selected from C1 and C2 are consistent in every so-

lution for 3-XC1P-Set Cover on (M, k′), observe that, taken a column c1
j that

corresponds to an edge of the color {a, b} into the solution, this column does not
contain a 1 from the rows r3

{a,b},j−first({a,b}) and r3
{a,b},j−first({a,b})+|E{a,b}|

(provided

that these rows exist). Hence, the single column from C2 that corresponds to an
edge of the color {a, b} and belongs to the solution must be c2

j .

Type-4 rows. For every edge ep = {vq1, vq2} ∈ E, M contains two rows r4
ep,vq1

and r4
ep,vq2

. For i = 1, 2, the row r4
ep,vqi

has a 1 in

• every column c1
j ∈ C1 with d(ej) = d(ep) and j < p,

• every column c2
j ∈ C2 with d(ej) = d(ep) and j > p, and

• the column c3
qi
∈ C3,

and 0s in all other columns.

Observation 6.2. In every row of M , there is at most one block of 1s in the
submatrix of M induced by the columns of C1, at most one block of 1s in the
submatrix of M induced by the columns of C2, and at most one block of 1s in the
submatrix of M induced by the columns of C3. Therefore, M has the 3-XC1P.

Lemma 6.1. Let (G = (V, E), k, c) be an instance of Multicolored Clique
and let (M, k′) be the instance of 3-XC1P-Set Cover obtained by the above
construction. Then G contains a clique of size k if and only if there exists a
set C ′ of k′ = 2 ·

(
k
2

)
+ k columns in M that contains at least one 1 in every row.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.3. W[1]-Hardness for d ≥ 3 149

Proof. “⇒”: Assume that G contains a clique of size k, and let V ′ and E ′ be the
k vertices and

(
k
2

)
edges, respectively, of this clique. We claim that the column

set
C ′ := {c1

j | ej ∈ E ′} ∪ {c2
j | ej ∈ E ′} ∪ {c3

j | vj ∈ V ′}

has the properties claimed in the lemma. Clearly, C ′ has cardinality 2 ·
(

k
2

)
+ k;

it remains to show that C ′ contains at least one 1 from every row of M .
Since V ′ and E ′ form a clique in G, they fulfill Constraints 1 and 2. This,

together with the definition of C ′, directly implies that C ′ contains a 1 from every
row of Types 1 and 2.

To show that C ′ also contains a 1 from every row of Types 3 and 4, let {a, b} be
an arbitrary edge color. Observe that, due to Constraint 1, there is an index j ∈
{1, . . . , |E|} such that d(ej) = {a, b} and ej ∈ E ′. Therefore, we have c1

j , c
2
j ∈ C ′.

We first prove that for any i ∈ {1, . . . , 2·(|E{a,b}|−1)} the columns from C ′ contain
a 1 from the row r := r3

{a,b},i. This suffices to show that C ′ contains a 1 from every
row of Type 3. To see that C ′ contains a 1 from r, we make a case distinction
on the values of i and j. If i ∈ {1, . . . , |E{a,b}| − 1} and j < first({a, b}) + i, or if
i ∈ {|E{a,b}|, . . . , 2 · (|E{a,b}| − 1)} and j ≥ first({a, b}) + i − (|E{a,b}| − 1), then
c1
j contains a 1 in row r. If i ∈ {1, . . . , |E{a,b}| − 1} and j ≥ first({a, b}) + i,

or if i ∈ {|E{a,b}|, . . . , 2 · (|E{a,b}| − 1)} and j < first({a, b}) + i − (|E{a,b}| − 1),
then c2

j contains a 1 in row r. In both cases, C ′ contains a 1 from r. Next, we
prove that C ′ contains a 1 from every Type-4 row r := r4

ep,vq
with d(ep) = {a, b}.

If j < p, then c1
j contains a 1 in row r. If j > p, then c2

j contains a 1 in row r. If,
however, j = p, then observe that, due to Constraint 3 and the definition of C ′,
we have c3

q ∈ C ′. Since c3
q has a 1 in row r, C ′ contains a 1 from r in all three

cases.
“⇐”: Assume that there exists a set C ′ of columns as described in the lemma.

To show that G contains a clique with k vertices, it suffices to show that there
is a vertex set V ′ ⊆ V and an edge set E ′ ⊆ E fulfilling Constraints 1–3. We
construct E ′ and V ′ as follows.

E ′ := {ej ∈ E | c1
j ∈ C ′ ∨ c2

j ∈ C ′}, and

V ′ := {vj ∈ V | c3
j ∈ C ′}.

First observe that, due to the construction of the Type-1 rows of M , for every
edge color {a, b}, the set C ′ must contain at least one column c1

j1 from C1 and at
least one column c2

j2
from C2 such that ej1 and ej2 are edges in G with d(ej1) =

{a, b} and d(ej2) = {a, b}. Similarly, due to the construction of the Type-2 rows
of M , for every vertex color a, the set C ′ must contain at least one column c3

j3

such that vj3 is a vertex in G whose color is a. Together with the definition
of E ′ and V ′, these observations imply that E ′ and V ′ fulfill Constraints 1 and 2.
Now, since C ′ contains 2 ·

(
k
2

)
+k columns, it follows that C ′ cannot contain more

than exactly one column from C1 for every edge color {a, b}, exactly one column
from C2 for every edge color {a, b}, and exactly one column from C3 for every
vertex color a—otherwise, C ′ would consist of more than 2 ·

(
k
2

)
+ k columns.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

150 Chapter 6. Rectangle Stabbing

We are now ready to prove that the columns from C1 and C2 are chosen
“consistently”, that is, for any j ∈ {1, . . . , |E|}, we have c1

j ∈ C ′ iff c2
j ∈ C ′. To

see this, let {a, b} be an arbitrary edge color. We know that C ′ contains exactly
one column c1

j1 from C1 that corresponds to an edge of the color {a, b} and exactly
one column c2

j2
from C2 that corresponds to an edge of the color {a, b}; in other

words, j1, j2 ∈ {first({a, b}), . . . , last({a, b})}. We will now prove that j2 = j1:
we first show that j2 ≥ j1, and then we show that j2 ≤ j1.

Clearly, if j1 = first({a, b}), then j2 ≥ j1. To see that j2 ≥ j1 also holds in
the case when j1 > first({a, b}), we make the following argument based on the
construction of the Type-3 rows. If j1 > first({a, b}), then the column c1

j1
does not

contain a 1 in the row r := r3
{a,b},j1−first({a,b}). Note that all 1s of the row r lie in

columns from C1 and from C2 that correspond to edges of the color {a, b}. Note
also that c1

j1 is the only column from C1 in C ′ that corresponds to an edge with
color {a, b}. Therefore, the column c2

j2
(which is the only column from C2 in C ′

corresponding to an edge with color {a, b}) must contain a 1 from r, which implies,
due to the construction of r, that j2 ≥ j1. We can similarly argue that j2 ≤ j1:
Clearly, if j1 = last({a, b}), then j2 ≤ j1. If, however, j1 < last({a, b}), then the
column c1

j1 does not contain a 1 in the row r := r3
{a,b},j1−first({a,b})+|E{a,b}|

, which

again implies that we have to select the column c2
j2

in such a way that it contains
a 1 from r. Therefore, we have j2 ≤ j1 also in this case. It follows that j2 = j1,
which proves the claimed consistency.

Finally, we can prove that the edges and vertices in E ′ and V ′ fulfill Con-
straint 3. To this end, let ej be an edge in E ′, and let d(ej) = {a, b}. Due to
the definition of E ′ and the consistency between the columns selected from C1

into C ′ and the columns selected from C2 into C ′, we know that c1
j and c2

j belong
to C ′. We have also seen that, apart from these two columns, the set C ′ contains
no other column corresponding to an edge of the color {a, b}. Now, let the ver-
tices vq1 and vq2 be the endpoints of ej. Then M contains the two rows r4

ej ,vq1
and

r4
ej ,vq2

, which both do not have a 1 in any of the columns c1
j and c2

j . Therefore, the

set C ′ must contain the column c3
q1

because of the row r4
ej ,vq1

and the column c3
q2

because of the row r4
ej ,vq2

. Due to the definition of V ′, the vertices vq1 and vq2

then belong to V ′, and, therefore, Constraint 3 is fulfilled.

Observation 6.2 and Lemma 6.1 imply the following result.

Lemma 6.2. 3-XC1P-Set Cover and 3-Dimensional Rectangle Stab-
bing are W[1]-hard with respect to the parameter k.

For any d > 3, by adding additional “dummy” columns containing only 0s
to the above construction, we can always obtain a matrix M that has at least d
columns. Obviously, this matrix can then be partitioned into d sets of consecutive
columns in such a way that in each of the resulting submatrices there is at most

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.4. W[1]-Hardness for d = 2 151

one block of 1s per row; hence, the matrix has the d-XC1P. This implies the
following.

Theorem 6.1. For every d ≥ 3, d-XC1P-Set Cover and d-Dimensional
Rectangle Stabbing are W[1]-hard with respect to the parameter k.

6.4 W[1]-Hardness of 2-Dimensional Rectangle

Stabbing

In the previous section, we have shown that d-Dimensional Rectangle Stab-
bing with parameter k is W[1]-hard for d ≥ 3. Now we describe a more com-
plicated reduction from Multicolored Clique showing that d-Dimensional
Rectangle Stabbing is W[1]-hard even in the case d = 2.

To reduce Multicolored Clique to (2-Dimensional) Rectangle
Stabbing, we construct, given an instance of Multicolored Clique, a ma-
trix M whose columns can be partitioned into two sets C1 and C2 of consecutive
columns such that for both i = 1 and i = 2 the submatrix of M induced by Ci has
at most one block of 1s per row. To this end, we use a very similar approach as
in Section 6.3—the matrix M constructed to show the hardness of (2-Dimensi-
onal) Rectangle Stabbing is just a modification of the matrix M described
in Section 6.3: The column set C1 of the “new” matrix M contains the columns
c1
1, . . . , c

1
|E| and c2

1, . . . , c
2
|E|, that is, the “new” column set C1 consists of the “old”

column sets C1 and C2 from Section 6.3. The “new” column set C2 contains
the columns c3

1, . . . , c
3
|V |, that is, the columns from the “old” column set C3 from

Section 6.3. As we will see, in addition to these columns we have to add some
more columns to C2.

The first reason why the matrix M in Section 6.3 does not have the 2-XC1P
is that Type-4 rows typically contain three blocks of 1s. Therefore, we have to
arrange the columns in the set C1 of our new construction in a different way.
The second reason is that Type-3 rows typically contain one block of 1s in the
columns c1

1, . . . , c
1
|E| and one block of 1s in the columns c2

1, . . . , c
2
|E|. Therefore,

we replace these rows, which are needed to enforce that the columns selected
from c1

1, . . . , c
1
|E| are consistent with the columns selected from c2

1, . . . , c
2
|E|, by a

new construction serving the same purpose: This construction consists of a set
of columns c4

1, . . . , c
4
|E| added to C2, and a set of new Type-3 rows replacing the

Type-3 rows described in Section 6.3. An instance (G, k, c) of Multicolored
Clique is, thus, mapped to an instance (M, k′), where k′ = 3 ·

(
k
2

)
+ k and M is

constructed as follows.

The columns of M . The matrix M has 3 · |E|+ |V | columns, partitioned into
two sets C1 and C2. The column set C1 consists of two subsets of columns: a
subset D1 consisting of the columns c1

1, . . . , c
1
|E|, and a subset D2 consisting of the

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

152 Chapter 6. Rectangle Stabbing

columns c2
1, . . . , c

2
|E|. The column set C2 also consists of two subsets of columns:

the subset D3 consisting of the columns c3
1, . . . , c

3
|V |, and the subset D4 consisting

of the columns c4
1, . . . , c

4
|E|.

These columns are ordered as follows in M . The leftmost 2 · |E| columns
of M are those from C1, the remaining |V |+ |E| columns are those from C2. The
columns from C1 are ordered in such a way that columns corresponding to edges
of the same color appear consecutively. More precisely, for every edge color {a, b},
there are 2 · |E{a,b}| consecutive columns

c2
first({a,b}), . . . , c

2
last({a,b}), c

1
first({a,b}), . . . , c

1
last({a,b}).

The columns from C2 are ordered as follows: To the right of the columns from C1,
there are the |V | columns c3

1, . . . , c
3
|V |. The rightmost |E| columns of M , finally,

are the columns c4
1, . . . , c

4
|E| (which implies that columns corresponding to edges

of the same color appear consecutively and that, for every edge color {a, b}, there
are |E{a,b}| consecutive columns c4

first({a,b}), . . . , c
4
last({a,b})). Intuitively speaking, for

every p ∈ {1, . . . , |E|}, the columns c1
p ∈ C1, c2

p ∈ C1, and c4
p ∈ C2 correspond to

the edge ep ∈ E, and for every q ∈ {1, . . . , |V |}, the column c3
q ∈ C2 corresponds

to the vertex vq ∈ V .

The rows of M . As in Section 6.3, there are four types of rows: Rows of Type 1
and 2 ensure that any solution C ′ for 2-XC1P-Set Cover on (M, k′) contains
exactly

(
k
2

)
columns from D1—one of each edge color—,

(
k
2

)
columns from D2—

one of each edge color—,
(

k
2

)
columns from D4—one of each edge color—, and

k columns from D3—one of each vertex color. Type-3 rows ensure that the
columns chosen from D1, D2, and D4 are consistent: if a solution contains the
column c1

j , then it must contain c4
j , and vice versa; analogously, if a solution

contains the column c2
j , then it must contain c4

j , and vice versa. Finally, Type-4
rows ensure that if a solution contains the columns c1

j , c2
j , and c4

j corresponding
to an edge ej = {u, v} then it also contains the columns corresponding to the
vertices u and v. See Figure 6.7 for an illustration of the following construction
details.

Type-1 rows. For every edge color {a, b}, M contains three rows r1
{a,b},D1 ,

r1
{a,b},D2 , and r1

{a,b},D4 . For x = 1, 2, 4, the row r1
{a,b},Dx has a 1 in every column cx

j ∈

Dx with d(ej) = {a, b}, and 0s in all other columns.

Type-2 rows. These rows are identical to the Type-2 rows in Section 6.3:
For every vertex color a ∈ {1, . . . , k}, M contains a row r2

a which has a 1 in every
column c3

j ∈ D3 with c(vj) = a, and 0s in all other columns.

Type-3 rows. For every edge color {a, b}, M contains a set of 2 ·(|E{a,b}|−1)
rows r3

{a,b},D1,i and a set of 2 · (|E{a,b}|−1) rows r3
{a,b},D2,i, where in both cases 1 ≤

i ≤ 2 · (|E{a,b}| − 1). A row r3
{a,b},Dx,i with x ∈ {1, 2} and i ∈ {1, . . . , |E{a,b}| − 1}

has a 1 in

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.4. W[1]-Hardness for d = 2 153

C1 C2

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .{red,blue} {red,blue}red blue

r1

{red,blue},D2

r1

{red,blue},D1

r1

{red,blue},D4

r2

red

r2

blue

r3

{red,blue},D2,1

r3

{red,blue},D2,2

r3

{red,blue},D2,3

r3

{red,blue},D2,4

r3

{red,blue},D2,5

r3

{red,blue},D2,6

r3

{red,blue},D1,1

r3

{red,blue},D1,2

r3

{red,blue},D1,3

r3

{red,blue},D1,4

r3

{red,blue},D1,5

r3

{red,blue},D1,6

r4

e5,v2

r4

e5,v8

c24 c25 c26 c27 c14 c15 c16 c17 c44 c45 c46 c47c32 c33 c37 c38 c39

1 1

1 1

1

1

1

1

1

11

111

111

1 1

1

111

11

1

1

11

111

111

11

1

1

11

111

1

11

111

111

1 1

1

111

11

1111

1111

1111

Figure 6.7: Example for the construction of M in the W[1]-hardness proof for
2-XC1P-Set Cover. We assume that in G there are exactly two red ver-
tices v2, v3 and exactly three blue vertices v7, v8, v9, among vertices of other col-
ors. Moreover, the only edges between red and blue vertices are e4, e5, e6, e7 with
e5 = {v2, v8}.

• every column cx
j ∈ Dx with d(ej) = {a, b} and j < first({a, b}) + i and

• every column c4
j ∈ D4 with d(ej) = {a, b} and j ≥ first({a, b}) + i,

and 0s in all other columns. A row r3
{a,b},Dx,i with x ∈ {1, 2} and i ∈ {|E{a,b}|, . . . , 2·

(|E{a,b}| − 1)} has a 1 in

• every column cx
j ∈ Dx with d(ej) = {a, b} and j ≥ first({a, b})+i−(|E{a,b}|−

1) and

• every column c4
j ∈ D4 with d(ej) = {a, b} and j < first({a, b})+i−(|E{a,b}|−

1),

and 0s in all other columns.

Type-4 rows. Again, these rows are identical to the Type-4 rows in Sec-
tion 6.3: For every edge ep = {vq1 , vq2} ∈ E, M contains two rows r4

ep,vq1

and r4
ep,vq2

. For i = 1, 2, the row r4
ep,vqi

has a 1 in

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

154 Chapter 6. Rectangle Stabbing

• every column c1
j ∈ D1 with d(ej) = d(ep) and j < p,

• every column c2
j ∈ D2 with d(ej) = d(ep) and j > p, and

• the column c3
qi
∈ D3,

and 0s in all other columns.
The description of the construction implies that M has the 2-XC1P. Moreover,

the graph G in the given Multicolored Clique instance contains a clique of
size k iff there exists a set of k′ = 3 ·

(
k
2

)
+ k columns in M that contains a 1 in

every row—this can be seen in analogy to the proof of Lemma 6.1. Therefore, we
have the following result.

Theorem 6.2. 2-XC1P-Set Cover, 2-C1P-Set Cover, and (2-Dimensio-
nal) Rectangle Stabbing are W[1]-hard with respect to the parameter k.

By adding additional “dummy” columns to the above construction, we can
obtain a matrix M where in every row the number of 1-entries in the columns of C1

equals the number of 1-entries in the columns of C2. Therefore, we get the W[1]-
hardness of the following restricted variant of (2-Dimensional) Rectangle
Stabbing (a rectangle r is called a square if the number of horizontal lines
intersecting it is equal to the number of vertical lines intersecting it).

Theorem 6.3. The restricted variant of Rectangle Stabbing where all rect-
angles in R are squares is W[1]-hard with respect to the parameter k.

6.5 Fixed-Parameter Algorithms for Restricted

Variants of 2-Dimensional Rectangle Stab-

bing

In Sections 6.3 and 6.4, we have seen that d-Dimensional Rectangle Stab-
bing with parameter k is W[1]-hard for each d ≥ 2. In this section, we consider
some natural restrictions of (2-Dimensional) Rectangle Stabbing and show
them to be fixed-parameter tractable.

As described in Section 6.1, Rectangle Stabbing asks to stab a set R
of axis-parallel rectangles with at most k lines chosen from a given set L of
vertical and horizontal lines. For an instance (R, L, k) of Rectangle Stabbing,
let L = V ∪ H , where V = {v1, . . . , vn} are the vertical lines, ordered from left
to right, and H = {h1, . . . , hm} are the horizontal lines, ordered from top to
bottom. For a rectangle r ∈ R, let lx(r), rx(r), tx(r), bx(r) be the index of the
leftmost, rightmost, topmost and bottommost line intersecting r. Define the
width wh(r) := rx(r)− lx(r) + 1 and the height ht(r) := bx(r)− tx(r) + 1 as the
number of vertical and horizontal lines, respectively, intersecting r.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.5. Algorithms for Restricted Variants with d = 2 155

We start with some well-known data reduction rules for Rectangle Stab-
bing, whose correctness is obvious—the rules are derived from the data reduction
rules for Set Cover described in Section 2.5.

Rule 1: If there are two rectangles r1, r2 ∈ R such that every line in L that
intersects r1 also intersects r2, then delete r2.

Rule 2: If there are two lines l1, l2 ∈ L such that every rectangle in R that is
intersected by l2 is also intersected by l1, then delete l2.

Rule 3: If there is a line l ∈ L that intersects no rectangle from R, then delete l
from L.

Rule 4: If there is a rectangle that is intersected by exactly one line l ∈ L, then
delete all rectangles that are intersected by l, delete l, and decrease k by
one.

Rule 5: If k ≥ 0 and R contains no rectangle, then the instance is a yes-instance.

Rule 6: If there is a rectangle in R that is intersected by no line from L, or
if k < 0, or if k = 0 and R contains at least one rectangle, then the
instance is a no-instance.

The following observation is an immediate consequence of Rule 2.

Observation 6.3. In a reduced problem instance, for every vertical line vj ∈ V ,
there exist rectangles r, r′ ∈ R with lx(r) = j and rx(r′) = j. For every horizontal
line hi ∈ H there exist rectangles r, r′ ∈ R with tx(r) = i and bx(r′) = i.

In particular, Observation 6.3 implies that in a reduced problem instance there
exist rectangles r1, r2 ∈ R such that wh(r1) = 1 and ht(r2) = 1: just let r1 be a
rectangle with rx(r1) = 1 and r2 a rectangle with bx(r2) = 1.

6.5.1 Rectangles with Bounded Height

We first consider the restriction where the height of every rectangle in R is
bounded by a number b. Even the case b = 1 where every rectangle is just a
horizontal segment is NP-complete; Hassin and Megiddo [HM91] and Kovaleva
and Spieksma [KS01, KS06] gave approximation algorithms for this case and some
of its variants.

For our FPT considerations, we use a simple search-tree algorithm using Ob-
servation 6.3. At every step, apply the data reduction rules until the current
instance is reduced, search for a rectangle r with rx(r) = 1, and branch as fol-
lows: either select the single vertical line that intersects r or select one of the at
most b horizontal lines that intersect r.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

156 Chapter 6. Rectangle Stabbing

Theorem 6.4. The restricted variant of Rectangle Stabbing where the
height ht(r) of every rectangle r ∈ R is bounded from above by a number b can be
solved in (b + 1)k · nO(1) time.

The algorithm described above can be modified to solve also the weighted
version of the problem, where every line l has a weight w(l) ≥ 1 that is bounded
from above by a number b′, and a minimum-weight subset of L shall be found.
To this end, we modify the data reduction rules: Instead of Rule 2, we have to
use the following reduction rule.

Rule 2’: If there are two lines l1, l2 ∈ L such that w(l2) ≥ w(l1) and every rectan-
gle in R that is intersected by l2 is also intersected by l1, then delete l2.

Observation 6.4. Let v1, . . . , vb′ be the leftmost b′ vertical lines in a reduced
problem instance. If L contains more than b′ vertical lines, then there is a vertical
line vj ∈ {v1, . . . , vb′} such that there exists a rectangle r ∈ R with rx(r) = j.

Proof. Assume, for the sake of a contradiction, that there exists no line vj as
claimed. Then, all rectangles that are intersected by one of the lines v1, . . . , vb′

are also intersected by vb′+1. Since at least one of the b′ lines v1, . . . , vb′ must have
the same weight as vb′+1, Rule 2’ would have deleted this line.

Observation 6.4 says that in a reduced problem instance there exists always
a rectangle r ∈ R such that wh(r) ≤ b′: just let r be a rectangle with rx(r) ∈
{1, . . . , b′}.

Now a search tree algorithm can be used to solve the problem. As in the
unweighted case, apply the data reduction rules in every node of the search tree
until the current instance is reduced. Then search for a rectangle r with rx(r) = b′

and branch as follows: either select one of the at most b′ vertical lines that
intersect r or select one of the at most b horizontal lines that intersect r. The
running time of the algorithm is (b + b′)k · nO(1).

6.5.2 Rectangles with Bounded Width or Height

Here, we consider a generalization of the previous restriction: Now, for every
rectangle r in R the width wh(r) or the height ht(r) is bounded from above
by a number b. Clearly, even the case b = 1, where every rectangle is either a
horizontal or a vertical segment, is NP-complete; this case was already considered
by Hassin and Megiddo [HM91] from the approximation point of view.

The approach outlined in Section 6.5.1 does not work anymore since in a re-
duced instance the height of every rectangle r with rx(r) = 1 may be unbounded.
However, there is again a search-tree algorithm. Let Rh ⊆ R be the set of rectan-
gles with bounded height and let Rv ⊆ R be the set of rectangles with bounded
width. Now, we try all possible ways to write k as a sum kh + kv, where kh

and kv denote the number of horizontal and vertical lines, respectively, allowed

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.5. Algorithms for Restricted Variants with d = 2 157

to be chosen into the solution. For every splitting of k into kh and kv, we run a
branching algorithm, which performs in every step the following actions.

First, compute the minimum number of vertical lines required to intersect
the rectangles in Rh. This is polynomial-time doable, and the simple greedy
algorithm in Figure 6.4 obtains such a set of vertical lines.

If Rh cannot be stabbed with a set of at most kv vertical lines, then the
algorithm in Figure 6.4 outputs a set R0

h ⊆ Rh of size kv+1 such that the optimum
number of vertical lines needed to intersect all rectangles in R0

h is exactly kv + 1.
Any solution for Rectangle Stabbing on (R, L, k) consisting of at most kv

vertical and at most kh horizontal lines must intersect at least one rectangle
in R0

h by a horizontal line. Hence, branch on the (kv +1) · b possibilities to do so.

If, however, all rectangles in Rh can be intersected with kv vertical lines, we
use the greedy algorithm to check whether the rectangles in Rv can be intersected
with kh horizontal lines. If not, we branch on (kh + 1) · b possibilities in analogy
to the branching for R0

h described above; otherwise, we return the union of the
solutions returned by the two calls to the greedy algorithm. Figure 6.8 shows a
pseudocode for this algorithm. The branching number is at most bk, which leads
to the following theorem.

Theorem 6.5. The restricted variant of Rectangle Stabbing where the width
or the height of every rectangle in R is bounded from above by a number b can be
solved in (bk)k · nO(1) time.

6.5.3 Bounded Intersection

In this subsection, we consider the restriction of Rectangle Stabbing where
every horizontal line in L intersects at most b rectangles from R; this restriction
was already considered by Kovaleva and Spieksma [KS01, KS06] from the ap-
proximation point of view. For b = 1, this problem is clearly polynomial-time
solvable since the horizontal lines can just be ignored. For b = 2, the problem
is NP-complete because we can give a reduction from the NP-complete [GJ79]
problem Vertex Cover (see Section 1.3 for the problem definition): Given a
graph G = (V, E) with V = {v1, . . . , vn} and E = {e1, . . . , em}, first transform
it into a graph G′ = (V ′, E ′) by replacing every edge e = {vi, vj} of G by a
path vj–xe–ye–vj . Then G′ has a vertex cover of size |E| + k iff G has a vertex
cover of size k. To see this, note that there is always a minimum-size vertex cover
for G′ that contains exactly one of the two vertices xe, ye for every edge e. Now
the Vertex Cover instance (G′, |E|+k) can be transformed into an instance of
2-XC1P-Set Cover as follows. Let r = |E ′| = 3|E| and s = |V ′| = |V | + 2|E|,
and let M be an r × s matrix whose columns represent the vertices and whose
rows represent the edges of G′. The columns of M are ordered as follows:

v1, v2, . . . , vn, xe1 , ye1, . . . , xem
, yem

.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

158 Chapter 6. Rectangle Stabbing

Input: Rh: a set of axis-parallel rectangles with bounded height,
Rv: a set of axis-parallel rectangles with bounded width,
H, V : a set of horizontal lines and a set of vertical lines,
kh, kv: nonnegative integers.

Output: A subset of H ∪ V containing at most kh lines from H and at most kv

lines from V that stabs all rectangles from Rh ∪ Rv, or null, if no such
subset exists.

1: function stab(Rh, Rv, H, V, kh, kv) {
2: if greedy(Rh, V, kv) returns a set R0

h ⊆ Rh of rectangles: {
3: if kh = 0: return null;
4: for each rectangle r ∈ R0

h: for each line h ∈ H that intersects r: {
5: R′h := Rh \ Rh(h); R′v := Rv \ Rv(h); H ′ := H \ {h};
6: A := stab(R′h, R

′
v, H

′, V, kh − 1, kv);
7: if A 6= null: return A ∪ {h}; }
8: return null; }
9: if greedy(Rv, H, kh) returns a set R0

v ⊆ Rv of rectangles: {
10: if kv = 0: return null;
11: for each rectangle r ∈ R0

v: for each line v ∈ V that intersects r: {
12: R′h := Rh \ Rh(v); R′v := Rv \ Rv(v); V ′ := V \ {v};
13: A := stab(R′h, R

′
v, H, V ′, kh, kv − 1);

14: if A 6= null: return A ∪ {v}; }
15: return null; }
16: return the union V ′∪H ′ of the solutions returned by the two calls (lines 2

and 9) of greedy(); }

Figure 6.8: Branching algorithm for stabbing a set Rv ∪ Rh of rectangles with
at most kv lines chosen from a given set V of vertical lines and at most kh lines
chosen from a given set H of horizontal lines. For a line l, we denote with Rh(l)
and Rv(l) the set of all rectangles in Rh and Rv, respectively, that are intersected
by l.

An entry in a row i and a column j of M is 1 iff the edge ei is incident to
the vertex corresponding to column j. Clearly M has the 2-XC1P with C1 =
{v1, v2, . . . , vn} and C2 = {xe1 , ye1, . . . , xem

, yem
}. Moreover, there are exactly

two 1s in every column xe1 , ye1, . . . , xem
, yem

. Therefore, the matrix M can be
transformed into an equivalent instance of the restricted variant of Rectangle
Stabbing. Obviously, G′ has a vertex cover of size |E|+k iff M has a solution of
size |E|+k. We just mention in passing that this reduction also proves Corollary 1
of [MSW05] in an easier way.

For the case b = 2, there is a simple kk · nO(1)-time branching algorithm: In
every node of the search tree, try to stab all rectangles while only using vertical
lines—to this end, use the greedy algorithm of Figure 6.4. If the greedy algorithm

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.5. Algorithms for Restricted Variants with d = 2 159

does not return a solution but a set of k + 1 rectangles that cannot be stabbed
with k vertical lines, then one has to select a horizontal line that intersects two
of these rectangles. We can assume that the instance is reduced with respect to
the data reduction rules described above, and, therefore, there can be at most k
such lines. Branch on which of these lines should be taken into the solution.
However, we do not know whether this algorithm can be generalized for the
case b ≥ 3. Nevertheless, we show that the restriction of Rectangle Stabbing
is fixed-parameter tractable with respect to the combined parameters k and b by
developing a problem kernel.

First, in addition to the previously mentioned data reduction rules, we use
the following data reduction rule:

Rule 7: If there are bk + 2 rectangles r1, . . . , rbk+2 ∈ R such that for each i ∈
{1, . . . , bk + 1} it holds that every vertical line that intersects ri also
intersects rbk+2, then delete rbk+2.

The correctness of this data reduction rule follows from the fact that k horizontal
lines cannot intersect all rectangles r1, . . . , rbk+1. Hence, if the instance with rbk+2

deleted is a yes-instance, every solution must contain a vertical line stabbing some
of the rectangles r1, . . . , rbk+1, and this line also stabs rbk+2 in the original instance,
which, therefore, is also a yes-instance.

The following two observations are immediate consequences of Rule 7.

Observation 6.5. For every rectangle r in a reduced instance there are at most bk
rectangles r′ 6= r with lx(r′) ≥ lx(r) and rx(r′) ≤ rx(r).

Observation 6.6. In a reduced instance, for every j ∈ {1, . . . , n} there are at
most bk + 1 rectangles r with lx(r) = j.

The observations made so far lead to the following correlation between the
position of a rectangle and its maximum possible width:

Lemma 6.3. For every rectangle r ∈ R in a reduced instance, rx(r) ≤ (bk + 1) ·
lx(r).

Proof. By induction on lx(r). For all rectangles r with lx(r) = 1, the lemma
is true: Assume, for the sake of a contradiction, that there is a rectangle r
with lx(r) = 1 and rx(r) > (bk + 1). Due to Observation 6.3, there must be a
rectangle r′ with rx(r′) = p for every p ∈ {lx(r), . . . , rx(r)− 1}. This means that
there are at least bk + 1 rectangles r′ 6= r with lx(r′) ≥ lx(r) and rx(r′) ≤ rx(r),
contradicting Observation 6.5.

Now let j be an integer greater than 1 and assume the lemma to be true
for all rectangles r with 1 ≤ lx(r) ≤ j. Let r be a rectangle with lx(r) =
j + 1, and assume, for the sake of a contradiction, that rx(r) > (bk + 1) · lx(r).
Observation 6.3 implies that there must be a rectangle r′ with rx(r′) = p for
every p ∈ {lx(r), . . . , rx(r) − 1}. Due to Observation 6.5, at most bk of these

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

160 Chapter 6. Rectangle Stabbing

bk + 1
2bk + 1

bk + 1

bk + 1

Figure 6.9: Illustration of Lemma 6.3: For every rectangle r ∈ R in a reduced
instance it holds that rx(r) ≤ (bk + 1) · lx(r), because there are at most bk + 1
rectangles r′ with lx(r′) = lx(r) and rx(r′) ≤ rx(r). In the displayed example we
assume that bk = 4.

rectangles can have lx(r′) ≥ lx(r), and, hence, there exists p ∈ {rx(r) − bk −
1, . . . , rx(r)−1} such that there is a rectangle r′ with rx(r′) = p and lx(r′) < lx(r).
But then, by the induction hypothesis, rx(r′) ≤ (bk + 1) · (lx(r) − 1), which is
a contradiction to rx(r′) = p ≥ rx(r) − bk − 1, since we assumed that rx(r) >
(bk + 1) · lx(r). This proves the lemma.

See Figure 6.9 for an illustration of Lemma 6.3. Now we can prove that for
every vertical line there is “short” rectangle to the right of this line:

Lemma 6.4. In a reduced instance, for every j ∈ {1, . . . , n − 1}, there is a
rectangle r ∈ R with lx(r) > j and rx(r) ≤ (bk + 1) · j + 1.

Proof. Assume for the sake of contradiction that there exists j ∈ {1, . . . , n − 1}
such that for every rectangle r ∈ R with lx(r) > j it holds that rx(r) > (bk + 1) ·
j +1. Consider a rectangle r′ with rx(r′) = (bk+1) · j +1. Such a rectangle exists
by Observation 6.3. Then lx(r′) ≤ j due to our assumption. But by Lemma 6.3,
this implies rx(r′) ≤ (bk + 1) · j, a contradiction.

Corollary 6.1. Let q ≤ n, and let {vj1, vj2 , . . . , vjq
} ⊆ V with j1 < j2 < . . . < jq

be a set of vertical lines stabbing all rectangles from R in a reduced instance.
Then, for every i ∈ {1, . . . , q}, it holds that ji ≤ ((bk + 1)i − 1)/bk.

Proof. By induction on i. For i = 1, the statement holds because in any reduced
instance there is a rectangle r with lx(r) = rx(r) = 1. Assume that the statement
holds for i − 1, that is, ji−1 ≤ ((bk + 1)i−1 − 1)/bk. By Lemma 6.4, there is a
rectangle r ∈ R with lx(r) > ji−1 and rx(r) ≤ (bk + 1) · ji−1 + 1. Clearly this
rectangle is not stabbed by any line from {vj1, . . . , vji−1

} and therefore, we have
ji ≤ rx(r) ≤ (bk + 1) · ji−1 + 1 ≤ ((bk + 1)i − 1)/bk.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

6.6. Conclusion 161

The last ingredient for the problem kernel is the following easy observation.

Observation 6.7. If an instance of the restricted variant of Rectangle Stab-
bing is a yes-instance, then there is a set V ′ ⊆ V of at most bk vertical lines
that intersect all rectangles in R.

Proof. Replace every horizontal line h in an optimal solution by at most b vertical
lines that intersect the rectangles intersected by h.

Putting together Corollary 6.1 and Observation 6.7 finally yields our problem
kernel.

Theorem 6.6. The restricted variant of Rectangle Stabbing, where ev-
ery horizontal line intersects at most b rectangles, has a problem kernel of size
O((bk + 1)bk) and is, therefore, fixed-parameter tractable with respect to the com-
bined parameters k and b.

Proof. Given an instance of this restricted version, find in polynomial time the
optimal number of vertical lines needed to intersect all rectangles. If the optimal
solution size is greater than bk, report that the given instance is a no-instance.
Otherwise, by Corollary 6.1, we know that every set of vertical lines {vj1 , . . . , vjbk

}
that intersects all rectangles in R has jbk ≤ ((bk+1)bk−1)/bk. If the given instance
is a yes-instance, then R cannot contain any rectangle r with lx(r) > jbk. For
every j ∈ {1, . . . , jbk}, however, there are at most bk+1 rectangles r with lx(r) = j
due to Observation 6.6. Hence, if R contains more than O((bk +1)bk) rectangles,
report that the given instance is a no-instance.

6.6 Conclusion

The problem d-Dimensional Rectangle Stabbing is well-studied from the
approximation point of view. We have answered the thus naturally arising ques-
tion whether the problem is fixed-parameter tractable with respect to the param-
eter k = “solution size.” While it is known that d-Dimensional Rectangle
Stabbing can be approximated with a factor of d [GIK02, MSW05], we could
prove that even for the case d = 2 the problem is W[1]-hard.

For some restrictions of the two-dimensional case, we could show fixed-para-
meter tractability; however, the corresponding algorithms are rather classification
tools than being practical. It remains a future work to improve the running times
obtained in this chapter.

Very recently, we have complemented the results presented here with some
more fixed-parameter tractability results for Rectangle Stabbing [DFR09]:

• The restricted variant of Rectangle Stabbing where all rectangles in R
are squares of the same width and the same height is W[1]-hard with respect
to the parameter k.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

162 Chapter 6. Rectangle Stabbing

• Rectangle Stabbing can be solved in (4k+1)k·nO(1) time if all rectangles
in R are squares of the same width and the same height that do not overlap.
Thereby, two rectangles r1, r2 overlap if there exist a vertical line v and a
horizontal line h that both intersect r1 as well as r2.

• 2-C1P-Set Cover, 2-XC1P-Set Cover, and Rectangle Stabbing
are in W[1] with respect to the parameter k. This result can be general-
ized: For any constant d, d-C1P-Set Cover, d-XC1P-Set Cover, and
d-Dimensional Rectangle Stabbing are in W[1] with respect to the
parameter k.

The following questions, thus, remained open so far: First, we do not know the
parameterized complexity of the perhaps most natural restriction of Rectan-
gle Stabbing where no two rectangles from R overlap. Second, is there a
polynomial-size problem kernel for Rectangle Stabbing when all rectangles
in R are squares of the same size that do not overlap? Finally, do d-C1P-Set
Cover, d-XC1P-Set Cover, and d-Dimensional Rectangle Stabbing
belong to W[1] when parameterized by both k and d?

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Chapter 7

Conclusion

We studied a number of problems that are all closely connected to the consecutive-
ones property of binary matrices. Let us briefly recapitulate the central findings
presented in Chapters 3–6, the four main chapters of this work, and the methods
leading to the results.

Finding small forbidden submatrices. We presented two polynomial-time
algorithms for finding forbidden submatrices of almost minimum size and min-
imum size, respectively. The central idea of both algorithms is to reduce the
matrix problem to a graph problem such that standard graph algorithms can be
used as subroutines. Both algorithms are easy to implement, and, due to the
small degrees of their polynomial running times, should be useful in practice.

Obtaining the C1P by row or column deletions. We exhibited a colorful
landscape of different computational complexity results. Our main finding is a
structural theorem, leading to approximation and fixed-parameter algorithms for
the minimization problems Min-COS-R and Min-COS-C on sparse matrices.

Covering problems on input matrices with the C1P. We outlined the
border between polynomial-time solvabability and NP-hardness for special cases
of Minimum-Degree Hypergraph and Red-Blue Set Cover. The positive
results of this chapter are polynomial-time algorithms for Minimum-Degree
Hypergraph and Red-Blue Set Cover on input matrices with the C1P;
these algorithms were obtained with integer linear programming and dynamic
programming techniques.

Rectangle stabbing in d dimensions. Besides some fixed-parameter algo-
rithms for special cases of 2-Dimensional Rectangle Stabbing, we proved
the W[1]-hardness of d-Dimensional Rectangle Stabbing for every d ≥ 2.
To this end, we applied the new technique of reducing from the Multicolored
Clique problem.

163

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

164 Chapter 7. Conclusion

Which conclusions for upcoming problems can we draw from our findings?
First, our studies in Chapters 5 and 6 for covering problems on matrices being
“close” to having the C1P disclosed the hardness even in the case of very re-
stricted problem variants. In contrast, there exist approximation algorithms and
heuristics for Set Cover on matrices with few blocks of 1s per row [MSW05],
and Set Cover is fixed-parameter tractable [MSW05, MW04] for the parame-
ter “distance between the first and the last 1 in every row.” Altogether, these
observations confirm the “golden rule” that, in order to develop or to select an
algorithm for a particular application, carefully identifying the parameters and
restrictions that are specific for this application is crucial [Hüf07, Chapter 6].

Second, even for very general covering problems, the C1P leads to polynomial-
time solvability: integer linear programming techniques and dynamic program-
ming can be applied. Due to the “linear” structure of the C1P, it is not surprising
that dynamic programming is one of the techniques of choice. However, integer
linear programs can lead to even faster polynomial-time algorithms, when flow
or shortest path algorithms can be used to solve the resulting ILPs. Surprisingly,
in the literature sometimes only the unimodularity of the coefficient matrices is
exploited.

What remains to do? In the conclusions of the chapters, we already pointed
out several directions for future research. We will not repeat these open ques-
tions here; instead, we close with another, more general issue. In Chapter 4 we
have achieved approximation and fixed-parameter algorithms for deleting rows or
columns from a given matrix such that the C1P is obtained. However, we have
not established a connection between the findings of that chapter and, for exam-
ple, the positive results of Chapter 5 concerning the polynomial-time solvability
of covering problems on matrices with the C1P. It remains to be investigated
whether our positive results from Chapter 4 can be combined with efficient algo-
rithms for problems on matrices with the C1P such that, in the end, heuristics or
even approximation algorithms are obtained for these problems on matrices that
do not have the C1P.

Overall, this thesis may hopefully serve as basis for a fruitful future research
towards effective algorithms for the problems considered here and their various
applications.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Bibliography

[ABH98] Jonathan E. Atkins, Erik G. Boman, and Bruce Hendrickson. A
spectral algorithm for seriation and the consecutive ones problem.
SIAM Journal on Computing, 28(1):297–310, 1998. Cited on pages 1,
27, 79.

[ACE+08] Ernst Althaus, Stefan Canzar, Mark R. Emmett, Andreas Karren-
bauer, Alan G. Marshall, Anke Meyer-Baese, and Huimin Zhang.
Computing H/D-exchange speeds of single residues from data of pep-
tic fragments. In Proceedings of the 23rd ACM Symposium on Applied
Computing (SAC ’08), pages 1273–1277. ACM Press, 2008. Cited on
pages 27, 48.

[ACF+04] Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows,
Michael A. Langston, W. Henry Suters, and Christof T. Symons.
Kernelization algorithms for the vertex cover problem: Theory and
experiments. In Proceedings of the 6th Workshop on Algorithm Engi-
neering and Experiments (ALENEX ’04), pages 62–69. ACM/SIAM,
2004. Cited on page 23.

[ACG+99] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann,
Alberto Marchetti-Spaccamela, and Marco Protasi. Complexity and
Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Springer, 1999. Cited on pages 20, 21.

[ADP80] Giorgio Ausiello, Alessandro D’Atri, and Marco Protasi. Structure
preserving reductions among convex optimization problems. Journal
of Computer and System Sciences, 21(1):136–153, 1980. Cited on
page 119.

[AF06] Faisal N. Abu-Khzam and Henning Fernau. Kernels: Annotated,
proper and induced. In Proceedings of the 2nd International Work-
shop on Parameterized and Exact Computation (IWPEC ’06), vol-
ume 4169 of LNCS, pages 264–275. Springer, 2006. Cited on page 23.

[AFLS07] Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston,
and W. Henry Suters. Crown structures for vertex cover kerneliza-

165

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

166 Bibliography

tion. Theory of Computing Systems, 41(3):411–430, 2007. Cited on
page 23.

[AM96] Jonathan E. Atkins and Martin Middendorf. On physical mapping
and the consecutive ones property for sparse matrices. Discrete Ap-
plied Mathematics, 71(1–3):23–40, 1996. Cited on pages 1, 27, 44, 64,
79, 80, 142.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Net-
work Flows: Theory, Algorithms, and Applications. Prentice Hall,
1993. Cited on pages 54, 58.

[Ans99] Kurt M. Anstreicher. Linear programming in O(n3

lnn
L) opera-

tions. SIAM Journal on Optimization, 9(4):803–812, 1999. Cited
on pages 49, 53, 54.

[AP06] Giorgio Ausiello and Vangelis Th. Paschos. Reductions, complete-
ness and the hardness of approximability. European Journal of Op-
erational Research, 172:719–739, 2006. Cited on page 20.

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-
time algorithm for testing the truth of certain quantified boolean
formulas. Information Processing Letters, 8:121–123, 1979. Cited on
page 123.

[AS98] Pankaj K. Agarwal and Micha Sharir. Efficient algorithms for geo-
metric optimization. ACM Computing Surveys, 30(4):412–458, 1998.
Cited on page 139.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal
of the ACM, 42(4):844–856, 1995. Cited on pages 93, 94, 95.

[Ben59] Seymour Benzer. On the topology of the genetic fine structure. Pro-
ceedings of the National Academy of Sciences of the United States of
America, 45:1607–1620, 1959. Cited on page 32.

[Ber70] Claude Berge. Sur certains hypergraphes généralisant les graphes
bipartites. In Paul Erdős, Alfréd Rhényi, and Vera T. Sós, editors,
Combinatorial Theory and its Applications I (Proceedings of the Col-
loquium on Combinatorial Theory and its Applications, 1969), pages
119–133. North-Holland, 1970. Cited on page 51.

[Ber72] Claude Berge. Balanced matrices. Mathematical Programming, 2:19–
31, 1972. Cited on page 51.

[BG93] Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P .
SIAM Journal on Computing, 22(3):560–572, 1993. Cited on page 23.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Bibliography 167

[BG94] Mihir Bellare and Shafi Goldwasser. The complexity of decision ver-
sus search. SIAM Journal on Computing, 23(1):97–119, 1994. Cited
on page 15.

[BG02] Jørgen Bang-Jensen and Gregory Gutin. Digraphs: Theory, Algo-
rithms and Applications. Springer, 2002. Cited on page 8.

[BGRS04] Vittorio Bilò, Vineet Goyal, R. Ravi, and Mohit Singh. On the
crossing spanning tree problem. In Proceedings of the 7th Inter-
national Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX ’04), volume 3122 of LNCS, pages
51–60. Springer, 2004. Cited on pages 44, 142.

[BGS02] Alexander Barvinok, Edward Kh. Gimadi, and Anatoliy I.
Serdyukov. The Maximum Traveling Salesman Problem. In Gre-
gory Gutin and Abraham P. Punnen, editors, The Traveling Sales-
man Problem and its Variations, pages 585–607. Kluwer Academic
Publishers, 2002. Cited on page 91.

[BHY00] Jørgen Bang-Jensen, Jing Huang, and Anders Yeo. Convex-round
and concave-round graphs. SIAM Journal on Discrete Mathematics,
13(2):179–193, 2000. Cited on page 32.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the consecutive
ones property, interval graphs, and graph planarity using PQ-tree
algorithms. Journal of Computer and System Sciences, 13:335–379,
1976. Cited on pages 33, 39, 42, 103, 104.

[BLS99] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph
Classes: A Survey, volume 3 of SIAM Monographs on Discrete Math-
ematics and Applications. SIAM, 1999. Cited on pages 33, 51.

[BOR80] John J. Bartholdi, III, James B. Orlin, and H. Donald Ratliff. Cyclic
scheduling via integer programs with circular ones. Operations Re-
search, 28(5):1074–1085, 1980. Cited on pages 27, 58.

[BT76] I. Borosh and L. B. Treybig. Bounds on positive integral solutions
of linear Diophantine equations. Proceedings of the American Math-
ematical Society, 55(2):299–304, 1976. Cited on page 49.

[CC95] Michele Conforti and Gérard Cornuéjols. Balanced 0,±1-matrices,
bicoloring and total dual integrality. Mathematical Programming,
71:249–258, 1995. Cited on page 51.

[CCV06] Michele Conforti, Gérard Cornuéjols, and Kristina Vuskovic. Bal-
anced matrices. Discrete Mathematics, 306(19–20):2411–2437, 2006.
Cited on page 51.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

168 Bibliography

[CDKM00] Robert D. Carr, Srinivas Doddi, Goran Konjevod, and Madhav V.
Marathe. On the red-blue set cover problem. In Proceedings of
the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’00), pages 345–353. ACM Press, 2000. Cited on pages 120,
136.

[CDKW05] Gruia Călinescu, Adrian Dumitrescu, Howard J. Karloff, and Peng-
Jun Wan. Separating points by axis-parallel lines. International
Journal of Computational Geometry & Applications, 15(6):575–590,
2005. Cited on pages 6, 140.

[Ces03] Marco Cesati. The Turing way to parameterized complexity. Journal
of Computer and System Sciences, 67(4):654–685, 2003. Cited on
page 25.

[CFJ04] Benny Chor, Michael R. Fellows, and David W. Juedes. Linear
kernels in linear time, or how to save k colors in O(n2) steps. In
Proceedings of the 30th International Workshop on Graph-Theoretic
Conecpts in Computer Science (WG ’04), volume 3353 of LNCS,
pages 257–269. Springer, 2004. Cited on page 23.

[CKJ01] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex Cover: Fur-
ther observations and further improvements. Journal of Algorithms,
41(2):280–301, 2001. Cited on page 23.

[CKX06] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved parameterized
upper bounds for Vertex Cover. In Proceedings of the 31st Inter-
national Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS ’06), volume 4162 of LNCS, pages 238–249. Springer,
2006. Cited on page 22.

[Cla09] Millennium prize problems. Web page by The Clay Mathematics
Institute of Cambridge, Massachusetts, USA, 2009. http://www.

claymath.org/millennium. Cited on page 14.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. MIT Press, 2nd edition,
2001. Cited on pages 7, 33, 56, 59, 68, 71, 73, 109, 119, 125.

[CLSZ07] Jianer Chen, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. Im-
proved algorithms for path, matching, and packing problems. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’07), pages 298–307. ACM/SIAM, 2007. Cited on
page 94.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Bibliography 169

[CM08] Jianer Chen and Jie Meng. On parameterized intractability: Hard-
ness and completeness. The Computer Journal, 51(1):39–59, 2008.
Cited on page 25.

[COR98] Thomas Christof, Marcus Oswald, and Gerhard Reinelt. Consecutive
ones and a betweenness problem in computational biology. In Pro-
ceedings of the 6th International Conference on Integer Programming
and Combinatorial Optimization (IPCO ’98), volume 1412 of LNCS,
pages 213–228. Springer, 1998. Cited on page 27.

[COS98] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The ulti-
mate interval graph recognition algorithm? (extended abstract). In
Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’98), pages 175–180. ACM/SIAM, 1998. Cited on
page 33.

[CP93] Nicos Christofides and José M. P. Paixão. Algorithms for large scale
set covering problems. Annals of Operations Research, 43(5):259–277,
1993. Cited on pages 59, 119.

[CTF00] Alberto Caprara, Paolo Toth, and Matteo Fischetti. Algorithms for
the set covering problem. Annals of Operations Research, 98:353–371,
2000. Cited on pages 59, 119.

[CV07] Kenneth L. Clarkson and Kasturi R. Varadarajan. Improved approxi-
mation algorithms for geometric set cover. Discrete & Computational
Geometry, 37(1):43–58, 2007. Cited on page 139.

[DER89] Iain S. Duff, Albert M. Erisman, and John K. Reid. Direct Methods
for Sparse Matrices. Monographs on Numerical Analysis. Oxford
University Press, 1989. Cited on pages 64, 80.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Com-
plexity. Springer, 1999. Cited on pages 21, 25, 59, 91, 120.

[DFH+06] Vida Dujmovic, Michael R. Fellows, Michael T. Hallett, Matthew
Kitching, Giuseppe Liotta, Catherine McCartin, Naomi Nishimura,
Prabhakar Ragde, Frances A. Rosamond, Matthew Suderman, Sue
Whitesides, and David R. Wood. A fixed-parameter approach to
2-Layer Planarization. Algorithmica, 45(2):159–182, 2006. Cited on
pages 81, 83, 113.

[DFR09] Michael Dom, Michael R. Fellows, and Frances A. Rosamond. Para-
meterized complexity of stabbing rectangles and squares in the plane.
In Proceedings of the 3rd International Workshop on Algorithms and
Computation (WALCOM ’09), volume 5431 of LNCS, pages 298–309.
Springer, 2009. Cited on pages xiii, 161, 185.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

170 Bibliography

[DGH+10] Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke
Truss. Fixed-parameter tractability results for feedback set problems
in tournaments. Journal of Discrete Algorithms, 8(1):76–86, 2010.
Cited on pages xi, 185.

[DGHN06] Michael Dom, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Error
compensation in leaf power problems. Algorithmica, 44(4):363–381,
2006. Cited on pages xi, 185.

[DGHN08] Michael Dom, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Clos-
est 4-Leaf Power is fixed-parameter tractable. Discrete Applied Math-
ematics, 156(18):3345–3361, 2008. Cited on pages xi, 185.

[DGN05] Michael Dom, Jiong Guo, and Rolf Niedermeier. Bounded Degree
Closest k-Tree Power is NP-complete. In Proceedings of the 11th An-
nual International Computing and Combinatorics Conference (CO-
COON ’05), volume 3595 of LNCS, pages 757–766. Springer, 2005.
Cited on pages xi, 185.

[DGN07] Michael Dom, Jiong Guo, and Rolf Niedermeier. Approximability
and parameterized complexity of consecutive ones submatrix prob-
lems. In Proceedings of the 4th Annual Conference on Theory and
Applications of Models of Computation (TAMC ’07), volume 4484 of
LNCS, pages 680–691. Springer, 2007. Cited on pages xii, 81, 185.

[DGNW08] Michael Dom, Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke.
Red-blue covering problems and the consecutive ones property. Jour-
nal of Discrete Algorithms, 6(3):393–407, 2008. Cited on pages xii,
185.

[DHN08] Michael Dom, Falk Hüffner, and Rolf Niedermeier. Tiefensuche (Ari-
adne und Co.). In Berthold Vöcking, Helmut Alt, Martin Dietzfel-
binger, Rüdiger Reischuk, Christian Scheideler, Heribert Vollmer,
and Dorothea Wagner, editors, Taschenbuch der Algorithmen, eXa-
men.press, pages 61–73. Springer, 2008. In German language; English
version to appear. Cited on page xi.

[Die05] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in
Mathematics. Springer, 3rd edition, 2005. Cited on page 8.

[DLS09] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompress-
ibility through colors and IDs. In Proceedings of the 36th Inter-
national Colloquium on Automata, Languages, and Programming
(ICALP ’09), LNCS. Springer, 2009. To appear. Cited on pages xi,
185.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Bibliography 171

[DLSV08] Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Vil-
langer. Capacitated domination and covering: A parameterized per-
spective. In Proceedings of the 3rd International Workshop on Pa-
rameterized and Exact Computation (IWPEC ’08), volume 5018 of
LNCS, pages 78–90. Springer, 2008. Cited on pages xi, 185.

[DN07] Michael Dom and Rolf Niedermeier. The search for consecutive ones
submatrices: Faster and more general. In Proceedings of the 3rd
Algorithms and Complexity in Durham (ACiD ’07) Workshop, vol-
ume 9 of Texts in Algorithmics, pages 43–54. College Publications,
2007. Cited on pages xii, 185.

[Dom04] Michael Dom. Fehler-Korrektur bei Leaf-Root-Problemen (Error cor-
rection in leaf root problems). Diploma thesis, Wilhelm-Schickard-
Institut für Informatik, Universität Tübingen, Germany, 2004. In
German language. Cited on page 185.

[Dom07] Michael Dom. Compact routing. In Dorothea Wagner and Roger
Wattenhofer, editors, Algorithms for Sensor and Ad Hoc Networks,
volume 4621 of LNCS, pages 187–202. Springer, 2007. Cited on
page xi.

[Dom08] Michael Dom. Set Cover with almost consecutive ones. In Ming-Yang
Kao, editor, Encyclopedia of Algorithms, pages 832–834. Springer,
2008. Cited on page xi.

[DS05] Irit Dinur and Shmuel Safra. On the hardness of approximating min-
imum vertex cover. Annals of Mathematics, 162(1):439–485, 2005.
Cited on page 91.

[DS08] Michael Dom and Somnath Sikdar. The parameterized complex-
ity of the rectangle stabbing problem and its variants. In Proceed-
ings of the 2nd International Frontiers of Algorithmics Workshop
(FAW ’08), volume 5059 of LNCS, pages 288–299. Springer, 2008.
Cited on pages xiii, 185.

[ELR+08] Guy Even, Retsef Levi, Dror Rawitz, Baruch Schieber, Shimon Sha-
har, and Maxim Sviridenko. Algorithms for capacitated rectangle
stabbing and lot sizing with joint set-up costs. ACM Transactions
on Algorithms, 4(3), Article 34, 2008. Cited on pages 33, 141.

[ES93] Elaine M. Eschen and Jeremy Spinrad. An O(n2) algorithm for
circular-arc graph recognition. In Proceedings of the 4th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’93), pages
128–137. ACM/SIAM, 1993. Cited on page 33.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

172 Bibliography

[Fei98] Uriel Feige. A threshold of ln n for approximating Set Cover. Journal
of the ACM, 45(4):634–652, 1998. Cited on pages 59, 119.

[Fel03] Michael R. Fellows. Blow-ups, win/win’s, and crown rules: Some new
directions in FPT. In Proceedings of the 29th International Work-
shop on Graph-Theoretic Conecpts in Computer Science (WG ’03),
volume 2880 of LNCS, pages 1–12. Springer, 2003. Cited on page 23.

[Fel07] Michael R. Fellows, September 2007. Personal communication. Cited
on page 145.

[Fer05a] Henning Fernau. Parameterized algorithmics: A graph-theoretic ap-
proach. Habilitationsschrift, Wilhelm-Schickard-Institut für Infor-
matik, Universität Tübingen, Germany, 2005. Cited on pages 81, 83,
111, 113.

[Fer05b] Henning Fernau. Two-layer planarization: Improving on parameter-
ized algorithmics. In Proceedings of the 31st Conference on Current
Trends in Theory and Practice of Informatics (SOFSEM ’05), vol-
ume 3381 of LNCS, pages 137–146. Springer, 2005. Cited on pages 81,
83, 113.

[Fer08] Henning Fernau. Parameterized algorithmics for linear arrangement
problems. Discrete Applied Mathematics, 156(17):3166–3177, 2008.
Cited on pages 81, 83, 111.

[FG65] Delbert R. Fulkerson and O. A. Gross. Incidence matrices and in-
terval graphs. Pacific Journal of Mathematics, 15(3):835–855, 1965.
Cited on pages 33, 35, 39.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer, 2006. Cited on pages 21, 25.

[FGS96] Michele Flammini, Giorgio Gambosi, and Sandro Salomone. Inter-
val routing schemes. Algorithmica, 16(6):549–568, 1996. Cited on
pages 44, 142.

[FHO74] Delbert R. Fulkerson, Alan J. Hoffman, and Rosa Oppenheim. On
balanced matrices. Mathematical Programming Study, 1:120–132,
1974. Cited on page 51.

[FHRV09] Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and
Stéphane Vialette. On the parameterized complexity of multiple-
interval graph problems. Theoretical Computer Science, 410(1):53–
61, 2009. Cited on page 145.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Bibliography 173

[Fis85] Peter C. Fishburn. Interval Orders and Interval Graphs. Wiley, 1985.
Cited on page 35.

[FMZ06] Tomás Feder, Rajeev Motwani, and An Zhu. k-connected spanning
subgraphs of low degree. Technical Report TR06-041, Electronic
Colloquium on Computational Complexity (ECCC), 2006. Cited on
page 120.

[Gar07] Frédéric Gardi. The Roberts characterization of proper and unit in-
terval graphs. Discrete Mathematics, 307(22):2906–2908, 2007. Cited
on page 33.

[Gav74] Fanica Gavril. Algorithms on circular-arc graphs. Networks, 4:357–
369, 1974. Cited on page 35.

[GGKS95] Paul W. Goldberg, Martin Charles Golumbic, Haim Kaplan, and
Ron Shamir. Four strikes against physical mapping of DNA. Journal
of Computational Biology, 2(1):139–152, 1995. Cited on pages 1, 27,
44, 79, 142.

[Gho62] Alain Ghouila-Houri. Caractérisation des matrices totalement uni-
modulaires. Comptes Rendus de l’ Académie des Sciences, Paris,
254:1192–1194, 1962. Cited on page 53.

[GIK02] Daya Ram Gaur, Toshihide Ibaraki, and Ramesh Krishnamurti. Con-
stant ratio approximation algorithms for the rectangle stabbing prob-
lem and the rectilinear partitioning problem. Journal of Algorithms,
43(1):138–152, 2002. Cited on pages 62, 140, 141, 161.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. Freeman, 1979.
Cited on pages 14, 17, 44, 81, 87, 137, 142, 157.

[GK03] Fred W. Glover and Gary A. Kochenberger, editors. Handbook of
Metaheuristics, volume 57 of International Series in Operations Re-
search & Management Science. Springer, 2003. Cited on page 18.

[GKW08] Panos Giannopoulos, Christian Knauer, and Sue Whitesides. Para-
meterized complexity of geometric problems. The Computer Journal,
51(3):372–384, 2008. Cited on page 139.

[GLP08] GNU Linear Programming Kit. Homepage of the GLPK soft-
ware package, 2008. http://www.gnu.org/software/glpk. Cited
on page 48.

[GN07] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and
problem kernelization. ACM SIGACT News, 38(1):31–45, 2007.
Cited on page 22.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

174 Bibliography

[Gol04] Martin C. Golumbic. Algorithmic Graph Theory and Perfect Graphs,
volume 57 of Annals of Discrete Mathematics. Elsevier B. V., 2nd
edition, 2004. First edition Academic Press, 1980. Cited on pages 33,
51.

[GS78] Joachim von zur Gathen and Malte Sieveking. A bound on solu-
tions of linear integer equations and inequalities. Proceedings of the
American Mathematical Society, 72:155–158, 1978. Cited on page 49.

[Had02] Salim Haddadi. A note on the NP-hardness of the consecutive block
minimization problem. International Transactions in Operational
Research, 9(6):775–777, 2002. Cited on pages 44, 142.

[Haj57] G. Hajös. Über eine Art von Graphen. Internationale Mathematische
Nachrichten, 11, Problem 65, 1957. In German language. Cited on
page 32.

[Haj00] MohammadTaghi Hajiaghayi. Consecutive ones property.
Manuscript, School of Computer Science, University of Water-
loo, Canada, 2000. Cited on pages 80, 81.

[H̊as99] Johan H̊astad. Clique is hard to approximate within n1−ǫ. Acta
Mathematica, 182:105–142, 1999. Cited on pages 21, 88.

[HG02] MohammadTaghi Hajiaghayi and Yashar Ganjali. A note on the
consecutive ones submatrix problem. Information Processing Letters,
83(3):163–166, 2002. Cited on pages 34, 79, 80, 81.

[HK56] Alan J. Hoffman and Joseph B. Kruskal. Integral boundary points
of convex polyhedra. In H. W. Kuhn and A. W. Tucker, editors,
Linear Inequalities and Related Systems, pages 223–246. Princeton
University Press, 1956. Cited on page 53.

[HL06] Dorit S. Hochbaum and Asaf Levin. Cyclical scheduling and multi-
shift scheduling: Complexity and approximation algorithms. Discrete
Optimization, 3(4):327–340, 2006. Cited on page 27.

[HL08] Salim Haddadi and Zoubir Layouni. Consecutive block minimization
is 1.5-approximable. Information Processing Letters, 108:132–135,
2008. Cited on pages 44, 142.

[HM91] Refael Hassin and Nimrod Megiddo. Approximation algorithms for
hitting objects with straight lines. Discrete Applied Mathematics,
30:29–42, 1991. Cited on pages 27, 140, 141, 155, 156.

[HM99] Wen-Lian Hsu and Tze-Heng Ma. Fast and simple algorithms for
recognizing chordal comparability graphs and interval graphs. SIAM
Journal on Computing, 28(3):1004–1020, 1999. Cited on page 33.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Bibliography 175

[HM03] Wen-Lian Hsu and Ross M. McConnell. PC trees and circular-ones
arrangements. Theoretical Computer Science, 296(1):99–116, 2003.
Cited on pages 42, 99, 100.

[HMPV00] Michel Habib, Ross M. McConnell, Christophe Paul, and Laurent Vi-
ennot. Lex-BFS and partition refinement, with applications to tran-
sitive orientation, interval graph recognition and consecutive ones
testing. Theoretical Computer Science, 234(1–2):59–84, 2000. Cited
on pages 33, 43.

[HNW08] Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke. Techniques
for practical fixed-parameter algorithms. The Computer Journal,
51(1):7–25, 2008. Cited on page 97.

[Hoc97] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-hard
Problems. PWS Publishing Company, 1997. Cited on page 19.

[HR00] Refael Hassin and Shlomi Rubinstein. Better approximations for
max TSP. Information Processing Letters, 75(4):181–186, 2000.
Cited on page 91.

[Hsu92] Wen-Lian Hsu. A simple test for interval graphs. In Proceedings
of the 18th International Workshop on Graph-Theoretic Conecpts in
Computer Science (WG ’92), volume 657 of LNCS, pages 11–16.
Springer, 1992. Cited on page 33.

[Hsu95] Wen-Lian Hsu. O(M ∗N) algorithms for the recognition and isomor-
phism problems on circular-arc graphs. SIAM Journal on Computing,
24(3):411–439, 1995. Cited on page 33.

[Hsu97] Wen-Lian Hsu. On physical mapping algorithms – an error-tolerant
test for the consecutive ones property. In Proceedings of the 3rd An-
nual International Computing and Combinatorics Conference (CO-
COON ’97), volume 1276 of LNCS, pages 242–250. Springer, 1997.
Cited on page 44.

[Hsu02] Wen-Lian Hsu. A simple test for the consecutive ones property. Jour-
nal of Algorithms, 43(1):1–16, 2002. Cited on page 39.

[HT02] Dorit S. Hochbaum and Paul A. Tucker. Minimax problems with
bitonic matrices. Networks, 40(3):113–124, 2002. Cited on pages 27,
58.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 1979. Cited
on page 49.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

176 Bibliography

[Hüf07] Falk Hüffner. Algorithms and Experiments for Parameterized Ap-
proaches to Hard Graph Problems. PhD thesis, Institut für Infor-
matik, Friedrich-Schiller-Universität Jena, Germany, 2007. Cited on
page 164.

[HWZ08] Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm
engineering for color-coding with applications to signaling pathway
detection. Algorithmica, 52(2):114–132, 2008. Cited on pages 93, 94,
95, 96.

[ISG08] Graphclasses in ISGCI. Online database, 2008. http://

wwwteo.informatik.uni-rostock.de/isgci/classes.cgi. Cited
on page 33.

[JM08] Klaus Jansen and Marian Margraf. Approximative Algorithmen und
Nichtapproximierbarkeit. Gruyter, 2008. In German language. Cited
on page 21.

[Joh74] David S. Johnson. Approximation algorithms for combinatorial prob-
lems. Journal of Computer and System Sciences, 9(3):256–278, 1974.
Cited on page 19.

[Khu02] Samir Khuller. The Vertex Cover problem. SIGACT News, 33(2):31–
33, 2002. Cited on page 23.

[KM78] Ravindran Kannan and C. L. Monma. On the computational com-
plexity of integer programming problems. In R. Henn, B. Korte, and
W. Oettli, editors, Optimization and Operations Research, volume
157 of Lecture Notes in Economics and Mathematical Systems, pages
161–172. Springer, 1978. Cited on page 49.

[KM89] Norbert Korte and Rolf H. Möhring. An incremental linear-time algo-
rithm for recognizing interval graphs. SIAM Journal on Computing,
18(1):68–81, 1989. Cited on pages 33, 40.

[KMMS06] Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy
Spinrad. Certifying algorithms for recognizing interval graphs and
permutation graphs. SIAM Journal on Computing, 36(2):326–353,
2006. Cited on pages 33, 41.

[KMN05] Matthew J. Katz, Joseph S. B. Mitchell, and Yuval Nir. Orthogonal
segment stabbing. Computational Geometry, 30(2):197–205, 2005.
Cited on pages 122, 139.

[KMRR06] Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith.
Divide-and-color. In Proceedings of the 32nd International Work-
shop on Graph-Theoretic Conecpts in Computer Science (WG ’06),
volume 4271 of LNCS, pages 58–67. Springer, 2006. Cited on page 94.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Bibliography 177

[KMSV98] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh V.
Vazirani. On syntactic versus computational views of approxima-
bility. SIAM Journal on Computing, 28(1):164–191, 1998. Cited on
page 20.

[KN96] Matthew J. Katz and Frank Nielsen. On piercing sets of objects. In
Proceedings of the 22nd Annual ACM Symposium on Computational
Geometry (SOCG ’96), pages 113–121. ACM Press, 1996. Cited on
page 139.

[KN06] Haim Kaplan and Yahav Nussbaum. A simpler linear-time recogni-
tion of circular-arc graphs. In Proceedings of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT ’06), volume 4059 of LNCS,
pages 41–52. Springer, 2006. Cited on page 33.

[Köh04] Ekkehard Köhler. Recognizing graphs without asteroidal triples.
Journal of Discrete Algorithms, 2(4):439–452, 2004. Cited on page 63.

[Kou77] Lawrence T. Kou. Polynomial complete consecutive information re-
trieval problems. SIAM Journal on Computing, 6(1):67–75, 1977.
Cited on page 27.

[KR02] Subhash Khot and Venkatesh Raman. Parameterized complexity of
finding subgraphs with hereditary properties. Theoretical Computer
Science, 289(2):997–1008, 2002. Cited on page 91.

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to ap-
proximate to within 2−ǫ. Journal of Computer and System Sciences,
74(3):335–349, 2008. Cited on page 82.

[KRW+05] Fabian Kuhn, Pascal von Rickenbach, Roger Wattenhofer, Emo
Welzl, and Aaron Zollinger. Interference in cellular networks: The
minimum membership set cover problem. In Proceedings of the
11th Annual International Computing and Combinatorics Conference
(COCOON ’05), volume 3595 of LNCS, pages 188–198. Springer,
2005. Cited on pages 2, 120, 121.

[KS96] Haim Kaplan and Ron Shamir. Physical maps and interval sandwich
problems: Bounded degrees help. In Proceedings of the 4th Israeli
Symposium on Theory of Computing and Systems (ISTCS ’96), pages
195–201, 1996. Cited on pages 64, 80.

[KS01] Sofia Kovaleva and Frits C. R. Spieksma. Approximation of a geo-
metric set covering problem. In Proceedings of the 12th International
Symposium on Algorithms and Computation (ISAAC ’01), volume
2223 of LNCS, pages 493–501. Springer, 2001. Cited on pages 27,
141, 155, 157.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

178 Bibliography

[KS06] Sofia Kovaleva and Frits C. R. Spieksma. Approximation algorithms
for rectangle stabbing and interval stabbing problems. SIAM Journal
on Discrete Mathematics, 20(3):748–768, 2006. Cited on pages 141,
155, 157.

[KSPS02] Farinaz Koushanfar, Sasha Slijepcevic, Miodrag Potkonjak, and Al-
berto Sangiovanni-Vincentelli. Error-tolerant multimodal sensor fu-
sion. In Proceedings of the IEEE CAS Workshop on Wireless Com-
munications and Networking. IEEE CAS, 2002. Cited on pages 4,
140.

[KW97] Josef Kallrath and John M. Wilson. Business Optimization Us-
ing Mathematical Programming. MacMillan Press, 1997. Cited on
page 48.

[LB62] C. G. Lekkerkerker and J. Ch. Boland. Representation of a finite
graph by a set of intervals on the real line. Fundamenta Mathemati-
cae, 51:45–64, 1962. Cited on page 37.

[LBI+01] Giuseppe Lancia, Vineet Bafna, Sorin Istrail, Ross Lippert, and
Russell Schwartz. SNPs problems, complexity, and algorithms. In
Proceedings of the 9th Annual European Symposium on Algorithms
(ESA ’01), volume 2161 of LNCS, pages 182–193. Springer, 2001.
Cited on page 33.

[LH03] Wei-Fu Lu and Wen-Lian Hsu. A test for the consecutive ones prop-
erty on noisy data – application to physical mapping and sequence
assembly. Journal of Computational Biology, 10(5):709–735, 2003.
Cited on pages 1, 27, 44, 79.

[LLS75] Richard E. Ladner, Nancy A. Lynch, and Alan L. Selman. A compar-
ison of polynomial time reducibilities. Theoretical Computer Science,
1(2):103–123, 1975. Cited on page 13.

[LM05] Stefan Langerman and Pat Morin. Covering things with things.
Discrete & Computational Geometry, 33(4):717–729, 2005. Cited on
page 139.

[Lov75] Laszlo Lovàsz. On the ratio of optimal fractional and integral covers.
Discrete Mathematics, 13:383–390, 1975. Cited on page 19.

[LY93] Carsten Lund and Mihalis Yannakakis. The approximation of
maximum subgraph problems. In Proceedings of the 20st Inter-
national Colloquium on Automata, Languages, and Programming
(ICALP ’93), volume 700 of LNCS, pages 40–51. Springer, 1993.
Cited on page 91.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Bibliography 179

[McC03] Ross M. McConnell. Linear-time recognition of circular-arc graphs.
Algorithmica, 37(2):93–147, 2003. Cited on page 33.

[McC04] Ross M. McConnell. A certifying algorithm for the consecutive-ones
property. In Proceedings of the 15th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’04), pages 768–777. ACM Press,
2004. Cited on pages xii, 38, 40, 41, 44, 45, 46.

[MF04] Zbigniew Michalewicz and David B. Fogel. How to Solve it: Modern
Heuristics. Springer, 2nd edition, 2004. Cited on page 18.

[MG06] Jǐŕı Matoušek and Bernd Gärtner. Understanding and Using Linear
Programming. Universitext. Springer, 2006. Cited on page 48.

[MPT98] João Meidanis, Oscar Porto, and Guilherme P. Telles. On the con-
secutive ones property. Discrete Applied Mathematics, 88:325–354,
1998. Cited on page 40.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995. Cited on page 26.

[MSW05] Steffen Mecke, Anita Schöbel, and Dorothea Wagner. Station lo-
cation – complexity and approximation. In Proceedings of the 5th
Workshop on Algorithmic Methods and Models for Optimization of
Railways (ATMOS ’05). IBFI Dagstuhl, Germany, 2005. Cited on
pages 3, 27, 33, 61, 121, 122, 140, 141, 158, 161, 164.

[MT82] Nimrod Megiddo and Arie Tamir. On the complexity of locating
linear facilities in the plane. Operations Research Letters, 1:194–197,
1982. Cited on page 139.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge Uni-
versity Press, 2005. Cited on page 26.

[MW04] Steffen Mecke and Dorothea Wagner. Solving geometric covering
problems by data reduction. In Proceedings of the 12th Annual Eu-
ropean Symposium on Algorithms (ESA ’04), volume 3221 of LNCS,
pages 760–771. Springer, 2004. Cited on pages 3, 27, 33, 61, 121, 122,
164.

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006. Cited on pages 21, 25, 97.

[NT75] George L. Nemhauser and Leslie E. Trotter. Vertex packings: Struc-
tural properties and algorithms. Mathematical Programming, 8:232–
248, 1975. Cited on page 23.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

180 Bibliography

[Nus97] Doron Nussbaum. Rectilinear p-piercing problems. In Proceedings of
the 1997 International Symposium on Symbolic and Algebraic Com-
putation (ISSAC ’97), pages 316–323. ACM Press, 1997. Cited on
page 139.

[NW88] George L. Nemhauser and Laurence A. Wolsey. Integer and Com-
binatorial Optimization. Discrete Mathematics and Optimization.
Wiley, 1988. Cited on pages 33, 53, 54, 121.

[OR00] Marcus Oswald and Gerhard Reinelt. Polyhedral aspects of the con-
secutive ones problem. In Proceedings of the 6th Annual International
Computing and Combinatorics Conference (COCOON ’00), volume
1858 of LNCS, pages 373–382. Springer, 2000. Cited on page 27.

[OR03a] Marcus Oswald and Gerhard Reinelt. Constructing new facets of the
consecutive ones polytope. In Proceedings of the 5th International
Workshop on Combinatorial Optimization—“Eureka, You Shrink!”
(Aussois ’01), volume 2570 of LNCS, pages 147–157, 2003. Cited on
page 27.

[OR03b] Marcus Oswald and Gerhard Reinelt. The weighted consecutive ones
problem for a fixed number of rows or columns. Operations Research
Letters, 31(3):350–356, 2003. Cited on page 87.

[Pap94] Christos M. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994. Cited on pages 10, 16, 21, 26, 130.

[Pap97] Christos H. Papadimitriou. NP-completeness: A retrospective. In
Proceedings of the 24th International Colloquium on Automata, Lan-
guages, and Programming (ICALP ’97), volume 1256 of LNCS, pages
2–6. Springer, 1997. Cited on pages 14, 17.

[PS98] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial
Optimization: Algorithms and Complexity. Dover Publications Inc.,
corrected edition, 1998. First edition Prentice Hall, 1982. Cited on
pages 18, 48.

[PW00] Florian A. Potra and Stephen J. Wright. Interior-point methods.
Journal of Computational and Applied Mathematics, 124:281–302,
2000. Cited on page 49.

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization,
approximation, and complexity classes. Journal of Computer and
System Sciences, 43(3):425–440, 1991. Cited on pages 20, 137.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Bibliography 181

[Rob69] Fred. S. Roberts. Indifference graphs. In Frank Harary, editor, Proof
Techniques in Graph Theory, pages 139–146. Academic Press, 1969.
Cited on pages 33, 35.

[Ros06] Kenneth H. Rosen. Discrete Mathematics and Its Applications. Mc-
Graw Hill, 6th edition, 2006. Cited on page 7.

[RS04] Nikolaus Ruf and Anita Schöbel. Set covering with almost consecu-
tive ones property. Discrete Optimization, 1(2):215–228, 2004. Cited
on pages 3, 27, 33, 61, 121, 122.

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming.
Wiley, 1986. Cited on pages 48, 51, 54, 124.

[Seg99] Michael Segal. On piercing sets of axis-parallel rectangles and rings.
International Journal of Computational Geometry & Applications,
9(3):219–233, 1999. Cited on page 139.

[Ser84] A. I. Serdyukov. An algorithm with an estimate for the travelling
salesman problem of the maximum. Upravlyaemye Sistemy, 25:80–
86, 1984. In Russian language. Cited on pages 91, 92.

[Sie96] Gerard Sierksma. Linear and Integer Programming. Marcel Dekker,
1996. Cited on page 48.

[SKD06] Harald Sack, Uwe Krüger, and Michael Dom. A knowledge base on
NP-complete decision problems and its application in bibliographic
search. In XML-Tage 2006, September 2006. Cited on pages xi, 185.

[Sud05] Matthew Suderman. Layered Graph Drawing. PhD thesis, School of
Computer Science, McGill University Montréal, Canada, 2005. Cited
on pages 81, 83, 113.

[SW96] Micha Sharir and Emo Welzl. Rectilinear and polygonal p-piercing
and p-center problems. In Proceedings of the 22nd Annual ACM
Symposium on Computational Geometry (SOCG ’96), pages 122–
132. ACM Press, 1996. Cited on page 139.

[SW05] Matthew Suderman and Sue Whitesides. Experiments with the fixed-
parameter approach for two-layer planarization. Journal of Graph
Algorithms and Applications, 9(1):149–163, 2005. Cited on pages 81,
83, 113.

[Tru78] Klaus Truemper. On balanced matrices and Tutte’s characterization
of regular matroids. Manuscript, 1978. Cited on page 51.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

182 Bibliography

[Tuc71] Alan C. Tucker. Matrix characterizations of circular-arc graphs. Pa-
cific Journal of Mathematics, 2(39):535–545, 1971. Cited on pages 29,
30, 34, 35.

[Tuc72] Alan C. Tucker. A structure theorem for the consecutive 1’s property.
Journal of Combinatorial Theory. Series B, 12:153–162, 1972. Cited
on pages 28, 29, 31, 34, 36, 37, 38, 64, 66, 67, 79, 80, 82, 85.

[Tuc80] Alan C. Tucker. An efficient test for circular-arc graphs. SIAM
Journal on Computing, 9(1):1–24, 1980. Cited on page 33.

[TZ07] Jinsong Tan and Louxin Zhang. The consecutive ones submatrix
problem for sparse matrices. Algorithmica, 48(3):287–299, 2007.
Cited on pages 34, 64, 79, 80, 81, 82, 83, 85, 86, 88, 91, 94.

[Vaz01] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001. Cited
on page 21.

[Vel85] Marinus Veldhorst. Approximation of the consecutive ones matrix
augmentation problem. SIAM Journal on Computing, 14(3):709–729,
1985. Cited on page 87.

[VW62] Arthur F. Veinott and H. M. Wagner. Optimal capacity scheduling.
Operations Research, 10:518–547, 1962. Cited on pages 27, 33, 54,
121.

[Wes01] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2nd
edition, 2001. Cited on page 8.

[WLZ07] Rui Wang, Francis C. M. Lau, and Yingchao Zhao. Hamiltonicity of
regular graphs and blocks of consecutive ones in symmetric matrices.
Discrete Applied Mathematics, 155(17):2312–2320, 2007. Cited on
pages 44, 142.

[Woe03] Gerhard J. Woeginger. Exact algorithms for NP-hard problems: A
survey. In Proceedings of the 5th International Workshop on Com-
binatorial Optimization—“Eureka, You Shrink!” (Aussois ’01), vol-
ume 2570 of LNCS, pages 185–208. Springer, 2003. Cited on page 7.

[WR00] Stephan Weis and Rüdiger Reischuk. The complexity of physi-
cal mapping with strict chimerism. In Proceedings of the 6th An-
nual International Computing and Combinatorics Conference (CO-
COON ’00), volume 1858 of LNCS, pages 383–395. Springer, 2000.
Cited on pages 1, 27, 44, 64, 79, 80, 142.

[XX07] Guang Xu and Jinhui Xu. Constant approximation algorithms for
rectangle stabbing and related problems. Theory of Computing Sys-
tems, 40(2):187–204, 2007. Cited on page 141.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Erklärung

Hiermit erkläre ich,

• dass mir die geltende Promotionsordnung der Fakultät bekannt ist;

• dass ich die Dissertation selbst angefertigt und alle von mir benutzten Hilfs-
mittel, persönlichen Mitteilungen und Quellen in meiner Arbeit angegeben
habe;

• dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen
habe und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistun-
gen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem
Inhalt der vorgelegten Dissertation stehen;

• dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche
oder andere wissenschaftliche Prüfung eingereicht habe;

• dass ich weder die gleiche noch eine in wesentlichen Teilen ähnliche noch
eine andere Abhandlung bei einer anderen Hochschule als Dissertation ein-
gereicht habe.

Jena, Juli 2008 Michael Dom

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

Lebenslauf

Michael Dom

[Dom04],

Begutachtete Publikationen (bei Veröffentlichungen mit sowohl Konferenz- als
auch Zeitschriftenversion ist nur die Zeitschriftenversion aufgeführt):

[DFR09, DGHN06, DGH+10, DGHN08, DGN05, DGN07, DGNW08, DLS09,
DLSV08, DN07, DS08, SKD06]

Jena, Juli 2008 / März 2009 Michael Dom

Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive-Ones Property.
Revised version, 02. 06. 2010. Original publication: Dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2008. Published by Cuvillier, 2009.

