
Fixed-Parameter Algorithms for the

Consensus Analysis of Genomic Data

Dissertation

der Fakultät für Informations- und Kognitionswissenschaften
der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Jens Gramm

aus Stockach am Bodensee

Tübingen
2003



Tag der mündlichen Qualifikation: 23. Juli 2003
Dekan: Prof. Dr. Ulrich Güntzer,

1. Berichterstatter: PD Dr. Rolf Niedermeier (Universität Tübingen),
2. Berichterstatter: Prof. Dr. Daniel Huson (Universität Tübingen),
3. Berichterstatter: Prof. Dr. Benny Chor (Tel Aviv University, Israel)



Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen be-
nutzt zu haben.





i

Zusammenfassung

Festparameter-Algorithmen bieten einen konstruktiven Ansatz zur Lösung von
kombinatorisch schwierigen, in der Regel NP-harten Problemen, der zwei Ziele
berücksichtigt: innerhalb von beweisbaren Laufzeitschranken werden optimale
Ergebnisse berechnet. Die entscheidende Idee ist dabei, einen oder mehrere
Aspekte der Problemeingabe als Parameter der Problems aufzufassen und die
kombinatorische Explosion der algorithmischen Schwierigkeit auf diese Para-
meter zu beschränken, so dass die Laufzeitkosten polynomiell in Bezug auf den
nicht-parametrisierten Teil der Eingabe sind. Gibt es einen Festparameter-
Algorithmus für ein kombinatorisches Problem, nennt man das Problem festpa-
rameter-handhabbar. Die Entwicklung von Festparameter-Algorithmen macht
vor allem dann Sinn, wenn die betrachteten Parameter im Anwendungsfall nur
kleine Werte annehmen. Festparameter-Algorithmen sind zu einem algorith-
mischen Standardwerkzeug in vielen Anwendungsbereichen geworden, unter
anderem in der algorithmischen Biologie, wo in vielen Anwendungen kleine
Parameterwerte beobachtet werden können. Zu den bekannten Techniken für
den Entwurf von Festparameter-Algorithmen gehören unter anderem größenbe-
schränkte Suchbäume. In der algorithmischen Biologie gibt es bislang nur
wenige Beispiele für die Anwendung von größenbeschränkten Suchbäumen.

Diese Arbeit untersucht den Einsatz größenbeschränkter Suchbäume für NP-
harte Konsens-Probleme in der Analyse von DNS- und RNS-Daten. Wir be-
trachten Konsens-Probleme in der Analyse von DNS-Sequenzdaten, in der Anal-
yse von sogenannten Quartettdaten zur Erstellung von phylogenetischen Hy-
pothesen, in der Analyse von Daten über die Anordnung von Genen und beim
Vergleich von RNS-Strukturdaten. In allen Fällen stellen wir neue effiziente
Algorithmen vor, in denen das Paradigma der größenbeschränkten Suchbäume
auf neuartige Weise realisiert wird. Auf diesem Weg zeigen wir auch Ergeb-
nisse parametrisierter Härte, die zeigen, dass für die dabei betrachteten Pro-
bleme ein Festparameter-Algorithmus unwahrscheinlich ist. Außerdem führen
wir ganzzahliges lineares Programmieren als eine neue Technik ein, um die
Festparameter-Handhabbarkeit eines Problems zu zeigen. Die Mehrzahl der
hier vorgestellten Algorithmen wurde implementiert und auf Anwendungsdaten
getestet. Im folgenden geben wir einen Überblick über die einzelnen Kapitel
dieser Arbeit.

In Kapitel 1 geben wir eine Einführung und eine Motivation für die Fragestel-
lungen der Arbeit, indem wir überblicksartig den Schnittbereich von parametri-
sierten Algorithmen und algorithmischer Biologie vorstellen, in dem die Arbeit
angesiedelt ist. Weiter geben wir eine Übersicht über die Ziele der Arbeit,
führen Terminologie ein, die in den weiteren Teilen der Arbeit relevant ist, und
geben einen zusammmenfassenden Überblick über den Inhalt der Arbeit.

In Kapitel 2 geben wir einen Einblick in biologisches Hintergrundwissen, das
für diese Arbeit von Interesse ist. Das Kapitel soll ein sehr grundlegendes



ii

Verständnis einiger biologischer Prozesse vermitteln und biologische Termi-
nologie einführen, die in dieser Arbeit benutzt wird. Dabei weisen wir ins-
besondere auf die biologischen Fragestellungen hin, durch die die in der Arbeit
angesprochenen kombinatorischen Probleme motiviert sind. Wir behandeln
DNS- und RNS-Sequenzen, DNS-Signale und Genexpression, RNS-Struktur,
die Polymerase-Kettenreaktion, Genomevolution und die Erstellung von Hy-
pothesen über evolutionäre Verwandtschaften.

In Kapitel 3 geben wir eine Einführung in die Teile der parametrisierten Kom-
plexitätstheorie, die für diese Arbeit relevant sind. Wir führen formal Festpara-
meter-Handhabbarkeit und Festparameter-Algorithmen ein und, in begrenztem
Umfang, auch das Konzept der parametrisierten Härte. Wir stellen einige Tech-
niken vor, um Festparameter-Algorithmen zu entwerfen: Problemkerne, Enu-
meration und dynamisches Programmieren. Jede dieser Techniken sowie das
Konzept parametrisierter Härte illustrieren wir durch Beispielprobleme aus der
algorithmischen Biologie, für die entsprechende Resultate angeführt werden.

In Kapitel 4 beschreiben wir den Entwurf von Algorithmen nach dem Prinzip
größenbeschränkter Suchbäume. Wir beleuchten auf systematische Weise ver-
schiedene Aspekte größenbeschränkter Suchbäume und illustrieren unsere Er-
klärungen durch einen einfachen Suchbaum-Algorithmus für das Vertex Co-
ver Problem.

In Kapitel 5 ermitteln wir die parametrisierte Komplexität von NP-vollständi-
gen Problemen bei der Suche nach Konsens-Zeichenketten, einer zentralen Frage
im Kontext der Analyse von DNS-Sequenzen. Die hier untersuchten Probleme
sind Closest String, Closest Substring und Varianten von diesen. Clo-
sest String ist, gegeben k Zeichenketten der Länge L und eine nicht-negative
ganze Zahl d, die Frage, ob es eine “Konsens-Zeichenkette” der Länge L gibt,
deren Hamming-Abstand zu jeder der Eingabezeichenketten höchstens d ist. In
Abschnitt 5.1 zeigen wir, dass das Problem sowohl festparameter-handhabbar
ist, wenn wir den Distanzparameter d betrachten als auch wenn wir die Zahl k

von Eingabezeichenketten als Parameter betrachten. Um die Festparameter-
Handhabbarkeit bezüglich des Distanzparameters zu zeigen, präsentieren wir
einen Suchbaum-Algorithmus mit O(dd · dk + Lk) Laufzeit, den wir auf einige
in praktischen Anwendungen relevante Varianten des Problems verallgemei-
nern. Die Festparameter-Handhabbarkeit bezüglich der Zahl k von Eingabe-
zeichenketten zeigen wir durch Formulierung der Fragestellung als ganzzahlig
lineares Programm mit einer nur von k abhängigen Zahl von Variablen. Dies ist
das erste Beispiel, bei dem die Festparameter-Handhabbarkeit eines Problems
auf diese Weise gezeigt wurde. Wir diskutieren die Anwendung der vorgestell-
ten Algorithmen für Anwendungsfragen in der Motivsuche und beim Entwurf
von Primern und stellen experimentelle Ergebnisse sowohl für den Suchbaum-
Algorithmus als auch für die Lösung über ganzzahlig lineare Programme vor.

Das Closest Substring Problem verallgemeinert Closest String dadurch,
dass es nach Teilzeichenketten einer vorgegebenen Länge L in jeder Eingabezei-



iii

chenkette frägt, die eine Konsens-Zeichenkette, wie bei Closest String be-
schrieben, haben. Insbesondere im Kontext der Motivsuche in DNS-Sequenzen,
d.h. bei der Suche nach gemeinsamen Signalen in den Sequenzen, erfuhr diese
Fragestellung große Aufmerksamkeit. Wir zeigen, dass Closest Substring
und Varianten davon W[1]-hart sind in Bezug auf die Anzahl von Eingabezei-
chenketten als Parameter. Dieses Ergebnis gibt ein starkes theoretisch funda-
mentiertes Indiz für die intuitive Vermutung, dass Closest Substring kombi-
natorisch sehr viel schwieriger ist als Closest String. Bemerkenswerterweise
wurde diese Vermutung bisher nicht durch “klassische” Methoden unterstützt,
da beide Probleme NP-hart sind und beide ein Polynomzeit-Approximations-
schema besitzen. Unser Resultat zeigt, dass es wenig Hoffnung auf Algorithmen
für Closest Substring gibt, deren Laufzeit nur exponentiell in der Zahl der
Eingabezeichenketten ist.

In Kapitel 6 betrachten wir das Problem der Berechnung eines “Konsens-Baums”
für eine gegebene Menge von kleinen Bäumen, die jeweils nur vier Blätter haben.
Dies ist die zentrale Idee von Quartettmethoden, einem populären Ansatz in
der Erstellung von Hypothesen über Evolutionsbäume. Das von uns unter-
suchte Problem ist Minimum Quartet Inconsistency (MQI): Gegeben n

Taxa und genau eine binäre Baumtopologie, genannt Quartett-Topologie, für
jede Menge von vier der Taxa, sowie ein nicht-negativer Parameter k, ist die
Frage, einen binären Baum zu finden, dessen Blättern die n Taxa in einer
1-zu-1 Relation zugeordnet sind und der höchstens k der gegebenen Quartett-
Topologien “widerspricht”. Während das allgemeinere Problem, bei dem nicht
notwendigerweise eine Quartett-Topologie für jede Vierermenge von Taxa ver-
langt wird, nicht festparameter-handhabbar zu sein scheint, zeigen wir für
MQI einen Festparameter-Algorithmus in Bezug auf den Parameter k: Wir
präsentieren einen Suchbaum-Algorithmus mit O(4k · n + n4) Laufzeit. Dies
bedeutet, dass bei einer kleinen Zahl von “Fehlern” in den Quartett-Topologien
eine effiziente Berechnung des Baums möglich ist. Insbesondere stellen wir
heuristische Methoden vor, um den Algorithmus zu beschleunigen. Anhand von
experimentellen Ergebnissen, unter anderem bei der Analyse einiger Datensätze
von Pilzspezies, demonstrieren wir die Einsetzbarkeit unseres Algorithmus.

In Kapitel 7 behandeln wir ein Konsens-Problem in der Analyse von Genan-
ordnungen, d.h. den Anordnungen von Genen in den Genomen verschiedener
Spezies. Die sogenannte Breakpoint-Distanz ist dabei ein häufig verwendetes
Maß zum Vergleich von Genanordnungen. Zentral in diesem Kapitel das NP-
vollständige Breakpoint Median Problem, welches danach frägt, für eine
gegebene Menge von Genanordnungen ihren “optimalen Konsens” bezüglich der
Breakpoint-Distanz zu berechnen. Der optimale Konsens ist hier eine Genan-
ordnung, mit der die Summe d der Breakpoint-Distanzen zu jeder der Eingabe-
anordnungen minimal wird. Wir präsentieren für das Problem einen Suchbaum-
Algorithmus mit O(2.15d + kn) Laufzeit, wobei k Genanordnungen jeweils der
Länge n gegeben sind. Damit geben wir den ersten exakten Algorithmus für
dieses Problem mit nicht-trivialer Laufzeitgarantie. Wir zeigen die praktische
Einsetzbarkeit des Algorithmus durch experimentelle Ergebnisse. Wir demon-



iv

strieren, wie sich durch Kombination unseres Algorithmus mit einer Heuris-
tik zur Erstellung phylogenetischer Bäume sogenannte Breakpoint-Phylogenien
berechnen lassen, d.h., aufgrund von Genanordnungen berechnete evolutionäre
Bäume, die möglichst geringe Kosten in Bezug auf die Breakpoint-Distanz
haben.

In Kapitel 8 untersuchen wir ein Konsens-Problem in der Analyse von RNS-
Sekundärstrukturdaten. Der Vergleich von RNS-Strukturdaten ist ein Gebiet,
das in algorithmischer Hinsicht herausfordernde Fragen aufwirft. In dieser
Arbeit beschäftigen wir uns mit dem Modell des NP-vollständigen Longest
Common Subsequence Problems für den Vergleich von zwei Sequenzen, die
zusätzlich mit sogenannten, die Struktur repräsentierenden “Arcs” versehen
sind. Gegeben zwei mit Arcs versehene Sequenzen der Länge höchstens n

und nicht-negative ganze Zahlen k1 und k2, ermittelt unser Algorithmus in
O(3.31k1+k2) Laufzeit, falls existent, eine längste gemeinsame Teilsequenz, die
“Arc-erhaltend” ist und die durch Löschung (zusammen mit den entsprechen-
den Arcs) von k1 Zeichen in der einen Sequenz und von k2 Zeichen in der zweiten
Sequenz erhalten werden kann. Diese gemeinsame Teilsequenz repräsentiert die
Übereinstimmung der gegebenen Sequenzen und ist ein Maß für ihre Ähnlichkeit.
Unser Algorithmus zeigt, dass das Problem festparameter-handhabbar ist in
Bezug auf die Anzahl der Löschungen. Die Laufzeitanalyse für diesen Algo-
rithmus beinhaltet neue Analysemethoden für größenbeschränkte Suchbäume.
Für den speziellen Fall, dass entweder k1 = 0 oder k2 = 0 zeigen wir, dass sich
das Problem durch dynamisches Programmieren in quadratischer Laufzeit lösen
lässt. Dies bedeutet zum einen eine Beschleunigung für unseren Suchbaum-
Algorithmus und erlaubt es zum anderen, eine offene Frage aus der Literatur
nach einem Polynomzeit-Algorithmus für ein eng verwandtes Problem zu beant-
worten.

In Kapitel 9 fassen wir wichtige Ergebnisse aus den einzelnen Kapiteln zusam-
men, stellen sie in den Kontext aktueller Forschung bezüglich parametrisierter
Algorithmen und stellen Bezüge zu anderen algorithmischen Gebieten her. So
zeigen wir Zusammenhänge zum ganzzahlig linearen Programmieren, zu Ap-
proximationsalgorithmen und zu heuristischen Methoden. Da die Wahl der
Problemparameter ein zentraler Punkt bei der Entwicklung parametrisierter
Algorithmen ist, fassen wir diesbezügliche Beobachtungen zusammen, die wir
bei den in dieser Arbeit studierten Problemen gemacht haben.

In Kapitel 10 zeigen wir mögliche Richtungen auf für auf dieser Arbeit auf-
bauende, zukünftige Forschung. Zum einen beschreiben wir drei Gebiete von
kombinatorischen Fragestellungen im Kontext der algorithmischen Biologie,
in denen die hier vorgestellten algorithmischen Techniken möglicherweise an-
wendbar sind. Daneben zeigen wir zwei möglicherweise interessante Richtun-
gen für die Weiterentwicklung der algorithmischen Technik größenbeschränkter
Suchbäume.



v

Preface

This thesis covers parts of my research on the tractability of hard combinatorial
problems in molecular biology, particularly focusing on exact algorithms with
optimal solutions and guaranteed bounds on the running time. Since January
2000, I have been supported by the Deutsche Forschungsgemeinschaft in the
project OPAL (optimal solutions for hard problems in computational biology),
NI 369/2-1/2, which was initiated and led by Rolf Niedermeier and Klaus-
Jörn Lange. I thank Rolf and Klaus-Jörn for the opportunity to work with
them and I am also grateful to many other people who supported me in my
research: The members of the Tübingen theoretical computer science group—
Jochen Alber, Henning Fernau, Jiong Guo, Rolf Niedermeier, Klaus-Jörn Lange
and Klaus Reinhardt—for the perfect research enviroment they provided; Mike
Fellows (University of Newcastle, Australia), Mike Hallett (McGill University,
Montréal, Canada), and Peter Rossmanith (TU München, now RWTH Aachen)
for common research and inviting me to research visits; Falk Hüffner for his
support in the implementations; Dominik Begerow and Michael Weiß (Group
for Systematic Biology and Mycology, Tübingen) for their collaboration, their
help and their advice concerning biological questions; and Gerhard J. Woeginger
for pointing me to the result of H. W. Lenstra (used in Section 5.1.3).

The most important partner in my research has been Rolf Niedermeier. This
thesis emerged from the continuous work with him and from collaborations with
Jochen Alber, Mike Fellows, Jiong Guo, and Peter Rossmanith. The focus of
this work are fixed-parameter algorithms for combinatorial consensus problems
in the analysis of DNA and RNA data. New results are achieved for problems
in the context of consensus sequence analysis (Chapter 5), of quartet problems
(Chapter 6), of the analysis of gene order information (Chapter 7), and of the
analysis of RNA secondary structure (Chapter 8). For these chapters, I provide,
in the following, a detailed chapterwise overview pointing out those parts of this
research which have been, in particular, my own contribution.

Chapter 5: “Consensus of Sequences.” Section 5.1 is based on [92] and
shows, as central results, fixed-parameter tractability of the Closest String
problem, both when considering an maximally allowed Hamming distance as
parameter as well as when considering the number of input sequences as param-
eter. Regarding the distance parameter, we give an elegant and nevertheless
very efficient search tree algorithm. I developed the algorithm and conducted
its analysis. Regarding the number of input strings as parameter, the fixed-
parameter tractability was unclear for some time. The key for finally coming
up with an ILP formulation using only a bounded number of variables, was
the “normalization” of the input instance that considers the input instance as
a character matrix and that merges columns in the matrix which exhibit an
isomorphic structure. Recognizing that it is the column structure that matters,
to develop an appropriate notion of isomorphism, and to describe the normal-
ization was, in particular, my contribution.



vi

Section 5.2, based on [70], contains involved W-hardness proofs for the Closest
Substring and Consensus Patterns problems. Especially for extending the
results to a bounded size—in our case even binary—alphabet, which is the bi-
ologically relevant case, required special care. The employed reduction reduces
from a graph problem and constructs gadgets that encode edges of the graph.
Especially difficult parts in the binary case are a so-called “synchronization”
of gadgets which prevents that a solution matches between two adjacent gad-
gets, and a balancing of “1”s within a gadget. In the construction of gadgets,
I formulated both the “synchronization” and the balancing, and conducted the
correctness proofs for our results. Moreover, I generalized the results to the—in
many situations more relevant—Consensus Patterns problem.

Chapter 6: “Consensus of Quartets.” Our main result in this chapter,
which is based on [88, 89], is a bounded search tree algorithm for the Minimum
Quartet Inconsistency problem. The key for this algorithm was to exploit
the results of Bandelt and Dress [11] in order to trace inconsistencies back to
local structures. Only these local inconsistencies allow the development of a
bounded search tree algorithm. One of my contributions was to draw the con-
nection between the results by Bandelt and Dress [11] and Minimum Quartet
Inconsistency, and to prove the claimed upper bound on the running time
for our algorithm. Moreover, I carried out the implementation of the algorithm
as well as the performance tests.

Chapter 7: “Consensus of Gene Orders.” This chapter is based on [90]
and, among others, contains a new fixed-parameter algorithm for the Break-
point Median problem. Here, I developed the concept of avoiding worst cases
which appear in prior algorithms and conducted the proofs of running time.
Further, I developed the test application in which the new algorithm was used
to compute phylogenies based on gene order information.

Chapter 8: “Consensus of RNA Structures.” This chapter contains
parts of research presented in [2, 82], of which parts are also contained in the
“Diplomarbeit” of Jiong Guo [93]. One central result presented here in an
overview (for the details we refer to [93]) is a search tree algorithm for the
Longest Common Subsequence Problem for nested arc structures. A
bottleneck case in this algorithm (to which we focus our discussion here) is the
case of an arc match by which the sequence is split into two parts, one inside
the arcs and one outside the arcs. It was my contribution to develop a way for
a new “amortized” analysis of both parts which, finally, led to our time bounds.

Following the standard in scientific texts, I use in the remainder of this thesis
the personal pronoun “we” (except from sentences where I express my personal
opinion).



Contents

1 Introduction 1

1.1 Computational Biology . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Parameterized Complexity . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Consensus Problems . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Notation, Conventions, Preliminaries . . . . . . . . . . . . . . . . 5

1.5 Goals and Achievements . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Structure and Overview . . . . . . . . . . . . . . . . . . . . . . . 7

2 Biological Background 11

2.1 DNA, RNA, and Proteins . . . . . . . . . . . . . . . . . . . . . . 11

2.2 DNA Signals and Regulation of Gene Expression . . . . . . . . . 13

2.3 RNA Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Polymerase Chain Reaction and Primers . . . . . . . . . . . . . . 15

2.5 Genome Evolution and Evolutionary Relationships . . . . . . . . 16

3 Parameterized Complexity 21

3.1 Fixed-Parameter Tractability . . . . . . . . . . . . . . . . . . . . 22

3.2 Parameterized Intractability . . . . . . . . . . . . . . . . . . . . . 24

3.3 Design of Fixed-Parameter Algorithms . . . . . . . . . . . . . . . 27

3.3.1 Kernelization . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Dynamic Programming . . . . . . . . . . . . . . . . . . . 30

3.3.4 Bounded Search Trees . . . . . . . . . . . . . . . . . . . . 32

4 Search Tree Algorithms 33

4.1 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



viii CONTENTS

4.3 Kernelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Recognizing Easy Instances . . . . . . . . . . . . . . . . . . . . . 38

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Consensus of Sequences 45

5.1 Part I: Closest String and Related Problems . . . . . . . . . . . . 47

5.1.1 Preliminaries on Closest Strings . . . . . . . . . . . . . . . 48

5.1.2 Constant Distance Parameter . . . . . . . . . . . . . . . . 50

5.1.3 Constant Number of Input Strings . . . . . . . . . . . . . 58

5.1.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Part II: Motif Search Problems . . . . . . . . . . . . . . . . . . . 65

5.2.1 Motivation and Previous Results . . . . . . . . . . . . . . 67

5.2.2 Closest Substring: Unbounded Alphabet . . . . . . . . . . 68

5.2.3 Closest Substring: Binary Alphabet . . . . . . . . . . . . 74

5.2.4 Consensus Patterns . . . . . . . . . . . . . . . . . . . . . 80

5.3 Conclusion and Open Questions . . . . . . . . . . . . . . . . . . . 84

6 Consensus of Quartets 85

6.1 Preliminaries on Quartet Methods . . . . . . . . . . . . . . . . . 87

6.2 Global Conflicts are Local . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Combinatorics of Local Conflicts . . . . . . . . . . . . . . . . . . 93

6.4 A Fixed-Parameter Algorithm for MQI . . . . . . . . . . . . . . . 95

6.5 Improving the Running Time in Practice . . . . . . . . . . . . . . 98

6.5.1 Enhancements Maintaining Optimality . . . . . . . . . . . 98

6.5.2 Fixing Strongly Supported Edges in Advance . . . . . . . 100

6.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 101

6.6.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.7 Conclusion and Open Questions . . . . . . . . . . . . . . . . . . . 106

7 Consenus of Gene Orderings 109

7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 A Fixed-Parameter Algorithm for Breakpoint Median . . . . . . 114

7.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.2 The Recursive Procedure . . . . . . . . . . . . . . . . . . 116



CONTENTS ix

7.2.3 Interpreting the Successor and Predecessor Tables . . . . 118

7.2.4 Correctness of the Algorithm . . . . . . . . . . . . . . . . 120

7.2.5 Running Time for k = 3 Orderings . . . . . . . . . . . . . 121

7.2.6 Running Time for More Than Three Orderings . . . . . . 122

7.3 Experimental Evaluation on Synthetic Data . . . . . . . . . . . . 126

7.4 Application to Phylogeny Reconstruction . . . . . . . . . . . . . 132

7.4.1 A Heuristic Computing Breakpoint Phylogenies . . . . . . 133

7.4.2 The Campanulaceae Dataset . . . . . . . . . . . . . . . . 133

7.5 Conclusion and Open Questions . . . . . . . . . . . . . . . . . . . 134

8 Consensus of RNA Secondary Structures 137

8.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 A Fixed-Parameter Algorithm for LAPCS(nested,nested) . . . . 142

8.3 Dynamic Programming for APS(nested,nested) . . . . . . . . . . 147

8.4 Conclusion and Open Questions . . . . . . . . . . . . . . . . . . . 152

9 Contributions in Context 155

9.1 Connections to Integer Linear Programming . . . . . . . . . . . . 155

9.2 Connections to Approximation Algorithms . . . . . . . . . . . . . 157

9.3 Connections to Heuristics . . . . . . . . . . . . . . . . . . . . . . 160

9.4 Choice of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 161

10 Future Research Directions 167

10.1 Problem-Oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.1.1 Analysis of Microarray Data . . . . . . . . . . . . . . . . 167

10.1.2 SNP Haplotyping Problems . . . . . . . . . . . . . . . . . 170

10.1.3 Repeat and Duplication Analysis . . . . . . . . . . . . . . 174

10.2 Technique-Oriented . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.2.1 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . 175

10.2.2 Automated Generation of Search Tree Algorithms . . . . 175



x CONTENTS



Chapter 1

Introduction

Fixed-parameter algorithms offer a constructive and powerful approach to effi-
ciently obtain solutions for NP-hard problems combining two important goals:
Fixed-parameter algorithms compute optimal solutions within provable time
bounds despite the (almost inevitable) computational intractability of NP-hard
problems. The essential idea is to identify one or more aspects of the input
to a problem as the parameters, and to confine the combinatorial explosion of
computational difficulty to a function of the parameters such that the costs
are polynomial in the non-parameterized part of the input. This makes es-
pecially sense for parameters which have small values in applications. Fixed-
parameter algorithms have become an established algorithmic tool in a variety
of application areas, among them computational biology where small values
for problem parameters are often observed. A number of design techniques for
fixed-parameter algorithms have been proposed and bounded search trees are
one of them. In computational biology, however, examples of bounded search
tree algorithms have been, so far, rare.

This thesis investigates the use of bounded search tree algorithms for consensus
problems in the analysis of DNA and RNA data. More precisely, we investigate
consensus problems in the contexts of sequence analysis, of quartet methods
for phylogenetic reconstruction, of gene order analysis, and of RNA secondary
structure comparison. In all cases, we present new efficient algorithms that in-
corporate the bounded search tree paradigm in novel ways. On our way, we also
obtain results of parameterized hardness, showing that the respective problems
are unlikely to allow for a fixed-parameter algorithm, and we introduce integer
linear programs (ILP’s) as a tool for classifying problems as fixed-parameter
tractable, i.e., as having fixed-parameter algorithms. Most of our algorithms
were implemented and tested on practical data. In the following, we give a
more detailed introduction to this thesis.



2 Introduction

1.1 Computational Biology

The exponential growth of publicly available biological data during the last ten
years, e.g., generated from national and international genome projects, offers
remarkable opportunities for application of modern computer science. Due to
the discrete nature of genomic data, the analysis methods are mostly discrete,
i.e., relying on models based on finite objects such as graphs or strings. Com-
putational biology can be seen as the process of two interacting steps: A first
step is to identify a biological question and to construct a mathematical model
of the biological reality, in order to formulate the biological question as a com-
binatorial problem. The second step, then, is to construct algorithms in order
to address the questions with the aid of computers. Computational biology be-
came a independent field of research in the intersection of biology and computer
science. Textbooks on computational biology include [94, 164, 179, 198].

Given a combinatorial model of a biological question, a main contribution of
computer science lies in the design of algorithms and in their analysis with re-
spect to the quality of the solution as well as with respect to the algorithm’s time
and space requirements. This is the part of computational biology this thesis
focuses on: we explore the application of new algorithmic techniques to address
combinatorial questions arising in the analysis of biological data. Of particular
interest to us are, here, problems classified as “computationally intractable”
by classical complexity measures, i.e., which have been shown NP-hard (for
background on NP-completeness theory refer to [74]). NP-hard problems are
encountered in many areas of computational biology. The molecular biologist
Joseph Felsenstein is cited in 1998 as follows [60]: “About ten years ago, some
computer scientists came by and said they heard we have some really cool
problems. They showed that the problems are NP-complete and went away!”
Addressing the issue raised in this quote, the goal of this thesis is the design of
practical algorithms for solving NP-hard problems occurring in the analysis of
DNA and RNA data to which we refer as genomic data here.

1.2 Parameterized Complexity

To cope with the intractability of computational problems, several methods
have been developed, e.g., approximation algorithms [7, 101], heuristic meth-
ods [136], and randomized algorithms [143]. However, these methods have their
drawbacks. Particularly in the context of computational biology, optimal solu-
tions are often preferable to approximated results. For example, in the context
of phylogenetic reconstruction according to the maximum parsimony criterion
(see Section 2.5) it was pointed out that “because suboptimal solutions can
yield very different evolutionary reconstructions, exact solutions are strongly
preferred over approximate solutions” [140]. Besides this request for optimal
solutions, it is still desirable to have a mathematical analysis of the algorithms



1.2 Parameterized Complexity 3

leading to performance guarantees concerning the running time.

Parameterized complexity theory is another proposal on how to cope with com-
putational intractability in some cases, leading to optimal solutions as well as
performance guarantees (see [58] for a monograph and [3, 68, 69] for recent
surveys on parameterized complexity). In a sense, so-called “fixed-parameter
algorithms” form a very interesting variant of exact, exponential-time solutions
mainly for NP-hard problems. Many computational problems are formulated
as an optimization problem: given an object x, find a solution such that an
optimization criterion k is maximized or minimized. E.g., the NP-complete
Vertex Cover problem can be formulated in this way: Given an undirected
graph G = (V, E), find a vertex cover for G such that the size k of the vertex
cover is minimum. Herein, a vertex cover for G is a subset of vertices V ′ ⊆ V

such that each edge in E has at least one of its endpoints in V ′. Usually, these
problems can alternatively be formulated as an parameterized problem: Given
an object x and a non-negative integer k, does x have a solution where some
specified property of the given object or of the computed solution has value k?
In parameterized complexity theory, the non-negative integer k is called the pa-
rameter. E.g., Vertex Cover can be formulated in this way: Given a graph
G = (V, E) and a non-negative integer k, does G have a vertex cover of size k?
As a solution, we would expect either a “no” answer or a “yes” answer supple-
mented with a vertex cover of at most k vertices. In this case, the parameter
of the problem is the size of the vertex cover. In this work, we consider, if not
indicated otherwise, the parameterized version of problems, although we also
discuss the extension of our algorithms to solve the corresponding optimization
version.

In many applications, the parameter k can be considered to be “small” in
comparison with the size |x| of the given object x. Hence, it may be of high
interest to ask whether these problems have deterministic algorithms, so-called
fixed-parameter algorithms, whose running time is exponential only with respect
to k and polynomial with respect to |x|. More formally, we call the problem
fixed-parameter tractable with respect to parameter k if it allows an algorithm
with a running time of f(k) · |x|O(1) for an arbitrary function f. An algorithm
with a running time of this kind is, then, a fixed-parameter algorithm. Equally,
we also say that the algorithm is fixed-parameter.

The basic observation of parameterized complexity, as mainly developed by
Downey and Fellows [58], is that for many hard problems, the seemingly inher-
ent “combinatorial explosion” can be restricted to a “small part” of the input,
the parameter. So, for instance, the NP-complete Vertex Cover problem
allows for an algorithm with running time O(kn + 1.29k) [43, 154], where the
parameter k is the maximum size of the vertex cover set we are looking for and
n is the number of vertices of the given graph. These results show that Vertex
Cover is fixed-parameter tractable.

A specific type of fixed-parameter algorithms are search tree algorithms. Here,



4 Introduction

one explores the search space of a particular problem using a recursive algorithm
which, for a given instance, generates a set of simplified instances and calls itself
recursively on each of these instances. The recursion stops if either a solution
is found or the algorithm can determine that the instance has no solution. The
dependencies of the recursive calls can, then, be modeled by a tree which is
termed search tree. An example of a search tree approach is the Davis-Putnam
algorithm for determining the satisfiability of a boolean formula in conjunctive
normal form [54]. Notably, the running time of search tree algorithms is mainly
determined by the (usually exponential) search tree size, i.e., the number of
their nodes, while the time spent in one node of the search tree is polynomial
or even linear. Thus, we have fixed-parameter search tree algorithms if the
worst-case size of the search tree depends only on the parameter. In this case,
we refer to the algorithm as bounded search tree. Bounded search trees are
a commonly known design technique for fixed-parameter algorithms, e.g., the
mentioned algorithms for Vertex Cover [43, 154] are bounded search trees.

Many computational problems in computational biology can be formulated as
parameterized problems. Moreover, computational biology provides many ex-
amples of problem parameters which are likely to be small in the applications:
a bounded number of errors in measurements, the alphabet size, a bounded
evolutionary distance etc. Therefore, computational biology seems a prosper-
ous ground for the application of fixed-parameter algorithms, since they provide
optimal solutions and guaranteed upper bounds on the running time. In this
sense, fixed-parameter algorithms seem, as was formulated by an anonymous
referee of [90], to be “laudable approaches to NP-hard problems in biology,
better than approximation methods in most cases.”

Considering recent research in computational biology, we find several exam-
ples where fixed-parameter algorithms are presented, for example, in motif
search [27], in the context of SNP haplotyping [170], in the analysis of genome
rearrangements [98], in the analysis of gene duplications [97], or in the anal-
ysis [192] and visualization [13] of microarray data (more details concerning
some of these examples can be found in Chapter 3). Notably, only few ex-
amples of bounded search tree algorithms can be found in the computational
biology literature.

The parameterized complexity of problems in computational biology was also
subject of dissertation projects before, and we mention two respective the-
ses here: Hallett [96] shows parameterized hardness results for Intervalizing
Colored Graphs, having applications in physical mapping, and Shortest
Common Superstring, having applications in sequence assembly. Evans [64]
investigates the parameterized complexity of problems in the comparison of
RNA secondary structures, modeled as the Longest Arc-Preserving Com-
mon Subsequence problem for arc-annotated sequences, providing hardness
results as well as fixed-parameter algorithms. In contrast to these works, which
focus on single problems and on their classification in the parameterized world,
this thesis addresses the design of efficient fixed-parameter algorithms, in partic-



1.3 Consensus Problems 5

ular search tree algorithms, for a class of problems, namely consensus problems.
Besides giving worst-case bounds for the algorithms, we also discuss heuristic
improvements, relevant in practice, and underline the applicability of our algo-
rithms, in most cases, by supplementing implementations and initial tests on
real data.

1.3 Consensus Problems

Consensus analysis problems occur in many computational biology settings.
Given a set of input objects, e.g., strings, and a distance measure, e.g., Ham-
ming distance, we ask for a object which is a good “consensus” of the input
objects following a given criterion. In the example in which the given objects
are strings, e.g., we can ask for a “consensus string” s that minimizes the sum
of Hamming distances between s and each of the given strings. Consensus ob-
jects are computed, e.g., as a representative for the input objects, to find a
common pattern, or as a common agreement of several measurements or pre-
dictions. Various results and algorithms were published in this context and we
mention some examples as follows. Regarding the consensus of strings, an own
section in the monograph [164] (Section 8.6) is dedicated to this question. As
one of the most recent results, Li et al. [128, 129] present polynomial-time ap-
proximation schemes for several variants of the consensus string problem with
respect to Hamming distance. In the context of genome rearrangements, con-
sensus objects are computed as hypothetical ancestors for a set of genomes,
each represented by its gene order. Here, several distance measures have been
examined, e.g., breakpoint distance [142, 174] and reversal distance [39, 183]. In
the context of phylogenetic reconstruction, the computation of a consensus for
a given set of trees over the same or a partly differing species set is an important
question [158]; particularly the computation of supertrees, i.e., the combination
of trees with only partly overlapping species set, currently receives consider-
able attention [26, 157]. In RNA structure analysis, families of sequences, e.g.,
specific types of introns [133], can be characterized by their common structure,
i.e., their “structural consensus.”

Summarizing, consensus problems seem to represent a core question arising in
many formulations and in many contexts within computational biology.

1.4 Notation, Conventions, Preliminaries

In this work, we assume basic familiarity with combinatorial objects such as
strings, graphs in general, and trees in particular [50]. The names of combina-
torial problems are written in Small Caps style (e.g., Vertex Cover) and
the problems are defined, as it is common in computer science literature, in an
“Input”/“Question” format.



6 Introduction

Strings and Sequences. Since strings play a central role in this work, we
point out some conventions here: As it is common in the biological context,
we use the terms string and sequence interchangeably, denoting a sequence of
elements from a given alphabet Σ. However, we clearly distinguish substrings
(which denote a continuous segment of a string) from subsequences (which do
not need to be continuous). Given a string s, we refer to the element at its
ith position by s[i]. The most commonly used distance measure for strings is
Hamming distance, where the Hamming distance between two strings si and
sj, both of length l, is given by dH(si, sj) = { 1 ≤ p ≤ l | si[p] 6= sj[p] }.

Graphs. The graphs used in this work are, in general, undirected.

“Big O”-notation. The running times given in this work are worst-case
running times and we use the “O” notation: For functions f(x) and g(x), f(x)

is in O(g(x)) iff there are a constant c and an integer n0 such that f(x) ≤ c·g(x)

for all x ≥ n0.

Decision problems. Both for the optimization version as well as for the pa-
rameterized version of a problem, one can distinguish the decision version, only
asking for an integer value (in the optimization case) or for a yes/no answer (in
the parameterized case), from the constructive version of the problem, which
also supplies a solution object. As it is common in complexity theory, all prob-
lems in this work are formulated as decision problems. However, we implicitly
address also the constructive problems and our algorithms do in all cases, if the
question of the problem is answered positively, also provide solution objects.

Approximation. To give basic familiarity with terms from approximation
theory which are used throughout this work, we explain some of them, thereby
restricting to minimization problems. More details on approximation theory
can be found, e.g., in [7, 101]. Given a minimization problem, a solution of
the problem is r-approximate, r ≥ 1, if the cost of the solution is k, the cost
of an optimal solution if kopt, and k/kopt ≤ r. An algorithm is a factor-
r approximation if it computes r-approximate solutions. A polynomial-time
approximation scheme (PTAS) is an algorithm that computes, for any given real
ǫ > 0, a (1 + ǫ)-approximate solution in polynomial time where ǫ is considered
to be constant. Typically, PTAS’s have a running time nO(1/ǫ), often with large
constant factors hidden in the exponent which make them infeasible already for
moderate approximation ratio. Therefore, Cesati and Trevisan [41] propose the
concept of an efficient polynomial-time approximation scheme (EPTAS) where
the PTAS is required to have an f(ǫ)·nO(1) running time where f is an arbitrary
function depending only on ǫ and not on n. Notably, most known PTAS’s are
not EPTAS’s [69].

Integer Linear Programming. Throughout this work, we will refer several
times to integer linear programming, which constitutes a central technique in
combinatorial optimization. The underlying combinatorial problem is described
as follows. A linear inequality a1x1 + a2x2 + . . . + amxm ≤ b over m variables



1.5 Goals and Achievements 7

x1, x2, . . . , xm where ā = (a1, a2, . . . , am) is an m-tuple of integers and b is an
integer can be abbreviated as the pair (ā, b). Given a positive integer m, an
integer linear program (ILP) is given by a set X of pairs (ā, b) which denote
linear inequalities over m variables, an m-tuple c̄ of integers, and an integer B.
Then, Integer Linear Programming is, given an ILP over m variables,
the question whether there is an m-tuple x̄ of integers, i.e., an assignment
of integer values to the variables, such that ā · x̄ ≤ b for every (ā, b) ∈ X

and c̄ · x̄ ≥ B (ā · x̄ denoting the cross product of ā and x̄). Integer Linear
Programming is NP-complete [74]. For details on integer linear programming,
refer to [119, 145, 176].

1.5 Goals and Achievements

The goal of this thesis is to investigate the use of bounded search tree algorithms
for consensus problems in the analysis of DNA and RNA data. In its outcome,
this work seems to be one of the first works

• exploring systematically the use of search tree algorithms in computa-
tional biology,

• discussing the use of fixed-parameter algorithms for consensus problems,

• putting emphasis not only on the classification of problems but onto
the design of practically efficient algorithms, including heuristic enhance-
ments, while

• also providing experimental evaluations.

Our algorithms introduce novel design and analysis techniques regarding bound-
ed search trees. Moreover, this work provides new example problems for illus-
trating concepts of parameterized complexity, e.g., as class material [149]: We
give several examples of how to apply the search tree paradigm in various novel
ways; we give examples for several issues concerning the choice of parameters,
e.g., the analysis of one problem with respect to several parameters or the use of
dual parameterizations; we give examples of combining heuristic speed-up tech-
niques with fixed-parameter algorithms; we introduce ILP’s with a bounded
number of variables as a technique to classify a problem as fixed-parameter
tractable; further, we give novel hardness results regarding recently intensively
studied motif search problems.

1.6 Structure and Overview

This section provides an overview on the remaining thesis. We describe the
contents of each of the following chapters.



8 Introduction

Chapter 2: Biological Background. We give a coarse outline of some bio-
logical background relevant in this work. This chapter is intended to give only
a very basic understanding of biological processes and to introduce biological
terminology that is used later on. Further, we point out the motivation for the
combinatorial problems discussed in this thesis. We address DNA and RNA
sequences, DNA signals and gene expression, RNA structure, polymerase chain
reaction, genome evolution, and evolutionary relationships.

Chapter 3: Parameterized Complexity. We give an introduction into the
theory of parameterized complexity, as far as it is relevant in this work. We
formally introduce fixed-parameter tractability and, to a limited extent, the the-
ory of parameterized intractability. We present several techniques for designing
fixed-parameter tractable algorithms, namely kernelization, enumeration, and
dynamic programming. We illustrate the presented concepts giving examples
from recent research in computational biology.

Chapter 4: Search Tree Algorithms. We describe the concept of bounded
search trees, the algorithm design technique which is most relevant in this work.
We present aspects of bounded search trees in a systematic way and illustrate
our explanations by easy-to-understand examples, using Vertex Cover as the
running example.

Chapters 5 to 8 contain the main results of this thesis. Since we address
problems from different contexts requiring different notation, the employed no-
tation is presented in the respective chapters. In this way, each of these chapters
starts with a general introduction which states the central problem(s) of the
respective chapter, which gives an outline of the context in which these prob-
lems occur, and which gives an overview on previous work as well as on the new
results presented here. This general introduction is, in each case, followed by a
section on formal aspects of the models, notation, and conventions used in the
respective chapter. The core part of each chapter contains our results. Each of
the chapters concludes with a list of open questions and directions for future
research. In detail, Chapters 5 to 8 contain the following results:

Chapter 5: Consensus of Sequences. This chapter explores the parame-
terized complexity of NP-complete problems in the analysis of DNA sequences,
namely in the search for consensus strings. The addressed problems are Clos-
est String and Closest Substring and variants thereof. Closest String
is, given k length-L input strings and a non-negative integer d, the question
whether we can find a length-L solution string that has Hamming distance at
most d to each of the input strings. In Section 5.1, we show that Closest
String can be solved in linear time both when the distance parameter d is
fixed and also when the number k of input strings is fixed. More precisely,
we give a bounded search tree algorithm with O(dd · dk + Lk) running time
that is generalized to several practical variants of the problem. We obtain the
linear time algorithm for a fixed number of input strings by giving an ILP with
a bounded number of variables. Notably, this is the first time that ILP’s are



1.6 Structure and Overview 9

used for classifying a problem as fixed-parameter tractable. We investigate the
application of the algorithms in primer design and motif search. Further, we
provide experimental evaluation both regarding the search tree algorithm as
well as regarding the ILP approach.

The Closest Substring problem which generalizes Closest String by ask-
ing for substrings of the input strings that have a “closest string” has recently
received a lot of attention in the area of motif search, i.e., the search for common
signals in DNA sequences. We show that Closest Substring and variants
thereof are W[1]-hard with respect to the number of input strings. This is the
first strong theory-based support for the common intuition that Closest Sub-
string (W[1]-hard) is more difficult than Closest String (fixed-parameter
tractable); notably this could not be expressed by “classical” measures since
both are NP-complete and both do have a polynomial-time approximation
scheme. Our result shows that there is little hope to obtain exact algorithms
for Closest Substring that are exponential in the number of input sequences
only.

Chapter 6: Consensus of Quartets. This chapter explores the computation
of a consensus tree for a given set of small trees, each having only four leaves.
This is the central idea of quartet methods, a popular approach in the recon-
struction of phylogenetic trees. Given n taxa, exactly one topology for every
subset of four taxa, and a non-negative integer k (the parameter), the Minimum
Quartet Inconsistency (MQI) problem is the question whether we can find
an evolutionary tree inducing a set of quartet topologies that differs from the
given set in only k quartet topologies. The more general problem where we
are not necessarily given a topology for every subset of four taxa appears to
be fixed-parameter intractable. For MQI, however, which is also NP-complete,
we can compute the required tree in O(4k · n + n4) time. This means that the
problem is fixed-parameter tractable and that in the case of a small number k

of “errors” the tree reconstruction can be done efficiently. Moreover, we also
discuss its combination with heuristic strategies. Notably, combining heuris-
tics and (exact) fixed-parameter algorithms is a currently prominent line of
research in parameterized complexity. We exhibit the use of the algorithm for
reconstructing the evolutionary relationship of several sets of fungi species.

Chapter 7: Consensus of Gene Orderings. With breakpoint distance, the
genome rearrangement field delivered one of the currently most popular mea-
sures in phylogenetic studies for related species. In this chapter, we focus onto
the problem of, given gene orderings for a set of species, computing a “consen-
sus” of the gene orderings with respect to breakpoint distance; gene orderings
refer to the sequence of genes on a genome. Here, Breakpoint Median, which
is NP-complete already for three given species (whose genomes are represented
as gene orderings), is the core basic problem. For the important special case
of three species, approximation (ratio 7/6) and exact heuristic algorithms are
known. Here, we provide an exact, fixed-parameter algorithm with provable
performance bounds. For instance, a breakpoint median for three signed or-



10 Introduction

derings over n elements that causes at most d breakpoints can be computed in
O(2.15d ·n) time. We show the algorithm’s practical usefulness through exper-
imental studies. In particular, we demonstrate that a simple implementation
of our algorithm combined with a new tree construction heuristic allows for
a new approach to breakpoint phylogeny, yielding evolutionary trees that are
competitive in comparison with known results developed in a recent series of
papers that use clever algorithm engineering methods.

Chapter 8: Consensus of RNA Secondary Structures. Structure com-
parison of RNA has become a central computational problem bearing many
challenging computer science questions. In this thesis, we present an exact
algorithm for the NP-complete Longest Common Subsequence problem
for sequences with nested arc annotations. Given two sequences of length
at most n and nested arc structure, our algorithm determines (if existent) in
O(3.31k1+k2 · n) time an arc-preserving subsequence of both sequences, which
can be obtained by deleting (together with corresponding arcs) k1 letters from
the first and k2 letters from the second sequence. Thus, the problem is fixed-
parameter tractable when parameterized by the number of deletions. Notably,
our algorithm introduces new analysis techniques for bounded search trees. This
algorithm complements known approximation results which give a quadratic-
time factor-2 approximation for the general and polynomial-time approximation
schemes for restricted versions of the problem. In addition, we show that in the
special case when k1 = 0 or k2 = 0 the problem is solvable in quadratic time by
dynamic programming, which results in a considerable speed-up for our search
tree algorithm.

Chapter 9 summarizes some results of this work by putting them into the
context of current research in parameterized complexity. Using examples taken
from this work, we discuss connections to integer linear programming, to ap-
proximation algorithms, and to heuristics.

Chapter 10 points out starting points for future research based on this thesis.
We describe areas in computational biology where the presented techniques
might be applicable. Further, we show promising research directions concerning
the development of bounded search tree algorithms.



Chapter 2

Biological Background

Computational biology can be seen as an approach to questions in biology which
consists of two interacting steps [160]: In the first step, we pose a biological
question and construct a mathematical model of the biological reality such that
we can formulate the question as a computational problem. In the second step,
we construct an algorithm that solves the problem, where the quality of the
algorithm is measured with respect to its time and space requirements and
with respect to the optimality of the solution. While, in general, this work is
mainly devoted to the second of these two steps, this chapter addresses the first
step. We intend to give a coarse overview on those fundamentals of molecular
biology which will be relevant in this work. On our way, we will also give some
first ideas for models of the biological reality and provide forward pointers
to the forthcoming chapters where respective questions are addressed. By no
means is this chapter a complete coverage, but rather an introduction into a
basic biological terminology that will be used later on. For a more complete
discussion of molecular biology, we refer the reader to one of the extensive list
of books on this topic, e.g., [32, 126, 191].

2.1 DNA, RNA, and Proteins

The biological information needed to construct and maintain living cells is
stored in molecules called deoxyribonucleotides (DNA). These molecules are
chains of single units, the nucleotides, each of them consisting of the sugar 2’-
deoxyribose linked to a phosphate group and one of four bases. These bases
are called adenine, cytosine, guanine, and thymine, and they determine four
different types of nucleotides which are abbreviated by A, C, G, and T , re-
spectively. In living cells, DNA molecules consist of two chains of nucleotides
which are wound one around the other, in this way forming a helix structure;
this double-stranded structure is based on hydrogen bonds that nucleotides from
two different chains can build between each other following certain rules: bonds



12 Biological Background

can exist between nucleotides of type A and T and between nucleotides of type
C and G. Therefore, the two chains of a double-stranded DNA molecule have a
complementary sequence of nucleotides, when we consider A as the complement
of T (and vice versa) and C as the complement of G (and vice versa). We can
uniquely identify a direction of the DNA molecule, from the so-called 5 ′ end to
the 3 ′ end, which are specified by chemical properties. A DNA molecule can
be described by its sequence of nucleotides, i.e., it is modeled as a string over
alphabet {A,C,G, T }. By the genome of an organism, we refer to the entire
DNA content of one of its cells, consisting of one or several DNA molecules.

While DNA can be seen as a storage of biological information, this information
is translated into other types of molecules which can be called the building
blocks of life in a cell. Firstly, ribonucleotides (RNA) are very similar to DNA
with differences in the chemical structure of their nucleotides, more precisely,
they contain the sugar ribose rather than 2’-deoxyribose and thymine is replaced
by the related base uracil (U). Secondly, proteins are also chains of units, here
called amino acids. We distinguish 20 types of amino acids. Proteins exhibit
a large chemical and structural diversity and perform a vast range of different
functions in a cell.

We now outline how the connections between DNA, RNA, and proteins can be
described in a simplified manner. Discrete subunits of the DNA molecule, the
genes, are read in a biochemical process, the gene expression, and translated into
RNA and proteins. This process can be divided into two stages, transcription
and translation. Transcription produces a one-to-one RNA copy of the gene.
We distinguish between genes for whose RNA copy is translated into a protein
and genes which do not encode for proteins. In the former case, the RNA copy
is called messenger RNA (mRNA) and translation produces a protein from an
mRNA transcript according to the rules of the genetic code: Three nucleotides
from the RNA chain encode one amino acid following a fixed correspondence
between nucleotide triples and amino acids, which is, however, not one-to-one
since, in many cases, more than one of the 64 possible triples correspond to one
of the twenty amino acids.

In a broad distinction, DNA and RNA can be seen as the “construction plan”
of a cell and its “blueprint” and we refer to them as genomic data; the proteins
can be seen as the products of this plan. The focus of this work are genomic
data; here, proteins are only of marginal interest and, therefore, they are not
covered in more detail.

Notably, not all parts of a DNA molecule are translated to RNA, but only
discrete subunits, the genes, such that one gene encodes for one RNA molecule
and, if the gene is protein-coding, for one protein. Genes constitute the coding
part of a DNA sequence. The DNA sequence preceding the start of a gene is
referred to as upstream region, the DNA sequence succeeding the end of a gene
as downstream region. In most cases, genes are preceded and succeeded by a
noncoding sequence, and, especially in higher organisms, the sequence of one



2.2 DNA Signals and Regulation of Gene Expression 13

5’ 3’

gene

upstream region downstream region

exon exon exon exon

introns

Figure 2.1: Organization of a gene with interspersed introns (noncoding) such
that the coding part of the gene is divided into several exons.

gene is not necessarily continuous, but can be intermitted by noncoding parts
of sequence. The coding parts of a gene are called exons and the noncoding
parts between the exons are called introns. An outline of the organization of a
gene with its introns and exons is given in Fig. 2.1. The introns are removed
on the RNA level by a process called splicing to reproduce the RNA molecule
which, then, is translated into a protein. Noncoding sequence does not encode
for RNA or proteins, but may nevertheless contain necessary information, e.g.,
for controlling and regulating gene expression as we outline in the following.

2.2 DNA Signals and Regulation of Gene Expression

An important role in the translation of a gene into mRNA is attributed to spe-
cial proteins which interact with the DNA molecule by attaching to the DNA
at specific binding sites, which are subunits of the DNA sequence with appro-
priate chemical structure. Binding sites are located in the noncoding region
preceding or succeeding the gene. It is generally accepted that the property
of a binding site that allows a particular molecule to attach is reflected in its
nucleotide sequence. However, a binding site does not correspond to a fixed
nucleotide sequence. We observe that, usually, the same protein is involved in
the regulation of several genes, but the occurrences of the binding site exhibit
variations in its nucleotide sequence. We make the same observation when com-
paring corresponding binding sites near corresponding genes in different species.
Therefore, it is common practice to characterize a binding site by a consensus
sequence of its occurrences. This shows a way how we can search for unknown
binding sites: We collect upstream or downstream regions of genes that are
believed to have related mechanisms of gene expression. In these strings, we
search for substrings that have a common consensus. Analogously as shown
here, we can search not only for binding sites but, more generally, for common
signal sequences, called motifs, in DNA sequences. This problem is addressed
in Chapter 5.2.

Note some significant differences in the organization of DNA between eukaryotes
and prokaryotes (eukaryotes are organisms in which cells contain membrane-
bound compartments including, in particular, a nucleus which is the case, e.g.,
in animals, plants, and fungi; prokaryotes have no such compartments, e.g., bac-



14 Biological Background

teria): In eukaryotes, the genome is divided into one or more linear molecules,
the chromosomes. The genes of eukaryotes are in many cases discontinuous, i.e.,
interspersed by introns. In prokaryotes, most of the DNA is contained in one
circular DNA molecule, genes have no introns, and the genes are more compact,
i.e., the portion of noncoding sequence is smaller in comparison to eukaryotes.

2.3 RNA Structure

We have already mentioned that RNA has a similar composition as DNA
molecules since both consist of a nucleotide chain, where the single nucleotides
consist of a phosphate group and a sugar. In RNA, however, the sugar is ri-
bose compared to 2’-deoxyribose in DNA. Here, we outline further properties
that distinguish RNA molecules from DNA. In comparison with DNA, RNA
molecules are of smaller length, i.e., at most a few 1000 nucleotides long. RNA
molecules occur only single-stranded since they do not form a helix structure
as DNA molecules do. Within one RNA molecule, however, bonds between
nucleotides are possible following similar rules as we have seen for DNA nu-
cleotides: Bonds can arise between G and C and between A and U, but bonds
are also possible between G and U. However, one nucleotide, usually, is involved
in at most one bond with another nucleotide. We refer to the nucleotides also
as bases and when there is a bond between two bases, we call the two involved
bases a base pair. Bonds turn out to be especially stable if several bonds follow
each other, e.g., forming the typical structural feature of a hairpin loop as shown
in Fig. 2.2(a). An example of nested hairpin loops is shown in Fig. 2.2(b). By
the term primary structure we refer to the sequence of nucleotides. We call
the structure of the RNA based on its base pairs secondary structure if, in-
tuitively speaking, the structure of an RNA molecule consists only of nested
hairpin loops; more formally, in a secondary structure or, equivalently, nested
arc structure, base pairs between positions il and ir and between positions jl
and jr with il < jl imply that either il < ir < jl < jr or il < jl < jr < ir.
Many RNA structures observed in practice satisfy this property. A structure
that does not satisfy this requirement is called tertiary structure (see Fig. 2.2(c)
for an example, see [197] for a more precise definition of secondary and tertiary
RNA structure). The structure of RNA can be of central importance for the
function of the RNA molecule; in the following, we provide several examples.
Two types of RNA molecules which are not translated into proteins and whose
function is highly dependent on their structure are transfer RNA (tRNA) and
ribosomal RNA (rRNA). Transfer RNA is involved in the translation of mRNA
to proteins. Ribosomal RNA forms part of ribosomes, complexes of RNA and
proteins involved in protein synthesis. Structure can also be of importance for
mRNA, e.g., for the removal of introns in the translation of the gene into RNA:
The introns are removed on the RNA level in the splicing process, which, in
many cases, is caused by the RNA structure of the intron. Therefore, there is
a close relationship between structure and function and, in many cases, struc-
ture is the more appropriate way to characterize RNA sequences. Chapter 8



2.4 Polymerase Chain Reaction and Primers 15

G G A C G

C C U G C

C A
C

G

U
UU

(a)

G

C

G

C

G

C

C

C

U

G

G

G

A

C

GCU

AGC

C G C

G C G

G

UG

A

U

U

U
G

C

A

C

UA

G

C U

G U

G

CG

(b)

A C G G

G C C

G U C

C A G G

G
G

C
C U

C

A
A

U
G

A

A
A A

U

(c)

Figure 2.2: Different types of RNA structures. (a) and (b) Examples of RNA
secondary structure, (a) an hairpin loop, and (b) an example of nested hairpin
loops. (c) An example of a so-called “pseudo-knot” which does not satisfy the
requirements of RNA secondary structure.

discusses the comparison of RNA sequences based on both their sequence and
their structure.

2.4 Polymerase Chain Reaction and Primers

Whenever a cell divides, its DNA duplicates in a process called DNA replica-
tion. Replication begins with a double-stranded DNA sequence that is separated
into two single strands; these single strands are used as a template and com-
plemented, by the addition of single nucleotides, to form double-strands again.
Here, we want to outline how a technique called polymerase chain reaction



16 Biological Background

(PCR) uses this process to synthetically amplify small continuous substrings
of a given target DNA sequence in order to produce a large number of copies
of this substring. These copies are necessary, e.g., in sequencing, i.e., when
determining the sequence of nucleotides of a given DNA molecule: current se-
quencing techniques can only process a small piece of a DNA molecule which is
available in a large number of copies. The first step of PCR is to design a pair
of two oligonucleotides, i.e., small DNA molecules composed of a few nucleotide
bases. These oligonucleotides are chosen such that they are complementary to
a substring of the DNA sequence at either end of the region to be amplified.
They are produced synthetically and called primers as they are used to initi-
ate the the transcription on the DNA molecule with an polymerase enzyme, in
analogy to a natural chemical reaction occurring in cells. We refer to the com-
plement of a primer in the DNA sequence as the location of the primer. The
process of PCR as outlined in the following is also illustrated in Fig. 2.3. In the
first phase of PCR, the primers, the double-stranded target DNA (as shown in
Fig. 2.3(a)), single nucleotides, and a polymerase enzyme are heated such that
the strands of the target DNA detach. When cooling down this mixture again,
primers are likely to attach to some of the DNA strands at their location, as
shown in Fig. 2.3(b); in these cases, a DNA replication process is started at the
location of the primer, yielding a shortened DNA copy. Repeating these steps,
heating and cooling down, for several times yields large amounts of small DNA
strands that extend from the location of one primer up to the position of the
second primer, as shown in Fig. 2.3(c). In Section 5.1, we address the problem
of designing PCR primer candidates which are suitable for a set of sequences.

2.5 Genome Evolution and Evolutionary Relation-
ships

Genomes are subject to changes caused by irregularities in the duplication of
DNA or by chemical “damage” of DNA. Although cells have several kinds of
repair and checking mechanisms that try to prevent such changes, it can happen
that changes persist. The effect of such a change can be lethal to the cell
causing its death. In other cases, such a change may have no effect to the
life of the cell. Inbetween these two extremes, changes have the potential to
positively influence the fitness of a cell, i.e., its ability to survive. If such
changes are occurring in a one-cell organism or if they are occurring in a germ
cell of a multi-cell organism, then these changes can influence the fitness of the
whole organism, and, if they are transferred to the next generation, influence
the structure of a population. In this way, the genome evolves and changes
accumulate such that, at some point, individuals with a such evolved genome
are considered to belong to a new species. Thus, genome evolution is the
reason for the diversity of different species and can be used to gain insight into
the evolutionary relationship between organisms and species (note that it is
not clearly defined when two organisms with differences in their genomes are



2.5 Genome Evolution and Evolutionary Relationships 17

5’ 3’

3’ 5’

(a)

primer 1
primer 2

5’ 3’

3’ 5’

(b)

primer 1

primer 2

3’ 5’
5’ 3’

(c)

Figure 2.3: The process of PCR to amplify a substring of the target DNA.
(a) The double-stranded target DNA. (b) After heating, the strands detach and,
when cooling again, primers can attach at their locations at one of the single
strands. A DNA replication process is started at the primer. (c) Repeating this
process yields pieces of DNA that extend from the location of one primer up to
the location of the second primer.

still considered to belong to the same species or when they are considered to
already form two different species). We will first outline some forms of genomic
changes and, then, outline how they can be used to reconstruct evolutionary
relationships.

We distinguish two main types of changes DNA can be subject to, point mu-
tations and gene mutations. Point mutations are changes that affect single or
a small number of nucleotides, by substitution of a nucleotide, by deletion or
by insertion of one or a few consecutive nucleotides. Point mutations in coding
regions are likely to cause differences in the function of genes, point mutations
in non-coding regions are, in comparison, more likely to have no effect to the
function of the cell. Since only those changes can persist which do not cause
the death or a malfunction of the cell, point mutations are observed with much
higher frequency in non-coding regions of DNA. In contrast to point muta-
tions, gene mutations restructure the DNA molecule. Gene mutation events
that are considered to be relatively frequent are transpositions and reversals.
Transpositions move a segment of the molecule to another location within the
molecule. Reversals result in a segment of the molecule being turned round in
its order. Such events are particularly evident if the affected segment contains a
sequence of genes such that the order of genes on the molecule is changed by the
gene mutation event. Gene mutation events that affect several chromosomes



18 Biological Background

include, e.g., cross-over events which result in the exchange of end segments of
two chromosomes.

Duplications constitute a further gene mutation event which replaces a segment
of a molecule by two adjacent copies of the segment. This gives rise to the
following relations between genes. Two genes can have a common ancestor, i.e.,
they originated from the same ancestral gene by a series of evolutionary events,
and are, then, called homologous. Genes originating from a common ancestor
can be homologous on the basis of two types of evolutionary events. Firstly,
genes may originate from a common ancestor that was duplicated such that each
of the two genes evolved from a different duplication copy by subsequent point
and gene mutation events. In this case, the two genes are called paralogous.
Secondly, genes may have evolved, by mutations, from the same copy of of
a common ancestor, finally leading to speciation, i.e., the case that the two
genomes are considered to belong to different species. If the two genes evolved
from the same gene copy of their common ancestor, they are called orthologous.
Homologous and, in particular, orthologous genes can be a good basis for the
inference of hypotheses of the evolutionary relationship of a set of species.

Phylogeny or phylogenetics is the classification of species and organisms accord-
ing to their evolutionary relationships. In molecular phylogenetics, this classi-
fication is based on genomic data. The single units being compared, usually
species, are referred to as taxa. Given a set of taxa, a commonly used model
for their evolutionary relationship is a tree called phylogenetic tree in which the
leaves are in one-to-one correspondence to the taxa and in which inner nodes
correspond to (unknown) ancestors of these taxa. Often this tree is required to
be binary, since we assume that speciation events result in splitting up one into
two species. Often this tree is unrooted since choosing the root of an evolution-
ary tree is difficult based on molecular data only. Unrooted trees are, usually,
rooted by including an outgroup taxon into the analysis, i.e., a taxon which is
known to be more distantly related to the set of analyzed taxa than the taxa
among each other; the root of the tree is then placed on the edge that leads to
the outgroup taxon. Here, we only address some aspects of phylogeny which
will be a useful background for the following chapters. Extensive coverage can
be found in monographs such as [158, 178].

A common first step towards using DNA sequences, e.g., of homologous genes,
for a phylogenetic analysis is to align the sequences. This means that we arrange
the sequences in such a way in a character matrix such that we have one row for
every gene and such that nucleotides in different genes that obtained their state
from one common ancestor nucleotide are grouped in one column. Gap symbols
“−” are inserted where one gene does not have a corresponding nucleotide due
to deletion or insertion events. In most commonly used models, it is NP-
hard to compute an “optimal” alignment for a given set of sequences, e.g.,
see [30]. However, there is an abundance of algorithms and programs to compute
alignments in a heuristic way (for an overview, refer, e.g., to [15, 94, 111]).



2.5 Genome Evolution and Evolutionary Relationships 19

Among the methods to reconstruct evolutionary trees, we distinguish distance-
based from character-based methods. Distance-based methods compute a dis-
tance value for each pair of taxa and compute a phylogenetic tree from the
thereby obtained distance matrix. Distance values may be obtained, e.g., by
computing a minimum number of substitution, deletion, and insertion events
that are necessary to obtain one sequence from the other. An example of a
distance-based method is the popular neighbor joining method [158, 173].

In contrast to distance-based methods, character-based methods construct a
phylogenetic tree right from the sequence data, in most cases on the basis of
the aligned sequences. As an example, we outline the maximum parsimony
criterion. Maximum parsimony means in phylogeny that we decide between
different tree topologies by identifying the one that has the smallest “evolution-
ary cost,” where the cost may depend on the input data and the chosen model.
We explain the maximum parsimony criterion for the example that the input is
an alignment of nucleotide sequences and we use a model allowing as mutation
events the substitution, deletion, and insertion of single nucleotides. Given a
tree T in which every node is assigned a sequence of equal length, then, let
the cost of a branch denote the Hamming distance of the two sequences at its
ends. Let the cost of T , then, be the sum of scores of all branches in T . Using
these conventions, we can explain what is a parsimony tree in this setting: It
denotes a phylogenetic tree T in which every leaf is assigned a sequence of the
alignment, and for which we can assign sequences to the inner nodes of T such
that the cost of T is minimal among all such trees. For the described model
having an alignment as input and using the Hamming distance as a cost func-
tion, finding the best tree under the maximum parsimony criterion is NP-hard
but, e.g., heuristics and approximation algorithms have been given (see [94] for
further details).

Naturally, these methods are not limited to sequence data that are evaluated
under the assumption of point mutation events. Only as one example, we
mention that distance values and the parsimony criterion can also be based
on gene order data that are evaluated under the assumption of certain gene
mutation events. Searching for optimal trees under the maximum parsimony
criterion with respect to gene mutation events is addressed in Chapter 7.

There are also phylogenetic methods that can be used both in a distance-based
way as well as in a character-based way. One such method, the quartet method,
is discussed in Chapter 6.



20 Biological Background



Chapter 3

Parameterized Complexity

NP-completeness theory distinguishes computationally “tractable” problems,
i.e., those solvable in deterministic polynomial time, from those problems that
are classified as “intractable” by showing that they are NP-hard. As a draw-
back of this classification, NP-hard problems arise in many contexts and, often,
real-world instances of these problems, despite their intractability, can be effi-
ciently solved in practice. The observation that “not all forms of intractability
are created equal” [58] was a main motivation for introducing the concept of
parameterized complexity which is, among others, an alternative and new way
to distinguish “tractable” from “intractable” problems. Downey and Fellows
developed a theoretical basis for parameterized complexity, manifested in their
monograph [58]. Most importantly for our work here, parameterized complex-
ity also provides tools, among them bounded search trees, which can guide the
algorithm designer in the development of efficient algorithms for, in particu-
lar, NP-hard problems that are tractable in the parameterized sense. Notably,
the approach of parameterized complexity results in algorithms with guaran-
teed optimal results and worst-case bounds on their running time. This dis-
tinguishes parameterized complexity from other approaches to solve NP-hard
problems like approximations (which do not produce guaranteed optimal re-
sults) or heuristics (which do not give guarantees either on the optimality of
the results or on the running time). This chapter will give a brief survey of
the fundamentals of parameterized complexity while focusing on algorithm de-
sign. Section 3.1 introduces our notion of parameterized tractability, so-called
fixed-parameter tractability, while also pointing out its limitations. Section 3.2
introduces the concept of parameterized intractability, also discussing how such
negative results can guide the search for algorithms. Section 3.3 exhibits tech-
niques for designing fixed-parameter algorithms by giving examples from com-
putational biology. Note that bounded search trees, the central design technique
to obtain fixed-parameter algorithms in this work, are discussed in the following
Chapter 4.

Two main example problems that will be used in this section are Vertex



22 Parameterized Complexity

Cover and Clique, which are introduced in the following. Both problems are
NP-complete but turn out to be not equal concerning their tractability from
the view of parameterized complexity.

Vertex Cover
Given: Graph G = (V, E), and a non-negative integer k.
Question: Does G have a set of vertices V ′ ⊆ V with |V ′| ≤ k such
that, for every u, v ∈ V with {u, v} ∈ E, either u ∈ V ′, v ∈ V ′, or
both? If the answer is yes, then V ′ is called a vertex cover of size at
most k.

Note that Vertex Cover also has applications in computational biology, e.g.,
for conflict resolution: Assume a set of experiments which are, with small prob-
ability, subject to errors. Due to these errors, we observe pairs of experiments
whose results contradict each other. Assuming that the number of erroneous
experiments is small, it can, in this situation, be desirable to ask for the min-
imum number of experiments such that, after deleting their results, no two
results contradict each other. This is, in essence, Vertex Cover. For details
on the application of Vertex Cover for the conflict resolution when comput-
ing multiple sequence alignments refer to [186].

Clique
Given: Graph G = (V, E), and a non-negative integer k.
Question: Does G have a set of vertices V ′ ⊆ V with |V ′| ≥ k such
that for all u, v ∈ V ′ we have {u, v} ∈ E? If the answer is yes, then
V ′ is called a clique of size at least k.

Vertex Cover and Clique are chosen as examples because they are easy to
understand and can be defined without much background information. Also,
they became the two flagship problems of parameterized complexity.

3.1 Fixed-Parameter Tractability

The main idea of parameterized complexity is to consider the input as consisting
of two parts, and to include the size of both parts in the complexity analysis.
Therefore, we use an appropriate framework to define problems.

Definition 3.1.1. An instance of a parameterized problem is given as
(x, k) ∈ Σ∗ × N, where the second component is called the parameter.

In general, the second component, representing the parameter, can also be
drawn from Σ∗; however, for most cases and, in particular, in this work, assum-
ing the parameter to be a non-negative integer is sufficient. E.g., in Vertex



3.1 Fixed-Parameter Tractability 23

Cover and Clique the first component is the input graph coded over some
alphabet Σ and the second component, the parameter, is the size of the relevant
vertex set. Moreover, the non-negative integer k denoting the second component
may, in general, be replaced by a vector of non-negative integers (k1, . . . , kr)

for some integer r > 0; we call this an aggregate parameter. In this work, we
will encounter examples of aggregate parameters. For the remainder of this
chapter, however, we will, for simplicity, restrict ourselves to non-aggregate
parameters, i.e., an aggregate parameter with r = 1. It is straightforward to
generalize the following concepts to aggregate parameters, simply by replacing,
in the definitions, the parameter k by an aggregate parameter (k1, . . . , kr).

Definition 3.1.2. A parameterized problem is called fixed-parameter trac-
table iff there is an algorithm that computes, given an instance (x, k) of the
problem, a solution in f(k) · |x|O(1) running time, where f may be an arbitrarily
fast growing function depending only on k. The complexity class FPT consists
of all fixed-parameter tractable problems.

Vertex Cover is fixed-parameter tractable: There are algorithms solving it
in time less than O(kn + 1.29k) [43, 154]. By way of contrast, consider the
also NP-complete Clique problem. Clique appears to be fixed-parameter in-
tractable: It is not known whether it can be solved in f(k)nO(1) time for any
function f depending only on k [58]. Thus, in some sense, the handling of
the parameter seems to be more sophisticated for Clique compared to Ver-
tex Cover. Moreover, unless P = NP, the well-founded conjecture is that
no such algorithm exists. The best known algorithm solving Clique runs in
O(nck/3) time [146], where c is the exponent on the time bound for multiplying
two integer n×n matrices (the currently best known value for c is 2.38, see [49]).
Note that an O(nk+2) time algorithm for Clique is trivial, by trying all O(nk)

many size-k subsets of vertices and testing, for each of them, in O(n2) time
whether it is a clique. The decisive point is that k appears in the exponent
of n, and there seems to be no way “to shift the combinatorial explosion only
into k,” independent from n [58, 59, 60].

Fixed-parameter algorithms allow to solve instances of the problem in which the
parameter value is sufficiently small, which is the case for many applications. In
particular, problems of computational biology often exhibit a variety of possible
parameters which are bounded in practice, e.g., the alphabet size in sequence
analysis, the maximum number of data errors, or the number of objects under
consideration.

Note, however, that the definition of FPT allows the function f(k) to take
unreasonably large values, e.g.,

f(k) := 22222k

.

Thus, showing that a problem is a member of the class FPT does not necessarily
imply an efficient algorithm (not even for small k). In fact, many problems that



24 Parameterized Complexity

are classified fixed-parameter tractable still wait for efficient and practical al-
gorithms. In this sense, we strongly have to distinguish two different aspects of
fixed-parameter tractability: The theoretical part which consists in classifying
problems in the parameterized sense, i.e., proving membership in FPT or prov-
ing parameterized hardness (see Section 3.2), and the algorithmic component
of actually finding efficient algorithms for problems inside the class FPT.

Useful tools for proving membership in FPT, which did, to our best knowl-
edge, not lead to implemented algorithms used in practice, include the Graph
Minor Theorem by Robertson and Seymour [58, chapter 7] or the color coding
technique introduced by Alon et al. [5]. In addition to these techniques, we
introduce, in Section 5.1.3, a new tool for FPT classification, integer linear
programs (ILP’s) with a fixed number of variables. This classification can be
useful for practical purposes: Showing, in this way, that a problem is fixed-
parameter tractable indicates that it is worth the effort to spend more time
into the search for more practical fixed-parameter algorithms.

Techniques for designing practical fixed-parameter algorithms—in particular
those for which we can find examples in computational biology—will be dis-
cussed in Section 3.3.

3.2 Parameterized Intractability

Showing that a problem is unlikely to be fixed-parameter tractable requires
an appropriate framework analogous to the theory of NP-completeness [74].
Downey and Fellows [58] developed such a completeness program for showing
parameterized intractability. In contrast to the theory of NP-completeness, the
completeness theory of parameterized intractability involves significantly more
technical effort (as will also become clear when following the hardness proofs
presented in Chapter 5.2). We very briefly sketch some integral parts of this
theory in the following, starting with an appropriate concept for reductions.

Definition 3.2.1. Let L, L ′ ⊆ Σ∗ × N be two parameterized problems. We say
that L reduces to L ′ by a standard parameterized m-reduction (or, for sake
of abbreviation, by a parameterized reduction) if there are functions k 7→ k ′ and
k 7→ k ′′ from N to N and a function (x, k) 7→ x ′ from Σ∗ × N to Σ∗ such that

1. (x, k) 7→ x ′ is computable in k ′′|x|c time for some constant c and

2. (x, k) ∈ L iff (x ′, k ′) ∈ L ′.

Example. Reducing Clique to Independent Set. Given a graph G =

(V, E), a set V ′ ⊆ V is an independent set iff for all u, v ∈ V ′, {u, v} /∈ E. The
Independent Set problem is, given a graph G = (V, E) and a non-negative
integer k, the question whether G has an independent set of size k.



3.2 Parameterized Intractability 25

We outline a reduction from Clique to Independent Set. Given a Clique
instance G = (V, E) with parameter k, we generate an Independent Set
instance G ′ = (V, E ′) with parameter k ′ := k by setting, for all u, v ∈ V,
{u, v} ∈ E ′ iff {u, v} /∈ E. It can easily be shown that G = (V, E) has a clique of
size k iff G ′ has an independent set of size k ′.

The displayed reduction is parameterized since the reduction can be computed
in polynomial time and it is parameter-preserving, i.e., the value of k ′ depends
only on the value of k.

Note that, seemingly, most reductions from classical complexity turn out not
to be parameterized ones:

Example. Reducing Clique to Vertex Cover. Given a Clique instance
G = (V, E) with parameter k, we generate a Vertex Cover instance G ′ =

(V, E ′) with parameter k ′ by setting, for all u, v ∈ V, {u, v} ∈ E ′ iff {u, v} /∈ E,
and by setting k ′ = |V | − k. It can easily be shown that G = (V, E) has a clique
of size k iff G ′ has a vertex cover of size k ′.

This reduction is not parameterized since it is not parameter-preserving: The
value of k ′ depends not only on the value of k, but also on the value of |V |, i.e.,
on the total size of the input.

The basic reference point for parameterized intractability can be defined as the
class of parameterized languages that are equivalent to the Short Turing
Machine Acceptance problem (also known as the k-Step Halting prob-
lem). Here, we want to determine, for an input consisting of a nondeterministic
Turing machine M (with unbounded nondeterminism and alphabet size), and
a string x, whether M has a computation path accepting x in at most k steps.
This can trivially be solved in O(nk+1) time by exploring all k-step computa-
tion paths exhaustively, and it is not expected that this can be much improved.
Therefore, this problem is the parameterized analogue of the Turing Ma-
chine Acceptance problem that is the basic generic NP-complete problem
in classical complexity theory.

Definition 3.2.2. A parameterized problem is in the complexity class W[1]

if it is reducible to Short Turing Machine Acceptance by a parameter-
ized m-reduction. A parameterized problem is W[1]-hard iff Short Turing
Machine Acceptance is reducible to the given problem by a parameterized
m-reduction. A parameterized problem is W[1]-complete iff it is W[1]-hard
and it is in W[1].

Hardness for W[1] is our criterion that a problem is unlikely to be in FPT.
It is shown by giving a parameterized m-reduction from any W[1]-complete
problem. These problems (there are many) include, besides Short Turing
Machine Acceptance, e.g., Clique and Independent Set [57]; the mono-
graph of Downey and Fellows [58] provides a compendium of problems listed
by their parameterized complexity, including many W[1]-complete ones, and



26 Parameterized Complexity

Cesati [40] gives an update of this compendium. Thus, for an algorithm de-
signer not being able to show fixed-parameter tractability of a problem, it may
be helpful to give a reduction from Clique or some other W[1]-hard problem
to the given one using a standard parameterized m-reduction; by this way, the
algorithm designer can show that a fixed-parameter algorithm is unlikely and
other techniques to solve the problem have to be found.

The conjecture that FPT 6= W[1] is very much analogous to the conjecture
that P 6= NP. As an important structural result of parameterized complexity,
it could be shown that FPT 6= W[1] under the exponential-time hypothesis [58]
that there is no sub-exponential-time algorithm for 3-SAT, i.e., no algorithm
for 3-SAT with co(n) running time for constant c and n denoting the number of
variables in the input formula [103, 104].1 The currently best known determinis-
tic algorithm for 3-SAT has a running time of O(1.481n) when n is the number
of variables [53] and the existence of an algorithm with co(n) running time for
constant c is open. Since the exponential-time hypothesis implies P 6= NP but
not vice versa, the exponential-time hypothesis is more restrictive than assum-
ing P 6= NP but nevertheless it is still considered a very plausible assumption:
Impagliazzo, Paturi, and Zane [104] identify a whole class, called SNP, of prob-
lems, for each of which no sub-exponential time algorithm is known, but each of
which would have a sub-exponential time algorithm if there is one for 3-SAT.

We only mention briefly that there is a hierarchy of parameterized intractability
classes, W[1] only being the lowest level. In general, the classes W[t] are defined
based on “logical depth” (i.e., the number of alternations between And- and
Or-gates of unbounded fan-in) in boolean circuits. We omit any further details
in this direction and refer to the monograph of Downey and Fellows [58]. From
a practical point of view, W[1]-hardness gives a concrete indication that a
parameterized problem with parameter k problem is unlikely to allow for an
algorithm with a running time of the form f(k) · nO(1). This identification
of problems which are unlikely to have fixed-parameter algorithms is what is
relevant in this work. We conclude by giving two examples of parameterized
intractability in computational biology:

Example: Longest Common Subsequence (LCS) is, given k strings s1,
s2, . . . , sk over an alphabet Σ, and a non-negative integer l, the question whether
there is a string s ∈ Σl that is a subsequence of s1, s2, . . . , sk. LCS can be used
in the computation of multiple sequence alignments. In this application, we
align, for each character of the longest common subsequence, the corresponding
characters in each input string against each other. This gives the basis for a
further refinement of this partial alignment using other techniques for processing
those (possibly small) parts of the input strings which do not belong to the
common subsequence.

For the case of unbounded alphabet, it was shown W[t]-hard for all t ≥ 1 when
the parameter is k, W[2]-hard when the parameter is l, and W[1]-complete when

1We adopt here this use of the term sub-exponential from [103, 104]



3.3 Design of Fixed-Parameter Algorithms 27

both k and l are parameters [28, 29]. Recently, these results were complemented
by a hardness result for fixed alphabet size, which is the biologically more
relevant case, showing that LCS is W[1]-hard for parameter k even with binary
alphabet [166]. For fixed alphabet size, when the parameter is l (or an aggregate
parameter which involves l) we can easily give an fixed-parameter algorithm by
enumerating all length-l strings in Σl and testing, for each of them, whether it
is a subsequence of all input strings.

Example: Order-Preserving Submatrix (OPSM) is a problem intro-
duced by Ben-Dor et al. [18] in the context of analyzing gene expression data.
Results from gene expression experiments can be represented by a n×m matrix
M with real-valued entries (e.g., rows corresponding to the genes and columns
corresponding to tissues). Such a n × m matrix is called order-preserving if
there is a permutation of columns such that, after the permutation, the entries
within every row are strictly increasing; more formally, the matrix is order-
preserving if there is a permutation r1, r2, . . . , rm of the values 1, 2, . . . ,m such
that M(i, rj) < M(i, rj+1) for all 1 ≤ i ≤ n and 1 ≤ j ≤ m− 1. Given an n×m

matrix M with real-valued entries, and two integers k1 and k2, then OPSM is
the question whether M has an order-preserving k1 × k2 submatrix; a k1 × k2

submatrix is obtained by deleting all but k1 rows and all but k2 columns. Infor-
mally, OPSM is the question of a subset of rows exhibiting a common pattern
over a subset of the columns. As was pointed out by Chor [47], in a practical
setting, the input matrix has thousands of rows (one for each gene), but less
than 50 columns (one for each tissue) which implies that k2, the number of
columns in the submatrix, is bounded by 50. Therefore, a natural direction
seems to be the question for the fixed-parameter tractability with respect to
parameter k2.

In response to this question, we can, analogously to the NP-completeness proof
shown in [18], give a parameterized m-reduction from Clique where k denotes
the clique size to OPSM and k1 = k2 = k. Thus, as one of the rare examples,
this NP-completeness proof turns out to be parameter-preserving, showing that
OPSM is W[1]-hard both with respect to parameter k1 and with respect to
parameter k2. This insight shows us that, in particular, a fixed-parameter with
respect to parameter k2 is unlikely (as well as with respect to parameter k1 and
with respect to the aggregate parameter (k1, k2)). Therefore, to obtain fixed-
parameter algorithms with respect to these parameters, it seems necessary to
investigate special cases of the problem or to consider other parameters.

3.3 Design of Fixed-Parameter Algorithms

In this section, we highlight some common algorithmic techniques which already
have been used for the design of fixed-parameter algorithms in the analysis of
genomic data, namely kernelization (Section 3.3.1), enumeration (Section 3.3.2),
and dynamic programming (Section 3.3.3). For each of these techniques, we



28 Parameterized Complexity

point to problems from computational biology to which they were applied.

An additional design technique not presented in this section are bounded search
trees. Since they are the central design technique to obtain fixed-parameter
algorithms in this work, we discuss them separately in Chapter 4.

3.3.1 Kernelization

Given a computational problem L, a reduction rule translates a given instance I

of the problem in polynomial time poly(|I|) to a simplified instance I ′ of the
same problem such that I ∈ L iff I ′ ∈ L. Now consider a parameterized problem
with parameter k such that an instance (I, k) is reduced to an instance (I ′, k ′).
The problem is reducible to a problem kernel (or, for sake of abbreviation, it
has a problem kernel) iff, after the application of the reduction rule, we are
guaranteed that |I ′| = f(k) where f(k) is a function depending only on k but
not on |I|. For example, if |I ′| = O(k), then the problem has a linear problem
kernel. A problem kernel directly implies a fixed-parameter algorithm: We
reduce a problem instance to the problem kernel and then apply exhaustive
search. Naturally, the reduction rule may itself consist of a set of separate rules
which are applied repeatedly, as long as one of them applies; important is only
that, in total, the application of the reduction rules can be done in polynomial
time. Reduction rules are especially powerful and useful if they are easy and
efficient to compute, e.g., in linear time, and if they are often applicable. In this
sense, reduction rules are also valuable as heuristic elements of an algorithm,
even if they do not yield a problem kernel.

Example: Sorting by Reversals. In the context of genome rearrangements,
Sorting by Reversals is a well-known problem. Background is the observa-
tion that, due to gene mutation events during evolution (see Section 2.5), the
order of genes often differs between the genomes of related species. For some
classes of species, reversals are considered to be the most frequent gene mutation
event. The question to compute a value of similarity between two given genomes
based on their gene order leads to the following problem. Here, an ordering of
n elements is a permutation of {1, 2, . . . , n} which denote the genes. E.g., an or-
dering is given by π = 〈 e1 . . . en 〉 where {e1, . . . , en} = {1, 2, . . . , n} (for details
on this model see Chapter 7). Given an ordering π, a reversal inverts the order
of a subset of successive elements. E.g., given π as shown before, a reversal of
elements ei to ej transforms π to 〈 e1 . . . ei−1 ej ej−1 . . . ei ej+1 . . . en 〉. Given
two orderings π1 and π2 on n elements and a non-negative integer d, Sorting
by Reversals is the question whether we can find a sequence of d reversals
that transforms π1 to π2.

We distinguish two important cases: The elements are assigned an orientation
or not; the problem is, then, referred to as Signed or Unsigned Sorting by
Reversals, respectively. While Signed Sorting by Reversals is solvable in
polynomial time [113] (the decision problem even in linear time [8]), Unsigned



3.3 Design of Fixed-Parameter Algorithms 29

Sorting by Reversals is NP-complete. In the unsigned case, we call two
elements ei and ej adjacent in an ordering π iff one of them follows the other, no
matter whether ei follows ej or ej follows ei. Given two unsigned orderings π1

and π2, both on n elements, we call a pair of elements (ei, ej) a breakpoint in
π1 with respect to π2 iff ei and ej are adjacent in π1 but are not adjacent in π2.
Moreover, a singleton is an element e ∈ {1, . . . , n} such that none of the two
elements adjacent to e in π1 is adjacent to e in π2. Hannenhalli and Pevzner [98]
give a fixed-parameter algorithm for Unsigned Sorting by Reversals: They
show that it can be solved in O(2kn3 + n4) time, where k is the number of
singletons; since one reversal can remove at most two breakpoints in π1 with
respect to π2, the number of singletons is upperbounded by 2d. Central for this
result was that they could show that there is an optimal sequence of reversals
that does not “cut long strips”: Here, a strip is a set of three or more elements
e ′

1, . . . , e
′
r ⊆ {1, . . . , n} such that e ′

i is adjacent to e ′
i+1 both in π1 and in π2,

for all i = 1, . . . , r − 1. A reversal cuts this strip if there is i ∈ {1, . . . , r − 1}

such that e ′
i is not adjacent to e ′

i+1 after the reversal. Therefore, the above
observation also enables us to show a problem kernel for Unsigned Sorting
by Reversals: We reduce the input instance by replacing each long strip of
arbitrary length by a long strip of length three. Omitting the details, we find
the following: If, after this replacement, the number of elements is more than
6d + 3, then we cannot find a solution with at most d reversals. Therefore, we
can assume that a reduced instance has at most 6d + 3 elements.

Example: Tree distances. In phylogenetics, it is, in some situations, of
interest to compute a distance value for two (unrooted and binary) phylogenetic
trees with the same leaf set. This can be useful, e.g., to obtain a notion of the
“neighborhood” of a tree. The distance value can be based on the number of
operations that are necessary to transform one tree into the other, where the
kind of allowed operations are dependent on the model we use. An example
is tree bisection and reconnection (TBR), where the allowed operations are to
remove an edge of the tree, resulting in two unconnected trees, and reconnect
these trees by creating a new edge between the midpoints of two arbitrary edges,
one in each tree. Allen and Steel [4] point out that it is NP-complete to compute
the TBR distance between two trees. However, given two trees T1 and T2 and
a non-negative integer d, they show a fixed-parameter algorithm with respect
to parameter d based on two reduction rules by which they replace isomorphic
subtrees which occur both in T1 and T2 by single leaves. Thus, they show that,
after applying their kernelization rules until none of them is applicable any
more, the trees either have size at most 28d or the instance can be rejected.

3.3.2 Enumeration

In many cases, fixed-parameter algorithms can be easily obtained by enumer-
ating all possible objects which are candidates for solutions and by testing, for
each of them, whether it satisfies the problem’s requirements. Here, however,



30 Parameterized Complexity

we have to be especially aware that enumeration techniques often have severe
limitations and that classifying an algorithm as fixed-parameter tractable using
enumeration does not necessarily imply that it works efficiently in practice. We
mention two examples and point out their limitations.

Example: Phylogenetic Trees. In phylogenetics, when searching a phylo-
genetic tree for a given set of k taxa, there are algorithms which simply inspect
the space of all possible trees over k taxa [142, 174]. On the one hand, the
number of these trees is bounded by a function depending only on k. Formally,
this shows fixed-parameter tractability with respect to k. On the other hand,
this function is given by

∏k
j=3(2j − 5), which is growing fast with increasing k

and, usually, only allows to compute solutions for k < 15.

Example: Motif Search. Enumeration can be applied, where the solution
is a DNA string of limited length l. In motif search, the Closest Substring
problem is the question whether, given a set of length n strings s1, s2, . . . , sk

over alphabet Σ = {A,C,G, T } and non-negative integers d and l, whether
there is a length-l string over Σ such that all s1, s2, . . . , sk contain length-l
substrings s ′

1, s
′
2, . . . , s

′
k, respectively, with maxi=1,...,k(s, si) ≤ d. This problem

can be solved by enumerating all length-l strings over alphabet Σ = {A,C,G, T }

(this can be done in O(4l) time) and by testing, for each of them, whether
there is a matching substring in each of the input strings (this can be done in
O(n + l) time for each input string). Such an approach turns out to be useful
in practice: Blanchette et al. [27] show for the related Phylogenetic Foot-
printing problem, how to make the enumeration more efficient by using a
dynamic programming approach and, thereby, they give a celebrated algorithm
for this problem with O(k ·min(n · 3ld/2, l · 4l + n)) running time, essentially a
fixed-parameter algorithm for parameter l. However, even with these improve-
ments, for larger values of l (which, usually, go along with larger values for d),
such an solution is not applicable anymore. E.g., Blanchette et al. [27] report
about finding motifs up to l = 12 when d = 5 or up to l = 30 when d = 1.
Therefore, we will revisit Closest Substring in Section 5.2.

3.3.3 Dynamic Programming

Often, enumeration alone does not lead to fixed-parameter algorithms or the
running time is not satisfactory. Here, in some cases, special ways of dynamic
programming are used. Dynamic programming is a bottom-up method which
starts with computing solutions for small subproblems, storing their solutions
in a dynamic programming table. Solutions for the next-larger subproblems are
computed using already computed table entries. This is repeated until we have
finally computed all table entries such that we can determine the solution to
the overall problem. When the size of the table is only polynomial in the input
size, dynamic programming is a tool to obtain polynomial-time algorithms. For
a parameterized problem with parameter k, a dynamic programming algorithm
is a fixed-parameter algorithm with respect to k



3.3 Design of Fixed-Parameter Algorithms 31

• if the number of table entries is O(f(k) · nO(1)) for n denoting the size of
the input instance, k denoting the parameter, and an arbitrary function f,
and

• if a table entry is computed in O(g(k) ·nO(1)) time for an arbitrary func-
tion g.

Below, we present a fixed-parameter algorithm for a problem in the context of
SNP haplotyping; the algorithm is based on enumeration but, here, enumera-
tion alone would not be sufficient to show fixed-parameter tractability. We have
already mentioned, in Subsection 3.3.2, another example of this kind by the al-
gorithm of Blanchette et al. [27] for motif search: The Phylogenetic Foot-
printing problem could, in contrast to the closely related Closest Substring
problem, not be shown fixed-parameter tractable by using enumeration alone,
but was shown fixed-parameter tractable using additional dynamic program-
ming. In RNA structure comparison, Evans [64, 65] uses dynamic program-
ming to compute the longest arc-preserving subsequence of two arc-annotated
sequences, both with crossing arc-structures; for the so-called “cut-width” as
parameter she, thus, derives a fixed-parameter algorithm.

Example: SNP Haplotype Assembly problem. A single nucleotide poly-
morphism (SNP) is a genetic variation between two individuals of the same
species, consisting of particular positions in the DNA (the SNP positions) at
which one of two possible nucleotides (the SNP states) is observed in different
individuals. As humans have two copies of each chromosome, the copies may
carry different SNP states at the SNP positions. Then, a haplotype denotes the
sequence of SNP states of one chromosome copy. SNP’s cause problems when
sequencing the chromosomes since one can only sequence fragments of the chro-
mosomes and one is faced with fragments coming from both chromosome copies
as well as with data errors. The question to partition the set of fragments com-
ing from the process of sequencing the chromosome into two sets, one for each
haplotype, leads to a set of problems called SNP Haplotype Assembly problems,
one of which we address below.

The input of SNP Haplotype Assembly problems is a m × n matrix M over
alphabet {0, 1,−}, where rows of this matrix represent fragments coming from
the process of sequencing the chromosome, columns of this matrix represent
SNP positions, and the matrix represents an alignment of the fragments. The
goal is, roughly, to partition the set of columns into two sets, such that every
of these sets represents one haplotype. Entry M[f, s] denotes the SNP state
of fragment f has at SNP position s. If fragment f contains SNP position s

then M[f, s] is given by one of two possible states of SNP s, denoted by 0

and 1. If fragment f does not contain SNP position s then M[f, s] =“−”.
When M[f, s] =“−” for a SNP position s within fragment f, i.e., there is a SNP
position s1 preceding s with M[f, s1] 6=“−” and a SNP position s2 succeeding s

with M[f, s2] 6=“−”, then we say that f has a gap and, for one fragment f, the
number of such SNP positions which are gaps is called the total gap length of f.



32 Parameterized Complexity

Two fragments f and g are in conflict if there is a SNP position s such that
M[f, s],M[g, s] ∈ {0, 1} and M[f, s] 6= M[g, s]. For example, consider the matrix













− 0 1 − 1 1 −

− − 1 1 0 1 −

− − − 0 1 1 1

0 1 1 1 − − −

− 1 0 − 0 0 −













Here, the fragment denoted by the first row and the fragment in the last row
each have a gap of length 1. E.g., the fragments represented by the first two
rows are in conflict since they exhibit a different SNP state at SNP position 5.

The objective of Single Individual SNP Haplotyping problems is now, infor-
mally, to partition the fragments into two maximally consistent sets, each one
corresponding to one SNP haplotype, while facing sequence errors as well as
alignment errors. In the following we describe one specific Single Individual
SNP Haplotyping problem.

The Minimum Fragment Removal (MFR) problem asks for a minimum
number of fragments such that after their removal the data matrix is error-free,
i.e., we can find a partition of fragments into two sets such that no two fragments
within a set are in conflict. Informally, this addresses the goal of Single Individ-
ual SNP Haplotyping by trying to find fragments which are wrongly sequenced
or wrongly aligned by assuming that their number is small. For example, in
the matrix shown above, we can find a bipartition of fragments when deleting
the last row: Then, neither rows 1 and 3 nor rows 2 and 4 are in conflict.

We distinguish the “gapless case” in which no fragments has a gap from the “gap
case” otherwise. In the gapless case, MFR is solvable in O(m2n+m3) time by
dynamic programming [170]. The gap case is, however, of practical relevance
but is NP-hard [122]. Rizzi et al. [170] present a fixed-parameter algorithm
for MFR when parameter k denotes the maximal total length of gaps of one
fragment. Their basic idea is to try, for every fragment, all ways to fill the
gaps in the fragment with one of two possible states. For one fragment, there
are at most 2k ways to fill the gaps. In this way, they extend their dynamic
programming algorithm for the gapless case and show a total running time
of O(22km2n + 23km3) to solve MFR in the gap case. Note that a trivial
enumeration alone would not give a fixed-parameter algorithm since we would
have to enumerate all possible ways to fill the gaps in all fragments with one of
two possible states (these are O(2mk) many possibilities) and invoke, for each
of them, the algorithm for the gapless case.

3.3.4 Bounded Search Trees

Bounded search trees are the central algorithm design technique in this work
and are, therefore, discussed separately in the following Chapter 4.



Chapter 4

Search Tree Algorithms

This section provides an introduction into the design and the analysis of fixed-
parameter search tree algorithms. We illustrate our explanations using the
NP-complete Vertex Cover problem as a running example.

Vertex Cover
Given: Graph G = (V, E), and a non-negative integer k.
Question: Does G have a set of vertices V ′ ⊆ V with |V ′| ≤ k such
that, for every u, v ∈ V with {u, v} ∈ E, either u ∈ V ′, v ∈ V ′, or
both? If the answer is yes, then V ′ is called a vertex cover of size at
most k.

We decided to use this example since it is an easy-to-understand problem and
it allows to explain a number of features that are desirable for good search tree
algorithms. In computational biology, Vertex Cover finds application, e.g.,
for conflict resolution [186]. Moreover, the algorithmic strategies for Vertex
Cover described in this chapter were generalized to the 3-Hitting Set prob-
lem by Niedermeier and Rossmanith [153]; their algorithm was the point of
origin for our results described in Chapter 6.

Note that, up to today, only very few examples of non-trivial search tree algo-
rithms can be found in the computational biology literature. This shortcoming
is addressed by this thesis: We explore the design and the applicability of search
tree algorithms for the analysis of DNA and RNA data.

4.1 Branching

A recursive procedure constitutes the core part of a search tree algorithm. It
mainly consists of two parts: A set of branching rules and a stop criterion, as
explained in the following.



34 Search Tree Algorithms

Given a problem instance, a branching rule determines how to create a set of
simplified instances such that the original instance has a solution iff one of the
created simplified instances has a solution. Instead of one branching rule, we
can also use a set of several branching rules, and decide, depending on the
given instance, which of them to use. With several rules, it is only important
to provide a case distinction that chooses, given an instance, exactly one of the
branching rules which is to apply. The stop criterion specifies when to stop
the recursion because the instance does not have a solution. In search trees for
parameterized problems, this will usually be the case when the parameter value
is 0 and no solution has been found.

Basically, a search tree procedure goes through the following three steps:

1. We test whether we found a solution; if we found a solution, we store
or output this solution and backtrack in the recursion, indicating that a
solution has been found.

2. We test whether the stop criterion applies; if it applies then we backtrack
without finding a solution in this branch of the search tree.

3. We determine which branching rule to apply and create simplified in-
stances according to the chosen branching rule. On each of these in-
stances, we recursively invoke the search tree procedure until either one
of them finds a solution or all instances have been processed; in the latter
case, no solution is found in this branch of the search tree. (If we are not
only interested in one solution but in as many as possible then we invoke,
in any case, the search tree procedure on all instances.)

The resulting algorithm is termed a search tree algorithm since the dependency
of recursive invocations (or calls) of this procedure can be depicted by a tree.
The set of simplified instances that are generated by a branching rule are also
called subcases and if we invoke the search tree procedure on a simplified in-
stance, we branch into a subcase. The search tree size denotes the number of
times the search tree procedure is invoked.

The algorithm is termed bounded search tree algorithm iff the search tree size
can be upperbounded by a function depending only on the parameter.

Example: A simple branching rule for Vertex Cover. Assume that we
are given an instance of Vertex Cover, consisting of a graph G = (V, E) and a
non-negative integer k, complemented by a set V ′ which, initially, is empty and
by which we intend to successively construct a valid vertex cover. We choose
an arbitrary {u, v} ∈ E. At least one of u and v has to be in the vertex cover.
Therefore, we create two simplified instances, one of them by putting u into
the vertex cover, the other by putting v into the vertex cover. The simplified
instances are, then, denoted by a graph Gnew = (Vnew, Enew), a non-negative
integer knew, and a set V ′

new containing the vertices which are already in the
vertex cover:



4.2 Simplification 35

Put u into the vertex cover. We set V ′
new := V ′ ∪ {u}, we decrease the pa-

rameter value k by one, i.e., knew := k − 1, and we delete all edges in E

that contain u, i.e., Enew := E − { {u, z} ∈ E | z ∈ V }.

Put v into the vertex cover. We set V ′
new := V ′ ∪ {v}, knew := k − 1, and

Enew := E − { {v, z} ∈ E | z ∈ V }.

We invoke the search tree procedure recursively on each of these two instances,
replacing E, k, and V ′ by Enew, knew, and V ′

new, respectively. With this branch-
ing rule, we have found a solution if k ≥ 0 and E is empty; then, V ′ is a vertex
cover for the initial instance. If, however, k = 0 and E is non-empty, i.e., there
are still uncovered edges, then we backtrack without further recursion: there is
no chance of extending V ′ to a vertex cover of size at most k.

With the described search tree procedure, every application of the branching
rule implies two recursive calls of the procedure. Each recursive call decreases
the value of k by one. After a sequence of k consecutive calls, the value of k is
zero and the recursion stops. Therefore, O(2k) is an upper bound for the search
tree size and, thus, this algorithm is a bounded search tree algorithm.

4.2 Simplification

Rules that simplify a given problem instance in polynomial time such that the
simplified instance has a solution iff the non-simplified instance has a solution
are called reduction rules. Usually a reduction rule, firstly, tests whether the
instance has a specific property and, secondly, performs a simplification based
on the property; to yield a correct reduction rule in our context, both testing
the property as well as the reduction have to be doable in polynomial time,
measured in the size of the instance. If we have a set of reduction rules for a
problem, we invoke, given a problem instance, these reduction rules as long as
one of them is applicable. We call the instance reduced if none of the reduction
rules applies. But even if an instance is reduced, the reduction rules may
become applicable again after a modification of the instance due to branching.
Therefore, the application of reduction rules is interleaved with the application
of branching rules: After each recursive call of the search tree procedure, we
apply the reduction rules until the instance is reduced. Then, we continue with
the search tree procedure.

Applying reduction rules has several advantages: Firstly, they have the poten-
tial to drastically reduce the size of the search tree in practice and, thereby,
improve the performance of the algorithm. Secondly, they often allow one to
make assumptions about the reduced instance. This can be important when
specifying a set of branching rules. We only have to provide branching rules
for situations that are possible in a reduced instance. Situations that lead to
unfavorable branchings, because, e.g., they are complex or a bottleneck for the



36 Search Tree Algorithms

analysis of the search tree size, can, in this way, be avoided when they cannot
occur in a reduced instance.

Example: Reduction rules for Vertex Cover.

1. If there is a u ∈ V such that there is no v ∈ V with {u, v} ∈ E, then we
can delete u from V: Vnew := V − {u}.

Correctness of this rule. Since u is endpoint of no arc in E, it would not
make sense to put u into the vertex cover.

2. If there is a u ∈ V such that there is only one v ∈ V with {u, v} ∈ E,
then we can take v into the vertex cover, decrease the value of k by one,
and delete all edges {v, z} ∈ E, z ∈ V, from E since they are covered:
V ′

new := V ′ ∪ {v}, Enew := E − { {v, z} | z ∈ E}, and knew = k − 1.

Correctness of this rule. We have to show that if the instance before the
application of the rule has a vertex cover of size k then the instance after
the application has a vertex cover of size k − 1 (the reverse is obvious).
To cover {u, v} ∈ E, at least one of u and v has to be in the vertex cover.
Assume that u belongs to an optimal vertex cover, but not v. Then, we
could as well replace u in the vertex cover by v: {u, v} is still covered
and there are no other edges {u, z} ∈ E, z ∈ V, with z 6= v that would
remain uncovered. Therefore, it is at least as good to put v into the vertex
cover as to put u into the vertex cover: this choice covers {u, v} ∈ E and,
moreover, all possibly existing edges {v, z} ∈ E, z ∈ V.

After invoking these reduction rules as often as possible, we can assume that
every u ∈ V has at least two “neighbors,” i.e., there are v, z ∈ V, v 6= z, with
{u, v} ∈ E and {u, z} ∈ E. Since every rule application removes at least one
vertex or one edge, the number of possible applications is linear in the size of
the original instance. Every application can be done in linear time. Therefore,
reducing a Vertex Cover instance according to these rules can easily be done
in quadratic time (and can, by a more thoughtful organization of the rules, even
be done in linear time).

4.3 Kernelization

A special kind of reduction rules are those leading to a problem kernel, as ex-
plained in Section 3.3, i.e., the size of the reduced instance is bounded by a
function depending only on the parameter and not by the size of the input in-
stance. In the lucky situation that a reduction to a problem kernel of bounded
size is known, it is, obviously, useful to, firstly, compute a problem kernel, and,
secondly, invoke the search tree algorithm on the reduced instance. This com-
bination can result in especially useful algorithms. Although we already obtain
a fixed-parameter algorithm by exhaustive search on the computed problem



4.3 Kernelization 37

kernel, this, often, may be still too time-consuming. Bounded search trees can
considerably improve the function measuring the exponential growth of running
time and, thus, they can be the key to a good performance in practice.

Example: A problem kernel for Vertex Cover. For Vertex Cover,
we can find a problem kernel of size O(k2) based on the following rule which is
used in addition to the two reduction rules shown above:

Problem Kernel Rule (due to Buss and Goldsmith [37]) If there is a u ∈ V

such that there are more than k edges in E of which u is an endpoint,
then u has to be in the vertex cover, i.e., V ′

new := V ′ ∪ {u}. Thus, we can
delete all edges in E of which u is an endpoint:

Enew := E − { (u, v) ∈ E | v ∈ V }.

The parameter value k is decreased by one: knew := k − 1.

Correctness of this rule: Assume that u would not be in the vertex cover.
Then, all vertices that are connected to u by an edge in E would have
to be in the vertex cover, and, thus, the vertex cover would be larger
than k. Therefore, the instance has a vertex cover of size k prior to the
application of this rule iff the instance after the application has a vertex
cover of size k − 1.

Analogously to the other reduction rules mentioned above, we invoke the prob-
lem kernel rule as long as it is applicable. Notably, a given graph G with
parameter k can be reduced with respect to this rule in O(|G|) time. The re-
sulting graph Gnew with parameter knew contains no vertex of degree larger
than knew and G has a size-k vertex cover iff Gnew has a size-knew vertex
cover. However, we can find a vertex cover of size at most knew only if the
reduced instance contains at most k2

new edges; if the reduced instance contains
more than k2

new edges, then the instance does not have a solution and can be
rejected. Since knew ≤ k, this shows a problem kernel of size O(k2) which is
computed in linear running time.

Besides this straightforward problem kernel, Nemhauser and Trotter [144] even
give a problem kernel of size O(k) for Vertex Cover, which, however, relies
on a more complex reduction rule.

The computation of a problem kernel can be interleaved with the application
of branching rules in a search tree algorithm: The problem kernel reduction is
invoked not only at the beginning of the algorithm, but after every branching
step. This makes sense when branching into a subcase can possibly give rise to
new application of the problem kernel rule. Niedermeier and Rossmanith [151]
presented this interleaving technique and show, in particular, that it allows an
improved analysis of running time: Let a search tree algorithm have running
time O(nO(1) + kO(1)ck) for an instance of size n with parameter k, where the



38 Search Tree Algorithms

factor kO(1) denotes the time needed to process the problem kernel in every
search tree node. Then, interleaving the branching steps with the problem
kernel reduction yields a running time of O(nO(1) + ck). For the Vertex
Cover example this means that the running time analysis for the algorithm
outlined above can be improved from O(|G| + k2 · 2k) to O(|G| + 2k) (with
interleaving).

4.4 Recognizing Easy Instances

Sometimes, we can avoid to invoke reduction and branching rules until the
instance is empty. We may encounter instances that have special easy-to-check
properties such that they can be solved in polynomial, or even linear, time.
This can be, on the positive side, an instance for which a solution can be
computed in polynomial time, or, on the negative side, a solution for which we
can immediately determine that it has no solution. Specifying these kind of
instances and developing fast strategies to solve them is a task of its own which
can considerably speed-up the search tree algorithm in practice, since it can
avoid to traverse large parts of the search tree. Unfortunately, it seems difficult
to exploit this technique for improving the bounds on the search tree size.

Example: An easy instance of Vertex Cover. Assume an instance
of Vertex Cover in which all vertices u ∈ V have exactly two neighbors,
i.e., there are exactly two vertices v, z ∈ V, v 6= z, such that {u, v} ∈ E and
{u, z} ∈ E. Although this instance is reduced with respect to the reduction
rules shown above, we can solve it without further branching. In this situation,
the edges in E form one or several edge-disjoint cycles of vertices; a cycle is
a set {v1, . . . , vr} ∈ V of vertices such that {vi, vi+1} ∈ E for i = 1, . . . , r and
{vr, v1} ∈ E. It is easy to verify that, for a cycle with an even number of vertices,
an optimal vertex cover of that cycle contains every second vertex of that cycle.
For a cycle with an odd number of vertices, an optimal vertex cover of that
cycle contains two adjacent vertices of the cycle and, apart from that, every
second vertex of that cycle. With this choice, we can find an optimal solution
in linear time.

4.5 Analysis

The running time of our algorithm is, asymptotically, mainly dominated by the
size of the search tree. Thus, we are looking for an upper bound on the search
tree size which is determined by the number of children of each node and the
height of the tree. To achieve a fixed-parameter algorithm, our goal is to bound
the search tree size by a function depending only on the parameter k of the
problem.



4.5 Analysis 39

Branchings are easy to analyze when in each subcase the value of the parameter
is decreased by one. E.g., in the example shown in Section 4.1, the branching
has two subcases, each time decreasing the parameter by one, and, thus, we
concluded a bound on the search tree size of O(2k). However, search tree
algorithms can apply more complicated branchings, decreasing in some of the
subcases the parameter value by more than one. In the following we show how
to give upper bounds on the search tree size in the case of these more general
types of branchings.

Example. A new branching rule for Vertex Cover. With the rules for
Vertex Cover presented in Sections 4.2, 4.3, and 4.4, we can make certain
assumptions about a Vertex Cover instance which is reduced with respect
to these rules. E.g., we conclude that G contains no vertices of degree zero and
one (since, otherwise, one of the reduction rules presented in Section 4.2 would
apply), we conclude that there is at least one vertex of degree more than 2

(otherwise, the rule presented in Section 4.4 would apply), and we conclude
that all vertices have degree at most k (since, otherwise, the problem kernel
rule presented in Section 4.3 would apply). Therefore, we can, instead of the
branching rule described in Section 4.1, also use the following branching rule:

Branching rule: Choose an u ∈ V with maximum degree d; u has degree at
least three and there are pairwisely different v1, v2, . . . , vd, with {u, v1} ∈
E, {u, v2} ∈ E, . . . , {u, vd} ∈ E. Then, we branch into the following two
subcases:

Put u into the vertex cover. V ′
new := V ′ ∪ {u}, Enew := E − { {u, z} ∈

E | z ∈ V }, and knew := k − 1.

Put v1, v2, . . . , vd into the vertex cover. V ′
new := V ′∪{v1, v2, . . . , vd},

Enew := E − { {v, z} ∈ E | v ∈ {v1, v2, . . . , vd}, z ∈ V }, and knew :=

k − d.

We invoke the search tree procedure recursively on each of these three instances,
replacing E, k, and V ′ by Enew, knew, and V ′

new, respectively. In the following,
we will see how we can obtain upper bounds on the size of the resulting search
tree which are better than O(2k).

Consider a node of the search tree branching into r subcases. Branching into
subcase i, 1 ≤ i ≤ r, let ki be the value by which the we reduce the value
of k. Then, we assign to the node the branching vector (k1, k2, . . . , kr) which
abbreviates the recurrence relation

Tk = Tk−k1
+ Tk−k2

+ . . . + Tk−kr
, (4.1)

where we set
T0 = T1 = . . . = Tmax(k1,k2,...,kr)−1 = 1.

This recurrence relation computes the number Tk of leaves of a search tree
handling an instance with parameter k, assuming that all nodes apply this



40 Search Tree Algorithms

branching rule and disregarding additional reduction rules. Reducing in one
branching subcase the parameter value by ki, we have to solve a resulting
instance with parameter value k − ki and the number of leaves in the search
tree handling this instance is given by Tk−ki

. The recursion stops when k <

max(k1, k2, . . . , kr) since we can, for example, maintain a dictionary in which
we store the optimal solutions for small instances of constant size such that
looking up the solution in the dictionary constitutes a leaf in the search tree
without further recursion. The number of leaves of a search tree, however, is,
up to a constant factor, an upper bound on the total search tree size since the
search tree procedure branches into at least two subcases, and, therefore, inner
nodes of the search tree have at least two children. To continue our analysis of
the search tree size, we shall briefly consider the solving of recurrences.

Recurrence relation (4.1) is called linear since all Tk−ki
occur to the first power

and it is called homogeneous since there is no additive constant term. The
corresponding polynomial in z

p(z) := zk − zk−k1 − zk−k2 − . . . − zk−kr (4.2)

is referred to as the characteristic polynomial of the recurrence. It is a poly-
nomial of power k and it has k roots, which are called characteristic roots. In
general, among these roots there can be repeated roots and some roots may be
complex numbers.

We search for an easy way how to compute an upper bound for Tk (as defined
in recurrence (4.1)) without recursion. In the remainder of this subsection, we
outline some results helping us to achieve this goal; proofs are omitted with
references where they can be found. We can find a characterization of Tk in
recurrence (4.1) based on the characteristic roots, e.g., as shown in Chapter 5.1

of [171].

Definition 4.5.1. We denote the distinct characteristic roots of polynomial (4.2)
by α1, α2, . . . , αq, and we use mi to denote the multiplicity of root αi, i =

1, . . . , q. Then, the set of basic solutions of recurrence (4.1) is the union of

αk
i , kαk

i , k2αk
i , . . . , kmi−1αk

i

for all i = 1, . . . , q.

Using this terminology, we can express Tk in terms of the basic solutions of
recurrence (4.1):

Theorem 4.5.2. ([171], Theorem 5.2) Suppose that a linear homogeneous
recurrence (4.1) with constant coefficients has basic solutions b1, b2, . . . , bp.
Then

Tk = λ1b1 + λ2b2 + . . . + λpbp (4.3)

for some constants λ1, λ2, . . . , λp.



4.5 Analysis 41

The right-hand term in equation (4.3) is mainly determined, asymptotically and
up to a polynomial factor in k, by a maximum characteristic root of polyno-
mial (4.2), i.e., the characteristic root having a maximum absolute value. There-
fore, by Theorem 4.5.2, a maximum characteristic root gives us an asymptotic
approximation for the solution of recurrence (4.1): Let α denote the maximum
characteristic root of polynomial (4.2) and let m be the multiplicity of this root,
then equation (4.3) yields

Tk = O(km−1αk)

since both the number p of basic solutions as well as all λ1, λ2, . . . , λp in equa-
tion (4.3) are constants.

For recurrence (4.1), due to its special form, it is easy to determine a maximum
characteristic root, as we will describe in the following. We will, firstly, show
that exactly one of the characteristic roots is real and positive, and, moreover,
that this root is a single root. Secondly, we will show that this real and positive
root is a maximum characteristic root.

Lemma 4.5.3. Let p(z) := zk − zk−k1 − zk−k2 − . . . − zk−kr for integer r > 1,
integer k ≥ 1, and positive integers k1, k2, . . . , kr with ki < k, i = 1, . . . , r.
Then, p(z) has exactly one positive, real root α. Additionally, α > 1 and α is
a single root.

Proof. Instead of p(z), we consider

q(z) := 1 − zk1 − zk2 − . . . − zkr .

The relation between p(z) and q(z) is, since p(z)/zk = 1 − (1/z)k1 − (1/z)k2 −

. . . − (1/z)kr , given by

q(1/z) = p(z)/zk.

Therefore, β is a positive, real root of q(z) iff 1/β is a positive, real root
of p(z). In the following, we examine the positive, real roots of q(z) and, using
this detour, draw conclusions about the positive, real roots of p(z).

We have q(0) = 1 and q(1) = 1 − r. Since r ≥ 2 and ki ≥ 1 for all i =

1, . . . , r, we have q(1) ≤ −1 and, moreover, q(z) ≤ −1 for z > 1. Since q(z) is
continuous and strictly decreasing for z > 0, q(z) has exactly one real root β

with 0 < β < 1. Since q(z) is negative for z ≥ 1, this is the only positive, real
root of q(z). Consequently, also p(z) has only one real positive root, namely
α := 1/β, and, since 0 < β < 1, we have α > 1.

Considering the derivation

q ′(z) = −k1z
k1−1 − k2z

k2−1 − . . . − krz
kr−1,

we have q ′(z) < 0 for z > 0 and, therefore, q ′(β) < 0. This shows that β is
a single root since a multiple root β ′ would, due to standard derivation rules,
imply q ′(z) = 0. Consequently, α := 1/β is also a single root of p(z).



42 Search Tree Algorithms

It remains to show that α as determined in Lemma 4.5.3 is a maximum char-
acteristic root. To this end, we introduce generating functions which play a
central role in the solution of recurrence relations [177]. Let us consider the el-
ements Tk computed by the recurrence relation (4.1) as a sequence (Tk)k. With
the sequence elements as coefficients we build the power series

t(z) =
∑

k≥0

Tkzk. (4.4)

It has a positive radius of convergence r which is given by 1
r

= limk→∞( k
√

Tk) [31].
We call such a power series with positive radius of convergence the generating
function of sequence (Tk)k. There is a close relation between generating func-
tion (4.4) and the characteristic polynomial (4.2):

Theorem 4.5.4 ([177], Theorem 3.3). The generating function

t(z) =
∑

k≥0

Tkzk

is a rational function
t(z) = f(z)/q(z),

where q(z) = 1−zk1 −zk2 − . . .−zkr and f(z) is determined by the initial values
T0, T1, . . . , Td−1 where d = max(k1, k2, . . . , kr) − 1.

Polynomial q(z) as defined in Theorem 4.5.4 has a root β iff the characteristic
polynomial p(z) as defined in (4.2) has a root 1/β (for an explanation refer
to the proof of Lemma 4.5.3). Moreover, a root β of q(z) is a singularity of
generating function t(z), i.e., at β the function is not complex-differentiable.

Summarizing, on the one hand, recurrence (4.1) corresponds to a characteristic
polynomial p(z) as given in (4.2). On the other hand, recurrence (4.1) corre-
sponds to a generating function t(z) as given in (4.4) and t(z) = f(z)/q(z) for a
polynomial q(z) with the property that q(1/z) = p(z)/zk (for details see proof
of Lemma 4.5.3). Consequently, a root α of polynomial p(z) corresponds to a
root 1/α of polynomial q(z) and, thus, to a singularity of generating function
t(z). Moreover, a maximum characteristic root α of the characteristic polyno-
mial (4.2) corresponds to a dominant singularity of generating function t(z),
i.e., to a singularity with minimum absolute value. The following classical
“Pringsheim” theorem concludes our argumentation:

Theorem 4.5.5 ([72], Theorem 4.3). A generating function with finite ra-
dius of convergence and non-negative coefficients has a dominant singularity
that is real and positive.

With Lemma 4.5.3 and Theorem 4.5.5, we conclude that the unique positive,
real root α of polynomial 4.2 corresponds to a dominant singularity and, there-
fore, is a maximum characteristic root. Thus, we have Tk = O(αk). We call α

the branching number for the branching vector (k1, k2, . . . , kr).



4.5 Analysis 43

In summary, this section showed how to compute the branching number from
the branching vector: We compute the unique positive, real root α of the char-
acteristic polynomial (4.2), e.g., using the Newton method as explained in [79].
Given a set of branching rules, we determine the branching number for every
rule. Then, the branching rule with the largest branching number determines
the worst-case upper bound on the search tree size since, as the worst case, we
assume that all branchings are of this kind.

Example. A new branching rule for Vertex Cover (continued). With
the new knowledge we can give a new upper bound on the search tree based on
the branching rule presented above. The number of leaves in the search tree is
given by recurrence

Tk = Tk−1 + Tk−d,

with d ≥ 3. Therefore, the worst-case branching vector of this branching is (1, 3)

and we compute a corresponding branching number of approximately 1.466

(branching vectors (1, d) with d > 3 yield larger branching numbers): 1.466k is
an upper bound on the search tree size.

Recently, there has been active research on search tree algorithms for Vertex
Cover [9, 43, 150, 154, 187], now giving upper bounds on the search tree size
better than 1.29k [43, 154].



44 Search Tree Algorithms



Chapter 5

Consensus of Sequences

Finding signals in DNA is a major problem in computational biology. A re-
cently intensively studied facet of this problem is based on consensus word
analysis [164, Section 8.6]. Central problems herein are Closest String and
Closest Substring defined as follows; recall that we use dH(s, si) to denote
the Hamming distance between strings s and si:

Closest String
Input: Strings s1, s2, . . . , sk over alphabet Σ of length L each, and
a non-negative integer d.
Question: Is there a string s of length L such that dH(s, si) ≤ d

for all i = 1, . . . , k?

Closest Substring
Input: Strings s1, s2, . . . , sk over alphabet Σ, and non-negative in-
tegers d and L.
Question: Is there a string s of length L such that, for every
i = 1, . . . , k, there is a length-L substring s′i of si with dH(s, s′i) ≤ d?

Closest String1 is also known as Consensus String, Center String, or
Minimum Radius problem; here, we adopt the notation of [128, 129]. The
solution string s which has Hamming distance at most d to all given strings
will, in the following, be referred to as center string.

While Closest Substring has its main application in motif search [27, 35,
165], Closest String, besides being a special case and a subproblem of

1From a linguistic point of view, a “closest” string would mean a string for which the
maximum Hamming distance to one of the given strings is as small as possible and, thus, the
term would refer to the optimization version of the problem. Here, however, we refer to the
decision version of the problem. Identifying the parameterized decision version of a problem
with a name more appropriate for its optimization version is commonly used in complexity
theory, e.g., for Longest Common Subsequence (Section 3.2) and many other problems [58].



46 Consensus of Sequences

Closest Substring, can, e.g., be used for the unbiased representation of
sequences [19] and it is a special case of a problem in which all internal nodes
of a given evolutionary tree have to be labeled [75].

What is currently known about these two problems as well as some main results
from this chapter are summarized in the following and in Table 5.1.

1. Closest String and Closest Substring are NP-complete even for
binary alphabet [73, 124].

2. On the positive side, Closest String and Closest Substring admit
polynomial-time approximation schemes (PTAS’s), where the objective
function is the minimum Hamming distance d which allows to find a
center string or substring of length L, respectively [129].

3. In the PTAS’s for both Closest String and Closest Substring, the
exponent of the polynomial bounding the running time depends on the
goodness of the approximation. These are not efficient PTAS’s (EP-
TAS’s) in the sense of [41] and therefore are probably not useful for bioin-
formatics practice. Whether EPTAS’s are possible for these approxima-
tion problems, currently remains open.

4. Closest String is solvable in LO(k) time [76] and solvable in linear time
for d = 1 [188].

Our Main Results in this Chapter.

1. Closest String is fixed-parameter tractable with respect to parameter d,
and it can be solved in O(kL + kd · dd) time, even for unbounded alpha-
bet size (Subsection 5.1.2); this algorithm generalizes to closely related
versions of the problem.

2. Closest String is also fixed-parameter tractable with respect to the
parameter k, even for unbounded alphabet size, but here the exponential
parametric function is much faster growing, and the algorithm is probably
of less practical use (Subsection 5.1.3).

3. For unbounded alphabet size, Closest Substring is W[1]-hard for the
combined parameters L, d, and k (Subsection 5.2.2).

4. Closest Substring is W[1]-hard with respect to parameter k, i.e.,
the number of input strings, even in case of a binary alphabet (Sub-
section 5.2.3); our hardness results for Closest Substring can also be
adapted for the related Consensus Patterns problem (see Section 5.2).

Thus, this work gives the first strong theory-based support for the common
intuition that Closest Substring (W[1]-hard) seems to be a much harder



5.1 Part I: Closest String and Related Problems 47

Closest String Closest Substring

NP-completeness theory NP-complete NP-complete

Approximation theory PTAS [129] PTAS [129]

Parameterized complexity

w.r.t. parameter d FPT(∗) (Sect. 5.1.2) (open)

w.r.t. parameter k FPT(∗) (Sect. 5.1.3) W[1]-hard(∗) (Sect. 5.2.3)

Table 5.1: Overview on old and new results for Closest String and Closest
Substring. Results from this work are marked by (∗). Here, we assume the
practical case of constant alphabet size, although the mentioned FPT results
hold also for unbounded alphabet size, and the W[1]-hardness result even holds
for binary alphabet.

problem than Closest String (in FPT). Notably, this could not be expressed
by “classical complexity measures” since both problems are NP-complete as well
as both do have a PTAS (also see Table 5.1).

This chapter is organized as follows. Section 5.1 contains our results for Clos-
est String and some closely related problems. Section 5.2 contains our hard-
ness results for Closest Substring.

5.1 Part I: Closest String and Related Problems

In this section, we study Closest String and related problems, namely the
d-Mismatch problem (which generalizes Closest String in the way that
we look for center strings of aligned substrings of a given set of strings) [188,
189] and the Distinguishing String Selection problem [124].2 For a brief
overview on biological applications concerning signal finding and primer design,
refer to, e.g., [124]. All these problems are, in general, NP-hard [73, 124].
Hence, polynomial-time algorithms are out of reach.

Despite their hardness, these problems need to be solved in practice. One
line of research is thus to study their approximability. Improving previous
work [75, 124], Li et al. [129] finally came up with a polynomial-time ap-
proximation scheme (PTAS) for Closest String. The constants and degrees
of polynomials occurring in the running time, however, make this result of
little practical value. Another very promising approach is to study the pa-

2We follow the recent work of Deng et al. [56] which tells apart the problems Distinguish-
ing String Selection (where all given input strings and the goal string have exactly the
same length L) and the computationally still harder Distinguishing Substring Selection
(which is defined relative to substrings and the given input strings may have varying lengths).
Note, however, that Lanctot et al. [124] who originally proposed these problems did not make
this distinction and referred to both problems as Distinguishing String Selection.



48 Consensus of Sequences

rameterized complexity with a focus on the two most natural parameters of
Closest String: the maximum Hamming distance d allowed and the num-
ber k of given input strings. Under the natural assumption that either d or k

is (very) small (in particular, in biological applications it is appropriate to as-
sume small d, e.g., d smaller than 10 [67, 124]), it is important to ask whether
efficient polynomial or, even better, linear-time algorithms are possible when d

or k are constant.

We present the following results:

1. Closest String can be solved in O(kL+kd ·dd) time, yielding a linear-
time search tree algorithm for constant d. This answers the open question
of Evans and Wareham [67] for the parameterized complexity of Closest
String with parameter d.

2. d-Mismatch can be solved in linear time for constant d, which improves
work by Stojanovic et al. [188] who gave a linear-time algorithm for only
d = 1; thus, we positively answer their open question for generalizing
their result to d > 1.

3. Our result is also extendible to Distinguishing String Selection,
for which we can derive a linear-time algorithm in case of constant dis-
tance parameters and constant alphabet size. (Note that, here, we clearly
distinguish, in analogy to the difference between Closest String and
Closest Substring, between Distinguishing String Selection and
Distinguishing Substring Selection as it is also suggested in [56];
for more details refer to Subsection 5.1.2.3).

4. Using a new ILP formulation of the problem, we also show that Closest
String is fixed-parameter tractable with respect to k, i.e., the number
of input strings (answering an open question of [67]). To our best knowl-
edge, this is the first time that ILP’s are used to show fixed-parameter
tractability, while, up to now, it was not possible to obtain this result in
some other way.

5.1.1 Preliminaries on Closest Strings

In this section, we give definitions and small results that will be useful later on.

Given a set of k strings, each of length L, we can think of these strings as a k×L

character matrix. By columns of the set of strings, we refer to the columns of
this matrix.

A string s is an optimal center string for S iff there is no string s′ with
maxi=1,...,k dH(s′, si) < maxi=1,...,k dH(s, si). By way of contrast, s is an op-
timal median string for S iff there is no string s′ with

∑
i=1,...,k dH(s′, si) <∑

i=1,...,k dH(s, si).



5.1 Part I: Closest String and Related Problems 49

Note that, given a set of strings S = {s1, s2, . . . , sk}, an optimal median string
can be easily computed by choosing in every column a letter occurring most
often. If a letter is chosen in this way, we call it majority vote; it is, however,
not necessarily unique.

In the following, we state that after reordering the columns of the Closest
String instance, we can easily obtain solutions for the original instance from
solutions for the reordered instance. For reordering the columns, we introduce
a permutation on strings as follows. Given a string s = c1c2 . . . cL of length L

with c1, . . . , cL ∈ Σ for alphabet Σ and a permutation π: {1, . . . , L} → {1, . . . , L}.
Then, π(s) = cπ(1)cπ(2) . . . cπ(L). The following lemma is obvious.

Lemma 5.1.1. Given a set of strings S = {s1, s2, . . . , sk}, each of length L, and
a permutation π: {1, . . . , L} → {1, . . . , L}. Then s is an optimal center string for
{s1, s2, . . . , sk} iff π(s) is an optimal center string for {π(s1), π(s2), . . . , π(sk)}.

Several columns can be identified as equivalent due to isomorphism. The reason
for this is the fact that the columns are independent from each other in the
sense that the distance from the center string is measured columnwise. For
instance, consider the case of the two columns (a, a, b)t and (b, b, a)t when
k = 3. Clearly, these two columns are isomorphic because they express the same
structure: The first and the second column entry are equal and they differ from
the third column entry. For finding the optimal center string, however, only this
kind of structure matters. More precisely, we consider two length k columns
~c and ~c ′ as isomorphic if, for all column entries ~c[i] and ~c ′[j], 1 ≤ i < j ≤ k,
~c[i] = ~c[j] iff ~c ′[i] = ~c ′[j]. Isomorphic columns form column types.

This can be generalized as follows. Without loss of generality, let a always
denote the letter that occurs most often in a column, let b always denote the
letter that has the secondly most often occurrences and so on. This property of
being normalized, as we will refer to it in the following, can be easily achieved
by a simple linear-time preprocessing of the input instance. In addition, solving
the normalized problem optimally, one again can compute the optimal solution
of the original problem instance by simply reversing the above mapping done
by the preprocessing. Hence:

Lemma 5.1.2. To compute an optimal center string, it is sufficient to solve
a normalized and reordered instance. From this, the solution of the original
instance can be derived in linear time.

In the following, we call two input instances isomorphic if there is a one-to-
one correspondence between the columns of both instances such that each thus
determined pair of columns is isomorphic. The following lemma shows that it
is sufficient to solve an instance with alphabet size |Σ′| ≤ k.

Lemma 5.1.3. A Closest String instance with arbitrary alphabet Σ, |Σ| > k,
is isomorphic to a Closest String instance with alphabet Σ′, |Σ′| = k.



50 Consensus of Sequences

Proof. A normalized instance has automatically at most k symbols.

With the following observation by Evans and Wareham [67], we find that it
is sufficient to solve instances containing at most kd columns. This yields
a problem kernel with respect to parameters k and d together, which allows
an efficient preprocessing of the input instance. We call a column dirty iff it
contains at least two different symbols from alphabet Σ. Clearly, all the work
in solving Closest String concentrates on the dirty columns of the input
instance.

Lemma 5.1.4. Given a Closest String instance with k strings s1, . . . , sk of
length L and a non-negative integer d. If the resulting k × L matrix has more
than kd dirty columns then there is no string s with maxi=1,...,k dH(s, si) ≤ d.

Proof. Each of the k input strings differs from a solution in at most d positions.
These mismatches give rise to dirty columns. Since there are k strings with at
most d mismatches each, an instance can have a solution only when there are
at most kd dirty columns.

5.1.2 A Linear-Time Solution for Constant Distance Parameter

We show that Closest String, although NP-complete in general, is solv-
able in linear time for constant d and, in particular, that it is fixed-parameter
tractable with respect to the distance parameter d. In the first subsection, we
give the basic algorithm and then we show that it has a linear running time
for constant d. In the subsequent two subsections, we present heuristic im-
provements of the strategy and enhancements, e.g., solving the more general
d-Mismatch and the Distinguishing String Selection problems.

5.1.2.1 Bounded Search Tree Algorithm

In Fig. 5.1, we outline a recursive procedure solving Closest String. For the
correctness of the algorithm we need the following simple observation.

Lemma 5.1.5. Given a set of strings S = {s1, s2, . . . , sk} and a positive inte-
ger d. If there are i, j ∈ {1, . . . , k} with dH(si, sj) > 2d then there is no string s

with maxi=1,...,k dH(s, si) ≤ d.

Proof. The Hamming distance satisfies the triangle inequality. If dH(si, sj) >

2d and we are given an arbitrary string s then we know that dH(s, si) +

dH(s, sj) > 2d. It follows that dH(s, si) > d or dH(s, sj) > d (or both).

The idea of our strategy is to start with one of the given strings, e.g., s1, as
a “candidate string.” If there is a string si, i = 2, . . . , k, that differs from



5.1 Part I: Closest String and Related Problems 51

Recursive procedure CSd(s, ∆d):
Global variables: Set of strings S = {s1, s2, . . . , sk}, non-negative integer d.
Input: Candidate string s and integer ∆d.
Output: A string ŝ with maxi=1,...,k dH(ŝ, si) ≤ d and dH(ŝ, s) ≤ ∆d, if it

exists, and “not found,” otherwise.

Method:
(Case 0) if (∆d < 0) then return “not found”;
(Case 1) if (dH(s, si) > d + ∆d) for some i ∈ {1, . . . , k} then

return “not found”;
(Case 2) if (dH(s, si) ≤ d) for all i = 1, . . . , k then return s;
(Case 3) choose any i ∈ {1, . . . , k} such that dH(s, si) > d:

P := {p | s[p] 6= si[p] };
choose any P′ ⊆ P with |P′| = d + 1;
for all p ∈ P′ do

s′ := s;
s′[p] := si[p];
sret := CSd(s′, ∆d − 1);
if sret 6=“not found” then return sret;

return “not found”

Figure 5.1: Algorithm CSd. Inputs are a Closest String instance consisting
of a set of strings S = {s1, s2, . . . , sk} of length L, and an integer d. First, we
perform a preprocessing performing the reduction to a problem kernel as shown
in Lemma 5.1.4: We select the dirty columns. If there are more than kd many
then we reject the instance. If there are at most kd many then we invoke the
recursion with CSd(s1, d).

the candidate string in more than d positions, we recursively try several ways
to move the candidate string “towards” si; moving closer here means that we
select a position in which the candidate string and si differ and set this position
in the candidate string to the character of si at this position. We stop either if
we moved the candidate “too far away” from s1 or if we found a solution. By a
careful selection of subcases of this recursion we can limit the size of this search
tree to O(dd), as will be shown in the following theorem.

Theorem 5.1.6. Given a set of strings S = {s1, s2, . . . , sk}, and an integer d,
Algorithm CSd (Fig. 5.1) determines in O(kL+kd ·dd) time whether there is a
string s with maxi=1,...,k dH(s, si) ≤ d and it computes such an s if one exists.

Proof. Running time. Prior to the recursion, we perform the reduction to a
problem kernel as described in Lemma 5.1.4. This preprocessing reduces the
size of the input instance to O(kd) and can be done in O(kL) time.

Now, we consider the recursive part of the algorithm. Parameter ∆d is initial-
ized to d. Every recursive call decreases ∆d by one. The algorithm stops when



52 Consensus of Sequences

∆d < 0. Therefore, the algorithm builds a search tree of height at most d. In
one step of the recursion, the algorithm chooses, given the current candidate
string s, a string si such that dH(s, si) > d. It creates a subcase for d + 1 of
the positions in which s and si disagree (there are more than d but at most 2d

such positions). This yields an upper bound of (d+1)d on the search tree size.3

Each step of the recursion needs only O(kd), i.e., linear, time: Before starting
the recursion, we build a table containing the distances of the candidate s1 to
all other given strings. Using this table, instructions (Case 1) and (Case 2) can
be done in O(k) time. In instruction (Case 3), we need O(k) time to select the
si for branching and O(kd) time (observe Lemma 5.1.4) to find the positions in
which s and si differ. For d+1 of those differing positions (there are at most 2d

many) we modify the candidate string, update the table of distances, and call
the procedure recursively. Since we changed only one position, we can update
the table of distances in O(k) time.

Correctness. We have to show that Algorithm CSd will find a string s with
maxi=1,...,k dH(s, si) ≤ d, if such an s exists. The preprocessing is correct by
Lemma 5.1.4. Regarding the search tree, we explicitly show only the correctness
of the first recursive step; the correctness of the algorithm then follows with an
inductive application of the argument.

In the situation that s1 satisfies maxi=1,...,k dH(s1, si) ≤ d, we immediately find
a solution, namely s1. If s1 is not a solution but there exists a center string s

for this instance with distance value d, then there is a string si, i = 2, . . . , k,
such that dH(s1, si) > d. For branching, we consider the positions where s1

and si differ, i.e., P := {p | s1[p] 6= si[p] }. Algorithm CSd successively creates
subcases for d + 1 positions p from P in order to create a new candidate by
altering the respective position p from s1[p] to si[p]. Such a “move” is correct
if we choose a position p from Ps1 6=s=si

:= {p | s1[p] 6= s[p] = si[p] }. Now,
we show that (at least) one of our d + 1 moves is a correct one. We observe
that P is the disjoint union of Ps1 6=s=si

and Ps6=si
:= {p | s[p] 6= si[p] }. Since

dH(s, si) ≤ d we know that |Ps6=si
| ≤ d. Therefore, at least one of our d + 1

subcases will try a position from Ps1 6=s=si
.

Regarding instruction (Case 1), we can analogously to Lemma 5.1.5 observe
that it is correct to omit those branches where the candidate string s satisfies
dH(s, si) > d + ∆d for some string si of the given strings s1, . . . , sk.

With Algorithm CSd, we find a solution if one exists. Within the given time
bounds, we can easily modify Algorithm CSd to find all solutions if the given
distance parameter d is optimal, described as follows. Firstly, we do, in (Case 3),

3If there are two strings si , sj with dH(si , sj) = 2d, we can use a better strategy: We know
that a solution has to differ from both si and sj in d positions. We can search a solution by
trying all ways to partition the set of positions p with si [p] 6= sj [p] into two sets of size d.
In the candidate, we give to one set of positions the characters of si, to the second set the
characters of sj. The resulting running time is O(kL + kd · 22d).



5.1 Part I: Closest String and Related Problems 53

not stop the recursion as soon as a solution string is found but perform a recur-
sive call for every p ∈ P ′, returning not before the for-loop has been processed
for every p ∈ P ′. Secondly, it may occur that we have found, in (Case 2), a
solution s while ∆d > 0. Then, however, there has to be sj, j ∈ {1, . . . , k} with
dH(s, si) = d since, otherwise d would not be optimal. For a solution s ′ 6= s it
has to hold that s ′[q] = si[q] for at least one q ∈ Q where Q = {p | s[q] 6= si[q] }.
Therfore, we invoke, for every q ∈ Q, a recursive call CSd(s ′, ∆d − 1) where
s ′ is obtained from s by changing s[q] to si[q]. Since |Q| ≤ d, this does not
sacrifice the time bounds of the algorithm given in Theorem 5.1.6. Analogously
as in the proof of Theorem 5.1.6, it is shown that, by these modifications, we
find all solutions if the given distance parameter d is optimal. However, we can-
not, within these time bounds, necessarily find all solutions to a given instance
when d is not optimal as we explain in the first paragraph of Section 5.1.2.3.

We can find the optimal d by starting from d = 0 and increasing it by 1 until a
solution is found. In contrast to knowing d in advance this costs only a constant
factor in the running time.

Note that the interleaving technique described in [151] to build a new problem
kernel on every level of the search tree seems not to be of use here because
changing levels of recursion do not influence the size of the problem kernel.

5.1.2.2 Heuristic Improvements

Avoiding the multiple traversal of subtrees. Since the search tree size is
the critical factor in the algorithm’s running time, the goal is to keep it as small
as possible. In particular, there is no use in visiting the same “configurations”
twice or more times. In the following, we describe two ways to avoid visiting
such useless branches of the search tree.

Keeping in mind the initial candidate string, there is no use in changing a
position that has already been changed before. We can avoid this by testing
for each position considered for a change whether it still equals the position in
the initial candidate. We branch only if it does.

Still, we will run into situations where the same candidate string is considered
multiple numbers of times. For instance, when the solution differs from the
candidate in positions p1 and p2, we find it by changing first p1 and then p2,
and we can also find it by changing first p2 and then p1. We can avoid finding
the same solutions several times in the following way. Recall that the search
tree is traversed in a depth-first manner. We maintain, for every position p,
the character set Cp such that c ∈ Cp if a length-L string s with s[p] = c

is candidate string in a search tree node that is an ancestor of the current
node (including the current node itself) or an already traversed sibling of these
nodes (see Fig. 5.2). For branching, we consider only changing a position p

in the candidate to a character c if c /∈ Cp. In the following, we sketch why



54 Consensus of Sequences

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

current node

Figure 5.2: Illustration of our strategy to avoid computing the same solution
several times. Outlined is a search tree which is traversed depth-first. For
the current search tree node, we store those changes of the candidate string
which are made in the node’s ancestors (including the node itself) and already
traversed siblings of these nodes. Hence, in the current node, when branching,
we omit to make changes to the candidate string that have already been tried
in one of the black nodes.

we can omit the choice of c ∈ Cp. Without loss of generality, we assume that
we started the algorithm with the initial candidate string s1. Given a search
tree node with candidate string s, we call a solution s∗ descendant of s if it
satisfies, for all 1 ≤ p ≤ L, either s1[p] = s[p] = s∗[p], or s1[p] 6= s[p] = s∗[p],
or s1[p] = s[p] 6= s∗[p]. In analogy to the proof of Theorem 5.1.6, we can, then,
show that a solution s∗ which is a descendant of a candidate string s can be
found in the part of the search tree rooted at the search tree node having s as
a candidate string. Using this observation, we can prove the following claim:
Assuming that we find a solution by changing a position p in the candidate
to a character c with c ∈ Cp, this solution is a descendant of a candidate
string corresponding to an already traversed search tree node, more precisely,
corresponding to an already traversed sibling of an ancestor of the current search
tree node. Therefore, this solution has already been found by the search tree.
Moreover, it can also be shown that, by this strategy, no solution is found more
than once. A detailed proof for these claims can be derived in a similar way as
in the proof of Theorem 5.1.6.

Note that there are at most k many characters in Cp for a position p, and,
therefore, this enhancement can be done within the time bounds given for Al-
gorithm CSd.

Selection of the candidate string to start with. In Algorithm CSd, we
initialized the candidate string s to s1. We are, however, free to choose the
initial candidate string from all si, i = 1, . . . , k. Since we search the solution in



5.1 Part I: Closest String and Related Problems 55

the neighborhood of the initial candidate string s, a good choice is an s which
is presumably close to the (unknown) solutions. A possible strategy is to select
the string with a minimum median distance to all other strings.

Improved problem kernel. In Subsection 5.1.1 we explained how to com-
pute a problem kernel of size O(kd). Taking into account the number of different
symbols occurring in a dirty column, we can improve this result in a heuris-
tic way as follows. For the ith column ~ci of a given instance, we denote the
number of different symbols occurring in ~ci by #(~ci). In analogy to the proof
of Lemma 5.1.4, we can easily show that the given instance cannot have a so-
lution if

∑L
i=1(#(~ci) − 1) > kd. Taking additionally into account the number

of occurrences of a symbol in a dirty column, even more refined versions of a
problem kernel rule are possible but we omit further details here.

5.1.2.3 Enhancements and Related Problems

Finding all solutions. So far, we assumed that Algorithm CSd is invoked
with a minimal distance parameter d or the minimal d is found. In some
situations, it may, however, be desirable for the user to know all solutions that
can be found with a non-minimal d. We already mentioned in Subsection 5.1.2.1
that Algorithm D, invoked with non-optimal d, does not necessarily compute
all solutions for a given instance. This is not possible in the claimed time
bound since there may be more than O(kd · dd) solutions, e.g., for an instance
containing only one input string of length L and allowing d = 1 mismatches. We
can, however, extend the given algorithm such that, even for non-minimal d,
it expands the set of found solutions to the set of all solutions. If we find
a solution after changing d′ positions in the initial candidate string, we are
allowed to change ∆d = d−d′ further positions. We can try all ways to change
∆d of those positions in which the solution still equals the initial candidate
string. A recursive strategy similar as the one in the main algorithm allows to
further prune this search space, e.g., we only have to consider changes that do
not increase the distance to one of the input strings to a value larger than d.
The upper bound for the number of branching subcases is L, yielding a worst-
case time bound of O(L∆d|Σ∆d|) for the expansion of a solution. In practice, we
will often find the solutions with a small value of ∆d. Therefore, for finding all
solutions, our strategy of “expanding” the solutions of Algorithm D will still
be superior to a brute-force check of all strings of length L in O(|Σ|L · kL) time.

Solving the d-Mismatch problem. Let si,p,L denote the length-L substring
of a given string si starting at position p, i.e., si,p,L = si[p]si[p+1] . . . si[p+L−1].
Then, given strings s1, s2, . . . , sk of length n and non-negative integers k and L,
the d-Mismatch problem is the question of whether there is a string s of
length L and a position p with 1 ≤ p ≤ n − L + 1, such that dH(s, si,p,L) ≤ d

for all i = 1, . . . , k. For n = L, this problem is equivalent to Closest String.



56 Consensus of Sequences

Stojanovic et al. [188, 189] give a linear-time algorithm for the 1-mismatch
problem and report about its use in practice. For constant d > 1, they explicitly
ask for a polynomial-time algorithm.

We can solve d-Mismatch using Algorithm CSd in linear time for constant d.
A trivial solution is to invoke the algorithm for each of the n − L + 1 possible
positions in the n × k matrix which is induced by the input. This yields a
worst-case running time of O(n · (kL+kd ·dd)), i.e., a quadratic4 running time
for constant d. Improving this, we achieve a linear running time for constant d

as follows. We use the problem kernel of size kd for Closest String as given
in Lemma 5.1.4. Considering only the first L columns of the n × k matrix,
we can, in O(kL) time, build a FIFO queue of dirty columns. We update this
queue in O(k) time when shifting the window of L consecutive columns under
consideration from position p (containing columns p to p+L−1) to position p+1

(containing columns p + 1 to p + L), p = 1, . . . , n − L. (1) If column p is dirty,
we delete it from the front end of the queue. (2) If the “new” column p + L is
dirty, we append it to the back end of the queue.

Thus, we can maintain the queue of dirty columns, at each position taking only
O(k) time. After a one-position-shift in the n × k matrix, Algorithm CSd is
invoked on the columns in the queue only if the queue contains at most kd

columns. The described strategy yields the following result.

Theorem 5.1.7. d-Mismatch is solvable in O(kL+(n−L)kd ·dd) time which
is O(n · k) for constant d.

Solving the Distinguishing String Selection (DSS) problem. Follow-
ing Lanctot et al. [124], in this problem, we are given “bad” strings s1, . . . , sk1

,
“good” strings s′1, . . . , s

′
k2

all of same length L, and non-negative integers d1,
d2. We are looking for a solution string s that is close to the bad strings, i.e.,

max
i=1,...,k1

dH(s, si) ≤ d1,

and far away from the good strings, i.e.,

min
j=1,...,k2

dH(s, s′j) ≥ L − d2.
5

We follow Deng et al. [56] in the sense that we tell apart Distinguishing Sub-
string Selection (DSSS) (where the input strings may differ in lengths) and
the special case DSS.6 This distinction is not made by Lanctot et al. [124], who

4Note that the input size is nk and that L ≤ n.
5This terminology of “good” and “bad” introduced by Lanctot et al. [124] has its motivation

in the application scenario of designing genetic markers in order to distinguish the sequences
of harmful bacteria (to which the markers should bind) from human sequences (to which the
markers should not bind).

6Actually, according to Deng et al. in Distinguishing Substring Selection only the
“bad” strings do have varying lengths, the “good” strings as well as the goal string all being
of length exactly L, see [56] for details.



5.1 Part I: Closest String and Related Problems 57

give a polynomial-time factor-2 approximation algorithm for the more general
DSSS problem. We can adapt Algorithm CSd for Closest String to solve
DSS.

We start with an observation similar to the one made in Lemma 5.1.5.

Lemma 5.1.8. Given sets of strings S1 = {s1, . . . , sk1
} and S2 = {s′1, . . . , s

′
k2

},
and positive integers d1 and d2. If there are i ∈ {1, . . . , k1} and j ∈ {1, . . . , k2}

with dH(si, s
′
j) < L − (d1 + d2), then there is no string s satisfying both

maxi=1,...,k1
dH(s, si) ≤ d1 and minj=1,...,k2

dH(s, s′j) ≥ L − d2.

Proof. Assume that there are strings s, si, s
′
j such that (1) s is close to si, i.e.,

dH(s, si) ≤ d1, (2) s is far away from s′j, i.e., dH(s, s′j) ≥ L−d2, and (3) si and s′j
satisfy the lemma’s premise, i.e., dH(si, s

′
j) < L − d1 − d2. Since the Hamming

distance satisfies the triangle inequality, we know that dH(s, s′j) ≤ dH(s, si) +

dH(si, s
′
j). Together with assumptions (1) and (3) this yields dH(si, s

′
j) < L−d2.

This, however, contradicts assumption (2) and shows that there are no s, si, s
′
j

that meet all three assumptions at the same time.

In what follows, we describe how to modify Algorithm CSd in order to solve
DSS. Using Lemma 5.1.8, we can detect instances that cannot have a solution,
i.e., instances where a bad and a good string have Hamming distance less than
L − (d1 + d2). For this reason, we can extend instruction (Case 1) in Algo-
rithm CSd by returning not only when dH(s, si) > d1+∆d1 for the candidate s

and a bad string si but also when dH(s, s′j) < L−(d2+∆d1) for a good string s′j.

Of course, a solution in instruction (Case 2) is now found, when the new goal
is met, i.e., maxi=1,...,k1

dH(s, si) ≤ d1 and minj=1,...,k2
dH(s, s′j) ≥ L − d2.

Also instruction (Case 3) has to be extended. As long as the branching shown
in (Case 3) applies, we still use it: If there is a bad string si which our candidate
s is too far away from, i.e., dH(s, si) > d1, we branch on d1 + 1 many positions
in which s and si differ.

When the candidate s satisfies dH(s, si) ≤ d1 for all i = 1, . . . , k1 but it is too
close to one of the good strings s′j, i.e., dH(s, s′j) < L − d2, we introduce a new
branching. We have to increase dH(s, s′j) by changing in s a position p with
s[p] = s′j[p]. Since a solution s⋆ can have at most d2 many positions p with
s⋆[p] = sj[p] it is sufficient to branch on d2 + 1 positions with s[p] = s′j[p].
We do, however, not know to which character s[p] should be set. Trying all
characters in this situation gives us an upper bound of (d2 + 1) · |Σ − 1| for the
subcases to branch into.

Regarding the search tree size, we now have, in every search tree node, one of
two possible branchings: In one case, we branch into at most d1+1 subcases as
in Algorithm CSd. In the second new case, we branch into at most (d2+1)|Σ−1|



58 Consensus of Sequences

subcases. The search tree height is limited by d1. Therefore, the search tree
size is at most (max(d1 + 1, (d2 + 1)|Σ − 1|))d1 .

This yields the following result.

Theorem 5.1.9. DSS is solvable in O((k1 + k2)L · (max(d1 + 1, (d2 + 1)(|Σ| −

1)))d1) time.

By way of contrast, note that very recently parameterized hardness results were
obtained for Distinguishing Substring Selection [83].

5.1.3 Constant Number of Input Strings

In this section, we show that Closest String is solvable in linear time for a
bounded number k of input strings by using integer linear programming [145,
176]. There is a famous result of H. W. Lenstra [125]7 that applies to fixed-
parameter algorithms (also see [112, 121] for more details). Lenstra’s result
basically says that integer linear programs (ILP’s for short) with a constant
number of variables can be solved in linear time. More precisely, with Kan-
nan’s [112] improvements we have the following.

Theorem 5.1.10 (Lenstra). The integer programming feasibility problem can
be solved with O(p9p/2L) arithmetic operations with integers of O(p2pL) bits in
size, where p is the number of ILP variables and L is the number of bits in the
input.

Note that the fixed-parameter result also needs space exponential in the pa-
rameter p.

The goal is to give an ILP formulation for Closest String such that the
number of variables solely depends on the parameter value k, the number of
input strings. The key to this lies in the notion of column types.

Example 5.1.11. For k = 3, the set of all possible column types for a Closest
String instance consists of

(a, a, a)t, (a, a, b)t, (a, b, a)t, (b, a, a)t, (a, b, c)t.

Generally, the number of column types for k strings depends only on k (namely,
it is given by the Bell number B(k) ≤ k!, cf. [156]). Using the column types,
Closest String can be formulated as an ILP having only B(k) · k variables.
Let the underlying alphabet be Σ. The ILP can be formulated as follows. Since

7It won the Fulkerson Prize 1985 as an outstanding paper in the area of discrete mathe-
matics.



5.1 Part I: Closest String and Related Problems 59

we may assume that the instance is normalized (Lemma 5.1.2), every column
contains at least one occurrence of symbol a. The ILP uses B(k) · k variables
xt,ϕ, where t denotes a column type and ϕ ∈ Σ. The value of xt,ϕ denotes
the number of columns of column type t whose corresponding character in the
desired solution string of Closest String is set to ϕ. Thus, the ILP seeks to
minimize

max
1≤i≤k

∑

t

∑

ϕ∈(Σ−{ϕt,i})

xt,ϕ,

where ϕt,i denotes the alphabet symbol at the ith entry of column type t.
The following two constraints have to be fulfilled when minimizing the above
function.

1. All variables xt,ϕ have to be non-negative integers.

2. Let #t denote the number of columns of type t in the input instance
(taking into account isomorphism as described before). Then,

∑

ϕ∈Σ

xt,ϕ = #t

for every column type t.

Actually, Theorem 5.1.10 refers to the integer linear programming feasibility
problem and, moreover, a Closest String instance also gives the maximum
distance d allowed. Thus, we may obtain the following “feasibility formulation”
where the above two constraints remain unchanged but the goal function that
had to be minimized now translates into a third set of constraints, namely:

∑

t

∑

ϕ∈(Σ−{ϕt,i})

xt,ϕ ≤ d

for every string i, 1 ≤ i ≤ k. Altogether, this yields fixed-parameter tractability
for Closest String with respect to parameter k. Note, however, that the
combinatorial explosion in k is huge and this approach appears to be impractical
for large k.

The above ILP approach, however, at least serves as a tool to help deciding
whether a problem is fixed-parameter tractable and maybe later it is possible
to come up with a more efficient, direct approach to solve the given problem.
As to Closest String, the ILP approach is the only one known to us that
yields fixed-parameter tractability with respect to parameter k. In [92], a direct
combinatorial approach (avoiding ILP’s) was given for k = 3 but already k = 4

remained open due to the enormous combinatorial complexity. Finally, note
that there is an alternative ILP formulation for Closest String given by
Ben-Dor et al. [19], where the variables have only binary values but the number
of variables is |Σ| · L (for alphabet Σ and string length L). Hence, this ILP
formulation does not imply the fixed-parameter tractability of Closest String



60 Consensus of Sequences

with respect to parameter k. In conclusion, it remains open to give further
examples besides Closest String where the described ILP approach turns out
to be fruitful. More generally, it would be interesting to see more connections
between fixed-parameter algorithms and integer linear programming.

5.1.4 Empirical Results

We report about tests on random instances which were generated as follows.
Given as parameters the string length L, the number of strings k, the distance
parameter d and the alphabet size |Σ|, we created a random instance by first
computing a random string s of length L. Then, we computed k strings differing
from s in d positions, each time switching d randomly chosen positions in s.
The displayed results are average results taken from a range of 25 such random
instances. We used alphabet size |Σ| = 4 if not indicated otherwise.

5.1.4.1 Solving Closest String with Algorithm CSd

We implemented Algorithm CSd using the programming language C, including
the heuristic improvements discussed in Subsection 5.1.2.2 and also with the op-
tional extension to solve d-Mismatch and DSS as shown in Subsection 5.1.2.3.
The following tests were performed on a Linux PC with 750 MHz processor and
192 MB main memory.

For the tests, we used the algorithm that scans the whole search tree for possible
solutions, i.e., it does not stop when the first solution is found. Reasons are
that one could want to find as many solutions as possible, and that, in this way,
the running time is not affected by the location of a solution in the search tree.

Length/mismatch ratio. Our experiments with randomly generated data
show that not only the number of mismatches but, moreover, the ratio of string
length to the number of mismatches has a major impact on the difficulty of
solving the problem. The results from Fig. 5.3(a) show that an increasing
length L and a thereby increasing L/d ratio for a fixed value of d, can, in a
limited range, significantly decrease the running time of the problem. This can
be explained as follows. Due to the random generation of the input, with a
larger L the mismatches in the strings are more distributed over the columns
than for a smaller L. Therefore, with large L/d ratio, the number of search
tree branches for which solutions seem possible will be smaller. In contrary,
we encountered large search tree sizes for a small L/d ratio (e.g., we found an
average search tree size of 40205 for L = 20, d = 10, k = 25 compared to 2733

for L = 30, d = 10, k = 25). At some point, of course, this decrease in running
time is outweighed by the linear time factor needed for the reduction to the
problem kernel.



5.1 Part I: Closest String and Related Problems 61

ru
n
n
in

g
ti

m
e

in
se

c

L/d ratio
2 10 20 30

100

10

1

0.1

0.01
d = 10

d = 15

d = 20

se
ar

ch
tr

ee
si

ze

distance parameter d
5 10 15 20

100

1010

1020

(d + 1)d

L = 2d L = 3d

L = 4d

(a) (b)

Figure 5.3: (a) Comparing, on a logarithmic scale, the running time of Al-
gorithm CSd on Closest String instances for differing length/mismatch ra-
tio L/d, |Σ| = 4. (b) Comparing, on a logarithmic scale, search tree sizes of
Algorithm CSd with the theoretical upper bound of (d + 1)d. Each line dis-
plays results for one fixed L/d ratio.

Thus, when considering the values of mismatches d for which we can process
Closest String instances in practice, we also have to take the L/d ratio into
account. For instance, for a “hard” ratio of 2, i.e., the string length is twice
the number of mismatches, we solved instances with d = 15 (L = 30, k = 50)
in 200 seconds, and for an “easier” ratio of 3 we solved instances with d = 20

(L = 60, k = 50) in 98 seconds.

Number of input strings. When considering the running times for a vari-
able number of input strings (and fixed values of L, d), we observe two com-
peting factors. On the one hand, an increase in the number of strings means
an increase in the linear time factor which has to be spent in every node of the
search tree. On the other hand, a growing number of strings means a growing
number of constraints on the solutions and, therefore, a decreasing size of the
search tree. Our experience with random data sets shows a high running time
for small numbers of strings, decreasing with growing number of strings up to
some turning point. From then on running time increases again since the linear
factor spent in each search tree node becomes crucial. An example: for L = 24,
d = 12, we needed 4.8 seconds for k = 10 (search tree size 1305137), 2.7 seconds
for k = 100 (search tree size 164503), and 6.8 seconds for k = 400 (search tree
size 55602).

Search tree size. In Fig. 5.3(b), we compare the size of the search tree for
given instances with the theoretical upper bound of (d + 1)d. Note that the
actual search trees are by far smaller than the worst-case bound predicts.



62 Consensus of Sequences

ru
n
n
in

g
ti

m
e

in
se

c

alphabet size
2 4 10 15 20 25

40

30

20

10
5

L = 45, d = 15

L = 24, d = 12 ru
n
n
in

g
ti

m
e

in
se

c

number of input strings k
3 10 15 20

2

1.5

1

0.5
(1)

(2)

(a) (b)

Figure 5.4: (a) Comparing the running times of Algorithm CSd for increasing
alphabet size (k = 50). (b) Comparing the running times of a heuristic ILP
solver using a branch-and-bound strategy for the ILP formulation given in [19]
(2) and the one given in this paper (1); we used random instances with |Σ| = 4,
L = 256 and d = 32.

Alphabet size. Fig. 5.4(a) shows examples of the influence of the alphabet
size onto the running time. A very small alphabet size turns out to be harder
than a large alphabet size. The reason is the way in which our input instances
were generated. With larger alphabet size, the random mismatches that are
implanted into the original string will be chosen from a larger set of alphabet
symbols and will, therefore, be more “obvious” for the algorithm.

5.1.4.2 Solving Closest String with ILPs

We developed a C++ program using the GNU GLPK library to test the per-
formance of a heuristic ILP solver using a branch-and-bound strategy on ILPs
generated from Closest String instances. This strategy guarantees to find
an optimal solution but it is heuristic in the sense that it does not give guar-
antees on the worst-case running time. For our tests, we randomly generated
random Closest String instances and translated them both to the ILP for-
mulation given in [19] and to the ILP formulation presented in this section.
In Figure 5.4(b), we display the running times of the GNU GLPK solver on
instances with L = 256 and d = 32, measured on a SUN Blade workstation
with Ultrasparc IIe processor (500 MHz) and 512 MB main memory. It is no
surprise that the ILP formulation presented here turns out to be preferable in
case of a small number of long input strings.



5.1 Part I: Closest String and Related Problems 63

ATCTA AGAA T
ATCTACAG AA
ATCTACAGAA T
ATCTA AGA AT
ATCTA AGAA T

ATCTACAGAAAT

TAGATGTCTTTA

T G
T C
G

T G
T G

...GGTGAG

...GGTGGA

...GGCGAG

...GGCGAG

...GGCAAG

TGAATGC...
GGATTGT...
GGAATGC...
GGAATGC...
GGAATGC...

closest string:

primer candidate:

Figure 5.5: Strategy for designing primer candidates.

5.1.4.3 Applications

Primer design. Primers are short sequences of nucleotides which are designed
such that the primer hybridizes to a given DNA sequence (or, in our case, to
all of a given set of DNA sequences) in order to provide a start point for DNA
strand synthesis by PCR (polymerase chain reaction). The hybridization of
primers depends on complex thermodynamic rules, but is largely determined
by the number of “mismatching” positions which should be as small as possible.
Designing candidates for primers is a task often done by biological experts using
the output of multiple alignment programs which is evaluated by hand. This
task can be automatized in the same way as proposed by Stojanovic et al. [189]
who used it for searching regulatory elements. Here, we also propose it for
searching primers of length L which are required to bind to each of a set of
homologous sequences with at most d mismatches. This strategy, depicted in
Fig. 5.5, is outlined as follows.

1. Compute an alignment of these sequences [15].

2. “Slide” a length L window over all the aligned strings, solving a Closest
String instance for every window position.

Using our algorithm for d-Mismatch, (2) can be done in O(kL + (n − L)kd ·
dd) time (i.e., linear time for fixed d) where n is the length of the alignment.

On the one hand, determining the quality of a primer only based on the num-
ber of mismatching positions is a crude simplification of biological complexity.
On the other hand, using our algorithm, we can also incorporate additional
properties that are desirable for primers. We can adjust the search to find
primers without mismatches in initial positions or by preferring solutions with
long common substrings as proposed in [167]. As additional filtering, we can
select solutions that are favorable in terms of melting temperature.



64 Consensus of Sequences

In an example experiment, we were faced with a slightly more general set-
ting than described above. Given homologous sequences of parasite DNA as
well as host DNA, the goal was to design primers that exclusively bind to the
parasite sequences but not to the host sequences. The given data provided
by Michael Weiss (group for Systematic Biology and Mycology, Tübingen) in
this example were an alignment of length 715 with five sequences of parasite
DNA and four sequences of host DNA. The parasite DNA was taken from some
Basidiomycetes species which grow parasitically on plants, e.g., Christiansenia
pallida and Tremella exigua. We approached the problem by solving a combina-
tion of d-Mismatch and DSS on the parasite sequences as set of good strings
and host sequences as set of bad strings: We slided a length-L window over all
aligned strings in the same way as was explained for d-Mismatch in Subsec-
tion 5.1.2.3, solving for every window position a DSS instance. Since we were
given an alignment of the sequences, it was sufficient to solve Distinguishing
String Selection instances instead of a Distinguishing Substring Se-
lection instance. The desired length L of primers was between 15 to 20. Since
the primers should have as few mismatches as possible, we considered here only
d1 ≤ 3. E.g., with L = 15, d1 = 2, the minimum value for which we found a
primer candidate was d2 = 7. For L = 25, we found a candidate with d1 = 2

and d2 = 18, or with d1 = 3 and d2 = 15. The advantage of the algorithm
in this application is that it quickly (all runs were done in less than a second)
finds all positions where primers are possible (and also finds if certain values of
L, d1 and d2 do no allow a solution), whereas the human expert needs a lot of
time and may find only obvious candidates.

Motif search. Another application of Closest String algorithms can be
found in motif search (for more details and references also refer to Section 5.2).
A motif is a string that occurs approximately preserved, i.e., with changes in
at most d positions for a fixed integer d, as a substring in several DNA se-
quences. Motifs are candidates for substrings of non-coding parts of the DNA
sequence that have functions related to, e.g., gene expression. A formal defi-
nition of the motif search problem leads to the Closest Substring problem.
This problem has recently been addressed by a number of heuristic approaches,
e.g. [35, 165]. Algorithms as [35] or [165] compute a candidate set of substrings,
every of these substrings in a different given string, without actually checking
whether this candidate set is (or can be extended to) a set of substrings, one
in each given string, that satisfies the Closest String property. Here, the
Closest String algorithms can be used to perform this check. The com-
putation of the candidate set is, as a rule, much more time consuming than
the Closest String check and, therefore, the additional time needed by the
Closest String algorithm for practically relevant values like L < 50 and small
values of d can easily be tolerated [85].



5.2 Part II: Motif Search Problems 65

5.2 Part II: Motif Search Problems

Motif search problems are of central importance for sequence analysis in com-
putational molecular biology. These problems have applications in fields such
as genetic drug target identification or signal finding (see [35, 124, 128, 129, 165]
and the references cited therein for more details and further applications). Two
core problems in this context are Closest Substring [129] (we recall here its
definition already given in the introduction of this chapter) and Consensus
Patterns [128]:

Input: Strings s1, s2, . . . , sk over alphabet Σ and non-negative in-
tegers d and L.

Question in case of Closest Substring: Is there a string s

of length L, and for every i = 1, . . . , k, a length-L substring s′i of si

such that, for all i = 1, . . . , k, dH(s, s′i) ≤ d?

Question in case of Consensus Patterns: Is there a string s

of length L, and, for every i = 1, . . . , k, a length-L substring s′i of si

such that
∑k

i=1 dH(s, s′i) ≤ d?

What is known regarding Closest Substring has already been discussed in
the introduction of this chapter, results regarding Consensus Patterns are
as follows:

1. Consensus Patterns is NP-complete and remains so for the restriction
to a binary alphabet [128].

2. Consensus Patterns admits a PTAS [128], where the objective function
is to minimize d, i.e., the maximum Hamming distance of the string s to
one of the given strings.

3. The known PTAS for Consensus Patterns is not an EPTAS, and
whether an EPTAS is possible currently remains open.

Algorithms applied in practice to solve motif search problems closely related
to Closest Substring and Consensus Patterns use heuristics [35, 165] or
enumerative approaches [172, 27].

The key distinguishing point between Closest Substring and Consensus
Patterns lies in the definition of the distance measure d between the solution
string s and the substrings of the k input strings. Whereas Closest Substring
uses a “maximum distance” metric, Consensus Patterns uses the “sum of
distances” metric. This is of particular importance when discussing values of



66 Consensus of Sequences

parameter d occurring in practice. Whereas it makes good sense for many
applications to assume that d is a fairly small number in case of Closest
Substring, this is much less reasonable in the case of Consensus Patterns.
This will be of some importance when discussing our result for Consensus
Patterns.

Here, we investigate the parameterized complexity of Closest Substring and
Consensus Patterns. Unfortunately, our main results are negative ones: we
show that Closest Substring and Consensus Patterns are W[1]-hard with
respect to the number k of input strings, even in case of a binary alphabet.

1. For unbounded alphabet size, we show that Closest Substring is W[1]-
hard for the combined parameters L, d, and k (Subsection 5.2.2).

2. For binary alphabet size, we show that Closest Substring is W[1]-hard
for the combined parameters L, d, and k (Subsection 5.2.3).

3. We show that these results can be extended to Consensus Patterns
(Subsection 5.2.4).

In the case of constant alphabet size, the parameterized complexity of the prob-
lems remains open when parameterized by d and k together, or by d alone.
Note that in the case of Consensus Patterns our hardness result gains par-
ticular importance because here the distance parameter d usually is not small,
whereas assuming that k is small makes sense. Until now, it was known only
that if one additionally considers the substring length L as a parameter, then
running times exponential in L can be achieved [27, 67, 172]. An overview on
the old and new parameterized complexity results for Closest Substring and
Consensus Patterns is given in Table 5.2.8

We achieve our results by giving parameterized many-one reductions from the
W[1]-complete Clique problem to the respective problems. It is important
here to note that parameterized reductions are much more fine-grained than
conventional polynomial-time reductions used in NP-completeness proofs since
parameterized reductions have to take care of the parameters. Establishing that
Closest Substring and Consensus Patterns are W[1]-hard with respect
to the parameter k requires significantly more technical effort than the already
known demonstrations of NP-completeness [73].

Notably, based on the constructions presented in this section, the slightly more
general Distinguishing Substring Selection problem [56, 124] (already
mentioned in Subsection 5.1.2.3) was shown to be W[1]-hard also with respect
to the distance parameters [83]. In particular, this implies that the recently
presented PTAS for Distinguishing Substring Selection [56] cannot be
improved into an EPTAS unless FPT =W[1] (see [83] and [41, 69] for details).

8Note that for unbounded alphabet size similar results were independently obtained by
Evans et al. [66].



5.2 Part II: Motif Search Problems 67

parameter constant size alphabet unbounded alphabet

d (open) W[1]-hard(∗)

k W[1]-hard(∗) W[1]-hard(∗)

d, k (open) W[1]-hard(∗)

L FPT W[1]-hard(∗)

d, k, L FPT W[1]-hard(∗)

Table 5.2: Overview on the parameterized complexity of Closest Substring
and Consensus Patterns with respect to different parameterizations, where k

is the number of given strings, L is the length of the substrings we search for,
and d is the Hamming distance allowed. Results from this work are marked
by (∗). The FPT results for constant size alphabet can be achieved by enu-
merating all length L strings over Σ.

Due to this result, it is to be expected that our constructions might be useful
in further hardness proofs concerning string problems.

The remainder of this section is organized as follows. In Subsection 5.2.1, we
give a brief overview on related computational biology results. Afterwards, in
Subsection 5.2.2, we present a parameterized reduction of Clique to Closest
Substring in case of unbounded input alphabet size. Then, in Subsection 5.2.3,
this is specialized to the case of binary input alphabet. Finally, Subsection 5.2.4
gives similar constructions and results for Consensus Patterns.

5.2.1 Motivation and Previous Results

Applications for the consensus word analysis of DNA, RNA, or protein se-
quences include locating binding sites and finding conserved regions in un-
aligned sequences for genetic drug target identification, for designing genetic
probes, and for universal PCR primer design. These problems can be regarded
as various generalizations of the common substring problem, allowing errors
(see [124, 128, 129] and references there). This leads to Closest Substring
and Consensus Patterns, where errors are modeled by the (Hamming) dis-
tance parameter d.

There is a straightforward factor-2 approximation algorithm for Closest Sub-
string, sketched as follows: With a generalization of Lemma 5.1.5 we conclude
that, if a solution for the given instance exists, then there is a length-L sub-
string s ′

i of input string si for all i = 1, . . . , k such that the pairwise Hamming
distance between every two substrings is at most 2d. Therefore, we can test,
for every length-L substring s ′

1 of the first input string, whether we find such
a length-L substring s ′

i of input string si for all i = 1, . . . , k. If this holds for
one substring s ′

1 of s1 then s ′
1 yields a factor-2 approximation. If, otherwise, we

cannot find such a substring s ′
1 then the input instance cannot have a solution.



68 Consensus of Sequences

The first better-than-2 approximation with factor 2 − 2/(2|Σ|+ 1) was given by
Li et al. [127]. As mentioned at the begin of this section, there are PTAS’s for
Consensus Patterns [128] as well as for Closest Substring [129].

Concerning exact (parameterized) algorithms, we only briefly mention that, e.g.,
Sagot [172] studies motif discovery by solving Closest Substring, Evans and
Wareham [67] give FPT algorithms for the same problem, and Blanchette et
al. [27] developed a so-called phylogenetic footprinting method for a slightly
more general version of Consensus Patterns. All these results, however,
make essential use of the parameter “substring length” L and the running times
show exponential behavior with respect to L. To circumvent the computational
limitations for larger values of L, many heuristics were proposed, e.g., Pevzner
and Sze [165] present algorithms called WINNOWER (with respect to Clos-
est Substring) and SP-STAR (with respect to Consensus Patterns), and
Buhler and Tompa [35] use random projections to find closest substrings. Our
analysis makes a first step towards showing that, for exact solutions, we have to
include L in the exponential growth; namely, we show that it is highly unlikely
to find algorithms with a running time exponential only in k.

5.2.2 Closest Substring: Unbounded Alphabet

We first describe a reduction from the W[1]-hard Clique problem to Closest
Substring which is a parameterized m-reduction with respect to the aggregate
parameter (L, d, k) in case of unbounded alphabet size.

5.2.2.1 Reduction from Clique to Closest Substring

A Clique instance is given by an undirected graph G = (V, E), with a set V =

{v1, v2, . . . , vn} of n vertices, a set E of m edges, and a positive integer k denoting
the desired clique size. We describe how to generate a set S of

(

k
2

)

strings such
that G has a clique of size k iff there is a string s of length L := k + 1 such
that every si ∈ S has a substring s′i of length L with dH(s, s′i) ≤ d := k − 2. If
a string si ∈ S has a substring s′i of length L with dH(s, s′i) ≤ d, we call s′i a
match. We assume k > 2 because k = 1, 2 are trivial cases.

Alphabet. The alphabet of the produced instance is given by the disjoint
union of the following sets:

• {σi | vi ∈ V }, i.e., an alphabet symbol for every vertex of the input graph;
we call them encoding symbols;

• {ϕj | j = 1, . . . ,
(

k
2

)

}, i.e., a unique symbol for every of the
(

k
2

)

produced
strings; we call them string identification symbols;

• {#} which we call the synchronizing symbol.



5.2 Part II: Motif Search Problems 69

This makes a total of n +
(

k
2

)

+ 1 alphabet symbols.

Choice strings. We generate a set of
(

k
2

)

choice strings Sc = {c1,2, . . . , c1,k,
c2,3, c2,4, . . . , ck−1,k} and we assume that the strings in Sc are ordered as shown.
Every choice string will encode the whole graph; it consists of m concatenated
strings, each of length k + 1, called blocks; by this, we have one block for every
edge of the graph. The blocks will be separated by barriers, which are length k

strings consisting of k identification symbols corresponding to the respective
string. A choice string ci,j, which, according to the given order, is the i′th
choice string in Sc, is given by

ci,j := 〈block(i, j, e1)〉 (ϕi′)
k 〈block(i, j, e2)〉 (ϕi′)

k . . . (ϕi′)
k 〈block(i, j, em)〉,

where e1, e2, . . . , em are the edges of G and 〈block()〉 will be defined below. The
solution string s will have length k+1, which is exactly the length of one block.

Block in a choice string. Every block is a string of length k + 1 and it
encodes an edge of the input graph. Every choice string contains a block for
every edge of the input graph; different choice strings, however, encode the edges
in different positions of their blocks: For a block in choice string ci,j, positions i

and j are called active and these positions encode the edge. Let e be the edge
to be encoded and let e connect vertices vr and vs, 1 ≤ r < s ≤ n. Then, the
ith position of the block is σr in order to encode vr and the jth position is σs

in order to encode vs. The last position of a block is set to the synchronizing
symbol #. Let ci,j be the i′th choice string in Sc; then, all remaining positions
in the block are set to ci,j’s identification symbol ϕi′ . Thus, the block is given
by

〈block(i, j, (vr, vs))〉 := (ϕi′)
i−1σr (ϕi′)

j−i−1 σs (ϕi′)
k−j #.

Values for L and d. We set L := k + 1 and d := k − 2.

Example 5.2.1. Let G = (V, E) be an undirected graph with V = {v1, v2, v3, v4}

and E = {(v1, v3), (v1, v4), (v2, v3), (v3, v4)} (as shown in Fig. 5.6(a)) and let
k = 3. Using G, we exhibit the above construction of

(

k
2

)

= 3 choice strings c1,
c2, and c3 (as shown in Fig. 5.6(b)). Note that, in the described construction,
the strings were called c1,2, c1,3, and c2,3 but, here, for the ease of presentation,
we call them c1, c2, and c3. We claim that (which will be proven in the following
subsection) there exists a clique of size k in G iff there is a string s of length
L :=

(

k
2

)

+1 = 4 such that, for i = 1, 2, 3, each ci contains a length 4 substring si

with dH(ci, si) ≤ d := k − 2 = 1.

The choice strings are over an alphabet consisting of {σ1, σ2, σ3, σ4} (the en-
coding symbols, i.e., one symbol for every node of G), {ϕ1, ϕ2, ϕ3} (the string
identification symbols), and {#} (the synchronizing symbol). Every string ci,
i = 1, 2, 3 consists of four blocks, each of which encodes an edge of the graph.
Every block is of length

(

k
2

)

+ 1 = 4 and has # at its last position. The blocks
are separated by barriers consisting of (ϕi)

k = (ϕi)
3.



70 Consensus of Sequences

v1 v2

v3 v4

(a)

c1 = ϕ1 ϕ1 ϕ1 ϕ1# # # #ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1σ1 σ3 σ1 σ4 σ2 σ3 σ3 σ4

c2 = ϕ2 ϕ2 ϕ2 ϕ2# # # #ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2 ϕ2σ1 σ3 σ1 σ4 σ2 σ3 σ3 σ4

c3 = ϕ3 ϕ3 ϕ3 ϕ3# # # #ϕ3 ϕ3 ϕ3 ϕ3 ϕ3 ϕ3 ϕ3 ϕ3 ϕ3σ1 σ3 σ1 σ4 σ2 σ3 σ3 σ4

solution s = σ1 σ3 σ4 #

edge (v1, v3) edge (v1, v4) edge (v2, v3) edge (v3, v4)barrier barrier barrier

(b)

Figure 5.6: Example for the reduction from a Clique instance G with k =

3 (shown in (a)) to a Closest Substring instance with bounded alphabet
(shown in (b)) as explained in Example 5.2.1. In (b), we display the constructed
strings c1, c2, and c3 (the contained blocks are highlighted by bold boxes) and
the solution string s that is found since G has a clique of size k = 3; s is a string
of length k + 1 = 4 such that c1, c2, and c3 have length 4 substrings (indicated
by dashed boxes) that have Hamming distance at most k − 2 = 1 to s.

In string c1, positions 1 and 2 within a block are active and encode the corre-
sponding edge (in c2 positions 1 and 3, and, in c3 positions 2 and 3 within a
block are active). All of the first k positions of a block in string ci, i = 1, 2, 3

which are not active, contain the ϕi symbol. Thus, e.g., the block in c1 en-
coding the edge (v1, v3) is given by σ1σ3ϕ1#. Further details can be found in
Fig. 5.6.

The closest substring that corresponds to the k-clique in G consisting of ver-
tices v1, v3, and v4 is σ1σ3σ4#. The corresponding matches are σ1σ3ϕ1# in c1

(encoding the edge (v1, v3)), σ1ϕ2σ4# in c2 (encoding the edge (v1, v4)), and
ϕ3σ3σ4# in c3 (encoding the edge (v3, v4)).



5.2 Part II: Motif Search Problems 71

5.2.2.2 Correctness of the Reduction

To prove the correctness of the proposed reduction, we have to show an equiv-
alence, consisting of two directions. The easier one is to see that a k-clique
implies a closest substring fulfilling the given requirements.

Proposition 5.2.2. For a graph with a k-clique, the construction in Subsec-
tion 5.2.2.1 produces an instance of Closest Substring which has a solution,
i.e., there is a string s of length L such that every ci,j ∈ Sc has a substring si,j

with dH(s, si,j) ≤ d.

Proof. Let the input graph have a clique of size k. Let h1, h2, . . . , hk denote
the indices of the clique’s vertices, 1 ≤ h1 < h2 < . . . < hk ≤ n. Then, we
claim that a solution for the produced Closest Substring instance is

s := σh1
σh2

. . . σhk
#.

Consider choice string ci,j, 1 ≤ i < j ≤ k. As the vertices vh1
, vh2

, . . . , vhk
form

a clique, we have an edge connecting vhi
and vhj

. Choice string ci,j contains a
block si,j := 〈block(i, j, (vhi

, vhj
))〉 encoding this edge:

si,j := (ϕi′)
i−1 σhi

(ϕi′)
j−i−1 σhj

(ϕi′)
k−j#,

where i′ is the number (according to the given order) of the choice string in Sc.
We have dH(s, si,j) = k − 2, and we can find such a block for every ci,j, 1 ≤ i <

j ≤ k.

For the reverse direction, we show in Proposition 5.2.5 that a solution in the
produced Closest Substring instance implies a k-clique in the input graph.
For this, we need the following two lemmas, which show that a solution to the
instance constructed in Subsection 5.2.2.1 has encoding symbols at its first k

positions and the synchronizing symbol # at its last position.

Lemma 5.2.3. A closest substring s contains at least two encoding symbols
and at least one synchronization symbol.

Proof. Let s be a solution of the Closest Substring instance produced by the
construction in Subsection 5.2.2.1. Let Aϕ(s) be the set of string identification
symbols from {ϕi | 1 ≤ i ≤

(

k
2

)

} that occur in s. Let Sϕ(s) ⊆ Sc be the subset
of choice strings that do not contain a symbol from Aϕ(s).

Since s is of length k+1, we have |Aϕ(s)| ≤ k+1. Therefore, for k ≥ 4, there are
at least

(

k
2

)

− (k + 1) choice strings in Sϕ(s). We show that with less than two
encoding symbols and no synchronizing symbol, we cannot find matches for s

(with maximally allowed Hamming distance d = k − 2) in the choice strings
of Sϕ(s). Observe that, in every choice string, because of the barriers, every
length k + 1 substring contains at most two encoding symbols and at most one



72 Consensus of Sequences

symbol #. Observe further that, taken a choice string from Sϕ(s), positions
with symbols from {ϕi | 1 ≤ i ≤

(

k
2

)

} cannot coincide with the corresponding
positions in s. Therefore, s has a match in such a string only if s has two
encoding symbols and one symbol # that all coincide with the corresponding
positions in the selected substring. This proves the claim for k ≥ 4. Regarding
k = 3, if |Aϕ(s)| < 3, then the above argument applies here, too. If, however,
|Aϕ(s)| = 3, a length 4 substring in every choice string has at least two positions
that do not coincide with the corresponding positions in s.

Based on Lemma 5.2.3, we can now exactly specify the numbers and positions
of the encoding and synchronizing symbols in the closest substring.

Lemma 5.2.4. A closest substring s contains encoding symbols at its first k po-
sitions and a symbol # at its last position.

Proof. Let n#(s) denote the number of symbols # in s, let nϕ(s) denote the
number of string identification symbols in s, and let nσ(s) denote the number
of encoding symbols in s. Let Sϕ(s) ⊆ Sc be the subset of choice strings whose
string identification symbol does not occur in s. In the following, we establish
a lower bound on the number of strings in Sϕ(s) and an upper bound on the
number of strings from Sϕ(s) in which we can find a match for s. Comparing
these bounds, we will show that, if n#(s) > 1, then there are choice strings
in Sϕ(s) in which we cannot find a match; we will conclude that n#(s) = 1.
Then, we will show that, if nσ(s) < k, then again there are strings in Sϕ(s)

without a match; we will conclude that nσ(s) = k.

Regarding the size of Sϕ(s), a lower bound on its size is |Sϕ(s)| ≥
(

k
2

)

− nϕ(s).
To explain the upper bound on the number of strings from Sϕ(s) in which we
can find a match for s, we recall that such matches must contain two encoding
symbols and one symbol # that all coincide with the corresponding positions
in s. On the one hand, the synchronizing symbol of a block must coincide
with a symbol # in s. On the other hand, in all blocks of a choice string, its
encoding symbols are in fixed positions relative to the block’s synchronizing
symbol, e.g., in choice string c1,2, the encoding symbols are located only at the
first and second position and # at the last position of a block in c1,2. For these
two reasons, one symbol # in s can provide matches in at most

(

nσ(s)
2

)

choice
strings from Sϕ(s). Consequently, n#(s) many symbols # in s can provide

matches in at most n#(s) ·
(

nσ(s)
2

)

choice strings from Sϕ(s).

Summarizing, we have at least
(

k
2

)

− nϕ(s) choice strings in Sϕ(s) and we can

find matches in at most n#(s) ·
(

nσ(s)
2

)

many of them. Thus, we find matches
for s in all choice strings only if

n#(s) ·
(

nσ(s)

2

)

≥
(

k

2

)

− nϕ(s). (5.1)

In order to show that s contains exactly one synchronizing symbol, we assume



5.2 Part II: Motif Search Problems 73

that n#(s) > 1 (we know that nϕ(s) ≥ 1 by Lemma 5.2.3) while k > 2, and
show that inequality 5.1 is violated.

We know that k + 1 = nσ(s) + nϕ(s) + n#(s) and, by Lemma 5.2.3, that

nσ(s) ≥ 2. Using these, we conclude, on the one hand, that n#(s) ·
(

nσ(s)
2

)

≤
n#(s) ·

(k+1−n#(s)

2

)

and, since n#(s) ≥ 2, that n#(s) ·
(k+1−n#(s)

2

)

≤ 2 ·
(

k−1
2

)

.

On the other hand, we have that
(

k
2

)

−nϕ(s) ≥
(

k
2

)

−(k−1−n#(s)) and, since

n#(s) ≥ 2,
(

k
2

)

− (k − 1 − n#(s)) ≥
(

k
2

)

− (k − 3). For k ≥ 3, however we have
(

k
2

)

− (k − 3) > 2 ·
(

k−1
2

)

. Thus,

n#(s) ·
(

nσ(s)
2

)

≤ n#(s) ·
(k+1−n#(s)

2

)

<
(

k
2

)

− (k − 1 − n#(s)) ≤
(

k
2

)

− nϕ(s),

i.e., there are choice strings in Sϕ(s) which contain no match for s, a contra-
diction. Since (Lemma 5.2.3) n#(s) ≥ 1, we conclude that n#(s) = 1.

In order to show that s contains exactly k encoding symbols, we assume that
nσ(s) < k while k > 2 and n#(s) = 1, and show that inequality 5.1 is violated.

Since k+1 = nσ(s)+nϕ(s)+n#(s) = nσ(s)+nϕ(s)+1, we have
(

k
2

)

−nϕ(s) =
(

k
2

)

− (k − nσ(s)) and, thus,
(

nσ(s)

2

)

<

(

k

2

)

− (k − nσ(s)) ≤
(

k

2

)

− nϕ(s),

i.e., again, some strings in Sϕ(s) have no match for s, a contradiction. Thus, on
the one hand, we have nσ(s) ≥ k, and, on the other hand, we have n#(s) = 1

and, therefore, nσ(s) ≤ k.

Note that, if an encoding symbol is located after the synchronizing symbol in s,
then, due to the barriers, it is not possible that both # and this encoding
symbol coincide with the respective positions in a choice string from Sϕ(s).
Therefore, symbol # is located at the last position of s.

Proposition 5.2.5. The first k characters of a closest substring correspond to
k vertices of a clique in the input graph.

Proof. By Lemma 5.2.4, a closest substring s has encoding symbols at its first
k positions and a synchronizing symbol at its last position. Consequently, the
blocks are the only possible matches of s in the choice string. Now, assume
that s = σh1

σh2
. . . σhk

# for h1, h2, . . . , hk ∈ {1, . . . , n}. Consider any two
hi, hj, 1 ≤ i < j ≤ k, and choice string ci,j. Recall that in this choice string,
the blocks encode edges at their ith and jth position, they have # at their last
position, and all their other positions are set to a string identification symbol
unique for this choice string. Thus, we can only find a block that is a match if
there is a block with σhi

at its ith position and σhj
at its jth position. We have

such a block only if there is an edge connecting vhi
and vhj

. Summarizing,
the closest substring s implies that there is an edge between every pair of
{vh1

, vh2
, . . . , vhk

}; these vertices form a k-clique in the input graph.



74 Consensus of Sequences

Propositions 5.2.2 and 5.2.5 establish the following hardness result. Note that
hardness for the combination of all three parameters also implies hardness for
each subset of the three.

Theorem 5.2.6. Closest Substring with unbounded alphabet is W[1]-hard
for every combination of the parameters L, d, and k.

5.2.3 Closest Substring: Binary Alphabet

We modify the reduction from Subsection 5.2.2 to achieve a Closest Substring
instance with binary alphabet proving a W[1]-hardness result also in this case.
In contrast to the previous construction, we cannot encode every vertex with
its own symbol and we cannot use a unique symbol for every produced string.
Also, we have to find new ways to “synchronize” the matches of our solution, a
task previously done by the synchronizing symbol #. To overcome these prob-
lems, we construct an additional “complement string” for the input instance
and we lengthen the blocks in the produced choice strings considerably.

5.2.3.1 Reduction from Clique to Closest Substring

Number strings. To encode integers between 1 and n, we introduce number
strings 〈number(pos)〉, which have length n and which have symbol “1” at
position pos and symbol “0” elsewhere: 0pos−1 1 0n−pos. In contrast to the
reduction from Subsection 5.2.2, now we use these number strings to encode
the vertices of a graph.

Choice strings. As in Subsection 5.2.2, we generate a set of
(

k
2

)

choice strings
Sc = {c1,2,c1,3 . . . , ck−1,k}. Again, every choice string will consist of m blocks,
one block for every edge of the graph. The choice string ci,j is given by

ci,j := 〈block(i, j, e1)〉〈block(i, j, e2)〉 . . . 〈block(i, j, em)〉,

where e1, e2, . . . , em are the edges of the input graph and 〈block()〉 is defined
below. The length of a closest substring will be exactly the length of one block.

Block in a choice string. Every block consists of a front tag, an encoding
part, and a back tag. A block in choice string ci,j encodes an edge e; let e be an
edge connecting vertices vr and vs, 1 ≤ r < s ≤ n, and let ci,j be the (according
to the given order) i′th string in Sc. Then, the corresponding block is given by

〈block(i, j, (vr, vs))〉 := 〈front tag〉〈encode(i, j, (vr, vs))〉〈back tag(i′)〉.

Front tags. We want to enforce that a closest substring can only match
substrings at certain positions in the produced choice strings, using front tags:

〈front tag〉 := (13nk0)nk,



5.2 Part II: Motif Search Problems 75

i.e., a front tag has length (3nk + 1) · nk. By this arrangement, the closest
substring s and every match of s start (as will be shown in Subsection 5.2.3.2)
with the front tag.

Encoding part. The encoding part consists of k sections, each of length n.
The encoding part corresponds to the blocks used in Subsection 5.2.2. As a
consequence, in 〈block(i, j, e)〉 the ith and jth section are called active and
encode edge e = (vr, vs), 1 ≤ r < s ≤ n; section i encodes vr by 〈number(r)〉
and section j encodes vs by 〈number(s)〉. The other sections except for i and j

are called inactive and are given by 〈inactive〉 := 0n. Thus,

〈encode(i, j, (vr, vs))〉 :=

(〈inactive〉)i−1 〈number(r)〉 (〈inactive〉)j−i−1 〈number(s)〉 (〈inactive〉)k−j.

Back tag. The back tag of a block is intended to balance the Hamming
distance of the closest substring to a block, as will be explained later. The back
tag consists of

(

k
2

)

sections, each section has length nk−2k+2. The i′th section
consists of symbols “1,” all other sections consist of symbols “0”:

〈back tag(i′)〉 := 0(i′−1)(nk−2k+2)1nk−2k+20((k
2)−i′)(nk−2k+2)

Template string. The set of choice strings is complemented by one template
string. It consists, in analogy to the blocks in the choice strings, of three
parts: A front tag of length (3nk + 1) · nk, followed by a length nk string
of symbols “1,” followed by a length

(

k
2

)

(nk − 2k + 2) string of symbols “0.”
Thus, the template string has the same length as a block in a choice string,
i.e., (3nk + 1) · nk + nk +

(

k
2

)

(nk − 2k + 2).

Values for d and L. We set L := (3nk + 1) · nk + nk +
(

k
2

)

(nk − 2k + 2)

and d := nk − k. As we will show in Subsection 5.2.3.2, the possible matches
for a string of this length are the blocks in the choice strings, and, concerning
the template string, the template string itself.

Notation. For a closest substring s, we denote its first (3nk + 1) · nk symbols
(the front tag) by s′, the following nk symbols (its encoding part) by s′′, and
the last

(

k
2

)

(nk − 2k + 2) symbols (its back tag), by s′′′. Analogously, the three
parts of the template string t are denoted t′, t′′, and t′′′. A particular block of a
choice string ci,j, is referred to by si,j; its three parts are called s′i,j, s

′′
i,j, and s′′′i,j.

Example 5.2.7. Let G = (V, E) be the graph from Example 5.2.1, with vertices
V = {v1, v2, v3, v4} and edges E = {(v1, v3), (v1, v4), (v2, v3), (v3, v4)} (as shown
in Fig. 5.6(a)) and let k = 3. In the following, we outline the above construction
of

(

k
2

)

= 3 choice strings c1, c2, and c3 and one template string t over alphabet
Σ = {0, 1} as displayed in Fig. 5.7.

Every string c1, c2, and c3 consists of four blocks corresponding to the four edges
of G. Fig. 5.7(a) displays the first block of c1 corresponding to edge (v1, v3). It



76 Consensus of Sequences

c1 · · ·

front tag encoding part back tag

v1 v3 inactive

(a)

c1

c2

c3

t

s

edge (v1, v3) edge (v1, v4) edge (v2, v3) edge (v3, v4)

(b)

Figure 5.7: Example for the reduction from the Clique instance G (shown
in Fig. 5.6(a)) to a Closest Substring instance with binary alphabet as ex-
plained in Example 5.2.7. When displaying the strings, we omit the details of
the front tag parts and only indicate them shortened in their proportion to the
other parts of the strings; all front tag parts in all strings are equal. In the
encoding parts and the back tag parts, we indicate the symbols “1” of the con-
struction by dark boxes, the symbols “0” by white boxes. In (a), we outline the
first block of c1. In its encoding part, sections 1 and 2 (sections are indicated
by bold separating lines) are active (indicated by dashed boxes) and encode
the first edge (v1, v3) of graph G; the remaining third section is inactive. In its
back tag part, the first section is filled with symbols “1.” In (b), we give an
overview on all constructed strings, the choice strings c1, c2, and c3, and the
template string t. We also display the closest substring s that is found since
G has a clique of size k = 3; its matches in c1, c2, c3, and t are indicated by
dashed boxes. A focus on the matches is given in Figure 5.8.

consists of a front tag, an encoding part, and a back tag. The front tag (not
displayed in detail in the figure) is given by 〈front tag〉 := (13nk0)nk = (1360)12;
all front tags for all blocks in all constructed strings are the same. The back
tag of the first block consists of

(

k
2

)

sections; since the back tag is in the first
string, the first section is filled with “1”s and the remaining sections are filled

with “0”s. Thus, the back tag is given by 1nk−2k+20((k
2)−1)(nk−2k+2) = 18016,

and all back tags for blocks in the first string are given like this. The encoding
part consists of k = 3 sections, each section of length n = 4. In the blocks
of string c1, the first and the second section are active; in the first block they
encode edge (v1, v3). Therefore, the first section is given by 〈number(1)〉 and
the second one by 〈number(3)〉, the remaining inactive section is filled with
“0”s.



5.2 Part II: Motif Search Problems 77

s1

s2

s3

t

s

front tag encoding part back tag

dH(s, si) 0 k − 2 = 1 nk − 2k + 2 = 8
dH(s, t) 0 nk − k = 9 0

Figure 5.8: Continuation of Figure 5.7. We illustrate the reduction from the
Clique instance G (shown in Fig. 5.6(a)) to a Closest Substring instance
with binary alphabet as explained in Example 5.2.7. Here, we focus on the
matches in the produced instance, which were marked by dashed boxes in Fig-
ure 5.7(b), together with the template string t and the solution string s. We
state, separately for the front tag, the encoding, and the back tag part, the
Hamming distances of s to a match si, i = 1, 2, 3 (the distances are equal for s1,
s2, and s3) and to the template string t.

Fig. 5.7(b) displays an overview on all constructed strings c1, c2, c3, and t. In
all strings, block i encodes the ith edge, 1 ≤ i ≤ 4. However, the active sections
of the encoding part and the back tags differ for different strings. The template
string t consists only of one block, which has a front tag, a part corresponding
to the encoding part, filled with “1”s, and a part corresponding to the back
tag, filled with “0”s.

Since G has a k-clique for k = 3, consisting of vertices v1, v3, and v4, we find a
solution s for the constructed Closest Substring instance. This s has a front
tag, and its back tag part is filled with “0” symbols. The encoding part encodes
the vertices of the clique, it is given by 〈number(1)〉〈number(3)〉〈number(4)〉.

Fig. 5.7(h) gives a focus on the matches that are found in c1, c2, c3, and t,
which are, for the choice strings, referred to by s1, s2, and s3, respectively. The
front tag part s ′ has distance 0 to the front tags s ′

1, s ′
2, s ′

3, and t ′. The encoding
part s ′′ contains k = 3 many “1”s; s ′′

1 , s ′′
2 , s ′′

3 have two “1”s each and, in each
case, these “1”s coincide with “1”s in s ′′. Therefore, dH(s ′′, si) = k − 2 = 1,
1 ≤ i ≤ 3. The encoding part of the template string, t ′′, only consists of
“1”s and, therefore, dH(s ′′, t ′′) = nk − k. The back tag s ′′′ only consists of
“0”s; each back tag s ′′′

1 , s ′′′
2 , and s ′′′

3 contains nk − 2k + 2 = 8 many “1”s;
therefore dH(s ′′′, s ′′′

i ) = 8, 1 ≤ i ≤ 3. The back tag of the template string, t ′′′,
contains only “0”s and, hence, dH(s ′′′, t ′′′) = 0. Altogether, this shows that,



78 Consensus of Sequences

for 1 ≤ i ≤ 3, dH(s, si) = dH(s, t) = nk − k = 9 as required.

5.2.3.2 Correctness of the Reduction

To prove the correctness of the reduction, again the easier direction is to show
that a k-clique implies a closest substring fulfilling the given requirements.

Proposition 5.2.8. For a graph with a k-clique, the construction in Subsec-
tion 5.2.3.1 produces an instance of Closest Substring that has a solution,
i.e., there is a string s of length L such that every ci,j ∈ Sc has a length L

substring si,j with dH(s, si,j) ≤ d and dH(s, t) ≤ d.

Proof. Let the graph have a clique of size k. Let h1, h2, . . . , hk denote the
indices of the clique’s vertices, 1 ≤ h1 < h2 < . . . < hk ≤ n. Then, we
can find a closest substring s, consisting of three parts s ′, s ′′, and s ′′′, as
follows: its front tag s ′ is given by 〈front tag〉; its encoding part s ′′ is given by

〈number(h1)〉〈number(h2)〉 . . . 〈number(hk)〉; its back tag s ′′′ is 0(k
2)(nk−2k+2).

It follows from the construction that the choice strings have substrings that are
matches for this s: For every 1 ≤ i < j ≤ k, we produced choice string ci,j with
a block si,j encoding the edge between vertices vhi

and vhj
. For these blocks

as well as for the template string, the following table reports the distance they
have to the solution string, separately for each of their three parts and in total:

dH(·, ·) s′ s′′ s′′′ s

match si,j in choice string ci,j 0 k − 2 nk − 2k + 2 nk − k

template string t 0 nk − k 0 nk − k

As is obvious from these distance values, the indicated substrings in the choice
strings all have Hamming distance d = nk − k to the solution string and,
therefore, are matches for s.

For the reverse direction, we assume that the Closest Substring instance
has a solution. We need the following statements:

Lemma 5.2.9. A solution s and all its matches in the input instance start with
the front tag.

Proof. Since s is of length L = (3nk + 1) ·nk + nk +
(

k
2

)

(nk − 2k + 2), the only
possible match in the template string is the template string itself. Therefore,
s′ can differ from t′ in at most d = nk−k symbols. We can show that the only
substrings in a choice string ci,j that are possible matches for s with Hamming
distance at most d start with the front tag, as we argue in the following.

Since s is a solution, there is a match in ci,j and we denote it by si,j. Denote
the the first (3nk+1) ·nk symbols of si,j by s′i,j. Since dH(s′, s′i,j) ≤ nk−k and



5.2 Part II: Motif Search Problems 79

dH(s′, t′) ≤ nk − k, we necessarily (triangle inequality for Hamming metric)
have dH(s′i,j, t

′) ≤ 2(nk − k). We show that this is only possible when s′i,j
coincides with a front tag of a block of ci,j. Assuming that it does not, we will
show that dH(s′i,j, t

′) > 2(nk − k), a contradiction.

Firstly, assume that the starting position of s′i,j and the starting position of
a front tag in ci,j differ by p positions, 1 ≤ p ≤ 3nk. Then, at least nk − 1

symbols “0” of t′ are aligned with symbols “1” of the front tag in s′i,j and at
least nk− 1 symbols “1” of t′ are aligned with symbols “0” of s′i,j. This implies
dH(s′i,j, t

′) > 2nk − 2. Secondly, assume that the starting position of s′i,j and
the starting position of its closest front tag in ci,j differ by p > 3nk positions.
Then, a block of 3nk symbols “1” falls onto the encoding and/or the back
tag part of s′i,j. Since the encoding part and back tag contain together only
2 + (nk − 2k + 2) < nk (under the assumption that k > 2) many symbols “1”,
we have more than 2nk mismatching symbols and dH(s′i,j, t

′) > 2(nk − k).

Summarizing, we conclude that s′i,j coincides with a front tag in choice string c′i,j,
i.e., s′i,j = t′ = s′ = 〈front tag〉.

Lemma 5.2.10. The encoding part of s contains exactly k symbols “1”.

Proof. Assume that s has less than k symbols “1” in its encoding part, i.e.,
s′′ contains less than k symbols “1”. Then, because t′′ = 1nk, dH(s′′, t′′) ≥
nk − k + 1, implying dH(s, t) ≥ nk − k + 1, a contradiction.

Assume that s has more than k “1” symbols in its encoding part s′′. Then,
dH(s′′, s′′i,j) > k − 2 for the encoding part s′′i,j of a match in every choice string
ci,j. Now consider the solution’s back tag s′′′. To achieve dH(s, si,j) ≤ nk−k, we
need dH(s′′′, s′′′i,j) < nk − 2k + 2 and s′′′ must contain one or more symbols “1”.
Every “1” symbol in s′′′ will decrease the value dH(s, si,j) for a block si,j of one
choice string ci,j by one but will increase the solution’s Hamming distance to the
selected blocks of all other choice strings. No matter how many “1” symbols
we have in the back tag of s, there will always be a choice string ci,j with
dH(s′′′, s′′′i,j) ≥ nk − 2k + 2. In summary, we will always have a choice string ci,j

with dH(s, si,j) = dH(s′′, s′′i,j) + dH(s′′′, s′′′i,j) > nk − k, a contradiction.

Lemma 5.2.11. Every section of the encoding part of s contains exactly one
symbol “1”.

Proof. Assume that not every section in the encoding part of s contains exactly
one “1” symbol. Then, there must be a section containing no symbol “1” since,
by Lemma 5.2.10, the number of symbols “1” in the encoding part of s adds
up to k. Let i′, 1 ≤ i′ ≤ k, be the section containing no symbol “1”. W.l.o.g.,
consider a choice string ci′,j, i′ < j ≤ k or, if i′ = k, a choice string ci′,j,
1 ≤ j < i′. In every block si′,j of ci′,j, sections i′ and j of the encoding part
are active and, therefore, contain exactly one symbol “1” each; these are the
only symbols “1” in s ′′

i′,j. Now consider the k symbols “1” in the encoding part



80 Consensus of Sequences

of s: The “1”s in all sections of s ′′ except for section j are all aligned with “0”s
in s ′′

i′,j; within section j, only a single “1” of s ′′ can be matched to a “1” of s ′′
i′,j.

Therefore, dH(s′′, s′′i′,j) > k − 2. As in the proof of Lemma 5.2.10, we conclude
that s is no solution.

Proposition 5.2.12. The k symbols “1” in the solution string’s encoding part
correspond to a k-clique in the graph.

Proof. Let s be a solution for the Closest Substring instance. Summarizing,
we know by Lemma 5.2.9 that s can have as a match only one of the choice
string’s blocks. By Lemma 5.2.11, every section of the encoding part s′′ contains
exactly one “1” symbol; therefore, we can read this as an encoding of k vertices
of the graph. Let vh1

, vh2
, . . . , vhk

be these vertices. Further, we know that the
back tag s′′′ consists only of “0” symbols: By Lemma 5.2.10, the encoding part s ′

has only k “1”s; would s′′′ contain a “1”, then we would have dH(s, t) > nk−k.
We have dH(s′′′, s′′′i,j) = nk − 2k + 2 for every choice string match si,j and, since
every s′′i,j contains only two “1” symbols, dH(s′′, s′′i,j) ≥ k−2. Now consider some
1 ≤ i < j ≤ k and the corresponding choice string ci,j. Since s is a solution, we
know that there is a block si,j with dH(s′′, s′′i,j) = k − 2. That means that the
two “1” symbols in s′′i,j have to match two “1” symbols in s′′; this implies that
the two vertices vhi

and vhj
are connected by an edge in the graph. Since this

is true for all 1 ≤ i < j ≤ k, vertices vh1
, . . . , vhk

are pairwisely interconnected
by edges and form a k-clique.

Propositions 5.2.8 and 5.2.12 yield the following main theorem:

Theorem 5.2.13. Closest Substring is W[1]-hard for parameter k in the
case of a binary alphabet.

5.2.4 Consensus Patterns

Our techniques for showing hardness of Closest Substring, parameterized by
the number k of input strings, also apply to Consensus Patterns. Because
of the similarity to Closest Substring, we restrict ourselves to explaining
the problem and pointing out new features in the hardness proof.

Given strings s1, s2, . . . , sk over alphabet Σ and integers d and L, the Con-
sensus Patterns problem asks whether there is a string s of length L such
that

∑k
i=1 dH(s, s′i) ≤ d where s′i is a length L substring of si. Thus, Consen-

sus Patterns aims for minimizing the sum of errors. Since errors are summed
up over all strings, the value of d will, usually, not be a small and, therefore, the
most significant parameterization for this problem seems to be the one by k.
By reduction from Clique, we can show W[1]-hardness results as for Closest
Substring given unbounded alphabet size. We omit the details here and focus
on the case of binary input alphabet. We can apply basically the same ideas as
were used in Subsection 5.2.3; however, some modifications are necessary.



5.2 Part II: Motif Search Problems 81

5.2.4.1 Reduction from Clique to Consensus Patterns

Choice strings. As in Subsection 5.2.3.1, we generate a set of
(

k
2

)

choice
strings Sc = {c1,2, c1,2 . . . , ck−1,k} with

ci,j := 〈block(i, j, e1)〉〈block(i, j, e2)〉 . . . 〈block(i, j, em)〉,
encoding the m edges of the input graph. This time, however, every block con-
sists only of a front tag and an encoding part. No back tag is necessary. There-
fore, we use 〈block(i, j, (vr, vs))〉 := 〈front tag〉〈encode(i, j, (vr, vs))〉, in which
the encoding part 〈encode(i, j, (vr, vs))〉 is constructed as in Subsection 5.2.3.1.
Before we explain the front tags, we already fix the distance value d.

Distance Value. We set the distance value d := (
(

k
2

)

− (k − 1))nk.

Front tags. The front tag is now given by (1nk3
0)nk3

0nk3
. Thus, the front

tag has length n2k6 + 2nk3. The front tag here is more complex than the one
used in Subsection 5.2.3.1. The reason is as follows. Its purpose is to make
sure that a substring which is not a block cannot be a match. To achieve this,
the front tag lets such an unwanted substring necessarily have a distance value
larger than d to a possible solution (as explained in the proof of Lemma 5.2.9).
Since d has a higher value here compared to Subsection 5.2.3, we need the more
complex front tag.

Solution length. We set the substring length to the length of one block, i.e.,
the sum of n2k6 + 2nk3 (the length of the front tag) and nk (the length of the
encoding part). Therefore, L := n2k6 + 2nk3 + nk.

Template strings. In contrast to Subsection 5.2.3.1, we produce not only one
but

(

k
2

)

− (k − 1) many template strings. All template strings have length L,
i.e., the length of one block. The template strings are a concatenation of the
front tag part (as given above) and an encoding part consisting of nk many
symbols “1”.

In summary, the front tag ensures that only the block of a choice string can
be selected as a substring matching a solution. Regarding the distribution of
mismatches, we note that a closest substring’s front tag part will not cause any
mismatches. In its encoding part, every of its nk positions causes at least

(

k
2

)

−

(k−1) mismatches. It causes exactly
(

k
2

)

−(k−1) mismatches for every position
iff the input graph contains a k-clique.

5.2.4.2 Correctness of the Reduction

Proposition 5.2.14. For a graph with a k-clique, the construction in Sub-
section 5.2.4.1 produces an instance of Consensus Patterns which has a
solution, i.e., there is a string s of length L such that every ci,j, 1 ≤ i < j ≤ k,

has a substring si,j with
∑k−1

i=1

∑k
j=i+1 dH(s, si,j) ≤ d.



82 Consensus of Sequences

Proof. Given an undirected graph G with n vertices and m edges, let 1 ≤ h1 <

h2 < . . . < hk ≤ n be the indices of k-clique’s vertices. Then, let string s

consist of the front tag described in the above construction, concatenated with
the encoding part 〈number(h1)〉〈number(h2)〉 . . . 〈number(hk)〉, which encodes
all clique vertices. For every 1 ≤ i < j ≤ k, we choose in choice string ci,j the
block si,j encoding the edge connecting vertices vhi

and vhj
. We will show that

these blocks have exactly total Hamming distance (
(

k
2

)

− (k − 1))nk to s.

The front tags of s and of each si,j coincide, their Hamming distance is 0.
Recall from Subsection 5.2.3.1 that the encoding parts consist of k sections,
each section of length n. We consider the encoding parts section by section
and, within a section, columnwise. Given a section i′, 1 ≤ i′ ≤ k, there are
k − 1 choice strings in which this section is active, and this section in these
blocks encodes vertex vhi′

. Consider the column at position hi′ in this section,

over all selected substrings and all template strings. We have
(

k
2

)

− (k − 1)

“0” symbols from the choice strings in which this section is inactive; in all
other strings, there is a “1” at this position. In s, this position is “1,” causing
(

k
2

)

− (k − 1) mismatches. Now consider the remaining columns of section i′.

In each of them, we have
(

k
2

)

− (k − 1) “1” symbols from the template strings;

all
(

k
2

)

choice strings have “0” at the corresponding position. In s, this position

is “0,” causing
(

k
2

)

−(k−1) mismatches. Thus, we have
(

k
2

)

−(k−1) mismatches
at every of the n positions within a section, and this is true for all k sections
of the encoding part. The sum of distances from s to the matches in choice
strings and the template strings is (

(

k
2

)

− (k − 1))kn; s is a solution.

For the reverse direction, we use two lemmas to show important properties that
a solution of the constructed instance has. The first lemma is proved in analogy
to Lemma 5.2.9.

Lemma 5.2.15. A solution s and all its matches in the input instance start
with the front tag.

The second property of a solution, although also valid for the solutions in Sub-
section 5.2.3.2, is established in a different way here. It relies on the additional
template strings that have been introduced in the construction of the Consen-
sus Patterns instance.

Lemma 5.2.16. A solution s contains exactly one symbol “1” in every section
of its encoding part.

Proof. Let s be a solution for the constructed Consensus Patterns instance.
By Lemma 5.2.15, we know that s and all its matches in the choice strings start
with the front tag. Consequently, the matches in the choice strings must be
blocks.

Consider the encoding part of a solution s together with the encoding parts of
its matches in the input strings. We note that we have at least

(

k
2

)

− (k − 1)



5.2 Part II: Motif Search Problems 83

mismatches for every column at positions p, 1 ≤ p ≤ nk: On the one hand, all
(

k
2

)

− (k − 1) template strings have “1” symbols at position p. On the other

hand, all
(

k
2

)

−(k−1) choice strings in which position p’s section is inactive have
“0” at this position, no matter which blocks we chose in these choice strings.
Since s is a solution and only a total of (

(

k
2

)

−(k−1))nk mismatches are allowed,

we have exactly
(

k
2

)

−(k−1) mismatches for every position of the encoding part
of s with the corresponding positions in the matches of s.

Now, consider an arbitrary section i′, 1 ≤ i′ ≤ k, and consider all k − 1 choice
strings in which section i′ is active. In these choice strings, section i′ contains
exactly one “1” symbol. We will show that in these choice strings’ blocks that
form the matches for s, the “1” in section i′ must be at the same position
in all matches because, otherwise, s is no solution. Assume that we chose
blocks in which the “1” symbols of section i′ are at different positions. We can
easily check that this would cause more than

(

k
2

)

− (k − 1) mismatches for the
columns corresponding to the positions of the “1” symbols; this contradicts the
assumption that s is a solution. We conclude that, for all matches in choice
strings, the “1” symbols of section i′ must be at the same position. For columns
in which we have “1” symbols in choice strings, there is a majority of “1”
symbols, namely those in the (k − 1) choice strings in which section i′ is active
and those in the

(

k
2

)

−(k−1) template strings. Therefore, the respective position
in s must be “1.” For all other columns, there is a majority of “0” symbols,
namely those in all

(

k
2

)

choice strings. Therefore, the respective position in s

must be “0.”

These two lemmas allow us to show that also the reverse direction of the re-
duction is correct.

Proposition 5.2.17. The k symbols “1” in the solution string’s encoding part
correspond to a k-clique in the graph.

Proof. Let s be a solution for the constructed Consensus Patterns instance.
By Lemma 5.2.16, every section in the encoding part of s encodes a vertex
of the input graph. In the following, we show that all encoded vertices are
interconnected by edges.

Let VC = {vh1
, vh2

, . . . , vhk
} be the vertices encoded in the solution’s encoding

part. For every two sections 1 ≤ i < j ≤ k, we select in choice string ci,j a
substring in which the “1” symbols of sections i and j are at the same positions
as the “1” symbols of sections i and j in the solution: Selecting another substring
would result in a Hamming distance greater than

(

k
2

)

− (k − 1) in the hith and
hjth column and s could not be a solution. Hence, the selected block encodes
the edge connecting vhi

and vhj
. Since we find such a substring for every

1 ≤ i < j ≤ k, every pair of vertices in VC is connected by an edge, VC is a
k-clique.



84 Consensus of Sequences

Propositions 5.2.14 and 5.2.17 yield the following main result.

Theorem 5.2.18. Consensus Patterns is W[1]-hard for parameter k in case
of a binary alphabet.

5.3 Conclusion and Open Questions

We conclude with some open questions and directions for further research:

1. We showed that, from the theoretical point of view, Closest String
is fixed-parameter tractable with respect to k. Our algorithm, however,
suffers from huge constant factors in the running time, even for moderate
values of k, that seem to make it impossible to find exact solutions with
this algorithm for k > 4. Is it possible to give a fixed-parameter algorithm
for parameter k that is usable for larger values of k and arbitrary values
of L and d?

2. We considered Closest String with respect to Hamming distance. What
is, for constant alphabet size, the parameterized complexity of Closest
String with respect to parameter d when using edit distance instead,
i.e., allowing insertions, deletions, and substitutions? Note that, for un-
bounded alphabet size, the NP-completeness result of Cascuberta and de
la Higuera [55] implies that, Closest String with respect to the pa-
rameter of edit distance is W[t]-hard for all t > 0. With respect to the
number of input strings as parameter, Nicolas and Rivals [147] show that,
even for binary alphabet, Closest String is W[1]-hard when using edit
distance.

3. What is the parameterized complexity of Closest Substring with re-
spect to parameter d and with respect to parameters d and k? Showing
that Closest Substring is W[1]-hard with respect to d would, with
results from [41], imply that the problem does not have an efficient PTAS
(EPTAS).



Chapter 6

Consensus of Quartets

To determine the evolutionary relationship of a set of taxa, e.g., based on DNA
or protein sequence data, is an important question in computational biology.
A common model for this relationship is an evolutionary tree, a binary tree T

in which the leaves are bijectively labeled by the taxa.1 In recent years, quar-
tet methods for reconstructing evolutionary trees have received considerable
attention [45, 108, 114]. Here, a quartet is a size four subset {a, b, c, d} of the
set of taxa and the quartet topology for {a, b, c, d} induced by T simply is the
four-leaved subtree of T for {a, b, c, d}.2 The three possible quartet topologies
for {a, b, c, d} are [ab|cd], [ac|bd], and [ad|bc] as shown in Fig. 6.1—a fourth
possible topology is the star topology which is not considered here because it
is not binary. The fundamental goal of quartet methods is, given a set of quar-
tet topologies, to reconstruct the corresponding evolutionary tree. Herein, the
given set of quartet topologies can be incomplete, may contain errors or more
than one topology for one quartet. Hence, to reconstruct (a good estimation of)
the original evolutionary tree becomes an optimization problem, whose decision
version generally turns out to be NP-hard.

In this chapter, we focus on the Minimum Quartet Inconsistency (MQI)
problem.

Minimum Quartet Inconsistency (MQI)
Input: A set S of n taxa and a set QS of

(

n
4

)

quartet topologies such
that there is exactly one topology for every quartet corresponding
to S and a non-negative integer k.
Question: Is there an evolutionary tree T where the leaves are bi-
jectively labeled by the elements from S such that the set of quartet
topologies induced by T differs from QS in at most k quartet topo-
logies?

1We follow, here, the commonly used demand for binary trees since evolutionary speciation
events are thought to split up one species from another [158].

2Following a more graph-theoretical terminology, we can, equivalently, say that the quartet
topology is the subtree induced by nodes a, b, c, and d in the tree.



86 Consensus of Quartets

a

b

c

d

a

c

b

d

a

d

b

c

Figure 6.1: Possible quartet topologies for quartet {a, b, c, d}, which are (from
left to right) [ab|cd], [ac|bd], and [ad|bc].

a d

b f

c d

f e

a f

b e

b d

c e

b c

d f

a d

c e

a d

f e

a b

e d

a c

b f

a c

b d

b d

f e

a c

d f

b e

c f

a c

b e

a c

e f
a

b d

f

e

c

k = 2

Figure 6.2: Example for an MQI instance consisting of 15 quartet topologies
for taxa {a, b, c, d, e, f} (left) such that, for k = 2, the tree (right) is the solution
for MQI. The quartet topologies in which the given topologies differ from the
topologies induced by the tree are indicated by dashed lines.

In Fig. 6.2, we display an example of a set containing 15 quartet topologies
for 6 taxa and a tree which is a solution for the MQI instance with k = 2.
MQI is NP-complete [25, 109]. It is worth noting, as was pointed out by
Steel [185], that the quartet cleaning algorithm by Berry et al. [25] finds the
optimal solution for instances with k < (n − 3)/2. Therefore, MQI is NP-hard
only for k ≥ (n−3)/2. It is known that MQI is polynomial-time approximable
with factor n2 [108], and it is an open question of [108] whether MQI can be
approximated with factor at most n or even with a constant factor. Heuristics
for the problem include semidefinite programming [17] and the widely used
quartet puzzling [190]. The parameterized complexity of MQI, however, so
far, has not been discussed explicitly. We close this gap here and present the
following results:

• We show that MQI can be solved exactly in worst-case O(4kn+n4) time.
Observe that the input size is O(n4).



6.1 Preliminaries on Quartet Methods 87

• We discuss heuristic improvements to reduce the running time of our main
algorithm in practical applications significantly.

• We exhibit several experiments on synthetic and real (fungi) data and,
thereby, show that our algorithm (due to intensive tuning) in practice
runs much faster than its theoretical (worst-case) analysis predicts.

To establish the correctness and the running time of our fixed-parameter al-
gorithm, we exhibit some nice combinatorial properties of MQI. For instance,
loosely speaking, we point out that “global conflicts” due to erroneous quartet
topologies in fact can be led back to “local conflicts.” The basis for this was laid
by Colonius and Schultze [48], and by Bandelt and Dress [11]. This property is
fundamental for our algorithms. Moreover, for minimal k, our approach makes
it possible to construct all evolutionary trees that can be (uniquely) obtained
from the given input by changing k quartet topologies. This puts the user
of the algorithm in the position to select (e.g., based on additional biological
knowledge) the probably best, most reasonable solution.

Note that the more general variant of MQI where the set QS is not required to
contain a topology for every quartet (subsequently referred to as SparseMQI)
is NP-complete even if k = 0 [184]. Hence, this excludes parameterized com-
plexity studies and also implies inapproximability (with any factor).

6.1 Preliminaries on Quartet Methods

Quartet methods infer the evolutionary tree only for four taxa, called a quartet,
at a time. Once having determined the evolutionary tree for every quartet of
taxa, they try to combine these evolutionary trees involving four taxa, called
quartet topologies, in order to obtain a tree containing all taxa at its leaves.

There are several reasons why quartet methods are widely used in practice.
They are founded on the fact that an evolutionary tree is uniquely characterized
by the quartet topologies for its size four sets of taxa [36]. From this set of
topologies, we can efficiently compute the tree in O(n4) time [24]. Quartet
methods clearly divide the tree construction process in two stages—we can
use an arbitrary, even computationally expensive tree construction method for
inferring the quartet topologies, while the recombination of topologies can be
handled independently of the method chosen for inference. Another reason to
use quartet methods is data disparity as discussed by Chor [45]: In practice,
we often do not have the same amount of data for all considered taxa, e.g.,
not the same set of proteins for which the corresponding genes are known and
sequenced. In general, tree construction methods cannot take advantage of
information available only for a subset of taxa. Quartet methods, however,
allow us to use the maximum amount of information available for the four taxa
of a quartet when we compute its quartet topology.



88 Consensus of Quartets

The limitation of quartet methods in practice is caused by the process of quartet
inference which can be erroneous. Therefore, we cannot be sure that there
exists a tree inducing the inferred set of quartet topologies. Assuming that the
number of errors is small compared to the number of correct topologies, we will
try to overcome this problem by searching for a tree that matches the inferred
topologies as “closely” as possible.

Recombination of quartet topologies without errors. Given exactly one
quartet topology for every quartet of taxa, it is possible to decide in polynomial
time whether there is a binary tree inducing all of the given quartet topologies,
and, if so, to actually construct the tree [24]. Bryant and Steel [34] solve in
O(n5) time a related problem in the case that we have one or two topologies for
each quartet and the topologies are weighted; then, they ask for a tree inducing
quartet topologies for which the sum of weights exceeds some given threshold.
Both algorithms rely on the fact that the given set of topologies contains a
topology for every quartet. In the more general situation in which we are not
necessarily given a topology for every quartet, the problem of deciding whether
there is a binary tree inducing all the given topologies is NP-complete [184].

Inferring strongly supported parts of the tree. There are situations in
which there is no binary tree inducing the given set of topologies. In the follow-
ing, we mention methods that infer bipartitions of taxa such that these biparti-
tions are particularly supported by the given quartet topologies and which can
be seen as edges of a tree; these methods yield trees that are not necessarily
fully resolved, i.e., that are not binary.

The Q∗ method by Berry and Gascuel [24] infers, for a complete set of quar-
tet topologies, only the completely supported edges, an approach proposed by
Buneman [36]: Given a tree with its leaves bijectively labeled by the given set
S of taxa, an edge e in the tree defines a bipartition of S into sets Ae and Be,
each of them containing the taxa in the subtree rooted at one end of e. We call
edge e completely supported if, for every a, a′ ∈ Ae and b, b′ ∈ Be, the corre-
sponding quartet topology is [aa′|bb′]. The set of quartet topologies induced
by the completely supported edges is called Q∗. Berry and Gascuel [24] present
an algorithm computing Q∗ in O(n4) running time.

Another approach, called quartet cleaning, tries to correct obvious quartet errors
if their number is bounded [23, 25, 107, 109, 194]. We distinguish edge and
vertex quartet cleaning, as well as global and local algorithms. Edge quartet
cleaning applies if the number of errors across one edge is smaller than some
bound, in vertex quartet cleaning the number of errors across a vertex has
to be bounded (for the definition of errors across an edge or a vertex, resp.,
see, e.g., [25]). Global quartet cleaning algorithms correct errors only if the
errors are bounded for every edge or vertex. Local algorithms correct errors
also when errors are bounded only for one edge or vertex. For an overview of
quartet cleaning results refer to Della Vedova and Wareham [194]. The global
edge quartet cleaning algorithm given by [25] computes the optimal tree if, for



6.1 Preliminaries on Quartet Methods 89

every edge e inducing a bipartition of taxa into sets Ae and Be with |Ae| ≥ 2

and |Be| ≥ 2, we have fewer than (|Ae| − 1)(|Be| − 1)/2 quartet errors across
this edge. This value is minimal for |Ae| = 2 and |Be| = n − 2 and, therefore,
quartet cleaning computes a guaranteed optimal solution if the total number of
quartet errors is smaller than (n − 3)/2.

Minimum quartet inconsistency. In order to find the “best” binary tree for
a given set of quartet topologies, we can ask for a tree that violates a minimum
number of topologies. If we are given exactly one quartet topology for every
set of four taxa, this question is the MQI problem. If there is not necessarily
a quartet topology for every set of four taxa, the more general question is
referred to as Sparse MQI. Ben-Dor et al. [17] give an exact algorithm for the
Sparse MQI problem, based on dynamic programming. For every subset of
i taxa, it computes the optimal tree for these taxa based on the optimal trees
for the subsets of i−1 taxa, with i running up to the total number n of species.
The resulting running time is O(3n · m), where n is the number of species and
m is the number of given quartet topologies, and the memory requirement is
Θ(2n).

Regarding heuristics, Ben-Dor et al. [17] use semidefinite programming to ob-
tain, in polynomial time, possibly non-optimal solutions for Sparse MQI. A
widely used heuristic for MQI is quartet puzzling by Strimmer and von Hae-
seler [190]. Its main idea is to build the tree incrementally, starting with four
taxa and adding one taxon at a time in a greedy way. To avoid local traps the
algorithm repeats this process and, finally, constructs a (possibly non-binary)
consensus of the single trees.

Not much is known about the approximability of MQI. Jiang et al. [108] men-
tion a factor-n2 approximation, at the same time asking for better approxima-
tion results. Note that the complement problem of MQI, where one tries to find
a tree T that maximizes the number of given quartet topologies induced by T ,
possesses a polynomial-time approximation scheme [107, 109] which, however,
is not used in practice due to its high running time.

Some notation. Assume that we are given a set of n taxa S. A set of quartet
topologies is complete if it contains exactly one topology for every quartet of S.
A complete set of quartet topologies for the quartets over S is denoted by QS.
A set of quartet topologies Q is tree-consistent [11] if there exists a tree T such
that, for the set QT of quartet topologies induced by T , we have Q ⊆ QT. Set
Q is tree-like [11] if there exists a tree with Q = QT. Since an evolutionary tree
is uniquely characterized by the topologies for all its quartets [36], a complete
set of topologies is tree-consistent if and only if it is tree-like. Intuitively, a set
of topologies has a “conflict” whenever it is not tree-consistent. We will call a
conflict “global,” when a complete set of topologies is not tree-consistent. In
contrary, we call it “local,” when a size three set of topologies, which necessarily
is incomplete, is not tree-consistent.



90 Consensus of Quartets

6.2 Global Conflicts are Local

The key to develop a fixed-parameter solution for MQI is as follows: It is suf-
ficient to examine the size three sets of quartet topologies and to recursively
branch on local conflicts. We use results of Bandelt and Dress [11] who intro-
duced the substitution property to identify subsets of quartet topologies which
cause conflicts: Given a set of taxa S and a complete set of quartet topologies QS

over these taxa, a set S5 ⊆ S of five taxa satisfies the substitution property if,
for every choice of distinct a, b, c, d, e ∈ S5, [ab|cd] ∈ QS implies [ab|ce] ∈ QS

or [ae|cd] ∈ QS.

Proposition 6.2.1. (Proposition 6 in [11]) Given a set of taxa S and a complete
set of quartet topologies QS and some taxon f ∈ S, then QS is tree-like iff every
size five set of taxa that contains f satisfies the substitution property.

The proof for Proposition 6.2.1 (given in [11]) relies on the “denseness” given
in a complete set of quartet topologies (for short, we sometimes only write
topologies).

In the following, we show that in Proposition 6.2.1, we can replace the substi-
tution property with the more common term of tree-consistency.

Lemma 6.2.2. Three topologies involving more than five taxa are tree-consis-
tent.

Proof. Assume we have topologies t1, t2, and t3 involving more than five taxa.
We distinguish two cases, in which Case (1) will apply if one of t1, t2, t3 involves
a taxon not occurring in the other two topologies. Case (2) will apply if, for
each pair of topologies from t1, t2, t3, there are exactly two taxa occurring in
both topologies. Counting arguments make sure that either Case (1) or Case (2)
applies. Assume that Case (1) does not apply: Then, we have three quartets,
each of them containing four from the at least six given taxa, and every taxon
has to occur in at least two of the three quartets. This is only possible for
exactly six taxa—here Case (2) applies. With more than six taxa one would
necessarily have a taxon occurring in only one of the topologies; this is handled
in Case (1).

Case (1) A topology t ∈ {t1, t2, t3} contains a taxon occurring in none of the
other topologies. Assume, w.l.o.g., that t = t1 = [ab|cd] and that a is the
taxon occurring only in t1 and not in t2 or t3. We can certainly find a tree
T inducing t2, and t3, since the topologies for only two different quartets are
always tree-consistent.

In the case that b does occur in t2 or t3, we replace in T the leaf b by an inner
node having two leaves as its children, one labeled with a and the other with b.
In the case that b does not occur in t2 and t3, we also create a new inner node
with children a and b, and insert it at some arbitrary edge of T .



6.2 Global Conflicts are Local 91

The modified tree induces t1, t2, t3, hence they are tree-consistent.

Case (2) For each pair of topologies from t1, t2, t3, there are exactly two
taxa occurring in both topologies. W.l.o.g., we can assume that topology t1

is given for quartet {a, b, c, d}, topology t2 is given for quartet {a, b, e, f}, and
topology t3 is given for quartet {c, d, e, f}. Checking all possible combinations
of topologies for t1, t2, t3 (we omit the details here), we find that we always
can find a tree inducing t1, t2, t3.

When searching for local conflicts, Lemma 6.2.2 makes it possible to focus on
the case of three topologies involving only five taxa. If the substitution property
is not satisfied for taxa a, b, c, d, e ∈ S, since [ab|cd] ∈ QS but [ab|ce] /∈ QS

and [ae|cd] /∈ QS, then we say that the topologies for the quartets {a, b, c, d},
{a, b, c, e}, and {a, c, d, e} contradict the substitution property.

Lemma 6.2.3. For a given a set of taxa S, three topologies consisting of taxa
from S are tree-consistent iff they do not contradict the substitution property.

Proof. First, we note that with three topologies involving more than five taxa,
on the one hand, we can, according to Lemma 6.2.2, build a tree inducing these
taxa and, on the other hand, these taxa cannot contradict the substitution
property (the substitution property is formulated over five taxa only). There-
fore, we can in the following focus on the case of three topologies involving only
five taxa.

(⇒) As the three topologies are tree-consistent, we can find a tree inducing the
topologies. The set of induced topologies is tree-like. With Proposition 6.2.1
the substitution property holds.

(⇐) We are given three topologies which do not contradict the substitution
property and which involve five taxa {a, b, c, d, e}.

First, we want to reduce the number of cases we have to consider. For three
topologies over five taxa which do not contradict the substitution property, we
show that it is, w.l.o.g., possible to assume that two of them are [ab|cd] and
[ab|ce]. This means that two of the topologies have to be equal on one side.
Assuming that this is not true leads to a contradiction. To see this, we take two
topologies t1 = [ab|cd] and t2 = [ac|de], and show that there is no topology
t3 with the properties (1) that t1, t2, t3 do not contradict the substitution
property and (2) that no side of t3 equals a side of t1 or t2. Topology t3 cannot
be a topology for quartets {a, b, c, e} or {a, b, d, e}. The reason is that, given
topology t1 = [ab|cd], the substitution property would require either topology
[ae|cd] (and [be|cd]) or topology [ab|ce] (and [ab|de]). Since [ae|cd] would
contradict t2, we necessarily would have that the topology is [ab|ce] or [ab|de].
These, however, would contradict property (2) because they equal t1 in the
“ab side.” Analogously, t3 cannot be a topology for quartet {b, c, d, e}—the
substitution property would require that the topology is [bc|de], which would



92 Consensus of Quartets

Topology Topology Topology Contradict Completion
t1 t2 t3 the subst. prop. to tree-like set

[ab|cd] [ab|ce] [ab|de] no [ae|cd], [be|cd]

[ad|be] yes
[ae|bd] yes
[ac|de] no [ab|de], [bc|de]

[ad|ce] no [ab|de], [bd|ce]

[ae|cd] no [ab|de], [be|cd]

[bc|de] no [ab|de], [ac|de]

[bd|ce] no [ab|de], [ad|ce]

[be|cd] no [ab|de], [ae|cd]

Table 6.1: The quartet topologies considered in the proof of Lemma 6.2.3.

contradict property (2) since it equals t2 in the “de side.” Since there are no
quartets over {a, b, c, d, e} remaining, there are no choices left for t3. Therefore,
our assumption was wrong. Thus, for three topologies over five taxa, where the
topologies do not contradict the substitution property, this justifies that two of
the topologies have to be equal on one side.

With the preceding considerations, we can, w.l.o.g., assume that two of the given
topologies are t1 = [ab|cd] and t2 = [ab|ce]. We are given a third topology
t3. There remain three quartets over {a, b, c, d, e} whose topology can take this
place. These quartets are {a, b, d, e}, {a, c, d, e}, and {b, c, d, e}.

In Table 6.1, we list the three quartets and, for each of these three quartets, the
three possible topologies it can take. In case the resulting triple of topologies
does not contradict the substitution property, we complete them to a set of tree-
like topologies, as shown in the last column of Table 6.1. For these choices of t3

we, thereby, show that t1, t2, t3 are tree-consistent. In two of the listed cases,
we cannot complete the three topologies to a tree-like set. We find, however,
that those triples of topologies contradict the substitution property. With the
choice of t3 = [ad|be], the substitution property requires that we have either
topology [ad|bc] or topology [ac|be], in contradiction to topologies t1 and t2.
Analogously, the topologies contradict the substitution property with the choice
of t3 = [ae|bd].

Note that Lemma 6.2.3 involving a necessarily incomplete set of three topolo-
gies does not generalize from size three to an incomplete set of arbitrary size,
as exhibited in the following example. For taxa {a, b, c, d, e, f}, consider the in-
complete set of topologies [ab|cd], [bc|de], [cd|ef], and [af|de]. Without going
into the details, we only state here that these topologies are not tree-consistent,
although there are no three topologies which contradict the substitution prop-
erty.

With Lemma 6.2.3 we can now give another interpretation of Proposition 6.2.1.

Theorem 6.2.4. Given a set of taxa S, a complete set of quartet topologies QS



6.3 Combinatorics of Local Conflicts 93

over S, and a taxon f ∈ S, QS is tree-like (and, thus, tree-consistent) iff every
set of three topologies from QS which involves f is tree-consistent.

Proof. By Lemma 6.2.3 we replace the substitution property in Proposition 6.2.1
with tree-consistency.

Given a complete set of topologies QS for a set of taxa S, we do not necessarily
know whether the set is tree-like or not. If it is not, we can, according to
Theorem 6.2.4, choose an arbitrary taxon f ∈ S and track down a subset of
three topologies that involves f and that is not tree-consistent. Our goal will be
to detect all these local conflicts involving f. This will be the preprocessing stage
of the algorithm that will be described in Section 6.4; the subsequent stage of
the algorithm will (try to) “repair” these conflicts. We can find all local conflicts
involving f in O(n4) time as follows. Since, following Lemma 6.2.2, only three
topologies involving five taxa can form a local conflict, it suffices to consider
all size four sets of taxa {a, b, c, d} ⊆ S together with the chosen f ∈ S. There
are five quartets over this size five set of taxa, namely, {a, b, c, d}, {a, b, c, f},
{a, b, d, f}, {a, c, d, f}, and {b, c, d, f}. For the topologies of these quartets, we
can test, in constant time, whether there are three among them that are not
tree-consistent. Doing so for every choice of {a, b, c, d} ⊆ S, we will find all
local conflicts involving f. We summarize these considerations in the following
lemma.

Lemma 6.2.5. If we are given a set S of taxa, some arbitrary taxon f ∈ S,
and a complete set QS of quartet topologies that is not tree-consistent, then QS

has at least one local conflict involving f and all local conflicts involving f can
be found in O(n4) time.

6.3 Combinatorics of Local Conflicts

Given three topologies, we need to decide whether they are tree-consistent or
not. Directly using the definition of tree-consistency turns out to be a rather
technical, troublesome task since we have to reason whether or not a tree topol-
ogy exists that induces the topologies. Similarly, it can be difficult to test, for
the topologies, whether or not they contradict the substitution property. To
make things less technical and easier to grasp, we subsequently give a combi-
natorial characterization of local conflicts. Note that in the following definition
we distinguish two possible orientations of a quartet topology [ab|cd], namely
[ab|cd] and [cd|ab].

Definition 6.3.1. Given a set of topologies where each of the topologies is as-
signed an orientation, let l be the number of different taxa occurring in the
left-hand sides of the topologies and let r be the number of different taxa occur-
ring in the right-hand sides of the topologies.



94 Consensus of Quartets

a

b

c

de

a

b

c

de

(b)(a)

Figure 6.3: Trees inducing non-conflicting topologies in the proof of Theo-
rem 6.3.2.

The signature of the set of topologies, then, is the pair (l, r) that, over all
possible orientations for these topologies, minimizes l.

Theorem 6.3.2. Three quartet topologies are not tree-consistent iff they involve
five taxa and their signature is (3, 4) or (4, 4).

Proof. (⇒) We show that, given three topologies t1, t2, t3 which are not tree-
consistent, they involve five taxa and have signature (3, 4) or (4, 4). We know,
by Lemma 6.2.3, that three topologies are not tree-consistent iff they contradict
the substitution property. Three topologies contradict the substitution property
if for one of these topologies, w.l.o.g., t1 = [ab|cd], neither the topology t2 for
quartet {a, b, c, e} is [ab|ce] nor the topology t3 for quartet {a, c, d, e} is [ae|cd].
Therefore, the topology t2 is either [ac|be] or [ae|bc], and the topology t3 is
either [ac|de] or [ad|ce]. By exhaustively checking the possible combinations,
we can find that the topologies involve five taxa and their signature is (3, 4)

(e.g., for t2 = [ac|be] and t3 = [ac|de]) or (4, 4) (e.g., for t2 = [ac|be] and
t3 = [ad|ce]).

(⇐) We are given three topologies t1, t2, t3 involving five taxa and having
signature (3, 4) or (4, 4). Assume that they are tree-consistent. Showing that
this would imply signature (2, 3) or (3, 3), we prove that they cannot be tree-
consistent. For tree-consistent t1, t2, t3, we can find a tree inducing them.
Given, w.l.o.g., taxa {a, b, c, d, e} and t1 = [ab|cd], we essentially have two
possibilities: we can attach the leaf e on the middle edge of topology t1 as
shown in Fig. 6.3(a), or we can attach e on one of the four side branches of t1

as exemplarily shown in Fig. 6.3(b). Considering the set of quartet topologies
induced by these trees, we find in each case that the set has signature (3, 3)

or (2, 3). For instance, the topologies induced by the tree in Fig. 6.3(a) are,
besides t1, [ab|ce], [ab|de], [ae|cd], and [be|cd]. Three topologies selected from
these, have signature (3, 3) (e.g., [ab|cd], [ab|ce], and [ae|cd]) or (2, 3) (e.g.,
[ab|cd], [ab|ce], and [ab|de]).

Using Theorem 6.3.2, we can determine whether three topologies are conflicting
by simply counting the involved taxa and computing their signature.



6.4 A Fixed-Parameter Algorithm for MQI 95

6.4 A Fixed-Parameter Algorithm for MQI

We describe a recursive algorithm for MQI in its four main parts: building the
conflict list, the search tree, branching, and updating the conflict list.

Building the conflict list. We initially build the conflict list C of local
conflicts, i.e., a list of size-three sets (or three-sets for short) of quartets whose
topologies are not tree-consistent. By Lemma 6.2.5, it is sufficient to build a
list of local conflicts containing some designated taxon, which can be chosen
arbitrarily.

The search tree. The recursive procedure is outlined in Fig. 6.4. The pro-
cedure selects a local conflict from the conflict list and tries to resolve it by
changing one of its topologies. After such a change it updates the conflict list
(described below), and calls the recursive procedure with argument k − 1 on
the thereby created subcase. In the next paragraph, we will explain how to
select and change the topologies in this branching and we will find that it is
sufficient to branch into four subcases. The recursion stops if no conflicts are
left in the conflict list (we have found a solution), or if k = 0 (with a non-empty
conflict list we did not find a solution in this branch of the search tree). When
a solution is found, the algorithm outputs the current, complete and tree-like
set of topologies. From this, it is possible to derive the evolutionary tree in
O(n4) time [24]. Scanning the whole search tree, we can find all solutions that
can be obtained by altering k topologies when k is optimal.

Branching. By a careful selection of subcases to branch into, we can explore
all ways to resolve an arbitrarily selected local conflict with only four recur-
sive calls. Let t1, t2, t3 be the three topologies which are not tree-consistent
and which form the local conflict. By Lemma 6.2.3, t1, t2, t3 contradict the
substitution property. Recall that, given [ab|cd], the substitution property
(Proposition 6.2.1) requires topology [ab|ce] or topology [ae|cd]. Therefore,
we can assume the following setting for the three quartets contradicting the
substitution property: Topology t1 = [ab|cd], topology t2 is the topology for
quartet {a, b, c, e} different from [ab|ce], and topology t3 is a topology for quar-
tet {a, c, d, e} different from [ae|cd]. In order to change the three topologies
such that they satisfy the substitution property, we have the following possibil-
ities. We can change t1; either (1) we change t1 to [ac|bd], or (2) we change t1

to [ad|bc]. The cases in which t1 is not changed remain to be covered. With
unchanged t1, we have to (3) change t2 to [ab|ce] or (4) change t3 to [ae|cd]

because these are the only remaining possibilities to satisfy the substitution
property. These four cases are, for an example of a local conflict, depicted in
Fig. 6.5.

Updating the conflict list. The main task in every node of the search tree
is to update the conflict list after changing a topology. In Fig. 6.2, this is done
by the instruction update(C, t′), called with a conflict list C and a changed
topology t′ as arguments. We search, when changing t′, the “neighborhood”



96 Consensus of Quartets

Recursive procedure resolve(Q, k, C):
Input: Complete set Q of quartet topologies, a non-negative

integer k, and a list C of all three-sets of conflicting quartets in Q.
Output: A complete tree-like set Q ′, if existent, of quartet topologies such

that Q ′ differs from Q in at most k quartet topologies.

Method:
(Case 0) if C is empty then /* we have found a solution */

output the current set of quartet topologies and stop;
(Case 1) if (k = 0) then return; /* more than k recursive calls */
(Case 2) Choose c ∈ C, with c = {t1, t2, t3} such that

the substitution property states “t1 ∈ Q ⇒ (t′2 ∈ Q or t′3 ∈ Q)”
where t′2 and t′3 are alternative topologies for t2 and t3, resp.

for the two alternative topologies t′1 of t1 do
Cnew = Update(C, t′1);
resolve((Q-{t1})∪{t′1}, k − 1, Cnew);

end do

Cnew = Update(C, t′2);
resolve((Q-{t2})∪{t′2}, k − 1, Cnew);

Cnew = Update(C, t′3);
resolve((Q-{t3})∪{t′3}, k − 1, Cnew);

return; /* no success in current branch
→ step one level up in recursion */

Figure 6.4: Outline in pseudocode of a recursive procedure for eliminating con-
flicts by changing at most k quartet topologies (if possible). Further explanation
is given in Section 6.4.

of t′, and update the conflict list: We (1) remove the three-sets of quartets in
the list whose topologies are now tree-consistent, and (2) add the three-sets of
quartets not in the list whose topologies now form a local conflict.

Correctness. To obtain a non-conflicting set of quartet topologies, we have
to, following Theorem 6.2.4, resolve all local conflicts. Such a local conflict can
be removed by altering (at least) one of the three involved quartet topologies.
The recursive procedure has to try every possibility to resolve the local conflict
in order to find every possible solution. If there is a solution, we will find it
by the described branching strategy. If for none of the three topologies we can
find a solution while altering the topology, the conflict cannot be removed.

Running time. Initially building the conflict list takes, by Lemma 6.2.5,
O(n4) time. Using the conflict list, we can, in constant time, access a local
conflict and determine the cases to branch into. Since it is sufficient to branch
into four subcases for a local conflict and since, in every subcase, we decrease
the parameter k by one, we obtain a search tree size at most 4k.



6.4 A Fixed-Parameter Algorithm for MQI 97

a c

b d

a b

c ea c

e d

a c

b d

a c

b ea d

c e

a b

d c
a b

c ea d

c e

a b

c d

a b

c ea d

c e

a c

b d

a b

c ea d

c e

recursive branching

LOCAL CONFLICT

Figure 6.5: Example of a local conflict (left) and the four possible ways (right)
which are considered by the algorithm to resolve the local conflict by changing
one of the three topologies. The changed quartet topologies are indicated by
dashed lines.

With n species, updating the list of conflicting size three sets can be done in
O(n) time: Following Lemma 6.2.2, local conflicts can only occur among three
topologies consisting of no more than five taxa. Therefore, having changed the
topology of one quartet {a, b, c, d}, we only have to examine the “neighborhood”
of the quartet, i.e., those sets of five taxa containing all of a, b, c, d. For every
such set of five taxa it can be examined in constant time whether for three
topologies over the five taxa a new conflict emerged or whether an existing
conflict has been resolved. Given taxa a, b, c, d, we have n − 4 choices for a
fifth taxon. Thus, O(n) is an upper bound for the update procedure.3

Altogether, we obtain:

Theorem 6.4.1. MQI can be solved in O(4k · n + n4) time.

Our algorithm has only O(n4), i.e., up to constant factors optimal memory
requirement since the input size is already O(n4): Firstly, we have to store the
topology for every of the O(n4) quartets. Secondly, we maintain the conflict

3In fact, as explained in Section 6.2, we only consider sets of five species containing a
designated taxon f. Therefore, if we change the topology of a quartet {a, b, c, d} which does
not contain the designated taxon f, then we only have to consider one set of five topologies,
namely {a, b, c, d, f}. In this special case, the update procedure can be done in O(1) time.



98 Consensus of Quartets

list; as observed in Section 6.2, the size of the conflict list is O(n4). Finally, we
have to keep track of the topologies changed on the path from the root of the
search tree to the current search tree node; this are at most k < n4 topologies.
For a generalization of our algorithm to weighted quartets refer to [89].

6.5 Improving the Running Time in Practice

In Section 6.5.1, we collect some ideas for improvements still maintaining the
algorithm’s optimality. In Section 6.5.2, sacrificing guaranteed optimality, we
propose to combine the algorithm with existing methods that infer strongly
supported parts of a tree.

6.5.1 Enhancements Maintaining Optimality

Fixing topologies. Once a topology has been altered, we will, in subsequent
stages of recursion, never alter it again. We call this fixing the topology. This
will avoid redundant branchings in the search tree.

Forcing topologies to change. In contrary to the fixing of topologies, it
might be possible to identify topologies which necessarily have to be altered in
order to find a solution. We call this forcing a topology to change. The ideas
described here are similar to those used in the reduction to a problem kernel for
the 3-Hitting Set problem given in [153]. Here, however, we will not obtain
a problem kernel for our MQI. Nevertheless, the following ideas are likely to
result in a better performance of the algorithm since they allow recognizing
situations in which we cannot find a solution and they also allow for a better
branching.

Lemma 6.5.1. Consider an instance of MQI in which quartet q has topology t.
If there are more than 3k distinct local conflicts which contain t, then in a
solution for this instance the topology for q is different from t.

Proof. We have shown in Section 6.2 that three topologies only can form a local
conflict, if there are not more than five taxa occurring in them (Lemma 6.2.2).
For five taxa, there are five quartets consisting of these taxa. Therefore, when
we are given two quartet topologies t1 and t2 and if there are more than five
taxa occurring in t1 and t2, they cannot form a conflict with a third topology.
If there are exactly five taxa occurring in t1 and t2, then there are five quartets
consisting of these five taxa, two of which are the quartets for t1 and t2. The
remaining three topologies are the only possibilities for a topology t3 that could
form a conflict with t1 and t2.

Now, consider the situation in which, for a quartet topology t, we have more
than 3k distinct local conflicts which contain t. We show by contradiction



6.5 Improving the Running Time in Practice 99

that we have to alter topology t to find a solution. Assume that we can find
a solution while not altering t. By changing a topology t′, we can cover at
most three conflicts containing t since there are at most three local conflicts
containing both t and t′. Therefore, by changing k topologies, we can resolve
at most 3k local conflicts. This contradicts our assumption and shows that we
have to alter t to find a solution.

We call the topologies obtained from Lemma 6.5.1 “forced to change,” and
mark them appropriately in order to take them into consideration in the next
branching situation.

Recognizing hopeless situations. In this paragraph, we describe situations
in which, at some level in the search tree where we are allowed to alter at most
k topologies, we cannot find a solution. This will allow us to avoid branching
into further (useless) subcases and, thus, to cut off parts of the search tree.
Having a local conflict consisting only of fixed topologies, we obviously cannot
resolve this conflict while not changing one of the fixed topologies.

If, after identifying the topologies forced to change, there are more than k of
them, it is obvious that a solution is not possible—already by changing these
topologies we would change more topologies than we are allowed to.

The following two lemmas contain more involved observations. If a local conflict
does not contain a topology which is forced to change, then we call it an unforced
local conflict.

Lemma 6.5.2. Let us have an instance of MQI in which we have identified p

conflicts which are forced to change. If the number of unforced local conflicts is
greater than 3(k − p)k, then the instance has no solution.

Proof. We have to change the p topologies that are forced to change. We,
therefore, decrease the parameter by p and have the possibility to resolve all
local conflicts containing such a topology. The conflicts which certainly remain
to be resolved are the unforced conflicts. From the preceding paragraph we
know that, by changing a topology, we can resolve at most 3k distinct local
conflicts. Therefore, by altering (k − p) topologies, we can resolve at most
3(k − p)k distinct local conflicts.

Lemma 6.5.3. An instance of MQI in which the number of local conflicts is
greater than 6(n − 4)k has no solution.

Proof. By Lemma 6.2.2, local conflicts can only arise between three topologies
that do not involve more than five taxa. Thus, given a quartet q = {a, b, c, d}

with topology t, a local conflict can arise with other quartets involving taxa
from {a, b, c, d, e} for some e. Since e has to be different from a, b, c, and d,
there are n−4 choices for this taxon e. There are five quartets over {a, b, c, d, e}

and four of them excluding the given q. We have
(

4
2

)

= 6 ways to choose two



100 Consensus of Quartets

a b

c1 c2 c3 c4 c5 c6 vs.

a

b

c1 c2 c3 c4 c5 c6

(a) (b)

Figure 6.6: Example where the result from the Q∗ method leads to a suboptimal
solution for MQI.

from these four quartets in order to form size three sets containing q. Therefore,
by altering one topology, we can resolve at most 6(n−4) distinct local conflicts,
and by altering k topologies at most 6(n − 4)k distinct local conflicts.

6.5.2 Fixing Strongly Supported Edges in Advance

To improve the performance of exact fixed-parameter algorithms in practice, it
is reasonable to combine them with known heuristics. For MQI, we propose to
preprocess the quartet topologies using methods that infer strongly supported
edges of the tree. Examples of those methods include the Q∗-method [24],
quartet cleaning [25, 194], or hypercleaning [23]. The advantage of the methods
is that they are fast (e.g., hypercleaning runs in O(n5)). Their disadvantage
is that they resolve only the strongly supported part of the tree’s edges; on
unfavorable input they resolve no edges at all. We can take advantage of their
output, however, by fixing the topologies induced by the inferred edges. On
this modified input, we run our MQI algorithm in order to completely resolve
the partly resolved tree. Even a small set of fixed edges can significantly prune
our search space.

Preprocessing by the Q∗-method. Here, we describe the use of the Q∗-
method by Berry and Gascuel [24] as a preprocessing for our algorithm. The
Q∗-method produces the maximum subset of the given quartet topologies that
is tree-like. In the combined use with our algorithm, we fix these quartet
topologies from the beginning. The tree we obtain will be a refinement of
the tree reported by the Q∗-method.

We cannot guarantee that the reported tree is the optimal solution for MQI
as illustrated by the following example. Consider the tree in Fig. 6.6(a) on
taxa {a, b, c1, c2, . . . , c6}. Suppose we are given the complete set of 70 quartet
topologies, where the 55 quartets containing at least three taxa taken from {c1,
c2, . . . , c6} have the topology induced by the tree, but the remaining 15 quartets
have the topology [ab|c′c′′] where c′, c′′ ∈ {c1, c2, . . . , c6} and c′ 6= c′′. On this in-
put, the Q∗-method infers the bipartition ab|c′c′′ for all c′, c′′ ∈ {c1, c2, . . . , c6};
then applying the MQI algorithm leads to a solution for k = 20, e.g., the tree
shown in Fig. 6.6(b) whose induced topologies differ from the given topologies



6.6 Experimental Evaluation 101

for quartets {b, c, c ′, c ′′} with c, c ′, c ′′ ∈ {c1, c2, . . . , c6} (there are
(

6
3

)

= 20 pos-
sibilities to choose c, c ′, c ′′). The optimal solution of MQI, however, would be
the tree depicted in Fig. 6.6(a) for k = 15.

The examples where the Q∗-method yields misleading results are quite artificial.
On real data, these mistakes are unlikely: before reporting misleading edges,
i.e., edges not belonging to an optimal solution, the Q∗-method will rather
report no edge at all. Our experiments described in Section 6.6 support our
conjecture that with the preprocessing by the Q∗-method we find every solution
that the MQI algorithm would find. Moreover, the experiments show that this
enhancement allows us to process much larger instances than we could without
using it.

6.6 Experimental Evaluation

To investigate the usefulness and practical relevance of our algorithm, we per-
formed experiments on synthetic as well as on real data from fungi. The imple-
mentation of the algorithm was done using the programming language C. The
algorithm contains the enhancements described in Section 6.5. The combined
use with the Q∗-method is, however, only applied when processing the fungi
data, not when processing the synthetic data. The reported tests were done on
a LINUX PC with a Pentium III 750 MHz processor and 192 MB main memory.

6.6.1 Synthetic Data

We performed experiments on artificially generated data in order to get some
idea about the practical contexts in which our algorithm might be useful. For
n given taxa and parameter k, we produced a data file as follows. We generated
an evolutionary tree by recursively joining randomly selected subtrees. The
subtrees were selected from a set which, initially, contained only the one-node
subtrees corresponding to the taxa. When two subtrees were joined, we replaced
them in the set by the newly generated subtree. This procedure, finally, yielded
a tree for n taxa and we derived the quartet topologies from that tree. From
these quartet topologies, we changed k distinct, arbitrarily selected topologies
in a randomly chosen way. For different pairs of values for n and k, ten different
data sets were created for each pair. The reported results denote the average
for test runs on ten data sets.

We experimented with different values of n and k. As a measure of performance,
we used two values: We measured the processing time and, since processing time
is heavily influenced by system conditions, e.g., memory access time in case of
cache faults, also the search tree size. The search tree size is the number of the
search trees nodes.



102 Consensus of Quartets

search tree
n k time size

10 10 0.02 sec 58
20 0.29 sec 1070
50 26 sec 104297

20 10 0.13 sec 30
20 0.16 sec 94
50 25 sec 34693

100 50 min 4460508
30 20 0.72 sec 66

50 9 sec 7007
100 31 min 1519700

50 50 7 sec 186
100 8 min 45514
150 <5 h 6119560

se
ar

ch
tr

ee
si

ze

parameter k
5 10 15 20 30

10

105

107

4k

n = 10

n = 20

n = 30
n = 50

(a) (b)

Figure 6.7: Table (a) displays the results of our algorithm on MQI instances
for different values of n and k. We give processing time and the size of the
scanned search tree. Fig. (b) displays, on a logarithmic scale, the difference
of the theoretical 4k bound (dashed) and the real search tree size (solid lines).
Each solid line shows, for a fixed number of taxa n, how the search tree size
increases for increasing values of k.

Fig. 6.7(a) gives a table of results for different values of n and k. We could pro-
cess large instances of the problem, e.g., n = 50 and k = 100 in eight minutes.
Regarding the search tree size, we compare in Fig. 6.7(b), on a logarithmic scale,
the theoretical upper bound of 4k to the real size of the search tree. The search
trees are, by far, smaller than the 4k bound. This is mainly due to the practical
improvements of the algorithm (see Section 6.5). We also note that, for equal
value of k, a higher number of taxa n results in a smaller search tree, if the
value of k exceeds some turning point; this is due to the fact that the number
of “correct” quartet topologies becomes, with growing n, higher compared to
the at most k “incorrect” topologies and, therefore, the practical improvements
presented in Section 6.5 apply more often.

6.6.2 Real Data

Using our algorithm, we analyzed the evolutionary relationships of three sets
of fungi species.

In our first example, we considered species from the mushroom genus Amanita,
a group that includes well-known species like the Fly Agaric and the Death
Cap. The underlying data were an alignment of nuclear DNA sequences coding
for the D1/D2 region of the ribosomal large subunit (alignment length 576)
from Amanita species and one outgroup taxon, as used by Weiß et al. [199,



6.6 Experimental Evaluation 103

running time in sec.
n no Q∗ with Q∗

8 0.46 0.36 (21%)
9 3.41 0.85 (32%)

10 35.96 2.68 (38%)
11 617.56 4.11 (41%)
12 7039.82 5.44 (43%)

Figure 6.8: Speed-up when using Q∗ preprocessing on species taken from the
Amanita dataset described in Subsection 6.6.2. The value given in brackets is
the percentage of quartet topologies fixed by Q∗.

A. fulva
A. nivalis
A. vaginata
A. ceciliae
A. caesarea
A. longistriata
A. incarnatifolia
A. mira
A. gemmata
A. pantherina
A. muscaria

Limacella glioderma
A. clarisquamosa
A. volvata
A. avellaneosquamosa
A. citrina
A. excelsa
A. phalloides
A. subjunquillea
A. fuliginea
A. japonica
A. solitaria

Vaginatae

Caesareae

Amanita

Lepidella

Phalloideae

Validae

Amidella

Amanita

Lepidella

Figure 6.9: Optimal tree found for a set of 21 Amanita species and one out-
group taxon; indicated is the grouping of Amanita species into 7 sections and
2 subgenera.

200]. We inferred the quartet topologies by (1) using dnadist from the Phylip
package [71] to compute pairwise distances with the maximum likelihood metric,
and (2) using distquart from the Phyloquart package [24] to infer quartet
topologies based on the distances.

The construction of the evolutionary tree was done by a preprocessing of the
data using the Q∗-method, which was also taken from the Phyloquart package.
Experiments on small instances, e.g., 10 taxa, showed that all solutions we
found without using the Q∗-method are also found when using it. Using the Q∗-
method, however, resulted in a significant speed-up of the processing. Fig. 6.8
shows this impact for small numbers of Amanita species. Note, however, that
the speed-up heavily depended on the data. In our results shown in Fig. 6.8



104 Consensus of Quartets

and in the following, we neglect the time needed for the preprocessing by the
Q∗-method, which was, e.g., 0.11 seconds for n = 12.

Our recursive algorithm processed a set of n = 22 taxa in 23 minutes (which
includes 0.2 seconds needed by Q∗). The resulting tree was rooted using the out-
group taxon Limacella glioderma and is displayed in Fig. 6.9. The first k-value
for the given 7315 quartet topologies for which we found a solution is k = 978.
The Q∗-method had fixed 41 percent of the quartet topologies in advance. Con-
sidering the tree, the grouping of taxa is consistent with the grouping into seven
sections supported by Weiß et al. [200], who used the distance method neigh-
bor joining, heuristic parsimony methods, and maximum likelihood estimations.
Particularly, our grouping is nearly identical to the topology revealed by Weiß
et al. using maximum likelihood estimation. This topology is well compatible
with classification concepts based on morphological characters, e.g., the sister
group relationship of sections Vaginatae and Caesareae, and the monophyly
of subgenus Amanita which were not supported in the neighbor joining and
heuristic parsimony analysis.

To contrast our results with another heuristic method, we ran quartet puzzling
with 1000 puzzling steps on the same data set. The resulting tree was computed
in 1.3 minutes and also reflects the mentioned grouping of taxa into the seven
subsections. However, it could not resolve the grouping of subsections and did,
in particular, not indicate the division into two sections.

To assess our method on further datasets, we shortly describe two further analy-
ses made on fungi sequence data; these sequences were taken from the TreeBase
database [137] which also provides the corresponding published phylogenetic
analyses.

Taking the data from Oda et al. [155], we considered a set of 26 sequences,
namely length-875 nucleotide sequences of the internal transcribed spacer region
of nuclear ribosomal DNA. In [155], these sequences were analyzed by a neighbor
joining analysis using PHYLIP [71]. Within 17 minutes, we found a solution
with k = 762 depicted in Fig. 6.10. The tree agrees in most parts with the
tree published in [155], except of an exchange of the taxa Amanita ceciliae and
Amanita vaginata. This example shows that we can tolerate larger numbers of
taxa provided that the quality of quartets is “good,” i.e., only a limited number
of quartet topologies has to be changed in order to obtain a tree.

We analyzed the data presented in Hughey et al. [102], and considered one
example set of sequences more closely here. This set consisted of length-469
sequences of mitochondrial small rDNA, for 19 representatives of fungi genera
including several representatives of the familiy Boletales. The objective in [102]
was to study the relationship of the species Calostoma in comparison with
other Basidiomycetes. There, the dataset was analyzed with heuristic maximum
parsimony techniques using PAUP. With our method, we found a solution with
k = 289 within 15 minutes, and the corresponding tree is depicted in Fig. 6.11.



6.6 Experimental Evaluation 105

A. volvata (LEM 960165)
A. virosa (LEM 960310)
A. porphyria (LEM 960303)
A. citrina citrina (60298)
A. citrina grisea (970501)
A. spissace (LEM960187)
A. rubescens (LEM950063)
A. flavipes (LEM960084a)
A. pseudoporphyria (60037a)
A. abrupta (LEM960299a)
A. virgineoides (LEM960205)
A. japonica (LEM960167)
A. longistriata (LEM950067)
A. hemibapha hemibapha (600)
A. hemibapha javanica (513)
A. hemibapha similis (60013)
A. similis (60013)
A. ceciliae (LEM950069)
A. vaginata vaginata (50304)
A. vaginata fulva (60312b)
A. vaginata punctata (60270)
A. sychnopyramis
A. melleiceps (LEM970723)
A. rubrovolvata (60292b)
A. muscaria (LEM960337)
A. pantherina (LEM950167)

Figure 6.10: Optimal tree found for a set of 26 Amanita species taken from [155]
(numbers refer to sequence identification as used in [155]).

Pseudocolus
Geastrum
Sphaerobolus
Crucibulum
Cyanthus
Tulostoma
Calvatia
Lycoperdon
Calostoma
Paxillus
Rhizopogon
Gomphidius
Suillus
Chroogomphus
Paragyrodon
Boletus
Phylloporus
Scleroderma
Russula

Figure 6.11: Optimal tree found for representatives of 19 Basidiomycetes genera,
original data were taken from [102].

The tree agrees in most parts with the tree published in [155]; an exchange
of genera Scleroderma and Calostoma even better supports the hypothesis of
Hughey et al. [102] that Calostoma is closely grouped to the members of the
familiy Boletales (which do not include Scleroderma) in spite of an “extreme
morphological divergence” [102]. Moreover, it seems reasonable that in our
tree, in contrast to the tree in [102], the Paxillus genus (belonging to Boletales)



106 Consensus of Quartets

is also grouped with the other Boletales genera. The other datasets presented
in [102] contained even less taxa and, thus, could also be analyzed with our
method within minutes.

In summary, our experiments showed that our method allows to derive inter-
esting results for real data with a limited number of taxa. The performance
of our approach was highly dependent on the quality of the quartets. In our
examples, we analyzed up to 26 taxa and datasets and it seems reasonable to
solve up to 30 taxa for quartets of good quality. However, we also encountered
datasets with only 15 taxa which turned out to be unsolvable for our approach
within reasonable time, i.e. over night, due to the poor quality of the inferred
quartets.

6.7 Conclusion and Open Questions

We showed that Minimum Quartet Inconsistency can be solved in worst-
case O(4kn + n4) time, meaning that the problem is fixed-parameter tractable
for parameter k denoting the number of faulty quartet topologies. Several
ideas for tuning the algorithm showed that its practical performance is much
better than the theoretical bound given above (in particular, concerning the size
of the search tree, 4k). This is clearly expressed by our experimental results
in Section 6.6. The combination of heuristic methods, inferring the strongly
supported edges of a tree, and exact algorithms seems to result in trees of high
quality and, therefore, deserves further investigation. This combination is a
good trade-off between the heuristics, which are fast but result in only partially
resolved trees, and the exact algorithms, which result in completely resolved
trees but have exponential running times. We conclude with questions that
remain open:

1. Extend the experimental investigation of the fixed-parameter MQI al-
gorithm to weighted quartet topologies (to which our algorithm can be
generalized to, see [88, 89] for more details).

2. Are there better heuristic strategies reducing the size of the search tree,
e.g, lower bounds on the number (or the total weight) of quartets that
we have to alter in order to find a solution. Such bounds could rapidly
improve the running time of our algorithm.

3. Is there a practically relevant reduction to a problem kernel for MQI?

4. Are there other parameters than the number of erroneous quartet topolo-
gies that also allow fixed-parameter algorithms? Can we, in this way, find
fixed-parameter algorithms for the SparseMQI problem?

5. For every set of m quartet topologies, there is a binary tree inducing at
least m/3 of the given quartet topologies. Therefore, is it fixed-parameter



6.7 Conclusion and Open Questions 107

tractable with respect to parameter k to determine whether we can satisfy
(m/3) + k quartets for a given complete set of m quartet topologies (this
question was posed by Chor [46])?

6. Since MQI can be solved in polynomial time for k < (n−3)/2 [25], we can
ask—in the “spirit of parameterizing above guaranteed values” [135]: Is it
fixed-parameter tractable to find a tree that violates at most (n−3)/2+k,
k ≥ 0, quartet topologies?



108 Consensus of Quartets



Chapter 7

Consenus of Gene Orderings

With breakpoint distance, the genome rearrangement field delivered one of the
currently most popular measures for comparing genomes of related species on
the level of their gene orders. Here, genomes of species are represented as signed
orderings of elements which represent the genes. Differences in the gene order
are represented as breakpoints, i.e., pairs of elements which are adjacent in one
ordering but not in the other. Then, Breakpoint Median is a core problem:

Breakpoint Median
Input: Signed orderings π1, π2, . . . , πk on n elements and a non-
negative integer d.
Question: Is there a signed ordering π with

∑k
i=1 dbp(πi, π) ≤ d?

Herein, dbp(πi, π) denotes the breakpoint distance between orderings πi and π,
see Section 7.1 for definitions. The main application of Breakpoint Median
lies in the recently intensively studied field of breakpoint phylogenies [51, 52,
138, 140, 141, 142] where the goal is to compute phylogenetic trees according to
the maximum parsimony criterion for a set of species based on their gene order
information. Notably, in this context, Moret et al. [141] emphasize that “exact
solutions are strongly preferred over approximate solutions,” since suboptimal
solutions can lead to very different evolutionary reconstructions.

What is currently known about Breakpoint Median is summarized as fol-
lows.

1. Breakpoint Median is NP-complete and remains so even in the case
of only three input orderings [33, 161].

2. In the case of three input orderings, Breakpoint Median has a polynomial-
time algorithm with approximation ratio 7/6 [165].



110 Consenus of Gene Orderings

3. Sankoff and Blanchette [174] presented a mathematically unanalyzed gree-
dy heuristic for Breakpoint Median using a search tree employing a
branch-and-bound technique. This algorithm was re-used and improved
with respect to its implementation by Moret et al. [142]. Both implemen-
tations focus on the case of three input orderings.

By way of contrast, we also employ a search tree method which deviates from
Sankoff and Blanchette’s approach in that it employs a significantly different
branching strategy. Thus, we can present an algorithm solving Breakpoint
Median in O(2.15d·kn) time, which is practical (as demonstrated by our exper-
iments) when d is not too large, a reasonable assumption in applications. No-
tably, with increasing k, the base of our exponential base becomes smaller and
smaller. Observe that, because Breakpoint Median is already NP-complete
for k = 3, in some way the parameterization with d is “enforced”—the prob-
lem is fixed-parameter intractable with respect to parameter k unless P = NP.
Besides experimental investigations for our Breakpoint Median algorithm
itself, we also use it to propose a new approach to compute breakpoint phylo-
genies, applying it to chloroplast gene order data in Campanulaceae [51]. This
complements celebrated “fixed-parameter heuristics” [51, 52, 68] for computing
breakpoint phylogenies. For our new approach, it is important that we can find
optimal breakpoint medians also for k > 3.

7.1 Preliminaries

We start with introducing orderings as they are used to model genome rear-
rangements, e.g., in [33, 141, 165, 174]. By default, we restrict ourselves to
genomes containing the same set of genes and not containing duplicated genes;
to meet these restrictions, it is a common technique to preprocess input data
by deleting genes which occur only in a subset of the genomes or which occur in
more than one copy [51]. These restrictions will be addressed again at the end
of this chapter, in Section 7.5. Further, we restrict our explanation to linear
genomes but it is straightforward to extend our approach to circular genomes.

Given a set G = {1, . . . , n}, an ordering π on G is a 1 : 1 function π : G → G. We
require that every ordering is extended by two special elements s, marking the
start, and t, marking the end, and write ordering π as 〈 s π(1) π(2) . . . π(n) t 〉.
We write Gs for G ∪ {s} (Gt and Gs,t, analogously). An ordering π is signed iff
every π(x), x ∈ G, is equipped with a sign {+,−}, denoting the “orientation” of
the element: In this way, π(x), x ∈ G, can be, for y ∈ G

• a “positive” element +y (or, for sake of brevity, only y), having left-to-
right orientation, or

• a “negative” element −y, having right-to-left orientation.



7.1 Preliminaries 111

Note that a signed ordering contains either y or −y, but not both at the same
time. The special elements s and t are always unsigned. We write G± for the
set {−1, 1,−2, 2, . . . ,−n,n} and G±

s for G± ∪ {s} (G±
t and G±

s,t analogously).

Example. The signed ordering

π = < s + 1 − 3 − 2 + 4 t >

is the ordering where π(1) = 1, π(2) = −3, π(3) = −2, and π(4) = 4.

We use succπ(x), for a signed ordering π and x ∈ Gs, to denote the successor of
element x in π, which is defined with respect to x’s direction: For an element x ∈
G occurring positively in π, the successor is the element following x. An x ∈
G occurring negatively, however, has “reverse” orientation; hence, from x’s
point of view, its successor is the “reverse version” of the element preceding x.
For instance, in ordering π as given above, the successor of element 1 is −3.
Element 2, however, occurs negatively in π and the element following 2 with
respect to this orientation is 3. Formally, we define a successor as follows:

Definition 7.1.1. For x ∈ G±, the successor succπ(x) is given by succπ(x) =

y, y ∈ G±, iff we can find l ∈ G such that one of the following two conditions
applies:

1. π(l) = x and π(l + 1) = y, or

2. π(l) = −x and π(l − 1) = −y.

For the special cases that x = s or that y ∈ {s, t}, we define succπ(s) := y if
π(1) = y; for x ∈ G±, succπ(x) := t if π(n) = x, and succπ(x) := s if π(1) = −x.
The predecessor predπ(y) for y ∈ G±

t is defined analogously. Notably, for
x ∈ G±, this definition satisfies

succπ(x) = −predπ(−x). (7.1)

Example (continued). For π as defined before, we give the tables of succes-
sors and predecessors (the predecessors corresponding, due to equation (7.1),
the successors of the negative elements). In the last column, we indicate
which of the two possibilities in the above definition of succπ applies (since
predπ(x) = −succπ(−x), we can also give the corresponding cases for the pre-
decessor table).

element x succπ(x)

s 1 –
1 −3 (1)
2 3 (2)
3 −1 (2)
4 t –

element x predπ(x)

1 s –
2 −4 (1)
3 2 (1)
4 −2 (2)
t 4 –



112 Consenus of Gene Orderings

For instance, succ(2) = 3 since (case (2) applies) we find l = 3 with π(l) = −2

and π(l− 1) = −3; pred(2) is −4 since pred(2) = −succ(−2), and (for succ(−2)

case (1) applies) we find l = 3 with π(l) = −2 and π(l + 1) = 4.

We use succ∗π(x) for x ∈ G± to denote the set of elements “reachable” in a
signed ordering π by a series of subsequent “successor steps”:

Definition 7.1.2. For x ∈ G±
s,t and a signed ordering π, the set of reachable

elements for x is given by

succ∗π(x) = { y ∈ G±
s,t | there are x1, . . . , xr ∈ G± for which

the subsequent conditions 1, 2, 3 apply }

1. x = x1,

2. for l = 1, . . . , r − 1: succπ(xl) = xl+1, and

3. y = xr.

Analogously, we define pred∗
π(x).

Example (continued). Considering π = < s + 1 − 3 − 2 + 4 t >, we
obtain:

x succ∗π(x)

s {1,−3,−2, 4, t}

1 {−3,−2, 4, t}

2 {3,−1, s}

3 {−1, s}

4 {t}

x pred∗
π(x)

1 {s}

2 {−4, t}

3 {2,−4, t}

4 {−2,−3, 1, s}

t {4,−2,−3, 1, s}

Using the successor relation, we can also formally define breakpoints:

Definition 7.1.3. Given two signed orderings π1 and π2, both over G, we call
a pair (x, y), x ∈ G±

s and y ∈ G±
t , a breakpoint of π1 with respect to π2, iff

1. x = s or π1(l) = x for some l ∈ G, and

2. succπ1
(x) = y and succπ2

(x) 6= y.

Using the notion of breakpoints, we define the breakpoint distance dbp between
two signed orderings as follows:

Definition 7.1.4. For two signed orderings π1 and π2, both over G, the break-
point distance between π1 and π2 is given by

dbp(π1, π2) =

∣

∣

∣

∣

{ (x, y) | x, y ∈ G±
s,t, (x, y) is breakpoint of π1 w.r.t. π2 }

∣

∣

∣

∣

.



7.1 Preliminaries 113

Due to symmetry, dbp(π1, π2) = dbp(π2, π1).

Example. Given orderings

π1 = < s + 1 − 3 − 2 + 4 t >

and

π2 = < s + 1 + 2 + 3 + 4 t >,

the breakpoint distance is dbp(π1, π2) = 2: Considering the breakpoints of π1

with respect to π2, one breakpoint is (1,−3), since π1(1) = 1, succπ1
(1) = −3,

and succπ2
(1) = 2 6= −3; the other breakpoint is (−2, 4), since π1(3) = −2,

succπ1
(−2) = 4, and succπ2

(−2) = −1 6= 4. Aside from these two, there are no
other breakpoints since succπ1

(s) = succπ2
(s) = 1, succπ1

(−3) = succπ2
(−3) =

−2, and succπ1
(4) = succπ2

(4) = t.

Now, we have all definitions necessary to define Breakpoint Median, the
central problem of this paper. As input, it takes signed orderings π1, π2, . . . , πk.
The input orderings do not necessarily contain the additional symbols s and t

which are necessary for a correct definition of breakpoint distance; if not, these
symbols are added implicitly by the algorithm. Then, Breakpoint Median is
the question whether there a signed ordering π with

∑k
i=1 dbp(πi, π) ≤ d. The

term
∑k

i=1 dbp(πi, π) will, subsequently, also be referred to as the breakpoint
score of π.

Preprocessing the input instance. The following intuitive lemma from [33]
gives us a way to simplify a given input instance by preprocessing:

Lemma 7.1.5. [33] Given signed orderings π1, π2, . . . , πk, all on a set G of n

elements, and elements x, y ∈ G±
s,t, which are adjacent in π1, π2, . . . , πk, i.e.,

succπr (x) = y for all r = 1, . . . , k. Then x and y are also adjacent in an optimal
breakpoint median π, i.e., succπ(x) = y.

Using Lemma 7.1.5, we can preprocess the instance by “contracting” elements
adjacent in all input sequences. From a parameterized complexity point of
view, this preprocessing can be interpreted as a kind of reduction to a problem
kernel, where the original instance consisting of k orderings of n elements each
is reduced to a new instance consisting of k orderings of at most d+ 1 elements
each when also counting the elements s and t (still, of course, all orderings
have the same number of elements). The reason is that, for the resulting input
instance with solution ordering π, we have one breakpoint (x, y) with respect
to at least one of the input orderings for every x ∈ G± and also for x = s.
Therefore, we can assume that in the given set Π = {π1, π2, . . . , πk}, for every
element x, there are at least two orderings in which x has different successors
and there are at least two orderings in which x has different predecessors.

Surprisingly, an optimal breakpoint median can have adjacencies that are not
present in any of the input orderings [33].



114 Consenus of Gene Orderings

Lemma 7.1.6. [33] Given signed orderings π1, π2, . . . , πk, all on a set G

of n elements, and an optimal breakpoint median π. Then there can be ele-
ments x, y ∈ G±

s,t with succπ(x) = y and succπr (x) 6= y for all r = 1, . . . , k.

Proof. We consider the following example taken from [33].

Given three orderings

π1 =< s + 5 + 6 + 7 + 4 + 1 + 2 + 3 t >,

π2 =< s + 1 + 5 + 6 + 4 + 2 + 3 + 7 t >,

π3 =< s + 1 + 2 + 5 + 4 + 3 + 6 + 7 t >,

then

π =< s + 1 + 2 + 3 + 4 + 5 + 6 + 7 t >

is an optimal breakpoint median, since it induces 12 breakpoints and, using, e.g.,
exhaustive search, we can show that there is no breakpoint median inducing
less than 12 breakpoints. However, in π neither the adjacency succπ(3) = 4

nor the adjacency succπ(4) = 5 is present in any of the three given orderings.
The reason is that π realizes all adjacencies that are present in at least two
input orderings. This outweighs the disadvantage of setting succπ(3) = 4 and
succπ(4) = 5 since 4 has different successors in π1, π2, and π3 and the same is
true for the predecessors of 4.

Notably, in the example shown in the proof of Lemma 7.1.6, there exists also
a breakpoint median π = π1 inducing 12 breakpoints while containing only
adjacencies which are present in at least one of the input orderings. In gen-
eral, however, there are also examples where the optimal breakpoint necessarily
contains adjacencies which occur in none of the input orderings (this can be
verified by testing all possible input orderings). Since these examples are more
complex, we omit to give one here.

Lemma 7.1.6 and the discussion following Lemma 7.1.6 imply that, when search-
ing an optimal breakpoint median, it is not sufficient to only consider adjacen-
cies present in the input orderings.

7.2 A Fixed-Parameter Algorithm for
Breakpoint Median

In this section, we present a bounded search tree algorithm that solves Break-
point Median in O(2.15d · kn) time.

In Subsection 7.2.1, we introduce some further notation used specifically in the
description of the algorithm. The recursive search procedure which constitutes
the core of the algorithm, is presented in Subsection 7.2.2; it computes an



7.2 A Fixed-Parameter Algorithm for Breakpoint Median 115

intermediate representation of the solution. How to translate this intermediate
representation into one (or more) solutions for the given Breakpoint Median
instance is described in Subsection 7.2.3. The correctness of the algorithm is
discussed in Subsection 7.2.4. The running time analysis is treated in two
steps: Subsection 7.2.5 gives a running time analysis for the case of three input
orderings and, based on this, Subsection 7.2.6 generalizes this analysis to more
than three input orderings.

7.2.1 Notation

The algorithm starts its search for a median ordering π with the set of uncon-
nected elements G, i.e., no element is assigned a successor or a predecessor. For
an element x ∈ G for which we have not yet chosen a successor (or predeces-
sor), we write succπ(x) = ∅ (or predπ(x) = ∅). We introduce a link between
elements x and y, x ∈ G±

s , y ∈ G±
t , with succπ(x) = ∅ and predπ(y) = ∅, when

we set succπ(x) := y; implicitly, this also sets predπ(y) := x. The algorithm
searches a median by introducing link by link into π. As long as there are
elements x ∈ G±

s,t with succπ(x) = ∅ or predπ(x) = ∅, we call the ordering π

partial. Otherwise, we call it complete. A predicate complete(π) is used to test
whether π is complete. A (partial) ordering obtained from a partial ordering π

by setting succπ(x) := y is referred to by π[succ(x) = y] (which also implies
that predπ(y) = x). Analogously, we use π[pred(x) = y].

In its search for the median, the algorithm considers to set links that are also
present in at least one of the input orderings. However, due to Lemma 7.1.6, it
also has to consider to set links that are not present in the input orderings. In
the latter case, e.g., if the algorithm decides to link x ∈ G with an element which
is not successor of x in any of the input orderings, the algorithm may defer the
determination of the concrete successor element; this is indicated by setting
succπ(x) :=⊥ (analogously for predπ(x) :=⊥). If succπ(x) =⊥ or predπ(x) =⊥,
then x is referred to as an isolated element. Note that we call the ordering
complete if we have chosen successor and predecessor values—including ⊥—for
all elements.

In this way, the table containing for all x ∈ G the successor and predecessor
entries is, in our algorithm, an intermediate representation of the solution or-
dering, which is constructed in a step-by-step fashion. Every ordering has a
corresponding representation as a successor/predecessor table which does not
contain ∅ and ⊥ entries. But not every successor/predecessor table is valid
meaning that it can be extended, by replacing ∅ and ⊥ entries, to a table cor-
responding to an ordering. Therefore, we introduce, for sake of brevity, the
predicate invalid(π) that tests whether the successor/predecessor table for π

can be extended to a valid table. More precisely, invalid(π) tests π for two
conditions which are, if at least one of them applies, the reason that the succes-
sor/predecessor table of π is not valid. Predicate invalid(π) evaluates to true if
one of the following two conditions holds:



116 Consenus of Gene Orderings

• there is some x ∈ G with x ∈ succ∗π(x), i.e., there is a “cycle” in the
successor relation, or

• there is t ∈ succ∗π(s), but |succ∗π(s)| < |G| + 2, i.e., there is a “bypass” in
the successor relation between the start and the end element.

Given a set of signed orderings Π, all on set G, and x ∈ G±
s,t, we define succ(Π, x)

as the set of elements y for which succπ(x) = y for π ∈ Π. Analogously, we
define pred(Π, x). Further, we write #(Π, succ(x) = y) to denote the num-
ber of orderings π ∈ Π in which succπ(x) = y; #(Π, pred(x) = y) is defined
analogously.

7.2.2 The Recursive Procedure

The recursive procedure of Algorithm BM is presented in Figure 7.1. It takes
as input signed orderings π1, . . . , πk and a positive integer d, and reports, if
existent, a median π for which

∑k
i=1 dbp(πi, π) ≤ d. In the following, firstly,

we specify how to compute a successor and predecessor table for such a π

(which can contain ⊥ entries); it is deferred to Subsection 7.2.3 to describe how
to obtain a concrete ordering π (by setting links also for the isolated elements)
from this table.

Description of the procedure. The recursive algorithm builds a search tree
to construct π from initially unconnected elements; in one node of the search
tree, it selects an element x ∈ G±

s,t with succπ(x) = ∅ (or predπ(x) = ∅). It
decides on a set of possible successor (or predecessor) values and recursively
considers these values by branching into one subcase for each successor (or
predecessor) value in the set. In this search, we keep track of the number of
induced breakpoints: The algorithm is started with a parameter d denoting the
allowed number of breakpoints. It maintains a breakpoint counter ∆d denoting
the difference between d and the number of breakpoints that are already induced
by the (partial) ordering π as it is constructed up to this point. When branching
into one subcase while introducing a new link, ∆d is decreased by the number
of breakpoints caused by this new link. The recursion stops as soon as we
introduced more breakpoints than were allowed, i.e., if ∆d < 0. A solution is
found when we complete the ordering with a non-negative ∆d parameter.

Branching cases. As possible successors for an element x, we consider the
successors of x in the input orderings. Having chosen an arbitrary x ∈ Gs

with succπ(x) = ∅, we recursively consider the case of setting succπ(x) := y for
every y ∈ G±

s,t with succπi
(x) = y for some i ∈ {1, . . . , k}. Considering these

branching cases, however, is not sufficient. Due to Lemma 7.1.6, we also have
to allow successors which do not occur in any of the input orderings; such a
link causes k breakpoints. We handle this by one additional “isolation” case
which sets succπ(x) :=⊥ and, thus, defers the choice of a concrete successor to



7.2 A Fixed-Parameter Algorithm for Breakpoint Median 117

Recursive procedure BM(π,∆d)

Global: Set Π of k signed orderings π1, . . . , πk over Gs,t

and a non-negative real d.

Input: A partial ordering π and an integer ∆d.

Output: A complete ordering, if existent, that can be obtained by
completing π in a way such that at most ∆d new breakpoints
are introduced.

Method:
(Case 0) Recursion ends.

if (∆d < 0) then return; /* π causes more breakpoints than allowed. */
if invalid(π) then return; /* π is not a valid ordering */
if complete(π) then report π; /* solution found */

(Case 1) Recursion continues.
choose x ∈ {1, . . . , n} with succπ(x) = ∅ or predπ(x) = ∅;
if (succπ(x) = ∅) then

/* Try to link x with every successor in the input orderings: */
for every y ∈ succ(Π, x) do

if (predπ(y) = ∅) then
newd := ∆d − (k − #(Π, succ(x) = y));
call BM(π[succ(x) = y],newd);

end if
end for
/* Try to isolate x: */
call BM(π[succ(x) =⊥], ∆d − k/2);

else if (predπ(x) = ∅) then
/* Try to link x with every predecessor in the input orderings: */
for every y ∈ pred(Π, x) do

if (succπ(y) = ∅) then
newd := ∆d − (k − #(Π, pred(x) = y));
call BM(π[pred(x) = y],newd);

end if
end for
/* Try to isolate x: */
call BM(π[pred(x) =⊥], ∆d − k/2);

end if

Figure 7.1: Recursive procedure of Algorithm BM. Inputs are a
Breakpoint Median instance consisting of a set of signed orderings Π =

{π1, π2, . . . , πk}, each over n elements, and a non-negative integer d. First, we
perform a preprocessing according to Lemma 7.1.5: If the resulting instance
has more than d many elements, we can reject the instance. Otherwise, we
invoke the recursion with BM(π, d) for a partial permutation π containing only
unconnected elements, i.e., succπ(x) = ∅ and predπ(x) = ∅ for all elements x.



118 Consenus of Gene Orderings

the stage in which we translate the intermediate representation of π from the
successor/predecessor table to a concrete ordering.

Adjusting the breakpoint counter. When choosing a successor which oc-
curs in one of the input orderings, it is straightforward to adjust the breakpoint
counter: By setting of succπ(x) := y, we introduce #(Π, succ(x) = y) break-
points and, therefore, decrease ∆d by this number. In the remaining isolation
case, we adjust the breakpoint counter as follows: By setting of succπ(x) :=⊥,
we assume that we will, when π is complete, finally link x with an element y

with predπ(y) =⊥, by setting succπ(x) := y where succπi
(x) 6= y for every

i ∈ {1, . . . , k}. Therefore, this link will cause k breakpoints. However, since
both elements are marked as isolated, this introduced link corresponds to two
isolation subcases, one setting succπ(x) :=⊥ and one setting predπ(y) :=⊥.
Therefore, to take these k breakpoints into account, we will decrease ∆d by k/2

in each isolation subcase.

The recursive procedure is initially called with BM(π, d) for the trivial partial
ordering π containing no successor or predecessor entry for any element and
the breakpoint parameter d from the Breakpoint Median formulation. If a
value for d is not known, it could be determined, e.g., using incremental search.

7.2.3 Interpreting the Successor and Predecessor Tables

The recursive procedure given in Subsection 7.2.2 specifies how to compute a
successor and predecessor table, in the following referred to as “s/p-table,” of
a proposed solution π; this s/p-table may contain ⊥ entries to indicate isolated
elements. In the following, we show that we can easily output an actual or-
dering using the information stored in the table. This is accomplished in two
successive steps to be presented in this section: Step (a) tests whether all in-
formation stored in the s/p-table is “consistent” and, if it is, Step (b) outputs
the ordering. Before stating these steps explicitly, we give some further insight
into the structure of the information stored in the s/p-table.

Lemma 7.2.1. Given a Breakpoint Median instance and the s/p-table for
a complete ordering generated by procedure BM, i.e., an s/p-table containing
no ∅ entries, the number of ⊥ entries is even.

Proof. The reason is that the table has an even number of entries (since an
element x ∈ G has a successor and a predecessor entry, s has only a successor
entry, and t has only a predecessor entry) and every new link between two
elements adds exactly two entries.

The idea of representing an ordering π as a s/p-table which also contains ⊥ en-
tries is to, in this way, identify blocks which can be rearranged without affecting
the breakpoint score of π. We define these blocks as follows:



7.2 A Fixed-Parameter Algorithm for Breakpoint Median 119

Definition 7.2.2. Given a set of signed orderings Π and a signed ordering π,
all over G±

s,t, a sequence of elements x1, . . . , xr ∈ G±
s,t is called isolated block b

of π if

1. succπ(xl) = xl+1 for l = 1, . . . , r − 1,

2. predπ(x1) =⊥ or x1 = s, and

3. succπ(xr) =⊥ or xr = t.

Elements x1 and xr are called endpoints of the isolated block and they are re-
ferred to as el(b) and er(b). An isolated block with x1 = s is referred to as bs;
an isolated block with xr = t is referred to as bt.

In the recursive procedure BM as given in Subsection 7.2.2, it may happen that
we create two isolated blocks bi and bj which have endpoints er(bi) and el(bj),
respectively, which are adjacent in one of the input orderings. In this case,
however, it would be preferable to link these blocks by setting succπ(er(bi)) :=

el(bj). This solution, however, would be found in another branch of the search
tree. Therefore, we can, in this case, waive the proposed solution π. We will
see in the next subsection that, thereby, we do not loose any solution.

Step (a): Given an ordering π, represented by its s/p-tables, with
isolated blocks bs, b1, b2, . . . , bq, bt; if there are blocks bi and bj

among them (if q ≥ 1, it is not allowed that both bi = bs and
bj = bt) such that

• succπ′(er(bi)) = el(bj) for any π ′ ∈ Π

then we return without output.

After Step (a), the isolated blocks have the intended property which is described
in the following. To this end, we introduce rearrangements of these blocks.
Given an isolated block b consisting of the sequence x1, . . . , xr ∈ G±

s,t, we use
−b to denote the “reversal” of b, i.e., the sequence −xr,−xr−1 . . . ,−x1, which is
also an isolated block. If π consists of isolated blocks bs, b1, b2, . . . , bq, bt, we
use (bs, b1, b2, . . . , bq, bt) to denote the ordering π ′ that is obtained from π by
setting succπ′(er(bs)) := el(b1), succπ′(er(b1)) := el(b2) etc. In the following
lemma, we spell out that isolated blocks can be permuted and reversed without
affecting the induced number of breakpoints.

Lemma 7.2.3. Given a Breakpoint Median instance and an ordering π =

(bs, b1, b2, . . . , bq, bt) with isolated blocks bs, b1, b2, . . . , bq, bt such that the
condition of Step (a) does not apply. Then, π causes exactly as many breakpoints
as

(bs, b1, b2, . . . , bi−1, bi+1, bi, bi+2, . . . , bq, bt) for i = 1, ..., q − 1



120 Consenus of Gene Orderings

and

(bs, b1, b2, . . . , bi−1,−bi, bi+1, . . . , bq, bt) for i = 1, ..., q.

Proof. Every link between two isolated blocks induces exactly k breakpoints, no
matter in which order or orientation the isolated blocks are arranged (except
of the fact that bs is required to be the first and bt the last of the isolated
blocks).

Lemma 7.2.3 shows how to obtain a concrete solution from the s/p-table sup-
plied by Procedure BM:

Step (b): Report the median ordering, by outputting the isolated
blocks, beginning with bs, linking the remaining isolated blocks ar-
bitrarily, while ending with bt.

In this, way, the s/p-table is a representation for possibly many equally good
solutions, among which the algorithm, without additional knowledge, cannot
decide which one to prefer. Step (b) outputs an arbitrary solution from them.
However, it would as well be possible to output all possible solutions (then,
however, sacrificing the time bounds which will be shown in Subsections 7.2.5
and 7.2.6) or to compute compute a preferred solution due to additional restric-
tions.

The recursive procedure BM together with the postprocessing described in this
subsection is subsequently referred to as Algorithm BM.

7.2.4 Correctness of the Algorithm

The two directions of the correctness proof are given by the following two lem-
mas:

Lemma 7.2.4. For a solution π which is computed by Algorithm BM it holds
that

∑k
i=1 dH(π, πi) ≤ d.

Proof. Algorithm BM maintains a breakpoint score counter ∆d that is initial-
ized by d, and it is decreased when two elements are linked or an element is
made isolated. In the following, we explain that this “bookkeeping” of the value
of ∆d is correct. In a branching which links two elements, ∆d is decreased ex-
actly by the number of breakpoints that are caused by this new link. More
subtle is a branching in which we turn an element x into an isolated element
by setting, e.g., succπ(x) =⊥. When reporting the solution, we will link x with
another isolated element y with predπ(y) =⊥ (which exists since the number of
isolated elements in π must be even). On the one hand, the algorithm accounts



7.2 A Fixed-Parameter Algorithm for Breakpoint Median 121

k/2 breakpoints when setting succπ(x) :=⊥ and another k/2 breakpoints when
setting predπ(y) =⊥. On the other hand, with k input orderings this link causes
exactly k breakpoints. Since a solution is reported only if ∆d ≥ 0, this shows
that a solution supplied by the algorithm causes at most d breakpoints.

Lemma 7.2.5. If there is a solution π with
∑k

i=1 dH(π, πi) ≤ d then Algo-
rithm BM finds one.

Proof. Consider a Breakpoint Median instance and a solution ordering π.
We will show that the algorithm finds either π or a solution that induces at
most as many breakpoints as π. Consider elements x, y ∈ G±

s,t which are linked
in π, e.g., succπ(x) = y, and which are linked in the same way in at least one of
the input orderings, i.e., succπi

(x) = y for i ∈ {1, . . . , k}. Then, our algorithm
explores linking x and y either when considering element x (trying all successors
occurring in one of the input orderings) or element y (trying all predecessors
occurring in one of the input orderings). Next, consider elements x, y ∈ G±

s,t

which are linked in π, e.g., succπ(x) = y, and which are not linked in the same
way in any of the input orderings, i.e., succπi

(x) 6= y for all i = 1, . . . , k. Algo-
rithm BM covers this situation when setting succπ(x) :=⊥ and predπ(y) :=⊥.
Although it is possible that the algorithm may, when reporting the solution,
arrange the isolated blocks in a way such that the successor of x is an isolated
element different from y, the obtained solution induces, by Lemma 7.2.3, ex-
actly as many breakpoints as π. Summarizing, for every solution π of the given
Breakpoint Median instance, our algorithm either finds π or a solution that
can be obtained from π by a rearrangement of its isolated blocks.

7.2.5 Running Time for k = 3 Orderings

The following estimation of Algorithm BM’s running time is based on the anal-
ysis of its search tree size. By Lemma 7.1.5 and the subsequent comment given
there, we conclude that every recursive call made in Algorithm BM reduces
breakpoint counter ∆d by at least one. Given an element x with succπ(x) = ∅
(or predπ(x) = ∅, resp.), in the case of three input orderings there are, in fact,
two possible situations:

(1) Either x has the same successor y1 in two of the input orderings, and
successor y2 6= y1 in the third input ordering,

(2) or x has pairwisely different successors y1, y2, and y3 in the three input
orderings.

In (1), we decrease ∆d by 1 when we set succπ(x) := y1, we decrease ∆d

by 2 when we set succπ(x) := y2, and we decrease ∆d by 3/2 when we set
succπ(x) :=⊥. This yields branching vector (1, 2, 3/2) and the branching cor-
responds to branching number 2.15 (for background on branching vectors and



122 Consenus of Gene Orderings

branching numbers, refer to Section 4.5). In (2), we decrease ∆d by 2 when
we set succπ(x) := yi for all i = 1, 2, 3, and we decrease ∆d by 3/2 when we
set succπ(x) :=⊥. This yields branching vector (2, 2, 2, 3/2) and the branching
corresponds to branching number 2.12. This gives an upper bound of O(2.15∆d)

on the search tree size. In every search tree node, we can, in linear time, test
whether the ordering is invalid or completed, and select the branching subcases.
This gives the following result.

Proposition 7.2.6. Breakpoint Median for k = 3, i.e., three signed input
orderings, can be solved in O(2.15d · n) time.

Note that the branch-and-bound technique based on lower bounds as intro-
duced by Sankoff and Blanchette [174] can also be used in the framework of
our algorithm to further improve its performance in practice. The key distin-
guishing point between the algorithm of Sankoff and Blanchette and the above
one seems to be that above there is a special treatment of the case of isolated
elements and isolated blocks, which is not considered as such by Sankoff and
Blanchette. This is advantageous in some cases (namely, when the lower bound
used in the branch-and-bound algorithm has little effect).

7.2.6 Running Time for More Than Three Orderings

Studying Breakpoint Median with k > 3, we observe, with growing k, an
increasing number of possible branching situations in Algorithm BM. For in-
stance, consider k = 4. If we choose an element x for branching which has suc-
cessor y1 in three of the four input orderings and which has successor y2 in the
remaining input ordering, then we decrease ∆d by 1 when we set succπ(x) := y1,
we decrease ∆d by 3 when we set succπ(x) := y2, and we decrease ∆d by
4/2 when we set succπ(x) :=⊥; this branching corresponds to branching vec-
tor (1, 3, 2). The other branching possibilities of Algorithm BM for k = 4

are characterized by branching vectors (3, 3, 3, 3, 2), (3, 3, 2, 2), and (2, 2, 2).
The branching vectors correspond to characteristic polynomials p(z), e.g., the
branching vector (3, 1, 2) corresponds to p(z) := 1 − z3 − z − z2. The following
lemma shows how to characterize the branchings of Algorithm BM by their
polynomials. The branchings of BM that are possible for fixed k are referred
to as k-branchings.

Lemma 7.2.7. A k-branching corresponds to a characteristic polynomial of the
form

p(z) := 1 −

k−1∑

i=1

aiz
k−i − zk/2,

where a1, . . . , ak−1 are non-negative integers with
∑k−1

i=1 ai · i = k.

Proof. Consider a k-branching that selects an element x and branches on the
possible successors of x. It creates a subcase for every distinct successor of x



7.2 A Fixed-Parameter Algorithm for Breakpoint Median 123

that occurs in one of the k given orderings; additionally it creates the “isolation”
subcase by setting succ(x) :=⊥. In general, we can have, for integers 1 ≤ i ≤
k − 1 and 0 ≤ ai ≤ k, ai many pairwisely distinct successors y such that
succ(x) = y in exactly i input orderings. Obviously, with k input orderings, we
have

∑k−1
i=1 ai·i = k. The branch in which we choose to set succπ(x) := y in the

solution π causes k−i many breakpoints when succ(x) = y in i input orderings.
Therefore, we decrease ∆d by k − i in this branch. We have ai branches of this
kind. Summarizing over all branches, the k-branching is characterized by the
characteristic polynomial p(z) := 1−

∑k−1
i=1 aiz

k−i−zk/2 with
∑k−1

i=1 ai·i = k.

In the remainder of this section, we show that the worst-case branching number
of Algorithm BM becomes better with increasing k. To this end, we, firstly,
show that the branching (k − 1, 1, k/2), characterized by the polynomial

pk(z) := 1 − zk−1 − z − zk/2,

is the worst-case branching among all k-branchings (this yields Proposition
7.2.10). We refer to the branching number of (k − 1, 1, k/2) by ck. Secondly,
we prove that ck decreases with increasing k (this yields Proposition 7.2.11).

In order to show Proposition 7.2.10, which is the harder part when compared to
Proposition 7.2.11, we need the following two technical lemmas. Lemma 7.2.8
easily follows by function analysis using a computer algebra system such as
Maple or Mathematica.

Lemma 7.2.8. For all integers k ≥ 3 and pk(z) = 1 − zk−1 − z − zk/2, it holds
that

pk

(

k−2

√

1

k − 1

)

< 0.

Lemma 7.2.9 describes the worst-case k-branching among those k-branchings
having the same number of subcases.

Lemma 7.2.9. A k-branching with i subcases, i ∈ {2, . . . , k − 1} has the same
or a better branching number than the particular k-branching with i subcases
characterized by the polynomial 1 − (i − 1)zk−1 − zi−1 − zk/2 corresponding to
the branching vector

(k − 1, . . . , k − 1︸ ︷︷ ︸
i − 2 times

, i − 1, k/2).

Proof. We can transform the branching vector (k − 1, . . . , k − 1, i − 1, k/2) for
the branching characterized by polynomial 1−(i− 1)zk−1− zi−1− zk/2 into the
branching vector for an arbitrary k-branching with i subcases by a succession
of steps of the following form: Each step takes two entries from the branching
vector, which have values v1 and v2, resp., with v1 > v2, and decreases v1 by
one and increases v2 by one. Lemma 8.5 in [120] shows that each of these steps
improves the corresponding branching number or leaves it unchanged.



124 Consenus of Gene Orderings

For example, in the case of k = 3, we can conclude by Lemma 7.2.9 that the
branching number for the branching vector (2, 2, 2) has no higher branching
number as the branching number for the branching vector (3, 1, 2); the reason
is that we can transform (3, 1, 2) to (2, 2, 2) by decreasing the value of the first
entry by one while increasing the value of the second entry by one.

Proposition 7.2.10. For every integer k ≥ 3, the branching number of any
k-branching of Algorithm BM is upperbounded by ck.

Proof. By Lemma 7.2.7, k-branchings are characterized by polynomials

p(z) := 1 −

k−1∑

i=1

aiz
k−i − zk/2,

where a1, . . . , ak−1 are non-negative integers with
∑k−1

i=1 ai · i = k. Note that
the polynomials described by p have a single positive real root which is between
0 and 1 (see Section 4.5).

One particular k-branching is the one characterized by the polynomial

pk(z) := 1 − zk−1 − z − zk/2.

The branching number ck is 1/β for the positive real root β of polynomial pk;
let q denote another polynomial of those polynomials described by p and let
c = 1/γ for the positive real root γ of q.

We show that β ≤ γ which implies that ck ≥ c. We assume that β > γ and
derive a contradiction. Setting pk(β) = q(γ), we can conclude that

βk−1 + β + βk/2 =

k−1∑

i=1

aiγ
k−i + γk/2 <

k−1∑

i=1

aiβ
k−i + βk/2.

This can be simplified to

βk−1 + β <

k−1∑

i=1

aiβ
k−i. (7.2)

We distinguish two cases.

Case 1 applies if
k−1∑

i=1

aiβ
k−i ≤ kβk−1.

Together with inequality (7.2), this implies that βk−1 + β ≤ kβk−1 which can
be simplified to β ≤ (k − 1)βk−1 and further to 1/(k − 1) ≤ βk−2. On the one
hand, this means that

β ≥ k−2

√

1

k − 1
.



7.2 A Fixed-Parameter Algorithm for Breakpoint Median 125

On the other hand, we derive by Lemma 7.2.8 that

β <
k−2

√

1

k − 1
,

a contradiction.

Case 2 applies if
k−1∑

i=1

aiβ
k−i > kβk−1. (7.3)

By Lemma 7.2.9, the branching number of the branching characterized by poly-
nomial q is upperbounded by the branching number of the branching charac-
terized by polynomial pj(z) = 1 − jzk−1 − zj − zk/2, for an appropriately chosen
j ∈ {1, . . . , k − 2}; more precisely, j is chosen such that j + 1 denotes the num-
ber of subcases in the branching characterized by q. We conclude (by setting∑k−1

i=1 aiγ
k−i = pj(δ) for the positive real root δ of pj(z) and, then, substituting

δ by γ)
k−1∑

i=1

aiγ
k−i + γk/2 ≤ jγk−1 + γj + γk/2. (7.4)

Firstly, using inequality (7.4) and setting pk(β) = q(γ) yields

βk−1 + β + βk/2 ≤ jγk−1 + γj + γk/2

and, since we assume that β > γ > 0, also

βk−1 + β + βk/2 ≤ jβk−1 + βj + βk/2.

This simplifies to βk−1 + β < jβk−1 + βj and further to

1 < (j − 1)βk−2 + βj−1. (7.5)

Secondly, by inequality (7.4), we derive that jβk−1 + βj ≥ ∑k−1
i=1 aiβ

k−i. To-
gether with inequality (7.3), this yields

jβk−1 + βj > kβk−1,

which simplifies to βj > (k − j)βk−1 and further to 1/(k − j) > βk−j−1. We
conclude that

β < k−j−1

√

1

k − j
.

Substituting this into (7.5), we obtain 1 < f(k, j) for

f(k, j) := (j − 1)

(

1

k − j

) k−2
k−j−1

+

(

1

k − j

)
j−1

k−j−1

and j = 1, . . . , k − 2. Function analysis (employing a computer algebra system
such as Maple or Mathematica), however, yields (since we find that f(k, j) = 1

only for j = 1, f(k, j) is continuous, and, for fixed k, the derivation by j of f for
j = 1 is negative) f(k, j) ≤ 1 for j ≥ 1, a contradiction.



126 Consenus of Gene Orderings

k 3 4 5 20 40 60 80 100
ck 2.15 1.84 1.68 1.22 1.13 1.09 1.08 1.06

Table 7.1: Concrete values of ck in Theorem 7.2.12 for increasing values of k.

Proposition 7.2.11. For every integer k ≥ 3, ck > ck+1.

Proof. Let βk be the smallest positive root of polynomial

pk(z) = 1 − zk−1 − z − zk/2.

Then, ck = 1/βk. Analogously, let βk+1 be the smallest positive zero of poly-
nomial

pk+1(z) = 1 − zk − z − z(k+1)/2,

such that ck+1 = 1/βk+1. Since pk(βk) = 0 and pk+1(βk+1) = 0, it follows that

(βk)k−1 + βk + (βk)k/2 = (βk+1)
k + (βk+1) + (βk+1)

(k+1)/2.

Assuming βk > βk+1, we derive a contradiction. With 0 < βk+1 < βk < 1, we
have also

(βk+1)
k < (βk)k−1 and (βk+1)

(k+1)/2 < (βk)k/2.

This yields

(βk+1)
k + βk+1 + (βk+1)

(k+1)/2 < (βk)k−1 + βk + (βk)k/2,

a contradiction.

Theorem 7.2.12. Breakpoint Median for k ≥ 3 can be solved in O((ck)d ·
kn) time for ck ≤ 2.15.

Proof. By Proposition 7.2.10, ck is the worst-case branching number among all
k-branchings of Algorithm BM. By Proposition 7.2.11, c3 > ck for k > 3. By
Proposition 7.2.6, c3 = 2.15, which concludes the proof.

In Theorem 7.2.12, we only give an upper bound for ck. In fact, the value of
ck is decreasing as k increases. Table 7.1 list some ck values for increasing k.

7.3 Experimental Evaluation on Synthetic Data

In this section, we report about experiments on synthetic Breakpoint Median
instances. The implementation was done using GNU C++ version 3.0.4, and
the running time was measured on a Sun Blade 100 machine with Sparc 2e
processor (500 MHz) and 512 MB main memory under Solaris 5.8.



7.3 Experimental Evaluation on Synthetic Data 127

The experiments were done on synthetic Breakpoint Median instances. For
given values of n, k, and d, we produced a dataset containing k orderings over
n elements such that there exists a median having a breakpoint score of at
most d as follows. We started with k pairwisely equal orderings, each contain-
ing n elements. In one step, we randomly decided between a “reversal,” i.e.,
the inversion of a contiguous segment, and a “transposition,” i.e., the move-
ment of a contiguous segment to another position. Then, we performed this
operation on a randomly selected segment in a randomly selected ordering. We
maintained a counter for the potential breakpoints: for a reversal we counted
two, for a transposition we counted three breakpoints, since this, in both cases,
is exactly the breakpoint distance between the ordering before the operation
and the ordering after the operation. In this way, we continued to rearrange
the data, step by step, as long as the breakpoint counter was at most d. In
general, especially with large numbers of generated breakpoints, we had less
breakpoints than we counted, since not every operation really introduces new
breakpoints; for “reasonable” values of n, k, and d, e.g., d ≤ (1/4)kn, however,
the number of breakpoints was close to d. For each set of values for n, k, and d,
we measured the average performance on 25 different input instances.

Performance Tests

Table 7.2 shows the running time and the size of the generated search trees
on datasets with k orderings, each having n elements and having a breakpoint
median requiring approximately breakpoint score d, for different combinations
of values for n, k, and d. For search tree algorithms, the search tree size pro-
vides a machine-independent performance measure since constant running time
factors might be improved due to implementation issues or due to improved
computer technology. We generated instances for growing “rearrangement fac-
tors,” i.e., growing ratios of breakpoint score d to the instance size nk. On the
one hand, with growing rearrangement factor the accuracy and the uniqueness
of the computed breakpoint medians decreases. On the other hand, Break-
point Median instances with high rearrangement factors are possible to occur
in applications for computing breakpoint phylogenies [142, 174] on highly rear-
ranged input genomes, e.g., from bacteria data.

By the results shown in Table 7.2, we can make the following observations:
For fixed values of n and k, growing values for d mean, as we expect from the
running time bound, an growth of running time and search tree size for Algo-
rithm BM. This growth exhibits an exponential nature for very small values
of k, i.e., k ≤ 5. For larger values of k, the search tree size remains compar-
atively small in practice; this effect of small search trees for larger values of k

is currently not fully understood and the question for an explanation remains
open here. Note, however, that k = 3 is the case in which the problem has been
studied and the case arising in known applications for computing breakpoint
phylogenies [142, 174]. Further, we note that for n = 100 instances with rel-



128 Consenus of Gene Orderings

n k d time size

100 3 60 0.01 65
90 0.61 350

120 1.26 5 385
150 2.44 19 531
180 9.21 35 307
240 7:53.36 1 776 547

4 80 0.02 61
120 0.04 92
160 0.03 108
200 0.09 255
240 5.55 35 503
320 3:10.33 1 147 504

5 100 0.02 62
150 0.33 85
200 0.06 131
250 0.84 223
300 0.37 953
400 26.72 129 179

10 200 0.04 86
300 0.12 97
400 0.17 99
500 0.17 100
600 0.22 117
800 0.34 129

n k d time size

150 3 90 0.37 159
135 0.28 1 293
180 0.84 3 656
225 3:29.54 938 850
270 14:52.54 4 488 091

4 120 0.04 91
180 0.53 140
240 0.11 290
300 0.72 2 714
360 24:30.93 5 245 368

5 150 0.04 101
225 0.06 117
300 0.12 240
375 0.18 364
450 9.29 28 611

10 300 0.20 129
450 0.26 144
600 0.37 147
750 0.42 150
900 0.53 150

200 3 120 0.75 210
180 5.26 21 558
240 14.17 35 158
300 141:47.27 25 734 624

Table 7.2: Performance of Algorithm BM on synthetically generated datasets
containing k signed orderings on n elements, for several “rearrangement fac-
tors,” i.e., several ratios of breakpoint score d to the instance size nk, namely
for d = df · nk for df = 0.2, 0.3, 0.4, 0.5, 0.6 (for n = 100 also df = 0.8, for
n = 200 only up to df = 0.5). By “time” we refer to the running time in
“minutes:seconds” format (or only seconds if the time is less than one minute),
by “size” we refer to the size of the generated search trees, i.e., their number of
nodes. Each shown value is the average of measurements on 25 datasets.

atively small rearrangement factor pose no computational problems whereas,
with growing value of n, the exponential growth of search tree size and running
time can already be observed for small rearrangement factors. While values of
n around 100 are encountered in current applications, e.g., [51, 139], it is to
be expected that in the near future instances with larger values of n have to
be solved and, then, also instances with small rearrangement factor can pose
computational challenges.

For fixed values of k and d, increasing values of n actually mean a decrease in
the running time since the value of d becomes smaller compared to the total
size of the instance and, thus, the instances become “easier” since the lower
bound applies more often. For example consider k = 3 and d = 100: the



7.3 Experimental Evaluation on Synthetic Data 129

search tree size (running time) is 5700 (0.75 sec) for n = 50, 1915 (0.44 sec)
for n = 100, and 434 (0.14 sec) for n = 150. An analogous observation applies
also for fixed values of n and d, and growing values for k. Here we, in addition
to the just mentioned reason (i.e., the lower bound applies more often if d is
small compared to the instance size), we also expect smaller search trees from
the results in Subsection 7.2.6, i.e., from the bound (ck)d on the search tree size
where the value of ck decreases with growing values of k; for example, consider
n = 100 and d = 200: the search tree size (running time) is 154817 (38.13 sec)
for k = 3, 126 (0.05 sec) for k = 5, and 87 (0.04 sec) for k = 10.

Notably, the results shown here include the resources needed to determine the
optimal parameter value by testing for increasing values of d, starting with
d = 0, whether d allows for a solution. This search for the optimal parameter
value will be discussed in more detail below.

Comparison with Branch-and-Bound Heuristic

Instances which have small values of d compared to the total input size nk, e.g.,
d ≤ 0.2 ·nk, are easy to solve. This accounts to the fact that Algorithm BM ad-
ditionally employs the bounds as they were proposed in the branch-and-bound
heuristic by Sankoff and Blanchette [174] and as they are also used in the
GRAPPA software [142]. This branch-and-bound heuristic works particularly
well in the case of few rearrangements. To compare the search tree gener-
ated by Algorithm BM to the search trees generated by the branch-and-bound
heuristic, we reimplemented the branch-and-bound heuristic as it was proposed
by [174]; the reimplementation was necessary since the heuristic is only used as
a subprocedure and, thus, not directly accessible in the available software pack-
ages [142, 174]. Table 7.3 lists, for both approaches, the running times and the
search tree sizes for various combinations of values for n and d, while mainly fo-
cusing on three input orderings. Notably, the case of three input orderings is the
case for which the branch-and-bound heuristic was implemented [142, 174] and
used as a subprocedure in the computation of breakpoint phylogenies. There-
fore, most research on Breakpoint Median, so far, concentrated on k = 3,
e.g., [165]. The results show that, for small values of d, the branch-and-bound
heuristic works better since it quickly finds the optimal solution and the com-
puted bounds work well. With growing value of d, however, the bounds apply
less and less often. In these cases, the search trees generated by Algorithm BM
are significantly smaller. For larger values of k, the employed lower bound
on the breakpoint score works surprisingly well such that, since it is used in
both approaches, the search trees are in both cases almost identical in size; as
mentioned in the previous paragraph, the reason for this effect is currently not
fully understood. When comparing the running times, we note that the time
spent in one search tree node is higher in the branch-and-bound heuristic than
for Algorithm BM. This may result from a straightforward and non-optimized
implementation, e.g., when determining in the branch-and-bound heuristic the



130 Consenus of Gene Orderings

Algorithm BM branch-and-bound
n k d time size time size

50 3 30 0.40 25 0.90 22
60 0.24 195 0.75 73
90 0.91 650 0.83 997

120 0.38 2 035 106.23 86 468
10 100 0.02 45 0.07 43

400 0.08 57 0.12 51
100 3 60 0.12 65 0.18 48

120 1.26 5 385 12.12 3788
180 9.21 35 307 1042.607 783 892
240 7:53.36 1 776 547 not run

10 200 0.46 92 0.63 86
800 0.32 101 0.972 100

150 3 90 0.37 159 1.27 167
180 0.838 3 656 230.30 77 950
270 892.54 4 488 091 not run

10 300 0.09 128 1.09 128
1200 0.48 236 1.64 152

Table 7.3: Comparison between Algorithm BM and the branch-and-bound
heuristic as proposed by Sankoff and Blanchette [174] on synthetically gener-
ated datasets containing k signed orderings on n elements, having a breakpoint
median for breakpoint score d. “Time” refers to the running time in min-
utes:seconds (or only seconds if it is less than one minute), “size” to the size of
the generated search trees. Each shown value is the average of measurements
on 25 datasets. The entry “not run” means that at least one of the datasets
was not finished within 12 h computing time.

pair of elements to branch on. For this reason, we propose to use the search
tree size as the fair measure of comparison.

Summarizing, our results underline that Algorithm BM combines the advan-
tages of the lower bound from the branch-and-bound heuristic with performance
guarantees which are not given by the heuristic. Thus, Algorithm BM works
comparatively well on instances which are “easy” for the heuristic but exhibits
an better performance on “worst cases” on which the heuristic breaks down.

Determining the Optimal Distance Parameter

Besides the branching strategy, a significant difference between Algorithm BM
and the branch-and-bound heuristic as proposed by Sankoff and Blanchette [174]
lies in the way how the optimal distance parameter value is determined. The
branch-and-bound heuristic searches, in a “greedy” way, an initial solution and
tries to decrease the breakpoint score corresponding to this solution subse-



7.3 Experimental Evaluation on Synthetic Data 131

quently by exploring the search space of all possible ways to link the elements,
pruning the search when the computed lower bound applies. In contrast, Algo-
rithm BM starts the Algorithm for every d = 0, 1, 2, . . . until it finds a d value
which allows a solution. This additional overhead is comparatively small: In
average over 25 datasets with three input orderings, each having 100 elements,
such that a breakpoint median with breakpoint score 100 exists, we measured
a search tree size 14 for d = 98, size 474 for d = 99, and size 789 for d = 100.
For all d < 97 the search tree is not invoked since it is smaller than the com-
puted lower bound on the minimum number of breakpoints. This observation
indicates that, in practice, the search for an optimal parameter value does not
imply an additional d factor, but means only a constant running time factor.

Normalization of the Distance Parameter

As indicated in Subsection 7.2.6, the exponential base ck corresponding to the
branching vector (k − 1, 1, k/2) in the running time bound of Algorithm BM
(Theorem 7.2.12) becomes better for increasing k. For instance, we have c3 =

2.15, c4 = 1.84, c5 = 1.68, c20 = 1.21, c50 = 1.11, and c100 = 1.06, which tends
to 1 when k goes to infinity. On the other hand, since Breakpoint Median
sums up the distances over all k input orderings, the distance parameter d

should necessarily also increase with increasing k. Hence, it would be natural
to consider some kind of “normalized” parameter d ′, which does not increase
with increasing k.

The first approach is to pose the question whether Breakpoint Median is
fixed-parameter tractable with respect to parameter d ′ := d/k. This question
would be appropriate when we assume that with every additional input order-
ing the total sum of breakpoints to be expected is increased by d for a given
integer d. This assumption, however, may be inappropriate when processing
real data since input orderings added to an input set are likely to share break-
points with orderings which are already in the set. For this reason, a “lighter”
normalized parameterization such as d ′ := d/

√
k or d ′ := d/ log(k) might make

sense.

We pose it as an open question to determine whether Breakpoint Median is
fixed-parameter tractable with respect to one of the mentioned parameters d ′.
Using the example given by Algorithm BM, we can, however, give some ex-
perimental evidence: In Table 7.4, we calculate, based on the running time
bound proved in Theorem 7.2.12, the value of c ′ in the running time bound
O((c ′)d′ ·kn) when the parameter is chosen as d ′ (for d ′ = d/k, d ′ = d/ log(k),
and d ′ = d/

√
k) and k is increasing. If c ′ decreases with growing k, this may

be taken as evidence that Breakpoint Median is fixed-parameter tractable
with respect to d ′. Our results give no evidence that Algorithm BM is fixed-
parameter with respect to d ′ = d/k. However, with respect to d ′ := d/ log(k)

and d ′ := d/
√

k, the algorithm clearly exhibits fixed-parameter behavior.



132 Consenus of Gene Orderings

k c ′ = ck c ′ = ck
k c ′ = c

log(k)

k c ′ = c
√

k
k

(d ′ = d) (d ′ = d/k) (d ′ = d/ log(k)) (d’=d/
√

(k))

3 2.148 9.909 2.316 3.759
4 1.839 11.445 2.327 3.383
5 1.674 13.165 2.293 3.167
6 1.570 14.985 2.244 3.020
7 1.497 16.876 2.194 2.910
8 1.443 18.827 2.145 2.823
9 1.401 20.831 2.099 2.752

20 1.211 45.850 1.774 2.352
30 1.154 72.707 1.626 2.187
40 1.123 103.034 1.533 2.081
50 1.103 136.556 1.469 2.004
60 1.090 173.069 1.421 1.945
70 1.080 212.422 1.384 1.897
80 1.072 254.482 1.354 1.858
90 1.065 299.147 1.330 1.824

100 1.060 346.319 1.309 1.795

Table 7.4: Value of c ′ such that it can be shown that Algorithm BM has
running time O((c ′)d′ · kn) when the parameter is chosen as d ′. Here, ck

denotes constant base in the exponential upper bound on the search tree size
for k input orderings, determined by ck = 1/β for the positive real root β of
polynomial pk(z) = 1 − zk−1 − z − zk/2 (see Subsection 7.2.6).

One thing to additionally take into account here is that our estimates for the
search tree sizes always are worst-case; in practice, our algorithm turned out
to be much faster than could be expected from the theoretical (worst-case)
running time analysis.

7.4 Application to Phylogeny Reconstruction

An application of Breakpoint Median is given in the reconstruction of break-
point phylogenies, i.e., the problem of finding the most parsimonious phyloge-
netic tree with respect to breakpoint distance. In this section, we outline a new
heuristic strategy computing the breakpoint phylogeny for a set of gene order
data which uses the Breakpoint Median algorithm as a central subprocedure.
In comparison with previous heuristics [138, 142, 174], our approach does not
exhaustively explore the whole search space consisting of all binary trees with
k leaves, but resolves the grouping of taxa, level by level, from a (hypothetical)
root down to the leaves of the phylogenetic tree.



7.4 Application to Phylogeny Reconstruction 133

7.4.1 A Heuristic Computing Breakpoint Phylogenies

Given gene orderings Π = {π1, . . . , πk} for a set of k taxa, the algorithm starts
by computing a root node, called virtual root of the tree (only necessary for the
construction) and, then, the algorithm recursively divides the set of taxa into
two subsets, associating new nodes with these subsets; the new nodes become
child nodes of the virtual root and roots for the subtrees corresponding to the
subsets. The recursion ends when the subsets have size one.

To label the virtual root node, our heuristic computes the breakpoint median πr

for the given set of gene orderings. To obtain a bipartition of the set of taxa, we
consider all 2k−1 − 1 distinct bipartitions of Π into non-empty sets Π1 and Π2.
We compute the optimal breakpoint medians π1 for Π1∪ {πr}, inducing a score
of d1 breakpoints, and π2 for Π2 ∪ {πr}, inducing a score of d2 breakpoints.
Among all these bipartitions, we choose the ones with a minimum total number
of induced breakpoints, i.e., the ones for which d1 + d2 is minimum. The
breakpoint medians π1 and π2 corresponding to such an optimal bipartition
are chosen to label the two children of the node labeled πr.

1 We choose π1 in
this way (π2 is analogous) such that π1 is not only a good median with respect to
the orderings in Π1 but also takes into account the information on the orderings
in Π2 which is reflected in πr. Now, if Π1 (Π2 is completely analogous) consists
of two elements only, we create two children of the π1 node, each child labeled
with one element from Π1. If Π1 contains more than two elements, we process
this set recursively, taking the π1 node as the virtual root and Π1 as the set of
gene orderings, again considering all bipartitions of Π1.

7.4.2 The Campanulaceae Dataset

Using our heuristic, we analyzed the dataset introduced by [51, 52], which
contains signed gene order information for 13 chloroplast genomes of the plant
family Campanulaceae. These data are referred to in a considerable number of
papers (e.g., [39, 141, 142]) and, therefore, seem to be an appropriate challenge
dataset.

In these data, every gene occurs exactly once in all orderings. Within 1 min 45
sec, we processed the dataset and the best tree we found caused 89 breakpoints,
i.e., we found no tree causing less breakpoints. The topology of this tree is
given in Figure 7.2; the displayed tree is not binary, since we contracted inner
branches of score zero, i.e., whose endpoints are labeled by the same orderings.
Due to the contracted inner branches the shown tree corresponds to 216 different
binary topologies for each of which we can give a labeling of the inner nodes
that yields the breakpoint score 89. These tree topologies are exactly the 216

1We optionally allow to investigate all optimal breakpoint medians that are found for
Π1 ∪ {πr} and for Π2 ∪ {πr} and to run the described recursion for each combination of optimal
medians separately. In the Campanulaceae dataset, however, these medians turned out to be
unique in most cases.



134 Consenus of Gene Orderings

3bp

8bp

0bp

2bp

0bp

4bp

3bp

5bp

0bp

5bp

8bp

12bp

5bp

Wahlenbergia

Merciera

Trachelium

Symphyandra

Campanula

Adenophora

Legousia

Asyneuma

Triodanus

Codonopsis

Cyananthus

Platycodon

Tobacco

3bp

2bp

3bp

6bp

8bp

12bp

Figure 7.2: Tree with breakpoint score 89 that is found by our heuristic method
for the Campanulaceae dataset (outgroup taxon tobacco).

different tree topologies that are also found by [141]. They used a (heuristically
determined) constraint tree topology in order to explore the space of all binary
tree topologies that are a refinement of this constraint tree. This way, they
selected the 216 topologies from 10,395 considered binary tree topologies.

This result is preferable to a tree causing 96 breakpoints that is, according
to [51], found by the “BPAnalysis” program [174] within a day, and it is com-
petitive with the tree causing 89 breakpoints reported by [51, 52] which was
found using the “GRAPPA” software.2 To find the optimal trees by search-
ing the whole space of all phylogenetic trees over 13 taxa, even when using
the highly optimized “GRAPPA” software which includes additional bounding
techniques, [140] still need “a few hours on a single workstation.” This running
time is drastically reduced when using a so-called “constraint tree,” i.e., a not
necessarily binary tree topology having its leaves in one-to-one correspondence
with the taxa, as an additional problem input. Given a constraint tree, the
“GRAPPA” software inspects only trees whose topology is a binary refinement
of the constraint tree topology. Using a constraint tree (here the consensus
of trees computed by fast heuristic methods like, e.g., neighbor joining) [141]
reduced the size of the search space significantly (no exact time is given).

7.5 Conclusion and Open Questions

We conclude with some open questions and directions for further research:

2In [141], it is also mentioned that trees causing 84 breakpoints have been found; this, how-
ever, is according to one of the authors of [141] a typo. Using the “GRAPPA” software [142]
we could only find the 216 mentioned topologies causing 89 breakpoints.



7.5 Conclusion and Open Questions 135

1. It would be desirable to extend Algorithm BM to the case where not all
input orderings are over the same set of elements or when elements occur
more than once within one ordering. These cases apply when genomes
have a different set of genes or contain duplicated genes.

2. Reversal distance is, besides breakpoint distance, another popular dis-
tance measure on gene orderings. For a signed orderings π, a rever-
sal replaces a segment ei, ei+1, . . . , ej−1, ej in π by its inversion −ej,
−ej−1, . . . ,−ei+1, −ei. Given two signed orderings π1 and π2, the re-
versal distance between them is the minimum number of reversals that
are necessary to transform π1 into π2. A reversal median is defined in
analogy to a breakpoint median, only replacing the breakpoint distance
by reversal distance. Research on reversal distance concentrated, so far,
on computing the reversal distance between two signed orderings [8], and
on heuristics to compute reversal medians [39, 183]. In some cases, rever-
sals might be preferable to breakpoint medians; e.g., Moret et al. [139]
show that it has advantages to employ reversal medians instead of break-
point medians in their “GRAPPA” software. However, there are no exact
algorithms with non-trivial provable time bounds for computing reversal
medians. In particular, it is an open question to develop a fixed-parameter
algorithm with respect to the distance parameter.

3. Breakpoint Center is the problem in which, by way of contrast to
Breakpoint Median, not the sum of distances is to be minimized,
but the maximum distance of the solution ordering to each of the input
distances. It is open whether Breakpoint Center is fixed-parameter
tractable with respect to the distance parameter. With respect to the
number of input orderings, we conjecture that, like Breakpoint Me-
dian, Breakpoint Center is already NP-hard for k = 3.



136 Consenus of Gene Orderings



Chapter 8

Consensus of RNA Secondary
Structures

Structure comparison of RNA and of protein sequences has become a central
computational problem, bearing many challenging computer science questions.
A sound and meaningful mathematical formalization of secondary structures
is the one of arc-annotated sequences: For a sequence S an arc annotation A

of S is a set of unordered pairs of positions in S. To compute similarities or
for searching patterns in RNA structures, the notion of arc-preserving subse-
quences recently received considerable attention [64, 65, 67, 110, 130]. For two
arc-annotated sequences S1 and S2, S2 is an arc-preserving subsequence (aps)
of S1 iff one can delete letters (also called bases) from S1—when deleting a
letter at position i, then all arcs with endpoint i are also deleted—such that S1

and S2 are the same and also their arc annotations coincide. The advantage of
this model is that it takes into account both sequence as well as structure infor-
mation. In this way, we obtain a similarity value for two given arc-annotated
input sequences S1 and S2 by computing the length of a longest arc-preserving
common subsequence (lapcs). In the following, we focus on RNA structures; for
related studies concerning algorithmic aspects of protein structure comparison
using “contact maps,” refer to [78, 123] (for more details on contact maps also
see Section 8.4). The central problems of this chapter are given as follows:

Arc-Preserving Subsequence (APS)
Input: Arc-annotated sequences S1 and S2.
Question: Is S2 an arc-preserving subsequence of S1?

Longest Arc-Preserving Common Subsequence (LAPCS)
Input: Arc-annotated sequences S1 and S2, and non-negative inte-
gers k1 and k2.
Question: Is there a common arc-preserving subsequence of S1 and
S2 that can be obtained by deleting at most k1 bases from S1 and



138 Consensus of RNA Secondary Structures

A G C U G G C C G U

A U G G A C G C U

S1 =

S2 =

Figure 8.1: Example of a longest arc-preserving common subsequence for two
arc-annotated input sequences S1 and S2. The common subsequence is obtained
by deleting three bases in S1 and two bases in S2, a dotted line indicates that
two bases are matched.

at most k2 bases from S2?

An example showing the longest arc-preserving common subsequence for two
arc-annotated sequences is given in Fig. 8.1. Notably, the definition of LAPCS
already introduces a particular parameterization of the problem, where it would
also be possible to parameterize by the length l of the (longest) common subse-
quence; this parameterization was, e.g., used for longest common subsequence
problems without arc annotations [28, 29]. In fact, the parameters l and the
number of deletions k1 and k2 are dual parameters since |S1| = l + k1 and
|S2| = l + k2, i.e., a larger value of l implies smaller values of k1 and k2. In
applications, parameter l is small for unsimilar sequences—in this case the com-
parison of the sequences suffers from additional difficulties, e.g., since already
two random arc-annotated sequences are likely to have a small common arc-
preserving subsequence. For similar RNA structures, however, the presented
way of choosing parameters is more meaningful.

Instead of allowing that the input sequences have an arbitrary arc structure,
we, usually, can assume that certain restrictions apply. E.g., in a nested arc
structure, one requires that no two arcs share an endpoint and that no two arcs
cross each other; for example, both sequences shown in Fig. 8.1 have nested
arc structure. According to Lin et al. [130] nested arc annotations are “gen-
erally thought of as the most important variant of the LAPCS problem,” and
nested arc-structures are also the central case in this chapter. Further, the
term plain refers to sequences without arcs and crossing denotes arc structures
where no two arcs share an endpoint. Finally, unlimited refers to a completely
unrestricted arc structure. Using these terms, we can define various versions of
LAPCS where LAPCS(type1, type2) refers to the case in which input se-
quence S1 has an arc structure of type1 and S2 has an arc structure of type2.



139

LAPCS(.,.) unlim. cross. nested chain plain

unlimited NP-complete [64, 65]

crossing NP-complete [64, 65]
nested NP-compl. [130] O(nm3) [110]
plain O(nm) [94]

Table 8.1: Survey of the computational complexity for different versions of
LAPCS.

Analogously, we define APS(type1, type2).

What is currently known about the complexity of LAPCS and, in particular, of
LAPCS(nested,nested) is summarized in the following. An overview of the
computational complexity for different versions of LAPCS is given in Table 8.1.

1. Longest Common Subsequence (LCS) for two sequences without arc
annotations is solvable in quadratic time by dynamic programming [94].
For constant alphabet size, this can be improved to O(n2 log log n/ log n)

(which is better than quadratic) [100] when both sequences have length n;
for a survey of LCS results see, e.g., [94, 100]. LCS becomes NP-complete
when allowing for an arbitrary number of input sequences

2. LAPCS(crossing,crossing) for two sequences is NP-complete [64, 65].

3. LAPCS(nested,nested) is NP-complete [130].

4. Special cases of LAPCS(nested,nested), which are also NP-complete,
allow polynomial-time approximation schemes (PTAS’s), e.g., when mat-
ches between two given input sequences are allowed only in a “local area”
(of constant size) with respect to matching position numbers [130]; these
PTAS’s, however, suffer from high constant running time factors depend-
ing on the approximation ratio.

5. LAPCS(nested,nested) has a factor-2 approximation which needs qua-
dratic time [110].

The APS problem as defined here has not been considered before. Table 8.2
gives an overview on the computational complexity for different versions of
APS. Closely related problems can be found in the literature:

1. In the context of structured text databases, Kilpeläinen and Mannila al-
ready presented quadratic-time algorithms for the so-called ordered tree
inclusion problem [117, 118] which is a strict special case of APS(nes-
ted,nested); for their special model the quadratic-time algorithm was
later slightly improved in [44, 168].



140 Consensus of RNA Secondary Structures

APS(.,.) unlim. crossing nested chain plain

unlimited NP-compl. [64, 65]

crossing NP-complete [64, 65] NP-complete [93] ?

nested O(nm)(∗)

Table 8.2: Survey of computational complexity for different versions of APS.
The result denoted by (∗) will be described in this chapter. The complexity of
APS(crossing,plain) remains open.

2. In the context of pattern matching for RNA structures, Vialette [195]
stated a problem called Pattern Matching over 2-Interval Set
which is related to an APS problem in which S1 has unlimited arc struc-
ture; for a detailed comparison of the problems refer to [82]. Among
others, Vialette shows NP-completeness for his problem when the arc
structure of S2 is crossing, he gives polynomial-time algorithms for cases
where the arc structure of S2 is a strict special case of nested, and he
explicitly asks for the complexity of the problem when the arc-structure
of S2 is nested.

In this chapter, we discuss an exact, fixed-parameter search tree algorithm that
solves the general LAPCS(nested,nested) problem in O(3.31k1+k2 · n) time
where n is the maximum input sequence length. This gives an efficient algo-
rithm in case of reasonably small values for k1 and k2 (the numbers of deletions
allowed in S1 and S2, respectively), providing an optimal solution. The “Diplo-
marbeit” (masters thesis) of Guo [93], which investigates the parameterized
complexity of different variants of LAPCS problems, also contains this algo-
rithm for LAPCS(nested,nested) together with a running time analysis.
Here, we focus on two special issues regarding the algorithm, while referring
for many details to [93]. Firstly, we point out how the bounded search tree
paradigm of parameterized complexity is applied in a novel way. The run-
ning time analysis of the search tree algorithm for LAPCS(nested,nested)
required a new and non-standard technique (which constitutes our own con-
tribution to this algorithm) in order to deal with a particular bottleneck case.
Secondly, as a contribution not contained in [93], we complement the search
tree algorithm by showing that special cases of the problem appearing in its
traversal are solvable in quadratic time. More precisely, we show that APS(nes-
ted,nested) is solvable in O(nm) time by dynamic programming. Notably
developing such a dynamic programming algorithm over a non-trivial domain
has “intrinsic difficulties” [77]. This dynamic programming algorithm implies
a significant heuristic speed-up for our search tree algorithm. Complementing
fixed-parameter algorithms with additional polynomial-time routines for pre-
processing or handling special instances appearing in the search tree is one
of the current research foci in parameterized complexity [68], and our combi-
nation of algorithms provides an excellent example. Moreover, the result for
APS(nested,nested) was used to show that LAPCS(nested,nested) is



8.1 Preliminaries 141

fixed-parameter tractable with respect to the length l of the common subse-
quence (see the long version of [2]): Enumerate all length-l sequences with all
possible nested arc annotations. For each of the enumerated sequences S, in-
voke the dynamic programming algorithm for APS(nested,nested) in order
to check whether S is arc-preserving subsequence of both given sequences S1

and S2. Further, the dynamic programming technique allowed to show that
Pattern Matching over 2-Interval Set restricted to {<,<} patterns [195]
is solvable in quadratic time (for details refer to [82]), thus answering an open
question by Vialette [195].

8.1 Preliminaries

The classical, NP-complete Longest Common Subsequence problem is of
central importance in computer science. In computational biology, it has been
proposed as a technique to compute multiple alignments for a set of at least
two input sequences [94] In this context, it has also been considered from the
viewpoint of parameterized complexity; we refer to [28, 29, 58] for any details.
Evans [64, 65] initiated classical and parameterized complexity studies for the
more general case that the input sequences additionally carry an arc structure
each, which is motivated by structure comparison problems in computational
molecular biology. For a sequence S of length |S| = n, an arc annotation (or
arc set) A of S is a set of unordered pairs of numbers from {1, 2, . . . , n}. Each
pair (i, j) connects the two bases S[i] and S[j] at positions i and j in S by
an arc. Since LAPCS is NP-complete even for two input sequences [64, 65],
here and in the literature attention is focused on this case. Let S1 and S2

be two sequences with arc sets A1 and A2, respectively, and let i1, i2, j1, j2
be positive integers. If S1[i1] = S2[j1], we refer to this as base match and
if S1[i1] = S2[j1], S1[i2] = S2[j2], (i1, i2) ∈ A1, and (j1, j2) ∈ A2, we refer
to this as arc match. If S2 is a subsequence of S1, this induces a one-to-
one mapping M = { 〈ir, jr〉 | 1 ≤ r ≤ |S2| } from a subset of {1, 2, . . . , |S1|}

to {1, 2, . . . , |S2|} in which the matches are “order-preserving,” i.e., for 〈i, j〉,
〈i ′, j ′〉 ∈ M we have i < i ′ ⇔ j < j ′. We say that S2 is an arc-preserving
subsequence (aps) of S1 if the arcs induced by M are preserved, i.e., for all
〈ir1

, jr1
〉, 〈ir2

, jr2
〉 ∈ M:

(ir1
, ir2

) ∈ A1 ⇐⇒ (jr1
, jr2

) ∈ A2.

We say that S1 and S2 have an arc-preserving common subsequence if there
is an arc-annotated sequence T which is arc-annotated subsequence of S1 and
S2; if T is of maximum length with this property, it is a longest arc-preserving
common subsequence (lapcs).

We distinguish several types of arc structures for an arc-annotated sequence S,
where nested arc structures are the most central case considered in this work.
Formally, an arc set has nested arc structure if no two arcs share an endpoint
and no two arcs cross each other, i.e., for all (i1l , i

1
r), (i2l , i

2
r) ∈ A it holds that



142 Consensus of RNA Secondary Structures

i2l < i1l < i2r iff i2l < i1r < i2r (other types of arc structures have been introduced
on page 138).

8.2 Fixed-Parameter Algorithm for
LAPCS(nested,nested)

In this section, we describe Algorithm LAPCS which solves LAPCS(nes-
ted,nested) in O(3.31k1+k2 · n) time, where n is the maximum length of the
input sequences. This algorithm is also contained in [93] to which we will also
refer for the detailed running time analysis. Here, we stress only the integral
parts of this analysis which give an example for a novel non-standard technique
in the analysis of search trees. Thereby, we present with this algorithm a new
way to realize the search tree paradigm in computational biology, which has
not been seen in the preceding chapters.

Algorithm LAPCS is presented in recursive style: Based on the current instance,
we make a case distinction, branch into one or more subcases of somehow sim-
plified instances, and invoke the algorithm recursively on each of these subcases.
Note, however, that we, here, require to traverse the resulting search tree in
breadth-first manner, which will be important in the running time analysis.
Before presenting the algorithm, we define the employed notation.

Recall that the considered sequences are seen as arc-annotated sequences; a
comparison S1 = S2 includes the comparison of arc structures. Additionally,
we use a modified comparison S1 ≈1 S2 that is satisfied when S1 = S2 after
deleting at most one base in S1 or at most one base in S2. Note that we can
check whether S1 ≈1 S2 in linear time. The subsequence obtained from an arc-
annotated sequence S by deleting S[i] is denoted by S − S[i]. When branching
into the case of a simplified sequence S − S[i], the input for the recursive call is
Snew := S−S[i]—hence, |Snew| = |S|−1—and, therefore, Snew[i] = S[i+1]. We
use S[i,+] to denote the subsequence starting at S[i] and extending to the end
of S. For handling branches in which no solution is found, we use a modified
addition operator “+̇” defined as follows: a+̇b := a + b if a ≥ 0 and b ≥ 0,
and a+̇b := −1, otherwise. If base S[i] is endpoint of an arc then we write,
equivalently, that S[i] is arc endpoint or that there is an arc from S[i]. We
abbreviate n1 := |S1| and n2 := |S2|.

Algorithm Description

Inputs are a LAPCS instance consisting of two arc-annotated sequences S1

and S2, and two integers k1 and k2. We process the sequences from left to
right. Based on a case distinction depending on the bases at the currently
first positions in S1 and S2, we decide how to continue recursively. For sake



8.2 A Fixed-Parameter Algorithm for LAPCS(nested,nested) 143

Recursive procedure LAPCS(S1, S2, k1, k2):
Input: Arc-annotated sequences S1 and S2 (with annotations A1 and A2,

respectively), integers k1 and k2.

Output: Integer denoting the length of an lapcs of S1 and S2, if existent
and if k1, k2 ≥ 0, which can be obtained by deleting at most k1

bases in S1 and at most k2 bases in S2. Return value −1 otherwise.
Method:

(Case 0) /* Recursion ends. */
if k1 < 0 or k2 < 0 then return −1 /* No solution found. */
else if |S1| = 0 and |S2| = 0 then return 0 /* Success! Solution found.*/
else if |S1| = 0 and |S2| > 0 then /* One sequence done but not... */

if k2 ≥ |S2|, then return 0, else return −1 end if; /* ...the other. */
else if |S1| > 0 and |S2| = 0 then /* ditto */

if k1 ≥ |S1|, then return 0, else return −1 end if
(Case 1) /* Non-matching bases S1[1] and S2[1]. */

else if S1[1] 6= S2[1], then return the maximum of the following values:{
LAPCS(S1[2, n1], S2, k1 − 1, k2) /* delete S1[1] */
LAPCS(S1, S2[2, n2], k1, k2 − 1) /* delete S2[1] */

(Case 2) /* Matching bases S1[1] and S2[1]. */
else if S1[1] = S2[1] then

... (for details refer to [2, 93])

(2.5.3)
if (1, i) ∈ A1, (1, j) ∈ A2, S1[i] = S2[j], and

neither S1[2, i − 1] ≈1 S2[2, j − 1] nor S1[i + 1, n1] ≈1 S2[j + 1, n2]

then return the maximum of the following four values:




LAPCS(S1[2, n1], S2, k1 − 1, k2) /* delete S1[1]. */
LAPCS(S1, S2[2, n2], k1, k2 − 1) /* delete S2[1]. */
1+̇LAPCS((S1 − S1[i])[2, +], (S2 − S2[j])[2, +], k1 − 1, k2 − 1)

/* match S1[1] and S2[1], but do not match arcs (1, i) and (1, j);
this implies the deletion of S1[i], S2[j], and the incident arcs. */

LAPCS Case2.5.3.4(S1, S2, k1, k2) (defined in Fig. 8.3) /* match arcs. */
end if

end if

Figure 8.2: Algorithm solving LAPCS(nested,nested). We provide, here,
only an overview on its case distinction, omitting most details of Case (2) and
only focusing onto the “bottleneck case,” Case (2.5.3) (for better comparability,
we keep the numbering of cases as it is used in [2, 93]).

of clarity, we, firstly, give in Figure 8.2 an overview in pseudocode of the algo-
rithm which omits, for the sake of a better overview, many details which can
be found in [2, 93]. The focus of this presentation will, in particular, be on
the “bottleneck case” of the algorithm, namely Subcase (2.5.3). Although the
algorithm as given reports only the length of an lapcs, it can easily be extended
to compute the lapcs itself within the same running time. In our pseudocode,



144 Consensus of RNA Secondary Structures

the return statement implies that the current procedure is immediately left
with the specified value as output.

Case (0) deals with those cases in which no further recursive call is invoked: For
example, if both parameters k1 and k2 are negative and, thus “used up,” we did
not find a solution in this branch of the search tree. Because of processing S1

and S2 from left to right, we make a case distinction depending on S1[1], S2[1].
Case (1) covers the situation in which S1[1] and S2[1] do not match and Case (2)
covers the situation in which S1[1] and S2[1] do match. Within Case (2), we
further distinguish depending on possibly outgoing arcs from S1[1] and S2[1].
We omit here and in Fig. 8.2, for the sake of a better overview, most of the case
distinction which is made within Case (2); the omitted single cases are treated
in an analogous way as Case (1) (for details see [2, 93]). Here, we right away
point to the bottleneck case of our algorithm which is described as follows (we
keep, for better comparability, the numbering of cases as used in [2, 93]):

In Case (2.5.3), we have the situation that there is an arc connecting S1[1] with
S1[i], there is an arc connecting S2[1] with S1[j], and S1[1] = S1[i] as well as
S2[1] = S2[j], i.e., there is the possibility to match the two arcs. Moreover,
in (2.5.3), it is already clear that neither S1[2, i − 1] ≈1 S2[2, j − 1] nor S1[i +

1, n1] ≈1 S2[j + 1, n2] (both can be checked in linear time); in these cases, it is
the best choice to match the arcs. In contrary, in (2.5.3), it is not yet clear that
matching the arcs would lead to an optimal solution. Therefore, we recursively
consider following possibilities: Not matching the arcs by breaking at least one
of them (handled by the first three recursive calls in (2.5.3)) or matching the
arcs (handled by the fourth recursive call in (2.5.3)); The fourth recursive call
is described in Fig. 8.3. Here, we introduce the value l which denotes the
length of the lapcs of S1 and S2 in case of matching arc (1, i) with arc (1, j).
It can be computed as the sum of the lengths l′, denoting the length of an
lapcs of S1[2, i − 1] and S2[2, j − 1], and l′′, denoting the length of an lapcs
of S1[i + 1, n1] and S2[j + 1, n2]; each of l′ and l′′ can be computed by one
recursive call. Remember that we already excluded S1[2, i − 1] ≈1 S2[2, j − 1]

and S1[i + 1, n1] ≈1 S2[j + 1, n2]. Therefore, the deletion parameters k1 and k2

will be decreased by at least two in both recursive calls computing l′ and l′′;
knowing this will be essential for the running time analysis. We invoke two calls
for l′ and l′′ as displayed in Fig. 8.3.

Computing l′, we credit the two deletions that will certainly be needed when
computing l′′. Depending on the length of S1[i+1, n1] and S2[j+1, n2], we have
to decide which parameter to decrease: If |S1[i + 1, n1]| > |S2[j + 1, n2]|, we will
certainly need at least two deletions in S1[i+ 1, n1], and can start the recursive
call with parameter k1 − 2 (and, analogously, with k2 − 2 if |S1[i + 1, n1]| <

|S2[j + 1, n2]| and both k1 − 1 and k2 − 1 if S1[i + 1, n1] and S2[j + 1, n2] are of
same length).



8.2 A Fixed-Parameter Algorithm for LAPCS(nested,nested) 145

Recursive procedure LAPCS Case2.5.3.4(S1, S2, k1, k2):
Input: Arc-annotated sequences S1 and S2 such that Case (2.5.3) applies

and positive integers k1 and k2.

Output: Integer denoting the length of an lapcs of S1 and S2 which can
be obtained by deleting at most k1 symbols in S1 and at most k2

symbols in S2 while matching arc (1, i) with arc (1, j). The return
value is −1 if no such subsequence exists.

Method:

l ′ := 0;
if n1 − i > n2 − j then l ′ := LAPCS(S1[2, i − 1], S2[2, j − 1], k1 − 2, k2)

else if n1 − i < n2 − j then l ′ := LAPCS(S1[2, i − 1], S2[2, j − 1], k1, k2 − 2)

else l ′ := LAPCS(S1[2, i − 1], S2[2, j − 1], k1 − 1, k2 − 1)

end if;
k′

1,1 := i − 2 − l′; /* number of deletions spent in S1[1, i] */
k′

2,1 := j − 2 − l′; /* number of deletions spent in S2[1, j] */
l′′ := LAPCS(S1[i + 1, n1], S2[j + 1, n2], k1 − k′

1,1, k2 − k′

2,1);
return l ′ + l ′′;

Figure 8.3: Algorithm LAPCS, matching the arcs in (Case 2.5.3). Inputs
are an LAPCS instance consisting of two arc-annotated sequences S1 and S2

with an arc (1, i) in S1 and with an arc (1, j) in S2[1] such that these arcs match.
This part of Algorithm LAPCS investigates the case that the arcs are matched.

Correctness of the Algorithm

To show the correctness, we have to make sure that, if an lapcs with the specified
properties exists, then the algorithm finds one; the reverse can be seen by
checking, for every case of the above algorithm, that we only make matches when
they extend the lapcs and that the bookkeeping of the “mismatch counters” k1

and k2 is correct. In the following, we omit the details for the easier cases and
for those cases not discussed in this section, and, instead, focus on the most
involved situation, Case (2.5.3).

In Case (2.5.3), we have three possibilities: Firstly, we can decide to not
match S1[1] with S2[1]; this is considered by the first two recursive calls of
Case (2.5.3). Secondly, we can match S1[1] with S2[1] without matching arc (1, i)

with arc (1, j); this is considered by the third recursive call of Case (2.5.3). In
the latter case, we have to delete both S1[i] and S2[j] since, otherwise, we cannot
maintain the arc-preserving property. Thirdly, we can match the endpoints of
arc (1, i) with the endpoints of arc (1, j).

When matching the arcs in this way, we can divide the current instance into two
subinstances: bases from S1[2, i−1] can only be matched to bases from S2[2, j−1]

and bases from S1[i+1, n1] can only be matched to bases from S2[j+1, n2]. We
will, in the following, denote the subinstance given by S1[2, i−1] and S2[2, j−1]



146 Consensus of RNA Secondary Structures

as part 1 of the instance and the one given by S1[i + 1, n1] and S2[j + 1, n2] as
part 2 of the instance.

We start the algorithm recursively on part 1 (to compute l′) and, also on part 2
(to compute l′′). At this point we know, however, that an optimal solution
will require at least two deletions in part 1 and it will also require at least two
deletions in part 2. Thus, when starting the algorithm on part 1, we can “spare”
two of the k1+k2 deletions for part 2, depending on part 2 (as outlined above).
Having, thus, found an optimal solution of length l′ for part 1, the number of
allowed deletions remaining for part 2 is determined: we have, in part 1, already
spent k′

1,1 := i − 2 − l′ deletions in S1[2, i − 1] and k′
2,1 := j − 2 − l′ deletions in

S2[2, j − 1]. Thus, there remain, for part 2, k1 − k′
1,1 deletions for S1[i + 1, n1]

and k2 − k′
2,1 deletions for S2[j + 1, n2].

This discussion showed that, in Case (2.5.3), our case distinction covers all
subcases in which we can find an optimal solution and, hence, Case (2.5.3) is
correct.

Running Time Analysis

Here, we only point to the main ideas of the running time analysis of Algo-
rithm LAPCS, a detailed proof can be found in [2, 93]. The analysis is mainly
based on estimating the search tree size. This is done by considering the branch-
ing vectors corresponding to each case in the algorithm’s case distinction. In a
straightforward way (as shown in Subsection 4.5) we can show that all cases of
the algorithm aside from Case (2.5.3) correspond to a branching number smaller
than 3.31. Therefore, we focus now on Case (2.5.3), which branches into four
subcases. Notably, the last of these branching subcases invokes not only one
but two recursive calls, one to compute the value of l ′, the other to compute
the value of l ′′. The main idea to deal with this case is to upperbound the sum
of the sizes of these two search trees, as summarized in the following lemma.

Lemma 8.2.1. Given two arc-annotated sequences S1 and S2 with non-negative
integers k1 and k2 such that Case (2.5.3) in Algorithm LAPCS applies, the call
LAPCS Case2.5.3.4(S1, S2, k1, k2) generates a search tree of size upperbounded
by 3.31k1+k2−1.

The key to prove the lemma is that the search tree is traversed in breadth-first
style. If Case (2.5.3) is called with parameter values k1 and k2, we can, in this
way, derive that the heights of the two search trees computing l ′ and l ′′, respec-
tively, add up to at most k1+k2. Moreover, we know that each of the two search
trees is of height at least two. Using induction on the number of occurrences
of Case (2.5.3) in these search trees, then, leads to the result summarized in
Lemma 8.2.1. In the inductive step, we assume that the claim is true for all
further occurrences of Case (2.5.3) in search trees computing l ′ and l ′′. There-
fore, the recursive calls computing l ′ and l ′′ in these occurrences of Case (2.5.3)



8.3 Dynamic Programming for APS(nested,nested) 147

can be considered as if only one recursive call would be made, decreasing the
parameter k1 + k2 by one. Thus, (Case 2.5.3) can be seen as corresponding to
a branching vector (1, 1, 2, 1) and to the branching number 3.31. For details on
the proof refer to [2, 93].

The technique to conduct an accumulated analysis of two search trees comput-
ing l ′ and l ′′ by processing them in breadth-first manner seems novel in the
area of search tree algorithms. In contrast to well known analysis techniques
as outlined in Chapter 4, the two search trees are, here, not independent from
each other, but the size of one of them depends on solutions found in the other.
In this way, the search trees exchange information and only this allows us to
bound, firstly, the sum of their heights and, secondly, the sum of their sizes.
Using Lemma 8.2.1, we can prove the following theorem that summarizes the
main result of this section.

Theorem 8.2.2. LAPCS(nested, nested) for two sequences S1 and S2 with
|S1|, |S2| ≤ n can be solved in O(3.31k1+k2 · n) time where k1 and k2 are the
number of deletions needed in S1 and S2, respectively.

8.3 Dynamic Programming for APS(nested,nested)

Recognizing, in the traversal of the search tree, easy-to-process instances as,
e.g., outlined in Section 4.4, can considerably speed up the performance of the
search tree algorithm. In this Section, we show how to speed up the algorithm
presented in Section 8.2. Procedure LAPCS as shown in Fig. 8.2 continues
recursion until either a solution is found with non-negative values of parame-
ters k1 and k2, or until both parameter values are 0. In contrary, we show that
the recursion can actually be stopped already when only one parameter value
is 0: The resulting instance is an APS(nested,nested) instance and it can
be solved in quadratic time as we will show in the following.

The intrinsic difficulty in APS(nested,nested) is that, when considering an
arc (il, ir) in S1 we have the following possibilities: (1) We can either be
match (il, ir) to an arc in S2. (2) We can match only S1[il] (or only S1[ir])
to a base in S2; then, S1[ir] (or S1[il]) cannot be matched to a base in S2 due
to the arc-preserving property. (3) Of course, we can also match neither S1[il]

nor S1[ir] to a base in S2. To decide between those possibilities would lead
to an exponential running time if care is not taken. Here, we present a dy-
namic programming approach that processes the bases in S1 by their right end-
points, locally decides which matching possibility is the best, and stores this
information in a dynamic programming table T . In the following, we will call
(il, ir) ∈ A1 aps-matching arc for (jl, jr) ∈ A1 iff S1[il] = S2[jl], S1[ir] = S2[jr],
and S2[jl, jr] is an aps of S1[il, ir]. We call (il, ir) ∈ A1 innermost aps-matching
arc for (jl, jr) ∈ A2 iff there is no (i ′l, i

′
r) ∈ A1 with il < i ′l < i ′r < ir which is

aps-matching arc for (jl, jr). Using this terminology, two main principles of our
algorithm are given as follows:



148 Consensus of RNA Secondary Structures

il iri′
l

i′
r

i′′
l

i′′
r

S =

Figure 8.4: Illustrating the “I sets” corresponding to an arc-annotated se-
quence S: Bases in set I are white, bases in set I(il,ir) are shaded, bases in
set I(i′l,i

′
r) are dotted, and bases in set I(i′′l ,i′′r ) are patterned with lines.

• Bases in S2 which are not endpoint of an arc or which are right endpoint
of an arc are matched to the leftmost possible base in S1 such that S2 is
an aps of S1.

• Arcs in S2 are matched to an innermost aps-matching arc in S1.

If S2 is an aps of S1, then the algorithm computes one solution that respects
both principles.

For the formulation of the algorithm, we introduce some new notation: For

each arc (il, ir) ∈ A1, we define a set I
(il,ir)

1 (analogously I
(jl,jr)

2 for (jl, jr) ∈ A2)
which contains the positions of the bases that are inside arc (il, ir) but not
inside any arcs that are inside (il, ir),

I
(il,ir)

1 = { i | il < i < ir} \
⋃

(i′
l
,i′r)∈A1

∧ il<i′
l
<i′r<ir

{ i′ | i′l < i′ < i′r}.

If A1 has a nested arc structure then the sets I
(il,ir)

1 for different arcs are disjoint.
We define I1 (analogously I2) as the set of endpoints of the outermost arcs in A1

and of positions of all bases which are not inside any arcs in A1. An example
illustrating the set “I sets” for a sequence with nested arc-annotation is given
in Fig. 8.4.

Algorithm Description

The dynamic programming table T contains entries for every arc in A1 and
every base in S2. We refer to the table entries corresponding to (il, ir) ∈ A1

by T(il, j), where j is an arbitrary position in S2. Entry T(il, j) is defined to
contain the rightmost position j′ ≥ j in S2 such that S2[j, j

′] is an arc-preserving
subsequence of S1[il, ir] (or j − 1 if no such j′ exists). To fill table T , we process
the arcs in A1 by the order of their right endpoints and, thus, from inner to
outer arcs. For every arc in A1, we process the arcs in A2 also by the order
of their right endpoints, i.e., from inner to outer arcs. For an arc (jl, jr) ∈ A2,

we compute the table entries for the bases in I
(jl,jr)

2 before computing the table
entry corresponding to jl (no table entry corresponding to jr is needed).



8.3 Dynamic Programming for APS(nested,nested) 149

Recursive procedure maxaps(S1[i1, i2], S2[j1, j2]):
Input: Arc-annotated sequences S1 and S2, positive integers i1, i2, with

1 ≤ i1, i2 ≤ |S1|, positive integers j1, j2, with 1 ≤ j1, j2 ≤ |S2|.
Output: The maximum j′, j1 ≤ j′ ≤ j2, such that S2[j1, j

′] is an arc-
preserving subsequence of S1[i1, i2], or j1 − 1 if no such j′ exists.

Method:

if i1 > i2 or j1 > j2 then
return j1 − 1;

else if i1 = i2 then
if S1[i1] = S2[j1] and S2[j1] is not an arc endpoint then

return j1;
else

return j1 − 1;
end if

else if i1 < i2 and j1 = j2 then
if S1[i1] = S2[j1] and S2[j1] is not an arc endpoint then

return j1;
else if S1[i1] 6= S2[j1] and S2[j1] is not an arc endpoint then

return maxaps(S1[i1 + 1, i2], S2[j1, j1]);
else /* if S2[j1] is an arc endpoint */

return j1 − 1;
end if

else if i1 < i2 and j1 < j2 and neither S1[i1] nor S2[j1] are arc endpoints then
if S1[i1] = S2[j1] then

return maxaps(S1[i1 + 1, i2], S2[j1 + 1, i2]);
else

return maxaps(S1[i1 + 1, i2], S2[j1, i2]);
end if

else if i1 < i2 and j1 < j2 and S2[j1] is arc endpoint but S1[i1] is not then
return maxaps(S1[i1 + 1, i2], S2[j1, j2]);

else /* i1 < i2 and j1 < j2 and S1[i1] is the left endpoint of arc (il, ir) */
return maxaps(S1[ir + 1, i2], S2[T [il, j1] + 1, j2]);

end if

Figure 8.5: Recursive definition of maxaps. Note that positions i1, i2 and
j1, j2 also have to be considered as arguments of maxaps and the notation
maxaps(S1[i1, i2], S2[j1, j2]) is used for better readability.

As an auxiliary function, the algorithm uses the recursive procedure maxaps
which is called by maxaps(S1[i1, i2], S2[j1, j2]) and which returns the maxi-
mum j′, j1 ≤ j′ ≤ j2, such that S2[j1, j

′] is an arc-preserving subsequence
of S1[i1, i2] (or j1 − 1 if no such j′ exists). Procedure maxaps is defined in
Fig. 8.5. Procedure maxaps processes S1[i1, i2] and S2[j1, j2] from left to right
and the basic principle is to match S1[i1] with S2[j1] whenever possible. To this
end, an exhaustive case distinction is given depending on S1[i1] and S2[j1] and
depending on possibly outgoing arcs from S1[i1] and S2[j1]. The main idea of
this procedure can be seen in the situation when S1[i1] is the left endpoint of
arc (il, ir) (while i1 < i2 and j1 < j2). Then, we “jump” over arc (il, ir) by



150 Consensus of RNA Secondary Structures

Procedure APS(S1, S2):
Input: Arc-annotated sequences S1 and S2.
Output: Message stating whether S2 is an aps of S1.
Global Variable: array of int T [n][m];
Method:

/*********************** Phase 1 *****************************/
for each (il, ir) ∈ A1 (ordered by their right endpoints) do

for each (jl, jr) ∈ A2 (ordered by their right endpoints) do

for each j ∈ I
(jl,jr)

2 do

T(il, j) := max

{
maxaps(S1[il, ir − 1], S2[j, jr − 1]),

maxaps(S1[il + 1, ir], S2[j, jr − 1])

}

end for

T(il, jl) :=






jr if (il, ir) is an innermost
aps-matching arc for (jl, jr),

maxaps(S1[il + 1, ir], S2[jl, m]) otherwise.
end for

end for

/*********************** Phase 2 *****************************/
for each j ∈ I2 such that S2[j] is not an endpoint do

for each (il, ir) ∈ A1 (ordered by their right endpoints) do

T(il, j) := max

{
maxaps(S1[il + 1, ir], S2[j, m]),

maxaps(S1[il, ir − 1], S2[j, m])

}

end for
end for
if (maxaps(S1[1, n], S2[1, m]) = m)

then print ‘S2 is an aps of S1’;
else print ‘S2 is not an aps of S1’;

end if

Figure 8.6: Outline in pseudo-code of the algorithm that solves
APS(nested,nested).

using the precomputed results stored in table T . In this way, we can advance
the current position in S1 from i1 = il to ir+1, i.e., to the position after the arc,
while advancing the current position in S2 from j1 to T [il, j1]+1 since T [il, j1]+1

contains the maximum j ′ such that S2[j1, j
′] is aps of S1[il, ir]. Observe that,

when computing maxaps(S1[i1, i2], S2[j1, j2]), all entries in T corresponding to
arcs in A1 with both endpoints inside S1[i1, i2] have been computed before; this
holds due to the order of processing the arcs in A1 and A2 (i.e., from inner to
outer arcs). Therefore, the computation of the function maxaps is well-defined.

The complete algorithm solving APS(nested,nested) is outlined in Fig. 8.6.
It is divided into two phases. The first phase processes S1 and S2 restricted
to those bases which are endpoint of an arc or which are within an arc. The
second phase, then, processes the bases in S1 and S2 which are outside every
arc. In the following, we outline the first phase in more detail.

In the first phase, we process, in two nested loops, the arcs in A1 from inner to



8.3 Dynamic Programming for APS(nested,nested) 151

outer arcs, in order to compute the table entries in T corresponding to these arcs.
All table entries are computed using Procedure maxaps. For each arc in A1, the
arcs in A2 are processed from inner to outer arcs. Then, for each pair (il, ir) ∈
A1 and (jl, jr) ∈ A2, we, firstly, compute the table entries corresponding to
bases in S2 which are in I(jl,jr), i.e., which are in S2[jl, jr] but which are not
within an arc having its endpoints S2[jl, jr]. Then, secondly, we compute the
table entry corresponding to S2[jl]. In this case, we decide whether we match arc
(il, ir) with (jl, jr). We decide to match the arcs only if (il, ir) is the innermost
aps-matching arc for (jl, jr). This test (which is omitted in Fig. 8.6 for the
sake of simplicity) is done as follows: Arc (il, ir) ∈ A1 is an aps-matching arc
for (jl, jr) ∈ A2 iff maxaps(S1[il+1, ir−1], S2[jl+1, jr−1]) = jr−1, S1[il] = S2[jl],
and S1[ir] = S2[jr]. To decide whether it is an innermost aps-matching arc, we
recall that we process the arcs in A1 in increasing order by their right endpoints.
Therefore, we simply keep track of the so far last found arc (i ′l, i

′
r) ∈ A1 such

that (jl, jr) is aps-matching arc for (i ′l, i
′
r). If there was none so far or (i ′l, i

′
r) is

left of (il, ir), i.e, i ′l < i ′r < il < ir, then (il, ir) is an innermost aps-matching
arc for (jl, jr). This completes the description of Procedure APS.

Correctness of the Algorithm

For one direction of the correctness, we have to check that Algorithm APS
returns with ‘S2 is an aps of S1’ only if S2 is, in fact, an aps of S1. To make
this clear, we point out the following facts:

• A base S2[j] is only matched to a base S1[i] if S1[i] = S2[j], and the order of
bases is preserved, i.e., two bases S2[j] and S2[j

′] with j < j ′ are matched
to bases S1[i] and S1[i

′], respectively, only if i < i ′ (see the definition of
function maxaps in Fig. 8.5 and, if S2[j] or S2[j

′] is endpoint of an arc, the
description of the test for aps-matching arcs in the preceding paragraph).

• The arc-preserving property is maintained:

– If an arc (il, ir) ∈ A1 is not matched to an arc (jl, jr) ∈ A2, i.e.,
we do not match both S1[il] with S2[jl] and S1[ir] with S2[jr], then
only one of S1[il] and S1[ir] is matched to a base in S2 but not the
other (see the computation of table entry T(il, j) for a position j in S2

which is not endpoint of an arc in Procedure APS, Phase 1).

– An arc (jl, jr) ∈ A2 is matched only to an arc (il, ir) ∈ A1 (see the
test for aps-matching arcs in the preceding paragraph).

• The matching of arcs respects the nested structure in S1 and S2, i.e.,
(jl, jr), (j

′
l, j

′
r) ∈ A2 with jl < j ′l < j ′r < jr, are matched to (il, ir), (i

′
l, i

′
r) ∈

A1, respectively, such that il < i ′l < i ′r < ir (see the computation of table
entries T(il, jl) in Procedure APS: (il, ir) is matched with (jl, jr) only if
S1[il + 1, ir − 1] is an aps of S2[jl + 1, jr − 1]).



152 Consensus of RNA Secondary Structures

For the reverse direction, we make sure that Algorithm APS returns with ‘S2

is an aps of S1’ if S2 is, in fact, an aps of S1: Observe, that a base S2[j] which
is not endpoint of an arc is, by the definition of function maxaps, matched to
an leftmost possible base in S1. An arc (jl, jr) ∈ A2 is matched to an innermost
aps-matching arc in S1. Therefore, if S1 is an aps of S2, then the algorithm
finds the unique matching that respects these two principles.

Running Time Analysis

Essential for the running time analysis is to give a tight estimate of the running
time of a call to Procedure maxaps as follows.

Lemma 8.3.1. Let either I′1 = I
(il,ir)

1 for an arc (il, ir) ∈ A1 or I′1 = I1. In
both cases, if i1, i2 ∈ I′1, then a call of maxaps(S1[i1, i2], S2[j1, j2]) takes O(|I′1|)
time.

Lemma 8.3.1 is based on the fact that, when processing an arc (il, ir) ∈ A1,
we treat in Procedure maxaps all arcs within this arc, i.e., (i ′l, i

′
r) ∈ A1 with

il < i ′l < i ′r < ir, as “black boxes” since they have been processed before.
This shows that, when processing the arcs from inner to outer arcs, we do
only consider, for one arc, those parts of the sequence which have not been
considered before. This is essential for showing the quadratic running time as
follows. For a proof of Lemma 8.3.1, refer to [82]. The arcs in A1 and the arcs
in A2 are processed in two nested loops and together with Lemma 8.3.1, this
yields the following bound on the running time (for details refer to [82]).

Theorem 8.3.2. APS(nested, nested) can be solved in O(nm) time.

8.4 Conclusion and Open Questions

We conclude with open questions for future research:

1. It remains open to implement and evaluate the presented algorithms. An
application for the algorithms is the computation of similarity values for
RNA structures. An example of RNA sequences for which such structure
comparisons may be of interest is given by the sequences of introns (see
Chapter 2). On the one hand, we can distinguish certain types of introns,
e.g., so-called group-I or group-II introns [32], where introns of one type
have common structural properties. On the other hand, introns of one
type exhibit large differences in their primary sequence. Therefore, al-
gorithms are of interest which compute similarity values based both on
sequence and structure. These similarity values can, then, be used to
construct hypotheses on the evolutionary relationship of several introns
of one type.



8.4 Conclusion and Open Questions 153

2. What is the parameterized complexity of LAPCS(crossing,nested)
and LAPCS(crossing,crossing) when parameterized by the number
of deletions? The problems are NP-complete and W[1]-hard when pa-
rameterized by the length of the common subsequence [64, 65].

3. Although nested arc structures are a usual case encountered in practice,
there are also many examples of RNA with crossing but not nested arc
structure. However, general crossing arc structures constitute a much
more difficult case than the nested arc structures studied in this chap-
ter. For example, APS(crossing, crossing) is NP-complete and, thus,
there is no hope to extend our dynamic programming approach from Sec-
tion 8.3 to this case. In the context of computing an “optimal” folding for
a given RNA sequence, Rivas and Eddy [169] specify the notion of solvable
configurations of arcs, which are a generalization of a nested arc structure
but which are a proper subclass of crossing arc structures (see [169] for
details). It is conceivable that these solvable configurations of arcs cap-
ture most tertiary RNA structures encountered in real world examples.
Moreover, Rivas and Eddy showed that these structures are accessible to
a dynamic programming algorithm; they gave a dynamic programming
algorithm which computes, given a length-n RNA sequence, an optimal
structure among all “solvable configuration” arc-structures under an en-
ergy minimization model. Their algorithm has O(n6) running time, sub-
sequently improved to O(n5) [134]. Although the combinatorial question
addressed by Rivas and Eddy is different from the questions studied in
this chapter, a natural question is whether our algorithms in Section 8.2
and 8.3 can be extended to solvable configurations of arc structures.

4. Contact maps have been proposed as a model for protein structures and
a maximum contact map overlap as a measure for the similarity of two
structures [78, 123]. Contact maps are defined as arc-annotated sequences
over a unary alphabet in which every base is endpoint of at least one arc.
Given two arc-annotated sequences S1 and S2 with arc-annotations A1

and A2, a common subsequence T is defined by a one-to-one mapping
M = { 〈ir, jr〉 | 1 ≤ r ≤ |T | } from a subset of {1, . . . , |S1|} to a subset of
{1, . . . , |S2|} in which the matches are “order-preserving,” i.e., for 〈i, j〉,
〈i ′, j ′〉 ∈ M we have i < i ′ ⇔ j < j ′. Then, a maximum contact map
overlap is defined as a common subsequence that maximizes

∣

∣

∣

∣

{ (il, ir) ∈ A1 | 〈il, jl〉, 〈ir, jr〉 ∈ M and (jl, jr) ∈ A2 }

∣

∣

∣

∣

.

Contact Map Overlap, i.e., the question for the maximum contact
map overlap of two given arc-annotated sequences, is NP-complete [78].
On the one hand, protein structures are more complicated than RNA
structures since, in terms of arc-annotated sequences, one base can have
an arc to more than one other base and the arc structures derived from
real world examples are definitely crossing or even unlimited. On the other
hand, Contact Map Overlap is easier than the question for longest



154 Consensus of RNA Secondary Structures

arc-preserving subsequences in the following ways: the alphabet is unary,
every base is endpoint of an arc, and, therefore, partial arc matches are
not possible, i.e., it is not possible to match only one endpoint of an arc
in one sequence to a free base in the other sequence.

This raises questions as follows: Can a bounded search tree approach as
discussed in Section 8.2 be applied to Contact Map Overlap, possibly
restricting to certain structural patterns? Examples of structural patterns
for which Contact Map Overlap is solvable in polynomial time are
given in [78]. Further, can we solve APS problems for that model in
polynomial time when the arc structure of the pattern belongs to a class
of arc structures (to be determined) which captures consensus structures
of protein families or protein domains, e.g., as they can be found in the
PFAM database [14]?



Chapter 9

Contributions in Context

In this section, we give a selective summary of our results by putting them into
the context of current research on parameterized complexity. We show com-
monalities and differences in the results that we achieved for different problems.
Thus, we build bridges between the single chapters of this work. Moreover, we
point out where our results help to find connections between the theory of pa-
rameterized complexity and other important areas in algorithm theory such
as integer linear programming, approximation algorithms, and heuristics. We
show how the examples studied in this work exhibit the potential but also the
limitations of fixed-parameter approaches for computational biology problems.
Therefore, this section is also intended to be a critical assessment, pointing to
open questions which are raised by our work but remain open here.

9.1 Connections to Integer Linear Programming

Integer linear programming (as introduced in Chapter 1), is one the most central
techniques in combinatorial optimization. For many combinatorial problems
their formulation as an ILP has been discussed and software specialized for
solving linear programs in general and ILP’s in particular has been developed.
For an overview on (integer) linear programming, refer to [119, 145, 176]. The
connections between parameterized complexity and integer linear programming
have, so far, been almost unexplored.

By example of Closest String, we introduced ILP’s as a novel tool for show-
ing a problem to be fixed-parameter tractable. Closest String is, given
length-L strings s1, s2, . . . , sk, and a non-negative integer d, the question whether
we can find a length-L string s with maxi=1,...,k dH(s, si) ≤ d. In Subsec-
tion 5.1.3, we have shown that Closest String is fixed-parameter tractable
with respect to the number k of input strings by formulating it as an ILP whose
number of variables depends only on k. We concluded the fixed-parameter



156 Contributions in Context

tractability of Closest String with an algorithm by H. W. Lenstra [125]
which solves the ILP feasibility problem, i.e., decides whether there is any so-
lution for the ILP. The key property allowing us to conclude fixed-parameter
tractability of Closest String is that Lenstra’s algorithm is fixed-parameter
with respect to the number of variables. This important property was, to
the best of our knowledge, not employed before in the development of fixed-
parameter algorithms. Notably, we were not able to show this fixed-parameter
tractability of Closest String using other means. Therefore, the ILP formu-
lation was an essential tool to locate Closest String on the parameterized
complexity map.

In the Closest String example the fixed-parameter approach suffers from
two limiting factors: Firstly, the exponential growth of the number of vari-
ables is huge, more precisely the number of variables is given by B(k) · (k − 1)

where B(k) denotes the Bell number and is upperbounded by k!. Secondly,
Lenstra’s algorithm is complex and has, to the best of our knowledge, not been
implemented.

Nevertheless, it is an important first step in the design of fixed-parameter al-
gorithms to decide whether at all the problem is fixed-parameter tractable or
whether it turns out to be fixed-parameter intractable. There are a number of
important problems which still resist such a classification. Therefore, tools are
of interest which show fixed-parameter tractability even if they do not directly
lead to efficient algorithms. The graph minor theory [58] and color coding [5]
are two examples of well-known techniques for recognizing the fixed-parameter
tractability of problems. Now, ILP’s are a new and easy-to-use approach of this
kind.

Moreover, the Closest String example also shows that designing an ILP in
which the number of variables depends only on an input parameter can be of
significance in practice despite of the mentioned disadvantages. We can solve
the ILP using a linear programming package, e.g., the GNU GLPK library
as we did in the Closest String example. These software tools, usually,
solve ILP’s in a heuristic way, e.g., using branch-and-bound techniques, and
find exact solutions but do not give non-trivial guarantees on the worst-case
running time; thus, these algorithms are, in particular, not fixed-parameter
with respect to the number of ILP variables. However, the number of variables
can make a difference for the performance of ILP solvers as we could exhibit
in our experiments for Closest String instances, where we compared the
performance of the GNU GLPK ILP solver on our new ILP formulation with
an alternative ILP formulation of the problem (Subsection 5.1.4).

Our results point out an important connection between parameterized com-
plexity and the theory of integer linear programming and, thus, contribute to a
new and, so far, unexplored field of studies. We conjecture that there are more
problems for which the ILP approach can be applied as for Closest String,
and for which we can, in this way, gain new insights. However, further examples



9.2 Connections to Approximation Algorithms 157

FPT PTAS

Vertex Cover
yes [43, 154]
(Chapter 4)

“no,”
MaxSNP-hard [7]

Closest String yes (Section 5.1) yes [129]

Distinguishing Substring
Selection

“no,” W[1]-hard [83]
(based on Sec. 5.2)

yes [56]

Table 9.1: Opposing, for some example problems, results concerning the prob-
lem complexity from parameterized complexity and from approximation theory.

have still to be found. Besides, it seems prosperous to investigate the parame-
terized complexity of further computationally hard problems in combinatorial
optimization.

9.2 Connections to Approximation Algorithms

Approximation algorithms are a common technique to approach hard combi-
natorial problems. Among approximation algorithms presented for problems
in computational biology, we can distinguish two lines of results of interest
here: Firstly, there are polynomial-time constant-factor approximations, e.g.,
see [131, 162, 193] for recent examples; however, in applications, exact or almost
exact solutions might be more desirable. Secondly, polynomial-time approxi-
mation schemes (PTAS’s), as introduced in Chapter 1, became recently more
and more popular, e.g., [56, 106, 129, 196].

In the following, we point out, based on this work, some observations on the con-
nections between approximation schemes and parameterized complexity which
are “deep and developing rapidly” [69]. First of all, there is no general rule
stating that a PTAS implies fixed-parameter tractability or vice versa. To il-
lustrate this, we give, in Table 9.1, example problems for each of which we cite
a parameterized complexity and an approximation result. The parameterized
complexity results are given in or based on this work. In this comparison of
results, the parameter of the parameterized complexity result corresponds to
the value of an optimal solution for the optimization criterion on the approx-
imation side. Regarding Vertex Cover, we have outlined a fixed-parameter
algorithm with respect to the size of the vertex cover as parameter in Chapter 4.
MaxSNP-hardness means that it is NP-hard to achieve a factor-(1+ǫ) approx-
imation for a constant ǫ (see [7, 101] for more details), i.e., there is no PTAS
unless NP = P. The MaxSNP-hardness result for Vertex Cover refers to
the approximation criterion of minimizing the size of the vertex cover. Closest
String is treated in Section 5.1, and the results mentioned here, both the fixed-
parameter algorithm and the PTAS, refer to the distance parameter. Regarding



158 Contributions in Context

the Distinguishing Substring Selection problem, both the W[1]-hardness
result and the PTAS refer to the “distance parameters” (for details see [83]).
The mentioned W[1]-hardness result for Distinguishing Substring Selec-
tion [83] has directly been developed from the results on Closest Substring
presented in Section 5.2.

The performance of an approximation scheme is determined by a trade-off be-
tween a good running time and the goodness of approximation: The better the
desired approximation factor the more costly is the running time. Taking a
closer look at the running times of proposed approximation schemes, however,
suggests that they, often, are rather a tool for the structural classification of
problems than a tool for designing practical algorithms. We give some examples
for problems whose parameterized complexity has been discussed in this work:

• Closest String (defined in Chapter 5, page 45): Li et al. [129] give
a PTAS for Closest String with the optimization criterion to mini-
mize the distance parameter d such that there is a solution string with
Hamming distance at most d to each given string. For k length-L input
strings, they give a worst-case bound on the running time of their PTAS
of O((k ·L)r·kO(log |Σ|·r2/ǫ2)) in order to achieve a factor-(1+1/(2r−1)+ǫ)

approximation, for an integer r, 2 ≤ r, and real ǫ > 0. For achieving a
25 percent error, we find the optimal trade-off between r and ǫ in this term
for r = 5 and ǫ ≈ 0.13; then, the r2/ǫ2 term in the exponent of the run-
ning time estimation already evaluates to more than 1200. (For Closest
String, we gave a an exact fixed-parameter algorithm in Section 5.1.2.)

• Minimum Quartet Inconsistency (defined in Chapter 6, page 85):
Jiang et al. [109] give a PTAS for MQI with the optimization criterion
to maximize the number of quartets for which the given set Q of quartet
topologies coincides with the set QT of quartet topologies induced by the
solution tree. The two essential components of the PTAS given by Jiang
et al. [109] are given as follows. Firstly, a number of binary trees with
c leaves is enumerated where c is a constant depending only on the aimed
approximation factor. Secondly, for each of these trees, a PTAS given
in [6] is invoked which solves so-called t-smooth integer programs. To
achieve a 25 percent approximation, the worst-case bound on the running
time for this latter PTAS [6] already amounts to nc·1024log n for some
constant c. Notably, in Chapter 6, we considered the “dual” version of
the problem where the corresponding optimization criterion is to minimize
the number of quartets for which Q and QT do not coincide. For this
version, it is not even known whether there is an approximation with
factor better than n2 for n taxa [108]. (For MQI, we presented an exact
fixed-parameter algorithm in Section 6.4.)

• LAPCS(nested,nested) (defined in Chapter 8, page 137): For re-
stricted versions of LAPCS(nested,nested), Lin et al. [130] give PTAS’s
with the optimization criterion to maximize the length of the common sub-
sequence. The restriction imposed by them is that a base in S1 is allowed



9.2 Connections to Approximation Algorithms 159

to match only with a base in S2 from a certain range of constant size. For
example, in c-diagonal LAPCS, given a constant positive integer c, we
are allowed to match a base in S1 at position p only with a base in S2 from
positions p− c to p+ c. For c-diagonal LAPCS(nested,nested), Lin

et al. [130] provide a PTAS with O(2(3ck−4)(ck−1)2
c9k9(|S1| + |S2|)) run-

ning time to achieve a factor-(1 − 1/k) approximation. For a very small

value of c = 2, to achieve a 25 percent error, the 2(3ck−4)(ck−1)2
factor

in the above term already evaluates to 21372. (For LAPCS(nested,nes-
ted) without the c-diagonal restriction, we presented a fixed-parameter
algorithm in Chapter 8.)

Comparing the mentioned PTAS’s with the algorithms presented in this work
shows that fixed-parameter algorithms offer, in many cases, a more constructive
approach to solve problems than approximation schemes do. For none of the
mentioned PTAS’s, it is stated along with the algorithm that they have been
implemented, for most of our search tree algorithms, however, we also presented
implementations and tests.

One reason that makes PTAS’s infeasible already for moderate approximation
ratio is the nO(1/ǫ) running time, often with large constant factors hidden in
the exponent. Therefore, Cesati and Trevisan [41] propose the concept of an
efficient polynomial-time approximation scheme (EPTAS) with an f(ǫ) · nO(1)

running time for arbitrary function f. From the PTAS’s mentioned above, only
the one for c-diagonal LAPCS(nested,nested) [130] is an EPTAS. It is
observed by Bazgan [16] and by Cesati and Trevisan [41] that a problem which
has a PTAS but is W[1]-hard can not have an EPTAS unless FPT =W[1]. For
example, a PTAS for the Distinguishing Substring Selection problem was
presented in [56] and, for the same problem, a W[1]-hardness result, obtained
by using our construction from Section 5.2, was given in [83]. Following the
preceding discussion, the W[1]-hardness result implies that Distinguishing
Substring Selection does not have an EPTAS unless FPT =W[1]. There-
fore, our results from Section 5.2 enabled to show, for one of the first computa-
tional biology problems, a border between a known PTAS and a highly unlikely
EPTAS.

Results concerning the parameterized complexity of problems can also provide
structural results which are, so far, not provided by approximation theory. This
is shown by the following example that we recall from Chapter 5. Both Clos-
est String as well as Closest Substring are NP-complete and for each of
them Lin et al. [130] present a PTAS. Thus, from the viewpoint of classical
complexity (both problems are NP-complete) and from the viewpoint of ap-
proximation theory (both problems have a PTAS), both problems are “equal”;
intuitively, however, Closest Substring is the harder problem since, com-
pared to Closest String, it additionally involves the difficulty of choosing
a substring in every input string. Our results presented in Chapter 5 clearly
distinguish these two problems from the viewpoint of parameterized complex-
ity. With respect to the number of input strings as parameter, we show that



160 Contributions in Context

Closest String is fixed-parameter tractable whereas Closest Substring
remains W[1]-hard.

9.3 Connections to Heuristics

The combination of fixed-parameter algorithms with heuristics is an important
issue of recent research in parameterized complexity [68, 69]. Here, we clearly
distinguish between two common notions of heuristics. Firstly, heuristics denote
strategies that do still allow to find the guaranteed optimal solution and improve
the running time in practice but do not allow to improve the worst-case estimate
on the running time. Secondly, heuristics denote strategies that allow for better
estimates on the worst-case running time but do neither give any guarantee on
the optimality of the solution nor guarantee a degree of approximation. In this
section, we point out some examples taken from this work where we combine
fixed-parameter algorithms with heuristics of both mentioned types. In many
cases, heuristic strategies can drastically reduce the running time in practice
and can, thus, be the key to the application of the algorithms while combin-
ing advantages of heuristics (improving the performance) and fixed-parameter
algorithms (mathematical analysis and running time guarantees).

Regarding heuristics that still find guaranteed optimal solutions, consider the
search tree algorithms for Closest String (Section 5.1) and for Minimum
Quartet Inconsistency (MQI) (Chapter 6). In both examples, we showed
that the measured running time of the algorithms remains far below the the-
oretical worst-case bounds. In both cases, this was achieved by heuristic im-
provements added to the algorithms. In the Closest String example, this
includes easy observations, e.g., not to redo changes that are made in the course
of the search tree traversal, and more complex strategies, e.g., our strategy to
avoid multiple computations of the same solution (see Subsection 5.1.2.2 for
details). In the Minimum Quartet Inconsistency example, a central idea
was the detection of changes that have to be made in order to find a solution.
This strategy works in a similar way as the computation of a problem kernel
for 3-Hitting Set [153]; for MQI, it does, however, not yield a problem kernel
but still works to speed up the algorithm.

A heuristic strategy of a different flavor was presented in the search tree algo-
rithm for Longest Arc-Preserving Subsequence (LAPCS) that is given
in Chapter 8. Here, we show a way to process special instances encountered in
the traversal of the search tree in polynomial time. More precisely, we showed
how to process instances where one of the two problem parameters already
equals zero. These instances can be solved in quadratic time O(|S1| · |S2|),
where S1 and S2 are the two given arc-annotated sequences, by dynamic pro-
gramming. Asymptotically, this does not affect the size of the search tree.
However, it does “cut off” whole branches of the search tree, and, thus, im-
proves the performance of the algorithm drastically.



9.4 Choice of Parameters 161

Concerning the second kind of heuristics, those for which we loose the guarantee
of an optimal solution, we have shown a promising approach for MQI. We
propose to use a heuristic preprocessing and to use the search tree algorithm on
top of the results of the preprocessing. Specifically for MQI, the preprocessing
infers edges of the tree to be constructed which are “strongly supported” by
the input. A range of such preprocessing strategies has been proposed for
MQI [23, 24, 25, 194, 107, 109] which differ in the way they decide whether
edges are strongly supported. In this way, the output of the preprocessing is
a tree that is not necessarily binary and, in the worst case, a star tree. The
search tree algorithm, then, refines this tree to a binary tree as required by MQI.
Roughly speaking, the more edges one of these preprocessing methods infers for
a given MQI instance, the higher is the possibility that an edge inferred in this
preprocessing does not belong to an optimal MQI solution. In Chapter 6, we
chose one of the most conservative among the mentioned preprocessing methods,
Q∗ [24], for which it is quite unlikely to infer edges that lead to suboptimal
results of the overall algorithm. The search tree algorithm, then, refines this
tree to a binary tree. The search space to be explored is reduced drastically by
the preprocessing step as we show in Section 6.6. Nevertheless, on real data,
the found solutions are usually optimal. Thus, this combination can be seen as
a trade-off between fast but error-prone heuristics and time-consuming exact
algorithms. This approach seems prosperous also for other problems, e.g., by
reducing the input size using heuristic data reduction techniques.

9.4 Choice of Parameters

The choice of parameters is a subtle point in the analysis of fixed-parameter
algorithms. Often there is more than one natural parameterization. This al-
lows several starting points for the development of fixed-parameter algorithms.
Also, the parameterized analysis with respect to different parameters allows
important insights into the combinatorial hardness of a problem. This section
highlights several issues in the choice of appropriate problem parameters which
arise when considering the problems discussed in this work.

Dual Parameters. In a parameterized problem, we call two parameters dual if
they sum up to a value depending on the input size. For example, in the Vertex
Cover problem as presented in Chapter 4, one asks, given a graph G = (V, E)

and a integer k with 0 ≤ k ≤ |V |, for a vertex cover of size k. Instead, one
could, given an integer k ′ with 0 ≤ k ≤ |V |, also ask for a vertex cover of
size |V |−k ′; in fact, this is equivalent to asking whether the input graph has an
independent set of size k ′. Here, k and k ′ are dual parameters since they sum
up to |V |. In general, there is no rule to infer the parameterized complexity with
respect to one parameter from the parameterized complexity with respect to
its dual parameterization. For example, Vertex Cover turns out to be fixed-
parameter tractable with respect to parameter k and W[1]-hard with respect to
parameter k ′. In fact, Khot and Raman [115] pose the conjecture that “typically



162 Contributions in Context

parametric dual problems have complementary parameterized complexity.” In
contrast to this conjecture, this work provides two examples of problems for
which two dual parameterizations both yield fixed-parameter algorithms.

In Minimum Quartet Inconsistency (MQI) as presented in Chapter 6, we
ask, given a set of n taxa, a set Q containing a quartet topology for every
size-four set of species, and a non-negative integer k, whether there is a binary
tree T inducing the set QT of quartet topologies such that |Q − QT | ≤ k. In-
stead one could, given a non-negative integer k ′, also ask for a binary tree T

with induced quartet topology set QT such that |Q ∩ QT | ≥ k ′. Here, k and k ′

are dual parameters since they sum up to |Q| =
(

n
4

)

. We have seen in Chapter 6
that MQI is fixed-parameter tractable with respect to parameter k. It is also
fixed-parameter tractable with respect to parameter k ′ since, for every set Q

of quartet topologies, there is a binary tree inducing at least one third of the
topologies in Q [114]. Therefore, we know that k ′ > |Q|/3 or, equivalently,
that |Q| ≤ 3k ′ and, thus, already the exact algorithm proposed by Ben-Dor et
al. [17] is a fixed-parameter algorithm with respect to parameter k ′. For MQI,
however, the parameterization by k is certainly preferable to the parameteriza-
tion by k ′ since for realistic data we can assume that k ′ is significantly larger
than 2|Q|/3 [17, 89].

For Longest Arc-Preserving Common Subsequence (LAPCS), as pre-
sented in Chapter 8, however, it may depend on the data which of two possible
parameterizations is more appropriate. Given two arc-annotated sequences S1

and S2 and a non-negative integer L, one can ask whether S1 and S2 have an
arc-preserving common subsequence of length L. Alternatively, one can ask, as
proposed in Chapter 8, given non-negative integers k1 and k2, whether we obtain
an arc-preserving common subsequence by deleting k1 bases in S1 and k2 bases
in S2. Here, we have dual parameters since L + k1 = |S1| and L + k2 = |S2|. As
described in Chapter 8, LAPCS is fixed-parameter tractable both with respect
to L as well as with respect to k1 and k2. This offers a constructive and flex-
ible approach to this problem. Depending on the input data, one can choose
between the two approaches: For comparing similar sequences where we expect
a long arc-preserving common subsequence, one might better choose the fixed-
parameter algorithm with respect to k1 and k2. For comparing less similar
sequences where we expect a small arc-preserving common subsequence, one
might better choose the fixed-parameter algorithm with respect to L. With no
knowledge about the input data, one could use a competitive approach where
the two algorithms are started in parallel.

Several Parameters. Many problems exhibit not only one but a set of natural
parameterizations. Here, it is interesting to investigate which parameterizations
do allow fixed-parameter algorithms and for which they are unlikely, i.e., for
which the problem becomes W[1]-hard. On the one hand, this allows better un-
derstanding of which parts of the input cause the combinatorial hardness of the
problem. On the other hand, several fixed-parameter algorithms allow to pro-
pose a set of algorithms for a particular problem and to choose the appropriate



9.4 Choice of Parameters 163

one depending on the input data and on the resulting parameter values.

An example problem for such a situation is contained in this work, namely
Closest String, for which we can give fixed-parameter algorithms with re-
spect to two natural parameters. Given length-L strings s1, s2, . . . , sk and a
non-negative integer d, we ask for a length-L string s with dH(s, si) ≤ d for
all i = 1, . . . k. In Subsection 5.1.2, we present a search tree algorithm which
is fixed-parameter with respect to the distance parameter d and has a running
time of O(kL + kd · dd). In Subsection 5.1.3, we showed, by formulating the
problem as an integer linear program that it is fixed-parameter tractable with
respect to the number k of input strings as parameter.

In this way, Closest String offers two fixed-parameter parameter algorithms,
each of them is with respect to a different natural parameter and each of them
having its very own flavor. The search tree algorithm is easy-to-understand
but non-trivial and the ILP approach introduces a novel technique to show
fixed-parameter tractability. This makes Closest String a good example
problem to illustrate the concepts of fixed-parameter algorithms, e.g., in class
notes [149].

Guaranteed Values. There are parameterized problems which are, in general,
NP-hard but which allow polynomial-time solutions when the parameter value
is below some threshold. An example is Maximum Satisfiability, where we
are given a formula F in conjunctive normal form with n variables and m clauses,
and a non-negative integer k, and where we ask for an variable assignment that
satisfies at least k clauses. Fixed-parameter algorithms with respect to param-
eter k have been proposed for this problem, the currently best result having
O(1.3695k · k2 + |F|) running time [42]. For a random variable assignment,
however, either the assignment itself or its inverse already satisfies half of the
clauses. Therefore, the “guaranteed value” of the parameter is k > m/2 since
for k ≤ m/2, we can easily solve the problem in linear time. For this rea-
son, Mahajan and Raman [135] propose a parameterization “above guaranteed
values,” i.e., to introduce a new parameter k ′ and to ask for an assignment
that satisfies at least m/2 + k ′ clauses. Regarding Maximum Satisfiability,
we only shortly note that the problem also turns out to be fixed-parameter
tractable with respect to k ′ having, however, an algorithm with worse running
time than the fixed-parameter algorithm with respect to k; beyond that, even
larger, less obvious guaranteed values than m/2 exist [135].

In this work, we encounter guaranteed parameter values in the example of Min-
imum Quartet Inconsistency (MQI) (Chapter 6). Given a set of quartet
topologies, there is a polynomial-time heuristic algorithm [25] whose solution
is guaranteed to be optimal for k < (n − 3)/2 where n is the number of taxa
and k is the parameter indicating the number of erroneous quartet topologies.
Therefore, we can assume in the fixed-parameter algorithm that k ≥ (n− 3)/2.
This also raises questions for the parameterization above guaranteed values in
the style of Mahajan and Raman [135]. For MQI, this is to ask whether the



164 Contributions in Context

problem is fixed-parameter tractable with respect to parameter k ′ when we want
to find a tree that violates at most (n − 3)/2 + k ′, k ′ ≥ 0, quartet topologies.

One has to be aware of guaranteed parameter values and take them into account
in the parameterized analysis. However, parameterizing above guaranteed val-
ues can become significantly more difficult (also see the discussion of guaranteed
values in [148]).

Normalized Parameters. Parameterized approaches in many cases suffer
from the fact that growing problem instances usually also require larger pa-
rameter values. An example problem to which this observation applies is
Breakpoint Median as presented in Chapter 7. Given signed orderings π1,
π2, . . . , πk and a non-negative integer d, we ask for a median ordering π such
that

∑k
i=1 dbp(π, πi) ≤ d where dbp denotes the breakpoint distance (for details

refer to Chapter 7).

Since the problem is NP-complete already for k = 3 and, thus, there is no hope
for a fixed-parameter algorithm with respect to parameter k, we concentrated in
Chapter 7 on the distance parameter d. For Breakpoint Median, in contrast
to, e.g., Closest String, the goal is to find an object (here an ordering π)
such that the sum of distances (here breakpoint distances) to all input objects is
bounded by d, whereas in Closest String the goal is to find an object (there
a string s) such that the maximum of distances (there Hamming distances) to
all input objects is bounded by d. Therefore, compared to Closest String,
we can expect for Breakpoint Median that an increasing number of input
objects implies an increasing optimal value of the distance parameter, i.e., the
minimal value which allows a solution.

In Chapter 7, we outlined a fixed-parameter algorithm with respect to d with
a O(kn + d · 2.15d) running time. On the one hand, we expect that, with
every additional input ordering, the optimal distance value increases. On the
other hand, we made the observation that the base c of the exponential term cd

in the running time bound decreases towards 1 as k increases. This interest-
ing observation leads us to propose a normalized distance parameter d/f(k)

where f is a function measuring the increase of the optimal d value for grow-
ing k. This raises two open questions: to determine an appropriate f function
for practical settings and to investigate the parameterized complexity of the
problem with respect to parameter d/f(k). Our experimental results shown in
Chapter 7 indicate that our algorithm seems fixed-parameter with respect to
parameter d/ log(k) but, using our algorithm, we cannot give any indication
that the problem is fixed-parameter tractable with respect to parameter d/k.

The investigation of normalized parameters could also be interesting and fruit-
ful for other computational biology problems such as multiple sequence align-
ment, e.g., with the sum-of-pairs scoring scheme [94]. This problem also seems
intractable when parameterized by the number of input sequences. We con-
jecture, however, that the problem is fixed-parameter tractable with respect to



9.4 Choice of Parameters 165

the distance parameter reflecting the “cost” of an alignment, i.e., the sum of
all pairwise Hamming distances in the computed alignment. Obviously, this
distance parameter is likely to depend on the number of input sequences.



166 Contributions in Context



Chapter 10

Future Research Directions

In this chapter, I indicate new research directions in the intersection of param-
eterized complexity and computational biology. To this end, I, firstly, point
to three subjectively selected areas of current computational biology research
where the algorithmic techniques from this work could apply. Secondly, I show
new directions regarding the techniques, which may be of particular interest
in computational biology. Open research questions more closely related to the
problems discussed in this work can be found at the end of each chapter.

10.1 Problem-Oriented

I outline three areas of computational biology which are subject of current
research and seem suited for the application of the algorithmic techniques pre-
sented in this work.

10.1.1 Analysis of Microarray Data

In this section, combinatorial questions in the analysis of microarray data are
discussed, a new and prominent field of bioinformatics research. As clustering
problems play a central role in this context, we first discuss them in general
and, then, give one concrete example of a graph-theoretic problem proposed
specifically for the clustering of gene expression data. To exhibit a further
aspect of microarray data analysis, we also address the detection of meaningful
local patterns within the data. For background on microarray data analysis
refer to [10, 175].

Clustering Problems. These are a class of problems for which the typical
question is, given a set of data points (e.g., genes) and a pairwise similarity
measure for the data points (e.g., the similarity of two expression patterns), to



168 Future Research Directions

find a partition into subsets, the “clusters,” such that all data points within
one group are similar to each other. The concrete definition of the similar-
ity within one group depends on the particular clustering problem. Studying
general approaches for data clustering (see, e.g., [99, 105] for an overview), we
encounter, when aiming for exact solutions, running times characterized by nk

or ndk factors, where n is the number of given data points, d is the dimension,
and k is the number of clusters. So far, little has been undertaken to restrict the
exponential term in the running time to certain problem parameters, e.g., the
number of clusters, the dimension, or the amount of noise in the data. These
problem parameters are likely to be small in applications. Fixed-parameter al-
gorithms working efficiently in such a scenario as well as novel hardness proofs
could mean a breakthrough with impact beyond computational biology. We
discuss, in the following, a specific graph-theoretic version of a clustering prob-
lem where a fixed-parameter algorithm could be successfully developed. For a
survey of approaches for clustering gene expression data refer to [182].

Graph Modification Problems. With the CLICK program, Sharan and
Shamir [181] provided software for clustering gene expression data. From a com-
binatorial point of view, the employed model is a (weighted) graph in which the
(weighted) edges represent the similarity of two given data points. The ques-
tion for a clustering of the data points can, then, be formulated as a Cluster
Editing problem: The goal is to transform the graph by edge insertions and
edge deletions of a minimum weight into a clique graph, i.e., into a graph that
consists of vertex-disjoint cliques. While [181] presents a heuristic approach to
solve this problem, it is the goal of [180] to inspect the complexity of Cluster
Editing and some variants, showing that Cluster Editing is NP-complete
and giving polynomial-time solutions for special cases.

Restricting, for simplicity, to unweighted graphs, a clique graph is a graph that
does not contain a P3, i.e., a path of three vertices, as a vertex-induced sub-
graph. Therefore, a straightforward algorithm is, given a graph that is not a
clique graph, to search three vertices inducing a P3 and to insert or delete an
edge between these vertices in order to eliminate this “forbidden subgraph;”
this algorithm derives from general results on forbidden subgraph problems by
Cai [38]. Improving this algorithm in [81], it is shown that Cluster Editing
has a problem kernel with O(k2) vertices and O(k3) edges and a search tree
algorithm with O(2.27k + |V |3) running time where k denotes the number of
allowed edges modifications. While this algorithm was designed manually, it
was, by automatizing the generation of the branching rules in the search tree
algorithm, shown that Cluster Editing can be solved in O(1.92k+ |V |3) run-
ning time [80]. For a discussion of this automatically generated search tree
algorithm refer to Subsection 10.2.2.

The parameterized complexity of Cluster Editing is still open when we con-
sider the aggregate parameter containing both the number of allowed edge mod-
ifications and the number p of clusters. Additionally to the mentioned problem
kernel, it seems promising to develop further heuristic reduction rules for the



10.1 Problem-Oriented 169

problem, in particular when addressing the case of weighted edges. From a
graph-theoretic point of view, it seems interesting to develop refined fixed-
parameter algorithms for other “forbidden subgraph” problems which are de-
fined analogously as Cluster Editing but have another forbidden subgraph
instead of a P3. An example of such a forbidden subgraph problem moti-
vated by applications in computational biology is Directed Perfect Phy-
logeny [163]. Concerning clustering problems, the approach sketched here
could serve as an example of how to develop fixed-parameter algorithms for
other versions of clustering problems.

Pattern Discovery Problems. A drawback of clustering techniques is that
they often require that all data points can be assigned to some cluster. In the
analysis of microarray data it is, however, already informative to identify a part
of the data points (e.g., genes) that exhibit a similar pattern (e.g., a similar
expression behavior for a subset of the conditions). A further goal is, because of
the difficulty in the normalization of data, to keep the notion of “similarity” for
expression patterns flexible. Ben-Dor et al. [18] propose a problem addressing
these issues, Order Preserving Submatrix (OPSM), already addressed in
Section 3.2. They show NP-hardness and develop heuristic solutions. Formally,
the problem is, given an n×m matrix of real-numbered expression values, and
two positive integers k and s, to determine whether there is a k × s-submatrix
and a permutation of columns in this submatrix such that the values within
every row of this submatrix are strictly increasing. Roughly speaking, OPSM
searches for genes that exhibit a similar expression pattern over a subset of
conditions.

In applications, the input matrix has thousands of rows (the genes), but only
a comparatively small number of columns (the tissues). Therefore, a natural
direction seems to be the search for algorithms that have efficient running time
when the number of columns in the matrix or the submatrix is fixed, i.e.,
the question for the fixed-parameter tractability of the problem with respect
to these parameters. Regarding the size of the submatrix, the answer is a
negative one: As discussed in Section 3.2, OPSM can be shown hard for the
complexity class W[1] when the number of columns (or the number of rows) in
the submatrix is the parameter. It remains to find more appropriate parameters
or identify special cases of the problem for which it is possible to find exact
solutions. An example for such a parameter is given by Tanay et al. [192],
who present another pattern discovery problem for the analysis of microarray
data on the same input as in OPSM. To make their problem computationally
tractable, they exclude, on the same input as in OPSM, those rows (the genes)
from the analysis which exhibit a high expression level (above a threshold) in
more than d columns for a constant integer d, because, as they argue, these
genes are unlikely to contribute important information to the analysis. Thus,
they obtain, for a special case of their problem, a fixed-parameter algorithm
with respect to d.

As a summary of this subsection, we recall two central challenges raised herein:



170 Future Research Directions

• Determine the parameterized complexity of clustering problems with re-
spect to number of clusters, the dimension, or the amount of noise in the
data.

• Determine the parameterized complexity of Cluster Editing with re-
spect to both an upper bound p on the number of clusters and the num-
ber k of allowed edge modifications.

10.1.2 SNP Haplotyping Problems

A SNP (single nucleotide polymorphism) is a single base mutation in DNA.
Thus, while most of the human DNA is identical, at particular positions (the
SNP positions) human DNA can exhibit different nucleotides (the SNP states).
In general, at one SNP position, one of two possible SNP states can be observed.
As humans have two copies of each chromosome, the copies may carry differ-
ent SNP states at the SNP positions. We distinguish genotype data, i.e., the
common sequence information of both chromosomes, from haplotype data, i.e.,
the sequence information of only one of the chromosomes. In the following, we
address two combinatorial questions from the context of analyzing these data
and, then, point out two closely related graph problems which are important
reference points in both questions.

SNP Haplotype Assembly Problems. In the sequencing of human DNA,
a large number of short genome fragments is collected. These fragments derive
from both chromosome copies, but it cannot be experimentally determined
which fragment derives from which of the two chromosome copies. Therefore, it
is a computational problem to assign each fragment to one of the two haplotypes
and, thereby, to determine the SNP states of each haplotype. Lippert et al. [132]
give a model for this question, as already outlined in Section 3.3.3. Describing
their problem informally, its input is an alignment of fragments and the goal is
to partition the fragments into two sets such that fragments exhibiting different
SNP states at a particular SNP position belong to different sets. More formally,
the input is given as a data matrix in which every row corresponds to a fragment
and every column corresponds to a SNP position. The entries of the matrix
are one character from the alphabet {0, 1,−}, where 0 and 1 indicate one of two
possible SNP states and “−” indicates that the fragment does not contain any
information about that SNP position, e.g., because the SNP is located outside
the fragment. Given this matrix, the question is to partition the rows into two
sets such that, in each of the two sets, no column contains a 0 as well as a 1

entry.

Example. Consider the following matrix:









− 0 1 0 1 − −

− − 1 1 0 1 −

− − − 0 1 1 1

0 1 1 1 − − −











10.1 Problem-Oriented 171

Here, the set of rows can be partitioned into two sets, one containing the first
and third row, the other containing the second and fourth row. Then, for both
sets, in rows of one set, no column contains a 0 as well as a 1 entry.

Accounting for errors in the alignment or in the sequence, we arrive at an
optimization problem that asks for the minimum number of fragments that have
to be removed such that we can find a partition as specified; this optimization
problem is referred to as Minimum Fragment Removal (MFR).

Example. In the matrix












− 0 1 0 1 − −

− − 1 1 0 1 −

− − − 0 1 1 1

0 1 1 1 − − −

− 1 0 1 0 − −













no bipartition of rows with the required property is possible. Omitting the last
row, however, it is possible, since this leads to the situation described in the
preceding example. Therefore, on the input of the shown matrix, deleting the
last row yields a solution for MFR.

Analogously, we define Minimum SNP Removal (MSR) asking for the min-
imum number of SNP positions to delete from the input data, or Minimum
Entry Removal (MER) asking for a minimum number of entries in the data
matrix to set to “−”. MFR and MSR are solvable in polynomial time when the
fragments are contiguous [170], i.e., when, within every row of the given matrix,
no two entries from {0, 1} are intermitted by one or more “−” entries. However,
MER with contiguous fragments is NP-hard [159]. Rizzi et al. [170] address the
more realistic scenario when the fragments are not contiguous which makes the
mentioned problems NP-hard. Here, it would be of particular interest to design
fixed-parameter algorithms when the parameter is the number of fragments (or
the number of SNP positions or the number of matrix entries, respectively) to
remove. In general, this seems to be difficult. But when considering the gap size
as a parameter, i.e., the maximum number of “−” entries in one row which in-
termit entries from {0, 1}, a fixed-parameter algorithm for MFR was given [170]
and a fixed-parameter algorithm for MSR is given in the long version of [170];
the question for algorithms which are fixed-parameter with respect to the gap
size is still open for MER.

Reconstructing haplotype structure. Using microarray assays, SNP geno-
type data are obtained in a process called high-throughput SNP genotyping.
As we, thereby, obtain genotype data only, a particular line of research is to
deduce haplotype data when only given the genotype data.

This aspect is addressed by Eskin et al. [63]. Following the model of Gus-
field [95], they describe how to compute, from genotypes for a set of individ-
uals, the haplotypes under the assumption that the haplotypes have evolved
following a perfect phylogeny. Here, a peferct phylogeny is, for a given set of



172 Future Research Directions

SNP positions, a binary tree in which all nodes are labelled with a sequence of
SNP states, one for each SNP position, such that nodes exhibiting a common
SNP state at a particular SNP position form a connected subtree (for a pre-
cise definition of a perfect phylogeny refer to [63, 95]). This problem is called
Perfect Phylogeny Haplotype and defined more precisely as follows. In-
put is, similarly as in the preceding paragraph, a matrix A with entries from
{0, 1, 2} where rows correspond to genotypes and columns correspond to SNP
positions, a 0 or 1 entry indicates that the respective genotype has a unique
SNP state at this SNP position and a 2 entry indicates that the respective
genotype has both SNP states at this SNP position. Given a length-l vector a

with entries from {0, 1, 2} and two length-l vectors b1 and b2 with entries from
{0, 1}, we say that b1 and b2 are compatible with a if, for every 1 ≤ i ≤ l, either
a[i] = b1[i] = b2[i], or a[i] = 2 and b1[i] 6= b2[i]. Then, Perfect Phylogeny
Haplotype asks whether there is a matrix B with entries from {0, 1}, where
for every row in A there are two compatible rows in B, and the rows in B form
a perfect phylogeny. Herein, the matrix B, if existent, has the same number of
columns as A, it has at least as many rows as A, and it has at most twice as
many rows as A.

Example. Consider matrices A and B, and a perfect phylogeny on the rows of
B as follows:

A =





0 2 0 0

0 1 2 2

1 0 0 0



 , B =













0 0 0 0

0 1 0 0

0 1 1 0

0 1 0 1

1 0 0 0













, and

0000

0100

0110 0101

1000

Matrix B is a solution for Perfect Phylogeny Haplotype on the input of
matrix A, where the first two rows of B correspond to the first row in A, the
second and third row of B correspond to the second row in A, and the last rows
in A and B correspond to each other.

A polynomial-time algorithm for Perfect Phylogeny Haplotype is given
in [63]. When, however, the data contain errors or there is no solution under
the assumption of a perfect phylogeny, Eskin et al. propose to consider the fol-
lowing NP-hard optimization problem, called Minimum Genotype Removal:
Given a matrix with entries from {0, 1, 2} and a non-negative integer k, deter-
mine whether we can remove k rows in the matrix such that, after their removal,
Perfect Phylogeny Haplotype yields a positive answer. How the algo-
rithmic techniques of parameterized complexity can apply here, is indicated by
the following.

Bipartite Graphs. When comparing the problem described in the previous
two paragraphs, we make the following observations: In SNP haplotype assem-
bly problems, the goal is to assign a given haplotype fragment, represented by
its sequence of SNP states, to one of two possible haplotypes. In the reconstruc-
tion of haplotype structure, the goal is to divide the given genotype fragments,



10.1 Problem-Oriented 173

represented by their sequence of not necessarily unique SNP states, into two
haplotype fragments each. Thus, on the one hand, both paragraphs describe
different combinatorial problems. The commonality of both problems is that
we require a bipartition of haplotype fragments into two sets such that hap-
lotype fragments with differences in their SNP states belong to different sets.
Therefore, on the other hand, the central optimization questions raised in the
previous two paragraphs are both closely related to graph problems concerning
bipartite graphs, described as follows.

In Edge Bipartization we ask, given a graph G and a non-negative inte-
ger k, whether we can transform the graph into a bipartite graph by deleting at
most k edges. The corresponding problem considering vertex deletions instead
of edge deletions is called Vertex Bipartization. Both problems are NP-
complete [74] and, for both problems, it is an open question whether or not they
are fixed-parameter tractable (e.g., see [115, 135] for Vertex Bipartization).

In the following, we make the connections between these graph problems and
the problems from the SNP context more precise without going into the details
of the reductions. Vertex Bipartization is equivalent to MFR with non-
contiguous fragments; vertices of the graph (in the Vertex Bipartization
instance) correspond to fragments (in the MFR instance), edges correspond to
a conflict between two fragments and the number of vertices to remove cor-
responds to the number of fragments to remove. In an analogous way, we
can “directly,” i.e., in linear time, reduce Edge Bipartization to MSR and
MER. From the results shown in [63], it follows that Edge Bipartization can
be reduced to Minimum Genotype Removal and vice versa.

Note that the mentioned reductions are parameter-preserving and, thus, clari-
fying the parameterized complexity of Edge and Vertex Bipartization with
respect to the number k of edge modifications could have direct implications
for the mentioned SNP problems and vice versa. If Edge and Vertex Bipar-
tization would be W[1]-hard, then it may still be possible to achieve efficient
algorithms for the SNP problems by making further assumptions about the
structure of the input data.

We state the following open questions:

• Is MER fixed-parameter tractable when parameterized by the number of
allowed entry removals? Is MER with non-contiguous fragments fixed-
parameter tractable when parameterized by the number of allowed entry
removals or when parameterized by the gap length?

• Is Minimum Genotype Removal fixed-parameter tractable when pa-
rameterized by the number of allowed genotype removals?

• Are Edge Bipartization and Vertex Bipartization fixed-parameter
tractable with respect to the number of allowed edge deletions or vertex
deletions, respectively?



174 Future Research Directions

10.1.3 Repeat and Duplication Analysis

More than ten percent of the human genome consists of tandem repeats, i.e.,
duplications of stretches of DNA into one or more adjacent copies, which are
only approximately preserved in the course of evolution. In sequencing projects,
these repeats are serious obstacles when trying to obtain reliable and complete
sequence information. However, they can provide useful information as, e.g.,
they allow to detect micro-evolutionary signals and, thus, can be the basis to
reconstruct evolutionary trees of populations within one species [22]. They are
also used as laboratory tools, e.g., for DNA fingerprinting, since the number of
their copies is variable among single individuals (see [20] and references therein).
Moreover, tandem repeats are implicated in the causation of inherited human
diseases, e.g. Huntington’s disease [20].

The study of combinatorial problems in the analysis of tandem repeats exhibits
also NP-hard problems. Central among them is the question of repeat history,
i.e., the question to reconstruct how the observed repeat copies evolved from
one common ancestor.

Repeat History. The goal of repeat history is to try to clarify evolutionary
history that led to a given ordered sequence of duplicated gene copies that all
originated from one common ancestor; naturally, this history can be modeled
by a rooted tree. The question to reconstruct the repeat history for an ob-
served sequence of repeat copies has been addressed in several works, e.g., by
Benson and Dong [21], by Tang et al. [193], by Elemento et al. [62], and by
Jaitly et al. [106] and, in essence, is, though there are differences in the used
models, the search for a parsimonious tree with respect to duplication events.
This problem has been shown NP-hard for particular formulations [106] and
is conjectured to be NP-hard in general. Therefore, this problem has been
addressed using heuristics [193, 61], constant-factor approximations [21, 193],
PTAS’s [106], exponential-time dynamic programming [193], and exhaustive
search [62] results. It does not seem that the techniques of parameterized com-
plexity have directly been applied to these problems, although some results are
fixed-parameter algorithms, e.g., Tang et al. [193] give an exact algorithm with
running time O(42k(k + n3)). Herein, k is the length of repeat units and n

is their number. Note, however, that this is not a satisfying result in situa-
tions where k tends to be large, e.g., k ≥ 30, which is likely if we study gene
duplications or duplications of other large repeat units. Obvious parameters
to consider instead could be the number of duplication events or the “block
size” which denotes the maximum number of genes duplicated in one duplica-
tion event; in search for exact solutions, the mentioned works, so far, mainly
focused on the special case of block size one.

We raise the following open questions:

• Is Gene Duplication [193] fixed-parameter tractable with respect to
the number of duplication events or the block size?



10.2 Technique-Oriented 175

• Does Tandem Repeat History [106], in addition to the PTAS pro-
posed in [106], have an EPTAS? Note that, if Tandem Repeat History
is W[1]-hard with respect to the “cost” of the repeat history, then the
problem does not have an EPTAS unless FPT = W[1].

10.2 Technique-Oriented

We exhibit two current research directions concerning the further development
of the algorithmic search tree techniques presented in this work.

10.2.1 Data Reduction

For graph problems, preprocessing techniques have been developed that reduce
the size of the input instance but do not sacrifice the optimality of possible
solutions. This can be the key to solve combinatorially hard problems in prac-
tice. The Nemhauser-Trotter theorem [116, 144] provides a prominent example
for the Vertex Cover problem in graph theory. New reduction rules for
Dominating Set [1] give a more recent example. Typically, data reduction
is achieved by giving reduction rules for a problem (see Section 4.2). Special
reduction rules are those that lead to a problem kernel (see Section 4.2); in this
case, we have guarantees on the size of the reduced instance.

In computational biology, examples where such techniques are applied, are rare.
One example is given by showing a problem kernel for Cluster Editing which
received attention in the context of the clustering of microarray data (for a def-
inition of the problem and its applications see Subsection 10.1.1). The input of
Cluster Editing consists of a graph G and a non-negative integer k. Then, it
is shown in [81] that this graph can be reduced to a graph having O(k2) vertices
and O(k3) edges. The efficiency of this reduction on practical data is still to be
evaluated.

We raise the following open question:

• Find, implement, and analyze data reduction techniques (possibly leading
to problem kernels) for problems in computational biology.

10.2.2 Automated Generation of Search Tree Algorithms

Search tree algorithms are based on a set of branching rules and their analysis as
outlined in Chapter 4. In many cases the set of branching rules is complex. For
example, consider search tree algorithms proposed for Vertex Cover [43, 150]
or MaxSat [12, 42, 152].



176 Future Research Directions

The seemingly first example of an automatically generated search tree algorithm
is given for Cluster Editing [80] (for a definition of the problem and its
applications see Subsection 10.1.1). A manually designed search tree algorithm
was given in [81]. By the automatization, the worst-case bound on the search
tree size was improved from 2.27k, where k is the problem parameter, to 1.92k.
The automatically generated set contains 108 branching rules and branching
vectors which have up to 37 entries. It seems impossible to design complex
algorithms like this one manually. Thus, on the one hand, the automated
generation enables much more fine-grained branching rules and improved worst-
case bounds. On the other hand, it remains to be analyzed to what extent more
complex branching rules also imply a better performance in practice, since
they, naturally, also imply an increased time factor in every node of the search
tree. Moreover, it seems impossible to manually check the correctness and the
analysis of such a large set of complex branching rules.

We pose the following open question:

• Provide new examples (besides [80]) for automatically generated bounded
search trees.



Bibliography

[1] J. Alber, M.R. Fellows, and R. Niedermeier. Efficient data reduction for
Dominating Set: a linear problem kernel for the planar case. In Proceed-
ings of the 8th Scandinavian Workshop on Algorithm Theory (SWAT),
number 2368 in LNCS, pages 150–159. Springer, 2002. → 175

[2] J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Towards optimally
solving the Longest Common Subsequence problem for sequences with
nested arc annotations in linear time. In Proceedings of the 13th Annual
Symposium on Combinatorial Pattern Matching (CPM), number 2373 in
LNCS, pages 99–114. Springer, 2002. Long version to appear in Theoret-
ical Computer Science. → vi, 141, 143, 144, 146, 147, 195

[3] J. Alber, J. Gramm, and R. Niedermeier. Faster exact solutions for hard
problems: a parameterized point of view. Discrete Mathematics, 229(1–
3):3–27, 2001. → 3, 195

[4] B. L. Allen and M. Steel. Subtree transfer operations and their induced
metrics on evolutionary trees. Annals of Combinatorics, 5:1–13, 2001. →
29

[5] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM,
42(4):844–856, 1995. → 24, 156

[6] S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the
assignment problem with applications to dense graph arrangement prob-
lems. Mathematical Programming, 92(1):1–36, 2002. → 158

[7] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation—
Combinatorial Optimization Problems and their Approximability Prop-
erties. Springer-Verlag, 1999. → 2, 6, 157

[8] D. A. Bader, B. M. E. Moret, and M. Yan. A linear-time algorithm for
computing inversion distances between signed permutations with an ex-
perimental study. Journal of Computational Biology, 8(5):483–491, 2001.
→ 28, 135

[9] R. Balasubramanian, M. R. Fellows, and V. Raman. An improved fixed
parameter algorithm for Vertex Cover. Information Processing Letters,
65(3):163–168, 1998. → 43



178 BIBLIOGRAPHY

[10] P. Baldi and G. W. Hatfield. DNA Microarrays and Gene Expression:
From Experiments to Data Analysis and Modeling. Cambridge University
Press, 2002. → 167

[11] H.-J. Bandelt and A. Dress. Reconstructing the shape of a tree from
observed dissimilarity data. Advances in Applied Mathematics, 7:309–
343, 1986. → vi, 87, 89, 90

[12] N. Bansal and V. Raman. Upper bounds for MaxSat: further improved.
In Proceedings of the 10th International Symposium on Algorithms and
Computation (ISAAC), number 1741 in LNCS, pages 247–258. Springer,
1999. → 175

[13] Z. Bar-Joseph, E. Demaine, David K. Gifford, A. M. Hamel, T. S.
Jaakkola, and N. Srebro. K-ary clustering with optimal leaf ordering
for gene expression data. Bioinformatics, 19(9):1070–1078, 2003. → 4

[14] A. Bateman, E. Birney, L. Cerruti, R. Durbin, L. Etwiller, S. R. Eddy,
S. Griffiths-Jones, K. L. Howe, M. Marshall, and E.L. Sonnhammer. The
PFAM protein families database. Nucleic Acids Research, 30(1):276–280,
2000. → 154

[15] A. Baxevanis. Practical aspects of multiple sequence alignment. In
A. Baxevanis and B. F. Francis Ouellette, editors, Bioinformatics–A Prac-
tical Guide to the Analysis of Genes and Proteins, pages 172–188. Wiley-
Liss, 1998. → 18, 63

[16] C. Bazgan. Schémas d’approximation et complexité parametrée. Techni-
cal report, DEA d’Informatique ‘a Orsay, 1995. → 159

[17] A. Ben-Dor, B. Chor, D. Graur, R. Ophir, and D. Pelleg. Constructing
phylogenies from quartets: elucidation of eutherian superordinal relation-
ships. Journal of Computational Biology, 5:377–390, 1998. → 86, 89, 162

[18] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local struc-
ture in gene expression data: the Order-Preserving Submatrix problem.
In Proceedings of 6th Annual International ACM Conference on Com-
putational Biology (RECOMB), pages 49–57. ACM Press, 2002. → 27,
169

[19] A. Ben-Dor, G. Lancia, J. Perone, and R. Ravi. Banishing bias from con-
sensus sequences. In Proceedings of the 8th Annual Symposium Combina-
torial Pattern Matching (CPM), number 1264 in LNCS, pages 247–261.
Springer, 1997. → 46, 59, 62

[20] G. Benson. Sequence alignment with tandem duplication. Journal of
Computational Biology, 4:351–367, 1997. → 174

[21] G. Benson and L. Dong. Reconstructing the duplication history of a
tandem repeat. In Proceedings of the 7th International Conference on
Intelligent Systems for Molecular Biology (ISMB), pages 44–53. AAAI
Press, 1999. → 174



BIBLIOGRAPHY 179

[22] S. Bèrard and É. Rivals. Comparison of minisatellites. Journal of Com-
putational Biology, 10(3–4):357–372, 2003. → 174

[23] V. Berry, D. Bryant, T. Jiang, P. Kearney, M. Li, T. Wareham, and
H. Zhang. A practical algorithm for recovering the best supported edges
of an evolutionary tree. In Proceedings of the 11th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 287–296. ACM Press, 2000. →
88, 100, 161

[24] V. Berry and O. Gascuel. Inferring evolutionary trees with strong
combinatorial evidence. Theoretical Computer Science, 240:271–298,
2000. Software available through http://www.lirmm.fr/~vberry/

PHYLOQUART/phyloquart.html. → 87, 88, 95, 100, 103, 161

[25] V. Berry, T. Jiang, P. Kearney, M. Li, and T. Wareham. Quartet cleaning:
improved algorithms and simulations. In Proceedings of the 7th European
Symposium on Algorithms (ESA), number 1643 in LNCS, pages 313–324.
Springer, 1999. → 86, 88, 100, 107, 161, 163

[26] O. R. P. Bininda-Emonds, editor. Phylogenetic Supertrees. Kluwer Aca-
demic Press, 2003. To appear. → 5

[27] M. Blanchette, B. Schwikowski, and M. Tompa. Algorithms for phyloge-
netic footprinting. Journal of Computational Biology, 9(2):211–224, 2002.
→ 4, 30, 31, 45, 65, 66, 68

[28] H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, and H. T.
Wareham. Parameterized complexity analysis in computational biology.
Computer Applications in the Biosciences, 11:49–57, 1995. → 27, 138,
141

[29] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham. The
parameterized complexity of sequence alignment and consensus. Theoret-
ical Computer Science, 147:31–54, 1995. → 27, 138, 141

[30] P. Bonizzoni and G. Della Vedova. The complexity of multiple sequence
alignment with SP-score that is a metric. Theoretical Computer Science,
259(1/2):63–79, 2001. → 18

[31] I. N. Bronstein and K. A. Semendjajew. Taschenbuch der Mathematik.
Teubner, 1991. → 42

[32] T. A. Brown. Genomes. Wiley-Liss, 1999. → 11, 152

[33] D. Bryant. The complexity of the Breakpoint Median problem. Technical
Report CRM-2579, Centre de recherches mathématiques, Université de
Montréal, 1998. → 109, 110, 113, 114

[34] D. Bryant and M. Steel. Constructing optimal trees from quartets. Jour-
nal of Algorithms, 38:237–259, 2001. → 88



180 BIBLIOGRAPHY

[35] J. Buhler and M. Tompa. Finding motifs using random projections. Jour-
nal of Computational Biology, 9(2):225–242, 2002. → 45, 64, 65, 68

[36] P. Buneman. The recovery of trees from measures of dissimilarity. In
F. R. Hodson, D. G. Kendall, and P. Tautu, editors, Anglo-Romanian
Conference on Mathematics in the Archaeological and Historical Sciences,
pages 387–395. Edinburgh University Press, 1971. → 87, 88, 89

[37] J. F. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal
on Computing, 22(3):560–572, 1993. → 37

[38] L. Cai. Fixed-parameter tractability of graph modification problems for
hereditary properties. Information Processing Letters, 58:171–176, 1996.
→ 168

[39] A. Caprara. On the practical solution of the Reversal Median problem.
In Proceedings of the First Workshop on Algorithms in Bioinformatics
(WABI), number 2149 in LNCS, pages 238–251. Springer, 2001. → 5,
133, 135

[40] M. Cesati. Compendium of parameterized problems, 2001. Available via
http://bravo.ce.uniroma2.it/home/cesati/research/. → 26

[41] M. Cesati and L. Trevisan. On the efficiency of polynomial time approx-
imation schemes. Information Processing Letters, 64(4):165–171, 1997.
→ 6, 46, 66, 84, 159

[42] J. Chen and I. Kanj. Improved exact algorithms for MAX-SAT. In Pro-
ceedings of the 5th Latin American Symposium on Theoretical Informat-
ics, number 2286 in LNCS, pages 341–355. Springer, 2002. → 163, 175

[43] J. Chen, I. Kanj, and W. Jia. Vertex Cover: further observations and
further improvements. Journal of Algorithms, 41:280–301, 2001. → 3, 4,
23, 43, 157, 175

[44] W. Chen. A more efficient algorithm for ordered tree inclusion. Journal
of Algorithms, 26(2):370–385, 1998. → 139

[45] B. Chor. From quartets to phylogenetic trees. In Proceedings of the
25th Conference on Current Trends in Theory and Practice of Informatics
(SOFSEM), number 1521 in LNCS, pages 36–53. Springer, 1998. → 85,
87

[46] B. Chor. Personal communication, August 2001. → 107

[47] B. Chor. Personal communication, January 2002. → 27

[48] H. Colonius and H. H. Schultze. Tree structure for proximity data. British
Journal of Mathematical and Statistical Psychology, 34:167–180, 1981. →
87



BIBLIOGRAPHY 181

[49] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetical
progression. J. Symbolic Computations, 9:251–280, 1990. → 23

[50] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. 2nd edition, 2001. → 5

[51] M. E. Cosner, R. K. Jansen, B. M. E. Moret, L. A. Raubeson, L. S. Wang,
T. Warnow, and S. Wyman. An empirical comparison of phylogenetic
methods on chloroplast gene order data in Campanulaceae. In D. Sankoff
and J. Nadeau, editors, Comparative Genomics, pages 99–121. Kluwer,
2000. → 109, 110, 128, 133, 134

[52] M. E. Cosner, R. K. Jansen, B. M. E. Moret, L. A. Raubeson, L. S.
Wang, T. Warnow, and S. Wyman. A new fast heuristic for computing
the breakpoint phylogeny and experimental phylogenetic analyses of real
and synthetic data. In Proceedings of the 8th International Conference on
Intelligent Systems for Molecular Biology (ISMB), pages 104–115. AAAI
Press, 2000. → 109, 110, 133, 134

[53] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Pa-
padimitriou, P. Raghavan, and U. Schöning. A deterministic (2 − 2/(k +

1))n algorithm for k-SAT based on local search. Theoretical Computer
Science, 289(1):69–83, 2002. → 26

[54] M. Davis and H. Putnam. A computing procedure for quantification.
Journal of the ACM, 7:201–215, 1960. → 4

[55] C. de la Higuera and F. Casacuberta. Topology of strings: Median String
is NP-complete. Theoretical Computer Science, 230(1–2):39–48, 2000. →
84

[56] X. Deng, G. Li, Z. Li, B. Ma, and L. Wang. A PTAS for distinguishing
(sub)string selection. In Proceedings of the 29th International Colloquium
on Automata, Languages and Programming (ICALP), number 2380 in
LNCS, pages 740–751. Springer, 2002. → 47, 48, 56, 66, 157, 159

[57] R. G. Downey and M. R. Fellows. Parameterized computational feasibil-
ity. In P. Clote and J. Remmel, editors, Feasible Mathematics II, pages
219–244. Boston: Birkhäuser, 1995. → 25

[58] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-
Verlag, 1999. → 3, 21, 23, 24, 25, 26, 45, 141, 156

[59] R. G. Downey and M. R. Fellows. Parameterized complexity after (al-
most) ten years: review and open questions. In Combinatorics, Compu-
tation & Logic, DMTCS’99 and CATS’99, Australian Computer Science
Communcations, Volume 21 Number 3, pages 1–33. Springer-Verlag Sin-
gapore, 1999. → 23

[60] R. G. Downey, M. R. Fellows, and U. Stege. Parameterized complexity:
a framework for systematically confronting computational intractability.



182 BIBLIOGRAPHY

In Contemporary Trends in Discrete Mathematics: From DIMACS and
DIMATIA to the Future, volume 49 of AMS-DIMACS, pages 49–99. AMS
Press, 1999. → 2, 23

[61] O. Elemento and O. Gascuel. An efficient and accurate distance based
algorithm to reconstruct tandem duplication trees. In Proceedings of the
First European Conference on Computational Biology (ECCB), volume
18 (Supplement 2) of Bioinformatics, pages S92–S99. Oxford University
Press, 2002. → 174

[62] O. Elemento, O. Gascuel, and M.-P. Lefranc. Reconstructing the duplica-
tion history of tandemly repeated genes. Molecular Biology and Evolution,
19(3):278–288, 2002. → 174

[63] E. Eskin, E. Halperin, and R. M. Karp. Efficient reconstruction of hap-
lotype structure via perfect phylogeny. In Proceedings of the 7th Annual
International ACM Conference on Computational Biology (RECOMB),
pages 104–113. ACM Press, 2003. → 171, 172, 173

[64] P. A. Evans. Algorithms and complexity for annotated sequence analysis.
PhD thesis, Department of Computer Science, University of Victoria,
Canada, 1999. → 4, 31, 137, 139, 140, 141, 153

[65] P. A. Evans. Finding common subsequences with arcs and pseudoknots. In
Proceedings of the 10th Annual Symposium Combinatorial Pattern Match-
ing (CPM), number 1645 in LNCS, pages 270–280. Springer, 1999. →
31, 137, 139, 140, 141, 153

[66] P. A. Evans, A. D. Smith, and H. T. Wareham. On the complexity of
finding common approroximate substrings. Theoretical Computer Science,
2003. To appear. → 66

[67] P. A. Evans and H. T. Wareham. Practical algorithms for universal DNA
primer design: An exercise in algorithm engineering. In N. El-Mabrouk,
T. Lengauer, and D. Sankoff, editors, Currents in Computational Molec-
ular Biology 2001, pages 25–26. Publications CRM, Montreal, 2001. →
48, 50, 66, 68, 137

[68] M. R. Fellows. Parameterized complexity: the main ideas and some re-
search frontiers. In Proceedings of the 12th International Symposium on
Algorithms and Computation (ISAAC), number 2223 in LNCS, pages 291–
307. Springer, 2001. → 3, 110, 140, 160

[69] M. R. Fellows. Parameterized complexity: the main ideas and connections
to practical computing. In Experimental Algorithmics, number 2547 in
LNCS, pages 51–77. Springer, 2002. → 3, 6, 66, 157, 160

[70] M. R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized
intractability of Closest Substring and related problems. In Proceedings
of the 19th International Symposium on Theoretical Aspects of Computer



BIBLIOGRAPHY 183

Science (STACS), number 2285 in LNCS, pages 262–273. Springer, 2002.
Long version submitted. → vi, 195

[71] J. Felsenstein. PHYLIP (phylogeny inference package) ver-
sion 3.5c, 1993. Distributed by the author. Department of
Genetics, University of Washington, Seattle. Available through
http://evolution.genetics.washington.edu/phylip. → 103,
104

[72] P. Flajolet and R. Sedgewick. Analytic combinatorics, 2003. To appear,
see http://algo.inria.fr/flajolet/Publications/books.html. →
42

[73] M. Frances and A. Litman. On covering problems of codes. Theory of
Computing Systems, 30:113–119, 1997. → 46, 47, 66

[74] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman, San Francisco, 1979. → 2, 7, 24,
173

[75] L. Ga̧sieniec, J. Jansson, and A. Lingas. Efficient approximation algo-
rithms for the Hamming Center problem. In Proceedings of the 10th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 905–906.
ACM Press, 1999. → 46, 47

[76] L. Ga̧sieniec, J. Jansson, and A. Lingas. Approximation algorithms for
Hamming Clustering problems. In Proceedings of the 11th Annual Sym-
posium Combinatorial Pattern Matching (CPM), number 1848 in LNCS,
pages 108–118. Springer, 2000. → 46

[77] R. Giegerich and C. Meyer. Algebraic dynamic programming. In Proceed-
ings of the 9th International Conference on Algebraic Methodology And
Software Technology (AMAST), number 2422 in LNCS, pages 349–364.
Springer, 2002. → 140

[78] D. Goldman, S. Istrail, and C. H. Papadimitriou. Algorithmic aspects
of protein structure similarity. In Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 512–521.
IEEE Computer Society, 1999. → 137, 153, 154

[79] J. Gramm. Exact algorithms for Max2Sat and their applications. Diploma
thesis, WSI für Informatik, Universität Tübingen, October 1999. Avail-
able from http://www-fs.informatik.uni-tuebingen.de/~gramm/. →
43

[80] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automatized gener-
ation of search tree algorithms for graph modification problems. In Pro-
ceedings of the 11th Annual European Symposium on Algorithms, number
2832 in LNCS. Springer, 2003. To appear. Long version submitted. →
168, 176, 195



184 BIBLIOGRAPHY

[81] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data
clustering: fixed-parameter algorithms for clique generation. In Proceed-
ings of the 5th Italian Conference on Algorithms and Complexity (CIAC),
number 2653 in LNCS, pages 108–119. Springer, 2003. Long version in-
vited for submission to Theory of Computing Systems. → 168, 175, 176,
195

[82] J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for
arc-annotated sequences. In Proceedings of the 22nd Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), number 2556 in LNCS, pages 182–193. Springer, 2002. Long
version submitted. → vi, 140, 141, 152, 195

[83] J. Gramm, J. Guo, and R. Niedermeier. On exact and approximation
algorithms for Distinguishing Substring Selection. In Proceedings of the
14th International Symposium on Fundamentals of Computation Theory
(FCT), number 2751 in LNCS, pages 195–209. Springer, 2003. Long
version submitted. → 58, 66, 157, 158, 159, 195

[84] J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith. Worst-case
upper bounnds for MAX-2-SAT with application to MAX-CUT. Discrete
Applied Mathematics, 130(2):139–155, 2003. → 195

[85] J. Gramm, F. Hüffner, and R. Niedermeier. Closest strings, primer design,
and motif search. In L. Florea, B. Walenz, and S. Hannenhalli, editors,
Currents in Computational Molecular Biology 2002, pages 74–75. 2002.
Poster abstracts of RECOMB 2002. → 64, 195

[86] J. Gramm and R. Niedermeier. Faster exact solutions for Max2Sat. In
Proceedings of the 4th Italian Conference on Algorithms and Complexity
(CIAC), number 1767 in LNCS, pages 174–186. Springer, 2000. → 195

[87] J. Gramm and R. Niedermeier. Evaluating an algorithm for parameterized
Minimum Quartet Inconsistency. In N. El-Mabrouk, T. Lengauer, and
D. Sankoff, editors, Currents in Computational Molecular Biology 2001,
pages 195–196. Les Publications CRM, Montréal, 2001. Poster abstracts
of RECOMB 2001. → 195

[88] J. Gramm and R. Niedermeier. Minimum Quartet Inconsistency is fixed
parameter tractable. In Proceedings of the 12th Annual Symposium on
Combinatorial Pattern Matching (CPM), number 2089 in LNCS, pages
241–256. Springer, 2001. Long version to appear in Journal of Computer
and System Sciences. In press. → vi, 106, 195

[89] J. Gramm and R. Niedermeier. Minimum Quartet Inconsistency is
fixed parameter tractable. Technical Report WSI-2001-3, WSI für In-
formatik, Universität Tübingen, Jan 2001. Report available through
http://www-fs.informatik.uni-tuebingen.de/~gramm/. → vi, 98,
106, 162



BIBLIOGRAPHY 185

[90] J. Gramm and R. Niedermeier. Breakpoint medians and breakpoint
phylogenies—a fixed-parameter approach. In Proceedings of the First Eu-
ropean Conference on Computational Biology (ECCB), volume 18 (Sup-
plement 2) of Bioinformatics, pages S128–S139. Oxford University Press,
2002. → vi, 4, 195

[91] J. Gramm, R. Niedermeier, and P. Rossmanith. Exact solutions for Clos-
est String and related problems. In Proceedings of the 12th Annual Sym-
posium on Algorithms and Computation (ISAAC), number 2223 in LNCS,
pages 441–453. Springer, 2001. Long version to appear in Algorithmica.
→ 185

[92] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algo-
rithms for Closest String and related problems. Algorithmica, 37(1):25–42,
2003. Long version of [91]. → v, 59, 195

[93] J. Guo. Exact algorithms for the Longest Common Subsequence
problem for arc-annotated sequences. Diploma thesis, WSI für In-
formatik, Universität Tübingen, February 2002. Available from
http://www-fs.informatik.uni-tuebingen.de/~guo. → vi, 140, 142,
143, 144, 146, 147

[94] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, 1997. → 2, 18, 19, 139, 141, 164

[95] D. Gusfield. Haplotyping as perfect phylogeny: conceptual framework
and efficient solutions. In Proceedings of 6th Annual International ACM
Conference on Computational Biology (RECOMB), pages 166–175. ACM
Press, 2002. → 171, 172

[96] M. T. Hallett. An integrated complexity analysis of problems from compu-
tational biology. PhD thesis, Department of Computer Science, University
of Victoria, Canada, 1996. → 4

[97] M. T. Hallett and J. Lagergren. New algorithms for the duplication-loss
model. In Proceedings of the 4th Annual International ACM Conference
on Computational Biology (RECOMB), pages 138–146. ACM Press, 2000.
→ 4

[98] S. Hannenhalli and P. Pevzner. To cut ... or not to cut (applications
of comparative physical maps in molecular evolution). In Proceedings of
the 7th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
304–313, 1996. → 4, 29

[99] P. Hansen and B. Jaumard. Cluster analysis and mathematical program-
ming. Mathematical Programming, 79:191–215, 1997. → 168

[100] D. S. Hirschberg. Recent results on the complexity of common subse-
quence problems. In D. Sankoff and J. Kruskal, editors, Time Warps,
String Edits, and Macromolecules—The Theory and Practice of Sequence
Comparison, pages 325–330. CSLI Publications, 1983. → 139



186 BIBLIOGRAPHY

[101] D. S. Hochbaum, editor. Approximation Algorithms for NP-hard Prob-
lems. Boston, MA: PWS Publishing Company, 1997. → 2, 6, 157

[102] B. D. Hughey, G. C. Adams, T. D. Bruns, and D. S. Hibbett. Phylogeny
of Calostoma, the gelatinous-stalked puffball, based on nuclear and mito-
chondrial ribosomal DNA sequences. Mycologia, 92(1):94–104, 2000. →
104, 105, 106

[103] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. → 26

[104] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences,
63(4):512–530, 2001. → 26

[105] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice
Hall, 1988. → 168

[106] D. Jaitly, P. Kearney, G. Lin, and B. Ma. Methods for reconstructing the
history of tandem repeats and their application to the human genome.
Journal of Computer and Systems Sciences, 65:494–507, 2002. → 157,
174, 175

[107] T. Jiang, P. Kearney, and M. Li. Orchestrating quartets: approximation
and data correction. In Proceedings of the 39th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 416–425. IEEE Com-
puter Society, 1998. → 88, 89, 161

[108] T. Jiang, P. Kearney, and M. Li. Some open problems in computational
molecular biology. Journal of Algorithms, 34:194–201, 2000. → 85, 86,
89, 158

[109] T. Jiang, P. Kearney, and M. Li. A polynomial time approximation
scheme for inferring evolutionary trees from quartet topologies and its
application. SIAM Journal on Computing, 30(6):1942–1961, 2001. →
86, 88, 89, 158, 161

[110] T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The Longest Common Subse-
quence problem for arc-annotated sequences. In Proceedings of the 11th
Annual Symposium on Combinatorial Pattern Matching (CPM), number
1848 in LNCS, pages 154–165. Springer, 2000. Long version to appear in
Journal of Discrete Algorithms. → 137, 139

[111] T. Jiang and L. Wang. Algorithmic methods for multiple sequence align-
ment. In T. Jiang, Y. Xu, and M. Q. Zhang, editors, Current Topics in
Computational Molecular Biology, pages 71–110. MIT Press, 2002. → 18

[112] R. Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of Operations Research, 12(415–440), 1987. → 58



BIBLIOGRAPHY 187

[113] H. Kaplan, R. Shamir, and R. E. Tarjan. Faster and simpler algorithm for
sorting signed permutations by reversals. SIAM Journal on Computing,
29(3):880–892, 1999. → 28

[114] P. Kearney. Phylogenetics and the quartet method. In T. Jiang, Y. Xu,
and M. Q. Zhang, editors, Current Topics in Computational Molecular
Biology, pages 112–134. MIT Press, 2002. → 85, 162

[115] S. Khot and V. Raman. Parameterized complexity of finding subgraphs
with hereditary properties. Theoretical Computer Science, 289:997–1008,
2002. → 161, 173

[116] S. Khuller. Algorithms column: The Vertex Cover problem. ACM
SIGACT News, 33(2):31–33, 2002. → 175

[117] P. Kilpeläinen. Tree matching problems with applications to structured
text data bases. PhD thesis, University of Helsinki, Finland, 1992. →
139

[118] P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion.
SIAM Journal on Computing, 24(2):340–356, 1995. → 139

[119] B. Korte and J. Vygen. Combinatorial Optimization—Theory and Algo-
rithms. Springer, 2002. → 7, 155

[120] O. Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theoretical Computer Science, 223:1–72, 1999. → 123

[121] J. C. Lagarias. Point lattices. In R. L. Graham, M. Grötschel, and L. Lo-
vasz, editors, Handbook of Combinatorics, pages 919–966. MIT Press,
1995. → 58

[122] G. Lancia, V. Bafna, S. Istrail, and R. Schwartz. SNPs problems, com-
plexity, and algorithms. In Proceedings of the 9th Annual European Sym-
posium on Algorithms (ESA), number 2161 in LNCS, pages 182–193.
Springer, 2001. → 32

[123] G. Lancia, R. Carr, B. Walenz, and S. Istrail. 101 optimal PDB structure
alignments: a branch-and-cut algorithm for the Maximum Contact Map
Overlap problem. In Proceedings of the 5th Annual International ACM
Conference on Computational Biology (RECOMB), pages 193–202. ACM
Press, 2001. → 137, 153

[124] J. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing
String Selection problems. Information and Computation, 185(1):41–55,
2003. → 46, 47, 48, 56, 65, 66, 67

[125] H. W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8:538–548, 1983. → 58, 156

[126] B. Lewin. Genes VII. Oxford University Press, 2000. → 11



188 BIBLIOGRAPHY

[127] M. Li, B. Ma, and L. Wang. Finding similar regions in many strings.
In Proceedings of the 31st ACM Symposium on Theory of Computing
(STOC), pages 473–482. ACM Press, 1999. Preliminary version of [128]
and [129]. → 68

[128] M. Li, B. Ma, and L. Wang. Finding similar regions in many sequences.
Journal of Computer and System Sciences, 65(1):73–96, 2002. → 5, 45,
65, 67, 68, 188

[129] M. Li, B. Ma, and L. Wang. On the Closest String and Substring prob-
lems. Journal of the ACM, 49(2):157–171, 2002. → 5, 45, 46, 47, 65, 67,
68, 157, 158, 188

[130] G.-H. Lin, Z.-Z. Chen, T. Jiang, and J. Wen. The Longest Common
Subsequence problem for sequences with nested arc annotations. Journal
of Computer and System Sciences, 63(3):465–480, 2002. → 137, 138, 139,
158, 159

[131] C. Linhart and R. Shamir. The Degenerate Primer Design problem. In
Proceedings of the 10th International Conference on Intelligent Systems
for Molecular Biology (ISMB), volume 18 (Supplement 1) of Bioinformat-
ics, pages S172–S180. Oxford University Press, 2002. → 157

[132] R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. Algorithmic strategies
for the nucleotide polymorphism haplotype assembly problem. Briefings
in Bioinformatics, 3(1):23–31, 2002. → 170

[133] F. Lisacek, Y. Diaz, and F. Michel. Automatic identification of group I
intron cores in genomic DNA sequences. Journal of Molecular Biology,
235:1206–1217, 1994. → 5

[134] R. B. Lyngsø and C. N. S. Pedersen. Pseudoknot prediction in energy
based models. Journal of Computational Biology, 7(3):409–427, 2000. →
153

[135] M. Mahajan and V. Raman. Parameterizing above guaranteed values:
MaxSat and MaxCut. Journal of Algorithms, 31:335–354, 1999. → 107,
163, 173

[136] Z. Michalewicz and D. B. Fogel. How to Solve it: Modern Heuristics.
Springer-Verlag, 2000. → 2

[137] V. Morell. TreeBASE: the roots of phylogeny. Science, 273:569, 1996. →
104

[138] B. M. E. Moret, D. A. Bader, and T. Warnow. High-performance algo-
rithm engineering for computational phylogenetics. Journal of Supercom-
puting, 22:99–111, 2002. → 109, 132



BIBLIOGRAPHY 189

[139] B. M. E. Moret, A. C. Siepel, J. Tang, and T. Liu. Inversion medians
outperform breakpoint medians in phylogeny reconstruction from gene-
order data. In Proceedings of the Second Workshop on Algorithms in
Bioinformatics (WABI), number 2452 in LNCS, pages 521–536. Springer,
2002. → 128, 135

[140] B. M. E. Moret, J. Tang, and T. Warnow L. Wang. Steps toward accurate
reconstruction of phylogenies from gene-order data. Journal of Computer
and System Sciences, 65(3):508–525, 2002. → 2, 109, 134

[141] B. M. E. Moret, L. Wang, T. Warnow, and S. K. Wyman. New approaches
to phylogeny reconstruction from gene order data. In Proceedings of the
9th International Conference on Intelligent Systems for Molecular Biology
(ISMB), volume 17 of Bioinformatics, pages S165–S173. Oxford Univer-
sity Press, 2001. → 109, 110, 133, 134

[142] B. M. E. Moret, S. K. Wyman, D. A. Bader, T. Warnow, and M. Yan.
A new implementation and detailed study of breakpoint analysis. In
Proceedings of the 6th Pacific Symposium on Bioinformatics, pages 583–
594, 2001. Available via http://psb.stanford.edu/psb-online/. →
5, 30, 109, 110, 127, 129, 132, 133, 134

[143] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995. → 2

[144] G. L. Nemhauser and L. E. Trotter. Vertex packing: structural properties
and algorithms. Mathematical Programming, 8:232–248, 1975. → 37, 175

[145] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. John Wiley & Sons, 1988. → 7, 58, 155

[146] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem.
Commentationes Mathematicae Universitatis Carolinae, 26(2):415–419,
1985. → 23

[147] F. Nicolas and E. Rivals. Complexities of the centre and median string
problems. In Proceedings of the 14th Annual Symposium on Combinato-
rial Pattern Matching (CPM), number 2676 in LNCS, pages 315 – 327.
Springer, 2003. → 84

[148] R. Niedermeier. Invitation to fixed-parameter algorithms. Habilitation
thesis, WSI für Informatik, Universität Tübingen, 2002. → 164

[149] R. Niedermeier and J. Alber. Vorlesungsskript Parametrisierte Al-
gorithmen WS 2002/3, 2003. Class notes and slides available via
http://www-fs.informatik.uni-tuebingen.de/~niedermr. → 7, 163

[150] R. Niedermeier and P. Rossmanith. Upper bounds for Vertex Cover fur-
ther improved. In Proceedings of the 16th Annual Symposium on The-
oretical Aspects of Computer Science (STACS), number 1563 in LNCS,
pages 561–570. Springer, 1999. → 43, 175



190 BIBLIOGRAPHY

[151] R. Niedermeier and P. Rossmanith. A general method to speed up fixed-
parameter-tractable algorithms. Information Processing Letters, 73:125–
129, 2000. → 37, 53

[152] R. Niedermeier and P. Rossmanith. New upper bounds for Maximum
Satisfiability. Journal of Algorithms, 36:63–88, 2000. → 175

[153] R. Niedermeier and P. Rossmanith. An efficient fixed parameter algorithm
for 3-Hitting Set. Journal of Discrete Algorithms, 1:89–102, 2003. → 33,
98, 160

[154] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algo-
rithms for Weighted Vertex Cover, 2003. → 3, 4, 23, 43, 157

[155] T. Oda, C. Tanaka, and M. Tsuda. Molecular phylogeny of Japanese
Amanita species based on nucleotide sequences of the internal transcribed
spacer region of nuclear ribosomal DNA. Mycoscience, 40:57–64, 1999.
→ 104, 105

[156] A. M. Odlyzko. Asymptotic enumeration methods. In R. L. Graham,
M. Grötschel, and L. Lovasz, editors, Handbook of Combinatorics, pages
1063–1229. MIT Press, 1995. → 58

[157] R. D. M. Page. Modified mincut supertrees. In Proceedings of the Sec-
ond Workshop on Algorithms in Bioinformatics (WABI), number 2452 in
LNCS, pages 537–552. Springer, 2002. → 5

[158] R. D. M. Page and E. C. Holmes. Molecular Evolution—A Phylogenetic
Approach. Blackwell Science, 1998. → 5, 18, 19, 85

[159] A. Panconesi. Personal communication, April 2003. → 171

[160] C. N. S. Pederson. Algorithms in computational biology. PhD thesis,
Department of Computer Science, Aarhus, Denmark, 2000. → 11

[161] I. Pe’er and R. Shamir. The median problems for breakpoints are NP-
complete. Technical Report 98-071, Electronic Colloquium on Computa-
tional Complexity, Trier, 1998. → 109

[162] I. Pe’er and R. Shamir. Approximation algorithms for the Permutations
Median problem in the breakpoint model. In D. Sankoff and J. Nadeau,
editors, Comparative Genomics, pages 225–241. Kluwer, 2000. → 157

[163] I. Pe’er, R. Shamir, and R. Sharan. On the generality of phylogenies from
incomplete directed characters. In Proceedings of the 8th Scandinavian
Workshop on Algorithm Theory (SWAT), number 2368 in LNCS, pages
358–367. Springer, 2002. → 169

[164] P. A. Pevzner. Computational Molecular Biology—An Algorithmic Ap-
proach. MIT Press, 2000. → 2, 5, 45



BIBLIOGRAPHY 191

[165] P. A. Pevzner and S.-H. Sze. Combinatorial approaches to finding sub-
tle signals in DNA sequences. In Proceedings of the 8th International
Conference on Intelligent Systems for Molecular Biology (ISMB), pages
269–278. AAAI Press, 2000. → 45, 64, 65, 68, 109, 110, 129

[166] K. Pietrzak. On the parameterized complexity of the fixed alphabet Short-
est Common Supersequence and Longest Common Subsequence problems.
Journal of Computer and System Sciences, 2003. To appear. → 27

[167] S. Rahmann. Rapid large-scale oligonucleotide selection for microarrays.
In Proceedings of the Second Workshop on Algorithms in Bioinformatics
(WABI), number 2452 in LNCS, page 134. Springer, 2002. → 63

[168] T. Richter. A new algorithm for the Ordered Tree Inclusion problem.
In Proceedings of the 8th Annual Symposium on Combinatorial Pattern
Matching (CPM), number 1264 in LNCS, pages 150–166. Springer, 1997.
→ 139

[169] E. Rivas and S. R. Eddy. A dynamic programming algorithm for RNA
structure prediction including pseudoknots. Journal of Molecular Biology,
285:2053–2068, 1999. → 153

[170] R. Rizzi, V. Bafna, S. Istrail, and G. Lancia. Practical algorithms and
fixed-parameter tractability for the single individual SNP haplotyping
problem. In Proceedings of the Second Workshop on Algorithms in Bioin-
formatics (WABI), number 2452 in LNCS, pages 29–43. Springer, 2002.
→ 4, 32, 171

[171] F. S. Roberts. Applied Combinatorics. Prentice-Hall, 1984. → 40

[172] M.-F. Sagot. Spelling approximate repeated or common motifs using
a suffix tree. In Proceedings of the 3rd Latin American Symposium on
Theoretical Informatics (LATIN), number 1380 in LNCS, pages 111–127.
Springer, 1998. → 65, 66, 68

[173] N. Saitou and M. Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution, 4,
1987. → 19

[174] D. Sankoff and M. Blanchette. Multiple genome rearrangement and break-
point phylogeny. Journal of Computational Biology, 5:555–570, 1998. →
5, 30, 110, 122, 127, 129, 130, 132, 134

[175] M. Schena. DNA Microarrays: A Practical Approach. Oxford University
Press, 2001. → 167

[176] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1999.
→ 7, 58, 155

[177] R. Sedgewick and P. Flajolet. Analysis of Algorithms. Addison Wesley,
1996. → 42



192 BIBLIOGRAPHY

[178] C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003.
→ 18

[179] J. C. Setubal and J. Meidanis. Introduction to Computational Biology.
PWS Publishing Company, 1997. → 2

[180] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems.
In Proceedings of the 28th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), number 2573 in LNCS, pages 379–
390. Springer, 2002. → 168

[181] R. Sharan and R. Shamir. CLICK: A clustering algorithm with applica-
tions to gene expression analysis. In Proceedings of the 8th International
Conference on Intelligent Systems for Molecular Biology (ISMB), pages
307–316. AAAI Press, 2000. → 168

[182] R. Sharan and R. Shamir. Algorithmic approaches to clustering gene
expression data. In T. Jiang, Y. Xu, and M. Q. Zhang, editors, Current
Topics in Computational Molecular Biology, pages 269–300. MIT Press,
2002. → 168

[183] A. C. Siepel and B. M. E. Moret. Finding an optimal inversion median: ex-
perimental results. In Proceedings of the First Workshop on Algorithms in
Bioinformatics (WABI), number 2149 in LNCS, pages 189–204. Springer,
2001. → 5, 135

[184] M. Steel. The complexity of reconstructing trees from qualitative char-
acters and subtrees. Journal of Classification, 9:91–116, 1992. → 87,
88

[185] M. Steel. Personal communication, May 2001. → 86

[186] U. Stege. Resolving conflicts in problems from computational biology.
PhD thesis, diss. no. 13364, Department of Computer Science, ETH
Zürich, 2000. → 22, 33

[187] U. Stege and M. Fellows. An improved fixed-parameter-tractable algo-
rithm for Vertex Cover. Technical Report 318, Department of Computer
Science, ETH Zürich, Swizerland, April 1999. → 43

[188] N. Stojanovic, P. Berman, D. Gumucio, R. Hardison, and W. Miller. A
linear-time algorithm for the 1-mismatch problem. In Proceedings of the
5th Workshop on Algorithms and Data Structures (WADS), number 1272
in LNCS, pages 126–135. Springer, 1997. → 46, 47, 48, 56

[189] N. Stojanovic, L. Florea, C. Riemer, D. Gumucio, J. Slightom, M. Good-
man, W. Miller, and R. Hardison. Comparison of five methods for finding
conserved sequences in multiple alignments of gene regulatory regions.
Nucleic Acids Research, 27(19):3899–3910, 1999. → 47, 56, 63



BIBLIOGRAPHY 193

[190] K. Strimmer and A. von Haessler. Quartet puzzling: a quartet maximum-
likelihood method for reconstructing tree topologies. Molecular Biology
and Evolution, 13(7):964–969, 1996. → 86, 89

[191] L. Stryer, J. M. Berg, and J. L. Tymoczko. Biochemistry, 5th Ed.
W. H. Freeman, 2002. → 11

[192] A. Tanay, R. Sharan, and R. Shamir. Discovering statistically signifnicant
biclusters in gene expression data. In Proceedings of the 10th International
Conference on Intelligent Systems for Molecular Biology (ISMB), volume
18 (Supplement 1) of Bioinformatics, pages S136–S144. Oxford University
Press, 2002. → 4, 169

[193] M. Tang, M. Waterman, and S. Yooseph. Zinc finger gene clusters and
tandem gene duplication. Journal of Computational Biology, pages 429–
446, 2002. → 157, 174

[194] G. Della Vedova and H. T. Wareham. Optimal algorithms for local vertex
quartet cleaning. In Proceedings of the 17th ACM Symposium on Applied
Computing (SAC), pages 173–177. ACM Press, 2002. → 88, 100, 161

[195] S. Vialette. Pattern matching problems over 2-interval sets. In Proceed-
ings of the 13th Annual Symposium on Combinatorial Pattern Matching,
number 2373 in LNCS, pages 53–63. Springer, 2002. → 140, 141

[196] L. Wang, T. Jiang, and D. Gusfield. A more efficient approximation
scheme for tree alignment. SIAM Journal on Computing, 30(1):283–299,
2000. → 157

[197] Z. Wang and K. Zhang. RNA secondary structure prediction. In T. Jiang,
Y. Xu, and M. Q. Zhang, editors, Current Topics in Computational Molec-
ular Biology, pages 345–364. MIT Press, 2002. → 14

[198] M. Waterman. Introduction to Computational Biology. Chapman & Hall,
1995. → 2

[199] M. Weiß. Molecular investigations on phylogeny in the genus Amanita.
PhD thesis, Fakultät für Biologie, Universität Tübingen, Fed. Rep. of
Germany, 1999. → 103

[200] M. Weiß, Z. Yang, and F. Oberwinkler. Molecular phylogenetic studies
in the genus Amanita. Canadian Journal of Botany, 76:1170–1179, 1998.
→ 103, 104



194 BIBLIOGRAPHY



Lebens- und Bildungsgang

Name: Jens Gramm
Geboren: 3.11.1972 in Radolfzell am Bodensee
Familienstand: verheiratet

1979–1983 Besuch der Grundschule in Stockach

1983–1992 Besuch des Nellenburg-Gymnasiums in Stockach

Mai 1992 Abitur

7/1992–9/1993 Zivildienst beim Roten Kreuz, Konstanz

10/1993–10/1999 Studium der Informatik an der Universität Tübingen

8/1996–7/1997 Auslandsstudium an der University of Massachussetts, Am-
herst, USA

4/99 Studienarbeit (Betreuer Prof. K.-J. Lange) über

“Sytactic Recognition of NL-Complete Problems”

10/1999 Diplom in Informatik, Diplomarbeit (Betreuer Prof. K.-J. Lange,
PD R. Niedermeier) über

“Exact Algorithms for Max2Sat with Applications”

seit 1/2000 Promotion an der Fakultät für Informations- und Kognitions-
wissenschaften, Lehrstuhl für Theoretische Informatik/Formale
Sprachen (Prof. K.-J. Lange), Betreuer PD R. Niedermeier

Publikationen: [2, 3, 70, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 92]


