
Algorithm Design Techniques for

Parameterized Graph Modification

Problems

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr.rer.nat.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik
der Friedrich-Schiller-Universität Jena

von Dipl.-Inform. Jiong Guo

geboren am 28.11.1970 in Chengdu, V. R. China

Gutachter

1. Prof. Rolf Niedermeier (Friedrich-Schiller-Universität Jena)

2. Prof. Michael R. Fellows (The University of Newcastle, Australien)

3. Prof. Michael A. Langston (University of Tennessee, USA)

Tag der letzten Prüfung des Rigorosums: 9. Feb. 2006

Tag der öffentlichen Verteidigung: 16. Feb. 2006

Erkärung

Hiermit erkläre ich, dass ich die Arbeit selbständig und nur mit den angegebe-
nen Hilfsmitteln angefertigt habe.

Jena, April 2005 Jiong Guo

5

Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Entwurf parametrisierter Algorithmen
für Graphmodifikationsprobleme wie Feedback Vertex Set, Multicut in
Trees, Cluster Editing, Closest 3-Leaf Power und Multicommodity
Demand Flow in Trees.

Graphen sind heutzutage ein weit verbreitetes und oft verwendetes Werkzeug
zur Modellierung komplexer Beziehungen zwischen einzelnen Objekten. Basie-
rend auf solchen Graphmodellierungen können viele in der Praxis auftretende
Probleme, die andernfalls nur sehr schwer zugänglich sind, in einer anschauli-
chen und mathematisch präzisen Form dargestellt werden. Da es sich bei vie-
len praxisbezogenen Problemen um Fehlerkorrektur, Konfliktvermeidung und
Umstrukturierung handelt, sind Graphmodifikationsprobleme ein fundamenta-
ler Bestandteil der algorithmischen Graphentheorie. Grob gesagt haben solche
Probleme als Eingabe einen Graphen, für den eine minimale Änderung durch
Löschung von Knoten und Kanten und Einfügung von Kanten gesucht ist, damit
der geänderte Graph eine bestimmte Eigenschaft hat.

Aufgrund der NP-Vollständigkeit der meisten Graphmodifikationsprobleme
stellt die Approximation einer optimalen Lösung den am meisten gebrauch-
ten Lösungsansatz dar. Seit Anfang der 90er Jahre des letzten Jahrhunderts
entwickelten sich parametrisierte Algorithmen zu einer sinnvollen und ernstzu-
nehmenden Alternative zu Approximationsalgorithmen beim Lösen NP-harter
Graphmodifikationsprobleme. Die Grundidee dieses algorithmischen Ansatzes
ist die Identifizierung impliziter und expliziter Problemparameter, auf welche
die

”
kombinatorische Explosion“, die bei der algorithmische Behandlung harter

Probleme auftritt, beschränkt werden kann. Sind die Parameter klein, was in
vielen praktischen Anwendungen der Fall ist, kann mit einer beweisbar guten
Laufzeit des Lösungsalgorithmus gerechnet werden. Damit lassen sich optima-
le Lösungen harter Probleme oftmals in einem praktisch erträglichen Zeitraum
berechnen.

Diese Arbeit untersucht die Anwendbarkeit von vier Techniken zur Entwick-
lung parametrisierter Algorithmen im Bereich von Graphmodifikationsproble-
men. Darunter befinden sich zwei klassische Techniken, nämlich Datenreduktion
und tiefenbeschränkte Suchbäume, und zwei neue Techniken, nämlich iterative
Kompression und Parametrisierung durch die

”
Distanz von einer Trivialität“.

Jeder der Techniken ist ein eigener Teil dieser Arbeit gewidmet. Im Folgenden,
ein Graph G = (V, E) besteht aus einer Menge von Knoten V und einer Menge
Kanten E. Die Anzahl der Knoten bezeichnen wir mit n (|V | = n), die Anzahl
der Kanten mit m (|E| = m).

Teil 1 enthält eine kurze Einführung in Graphmodifikationsprobleme und
eine Übersicht der verwendeten Notationen und Grundbegriffe aus der Gra-
phentheorie. Dieser Teil wird durch eine ausführliche Zusammenfassung von

6

Ergebnissen dieser Arbeit abgeschlossen.

Teil 2 befasst sich mit der im Jahr 2004 eingeführten Technik der soge-
nannten iterativen Kompression, die mit einem sehr einfachen Teilgraphen ei-
nes gegebenen Graphen anfängt und induktiv immer größerere Teilgraphen auf-
baut bis der Eingabegraph erreicht wird. Im Laufe des induktiven Aufbaus wird
zunächst eine größere Lösung berechnet und dann durch eine Kompressionspro-
zedur wieder zu einer kleineren

”
komprimiert“. Kapitel 2 stellt die Grundidee

von iterativer Kompression vor und analysiert deren Anwendbarkeit für Gra-
phmodifikationsprobleme. Das eingeführte Entwurfschema für die Anwendung
dieser Technik, bestehend aus Iterationsprozedur und Kompressionsprozedur,
könnte für künftige Forschungen im Bereich dieser Technik eine gute Basis bil-
den.

Kapitel 3 befasst sich mit einem klassischen Graphmodifikationsproblem,
Feedback Vertex Set (FVS). Dieses fragt für einen gegebenen Graphen nach
einer Menge von höchstens k Knoten, deren Entfernung aus dem Graphen alle
seine Kreise zerstört. Dieses Problem findet Anwendung in vielen Bereichen wie
etwa Bioinformatik und künstlicher Intelligenz. Basierend auf iterativer Kom-
pression zeigen wir hier einen parametrisierten Algorithmus für FVS in Bezug
auf den Parameter k, dessen Laufzeit O(ck · m2) für eine Konstante c beträgt.
Dies erlaubt es, eine lange Zeit offene Frage aus der parametrisierten Komple-
xitätstheorie zu beantworten.1

In Kapitel 4 führen wir zwei allgemeine Beschleunigungsmethoden für itera-
tive Kompression ein. Als ein Beispiel für die Anwendung der ersten Beschleu-
nigungsmethode betrachten wir das Edge Bipartization Problem: für einen
gegebenen Graphen wird eine Menge von höchstens k Kanten gesucht, deren
Löschung den Graphen in einen bipartiten Graphen transformiert. Wir verbes-
sern die bisher beste Laufzeitschranke für dieses Problem von O(3k · k3 ·m2 ·n)
auf O(2k · m2). Mit der zweiten Beschleunigungsmethode erreichen wir einen
zweiten Algorithmus für FVS mit einer Laufzeit von O(ck · m). Dies bedeutet,
dass FVS für konstanten Parameter in Linearzeit lösbar ist, eine Eigenschaft die
bislang nur für wenige parametrisierte Probleme gezeigt werden konnte.

Das letzte Kapitel von Teil 2 erweitert das Anwendungsgebiet der iterati-
ven Kompression um alle minimalen Lösungen für ein Problem berechnen zu
können. Das Hauptergebnis ist ein Aufzählungsalgorithmus, der in O(ck · m)
Zeit alle minimalen Lösungen für FVS in einem gegebenen Graphen aufzählt,
welche nicht mehr als k Knoten enthalten. Der Algorithmus ist zudem der erste
Aufzählungsalgorithmus der auf iterativer Kompression basiert.

Datenreduktion und Problemkerne sind das Thema von Teil 3. Dabei wird
versucht, die Eingabeinstanz auf eine neue, kleinere Instanz zu

”
reduzieren“.

Die kleinere Instanz wird als Problemkern bezeichnet. Um die Grundidee dieser
Technik zu erklären, rekapitulieren wir die klassische

”
Buss-Datenreduktion“,

die zu einem Problemkern für Vertex Cover führt. Außerdem zeigen wir in
einer Fallstudie einen Problemkern für das Minimum Clique Cover Problem,

1 Das Ergebnis wurde auch unabhängig von Dehne et al. gezeigt [52].

7

welcher die parametrisierte Handhabbarkeit dieses Problems impliziert.2

Kapitel 7 präsentiert einen Problemkern für das Cluster Editing Pro-
blem, das für einen gegebenen Graphen nach einer Menge von höchsten k Kan-
tenmodifikationen sucht, die den Eingabegraph in eine Menge von disjunkten
vollständigen Teilgraphen transformieren. Der Problemkern besteht aus O(k2)
Knoten, wobei k die Anzahl der benötigten Kantenmodifikationen ist, und ba-
siert auf zwei Datenreduktionsregeln. Angeregt durch unser Ergebnis untersuch-
te Damaschke [50] einen

”
full problem kernel“ für die Aufzählungsvariante von

Cluster Editing.

Das Hauptresultat von Kapitel 8 ist der Nachweis der Existenz eines Pro-
blemkerns für das Multicut in Trees Problem. Multicut in Trees wurde
sehr ausführlich im Kontext der Approximationsalgorithmen in der Literatur un-
tersucht. Das Problem kommt im Bereich des Netzwerkentwurfs vor und sucht
nach einer Menge von Kanten in einem Baumnetzwerk, deren Löschung vor-
gegebene Knotenpaare voneinander trennt. Acht einfache und leicht zu imple-
mentierende Reduktionsregeln werden gegeben; der Beweis für den Problemkern
erweist sich allerdings als technisch aufwändig.

Teil 4 beschäftigt sich mit tiefenbeschränkten Suchbäumen, der wohl am
häufigsten angewandten Methode für den Entwurf von parametrisierten Al-
gorithmen. Die entscheidende Idee hierbei ist ein vollständiges Absuchen des
Lösungsraumes, das nach einer Baumstruktur systematisch organisiert wird.
Bezüglich Graphmodifikationsproblemen konzentrieren wir uns in Kapitel 9 auf
ein allgemeines Schema zum Entwurf parametrisierter Algorithmen für die Pro-
bleme, die auf eine sogenannte Charakterisierung durch verbotene Teilgraphen
zurückzuführen sind. Der Schwerpunkt der Untersuchung liegt auf solchen Cha-
rakterisierungen, die unendlich viele verbotene Teilgraphen enthalten. Um die-
ses Schema für den Entwurf von Suchbaumalgorithmen mit Hilfe verbotener
Teilgraphen zu erläutern, geben wir einen einfachen Suchbaumalgorithmus für
Multicut in Trees mit einer Laufzeit von O(2k · n2) an.

Zwei weitere Suchbaumalgorithmen werden in Kapitel 10 und 11 vorgestellt.
Der erste liefert exakte Lösungen für Cluster Editing in O(2.27k + n3) Zeit.
Dies ist zugleich der erste parametrisierte Algorithmus im Bereich des

”
Da-

ta Clustering“. Der zweite Algorithmus löst das aus einer bioinformatischen
Anwendung hervorgehende Closest 3-Leaf Power Problem, welches einen
phylogenetischen Baum mit Distanzinformationen aus einem Netzwerk von Spe-
zies zu rekonstruieren versucht. Der Lösungsansatz ist ein tiefenbeschränkter
Suchbaum, der auf einer Charakterisierung mittels verbotener Teilgraphen von
Graphen, die 3-leaf powers sind, basiert. Diese Charakterisierung enthält un-
endlich viele verbotene Teilgraphen und wird in Kapitel 11 gezeigt. Um diese
unendlich vielen verbotenen Teilgraphen zu behandeln wird ein critical clique
graph eingeführt, auf dem der Suchbaumalgorithmus arbeitet. Der Beweis einer
Eins-zu-Eins-Korrespondenz zwischen der Lösung für den critical clique graph
und der Lösung für den Eingabegraphen ist der technisch anspruchsvollste Teil
dieses Kapitels.

2Die parametrisierte Komplexität von Minimum Clique Cover war bislang offen.

8

Die letzte Technik, die Parametrisierung durch die
”
Distanz von einer Trivia-

lität“, wird in Teil 5 diskutiert. Dabei wird zuerst für ein Problem ein
”
trivial“

zu lösender Fall von Instanzen ausgewählt und dann wird ein Parameter iden-
tifiziert, der die

”
Distanz“ allgemeiner Instanzen zu den speziellen Instanzen

misst. Bezüglich dieser Distanz wird ein parametrisierter Algorithmus für allge-
meine Instanzen entworfen. Diese neue Art der Parametrisierung ist besonders
hilfreich wenn wir mit einem Problem zu tun haben, das unter anderen Para-
metrisierungen – wie beispielsweise mit der Größe der Lösung als Parameter –
als W[1]-hart erwiesen ist.

In Kapitel 13 betrachten wir das Multicommodity Demand Flow in
Trees (MDFT) Problem das versucht, in einem Kommunikationsnetz möglichst
viele profitable peer-to-peer Kommunikationen zu erlauben, ohne dabei die Ka-
pazität der Kommunikationsverbindungen zu überschreiten. Kapitel 13 liefert
ein neues Ergebnis bezüglich der exakten Lösbarkeit von MDFT. Wir identifizie-
ren einen neuen Parameter k, der die maximale Anzahl von peer-to-peer Kom-
munikationen über einen Knoten darstellt. Damit erzielen wir einen O(2k · n2)-
Zeit Algorithmus, welcher der erste exakte Algorithmus von praktischer Rele-
vanz für MDFT sein könnte.

Der zweite Algorithmus in Teil 3 resultiert aus der Betrachtung des Tree-
Like Weighted Set Cover (TWSC) Problems, das aus Anwendungen bei der
Berechnung von Baumzerlegungen [22] und in der Phylogenomics [148] stammt.
Das Problem wird formal in Kapitel 14 definiert und stellt einen Spezialfall des
klassischen Set Cover Problems dar, wobei sich die Teilmengen in der Samm-
lung von Mengen in einem Baum organisieren lassen können und zudem eine
Konsistenzeigenschaft erfüllen müssen. Bezeichnen wir die maximale Größe der
Teilmengen mit k, so läuft unser Algorithmus für TWSC in O(3k · n2) Zeit.
Zusammen mit einer parametrisierten Reduktion von TWSC auf Multicut in
Trees zeigen wir, dass, parametrisiert durch eine

”
vertex cutwidth“ k, Multi-

cut in Trees in O(3k · n2) Zeit lösbar ist.
Am Ende der Arbeit fassen wir die erzielten Resultate nochmals zusammen

und es werden einige Fragestellungen für zukünftige Forschung aufgeworfen.

9

Preface

This thesis summarizes a significant part of my study and research on pa-
rameterized complexity, particularly focusing on the design of efficient fixed-
parameter algorithms for graph modification problems. From March 2002 to
February 2003 I was supported by the Zentrum für Bioinformatik in Tübingen
and, since March 2003, my research is supported by the Deutsche Forschungsge-
meinschaft (DFG) under the project “Fixed-Parameter Algorithms (PIAF)”, NI
369/4. I owe sincere thanks to this support and to Klaus-Jörn Lange and Rolf
Niedermeier for giving me the research opportunities. In particular, I deeply
thank my supervisor Rolf Niedermeier who initiated the PIAF-project and has
been my guide and mentor for the past four years. I am in great debt to all
members in our working group: Jens Gramm who shared with me these four
years from the beginning and with whom I have worked closely, Jochen Alber
who gave me advice concerning graph theory; Michael Dom, Falk Hüffner, and
Sebastian Wernicke with whom I have had various stimulating discussions.

This thesis is based on my various research collaborations together with one
or another above mentioned members of our working group. The most impor-
tant partner in my research has been Rolf Niedermeier. In this thesis I present
only results which are closely related to fixed-parameter algorithms for graph
modification problems and to whose achievement I made significant contribu-
tions. Further results concern sequence analysis [11, 90, 89], matrix property
and matrix modification [62, 178], NP-completeness of graph problems [59, 61],
parameterized complexity of graph problems [60, 58, 94, 99, 100], graph the-
ory [100], and algorithm engineering [85, 87, 88].

There are six parts in this thesis. After a brief “Introduction” (Part I), four
design techniques for fixed-parameter algorithms are presented, namely “Itera-
tive Compression” (Part II), “Data Reduction and Problem Kernels” (Part III),
“Search Trees Based on Forbidden Subgraphs” (Part IV), and “Parameteriza-
tion by Structure” (Part V). Finally, a short “Conclusion” (Part VI) summarizes
the results. The first chapter of each of Parts II to V is an introduction to the
technique considered in the respective part. In each of these parts the further
chapters following the introductory chapter contain the new results. In the
following, I also briefly sketch my contributions in this collaborative studies.

Part II is mainly based on [93]. As case studies for the iterative compression
technique, fixed-parameter algorithms for Feedback Vertex Set and Edge
Bipartization are given. I have initiated the study of these two problems and
the major parts of the technically involved proofs of the correctness and runtimes
of the algorithms were carried out by myself. The enumeration algorithm for
Feedback Vertex Set resulted from a discussion with Jens Gramm.

Part III contains two main new results, the problem kernels for Cluster
Editing and Multicut in Trees. Concerning Cluster Editing my contri-

10

bution was to develop the data reduction rules. Moreover the analysis of the
problem kernel given in this thesis is slightly different from the one given in [86].
The problem kernel for Multicut in Trees is based on [97]. I provided the
mathematically involved analysis of the problem kernel.

In Chapter 10 of Part IV the key difficulty for achieving the improved branch-
ing strategy for Cluster Editing lies in proving a better branching for one
of the three cases. I came up with the proof of a 2-branching for this case that
finally led to the improved search tree algorithm which is based on [86]. I have
initiated the study of Closest 3-Leaf Power (Chapter 11 in Part IV) which
is based on [59]. The basic idea for the search tree algorithm, that is, considering
forbidden subgraphs, was due to me. My further achievements here include the
proof of the correctness of working on critical clique graphs instead of working
on the original graphs.

The first result of Part V is a theoretical framework for uncovering structural
parameters which is based on [95]. My main contribution here was to develop
several case studies for this framework, among others, the two fixed-parameter
algorithms given in Chapters 13 and 14. These two algorithms were published
in [96, 98]. Here I want to thank our students Natja Betzler and Johannes
Uhlmann for initiating the research on the Tree-like Weighted Set Cover
problem.

Contents

I Introduction 1

1 Introduction 3

1.1 Graph Modification Problems . 3

1.2 Fixed-Parameter Algorithms . 5

1.3 Preliminaries . 6

1.4 Summary of Results . 8

II Iterative Compression 11

2 Basic Concepts and Ideas 13

2.1 Iteration . 14

2.1.1 Case Study 1: Vertex Cover 15

2.1.2 Case Study 2: Multicut in Trees 16

2.1.3 Case Study 3: Cluster Deletion 17

2.2 Compression . 17

2.2.1 Case Study 1: Vertex Cover 18

2.2.2 Case Study 2: Cluster Deletion 19

2.3 Concluding Remarks . 19

3 Feedback Vertex Set 21

3.1 Problem Definition and Previous Results 21

3.2 The Algorithm . 22

3.2.1 Iteration . 22

3.2.2 Compression . 22

3.3 Concluding Remarks . 25

4 Speed-up Methods 27

4.1 Compression without Partition 27

4.2 Constant-Factor Approximation Instead of Iteration 31

4.3 Concluding Remarks . 32

11

12 Contents

5 Compression-Based Enumeration 33
5.1 Feedback Vertex Set . 34
5.2 Concluding Remarks . 36

III Data Reduction and Problem Kernels 37

6 Basic Concepts and Ideas 39
6.1 Data Reduction . 39

6.1.1 Case Study 1: Feedback Vertex Set 41
6.1.2 Case Study 2: Vertex Cover 42
6.1.3 Case Study 3: Minimum Clique Cover 42

6.2 Problem Kernel . 43
6.2.1 Case Study 1: Vertex Cover 44
6.2.2 Case Study 2: Minimum Clique Cover 44

6.3 Concluding Remarks . 45

7 Cluster Editing 47
7.1 Problem Definition and Previous Results 47
7.2 Data Reduction Rules . 48
7.3 Problem Kernel . 50
7.4 Concluding Remarks . 51

8 Multicut in Trees 53
8.1 Problem Definition and Previous Results 53
8.2 Parameter-Independent Reduction Rules 54
8.3 Parameter-Dependent Reduction Rules 55

8.3.1 Some Notation and Definitions 55
8.3.2 Parameter-Dependent Data Reduction Rules 57

8.4 Some Observations on Reduced Instances 58
8.5 Problem Kernel . 61

8.5.1 Problem Kernel for Caterpillars 61
8.5.2 Problem Kernel for Spiders of Caterpillars 66
8.5.3 Problem Kernel for General Trees 68

8.6 Concluding Remarks . 70

IV Search Trees Based on Forbidden Subgraphs 73

9 Basic Concepts and Ideas 75
9.1 Forbidden Subgraph Characterizations 76
9.2 Depth-Bounded Search Trees . 77
9.3 Search Trees Based on Forbidden Subgraphs 79
9.4 Two Case Studies . 80

9.4.1 Case Study 1: Vertex Cover 81
9.4.2 Case Study 2: Multicut in Trees 82

Contents 13

9.5 Concluding Remarks . 83

10 Cluster Editing 85
10.1 Basic Branching Strategy . 85
10.2 Refined Branching Strategy . 87
10.3 Concluding Remarks . 92

11 Closest 3-Leaf Power 93
11.1 Problem Definition and Previous Results 93
11.2 Forbidden Subgraph Characterization for 3-Leaf Powers 96
11.3 Algorithms . 99

11.3.1 Edge Modifications (Overview) 100
11.3.2 Vertex Deletion . 105

11.4 Concluding Remarks . 106

V Parameterization by Structure 107

12 Basic Concepts and Ideas 109
12.1 Distance From Triviality . 109
12.2 Case Study 1: Clique . 112
12.3 Case Study 2: Power Dominating Set 113
12.4 Concluding Remarks . 116

13 Multicommodity Demand Flow in Trees 119
13.1 Problem Definition and Previous Results 119
13.2 The Algorithm . 121

13.2.1 Agreements and Basic Tools 121
13.2.2 Dynamic Programming Algorithm 122
13.2.3 Main Result . 124

13.3 Concluding Remarks . 125

14 Weighted Multicut in Trees 127
14.1 Multicut in Trees and Tree-Like Set Cover 128

14.1.1 Tree-Like Weighted Set Cover (TWSC) 128
14.1.2 Weighted Multicut in Trees and TWSC 132

14.2 Algorithm for TWSC . 133
14.2.1 TWSC with Binary Subset Tree 133
14.2.2 TWSC with Arbitrary Subset Tree 136

14.3 Concluding Remarks . 136

VI Conclusion 139

15 Conclusion 141

14 Contents

Part I

Introduction

1

Chapter 1

Introduction

In the first section we give an introduction to graph modification problems and
motivate the study of such problems. The second section is a brief introduction
to fixed-parameter algorithms. Some basic notation used throughout this thesis
will be given in the third section. Finally, we close this chapter with a summary
of the results of this thesis.

1.1 Graph Modification Problems

In the last decades, graph models have played a key role in the development of
computer science [4, 103, 111], biology [29, 156], social sciences [34, 156, 157],
economics [16, 136], and many other scientific disciplines. Using vertices and
edges representing entities and the interrelation between the entities, respec-
tively, real-life problems can be formulated in a simple and precise way. From
the beginning of the introduction of graph models, researchers have formulated
many graph modification problems, inspired by practical applications dealing
with error correction, conflict resolution, and reconfiguration. In general, graph
modification problems can be defined as follows:

Input: A graph and a desired property Π.
Task: Make a minimum number of modifications to the given graph
such that Π is fulfilled.

Possible modifications include deletions of vertices and edges and insertions
of edges. In the above definition, the optimization goal is to minimize the
number of modifications to be made since modifications in real-world networks
are cost-intensive. Thus, graph modification problems belong to the class of
minimization problems.

Motivation. Graph modification problems have applications in many fields
such as molecular biology, machine learning, and operations research. Let us
describe two examples for these applications.

3

4 Introduction

The Cluster Editing problem (see Chapter 7 for a formal definition) seeks
for a minimum number of edge modifications which transform a given graph into
a union of disjoint complete graphs. A graph is called complete if it has an edge
between each pair of vertices. This problem is partly motivated by applications
in machine learning. One of these applications deals with clustering entity
names where, given some entries which are taken from multiple databases (e.g.,
names/affiliations of researchers), the goal is to collect together the entries that
correspond to the same entity (person). For instance, in the case of researchers,
the same person might appear multiple times with different affiliations. By
representing the entries as vertices, a classifier specifies an edge between two
entries if it believes that the entries represent the same person. After making
a minimum number of edge modifications, each of the disjoint complete graphs
in the resulting graph gives a collection of entries that might correspond to the
same entity. More details can be found in [17].

One problem studied in this thesis seeks to break all cycles in a graph by
removing a minimum number of vertices, the so-called Feedback Vertex Set
problem (see Chapter 13). This problem finds—among others—applications in
genetic linkage analysis. Genetic linkage is the phenomenon where alleles of
different genes appear to be genetically coupled. Analysis of linkage is impor-
tant for, e.g., genetic counseling and estimating changes in population genetics.
A good treatment of this subject can be found in [146]. Applying Bayesian
networks to genetic linkage analysis, “pedigree cycles” pose a difficult computa-
tional challenge. Finding a minimum size set of vertices whose removal destroys
the pedigree cycles is crucial for the probabilistic inference in the Bayesian net-
works. An approximation algorithm and a randomized algorithm for Feedback
Vertex Set were implemented in a genetic linkage analysis software package,
FASTLINK [19, 20]. For more details on this application we refer to [18, 71].

Previous Complexity Results. The study of the complexity of graph mod-
ification problems can be dated back to 1970’s. Garey and Johnson [80] list
18 NP-complete graph modification problems. Lewis and Yannakakis [128]
showed that, for any non-trivial hereditary graph property Π, the corresponding
graph modification problem with only vertex deletion allowed is NP-complete.
Yannakakis [181] gave a characterization of those graph properties for which
the vertex deletion problems are polynomial-time solvable in bipartite graphs
and a characterization of those for which the vertex deletion problems remain
NP-complete.

Concerning edge modification problems, there is no such general charac-
terization of graph properties for which the corresponding edge modification
problems are NP-complete as in the case of vertex deletion problems.1 Yan-
nakakis [180] showed the NP-completeness of edge modification problems with
respect to seven graph properties including bipartite and outerplanar. We refer
to [137] for an overview of the complexity status of edge modification problems
for some graph classes.

1Two relatively general characterizations can be found in [67, 13].

1.2 Fixed-Parameter Algorithms 5

1.2 Fixed-Parameter Algorithms

Since most graph modification problems are NP-complete, it seems hopeless to
optimally solve them in polynomial time. However, as mentioned above, graph
modification problems belong to the class of minimization problems and the
sizes of the optimal solutions for these problems are expected to be small: a
big solution size means a high cost and, thus, often has to be considered as an
infeasible strategy in practical applications. Therefore, a natural approach con-
cerning the exact solvability of these problems is to try to restrict the seemingly
unavoidable combinatorial explosion to a—hopefully small—parameter, which
results in efficient algorithms in case of small parameter values. Such algorithms
are called fixed-parameter algorithms.

We begin with some basic definitions of parameterized complexity theory
pioneered by Downey and Fellows [65].

Definition 1.1. A parameterized problem is a language L ⊆ Σ∗ × Σ∗, where
Σ is a finite alphabet. The second component is called the parameter of the
problem.

Throughout this thesis the parameter is a nonnegative integer. Hence we
will usually write L ⊆ Σ∗ × N instead of L ⊆ Σ∗ × Σ∗. For (x, k) ∈ L, the two
dimensions of parameterized complexity analysis are constituted by the input
size n, that is, n := |(x, k)|, and the parameter value k (usually a nonnega-
tive integer). We give now a parameterized definition of graph modification
problems:

Input: A graph and a desired property Π and an integer k ≥ 0.
Task: Make at most k modifications to the given graph such that Π
is fulfilled.

Fixed-parameter tractability as defined below is the key notion in this thesis.

Definition 1.2. A parameterized problem L is fixed-parameter tractable if
there exists an algorithm that decides in f(k) · nO(1) time whether (x, k) ∈ L,
where f is a computable function only depending on k. This algorithm is called a
fixed-parameter algorithm. The complexity class containing all fixed-parameter
tractable problems is called FPT.

Note that the runtime of a fixed-parameter algorithm is polynomial in the
instance size and the exponential part of the runtime is only dependent on
parameter k. Thus, for small value of k (as expected in many practical appli-
cations), f(k) is reasonably small, which means an efficient algorithm for the
given problem.

In Definition 1.2, one may assume any standard model of sequential deter-
ministic computation such as deterministic Turing machines or RAMs. For the
sake of convenience, if not stated otherwise, we will always take the parameter,
denoted by k, as a nonnegative integer encoded with a unary alphabet.

Not every parameterized problem is fixed-parameter tractable. Analogously
to classical complexity theory, Downey and Fellows developed a reducibility and

6 Introduction

completeness program. The completeness theory of parameterized intractability
involves significantly more technical effort than the classical one. We very briefly
sketch some integral parts of this theory in the following.

We first need a reducibility concept:

Definition 1.3. Let L1, L2 ⊆ Σ∗ × N be two parameterized problems. We
say that L1 reduces to L2 by a standard parameterized reduction if there are
functions k 7→ k′ and k 7→ k′′ from N to N and a function (x, k) 7→ x′ from
Σ∗ × N to Σ∗ such that

1. (x, k) 7→ x′ is computable in k′′ · |(x, k)|c time for some constant c and

2. (x, k) ∈ L1 iff (x′, k′) ∈ L2.

Notably, most reductions from classical complexity turn out not to be pa-
rameterized ones. The “lowest class of parameterized intractability” can be de-
fined as the class of parameterized languages that are equivalent to the so-called
Short Turing Machine Acceptance problem (also known as the k-Step
Halting problem). Here, we want to determine whether a given Turing ma-
chine accepts a given word in a computation of at most k steps. Together with
the above introduced reducibility concept, Short Turing Machine Accep-
tance can now be used to define the lowest class of parameterized intractability,
that is, W[1].

The fundamental conjecture that FPT 6=W[1] is very much analogous (but
clearly “weaker”) to the conjecture that P 6=NP. From a more algorithmic point
of view, it is usually sufficient to distinguish between W[1]-hardness and mem-
bership in FPT. Thus, for an algorithm designer not being able to show fixed-
parameter tractability of a problem, it may be “sufficient” to give a parame-
terized reduction from a W[1]-hard problem to the given problem. This then
proves that, unless FPT=W[1], the problem does not allow for an f(k) · nO(1)

time algorithm. One piece of circumstantial evidence for this unlikeliness is
the result showing that FPT=W[1] would imply a 2o(n) time algorithm for the
NP-complete 3-Satisfiability problem (where n denotes the number of vari-
ables of the given Boolean formula) [1], which would mean a major (and so far
considered unlikely) breakthrough in computational complexity theory.

For further details on the field of parameterized complexity, the reader is
referred to [63, 65, 75, 140, 141].

1.3 Preliminaries

We use the following notion throughout this thesis.

Graph theory. An undirected graph G with n vertices and m edges is a
pair (V, E) where V is a finite set of vertices and E is a finite set of edges.
Edges are defined as unordered pairs of vertices called endpoints.2 We denote

2All graphs considered in this thesis are undirected. Ordered pairs of vertices yield directed

edges and, thus, directed graphs.

1.3 Preliminaries 7

an edge e with vertices u and v as endpoints as e = {u, v}. The edge e is incident
to u and to v and vertices u and v are adjacent.

A loop is an edge whose endpoints are equal. Parallel edges or multiple edges
are edges that have the same pair of endpoints. We consider here only graphs
without loops or multiple edges.

The degree of a vertex is the number of edges incident to it. The (open)
neighborhood of a vertex v in graph G = (V, E) is defined as

N(v) := { u | {u, v} ∈ E }.

The closed neighborhood N [v] of v then is N(v) ∪ {v}. Finally, for a vertex set
U ⊆ V we define N(U) :=

⋃

v∈U N(v) and N [U] :=
⋃

v∈U N [v].
A path in a graph is a sequence of pairwise distinct vertices so that subse-

quent vertices are adjacent in the graph. The first and last vertices of a path
are call the endpoints of the path. If the two endpoints of a path containing
at least three vertices are adjacent, then we have a cycle. The length of a path
(or a cycle) is the number of edges in the sequence. The distance between two
vertices u and v in a graph G, denoted by dG(u, v) (or simply d(u, v)) is the
least length of a path with u and v as endpoints. An edge between two vertices
of a cycle that is not part of the cycle is called chord. An induced, chordless
cycle of length at least four is called hole.

A graph is connected if every pair of vertices is connected by a path. If a
graph is not connected then it naturally decomposes into its connected com-
ponents. A graph having no cycle is acyclic. A forest is an acyclic graph; a
tree is a connected acyclic graph. A leaf is a vertex of degree one. Sometimes
we deal with rooted trees. They arise when choosing one distinguished vertex
(the root) and directing all edges from the root to its neighbors—then called its
children—analogously directing all edges between the root’s children and their
neighbors different from the root, and so on.

For a graph G = (V, E) and a set V ′ ⊆ V , the subgraph of G induced by V ′

is denoted by G[V ′] = (V ′, E′), where E′ := { {u, v} ∈ E | (u ∈ V ′)∧ (v ∈ V ′) }.
By way of contrast, a subgraph H = (V ′′, E′′) of G = (V, E) simply fulfills that
V ′′ ⊆ V , E′′ ⊆ E, and the endpoints of edges in E′′ have to be contained in V ′′.
A spanning subgraph of G is a subgraph with vertex set V . A spanning tree is
a spanning subgraph that is a tree. The complement of a graph G = (V, E)
is the graph with the same vertex set V and an edge set containing {u, v}
iff {u, v} /∈ E.

We occasionally use G \ V ′ for V ′ ⊆ V to denote the graph resulting by
deleting the vertices in V ′ and their incident edges from G, i.e., G \ V ′ :=
G[V \ V ′]. Similarly, G \E′ for E′ ⊆ E denotes the graph resulting by deleting
the edges in E′ from G, i.e. G \ E′ := (V, E \ E′). Moreover, when both edge
deletion and insertion allowed, G′ = (V, E 	E′) denotes the graph resulting by
deleting the edges in E ∩ E′ from G and inserting the edges in E′ \ E into G,
where 	 denotes the symmetric difference operation between two sets.

In this work we deal with some special classes of graphs. A complete graph
or clique is a graph where every two vertices have an edge between them. An

8 Introduction

independent set in a graph G is a vertex subset I with G[I] containing no edge
of G. A chordal graph is a graph that contains no hole. A graph G = (V, E)
is bipartite if V is the union of two disjoint sets such that each edge consists of
one vertex from each set.

For a comprehensive overview on the general graph theory we refer to [55,
111, 179]. An excellent overview on graph classes can be found in [30].

Approximation. Polynomial-time approximation algorithms strive for ap-
proximate instead of optimal solutions for optimization problems. Here we
restrict to minimization problems. The quality of the approximation (with re-
spect to the given optimization criterion) is measured by the approximation
factor . An approximation algorithm for a minimization problem has approx-
imation factor r if for any input size n, the cost C of the solution produced
by the approximation algorithm is within a factor of r ≥ 1 of the cost Copt

of an optimal solution: C/Copt ≤ r. A polynomial-time approximation scheme
(PTAS) for a minimization problem is an algorithm which, for each ε > 0 and
each problem instance, returns a solution with approximation factor 1 + ε. The
polynomial runtime of such an algorithm, as a rule, crucially depends on 1/ε.
We mention in passing that a class MaxSNP of optimization problems can be
“syntactically” defined together with a reducibility concept [149]. The point is
that MaxSNP-hard problems are unlikely to have polynomial-time approxima-
tion schemes.

More details on approximation theory can be found, e.g., in [14, 172].

Big O notation. We use the familiar “big O notation” to upperbound the
runtimes of our algorithms. Thus, we ignore constant factors but, if appropriate,
we point to cases where the involved constant factors of the algorithms are large
and, thus, might threaten or destroy the practical usefulness of the algorithms.
For functions f(n) and g(n), f(n) is in O(g(n)) iff there are a constant c and
an integer n0 such that f(n) ≤ c · g(n) for all n ≥ n0.

1.4 Summary of Results

This thesis aims at a systematical study of the applicability of several techniques
for designing fixed-parameter algorithms for graph modification problems. The
main results with respect to six graph modification problems, namely Feed-
back Vertex Set, Edge Bipartization, Cluster Editing, (Weighted)
Multicut in Trees, Closest 3-Leaf Power, and Multicommodity De-
mand Flow in Trees, are summarized in the following. Here we always use n
and m to denote the number of the graph vertices and the graph edges, respec-
tively.

Iterative compression. In Chapter 2 we study the iterative compression
technique [155] and provide a thorough analysis of its two components, namely,
iteration and compression. With three easily understandable case studies, we

1.4 Summary of Results 9

hope to convince the reader that this new technique has the potential to be
an important tool for designing efficient fixed-parameter algorithms for graph
modification problems

The main result of Chapter 3 is a fixed-parameter algorithm based on the
iterative compression technique which solves Feedback Vertex Set in O(ck ·
m · n) time. Here c is a constant (c ≈ 38) and k denotes the size of the
desired feedback vertex set.3 This result affirmly answers an open question
from previous work and demonstrates that iterative compression seems useful
for attacking unsettled fixed-parameter complexity questions.

Two speed-up methods for iterative compression, compression without par-
tition and polynomial-time constant-factor approximation instead of iteration,
are suggested in Chapter 4. As two example applications of these methods, we
present two fixed-parameter algorithms for Edge Bipartization and Feed-
back Vertex Set. The runtime of the algorithm for Edge Bipartization
is O(2k · m2) which improves an O(3k · k3 · m2 · n) time algorithm by Reed
et al. [155]. Here k denotes the size of the edge bipartization set. Applying a
factor-four linear-time approximation algorithm, a second fixed-parameter algo-
rithm for Feedback Vertex Set runs in O(ck ·m) time where c is a constant
(much greater than 38) and k is the size of the feedback vertex set. This implies
that Feedback Vertex Set is “linear-time fixed-parameter tractable” in the
sense that the input size is measured by the number of graph edges.

In Chapter 5 we present a parameterized enumeration algorithm for Feed-
back Vertex Set running in the same time as the algorithm given in Chap-
ter 4. This algorithm seems to be the first parameterized enumeration algorithm
based on iterative compression and opens a new application field for this tech-
nique.

Data reduction and problem kernels. Data reduction and the notion of
problem kernels perhaps are the most important contribution of parameterized
complexity to practical computing. In Chapter 6, after a brief introduction,
we revisit the classical data reduction rules for Feedback Vertex Set and
Vertex Cover. As a case study, we show a problem kernel for the Minimum
Clique Cover problem which is the first result with respect to the parame-
terized complexity of this problem.

In Chapter 7 a problem kernel for Cluster Editing which consists of O(k2)
vertices is achieved where k denotes the required number of edge modifications.
This seems to be the first result with respect to kernelization in the field of
clustering problems. Inspired by our kernelization, Damaschke [50] investigated
so-called full kernels for the enumeration version of Cluster Editing.

The second main result in this part is a problem kernel for Multicut in
Trees, a problem well-studied in terms of polynomial-time approximabilities.
The proof of the existence of a kernel involving complicated combinatorial ar-
guments is provided in Chapter 8.

3Independently, this result was also shown by Dehne et al. [52], improving the constant
to 10.6.

10 Introduction

Search trees based on forbidden subgraphs. The construction of depth-
bounded search trees based on induced forbidden subgraphs is probably the
most commonly used technique in the design of fixed-parameter algorithms for
graph modification problems [32]. In Chapter 9 we discuss the applicability of
this technique with the emphasis on the distinction between finite and infinite
forbidden subgraph characterizations. As a case study, we give a simple algo-
rithm solving Multicut in Trees in (2k ·n2) time with k denoting the number
of the edge deletions.

Following the algorithm design schemes suggested in Chapter 9, we present
two search tree algorithms for Cluster Editing (Chapter 10) and Closest 3-
Leaf Power (Chapter 11). The former problem has a finite forbidden subgraph
characterization and the latter problem an infinite one. Based on the known
forbidden subgraph P3 of cluster graphs, the basic branching strategy leads to a
size-3k search tree for Cluster Editing with the number of edge modifications
as parameter k. In Chapter 10 we demonstrate how to shrink the search tree size
by a careful case distinction, resulting in an O(2.27k + n3) time algorithm. In
Chapter 11, to construct a search tree algorithm for Closest 3-Leaf Power,
we first derive an infinite forbidden subgraph characterization of graphs being
3-leaf powers.4 Then, by combining two depth-bounded search tree algorithms
for two subtasks, each subtask getting rid of a subset of the forbidden subgraphs,
we establish a fixed-parameter tractability result of Closest 3-Leaf Power
where the parameter is the number of edge modifications.

Parameterization by structure. Finally, we propose the “distance from
triviality” measurement as a useful structural problem parameterization and dis-
cuss a framework for uncovering such parameters in analyzing computationally
hard problems. The case studies given in Chapter 12 shall exhibit the versatil-
ity of this approach to gain important new views for computational complexity
analysis.

Two main problems are considered in this framework, Multicommodity
Demand Flow in Trees and Weighted Multicut in Trees. For both
problems we propose a “vertex cutwidth parameter” whose value can be as-
sumed to be small in several applications. With k denoting this vertex cutwidth
parameter we show that Multicommodity Demand Flow in Trees and
Weighted Multicut in Trees can be solved in O(2k · n2) and O(3k · n2)
time, respectively. While both problems have been intensively studied with
respect to approximation algorithms, these results seem to be the first results
concerning their parameterized complexity. Moreover, both algorithms are con-
ceptually simple enough to allow easy implementation and may be profitable
alternatives to existing approximation algorithms. The achieved algorithm for
Weighted Multicut in Trees solves actually a more general problem, Tree-
Like Weighted Set Cover, which is motivated by applications in tree de-
composition based computing [22] and phylogenomics [148].

4This characterization is crucial for the NP-completeness proof of a variant of Closest
`-Leaf Power for ` ≥ 3 [59].

Part II

Iterative Compression

11

Chapter 2

Basic Concepts and Ideas

In 2004, Reed et al. [155] introduced a simple but elegant technique, the so-called
“iterative compression” technique, which appears to have the potential to be a
general tool for designing efficient fixed-parameter algorithms for minimization
problems with the solution size as the parameter. In their ground-breaking
paper [155] they demonstrated how powerful this technique is by giving an effi-
cient fixed-parameter algorithm for the Graph Bipartization problem. This
has been a central open problem in parameterized complexity for several years.
Graph Bipartization is defined as follows:

Input: A undirected graph G = (V, E) and an integer k ≥ 0.

Task: Find a vertex bipartization set V ′ with at most k vertices
whose removal transforms the input graph into a bipartite graph.

The central part of their algorithm is a compression procedure which, given
an n-vertex graph G and a size-(k + 1) solution of Graph Bipartization
on G, either constructs a size-k solution or proves that there is no size-k solu-
tion. This compression procedure runs in O(3k · k · m) with m := |E|. Based
on this compression procedure, the algorithm starts with the trivial subinstance
consisting of the subgraph G[{v1}] and parameter k. The optimal vertex bi-
partization set for this subinstance is clearly the empty set. Then, the algo-
rithm iteratively considers for i = 2, . . . , n the subinstances consisting of the
subgraphs Bi := G[{v1, . . . , vi}] and parameter k. Let V ′

i−1 denote the vertex
bipartization set of Gi−1 with |V ′

i−1| ≤ k. Obviously, V ′
i := V ′

i−1 ∪ {vi} is a ver-
tex bipartization set of Gi. If |Vi| ≤ k, then the algorithm proceeds with Gi+1;
otherwise, it calls the compression procedure with Gi and the size-(k + 1) so-
lution V ′

i as inputs to “compress” V ′
i . Note that, if the compression procedure

fails to compress V ′
i , then Gi has no size-k vertex bipartization set and the input

graph G has no size-k vertex bipartization set as well. In summary, the overall
runtime of this algorithm is O(3k · k · m · n).

Roughly speaking, the basic idea of the iterative compression technique is
as follows: To show that a minimization problem is fixed-parameter tractable

13

14 Basic Concepts and Ideas

with respect to the solution size, it suffices to give a fixed-parameter algorithm
which, given a size-(k + 1) solution, shows that either there is no size-k solu-
tion or constructs one. As shown in the Graph bipartization example, the
iterative compression technique employs two procedures. One procedure is the
compression procedure which constructs a size-k solution from the given size-
(k + 1) solution and the other is called the “iteration” procedure. It provides
the compression procedure with the desired size-(k + 1) solution. The itera-
tion procedure is the main procedure which calls the compression procedure as
a subroutine. In this chapter we discuss both procedures in detail. Then, in
Chapter 3, we present a fixed-parameter algorithm based on this technique solv-
ing the Feedback Vertex Set problem. In Chapter 4, we present two general
methods which can improve the runtimes of iterative compression algorithms in
several cases. Finally, we show in Chapter 5 how to use the iterative compression
technique to design an enumeration algorithm for Feedback Vertex Set.

2.1 Iteration

As already demonstrated in the Graph Bipartization example, in order to
feed the compression procedure with a size-(k +1) solution, the iteration proce-
dure starts with a trivially solvable, small subinstance of the given instance—a
one-vertex subgraph—and inductively applies the compression procedure a lin-
ear number of rounds to larger and larger subinstances. We now extend this
scheme of the iteration procedure to general minimization problems. Three case
studies will be given later.

For a given instance I of a minimization problem consisting of a graph G
and parameter k, the iteration procedure works as follows:

1. Set I ′ to a trivially solvable subinstance of I and compute a size at most k
solution S for I ′;

2. While I ′ 6= I do

(a) Move one step forward to I by “augmenting” I ′ with an additional
“element” which is in I but not in I ′;

(b) Based on S, compute a solution S′ for the new I ′;

(c) If |S′| > k,

i. then call the compression procedure with I ′ and S′ as inputs to
compress—if possible— S′ to a size-k solution. Set S equal to
the size-k solution returned by the compression procedure; (For
more details on the compression procedure see Section 2.2.)

ii. Otherwise, S := S′;

3. Return S as the solution of the minimization problem on the input in-
stance I.

2.1 Iteration 15

Observe that, although the iteration procedure is very simple, its applicabil-
ity and correctness heavily depend on the choice of the element added to I ′ to
get the new instance. We call the element the augmentation element. For many
problems, the choice of the augmentation element is not uniquely determined.
We can add a vertex (as in the iteration procedure for Graph Bipartization)
or an edge (as we do for Edge Bipartization in Section 4.1) in each augmen-
tation step, which seem to be the most natural and simple ways to augment
the subinstances dealing with graph problems. Some graph problems carry ad-
ditional inputs which can also be promising candidates for the augmentation
element. For example, many network connectivity problems examine the re-
liability of the communication between some given pairs of network vertices.
These given vertex pairs can also be used as augmentation element, as we will
demonstrate in the Multicut in Trees case study (Section 2.1.2).

For determining the augmentation element, there are two important criteria:

• (C1) The computation of a solution of size at most k + 1 for the new,
augmented subinstance, based on the size-(k) solution of the old, smaller
subinstance should be “easy”: In the following case studies, this compu-
tation works in polynomial time for most problems with proper augmen-
tation elements.

• (C2) The optimal solutions of the subinstances should exhibit a mono-
tonicity property on their sizes: For two subinstances I and I ′ with |I| ≤
|I ′|, the size of the optimal solutions of I should not exceed the size of the
optimal solutions of I ′.

The criterion (C1) guarantees the efficiency of the iteration procedure. With
an augmentation element violating (C2), we cannot say that the original in-
stance is a “No”-instance, even when the compression fails to compress the
size-(k + 1) solution for a subinstance.

In the following, we will investigate the applicability of the iteration proce-
dure by doing some case studies. In particular, these cases studies demonstrate
the usefulness of the two criteria given above for the choice of the augmentation
element.

2.1.1 Case Study 1: Vertex Cover

Vertex Cover asks for a set C of at most k ≥ 0 vertices in a given graph G =
(V, E) covering all edges in G, i.e., each edge in E has at least one endpoint
in C. Since the optimization measure is the size of a vertex subset, adding a
single vertex at each augmentation step seems to be most reasonable. Let V :=
{v1, v2, . . . , vn}.

Vertex Cover is known to be NP-complete [115]. The problem is approx-
imable within a factor slightly better than 2. Unless P=NP an approximation
factor of 1.36 cannot be achieved [56]. The currently best known fixed-parameter
algorithm has runtime of O(1.2745kk4 + kn) with k := |C| [36]. For approxima-
bility and fixed-parameter tractability of several generations of Vertex Cover
we refer to [24, 31, 44, 79, 92, 100, 122].

16 Basic Concepts and Ideas

The initial subinstance is the subgraph G1 of G containing only the vertex v1

for which the vertex cover set is empty. Suppose that, for 1 < i ≤ n, we have
computed a vertex cover Ci−1 with |Ci−1| ≤ k for Gi−1 = G[Vi−1] where Vi−1 :=
{v1, v2, . . . , vi−1}. We augment Gi−1 to Gi by adding vertex vi to Gi−1. The
edges in E between vi and the vertices in Vi−1 are also added to Gi−1. Note
that Gi = G[Vi] where Vi := {v1, v2, . . . , vi}. If the vertices in Ci−1 cover all
edges in Gi, then Ci := Ci−1 is a vertex cover for Gi with at most k vertices;
otherwise, Ci := Ci−1 ∪ {vi} is a vertex cover for Gi with no more than k + 1
vertices, since the newly added edges in Gi are all incident to vi. If |Ci| = k+1,
then we invoke the compression procedure (see Section 2.2). The augmentation
process is repeated until we reach the original input instance G.
Remark: Note that the computation of Ci for Gi based on Ci−1 is simple: To
determine the covering status of the edges incident to vi can be clearly done
in O(|Vi|) time. Criterion C1 for the choice of the augmentation element is
fulfilled. Moreover, each vertex cover of Gi is clearly a vertex cover of Gi−1

but not conversely. This implies the monotonicity property indicated in Crite-
rion C2. Therefore, the above choice of the augmentation element results in a
fairly simple iteration procedure for Vertex Cover.

2.1.2 Case Study 2: Multicut in Trees

For a given input tree T = (V, E), Multicut in Trees asks for a set of
at most k edges whose removal disconnects all vertex pairs given in an input
set H := {(uj, vj) | uj, vj ∈ V and 1 ≤ j ≤ h}. The following iteration proce-
dure augments the subinstances by adding a vertex pair from H in each step.

The initial instance consists of tree T and the set H1 which only contains
the vertex pair (u1, v1) ∈ H . The solution M1 for this initial subinstance is easy
to compute: We determine the unique path between u1 and v1 in T and add
an arbitrary edge of this path to M1. Suppose that we have a solution Mi−1

with |Mi−1| ≤ k for the subinstance consisting of T and Hi−1 := {(uj, vj) |
uj, vj ∈ V and 1 ≤ j ≤ i − 1} ⊆ H . The subinstance with Hi−1 is then
augmented by adding the vertex pair (ui, vi) ∈ H to Hi−1. Consider the unique
path between ui and vi in T . If at least one of the edges in this path is contained
in Mi−1, then the solution Mi for the new, augmented subinstance is set equal
to Mi−1. Otherwise, we get Mi by adding an arbitrary edge of this path to Mi−1.
It is clear that |Mi| ≤ k + 1 and the compression procedure is invoked if |Mi| =
k + 1. This completes the description of the iteration procedure.
Remark: In this problem it seems to be more complicated to augment the
subinstances by adding vertices or edges. The linear-time computation of Mi

from Mi−1 is simple, and disconnecting the vertex pairs in Hi needs clearly at
least as many edge removals as disconnecting the vertex pairs in Hi−1. There-
fore, the two criteria C1 and C2 are fulfilled by the chosen augmentation ele-
ment, that is the vertex pairs in H .

Unfortunately, we are unable to give a compression procedure for this prob-
lem. One possible direction for deriving a compression procedure could be to
combine the data reduction rules introduced in Chapter 8 and the branching

2.2 Compression 17

Gi−1 Gi

ei

Figure 2.1: Graph Gi results from graph Gi−1 by adding edge ei.

into two subcases in Chapter 9.

2.1.3 Case Study 3: Cluster Deletion

In this case study we give an example for which there is no obvious augmentation
element satisfying both criteria. This problem is called Cluster Deletion:
Find a set of at most k edges whose removal transforms a given graph into
a vertex-disjoint union of cliques. Let G = (V, E) denote the input graph.
By Lemma 10.1, a graph is a vertex-disjoint union of cliques iff it contains
no induced P3, a path with three vertices. So, we can formulate Cluster
Deletion as the problem to get rid of all induced P3 by deleting at most k
edges.

At first sight, it seems very natural to use the graph edge as augmentation
element when minimizing the number of edge deletions. However, consider the
two subgraphs of a graph G in Figure 2.1: Gi is the new, augmented subgraph
constructed by adding edge ei to Gi−1. It is easy to see that the solutions
of Gi−1 and Gi do not have the monotonicity property of C2: Gi is already a
clique and, hence, needs no edge deletion, while Gi−1 needs at least two edge
deletions. Therefore, the graph edges are not the proper augmentation elements.

With the graph vertices as the augmentation element, it is not clear how to
compute the solution with at most k + 1 edge deletions of the new, augmented
instance.
Remark: The described difficulty also occurs with other edge modification
problems with a finite set of forbidden subgraphs. It remains as an open prob-
lem to uncover other augmentation elements which lead to feasible iteration
procedures for such edge modification problems.

2.2 Compression

Now, we turn our attention to the compression procedure which is invoked by
the iteration procedure. It has an instance and a solution of size k+1 as inputs.
The compression procedure returns “no” if the size-(k+1) solution is an optimal
solution for the input instance; otherwise, it computes a solution with a size at
most k.

Compared to the original problem formulation, this procedure solves actually
a slightly easier problem since it has more information about the input instance,

18 Basic Concepts and Ideas

i.e., the instance has a size-(k + 1) solution. However, for most problems, this
seemingly easier problem is still NP-hard: The iteration procedures for Ver-
tex Cover and Multicut in Trees have a polynomial runtime as shown in
Section 2.1. If the compression procedures for these problems could be done
in polynomial time as well, then we would have polynomial-time algorithms
solving these problems, which would imply P=NP.

In contrast to the iteration procedure, it is hard to give a general scheme
for the compression procedure which turns out to be highly problem-specific as
demonstrated in the following case studies. However, observe that there exists
a common property of the input instances of the compression procedures for
different problems: They have all a solution of size k + 1. A possible approach
to do the compression could be to explore the relation between the size-(k + 1)
solution and the possibly existing size-k solution. The following simple obser-
vation provides a start point for designing the compression procedure as in the
compression procedure for Graph Bipartization by Reed et al. [155].

Given an instance together with a size-(k + 1) solution S, if there
exists a size-k solution S′, then S can be partitioned into two disjoint
subsets X and Y such that X∪Y = S, Y 6= ∅, X ⊆ S′, and Y ∩S′ =
∅.

Based on this observation, we can always begin with partitioning the size-
(k + 1) solution S into two disjoint subsets X and Y in all possible ways and,
for each partition, we try to find a size-k solution S′ containing X but not Y .
If we have a size-k solution for one partition, then this solution is returned as
output of the compression procedure. If there is no size-k for all partitions, then
the size-(k + 1) solution is optimal and we answer “No.” Note that, for each
partition, X ⊆ S′ and Y ∩ S′ = ∅ have to be fulfilled by the possibly existing
size-k solution S′. This means that, if there exists a size-k solution S′ for this
partition, then S′ is obtained by replacing the elements in Y by at most |Y |− 1
elements which are not in S, a significantly restricted version of the original
problem. For some problems as shown in the case studies, we can determine
in polynomial time the elements which are not in S and which are needed
to replace the elements of Y . Note that, since there are 2k+1 such partitions
of S, the compression procedure based on this partitioning and replacing scheme
requires at least O(2k) steps.

The following two case studies give some concrete examples for the compres-
sion procedure.

2.2.1 Case Study 1: Vertex Cover

If a size-(k + 1) vertex cover C is known for a Vertex Cover instance G =
(V, E), then we try all possible ways to partition C into two disjoint sets X and Y
as described above. Note that Y 6= ∅ because we seek for a smaller solution.
There are 2k+1 such partitions. For each partition, we assume that the possibly
existing size-k vertex cover C′ has to contain X but not Y . Then, we delete
the vertices in X and their incident edges since these vertices have to be in C′

2.3 Concluding Remarks 19

and they cover the deleted edges. Observe that, if such a vertex cover C′ exists,
then the induced subgraph G[V \X] needs to be bipartite with edges between Y
and V \C. Because Y ∩C′ = ∅, we have to take all neighbors of the vertices in Y
into C′ to cover the remaining edges. If |N(Y)| < |Y |, then C′ := N(Y) ∪ X ;
otherwise, there is no size-k vertex cover for this partition. Combining with
the iteration procedure given in Section 2.1.1, we have an iterative compression
algorithm for Vertex Cover with a runtime of O(2k · |V |2).
Remark: We can do a more clever partitioning by examining the degrees of the
vertices in C or by making case distinctions based on whether there is an edge
in G[C] or not. For example, in order to cover the edges incident to a vertex v,
we have to take v or all its neighbors into a vertex cover. Thus, if there is a
vertex v in C with more than k neighbors in G, then we do not consider the
partitions of C with v ∈ Y , since these partitions cannot lead to a vertex cover
with at most k vertices. However, it seems to be difficult to beat the algorithm
based on a depth-bounded search tree approach for Vertex Cover which has
a runtime of O(1.2745kk4 + k|V |) [36].

2.2.2 Case Study 2: Cluster Deletion

As shown in Section 2.1.3 it seems to be difficult to give an iteration procedure
for Cluster Deletion, the compression procedure is fairly simple: Given a
Cluster Deletion instance with a size-(k + 1) solution S, we partition S
into X and Y . For each partition we delete the edges in X due to the as-
sumption of this partition that they have to be in the possibly existing size-k
solution S′, and we initialize S′ := X . In the resulting graph, we search for the
remaining P3’s, paths induced by three vertices. If there is a P3, then one edge
of this P3 has to be in Y ; otherwise, S would not be a solution. Since Y ∩S′ = ∅,
we have to add the other edge of this P3 to S′ and, then, we delete it from the
graph. This process is repeated until there is no more P3. Finally, if |S′| ≤ k,
then S′ is the output of the compression procedure; otherwise, for this partition,
there is no size-k solution. Clearly, the compression procedure needs O(2k · |V |3)
time where O(|V |3) is due to the search for P3’s.
Remark: For most problems, the compression procedure seems to be more
complicated than the iteration procedure. In particular, the W[2]-complete
Dominating set has an iteration procedure running in polynomial time by
using the graph vertices as the augmentation elements, while compressing a
size-(k + 1) dominating set is fixed-parameter intractable with respect to k;
otherwise, it would imply FPT=W[2] which is generally believed not to be true.
Cluster Deletion seems to be an exception.

2.3 Concluding Remarks

Iterative compression is a very new technique for designing fixed-parameter
algorithms solving minimization problems. As already demonstrated by the
example Graph Bipartization [155], this technique seems to be useful for

20 Basic Concepts and Ideas

attacking unsettled questions in fixed-parameter complexity. In Chapter 3, we
give another successful application of the iterative compression technique to the
Feedback Vertex Cover problem, achieving an O(ck · m)-time algorithm
where c is a constant, k denotes the size of the solution, and m is the number
of edges in the given graph. This result answers a more than ten years open
question.1 Compared with other fixed-parameter design techniques, so far little
research has been done on iterative compression and there remain many chal-
lenging open questions concerning this new technique such as whether it can
also be used to derive polynomial-time approximation algorithms.

By incorporating additional techniques into the iterative compression based
algorithm by Reed et al. [155] and evaluating its performance on real-world data
from computational biology and synthetic data, Hüffner [108] demonstrated that
iterative compression may lead to practically useful algorithms. Experiments
with other iterative compression based algorithms should shed more light on
the potential of iterative compression.

1Independently, this result was also shown by Dehne et al. [52].

Chapter 3

Feedback Vertex Set

In Chapter 2 we have demonstrated the usefulness of the iterative compression
technique for some concrete graph problems. However, none of the algorithms
given there could improve the runtimes of the already known fixed-parameter
algorithms for these problems which are based on other algorithmic techniques.
In this chapter we show a successful application of the iterative compression
technique to the Feedback Vertex Set problem with the until now best
fixed-parameter time complexity. Independently, this result was also shown by
Dehne et al. [52]. We follow partly [93].

3.1 Problem Definition and Previous Results

The Feedback Vertex Set (FVS) problem is defined as follows:

Input: An undirected graph G = (V, E) and an integer k ≥ 0;
Task: Find a set F with |F | ≤ k vertices such that each cycle in G
contains at least one vertex from F . (The removal of all vertices
in F from G therefore results in a forest.)

The vertex set F is called a feedback vertex set (fvs).
FVS is one of the classical NP-complete problems [115] and it is known

that an optimal solution can be approximated to a factor of two in polyno-
mial time [15]. FVS is MaxSNP-hard [131] and, hence, there is no hope for
polynomial-time approximation schemes. A question of similar importance as
approximability is to ask how fast one can find an optimal feedback vertex set.
There is a very simple randomized algorithm due to Becker et al. [19] which
solves the FVS problem in O(c · 4k · kn) time by finding a feedback vertex set

of size k with probability at least 1 − (1 − 4−k)c4k

for an arbitrary constant c.
Note that this means that by choosing an appropriate value c, one can achieve
any constant error probability independent of k.

Bodlaender [26] and Downey and Fellows [64] were the first to show that
the problem is fixed-parameter tractable. A fixed-parameter algorithm with

21

22 Feedback Vertex Set

runtime O((2k + 1)k · n2) was described by Downey and Fellows [65]. In 2002,
Raman et al. [152] made a significant step forward by proving the improved
upper bound O(max{12k, (4 log k)k}·nω) (where nω denotes the time to multiply
two n× n integer matrices). Using results from extremal graph theory, Kanj et
al. [113] have slightly improved this bound to O((2 log k + 2 log log k + 18)k · n2).
Finally, Raman et al. [153] published an algorithm with a further improved
upper bound O((12 log k/log log k + 6)k · nω).

For an overview on FVS and its variants, we refer to Festa, Pardalos, and
Resende [77].

3.2 The Algorithm

Now we show that Feedback Vertex Set can be solved in O(ck · n · m)
time for c ≈ 37.7 by presenting an algorithm based on iterative compression,
where n := |V | and m := |E| for an input graph G = (V, E).1 Without chang-
ing the asymptotic runtime, this algorithm can solve a more general problem
(introduced in [18]) where some graph vertices are marked “blackout” and may
not be part of the feedback vertex set.

3.2.1 Iteration

The iteration procedure of this algorithm is quite simple. We use the graph
vertices as augmentation elements.

Given as input a graph G with vertex set {v1, . . . , vn}, the initial subinstance
is G1 := G[{v1}]. The optimal fvs F1 of G1 is empty. For i > 1, suppose that
an fvs Fi−1 with |Fi−1| ≤ k for Gi−1 = G[{v1, . . . , vi−1}] is known. Obviously,
Fi := Fi−1 ∪ {vi} is an fvs for Gi. If |Fi| = k + 1, then the compression
procedure is invoked which will be given in the next subsection; otherwise, we
proceed with Gi+1. For i = n, we thus have computed, if existing, an fvs F
with |F | ≤ k for G in TC · O(n) time, where TC denotes the runtime of the
compression procedure. The correctness of the iteration procedure is obvious.

3.2.2 Compression

The following lemma provides the compression procedure.

Lemma 3.1. Given a graph G and a size-(k + 1) feedback vertex set (fvs) F
for G, we can decide in O(ck ·m) time for some constant c whether there exists
a size-k fvs F ′ for G and, if so, provide one.

Proof. The compression procedure consists of two steps. The first step, as
described in Chapter 2, is to try by brute force all 2k+1 partitions of F into
two sets X and Y . In the second step, for each partition, we assume that a
possible smaller fvs F contains X but not Y . The key idea for replacing the

1 By using almost the same technique but refined analysis, Dehne et al. [52] improved the
constant c to 10.6.

3.2 The Algorithm 23

vertices in Y by at most |Y | − 1 vertices from V \ F is to show that there is
only a “small” set V ′ of candidate vertices to draw from in order to complete X
to F ′. As later shown in Lemma 3.2, we apply two simple data reductions and
compute V ′ in O(m) time. Moreover, Lemma 3.2 shows that the size of V ′ is
bounded from above by 14 · |Y |. Since |Y | ≤ k+1, |V ′| thus only depends on the
problem parameter k and not on the input size. We again use brute force and
test each of the at most

(14·|Y |
|Y |−1

)

possible choices of vertices from V ′ whether it

is an fvs of G[V ′]. If one of the choices is an fvs, then we add it to X to form F ′

and return F ′ as the output of the compression procedure. Finally, if there is no
such fvs F ′ as desired for all partitions, then the compression procedure outputs
“NO.” Note that the second step is the problem-specific part of the compression
procedure.

Since the test whether a choice of vertices from V ′ together with X forms an
fvs can easily be done in O(m) time, we can now bound the overall runtime TC

of the compression procedure, where the index i corresponds to a partition of F
into X and Y with |X | = i and |Y | = |F | − i:

TC = O

(

k
∑

i=0

(

|F |

i

)

·

(

O(m) +

(

14 · (|F | − i)

|F | − i − 1

)

· O(m)

)

)

= O

(

2k · m +

k
∑

i=0

(

k + 1

i

)

·

(

14 · (k + 1 − i)

k − i

)

· m

)

and with Stirling’s inequality to evaluate the second binomial coefficient,

= O

(

2k · m +

k
∑

i=0

(

k + 1

i

)

(36.7)k+1−i · m

)

= O((1 + 36.7)k · m),

which gives the lemma’s claim with c ≈ 37.7.

It remains to show the size bound of the “candidate vertices set” V ′ for fixed
partition X and Y of a size-(k + 1) fvs F . To this end, we make use of two
simple data reduction rules.

Lemma 3.2. Given a graph G = (V, E), a size-(k + 1) fvs F for G, and a
partition of F into two sets X and Y . Let F ′ denote a size-k fvs for G with
F ∩ F ′ = X and F ′ ∩ Y = ∅. In O(m) time, we can either decide that no such
F ′ exists or compute a subset V ′ of V \ F with |V ′| ≤ 14 · |Y | such that there
exists an F ′ as desired consisting of |Y | − 1 vertices from V ′ and all vertices
from X.

Proof. The idea of the proof is to use an obvious data reduction technique
for FVS to get rid of degree-1 and degree-2 vertices and to show that if the
resulting instance is too large as compared to the part Y (whose vertices we are
not allowed to add to F ′), then there exists no set F ′ as desired.

24 Feedback Vertex Set

A

B

C

Y

Figure 3.1: Partition of the vertices in V ′ into three disjoint subsets A, B,
and C.

First, check that Y does not induce a cycle; otherwise, no F ′ with F ′ ∩ Y = ∅
can be an fvs for G. Then, remove in G all vertices from X as they are deter-
mined to be in F ′. Finally, apply a standard data reduction to the vertices
in V \ F (the vertices in Y remain unmodified): remove degree-1 vertices and
successively bypass any degree-2 vertex by adding a new edge between its neigh-
bors (thereby removing the bypassed degree-2 vertex together with its incident
edges). There are two exceptions to note: One exception is that we do not
bypass a degree-2 vertex which has two neighbors in Y . The other exception is
the way to deal with parallel edges. If we create two parallel edges between two
vertices during the data reduction process—these two edges form a length-two
cycle—, then exactly one of the two endpoints of these edges has to be in Y
since Y is an fvs of G[V \ X] and G[Y] contains no cycle. Thus, we have to
delete the other endpoint and add it to F ′ since we are not allowed to add ver-
tices from Y to F ′. Proofs for the correctness and the time bound of the data
reduction technique are basically straightforward, see Section 6.1.1.

In the following we use G′ = (V ′ ∪ Y, E′) with V ′ ⊆ V \ F ′ to denote
the graph resulting after exhaustive application of the data reduction described
above; note that none of the vertices in Y has been removed during the data
reduction process. In order to prove that |V ′| < 14 · |Y |, we partition V ′ into
three subsets, each of which will have a provable size bound linearly depending
on |Y | (the partition is illustrated in Figure 3.1):

A := {v ∈ V ′ | |N(v) ∩ Y | ≥ 2},

B := {v ∈ V ′ \ A | |N(v) ∩ V ′| ≥ 3},

C := V ′ \ (A ∪ B).

To bound the number of vertices in A, consider the bipartite subgraph GA =
(A ∪ Y, EA) of G′ = (V ′ ∪ Y, E′) with EA := (A × Y) ∩ E′. Observe that if
there are more than |Y | − 1 vertices in A, then there is a cycle in GA: If GA is
acyclic, then GA is a forest, and, thus, |EA| ≤ |Y |+|A|−1. Moreover, since each
vertex in A has at least two incident edges in GA, |EA| ≥ 2|A|, which implies
that |A| ≤ |Y | − 1 if GA is acyclic. It follows directly that if |A| ≥ 2|Y |, it is
impossible to delete at most |Y | vertices from A such that G′[A ∪ Y] is acyclic.

3.3 Concluding Remarks 25

To bound the number of vertices in B, observe that G′[V ′] is a forest. Fur-
thermore, all leaves of the trees in G′[V ′] are from A since G′ is reduced with
respect to the above data reduction rules. By the definition of B, each vertex
in B has at least three vertices in V ′ as neighbors. Thus, there cannot be more
vertices in B than in A, and therefore |B| < 2|Y |.

Finally, consider the vertices in C. By the definitions of A and B, and
since G is reduced, each vertex in C has degree two in G′[V ′] and exactly one
neighbor in Y . Hence, graph G′[C] is a forest consisting of paths and isolated
vertices. We now separately upperbound the number of isolated vertices and
those participating in paths.

Each of the isolated vertices in G′[C] connects two vertices from A ∪ B
in G′[V ′]. Since G′[V ′] is acyclic, the number of isolated vertices in G′[C]
cannot exceed |A∪B| − 1 < 4|Y |. The total number of vertices participating in
paths in G′[C] can be upperbounded as follows: Consider the subgraph G′[C ∪
Y]. Each edge in G′[C] creates a path between two vertices in Y , that is,
if |E(G′[C])| ≥ |Y |, then there exists a cycle in G′[C ∪ Y]. By an analogous
argument to the one that upperbounded the size of A (and considering that
removing a vertex from G′[C] destroys at most two edges), the total number of
edges in G′[C] may thus not exceed |Y | + 2|Y |, bounding the total number of
vertices participating in paths in G′[C] from above by 6|Y |.

Altogether,

|V ′| = |A| + |B| + |C| < 2|Y | + 2|Y | + (4 + 6)|Y | = 14|Y |.

Including the runtime of the compression procedure TC = O(ck ·m) into the
runtime of the iteration procedure O(n) · TC , we have the main result of this
chapter.

Theorem 3.1. Feedback Vertex Set can be solved in O(ck · mn) time for
a constant c.

3.3 Concluding Remarks

The successful application of the iterative compression technique to Feedback
Vertex Set demonstrates that this technique is an important tool not only
in classifying the fixed-parameter tractability but also in the design of efficient
fixed-parameter algorithms for minimization problems.

In the next two chapters we will show that this algorithm can be improved
to a linear-time fixed-parameter algorithm, i.e., an algorithm running in linear
time for constant value of parameter k, and we will also extend the compression
procedure in order to enumerate all optimal solutions of FVS asymptotically
within the same runtime.

The practical performance of the algorithm is an issue remaining to be ex-
plored. Using algorithm engineering methods, Hüffner [108] demonstrated the

26 Feedback Vertex Set

efficiency of the iterative compression algorithm by Reed et al. [155] for the
closely related Graph Bipartization problem with real-world data sets. To
this end, it also would be useful to develop data reduction rules and kerneliza-
tions (see Part III) for FVS.

Finally, it remains a long-standing open problem whether Feedback Ver-
tex Set in directed graphs is fixed-parameter tractable. The iterative compres-
sion technique seems to be a promising approach for attacking this question.

Chapter 4

Speed-up Methods

In this chapter, we introduce two speed-up methods for the iteration compres-
sion technique. They are not problem-specific and, in general, their application
can simplify the fixed-parameter algorithms based on iterative compression.

4.1 Compression without Partition

In Section 2.2, we give a general compression scheme consisting of partitioning
the size-(k + 1) solution S into two disjoint subsets and analyzing each single
partition. The scheme is based on the observation that, if there exists a size-k
solution S′, then S′ keeps some elements of S and replaces the other elements
by some elements not in S. However, if there is a size-k solution which has no
common element with the size-(k + 1) solution, then we do not have to do the
partition and only have to consider the case that S ∩ S′ = ∅, i.e., the partition
of S into X and Y with X = ∅. This implies that we can reduce the run time by
a factor of O(2k). We call this method “compression without partition.” Note
that this compression without partition method is not generally applicable. For
some problems, there is no size-k solution having no common element with a
size-(k + 1) solution.

In the following, we show an example of the application of this method. The
considered problem is called Edge Bipartization:

Input: An undirected graph G = (V, E) and an integer k > 0.
Task: Find a subset B ⊆ E of edges with |B| ≤ k whose removal
transforms G into a bipartite graph.

A necessary and sufficient condition for a graph to be a bipartite graph is
that it contains no cycle of odd length. The task of Edge Bipartization can
also be formulated as seeking for a set B of at most k edges such that each
odd-length cycle in G contains at least one edge from B. The set B is called an
edge bipartization set. We call a set of edges E′ a edge cut set if the removal of
the edges in E′ decomposes the graph into at least two connected components.
Given a set E′ ⊆ E of edges, V (E′) denotes the set

⋃

{u,v}∈E′{u, v} of endpoints.

27

28 Speed-up Methods

Edge Bipartization is known to be MaxSNP-hard [149] and can be ap-
proximated to a factor of O(log n) in polynomial time [81]. It has applications
in genome sequence assembly [150] and VLSI chip design [112]. Since there is a
parameter-preserving reduction from Edge Bipartization to Graph Bipar-
tization [177], the algorithm by Reed et al. [155] for Graph Bipartization
directly implies a run time of O(3k · k3m2n) for Edge Bipartization, k de-
noting the number of edges to be deleted. Here, we significantly reduce the
run time from O(3k · k3m2n) to O(2k · m2) by using the compression without
partition method.

The following lemma provides some central insights into the structure of a
minimal edge bipartization set.

Lemma 4.1. Given a graph G = (V, E) with a minimal edge bipartization set B
for G, the following two properties hold:

1. For every odd-length cycle C in G, |E(C) ∩ B| is odd.

2. For every even-length cycle C in G, |E(C) ∩ B| is even.

Proof. For each edge e = {u, v} ∈ B, note that u and v are on the same side of
the bipartite graph G \ B, since otherwise we do not need e to be in B and B
would not be minimal. Consider a cycle C in G. The edges in E(C) \ B are
all between the two sides of G \ B, while the edges in E(C) ∩ B are between
vertices of the same side as argued above. In order for C to be a cycle, however,
this implies that |E(C) \ B| is even. Since |E(C)| = |E(C) \ B| + |E(C) ∩ B|,
we conclude that |E(C)| and |E(C) ∩ B| have the same parity.

As mentioned above, the applicability of the compression without partition
depends on the assumption that there exists a size-k solution disjoint from the
given size-(k+1) solution. In order to show that the assumption holds for Edge
Bipartization, we apply a simple transformation to the input graph. For a
graph G with a size-(k + 1) edge bipartization set B, we subdivide all edges
in X by two new vertices. This transformation is formalized in the following
definition.

Definition 4.1. For a graph G = (V, e) with a minimal edge bipartization set B,
the vertex set and the edge set of the corresponding edge-extension graph G̃ :=
(Ṽ , Ẽ) are defined as

Ṽ := V ∪ {ue, ve | e ∈ B} and

Ẽ := (E \ B) ∪ {{u, ue}, {ue, ve}, {ve, v} | e = {u, v} ∈ B}.

See Figure 4.1 for an example of this transformation. Since this transforma-
tion preserves the parity of the length of cycles, it is easy to see that the thus
transformed graph has an edge bipartization set with k edges iff the original
graph has an edge bipartization set with k edges. Moreover, for each edge bi-
partization set B for the transformed graph there is an edge bipartization set B′

4.1 Compression without Partition 29

Figure 4.1: The left graph has an edge bipartization set B (dashed lines). To be
able to assume without loss of generality that a bipartization set smaller than B
is disjoint from B, we subdivide each edge in B by two vertices and choose the
middle edge from each thus generated path as new edge bipartization set (right).

of the same size that is disjoint from B, which can be obtained by replacing ev-
ery edge in B′ ∩ B by one of its two adjacent edges. In the following, for all
considered graphs, it is implicitly assumed that they are transformed.

The following simple definition is the only remaining prerequisite for the
central lemma of this section.

Definition 4.2. Let G = (V, E) be a graph and B ⊆ E. A mapping Φ :
V (B) → {0, 1} is called valid partition of V (B) if for each {u, v} ∈ B, we
have Φ(u) 6= Φ(v).

Lemma 4.2. Consider a graph G = (V, E) and a minimal edge bipartization
set B for G. For a set of edges B′ ⊆ E with B ∩ B′ = ∅, the following are
equivalent:

(1) B′ is an edge bipartization set for G.

(2) There is a valid partition Φ of V (B) such that B′ is an edge cut between
0Φ := Φ−1(0) and 1Φ := Φ−1(1) in G \ B := (V, E \ B).

Proof. (2) ⇒ (1): Consider any odd-length cycle C in G. We show that E(C)∩
B′ 6= ∅. Let s := |E(C) ∩ B|. By Property 1 in Lemma 4.1, s is odd. Without
loss of generality, we assume that E(C)∩B = {{u0, v0}, . . . , {us−1, vs−1}} with
vertices vi and u(i+1) mod s being connected by a path in C \ B. Since Φ is a
valid partition, we have Φ(ui) 6= Φ(vi) for all 0 ≤ i < s. With s being odd, this
implies that there is a pair vi, u(i+1) mod s such that Φ(vi) 6= Φ(u(i+1) mod s).
Since the removal of B′ destroys all paths in G \ B between 0Φ and 1Φ, we
obtain that E(C) ∩ B′ 6= ∅.

(1) ⇒ (2): See Figure 4.2 for an illustration of a valid partition Φ of V (B) and
graph G \ B′ := (V, E \ B′). Then graph G \ B′ can be partitioned into two
subgraphs: G1 contains Φ−1(0) and the vertices which are connected to Φ−1(0)
in graph (V, E \ (B ∪ B′)), and G2 contains Φ−1(1) and the vertices which are
connected to Φ−1(1) in graph (V, E\(B∪B′)). For the purpose of contradiction,
suppose that G \B′ is not bipartite. Because B is a minimal edge bipartization
set, all odd-length cycles in G\B′ have to contain an odd number of edges in B
(Lemma 4.1). It is easy to verify that such an odd-length cycle, passing odd

30 Speed-up Methods

G \ B′

G1 G2

0Φ 1Φ

Figure 4.2: A valid partition Φ of V (B) and graph G \ B′. The edges in B are
drawn as dashed lines. Subgraph G1 of G \B′ contains Φ−1(0) and the vertices
connected to Φ−1(0) in graph (V, E\(B∪B′)), and subgraph G2 contains Φ−1(1)
and the vertices connected to Φ−1(1) in graph (V, E \ (B ∪B′)). By Lemma 4.1
the cycle passing four edges in B shown here is an even-length cycle.

number of edges in B, needs at least one path from G1 to G2 (or from G2 to G1)
which contains no edge from B. This implies that the edges in B are not the
only connections between G1 and G2. Thus, we can infer that B′ is not an edge
cut between 0Φ and 1Φ in G \ B := (V, E \ B).

Lemma 4.2 shows that Edge Bipartization fulfills the assumption that,
if the given Edge Bipartization instance with an edge-extension graph has
a size-k solution, then there exists a size-k solution B′ disjoint from the given
bigger solution B of size k +1. Then, our compression procedure only considers
the partition X and Y of B with X = ∅.

Theorem 4.1. Edge Bipartization can be solved in O(2k · m2) time.

Proof. The iteration procedure uses the graph edges as the augmentation el-
ement: Given as input a graph G with edge set {e1, . . . , em}, we iteratively
consider the graphs Gi induced by the edge set {e1, . . . , ei} for i = 1, . . . , m.
For i = 1, the optimal edge bipartization set is empty. For i > 1, assume that a
minimal edge bipartization set Bi−1 with |Bi−1| ≤ k for Gi−1 is known. If Bi−1

is not an edge bipartization set for Gi, then we consider the set Bi−1∪{ei}, which
obviously is a minimal edge bipartization set for Gi. Using the compression pro-
cedure which is described in the following either to determine that Bi−1 ∪ {ei}
is an optimal edge bipartization set for Gi or, if not, to compute an size-k edge
bipartization set Bi for Gi. Let TC denote the run time of the compression
procedure. This process outputs “NO” if |Bi| > k, since then no solution exists.

4.2 Constant-Factor Approximation Instead of Iteration 31

Summing over all iterations, we have an algorithm that computes an size-k edge
bipartization set for G in TC · O(m) time.

It remains to describe the compression step that, given a graph and a min-
imal edge bipartization set B of size k + 1, either computes a smaller edge
bipartization set B′ in O(2k · km) time or proves that no such B′ exists. For
this, we first apply the input transformation from Figure 4.1 which allows us
to assume the prerequisite of Lemma 4.2 that B′ ∩ B = ∅. We then enumerate
all 2k valid partitions Φ of V (B) and determine a minimum edge cut between 0Φ

and 1Φ until we find an edge cut B′ of size k. Each of the minimum cut problems
can individually be solved in O(km) time with the Edmonds-Karp algorithm
that goes through k′ rounds, each time finding and augmenting a flow augment-
ing path [45]. By Lemma 4.2, B′ is an edge bipartization set; furthermore, if no
such B′ is found, we know that B is optimal. Since there are at most 2k many
valid partitions of V (B), we get TC = O(2k · km). With the same technique as
used by Hüffner [108] to improve the run time of the iterative compression algo-
rithm for Graph Bipartization, TC here can also be improved from O(2k ·km)
to O(2k · m).

Altogether, we have the overall run time of O(2k · m2).

4.2 Constant-Factor Approximation Instead of

Iteration

In this and the previous chapter we have presented several algorithms based on
the iterative compression technique. None of these algorithms is a linear-time
fixed-parameter algorithm, i.e., an algorithm running in linear time for constant
value of parameter k. Note that a linear-time algorithm is the best one usually
can hope for a non-trivial problem and, therefore, attracts strong interest from
the field of algorithmic research. For example, Fiorini et al. [78] very recently
showed, by significant technical expenditure, a linear-time fixed-parameter al-
gorithm for the Graph Bipartization problem restricted to planar graphs.
However, algorithms relying on both iteration and compression cannot be linear-
time fixed-parameter algorithms since, on the one hand, we have to do O(|I|)
augmentations where I denotes the input instance and, on the other hand, the
compression procedure needs at least O(|I|) time. This means that, if we want
to use the iterative compression technique to design linear-time fixed-parameter
algorithms, then we have to save one of the two procedures. In the following,
we show by an example that for a class of problems we can save the iteration
procedure.

The example used here is the Feedback Vertex Set problem introduced
in Chapter 3: One asks for a set of at most k vertices whose removal transforms
an input graph into a forest. The key observation leading to saving the iteration
procedure is that the most important task of the iteration procedure is to feed
the compression procedure with a size-(k + 1) solution. However, a constant-
factor approximation algorithm for a minimization problem provides a size-ck

32 Speed-up Methods

solution for the compression procedure for a constant c > 0. Together with
the observation that the exponential term of the run time of the compression
procedure depends only on the size of the given large solution, we have still
a fixed-parameter algorithm for the compression procedure. For Feedback
Vertex Set, by Lemma 3.1, if the compression procedure has a size-ck solution
instead of a size-(k + 1) solution as a part of the input, then the compression
procedure has a combinatorial explosion still upperbounded by ck

1 , however for
a larger constant c1:

Theorem 4.2. Feedback Vertex Set can be solved in O(ck ·m) time for a
constant c.

Proof. We first determine in O(m) time a factor-4 approximation as described
by Bar-Yehuda et al. [18].1 This gives us the precondition for Lemma 3.1
with |F | = 4k instead of |F | = k + 1. Now, we can employ the same technique
as in the proof of Lemma 3.1 to obtain the desired run time: we examine 24k par-
titions X ∪̇Y of F , and—by applying the arguments from Lemma 3.2—for each
partition there is some constant c′ such that the number of candidate vertices
is bounded from above by c′ · |Y |. In summary, there is some constant c such
that the run time of the compression step is bounded from above by O(ck ·m).
Since one of the 24k partitions must lead to a solution of size k, we need only
one compression step to obtain an optimal solution, which proves the claimed
run time bound.

Note that any improvement of the approximation factor of a linear-time ap-
proximation algorithm for Feedback Vertex Set below four will immediately
improve the run time of the linear-time fixed-parameter algorithm described in
Theorem 4.2.

This speed-up method can be applied to all problems which have a linear-
time constant-factor approximation.

4.3 Concluding Remarks

There is another speed-up method which does not improve the asymptotic run-
time of the iterative compression based algorithm, but can be relevant for prac-
tical performance. For example, Edge Bipartization has no constant-factor
approximation and, thus, the iteration procedure seems to be unavoidable. We
can, however, apply a more efficient iteration procedure: Instead of starting with
a subgraph containing only one edge, we can start the iteration procedure with
a spanning tree of the input graph. Obviously, a tree is a bipartite graph and
its optimal edge bipartization set is an empty set. Since, for a tree T = (V, E),
|E| = |V | − 1, this new iteration procedure needs at most m − n iterations.
The overall runtime of the algorithm given in Section 4.1 can be improved
to O(2k · m · (m − n)).

1 Note that the factor-2 approximation algorithm by Bafna et al. [15] is not a linear-time
algorithm.

Chapter 5

Compression-Based
Enumeration

Parameterized enumeration, i.e., the question whether or not it is fixed-parameter
tractable to find all minimal solutions of size at most k, has lately attracted
some interest [51, 50, 76, 141]. Here we show that the iterative compression
technique can be used not only for computing one minimal solution with size at
most k but also for enumerating all minimal solutions with size at most k.

The basic scheme of the compression procedure described in Chapter 2 has
actually a “brute-force property” required for enumeration algorithms: parti-
tioning the size-(k + 1) solution S in all possible ways into X and Y and, for
each partition, trying to compress S into a size-k solution S′ with X ⊆ S′

and Y ∩ S′ = ∅. Using the same idea, we can easily construct an enumeration
procedure with a given minimal solution S with size at most k.1 We consider
all possible partitions of S into X and Y and, for each partition, we enumerate
all minimal solutions with size at most k containing X but not Y . This enu-
meration procedure is added at the end of the iterative compression algorithm
and the output of the iterative compression algorithm, a minimal solution with
size at most k, is further given to the enumeration procedure as a part of its
input. If the iterative compression algorithm outputs “No”, then we have no
size-k solution and the output of the enumeration procedure is the empty set;
otherwise, the enumeration procedure outputs all minimal solutions with size
at most k enumerated for all possible partitions of the input size-k solution.

For example, all minimal solutions with size at most k of Vertex Cover
can be easily enumerated. The enumeration procedure has the input graph G =
(V, E) and the output of the iterative compression algorithm, a minimal vertex
cover C with size at most k, as inputs. For a partition of C into two sets X

1For the purpose of a clearer presentation, we divide the compression based enumeration
into two phases: First, determine, given a size-(k+1) solution, whether there is size-k solution
for given instance and, if yes, construct one; then, using the size-k solution output by the first
phase, enumerate all size-k solutions. For a more efficient implementation, one could combine
both phases, i.e., directly enumerate size-k solutions with a given size-(k + 1) solution.

33

34 Compression-Based Enumeration

and Y , there is only one minimal vertex cover C satisfying |C′| ≤ k, X ⊆ C′,
and Y ∩ C′ = ∅: the union of X and the set of all neighbors of Y in V \ C.
If the size of the union is at most k, then we have a minimal vertex cover C′

with |C′| ≤ k. The enumeration procedure terminates after repeating this
operation for all partitions. It is obvious that this enumeration procedure is
correct and can be done in O(2k · |V |) time.

A much more complicated modification is required for the enumeration pro-
cedure for Feedback Vertex Set as shown below.

5.1 Feedback Vertex Set

Schwikowski and Speckenmeyer [162] studied “classical algorithms” for enumer-
ating minimal solutions of Feedback Vertex Set. Extending the algorithm
given in Chapter 3, we can enumerate in O(ck · m) time for a constant c—in
compact form—all minimal feedback vertex sets of size at most k. Since, in gen-
eral, there may be more than O(ck · m) many such vertex sets, we list compact
representations of all minimal feedback vertex sets.

For a graph G = (V, E) a compact representation of some of its minimal
feedback vertex sets is a set C of pairwise disjoint vertex subsets from V such
that choosing exactly one vertex from every set in C results in a minimal feedback
vertex set. Naturally, a set in C may also contain exactly one vertex; then this
vertex is in every minimal feedback vertex set represented by C. This notion
of compact representations allows us to easily expand a compact representation
to the set of minimal feedback vertex sets it represents and to enumerate the
compact representations of all minimal feedback vertex sets within the claimed
time bound.

Recall that in order to compress a size-(k+1) feedback vertex set F to a size-
k feedback vertex set F ′, the algorithm in Chapter 3 first tries all partitions of F
into X and Y under the assumption that X ⊆ F ′ and F ′∩Y = ∅. After deleting
the vertices in X , data reduction rules are applied to reduce the instance with
respect to its degree-1 and degree-2 vertices. This data reduction is based on the
observation that there is always an optimal solution for Feedback Vertex Set
without degree-1 and degree-2 vertices. Here, in contrast, in order to enumerate
all minimal feedback vertex sets, some of which can contain degree-2 vertices,
the degree-2 vertices cannot be reduced any more. Observe that the number of
the vertices with degree higher than two in the graph after deleting the vertices
in X is bounded by 14 · |Y | as shown in Lemma 3.2. Moreover, since degree-1
vertices cannot contribute to a minimal feedback vertex set we can still eliminate
all degree-1 vertices as in Chapter 3. Then, compared to finding one (minimal)
feedback vertex set with at most k vertices, the only problem with enumeration
is how to deal with degree-2 vertices. The solution to this problem is given in
the proof of the following lemma.

Lemma 5.1. Given a graph G and a feedback vertex set (fvs) F for G of size k,
we can enumerate compact representations of all minimal feedback vertex sets
for G having size at most k in O(ck · m) time for a constant c.

5.1 Feedback Vertex Set 35

Proof. We show this lemma by giving a description of the enumeration proce-
dure which constructs all compact representations in the claimed time bound.

Consider a minimal fvs F ′ with F 6= F ′ and |F ′| ≤ k which retains, in
comparison to F , some vertices X ⊆ F and replaces the vertices in Y := F \ X
by at most |Y | new vertices from V \ F . Therefore, we begin with a branching
into 2k cases corresponding to all such partitions of F .

In each case the compact representation is initialized as C := {{v} | v ∈ X}.
As in the proof of Lemma 3.1, we delete the vertices in X and degree-1 vertices
from G. Let G′ = (V ′, E′) denote the resulting graph. We partition

V ′ = V ′
≥3 ∪ V ′

=2 ∪ Y

where V ′
≥3 contains the vertices with degree at least 3 in V ′ \ Y and V ′

=2 the
degree-2 vertices in V ′ \Y . Observe that |V ′

≥3| ≤ 14 · |Y | due to Lemma 3.2. We

then make a further branching into at most
∑|Y |

l=0

(

14·|Y |
l

)

cases; in each case, C
is extended by l one-element sets {{v} | v ∈ V ′

≥3} for 0 ≤ l ≤ |Y |.
In each of these cases, we delete the vertices in V ′

≥3 which are added to C
from G′, and we reduce successively the degree-1 vertices as they cannot par-
ticipate in a minimal fvs. Let G′′ = (V ′′, E′′) denote the resulting graph and
let V ′′

=2 denote the set of degree-2 vertices in V ′′ \ Y . If G′′ is cycle-free, then
we have a compact representation C. Otherwise, the cycles in G′′ can only be
destroyed by deleting degree-2 vertices.

In G′′, we identify every “maximal path” of vertices v1, v2, . . . , vr where
vi ∈ V ′′

=2 for i = 1, . . . , r, vi is adjacent to vi+1 for i = 1, . . . , r − 1, and
both v1 and vr are adjacent to vertices in V ′′ \ V ′′

=2. These maximal paths
can be identified in O(m) time by considering G′′[V ′′

=2]. Clearly, a minimal
feedback vertex set may contain at most one vertex from such a path. If it
does contain one vertex from a path, then it does not matter which vertex
is chosen. Therefore, since we are aiming for a compact representation of a
minimal feedback vertex set, we save all these maximal paths in a set P , i.e.,
P := {{v1, v2, . . . , vr} | v1, v2, . . . , vr form a maximal path}.

Having obtained P in this way, we now show |P| ≤ 16 · |Y |. To this end, we
define a bipartite graph B which has as vertices on one side the elements of P ,
and on the other side the vertices in V ′′ \ V ′′

=2. An element of P has an edge to
a vertex v in V ′′ \ V ′′

=2 iff one endpoint of its corresponding maximal path has
an edge to v in G′′. Note that there can be multiple edges between an element
of P and a vertex in V ′′ \ V ′′

=2. Completing C to a compact representation of
minimal feedback vertex sets having size at most k is now equivalent to selecting
at most |Y | − l many elements of P to eliminate all cycles in B.

Observe that, if |P| ≥ |V ′′ \ V ′′
=2|, then there exists at least one cycle in B.

Thus, we can now infer that |P| ≤ |V ′′ \ V ′′
=2| + (|Y | − l); otherwise, it would

not be possible to remove all cycles in B by deleting |Y | − l elements of P .
Therefore,

|P| ≤ |V ′′ \ V ′′
=2| + (|Y | − l) ≤ |V ′

≥3| + |Y | + |Y | = 16 · |Y |.

Now, we make the last branching into
∑|Y |−l

j=0

(

16|Y |
j

)

cases; each case represents

36 Compression-Based Enumeration

a choice of at most |Y | − l elements from P . For a case where the resulting
graph by deleting these chosen elements from B is cycle-free, we extend C by
the chosen elements.

Altogether, we have at most 2k partitions of F , and for each partition at

most
∑|Y |

l=0

(

14|Y |
l

)

cases corresponding to the choices of vertices with degree
more than two, and then for each possible choice of vertices in V ′

≥3, we have

further
∑|Y |−l

j=0

(

16|Y |
j

)

choices for degree-2 vertices in compact form. With |F | ≤
k and Y ⊆ F , the enumeration procedure can be done in time

O

k
∑

i=0

(

k

i

)

·

O(m) +

i
∑

l=0

(

14 · i

l

)

·

O(m) +

i−l
∑

j=0

(

16 · i

j

)

· O(m)

= O
(

ck · m
)

,

where c is a constant.

Together with Theorem 4.2, we obtain the following result:

Theorem 5.1. All minimal feedback vertex sets of size at most k can be enu-
merated in O(ck · m) time for a constant c.

5.2 Concluding Remarks

Fernau [76] has demonstrated that kernelizations (see Chapter 6) as well as
search trees (see Chapter 9) are very useful techniques for parameterized enu-
meration. A special case of kernels with respect to parameterized enumeration,
the so-called “full kernels”, was introduced in [51]. Continuing and complement-
ing their work, we showed that the iterative compression technique can also be
used to derive parameterized enumeration algorithms. We provided an exam-
ple by enumerating all size-at-most-k minimal feedback vertex sets. However,
parameterized enumeration is still a relatively new research topic and provides
promising research opportunities.

Note that the algorithm given here might return the same minimal feedback
vertex set more than once. It would be interesting to consider the problem of
enumerating all minimal solutions without repetitions. One obvious way is to
compare all output minimal feedback vertex sets with each other in order to get
rid of repetitions. However, this postprocessing would square the runtime. A
better approach is desirable.

Part III

Data Reduction and
Problem Kernels

37

Chapter 6

Basic Concepts and Ideas

Quoting Fellows [74, Page 9] from one of his surveys, “data reduction and ker-
nelization rules are one of the primary outcomes of research on parameterized
complexity.” The usefulness of problem kernelization is tied to the concrete
development of effective data reduction rules that work in polynomial time and,
for instance, can be used in a preprocessing phase to shrink the given problem
instance1. As a matter of practical experience, we are far from being allowed to
expect that showing fixed-parameter tractability “automatically” brings along
data reduction rules for a problem kernelization. In fact, many fixed-parameter
tractable problems still await the development of effective data reduction rules.

In this chapter, we give a formal description of the data reduction method
together with the concept of kernelization and present, with the help of several
case studies, some general ideas for developing data reduction rules and proving
problem kernels. Two more complicated examples are given in the next two
chapters.

6.1 Data Reduction

Roughly speaking, the basic idea behind the data reduction method is, in poly-
nomial time, to prune “trivially” solvable parts of a given NP-complete prob-
lem instance by applying some data reduction rules such that the given instance
shrinks to a small “hard” part. A part of a given instance can be a subgraph of a
given graph or a submatrix of a given matrix. For some NP-complete problems,
after exhaustively applying the data reduction rules, the remaining “hard” parts
of the given instances have sizes which, compared to the sizes of the original in-
put instances, are small such that one can afford applying brute-force algorithms
to solve them. If the size of a “hard” part is bounded from above by a function
depending only on the parameter, we call such a “hard” part a problem kernel,

1Observe, however, that as a matter of theoretical [142] as well as practical experience [87],
data reduction rules are not only useful in a preprocessing phase but should be applied again
and again during the whole solution process.

39

40 Basic Concepts and Ideas

for a definition of problem kernels see Section 6.2. For other problems, although
we cannot mathematically show such a provable small problem kernel, it turns
out that data reductions are very powerful for most instances from real applica-
tions as demonstrated by the striking examples Red-Blue Dominating Set
in context of optimizing the European railroad network [175, 176] and Domi-
nating Set [5, 6, 10]. In both cases, experimental studies show a graph size
shrinking of more than 90% and that two simple data reduction rules followed
by simple brute-force search on small isolated components sufficed to optimally
solve most real-world instances. Hence, it was suggested in [141] that, whether
developing polynomial-time approximation, fixed-parameter, or purely heuristic
algorithms solving hard problems, one should always take into consideration the
data reduction method.

The central part of the data reduction method are the data reduction rules.

Definition 6.1. Let L ⊆ Σ∗×N be a parameterized problem. A data reduction
rule is a mapping

φ : Σ∗ × N → Σ∗ × N, (x, k) 7→ (x′, k′),

where

1. φ is computable in time polynomial in |x| and k.

2. (x, k) ∈ L iff (x′, k′) ∈ L with |x′| ≤ |x| and k′ ≤ k.

Given a finite set Φ := {φ1, φ2, . . . , φi} of data reduction rules, we use Φ((x, k))
to denote the instance after exhaustive application of the data reduction rules
in Φ to (x, k) and we call Φ((x, k)) the reduced instance. Then, by the term of
data reduction process we refer to replacing (x, k) by Φ((x, k)).

Note that, in order to get a polynomial-time data reduction process, we
have to guarantee, on the one hand, that each data reduction rule runs in time
polynomial in |x| and k, and, on the other hand, that the number of applications
of the data reduction rules in Φ is upper-bounded by a polynomial of |x| and k.

There are two types of data reduction rules, parameter-independent and
parameter-dependent ones. Parameter-independent data reduction rules can be
applied even when there is no given parameter value. Experiments demonstrate
that, in real-world applications, the most useful data reduction rules tend to be
the parameter-independent data reduction rules as, for example, the ones given
in the case of Dominating Set [5, 6, 10]. Formally, a parameter-independent
data reduction rule is a polynomial-time computable mapping φ : Σ∗ → Σ∗.
Only few problems admit a provable problem kernel size with only parameter-
independent rules. In contrast, the applicability of parameter-dependent reduc-
tion rules depends on the parameter value. Thus, these reduction rules are often
hard to apply in the practice. However, the problem kernels of most problems
are achieved with these reduction rules.

According to Definition 6.1, a general design scheme of data reduction pro-
cesses consists of three steps:

6.1 Data Reduction 41

G

Figure 6.1: An FVS-instance irreducible with respect to the two data reduction
rules: The graph G contains no degree-one or degree-two vertex. Deleting
arbitrarily two of the three high-degree vertices can transform G into a tree.
However, G may contain arbitrarily many degree-three vertices.

1. Identify the “trivially” solvable parts of the given problem instances;

2. develop data reduction rules for these parts;

3. prove the correctness and polynomial runtime of the rules.

Depending on the parts identified in the first step, the second and third
steps can be highly technical as shown by the examples Cluster Editing
(Chapter 7) and Multicut in Trees (Chapter 8). In the following, we give
several application examples of the data reduction method.

6.1.1 Case Study 1: Feedback Vertex Set

The NP-complete Feedback Vertex Set (FVS) problem asks for a set F
of at most k ≥ 0 vertices such that each cycle of the given graph G = (V, E)
contains at least one vertex from F . Set F is called the feedback vertex set.
Without loss of generality, we assume that G is connected and contains at least
one vertex with degree three or higher.

There are two well-known data reduction rules for FVS: The easy instance
parts identified in the first step are degree-one and degree-two vertices. Since
none of the degree-one vertices can be in a cycle and, thus, they cannot be in
an optimal feedback vertex set, they are deleted from the input graph. This is
the first data reduction rule. It is obvious that, if there is a degree-two vertex in
an optimal feedback vertex set, then it lies on a path with at least one degree-
≥ 3 endpoint. Therefore, we can replace the degree-two vertex in the feedback
vertex set by the degree-≥ 3 vertex, i.e., delete the degree-two vertex from it
and then add the degree-≥ 3 vertex to it. The resulting set is clearly a feedback
vertex set with the same cardinality. The data reduction rule with respect to a
degree-two vertex is to delete it and to connect its two neighbors by an edge.
These two rules are clearly correct and can exhaustively be applied in O(|V |)
time.
Remark: Observe that both rules are parameter-independent. FVS does not
admit a problem kernel with only these two data reduction rules, as shown in

42 Basic Concepts and Ideas

Figure 6.1. However, these two rules are crucial for the randomized algorithm by
Becker et al. [19] and the fixed-parameter algorithm by Raman et al. [152]. The
iterative compression algorithm in Chapter 3 uses also these two data reduction
rules.

6.1.2 Case Study 2: Vertex Cover

The NP-complete Vertex Cover problem asks for a set C of at most k ≥ 0
vertices in a given graph G = (V, E) covering all edges in G, i.e., each edge in E
has at least one endpoint in C.

The first data reduction rule for Vertex Cover is deleting all isolated
vertices, i.e., the vertices with no incident edge. The second data reduction rule
identifies a vertex v with more than k neighbors as an easy part of the instance.
Such a vertex has to be in each vertex cover with at most k vertices; otherwise,
one has to take more than k vertices to cover the edges incident to v. The
data reduction rule deletes the vertices with more than k neighbors, recursively,
and decreases parameter k by one after each deletion. If parameter k becomes
negative, then the rule answers that the given graph has no vertex cover with
at most k vertices. The runtime of the data reduction process with these two
reduction rules is O(|V | + |E|).
Remark: The applicability of the reduction rule by Buss and Goldsmith de-
pends on the value of parameter k. One can show that there exists a problem
kernel with at most O(k2) vertices after exhaustive application of this reduction
rule. For more details on problem kernels, see the next section.

6.1.3 Case Study 3: Minimum Clique Cover

In Minimum Clique Cover (MCC), we seek for a set C of at most k cliques
such that each edge of the input graph G = (V, E) is contained in at least one
clique in C. This problem is NP-complete [123, 145] and cannot be approximated
within |V |ε for some ε > 0 [132]. Among others, this problem has applications
in applied statistics [88].

We give here two parameter-independent reduction rules for MCC and, in
the next section, we show that there is a problem kernel for MCC using these
rules. The first data reduction rule has isolated cliques as the identified easy
parts of a given MCC instance. An isolated clique is a clique which has no
connection to other parts of G. If an isolated clique contains only one vertex,
we delete it from G; otherwise, we add this clique to C and decrease k by one.
This rule is obviously correct and can be executed in O(|E|) time.

The second data reduction rule considers two adjacent vertices u and v
with N(u)\{v} = N(v)\{u}. This rule deletes arbitrarily one of u and v from G,
say v. Concerning its correctness, we have to show that the new graph G′ :=
G \ {v} has a size-k clique cover iff G has a size-k clique cover.

The direction that, if G′ has a size-k clique cover C, then G has a size-k
clique cover, is easy to show, since we can transform C into a size-k clique cover
for G by adding v to all cliques in C which contain u. Suppose that we have a

6.2 Problem Kernel 43

size-k clique cover C for G. If all cliques in C containing either both of u and v
or none of them, then we can get a size-k clique cover for G′ by deleting all
occurrences of v from the cliques in C; otherwise, we modify each clique C in C
which contains only v by replacing v by u. Due to N(u) \ {v} = N(v) \ {u},
C remains a clique. After deleting all occurrences of v in the cliques in C, we
have then a size-k clique cover for G′. This completes the correctness proof of
the reduction rule.

The runtime of the second reduction rule is O(|V |·|E|): For each edge {u, v} ∈
E, we compare the neighborhoods of u and v, which can be done in O(|V |) time.
Thus, the data reduction process can be done in O(|V | · |E|) time.
Remark: Recently, Gramm et al. [87] gave further data reduction rules for
MCC such as deleting an isolated vertex and then decreasing the parameter by
one. However, to show a problem kernel for MCC (see Section 6.2.2), we need
only these two rules.

6.2 Problem Kernel

As mentioned above, we can, for some problems, show that the remaining “hard”
part after exhaustively applying the data reduction rules has a provably small
size. This remaining part is then called problem kernel.

Definition 6.2. Let L ⊆ Σ∗×N be a parameterized problem, Φ be a finite set of
data reduction rules for L, Φ = {φ1, φ2, . . . , φi}, and (x′, k′) := Φ((x, k)) denote
the reduced instance of (x, k) with x ∈ Σ∗ and k ∈ N after exhaustive application
of the data reduction rules in Φ. We say that L admits a problem kernel if there
exists an arbitrary computable function g : N → N such that |x′| ≤ g(k′). We
call g(k′) the kernel size.

A data reduction process resulting in a problem kernel is called a kerneliza-
tion process. It is clear that a computable parameterized problem L admitting
a problem kernel is fixed-parameter tractable: By using TΦ((x,k)) to denote the
run time of the kernelization process, we can solve L in O(h((g(k), k))+TΦ((x,k)))
time where h((|x|, k)) denotes the run time of an arbitrary brute-force algorithm
solving L on instance (x, k). Cai et al. [33] show that the converse is also true.

Theorem 6.1 ([33]). A parameterized problem L is in FPT iff L admits a
problem kernel.

It is clear that the kernel size has a significant impact on the overall run-
time of the fixed-parameter algorithm combining a brute-force algorithm and
the kernelization process. As small as possible problem kernels are desirable.
Another benefit of kernelization is a speed-up method for depth-bounded search
algorithms. Niedermeier and Rossmanith [142] showed an interesting technique
to interleave kernelization processes with depth-bounded search trees (for more
details on depth-bounded search trees see Part IV). More precisely, they pro-
posed a speed-up method for depth-bounded search tree algorithms for problems
admitting problem kernels.

44 Basic Concepts and Ideas

Theorem 6.2 ([142]). Let L be a parameterized problem solvable in O(ck ·
nO(1)) time by a search tree algorithm. If L admits a problem kernel of size g(k)
with g(k) < ck and the kernelization process can be done in TΦ time, then we
can solve L in O(ck + TΦ) time.

Showing problem kernels involves two tasks: developing data reduction rules
and proving the existence of the kernel size function g in Definition 6.2. In Sec-
tion 6.1, we have given some reduction rules for Vertex Cover and Minimum
Clique Cover. Here, we show how to prove the existence of the functions g
which upper-bound the sizes of the problem kernels of the two problems with
respect to these data reduction rules.

6.2.1 Case Study 1: Vertex Cover

For a given Vertex Cover instance with graph G = (V, E) and parameter k,
we exhaustively apply the following two data reduction rules:

• (DR 1) Delete all vertices with no incident edge;

• (DR 2) Add a vertex with more than k neighbors to the vertex cover C and
delete this vertex and all its incident edges from G. Decrease parameter k
by one. If k becomes negative, then stop and answer that the given graph
has no size-k vertex cover.

The following lemma shows a problem kernel for Vertex Cover with at
most k2 + k vertices.

Lemma 6.1. A Vertex Cover instance reduced with respect to the two data
reduction rules has a graph containing at most k2 + k vertices and k2 edges.

Proof. Let (G′, k′) be the reduced instance with G′ = (V ′, E′) and k′ ≤ k. If G′

has a size-k′ vertex cover, there are at most k′ vertices which are incident to
all edges. Together with the fact that, due to (DR 2), each vertex in V ′ has at
most k′ incident edges, we get |E′| ≤ k′2 ≤ k2 and |V ′| ≤ k2 + k, showing the
claim.

Remark: Vertex Cover even allows for a much more sophisticated and
stronger data reduction which leads to a problem kernel with at most 2k vertices.
We refer to [138, 41, 2].

6.2.2 Case Study 2: Minimum Clique Cover

Given a graph G = (V, E) and a parameter k ≥ 0, we presented in Section 6.1.3
two data reduction rules for Minimum Clique Cover (MCC):

• DR 1: Remove all connected components which are cliques from G. For
each removed clique containing at least one edge, decrease k by one. If k
becomes negative, then stop and answer that G has no clique cover of
size k;

6.3 Concluding Remarks 45

• DR 2: If, for two adjacent vertices u and v, N(u)\ {v} = N(v)\ {u}, then
delete one of u and v from G.

To show a problem kernel for MCC we need the following well-known lemma.
A proof of this lemma can be found in Halldórsson et al. [102, Lemma 2].

Lemma 6.2. If a collection C of some subsets of a base set S = {s1, s2, . . . , sn}
“distinguishes” the elements of S, i.e., for every two elements si and sj in S
with i 6= j, there is at least one subset S′ in C with si ∈ S′ and sj /∈ S′ or vice
versa, then |C| ≥ dlog ne.

Lemma 6.3. A graph of an MCC instance that is reduced with respect to the
two data reduction rules DR 1 and DR 2 contains at most k · 2k+1 vertices.

Proof. Let G′ = (V ′, E′) denote the reduced graph and k′ ≤ k. If G′ has a
size-k′ clique cover C, then every clique C in C covers at least one edge and,
due to DR 1 and DR 2, there is at most one vertex w in C with N(w) \C = ∅.
Thus, there are some cliques in C covering the edges with one endpoint in C and
the other not in C. Furthermore, due to DR 2, all vertices in C have distinct
neighborhoods in V ′ \ C, namely,

∀u 6= v with u, v ∈ C : N(u) \ C 6= N(v) \ C.

This implies that, for every two vertices u 6= v in C, there is at least one
clique C′ in C with u ∈ C′ and v /∈ C′ or vice versa. By Lemma 6.2, C contains
at least dlog |C|e cliques, i.e., k ≥ |C| ≥ dlog |C|e. Then, we have |C| ≤ 2k+1

and, thus, |V ′| ≤ k · 2k+1.

Remark: MCC is one of the few problems known to admit problem kernels
with only parameter-independent data reduction rules. It remains a challenging
task to show a polynomial-size kernel for MCC.

6.3 Concluding Remarks

Data reduction rules and the concept of a problem kernel are one of the most
important contributions of parameterized complexity theory to the design of
efficient algorithms for NP-hard problems. To show the existence of problem
kernels and to get them as small as possible is one of the most challenging
tasks in fixed-parameter algorithmics. Many fixed-parameter tractable prob-
lems lack efficient data reduction procedures. Moreover, from a practical view,
the data reduction rules, particularly the parameter-independent data reduc-
tion rules, should be implemented as a preprocessing for all kinds of algorithmic
approaches attacking NP-hard problems. Finally, the connection of the kernel-
ization algorithms and approximation algorithms remains an issue for future
research.

46 Basic Concepts and Ideas

Chapter 7

Cluster Editing

In this chapter, we present an efficient polynomial-time data reduction for
the Cluster Editing problem resulting in a problem kernel containing at
most O(k2 + 4k) vertices. Later, this kernelization process will be interleaved
with the depth-bounded search algorithm for Cluster Editing as a speed-up
method, see Chapter 10. We partly follow [86].

7.1 Problem Definition and Previous Results

The Cluster Editing problem is defined as follows:

Input: An undirected graph G = (V, E), and an integer k ≥ 0.
Task: Find a set P of at most k vertex pairs, i.e., P ⊆ V × V
and |P | ≤ k, such that the graph G′ = (V, E′) with E′ := E 	 P
consists of a disjoint union of cliques. (Adding the edges in P \ E
and deleting the edges in E∩P results in a disjoint union of cliques.)

A graph that consists of a disjoint union of cliques is called a cluster graph. The
special version of Cluster Editing where we can only delete edges from E is
called Cluster Deleting. If we are only allowed to add edges, this problem
can be trivially solved in linear time.

Cluster Editing is motivated by biological applications of clustering gene
expression data [165] and document clustering problems from machine learn-
ing [17]. These applications are based on the notion of a similarity graph whose
vertices correspond to data elements and in which there is an edge between two
vertices iff the similarity of their corresponding elements exceeds a predefined
threshold. The goal is to obtain a cluster graph by as few edge modifications
(i.e., edge deletions and additions) as possible.

Shamir et al. [163] showed that Cluster Editing is NP-complete. The NP-
completeness of Cluster Editing, however, can already be extracted from
work of Křivánek and Morávek [126] who studied more general problems in
hierarchical tree clustering. Independently of Shamir et al.’s work, Bansal

47

48 Cluster Editing

et al. [17] initiated the research on “correlation clustering”. It can be easily
seen that an important special case of the general problem—also studied by
Bansal et al.—is identical to Cluster Editing. Bansal et al. mainly provide
polynomial-time approximation results which partially have been improved by
recent work [37, 54, 69]. Notably, the best known approximation factor for
Cluster Editing is 4 [37]; moreover, it is shown to be MaxSNP-hard (mean-
ing that a polynomial-time approximation scheme (PTAS) is unlikely) [37].

A fixed-parameter algorithm with a runtime of O(3k · |V |4) for Cluster
Editing follows directly from a result of Cai [32]: A graph modification problem
with a “goal” graph which can be characterized by a finite set of forbidden
induced subgraphs is fixed-parameter tractable. For Cluster Editing, the
following lemma gives a forbidden subgraph characterization. A proof of this
lemma can be found in [163].

Lemma 7.1. A graph G = (V, E) is a cluster graph iff there are no three vertices
u, v, w ∈ V which induce a P3 in G, that is, a graph containing three vertices
and two edges

In graph theory a graph containing no induced P3 is called “P3-free”. Re-
cently, Damaschke [50] studied the enumeration version of Cluster Editing.

7.2 Data Reduction Rules

Given a graph G = (V, E) and a vertex pair u, v ∈ V , we use the term common
neighbor of u and v to refer to a vertex z ∈ V with z ∈ N(u)∩N(v). Similarly,
a vertex z with z 6= u and z 6= v is a non-common neighbor of u and v if z is
contained in exactly one of N(u) and N(v).

We present two reduction rules for Cluster Editing. For each of them,
we discuss its correctness and give the runtime which is necessary to execute
the rule. In the next section, we show a problem kernel for Cluster Editing
that consists of at most k2 + 4k vertices and at most k3 + 4k2 + k edges.

Although the following reduction rule also adds edges to the graph, we con-
sider the resulting instances as simplified. The reason is that for every added
edge, the parameter is decreased by one. In the following rule, it is implicitly
assumed that, when an edge is added or deleted, parameter k is decreased by
one.

Rule 1 For every pair of vertices u, v ∈ V :

1. If u and v have more than k common neighbors, then {u, v} has to
belong to E. If {u, v} is not in E, we add it to E.

2. If u and v have more than k non-common neighbors, then {u, v} cannot
belong to E. If {u, v} is in E, we delete it.

3. If u and v have both more than k common and more than k non-common
neighbors, then the given instance has no size-k solution.

7.2 Data Reduction Rules 49

Lemma 7.2. Rule 1 is correct.

Proof. Case 1: Vertices u and v have more than k common neighbors. If we
did exclude {u, v} from E, then we would have to, for every common neighbor z
of u and v, delete at least one of the edges {u, z} and {v, z}. This, however,
would require at least k+1 edge deletions, a contradiction to the maximum of k
edge modifications allowed.

Case 2: Vertices u and v have more than k non-common neighbors. If we did
include {u, v} in E, then we would have to, for every non-common neighbor z
of u and v, edit edge {u, z} or edge {v, z} such that z ∈ N(u)∩N(v). Without
loss of generality, assume that z ∈ N(u) and z /∈ N(v). Then, we would have
to either delete {u, z} from E or to add {v, z} to E. With at least k + 1 non-
common neighbors, this would require at least k + 1 edge modifications which
is not allowed.

Case 3: Vertices u and v have more than k common neighbors and more than k
non-common neighbors. From the proofs for Case 1 and Case 2 it is clear that it
would require more than k edge modifications both when including {u, v} in E
and when excluding {u, v} from E.

Note that Rule 1 applies to every vertex pair {u, v} for which |N(u)∪N(v)| >
2k.

Lemma 7.3. A graph can in O(|V |3) time be transformed into a graph which
is reduced with respect to Rule 1.

Proof. It is clear that the check whether there exists a pair of vertices having
more than k common or non-common neighbors can be done in O(|V |3) time:
We examine all vertex pairs and, for each pair of vertices, all vertices which
are adjacent to one of these two vertices. However, whenever we edit an edge,
parameter k is decreased by one. Then, some vertex pairs to which Rule 1 could
not be applied before the edge edition could have now more than k common
or non-common neighbors. If we check applicability of Rule 1 after each edge
edition, then this would imply a runtime of O(k · |V |3). To get a runtime
of O(|V |3), one can use some additional data structures and a preprocessing
filling out these data structures before starting the data reduction process. After
each edge edition during the data reduction process, these data structures help
us in O(|V |2) time to determine where there is a vertex pair to which Rule 1
can be applied. More details on the data structures and the preprocessing can
be found in [86, Lemma 2].

Note that the O(|V |3) runtime given here is only a worst-case bound and
it is to be expected that the application of the rule is much more efficient in
practice.

Rule 2 Delete the connected components which are cliques from the graph.

50 Cluster Editing

The correctness of Rule 2 is straightforward. Computing the connected
components of a graph and checking for cliques can easily be done in linear
time:

Lemma 7.4. Rule 3 can be executed in O(|E|) time.

7.3 Problem Kernel

The following theorem shows that reducing a graph with respect to Rules 1 and 2
leads to a problem kernel consisting of at most k2 + 4k vertices for Cluster
Editing, which slightly improves the kernel size of at most 2k2 + k vertices
shown in [86, Theorem 1] for k ≥ 3.

Theorem 7.1. Cluster Editing admits a problem kernel which contains at
most k2 + 4k vertices and at most k3 + 4k2 + k edges.

Proof. Given an input graph G = (V, E), we use G′ = (V ′, E′) to denote the
reduced graph with respect to Rules 1 and 2. Since, if G′ is not a connected
graph, then we can analyze every connected component separately, we assume
that G′ is connected. Let k be the minimum number of required edge modi-
fications to transform G′ into a cluster graph G′′ = (V ′, E′′), namely ka edge
additions and kd edge deletions. Since Rule 2 deletes all isolated cliques from G,
we know k > 0. For the case k = 1 we have edited only one edge {u, v}. Due
to Rule 1, vertices u and v have at most one common neighbor x and at most
one non-common neighbor y. Besides u and v, vertices x and y cannot have any
other neighbor; otherwise, we would have to make more edge editions. By the
assumption that G′ is connected and G′ is reduced with respect to Rule 2, we
obtain |V ′| ≤ 4 < 5 and |E′| ≤ 4 < 6. We consider in the following only k ≥ 2.

If kd = 0, then G′′ contains only one clique and at least two edges are
inserted, say one is between vertices u and v. Due to Rule 1, vertices u and v
have at most k common neighbors in G′. With at most k edges inserted, the only
clique in G′′ cannot contain more than 2k+2 vertices, i.e., |V ′| ≤ 2k+2 < k2+4k.

We assume now kd > 0. Let V ′
C ⊆ V ′ denote the vertex set of a largest

clique C in the G′′. From kd > 0 and the fact that G′ is connected, we know
that the transformation from G′ to G′′ deletes at least one edge between a
vertex u ∈ V ′

C and a vertex v /∈ V ′
C . Let k′

d denote the number of the edges
between v and the vertices in V ′

C which are deleted by the transformation.
Since we can delete at most kd edges and since there are k′

d edges between v
and the vertices in V ′

C , G′′ contains at most kd − k′
d + 2 cliques, we have |V ′

C | ≥
|V ′|/(kd − k′

d + 2).

Since the vertices of V ′
C form a clique in G′′ and at most ka many edges

are added in the transformation from G′ to G′′, there are at most ka vertices
in V ′

C which are not adjacent to u in G′. Therefore, the number of non-common
neighbors of u and v amounts to at least |V ′

C | − ka − k′
d. Since G′ is reduced

with respect to Rule 1, |V ′
C | − ka − k′

d ≤ k. Combining the two inequalities, we

7.4 Concluding Remarks 51

have

|V ′| ≤ (k + ka + k′
d) · (kd − k′

d + 2)

= (k + ka + k′
d) · (k − ka − k′

d + 2)

= k2 − (ka + k′
d)

2 + 2(k + ka + k′
d)

≤ k2 + 4k.

The bound on the number of the edges in E′ follows analogously: For the
case that kd = 0, we have, as shown above, that |V ′| ≤ 2k + 2 and ka = k.
Then, |E′| ≤ (|V ′| · (|V ′| − 1))/2 − k = 2k2 + 2k + 1 ≤ k3 + 4k2 + k. We
have shown above that, if kd > 0, then the largest clique C in G′′ contains at
most k + ka + k′

d many vertices, i.e., |V ′
C | ≤ k + ka + k′

d. Therefore, the number
of edges in C is bounded by (k +ka +k′

d)
2/2. Since the number of cliques in G′′

is bounded by kd − k′
d + 2, |E′′| ≤ (kd − k′

d + 2)(k + ka + k′
d)

2/2. With ka edge
insertions and kd edge deletions, we obtain

|E′| ≤ |E′′| − ka + kd ≤
(kd − k′

d + 2)(k + ka + k′
d)

2

2
− ka + kd

=
(k − (ka + k′

d))(k + ka + k′
d)

2

2
+ (k + ka + k′

d)
2 − ka + kd

≤
(k2 − (ka + k′

d)
2)(k + ka + k′

d)

2
+ (k + ka + k′

d)
2 − ka + kd

≤ k3 + 4k2 + k.

Summarizing, the reduced graph contains at most k2 + 4k vertices and at
most k3 + 4k2 + k edges (otherwise, no solution exists).

7.4 Concluding Remarks

Rule 1 plays a decisive role in the kernelization process of Cluster Editing.
Observe that this rule is parameter-dependent and require a worst-case running
time of O(|V |3). Thus, an issue for future work is to investigate how to im-
plement this rule more efficiently, for example, by using more complicated data
structures. A further research subject with implementation and experimenta-
tion of the reduction rules would be to examine whether Rule 1, interleaved with
the depth-bounded search tree algorithm for Cluster Editing given in Chap-
ter 10, only increases the administrative overhead instead of really speeding up
the algorithm.

Note that for Cluster Deleting where only edge deletions are allowed
there is no known problem kernel smaller than the one for Cluster Editing.
It is a challenge to develop data reduction rules for Cluster Deleting such
that we can achieve a smaller kernel than the one for Cluster Editing.

We conclude with a further open question: Does Cluster Editing even
allow for a problem kernel of linear size O(k)? For Vertex Cover on general
graphs [41] and Dominating Set on planar graphs [10] such results are known,
but it seems hard to derive similar results in our setting.

52 Cluster Editing

Chapter 8

Multicut in Trees

In this chapter, based on some polynomial-time data reduction rules which
appear to be of particular interest from an applied point of view, we show a
problem kernel for Multicut in Trees by an intricate mathematical analysis.
The description of the data reduction rules and the proof of the problem kernel
follow parts of [97].

8.1 Problem Definition and Previous Results

Many hard network problems become easy when restricted to trees. There
are, however, notable exceptions of important graph problems that remain hard
even on trees. A well-known example is the Bandwidth Minimization prob-
lem restricted to trees of maximum vertex degree three, where it remains NP-
complete [134]. In this work, we will study another graph problem that remains
NP-complete when restricted to trees [82].

The problem is Multicut in Trees:

Input: An undirected tree T = (V, E), n := |V |, a collection H of h
pairs of vertices in V , H = {(ui, vi) |ui, vi ∈ V, ui 6= vi, 1 ≤ i ≤ h},
and an integer k ≥ 0.
Task: Find a subset M of E with |M | ≤ k whose removal separates
each pair of vertices in H .

Note that by removing edges a tree decomposes into subtrees forming a
forest. Then, two vertices are separated if they are in different trees of the
forest. An edge subset M of E as specified above is called a multicut. We refer
to a pair of vertices (ui, vi) ∈ H as a demand path P due to the fact that, in a
tree, the path is uniquely determined by ui and vi.

Multicut in Trees was shown to be NP-complete and MaxSNP-hard even
for an input tree being a star [82]1. Whereas the latter implies that polynomial-

1More specifically, this special case is shown to be equivalent to Vertex Cover, also with
respect to approximability [82].

53

54 Multicut in Trees

time approximation schemes are out of reach, Garg et al. [82] gave a factor-2
approximation algorithm that also works for the more general case with edge
weights. Călinescu et al. [48] provided a polynomial-time approximation scheme
(PTAS) for finding unweighted multicuts in graphs with bounded degree and
bounded treewidth.

See Costa et al. [47] for a recent survey on Multicut problems.
We need some special notation concerning networks (trees). We often con-

tract an edge e. Let e = {v, w} and let N(v) and N(w) denote the sets of
neighbors of v and w, respectively. Then, contracting e means that we replace
v and w by one new vertex x and we set N(x) := (N(v) ∪ N(w)) \ {v, w}.
Using an adjacency list representation of graphs, edge contraction can be done
in constant time. We occasionally consider paths P1 and P2 in the tree and we
write P1 ⊆ P2 when the vertex set (and edge set) of P2 contains that of P1.

8.2 Parameter-Independent Reduction Rules

In this section we give four parameter-independent data reduction rules which
are of central importance for deriving a problem kernel for Multicut in Trees
as shown in Section 8.5. We can often observe that parameter-independent data
reduction rules are very useful in practice as, for example, the ones given in the
case of the NP-complete Dominating Set problem [6, 10]. We call a data
reduction rule independent of the parameter k if it can be applied without any
knowledge of the value of k. Four more parameter-dependent data reduction
rules will be given in Section 8.3.

Idle Edge. If there is a tree edge with no demand path passing through it,
then contract this edge.

Unit Path. If a demand path has length one, then the corresponding edge e
has to be in M . Contract e and remove all demand paths passing through e
and decrease the parameter k by one.

Dominated Edge. If all demand paths that pass through edge e1 of T also
pass through edge e2 of T , then contract e1.

Dominated Path. If P1 ⊆ P2 for two demand paths, then delete P2.

Observe that only the Unit Path rule decreases the value of parameter k.

Lemma 8.1. The above four reduction rules are correct and they can be executed
in O(h·n3+h3 ·n) worst-case time such that finally no more rules are applicable.

Proof. The correctness of the Idle Edge and Unique Path rules is easy to observe.
The Dominated Edge rule is correct since, if all demand paths that pass through
edge e1 also pass through edge e2, then adding e1 to M is never better than
adding e2 to M . The Dominated Path rule follows from the observation that if
P1 ⊆ P2 for two demand paths, then each edge removal which destroys P1 also
destroys P2.

8.3 Parameter-Dependent Reduction Rules 55

Next, we estimate the runtime for each particular rule. Then, we estimate
the maximum overall runtime of successive applications of these rules until none
of them applies any more.

Idle Edge. During a depth-first traversal of the tree, we clearly can mark
each edge e as to whether or not a path passes through e. Accordingly, e may
be contracted. This is doable in O(h · n) time.

Unit path. Inspecting each demand path, this rule is executable in O(h)
time.

Dominated Edge. Basically, for each pair of edges in the tree we com-
pare their corresponding sets of demand paths, i.e., the demand paths passing
through these edges, respectively. Doing this for all of the O(n2) pairs, each
comparison taking O(h) time, we end up with O(h · n2) time in total.

Dominated Path. Comparing all O(h2) pairs of demand paths, in each case
we basically have to compare two paths of length O(n), leading to O(h2 · n)
runtime.

Eventually, we have to estimate for each rule how often it may apply. Clearly,
we have O(n) possible applications for the first three rules. As to the Dominated
Path rule, O(h) is an upper bound for the possible number of applications.
Altogether, we thus can conclude that after O(h ·n3 +h3 ·n) worst-case runtime
for applying the rules, none of them will be applicable any longer.

Obviously, the runtime bound of Lemma 8.1 gives a very rough estimate. In
particular, it is conceivable that the reduction rules will perform much better in
practical implementations and tests. This is a typical observation also for other
data reduction rules with relatively high polynomial worst-case runtimes, as, for
example, was observed for the data reduction rules for Dominating Set [6, 10].

8.3 Parameter-Dependent Reduction Rules

In this section we introduce four more data reduction rules which are parameter-
dependent. Thereby, we need several notations and we define two special cases
of trees, caterpillars and spiders of caterpillars. In Section 8.5, as sort of a
warm-up with helpful results for the general case, we will also show problem
kernels for Multicut in these two special cases of trees.

8.3.1 Some Notation and Definitions

In Section 8.5 the bound on the size of the input tree T = (V, E) (and, thus, also
the set of demand pairs H) will be achieved by first partitioning the vertices
of T into six disjoint sets and then giving for each of these vertex sets a bound
on its size. For an undirected and unrooted tree T , we distinguish two sorts of
vertices, leaves having only one incident edge and inner vertices having more
than one incident edge. The sets of leaves and inner vertices are denoted by L
and I, respectively. For an inner vertex v, we call the leaves (if existing) adjacent
to it v’s leaves.

The desired partition of V is then defined as follows:

56 Multicut in Trees

x1

x2

x3

x4

x5

y1 y2v1 v2 v3 v4 v5

w1 w2 w3 w4 w5 w6 w7

Figure 8.1: A caterpillar: There is no I3-vertex and no L3-leaf. Vertices y1

and y2 are the two I1-vertices. In addition, L1 = {x1, x2, x3, x4, x5}, I2 =
{v1, v2, v3, v4, v5}, and L2 = {w1, w2, w3, w4, w5, w6, w7}.

• I1 := { v ∈ I | |N(v) ∩ I| ≤ 1};
Observe that, if we delete all leaves from T , the vertices in I1 become
leaves in the resulting tree.

• I2 := { v ∈ I | |N(v) ∩ I| = 2};
Note that I2 6= ∅ only if |I1| ≥ 2.

• I3 := { v ∈ I | |N(v) ∩ I| ≥ 3};
Set I3 is empty iff, by deleting all leaves from T , the resulting tree is a
path.

• L1 := { v ∈ L | N(v) ⊆ I1};

• L2 := { v ∈ L | N(v) ⊆ I2};

• L3 := { v ∈ L | N(v) ⊆ I3};

We use the terms Li-leaves and Ii-vertices for 1 ≤ i ≤ 3 in the obvious way.
The definitions of the special trees considered in the next sections—caterpillar

and spider of caterpillars—are as follows.

Definition 8.1. Given a tree T = (V, E), we partition V as described above. A
tree T = (V, E) is a caterpillar if |I1| = 2 and |I3| = 0. Then, the inner vertices
of I2 form a path between the two vertices in I1. We call this path the backbone
of the caterpillar.

Definition 8.2. Given a tree T = (V, E), we partition V as described above. A
tree T = (V, E) is a spider of caterpillars if |I3| = 1. Then, the inner vertices
of I induce a spider with the I3-vertex as the center vertex. The paths induced
by the I2-vertices are called the backbones of the spider.

Figure 8.1 and Figure 8.2 display examples for a caterpillar and a spider of
caterpillar, respectively.

Finally, we define the “caterpillar component” of a tree as follows:

Definition 8.3. Given a tree T = (V, E), we partition V as described above. A
caterpillar component of T is an induced subtree of T exclusively consisting of
I2-vertices and their L2-leaves.

8.3 Parameter-Dependent Reduction Rules 57

x1
x2

x3

x4

x5

x6 x7
x8

z1

y1 y2

y3

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

u1

u2

w1

w2

w3

w4

w5

w6

w7

Figure 8.2: A spider of caterpillars: Vertex z1 is the only I3-vertex with L3 =
{u1, u2}. In addition, I1 = {y1, y2, y3}, I2 = {v1, . . . , v10}, L1 = {x1, . . . , x8},
and L2 = {w1, . . . , w7}. The oval depicts a maximal caterpillar component.

Note that a caterpillar component can be contained in other caterpillar com-
ponents. We call a caterpillar component maximal if it is not contained in any
other caterpillar component. See Figure 8.2 for an example of a maximal cater-
pillar component. Clearly, the set of all maximal caterpillar components of a
tree is unique and no two maximal caterpillar components intersect each other.
We say that an I1-vertex or an I3-vertex is adjacent to a caterpillar component
if it is adjacent to an I2-vertex of the component.

8.3.2 Parameter-Dependent Data Reduction Rules

In this subsection we extend our set of so far four reduction rules (Section 8.2)
by four parameter-dependent rules. We need these rules to show the bound on
the size of the reduced input tree, the problem kernel.

Disjoint Paths. If an instance of Multicut in Trees has more than k pair-
wise edge-disjoint demand paths, then there is no solution with parameter
value k.

Overloaded Edge. If more than k length-two demand paths pass through an
edge e, then contract e, remove all demand paths going through e, and
decrease the parameter k by one.

Overloaded Caterpillar. If there are k +1 demand paths (v, u1), (v, u2), . . .,
(v, uk+1) such that vertices u1, . . . , uk+1 belong to the same caterpillar
component that does not contain v, then (one of) the longest of these
demand paths can be deleted.

58 Multicut in Trees

Overloaded L3-Leaves. If there are k + 1 demand paths (v, u1), (v, u2), . . .,
(v, uk+1) such that vertices u1, . . . , uk+1 are all L3-leaves of an I3-vertex u,
then remove all these demand paths and add a new demand path between v
and u.

Lemma 8.2. The above four reduction rules are correct and they can be exe-
cuted, together with the four rules in Section 8.2, in polynomial time such that
finally no further rule is applicable.

Proof. Disjoint Paths. The correctness of this reduction rule is obvious since,
for every two edge-disjoint demand paths, we need to add at least two edges
to M . The maximum edge-disjoint paths problem can be solved for trees in
polynomial time [82].

Overloaded Edge. The correctness of this rule follows from the fact that if
edge e were not contracted, then one would need to remove more than k edges
in order to cut all length-two demand paths passing through e. Note that the
Overloaded Edge rule is “similar in spirit” to the removal of high-degree vertices
in the second data reduction rule for Vertex Cover in Section 6.1.2. It can
be clearly done in O(h · n) time.

Overloaded Caterpillar. In order to cut more than k demand paths by re-
moving only k edges one has to remove an edge that is contained in at least two
demand paths. Moreover, if there are k + 1 demand paths between a vertex u
and k + 1 distinct vertices in a caterpillar component which does not contain u,
then every edge which is a part of the caterpillar component and is passed by
at least two of the k +1 demand paths has to be an edge of the backbone of the
caterpillar component. Then, we have to remove at least one backbone edge.
Observe that the set of the backbone edges passed by a longest demand path is
a superset of the set of backbone edges passed by other k demand paths. This
longest demand path is always cut by removing backbone edges to cut other k
demand paths and, hence, it can be omitted. Since there can be O(n2) caterpil-
lar components, one for each vertex pair, this rule can be executed in O(n3 · h)
time.

Overloaded L3-Leaves. In order to cut these more than k demand paths
by removing only k edges one has to remove at least one edge on the path
between u and v. Then, cutting these demand paths is equivalent to cutting a
demand path between u and v. This rule can clearly be done in O(h · n) time,
since there are at most h demand paths starting at a vertex.

Together with the polynomial runtime of the four rules in Section 8.2, we
get the polynomial runtime for all these rules.

8.4 Some Observations on Reduced Instances

With the data reduction rules given in Sections 8.2 and 8.3.2, we arrive at the
following observations on a reduced instance of Multicut in Trees which are
very useful for showing a problem kernel for Multicut in Trees.

8.4 Some Observations on Reduced Instances 59

Definition 8.4. We call an instance of Multicut in Trees reduced when
none of the eight given data reduction rules applies.

Without loss of generality, we assume that the reduced tree instance has at
least three vertices.

Lemma 8.3. In a reduced instance, each I1-vertex has at least two L1-leaves
adjacent to it.

Proof. Consider an I1-vertex u of the reduced instance. It has at least one L1-
leaf. Suppose that u has only one L1-leaf called v. Since the instance has at least
three vertices, there is another vertex w 6= v adjacent to u. By the assumption
that u has only one L1-leaf, w is an inner vertex. Due to the Idle Edge rule there
must be a demand path starting at v. Furthermore, because of the Unit Path
rule all demand paths going through edge {u, v} have to go through edge {u, w}
as well. This, however, means that the Dominated Edge rule could be applied
to {u, v}, a contradiction to the fact that the given instance is reduced.

Lemma 8.4. In a reduced instance, for each L1-leaf v of an I1-vertex u, there
exists a demand path between v and another L1-leaf of u.

Proof. Assume that there is an L1-leaf v adjacent to u with u ∈ I1 and that there
is no demand path between v and other L1-leaves of u. Note that by Lemma 8.3
I1-vertex u has at least two L1-leaves. Since the instance is reduced, due to the
Idle Edge rule there must be a demand path starting at v. Moreover, the Unit
Path rule implies that each demand path starting at v then also has to pass an
edge different from {u, v}. This implies that u has a uniquely determined inner
vertex w adjacent to it and all demand paths starting at v also pass {u, w}. But
then the Dominated Edge rule would apply to edge {u, v}, a contradiction to
the fact that the instance is reduced.

Lemma 8.5. In a reduced instance, there are at most k edge-disjoint demand
paths.

Proof. The claim follows directly from the Disjoint Paths rule.

Lemma 8.6. In a reduced instance, there are at most k2 length-2 demand paths.

Proof. The claim follows from the fact that there are at most k edge deletions
allowed and, due to the Overloaded Edge rule, deleting one edge can destroy at
most k length-2 demand paths.

Lemma 8.7. In a reduced instance, there can be at most 2k2 L1-leaves.

Proof. The claim directly follows from Lemma 8.4 and Lemma 8.6.

Lemma 8.8. In a reduced instance, there can be at most k I1-vertices and at
most k − 1 I3-vertices.

60 Multicut in Trees

Proof. Lemma 8.3 and Lemma 8.4 imply that for each I1-vertex, there is at
least one length-2 demand path between two of its L1-leaves. Moreover, the
length-2 demand paths for different I1-vertices are pairwise edge-disjoint. Then,
by Lemma 8.5, there can be at most k I1-vertices. Furthermore, consider the
subgraph T ′ of the input tree T that is induced by the inner vertices of T . It
is clear that T ′ is a tree and the leaves of T ′ correspond one-to-one to the I1-
vertices of T . Since, in a tree with k leaves, there are at most k−1 inner vertices
having at least three neighbors, it is easy to derive that |I3| ≤ k − 1.

Now, with Lemma 8.7 and Lemma 8.8, it “only” remains to show that the
sizes of sets I2, L2, and L3 of a reduced Multicut in Trees instance can be
bounded by a function in k. To this end, we need the following two lemmas which
are decisive for showing the size upper-bounds for L3 and I2 ∪L2, respectively.

Lemma 8.9. For each I3-vertex u in a reduced instance, each of its L3-leaves is
the starting point of at least two demand paths which pass through two distinct
neighbors of u.

Proof. Consider an L3-leaf v of u. If only one demand path starts at v, then ei-
ther the Unit Path rule or the Edge Domination rule would apply to edge {u, v}.
If all demand paths starting at v passed only through one neighbor w 6= v of u,
then the Edge Domination rule would apply to edges {u, v} and {u, w}. This is
a contradiction to the fact that the input instance is reduced.

Lemma 8.10. 1. In a reduced instance, an I2-vertex v having no L2-leaf
adjacent to it has to be a starting point of at least two demand paths,
passing through two distinct inner vertices adjacent to v.

2. In a reduced instance, for an I2-vertex v with some L2-leaves adjacent to
it, each of these L2-leaves has at least two demand paths passing through
two distinct neighbors of v.

Proof. 1. Consider an I2-vertex v with two adjacent inner vertices u and w. If
there is no demand path starting at v and passing through u, then all demand
paths passing through edge {u, v} also pass through edge {v, w} and, hence,
the Edge Domination rule would apply. This contradicts the fact that the
input instance is reduced. If there is no demand path starting at v and passing
through w, an analogous argument applies.

2. Consider an I2-vertex v with two adjacent inner vertices u and w where v
has r L2-leaves w1, w2, . . . , wr. Note that due to the Unit Path rule all demand
paths have length at least two. If there is only one demand path starting
at wi, 1 ≤ i ≤ r, then clearly the Edge Domination rule applies to the edge
{v, wi}. The Edge Domination rule also applies to {v, wi} when all demand
paths starting at wi either pass through edge {u, v}, or {v, w}, or {v, wj} for i 6=
j.

8.5 Problem Kernel 61

x1

x2

xi

x′
1

x′
2

x′
j

y1 y2

v1 v2 vq1 vq2 vq3 vq4 vq5 vq6 vq

w1 w2 wl wp

P1

P2 P3 P4 P5 P6 P7

Figure 8.3: An instance of Multicut in Caterpillars. There are q I2-

vertices, v1, . . . , vq , and p L2-leaves, w1, . . . , wp. The backbone of this caterpillar

is the path between v1 and vq. The dashed lines denote seven edge-disjoint demand

paths, P1, . . . , P7.

8.5 Problem Kernel

In the following, we prove a problem kernel for Multicut in Trees by giving
an upper bound on the size of a reduced input tree. Recall that a parameterized
problem such as Multicut in Trees is said to have a problem kernel if, after
the application of the data reduction rules in polynomial time, the resulting
instance (T, H) with parameter k has size g(k) for a function g depending only
on k. In order to simplify the presentation, we adopt a stepwise manner. That
is, first we show a bound for a caterpillar, then for a spider of caterpillars, and,
finally, for general trees. More precisely, in the case of caterpillars where there is
neither an I3-vertex nor a L3-leaf, we show how to bound the size of I2 ∪L2. In
the case of spiders of caterpillars where there is only one I3-vertex, we present
the basic idea for showing the size bound for L3. The problem kernel size for
general trees follows by combining the arguments developed for the first two
cases.

8.5.1 Problem Kernel for Caterpillars

With the observations made in Section 8.4, we show the problem kernel for Mul-
ticut in Trees when the input tree is restricted to be a caterpillar. Multicut
in Caterpillars is also NP-complete, even if the tree vertices have at most
five neighbors [94, 117].

Consider a reduced instance with a caterpillar T = (V, E), i.e., there are
no I3-vertices, no L3-leaves, and there are exactly two I1-vertices, y1 and y2,
as illustrated in Figure 8.3. Since the number of L1-leaves is bounded by 2k2

(Lemma 8.7), in order to give a bound on the size of V it suffices to show
that |I2| + |L2| is bounded by a function of k.

We assume that the inner vertices of the caterpillar are ordered on a line, the
first is y1, the last is y2, and the I2-vertices in between are ordered from left to
right in ascending order of their indices as shown in Figure 8.3. An I2-vertex vi

is to the right of another I2-vertex vj if i > j. Furthermore, we use HI2 to
denote the set of the demand paths in H which pass through at least one I2-
vertex. We define the “right backbone endpoint” of a demand path in HI2 as
the I2-vertex with highest index among the I2-vertices that the demand path

62 Multicut in Trees

passes through. The “left backbone endpoint” is defined symmetrically. In
Figure 8.3, HI2 = {P2, P3, P4, P5, P6}. The left backbone endpoint of demand
path P3 is vq1 and the right backbone endpoint of P3 is vq2 .

By Lemma 8.5, there can be at most k edge-disjoint demand paths in T . In
the following, we show that there is a maximum cardinality set of edge-disjoint
demand paths with some special properties. These special properties are useful
for giving a bound on the size of the reduced caterpillar.

Lemma 8.11. In polynomial time one can find a maximum cardinality set of
edge-disjoint demand paths P := {P1, P2, . . . , Pl} with l ≤ k which has the
following two properties.

Property (1). One demand path is between two L1-leaves of y1 and one is
between two L1-leaves of y2. Let P1 and Pl denote these two demand
paths; then we have {P1, Pl} ⊆ (P \ HI2).

Property (2). If the paths in P ∩ HI2 are ordered in ascending order of the
indices of their left backbone endpoints, i.e., for Pi, Pj ∈ (P∩HI2) with i <
j, Pi’s left backbone endpoint is to the left of Pj ’s left backbone endpoint,
then, for each Pi ∈ (P ∩ HI2) with 1 < i < l,

• there is no other demand path P ∈ (HI2 \ P) such that P is edge-
disjoint to all paths in P \ {Pi} and Pi’s right backbone endpoint is
to the right of P ’s right backbone endpoint;

• there is no other demand path P ∈ (HI2 \ P) such that P is edge-
disjoint to all paths in P\{Pi}, P and Pi have the same right backbone
endpoint, and Pi’s left backbone endpoint is to the left of P ’s left
backbone endpoint.

Proof. Since a maximum cardinality set of edge-disjoint demand paths can be
found in polynomial time [82], we only need to show how to, in polynomial time,
modify an arbitrary maximum cardinality set of edge-disjoint demand paths P
such that it fulfills the above properties.

Property (1). By Lemma 8.4, there always exists for an I1-vertex a demand
path between two of its L1-leaves. Without loss of generality, assume that there
is a demand path P between x1 and x2, two L1-leaves of y1. If P contains no
demand path between two of y1’s L1-leaves, i.e., P /∈ P , then there must be a
demand path P ′ in P passing through one of the edges {x1, y1} and {x2, y1};
otherwise, P would be edge-disjoint to all demand paths in P , a contradiction
to the maximality of P . Moreover, P ′ cannot end in y1 since T is reduced with
respect to the Unit Path rule. Therefore, P ′ has to pass the edge {y1, v1}. Then,
replacing P ′ by P in P , the resulting set remains a maximum cardinality set of
edge-disjoint demand paths.

Property (2). For each Pi ∈ (P ∩ HI2), we can in O(h · n) time find all
demand paths P ∈ (HI2 \ P) which are edge-disjoint to all paths in P \ {Pi},
where h denotes the number of demand paths in H . Let vl

i and vr
i denote Pi’s

left and right backbone endpoints. For each of these paths P with vl and vr

8.5 Problem Kernel 63

denoting P ’s left and right backbone endpoints, to check whether vr
i is to the

right of vr or vr
i = vr and vl

i is to the left of vl can be done in constant time. If
there exists such a demand path P for Pi, replace Pi by P ; the demand paths
in P remain pairwise edge-disjoint.

Based on a maximum cardinality set of edge-disjoint demand paths P as
given in Lemma 8.11, we prove the main theorem of this subsection.

Theorem 8.1. Multicut in Caterpillars has a problem kernel which con-
sists of a caterpillar containing at most O(kk+1) vertices.

Proof. Suppose that we have computed a maximum cardinality set of edge-
disjoint demand paths P as described in Lemma 8.11. We assume that P1 is
between x1 and x2, two L1-leaves of y1, and Pl is between x′

1 and x′
2, two

L1-leaves of y2. Note that there can be more than one path in P between two
L1-leaves of y1 (or y2). However, it will be clear from the following analysis that
we can derive a better bound on the size of the caterpillar if there is more than
one path in P between L1-leaves of y1 (or y2). Therefore, we assume that none
of P2, . . . , Pl−1 is between two L1-leaves of y1 or y2. We use vli and vri

to denote
the left and right backbone endpoints of demand path Pi with 2 ≤ i ≤ l − 1,
respectively. Furthermore, we partition the I2-vertices together with their L2-
leaves into 2l − 1 sets and bound from above the size of each set. These sets
are

A1 := { vj | 1 ≤ j ≤ l2 } ∪ { their L2-leaves};

A2 := { vj | l2 < j ≤ r2 } ∪ { their L2-leaves};

A3 := { vj | r2 < j ≤ l3 } ∪ { their L2-leaves};

A4 := { vj | l3 < j ≤ r3 } ∪ { their L2-leaves};

...

A2l−2 := { vj | ll−1 < j ≤ rl−1 } ∪ { their L2-leaves};

A2l−1 := { vj | rl−1 < j ≤ q } ∪ { their L2-leaves}.

Informally, the sets with odd indices contain the I2-vertices which are not
on any demand path in P together with the left backbone endpoints of these
demand paths, while the sets with even indices contain the remaining I2-vertices.
Note that some of these sets can be empty since two consecutive demand paths
can share an endpoint. In particular, if P2 (or Pl−1) starts at an L1-leaf and
ends at v1 (or vq), then A2 = ∅ (or A2l−2 = ∅).

First, consider the vertices in A1. By Lemma 8.10, each I2-vertex with no
L2-leaf has a demand path starting at it and going to its left, and each L2-leaf
in A1 has a demand path starting at it and going to the left of the adjacent
I2-vertex. However, a demand path starting at a vertex v in A1 and ending
at a vertex left to it cannot end at a vertex in A1; otherwise, this demand
path would be edge-disjoint to all demand paths in P , which contradicts the
maximality of P . With the same argument, this demand path cannot end at y1

64 Multicut in Trees

or one of x3, . . . , xi. Thus, the other endpoint of the demand path can only
be x1 or x2. Since T is reduced, there can be at most 2k demand paths starting
at x1 and x2 and ending at one of the I2-vertices and the L2-leaves (due to the
Overloaded Caterpillar rule). Thus, there can be at most 2k I2-vertices without
L2-leaf and L2-leaves in A1. Since there are at most as many I2-vertices with
L2-leaves as there are L2-leaves, we can conclude that

|A1| ≤ 4k. (8.1)

This analysis works analogously for A2, A3, . . . , A2l−1. The demand paths
starting at a vertex in A2 and going to its left cannot end at an A2-vertex;
otherwise, we have a demand path P which is edge-disjoint to P1 and P3 and
which has either a right backbone endpoint to the left of vr2 or a left backbone
endpoint to the right of vl2 , which contradicts the fact that P has Property (2)
in Lemma 8.11. Then, the demand paths starting at a vertex in A2 and going
left can have only the vertices in A1, y1, or x1, . . . , xi as the other endpoint. For
a vertex v in A1, consider the demand paths starting at v and going right and
ending at some I2-vertices or their L2-leaves. Since all I2-vertices to the right
of v together with their L2-leaves induce a caterpillar component of T and v
is outside this caterpillar component, then, using the fact that T is reduced
with respect to the Overloaded Caterpillar rule, there can be at most k demand
paths starting from v and ending at some vertices to the right of it. Therefore,
with |L1| ≤ 2k2 (Lemma 8.7), we get

|A2| ≤ k · (|{x1, x2, . . . , xi} ∪ {y1}| + |A1|) ≤ k · (2k2 + 1 + |A1|).

Analogously, we have a bound on |Ar| for an arbitrary r with 3 ≤ r ≤ 2l − 1,

|Ar| ≤ k · (2k2 + 1 +
r−1
∑

j=1

|Aj |). (8.2)

Therefore,

8.5 Problem Kernel 65

2l−1
∑

j=1

|Aj | =

2l−2
∑

j=1

|Aj | + |A2l−1|

(8.2)

≤
2l−2
∑

j=1

|Aj | + k · (2k2 + 1 +
2l−2
∑

j=1

|Aj |)

≤ (k + 1) · (
2l−2
∑

j=1

|Aj | + 2k2 + 1)

(8.2)

≤ (k + 1) · (
2l−3
∑

j=1

|Aj | + k · (2k2 + 1 +

2l−3
∑

j=1

|Aj |) + 2k2 + 1)

= (k + 1)2 · (
2l−3
∑

j=1

|Aj | + 2k2 + 1)

≤ (k + 1)2l−2 · (|A1| + 2k2 + 1)

(8.1)

≤ (k + 1)2l−2(4k + 2k2 + 1)

= O(k2l).

However, this bound can be improved if we take into account the symmetry
of the caterpillar structure: Observe that the analysis for |A2l−1| can be done
in the same way as for |A1|, the analysis for |A2l−2| can be done in the same
way as for |A2|, and so on. Therefore, the bound on the number of I2-vertices
and L2-leaves is as follows:

66 Multicut in Trees

|I2| + |L2| =
2l−1
∑

j=1

|Aj |

=

l
∑

j=1

|Aj | +
2l−1
∑

j=l+1

|Aj |

(8.2)

≤ (k + 1) · (
l−1
∑

j=1

|Aj | + 2k2 + 1)

+(k + 1) · (
2l−1
∑

j=l+2

|Aj | + 2k2 + 1)

≤ (k + 1)2 · (
l−2
∑

j=1

|Aj | + 2k2 + 1)

+(k + 1)2 · (
2l−1
∑

j=l+3

|Aj | + 2k2 + 1)

≤ (k + 1)l−1 · (|A1| + 2k2 + 1)

+(k + 1)l−2 · (|A2l−1| + 2k2 + 1)

(8.1)

≤ (k + 1)l−1(4k + 2k2 + 1) + (k + 1)l−2(4k + 2k2 + 1)

= O(kl+1).

Since there are at most k edge-disjoint paths in P , that is, l ≤ k, |I2|+|L2| =
O(kk+1). Together with |L1| ≤ 2k2, |I1| = 2, and |I3| = |L3| = 0, we have the
claimed problem kernel size.

8.5.2 Problem Kernel for Spiders of Caterpillars

The next special case of a tree, a spider of caterpillars T (also see Figure 8.2),
has exactly one I3-vertex u which is also the central vertex of the spider induced
by the inner vertices. There are at most k I1-vertices due to Lemma 8.8 and
thus the number of maximal caterpillar components is bounded from above
by k. Each of these maximal caterpillar components is adjacent to u and to
one I1-vertex. We call the subgraph of T that consists of a maximal caterpillar
component, its adjacent I1-vertex, and the L1-leaves of this I1-vertex a semi-
caterpillar. The backbone of a semi-caterpillar then means the path induced by
the I2-vertices in the maximal caterpillar component.

In the following we adapt the analysis in the proof of Theorem 8.1 to show
the upper-bound on the size of T . Recall that the proof of Theorem 8.1 is
heavily based on a special maximum cardinality set of edge-disjoint demand
paths as described in Lemma 8.11. Therefore, we first need to show that, in a

8.5 Problem Kernel 67

spider of caterpillars T , we can also find such special maximum cardinality sets
of edge-disjoint demand paths.

Lemma 8.12. For each of the semi-caterpillars of a spider of caterpillars T ,
one can in polynomial time find a maximum cardinality set P := {P1, P2, . . . , Pl}
of edge-disjoint demand paths passing through only edges of this semi-caterpillar
which has the following two properties.

Property (1). Let y denote the only I1-vertex in this semi-caterpillar. Then,
one demand path in P is between two L1-leaves of y. Let P1 denote this
demand path; then we have P1 ∈ (P \ HI2).

Property (2). If the paths in P ∩ HI2 are ordered in ascending order of the
indices of their left backbone endpoints, i.e., for Pi, Pj ∈ (P∩HI2) with i <
j, Pi’s left backbone endpoint is to the left of Pj’s left backbone endpoint,
then, for each Pi ∈ (P ∩ HI2) with 1 < i < l,

• there is no other demand path P ∈ (HI2 \ P) passing through only
edges of this semi-caterpillar such that P is edge-disjoint to all paths
in P \ {Pi} and Pi’s right backbone endpoint is to the right of P ’s
right backbone endpoint;

• there is no other demand path P ∈ (HI2 \ P) passing through only
edges of this semi-caterpillar such that P is edge-disjoint to all paths
in P\{Pi}, P and Pi have the same right backbone endpoint, and Pi’s
left backbone endpoint is to the left of P ’s left backbone endpoint.

Proof. Observe that a semi-caterpillar is a subgraph of a caterpillar. Therefore,
the proof of Lemma 8.11 can be easily adapted to prove this lemma.

We can then extend Theorem 8.1 to spiders of caterpillars.

Theorem 8.2. Multicut in Spiders of Caterpillars has a problem kernel
which consists of a spider of caterpillars containing at most O(k2k+1) vertices.

Proof. For each semi-caterpillar of a spider of caterpillars T , after computing
a maximum cardinality set P of edge-disjoint demand paths as described in
Lemma 8.12, we can bound from above the size of this semi-caterpillar by O(k2l)
with l = |P| by using the arguments in the proof of Theorem 8.1. Note that,
since a semi-caterpillar does not have the symmetrical structure of a caterpillar,
we can only give the bounds for each set A1, A2, . . . , A2l−1 one-by-one from A1

to A2l−1. Therefore, |I2 ∪ L2| = O(k2k).
It remains to give a bound on |L3|. Now, let u denote the only I3-vertex.

By Lemma 8.6, the number of L3-leaves that have a demand path of length 2
starting at them is bounded by 2k2. Thus, we omit such L3-leaves from further
consideration. At each of the remaining L3-leaves starts at least one demand
path which ends at one vertex of the semi-caterpillars of T . From the Overloaded
L3-Leaves rule we know that at an arbitrary vertex v, there can start at most k

68 Multicut in Trees

z1

z2

z3

y1 y2

y3 y4

y5

Figure 8.4: An example of a general tree: I1 = {y1, . . . , y5} and I3 = {z1, z2, z3}.
The tree is rooted at z3. Vertex z1 has maximum depth among the I3-vertices.

demand paths which end at some L3-leaves of u. Thus, with |L1| ≤ 2k2, |I1| ≤ k,
and |I2 ∪ L2| = O(k2k), we have

|L3| ≤ k · |I1 ∪ I2 ∪ L1 ∪ L2| = O(k2k+1).

Altogether, the size of T is bounded by O(k2k+1) and we have the claimed
problem kernel size.

8.5.3 Problem Kernel for General Trees

Based on the results of Sections 8.5.1 and 8.5.2, we have now all results and
techniques in place to develop a problem kernel for Multicut in Trees. For
general trees T , there can be more than one I3-vertex. We assume that there
is at least one I3-vertex in T and root T at an arbitrary I3-vertex. Consider an
I3-vertex having maximum depth in the now rooted tree among all I3-vertices.
Observe that this I3-vertex together with its leaves and all adjacent maximal
caterpillar components which are not adjacent to any other I3-vertices, i.e., the
subtree of T rooted at this I3-vertex, induces a structure similar to a spider of
caterpillars. With this observation, we process all I3-vertices in a bottom-up
manner and, for each I3-vertex, we give a bound on the size of the subtree
rooted at it. See Figure 8.4 for an example.

Theorem 8.3. Multicut in Trees has a problem kernel which consists of a
tree containing at most O(k3k) vertices.

Proof. First, consider an I3-vertex u with maximum depth among all I3-vertices,
for instance, z1 in Figure 8.4. The subtree of T rooted at u, denoted by T [u],
can be seen as a spider of caterpillars with u as the center vertex. Moreover,
each L3-leaf of u has at least one path starting at it and ending at a vertex
of T [u] (Lemma 8.9). Following from the analysis in Section 8.5.2,

|T [u]| = O(k2lu+1), (8.3)

8.5 Problem Kernel 69

where lu denotes the number of maximum edge-disjoint demand paths using
only edges of T [u].

Then, consider the maximal caterpillar component C between u and its I3-
parent v, the first I3-vertex on the path from u to the root. In Figure 8.4, z3

is the I3-parent of both z1 and z2. Recall that, in Section 8.5.2, we bounded
the size of a maximal caterpillar component of a spider of caterpillars based
on the fact that the caterpillar component is adjacent to an I1-vertex that has
at most 2k2 L1-leaves, i.e., the maximal caterpillar component is in a semi-
caterpillar. Here, the maximal caterpillar component C between u and v is not
adjacent to any I1-vertex. However, the analysis in the proof of Theorem 8.1
can be easily extended to deal with a caterpillar component adjacent to an
I3-vertex that is the root of a subtree with bounded size. We can treat C as
a caterpillar component adjacent to an I1-vertex with as many L1-leaves as
the size of the subtree. Then, we partition the vertices of C as in the proof of
Theorem 8.1 into A1, A2, . . . , A2lC−1, where lC denotes the number of maximum
edge-disjoint demand paths using only edges of C. The bound on the size of A1

is then k · |T [u]| since each vertex in A1 has to be the start vertex of at least one
demand path ending at a vertex of T [u] (Lemma 8.10). Then, |A1| ≤ k · |T [u]|,
|A2| ≤ k · (|A1| + |T [u]|), and so on. With the size bound on T [u], we have

|C|
(8.3)
= O(k2lu+1+2lC). (8.4)

In the next step, we consider the subtree T [v] rooted at u’s I3-parent v.
Accordingly, we call all I3-vertices that have v as their I3-parent v’s I3-children,
i.e., u is an I3-child of v. Let u1, . . . , us denote v’s I3-children with u = u1. Then,
subtree T [v] can be divided into the following disjoint subtrees:

• the subtrees T [u1], . . . , T [us] rooted at v’s I3-children,

• the caterpillar components C1, . . . , Cs between v and its I3-children,

• the caterpillar components C′
1, . . . , C

′
r between v and the I1-vertices that

have v as their I3-parent,

• and the star induced by v and its L3-leaves.

In Figure 8.4, the tree T is rooted at z3 which is the I3-parent of z1 and z2.
Here, the disjoint subtrees of T by dividing T at z3 are the subtrees T [z1]
and T [z2], the caterpillar components between z3 and z1 and between z3 and z2,
the caterpillar component between z3 and y5, and the star consisting of z3 and
its L3-leaves.

When arriving at v in the course of the bottom-up process, we have already
the size bounds on all T [ui] and Ci for 1 ≤ i ≤ s. In order to show that T [v]
has bounded size, it remains to give size bounds on C′

1, . . . , C
′
r and the set of

v’s L3-leaves, respectively. Since each of C′
1, . . . , C

′
r with the adjacent I1-vertex

forms a semi-caterpillar, we have

|C′
1 ∪ · · · ∪ C′

r| = O(k2lC′) (8.5)

70 Multicut in Trees

as shown in Section 8.5.2, where lC′ denotes the number of edge-disjoint demand
paths using only the edges of C′

1, . . . , C
′
r.

Let Lv
3 denote the set of v’s L3-leaves. By Lemma 8.9, each Lv

3-leaf has at
least one demand path starting at it and ending at one vertex in T [v]\(Lv

3∪{v}).
Thus, using the Overloaded L3-Leaves rule, we get

|Lv
3| ≤ k · |T [v] \ (Lv

3 ∪ {v})|. (8.6)

Furthermore, T [v] \ (Lv
3 ∪ {v}) is the union of T [u1], . . . , T [us], C1, . . . , Cs,

and C′
1, . . . , C

′
r. Let l1 = lu1 + lu2 + · · · + lus

denote the number of edge-
disjoint demand paths passing only the edges of T [u1], . . . , T [us], and let l2 =
lC1 + lC2 + · · · + lCs

denote the number of edge-disjoint demand paths passing
only the edges of C1, . . . , Cs. We have

|T [v]| =

s
∑

i=1

|T [ui]| +
s
∑

i=1

|Ci| +
r
∑

j=1

|C′
j | + |Lv

3| + 1

(8.6)

≤ (k + 1) · (
s
∑

i=1

|T [ui]| +
s
∑

i=1

|Ci| +
r
∑

j=1

|C′
j |) + 1

(8.3),(8.4),(8.5)
= (k + 1) · (O(k2l1+1) + O(k2l1+2l2+1) + O(k2lC′)) + 1

= O(k2lv+2), (8.7)

where lv denotes the number of edge-disjoint demand paths in T [v] and lv ≥
l1 + l2 + l′C .

Finally, at the root r of T , we have then lr ≤ k. Starting from an I3-vertex
with maximum distance to the root r of T during the bottom-up process, we
can encounter at most k I3-vertices. Therefore, at the root r, we get |T [r]| =
O(k2lr+k) by (8.7) and, thus, |T [r]| = O(k3k). This gives the claimed problem
kernel size.

8.6 Concluding Remarks

In this chapter, we have an example for a problem kernel of size exponential
with respect to parameter k (more precisely, size O(k3k)) where it seems hard
to show a polynomial- or even linear-size problem kernel. At first glance, this
seems a little disappointing because the size of the problem kernel exceeds the
size of the search tree O(2k) shown in Chapter 9. However, first, one has to
take into account that Multicut in Trees is a more general problem than
Vertex Cover, already making problem kernelization a harder thing to do.
Secondly, the developed data reduction rules are of comparable simplicity as the
ones developed by Weihe [175, 176] for his problem such that we nevertheless
may expect a strong practical impact of our rules. Observe that all our bounds
are purely worst-case results (relying on very special or even artificial cases that
may very rarely occur) and the practical experiences for real-world or other test
data sets may be much better. Thirdly, our extensive worst-case analysis of the

8.6 Concluding Remarks 71

problem kernel size and the discovered “worst-case structures” may help to spot
future points of attack for improved kernelization strategies or to get a better
understanding of what really makes the problem so hard. Fourthly, we consider
it as a worthwhile task of also purely mathematical interest to show upper size
bounds on problem kernels.

Clearly, the immediate challenge is to improve the problem kernel size sig-
nificantly. We felt that this will be a particularly hard task when only using the
given set of data reduction rules.

72 Multicut in Trees

Part IV

Search Trees Based on
Forbidden Subgraphs

73

Chapter 9

Basic Concepts and Ideas

Recall that graph modification problems seek for a minimum size set of edge
editions (insertions and deletions) or/and vertex deletions such that the result-
ing graphs have some specified properties. Many of these graph properties have
nice characterizations in terms of forbidden subgraphs. Such graph modifica-
tion problems can be also formulated as to get rid of the forbidden subgraphs by
a minimum number of modifications. For example, consider the NP-complete
Independent Set problem [80]: For a given graph G = (V, E) and an inte-
ger ` ≥ 0, we seek for a set V ′ of vertices with V ′ ⊆ V and |V ′| ≥ ` such that the
subgraph of G induced by V ′ contains no edge. The vertex subset V ′ is called
an independent set. Obviously, the forbidden subgraph for a graph with an
independent vertex set is an edge. Therefore, we can formulate Independent
Set as a graph modification problem:

Input: A graph G = (V, E) and an integer k ≥ 0;
Task: Find a set C of at most k vertices such that, after deleting
the vertices in C and their incident edges from G, the vertex set of
the remaining graph is an independent set.

It is easy to observe that this graph modification problem is equivalent to the
Vertex Cover problem. Further examples include Feedback Vertex Set
(Chapter 3), Graph Bipartization (Chapter 4), and many others.

Most graph modification problems with properties characterized by forbid-
den subgraphs are NP-complete. To obtain “efficient” fixed-parameter algo-
rithms for these problems, the most commonly used technique so far is based on
depth-bounded search trees. The reason for this is that this technique is easy to
describe, to implement, and to understand. For applications of depth-bounded
search trees to non-graph problems, we refer to [11, 83, 89, 91, 166].

In this chapter we give a brief introduction to forbidden subgraph charac-
terizations and depth-bounded search trees. Then, we present two simple case
studies, Vertex Cover and Multicut in Trees, to illustrate how to design
search tree algorithms based on forbidden subgraphs. In Chapters 10 and 11 we
give two more sophisticated applications of the method.

75

76 Basic Concepts and Ideas

9.1 Forbidden Subgraph Characterizations

Many graph properties allow for characterizations in terms of forbidden sub-
graphs.

Definition 9.1. Let F be a collection of graphs. A graph property Π can be
characterized by the forbidden induced subgraphs in F iff each graph having Π
contains no graph in F as induced subgraph. A graph having Π is called F -free.

Forbidden subgraph characterizations are a well-studied topic in the graph
theory literature. It is out of the scope of this thesis to describe the deep impacts
so-called finite-basis characterizations and well-quasi ordering theory had on the
genesis of parameterized complexity theory. We refer to the monograph [65] for
a proper account on this. Forbidden subgraph characterizations are valuable
in various ways. First, many containment relations between graph classes fol-
low immediately from forbidden subgraph characterizations, for more details we
refer to [30]. Second, these characterizations also help with the recognition of
graphs having specified properties and lead to the polynomial-time solvability
of the recognition problems in a straightforward way. For example, cographs
contain no P4—a path consisting of four vertices—as an induced subgraph [30].
We can easily recognize a cograph G = (V, E) by examining whether there are
four vertices in V inducing a P4. This can be done by a straightforward O(|V |4)
time algorithm. Actually, the recognition of cographs can be done in linear
time [46]. Third, we can also make use of forbidden subgraph characterizations
for proving NP-completeness results of the corresponding graph modification
problems. As two examples, the NP-completeness of Closest Tree Power
with Bounded Degree and Closest Leaf Power by Edge Insertions
are shown based on two reductions making use of the forbidden subgraph char-
acterizations for these two problems [61, 59]. For the definitions of the two
problems see Chapter 11. Finally, making use of the forbidden subgraph char-
acterizations is the decisive ingredient of polynomial-time approximation and
fixed-parameter algorithms for the corresponding graph modification problems.
For example, Natanzon et al. [137] gave constant-factor polynomial-time ap-
proximation algorithms for edge modification problems with forbidden subgraph
characterizations on bounded degree graphs. We will discuss how to derive
fixed-parameter algorithms based on forbidden subgraph characterizations in
more detail in Section 9.3.

For some graph properties such as “edgeless” in the Independent Set
problem, the forbidden subgraph characterizations follow directly from the def-
initions while it can become technically demanding to show forbidden subgraph
characterizations in other cases. For example, the forbidden subgraph charac-
terization of so-called 4-leaf powers—see Chapter 11 for the definition of leaf
powers—requires a substantial amount of technical expenditure, including an
intricate algorithm [58].

9.2 Depth-Bounded Search Trees 77

9.2 Depth-Bounded Search Trees

The basic idea behind the depth-bounded search tree technique is to organize
the systematic and exhaustive exploration of the search space in a tree-like
manner. More precisely, given an instance (I, k) of a parameterized problem,
search tree algorithms replace (I, k) by a finite set C of smaller instances (Ii, ki)
with 1 ≤ i ≤ |C|, |Ii| < |I|, and ki < k specified by some branching rules. If a
smaller instance (Ii, ki) satisfies none of a set of termination conditions, then the
algorithm recursively applies this replacing procedure to (Ii, ki). The algorithm
terminates when the replacing procedure is no longer applicable, i.e., at least
one of the termination conditions is satisfied.

The recursive applications of the replacing procedure can be illustrated in a
tree structure: The original instance (I, k) is placed at the root of the tree. The
smaller instances in C are the children of the root. If a smaller instance (Ii, ki)
for 1 ≤ i ≤ |C| satisfies one of the termination conditions, then it represents
a leaf of the tree; otherwise, (Ii, ki) has several children corresponding to the
instances which are specified to replace (Ii, ki) by the branching rules. This
tree is called search tree. For each (Ii, ki) in C specified by the branching rules
for (I, k), we have ki < k. Thus, the depth of the search tree is bounded from
above by a function of the parameter and we obtain a depth-bounded search
tree.

In the following, we separately describe termination conditions and branch-
ing rules and provide the mathematical tools to compute the size of a search
tree. The size of a search tree is crucial for the runtime of the corresponding
search tree algorithm.

Termination conditions For most parameterized problems, there are two
termination conditions: Dealing with the current instance (I, k), the first one
is whether k ≤ 0. Since new smaller instances specified by the branching rules
have a smaller parameter value, it makes no sense to further apply the replacing
procedure to instances with a parameter value equal to zero or less. The second
termination condition is whether the set of smaller instances specified by the
branching rules for (I, k) is empty. If one of the two conditions is satisfied,
instance (I, k) represents a leaf of the search tree. The determination of whether
the termination conditions are satisfied is easy for most problems: It usually
can be done in time polynomial in |I|.

Branching rules Branching rules are the most important ingredient of a
search tree algorithm.

Definition 9.2. Let L ⊆ Σ∗×N be a parameterized problem. A branching rule
is a mapping Γ from (I, k) ∈ Σ∗×N to a subset of Σ∗×N denoted by Γ((I, k)) :=
{(I1, k1), . . . , (Il, kl)} where

1. Γ is computable in time polynomial in |I|,

2. (i, k) ∈ L ⇐⇒ ∃ (Ii, ki) ∈ Γ((I, k)) with (Ii, ki) ∈ L, and

78 Basic Concepts and Ideas

3. ki < k for 1 ≤ i ≤ l.

The branching vector δ of a branching rule Γ is defined as:

δ(Γ) := (k − k1, k − k2, . . . , k − kl).

The instances in Γ((I, k)) are called branching subcases and we call the appli-
cation of the replacing procedure to an instance (I, k) branching into subcases.

Intuitively, a branching rule points out the “right” direction to search by
guaranteeing that (I, k) is a “Yes”-instance iff there is at least one smaller
instance in Γ((I, k)) which is a “Yes”-instance. For some problems, we can have
several branching rules. Based on a case distinction on (I, k) we decide which
one should be used. Several branching rules associated with case distinctions
on (I, k) often lead to search trees with smaller size than those with only one
branching rule.

Size of search trees The size of a search tree is governed by homogeneous,
linear recurrences with constant coefficients. It is well-known how to solve them
and the asymptotic solution is determined by the roots of the characteristic
polynomial (see, e.g., Kullmann [125] for more details).

We use T to denote the search tree. If a branching rule Γ, considering an
instance (I, k), has δ(Γ) = (k − k1, k − k2, . . . , k − kl) as its branching vector,
then this vector δ(Γ) corresponds to the recurrence

Tk = Tk1 + · · · + Tkl

where Tk denotes the size of the subtree of T rooted at (I, k). Let di := k − ki

for 1 ≤ i ≤ l and d := max{d1, d2, . . . , dl}. The recurrence corresponds to the
characteristic polynomial

zd = zd−d1 + · · · + zd−dl .

If α is a root of the characteristic polynomial which has maximum absolute
value and is positive, then Tk is αk up to a polynomial factor. We call α the
branching number that corresponds to the branching vector δ(Γ) = (d1, . . . , dl).
Moreover, if α is a single root, then Tk = O(αk); all branching numbers that
occur in this thesis are single roots. The size of the search tree is therefore
O(βk) where β is the largest branching number among them of all branching
rules.

In summary, using p(|I|) to denote the time for determining the termina-
tion conditions and computation of the branching rules for an instance (I, k),
where p(x) denotes a polynomial of x, and using βk to denote the size of the
search tree, the runtime of a bounded-depth search tree algorithm is then equal
to O(βk · p(|I|)). The runtime is asymptotically dominated by the size of the
search tree. Therefore, developing branching rules with smaller branching num-
bers is the most important point to speed up search tree algorithms.

As already mentioned in Chapter 6, another general speed-up method is the
interleaving technique introduced by Niedermeier and Rossmanith [142]: The

9.3 Search Trees Based on Forbidden Subgraphs 79

kernelization process is invoked not only at the beginning of the depth-bounded
search tree algorithm, but before every determination of termination conditions
and before the computation of the branching rules for an instance (I, k). It
allows an improved runtime of the search tree algorithm. Suppose that we have
a search tree algorithm with a runtime of O(βk · p(|I|)). Let TD denote the
runtime of the kernelization process resulting in a kernel size bounded from
above by a function g(k) only depending on parameter k. Then, it is clear
that the time for determining the termination conditions and the computation
of branching rules is only dependent on g(k), i.e., p(g(k)). If both functions p
and g are polynomial in k, then interleaving the branching steps and the problem
kernel reduction yields a runtime of O(βk + TD).

9.3 Search Trees Based on Forbidden Subgraphs

When designing depth-bounded search tree algorithms for graph modification
problems transforming an input graph G into a graph characterized by a set F
of forbidden subgraphs, we distinguish two cases of forbidden subgraph charac-
terizations.

If the set F is finite, then we can easily solve the corresponding graph mod-
ification problem by a depth-bounded search algorithm: For every subgraph F
in F , we give a branching rule ΓF . Given an instance (G, k), ΓF determines
whether G is {F}-free. If so, it specifies an empty set; otherwise, a subgraph G′

of G which is equal to F is identified and ΓF specifies a set of smaller instances
that consist of a graph transformed from G by editing edges or deleting vertices
of G′. The termination conditions are whether the parameter k is equal to zero
or less and whether the graph G is F -free. The resulting algorithm, in each
search tree node, finds a forbidden subgraph from F in G and, based on the
corresponding branching rule, branches into (finitely many) subcases that lead
to a destruction of the considered forbidden induced structure.

Cai [32] was the first making the observation that finite forbidden subgraph
characterizations lead to the fixed-parameter tractability of the corresponding
graph modification problems. Moreover, he concluded that the runtime of such
search tree algorithms is O(Nk · |G|N+1) for any graph property with finite
forbidden subgraph characterization. Herein, |G| denotes the size of the input
graph, k denotes the number of allowed modifications and N denotes the maxi-
mum size over all forbidden subgraphs in F .1 The determination of termination
conditions and the computation of branching rules can be done in O(|G|N+1)
time. We remark that this result by Cai can be used as a classification tool
and is of mainly theoretical interest. As we will show with Cluster Edit-
ing in Chapter 10, more efficient bounded-search search tree algorithms can be
achieved in more specific cases by making a refined analysis of the forbidden
subgraphs.

1When dealing with vertex deletion problems, N is equal to the maximum number of
vertices of the forbidden subgraphs; it is set to the maximum number of vertex pairs of the
forbidden subgraphs for edge modification problems.

80 Basic Concepts and Ideas

The scheme described above is quite simple but it is not applicable to forbid-
den subgraph characterizations which have infinitely many forbidden subgraphs:
If F is infinite, then we have infinitely many branching rules. This makes it hard
for an algorithmic approach since we would have to check infinitely many cases.
Many graph properties have infinitely many forbidden subgraphs such as “be-
ing a forest” (all cycles are forbidden subgraphs) and chordality (all induced
cycles with length four or higher are forbidden). Dealing with graph modifica-
tion problems with graph properties characterized by infinitely many forbidden
subgraphs, there is no general scheme known like the one for finite forbidden
subgraph characterizations. Fixed-parameter algorithms solving such problems
are based on methods exploring problem-specific properties which seemingly
cannot be generalized to other problems. The iterative compression algorithm
for Feedback Vertex Set (seeking for a “goal” graph being forest) in Chap-
ter 3 and the algorithm given by Kaplan et al. [114] for the Minimum Fill-In
problem where one seeks for a minimum set of edge insertions to transform a
graph into a chordal graph provide two examples.

However, the above scheme can still be applied to a subclass of the graph
modification problems with infinite sets of forbidden subgraphs. This subclass
contains problems whose forbidden subgraph characterizations admit data re-
ductions to base subsets. A base subset B is a finite subset of the infinite forbid-
den subgraph set F . A data reduction to a base subset B is a data reduction
process running in time polynomial in the size of the input graph G and satis-
fying the following condition:

Graph G is not F -free iff the reduced graph G′ contains a subgraph
from B.

With such data reductions to base subsets, we modify the above scheme
slightly: We construct the branching rules as described above for all subgraphs
in B instead of F . The termination conditions remain the same. The only differ-
ence is that, every time before the computation of the branching rules, we do the
polynomial-time data reduction by taking into account that the solution for G
can be easily computed based on the solution for G′. By the “iff”-condition of
the data reduction, the correctness of this modified scheme is obvious. Con-
cerning the runtime of the resulting search tree algorithm, we only have to take
into account the runtime of the data reduction which gives a polynomial factor
for each search tree node. The overall runtime is still dominated by the size of
the search tree and, therefore, we have a fixed-parameter algorithm. We will
give an example of this modified scheme in the case study with Multicut in
Trees (Section 9.4.2).

9.4 Two Case Studies

In this section we give two example applications of depth-bounded search trees
based on forbidden subgraph characterizations, one dealing with a finite set of
forbidden subgraphs and one with infinitely many forbidden subgraphs.

9.4 Two Case Studies 81

9.4.1 Case Study 1: Vertex Cover

Recall that, in Vertex Cover, we seek for a set C of at most k vertices
covering all edges in graph G = (V, E). In other words, the removal of the
vertices in C results in an edgeless graph whose forbidden subgraph is clearly
an edge. Thus, the “goal” graph of Vertex Cover has a finite forbidden
subgraph characterization. More specifically, F only contains one subgraph
simply formed by one edge.

According to the design scheme for finite forbidden subgraph characteriza-
tion, we have two termination conditions:

1. k ≤ 0?

2. G contains no edge?

The only branching rule first determines whether G is edgeless and, if not,
finds one. Let {u, v} denote this edge. We know that at least one of u and v
has to be in C to destroy this edge. Then, this branching rule specifies two
smaller instances, one of them putting u into C and deleting u and u’s incident
edges from G, the other doing the same operation on v. More precisely, the two
smaller instances are as follows:

• G1 = (V1, E1) with V1 := V \ {u} and E1 := E \ {{u, x} | x ∈ V }
and k1 := k − 1;

• G2 = (V2, E2) with V2 := V \ {v} and E2 := E \ {{v, x} | x ∈ V }
and k2 := k − 1.

The resulting search tree algorithm, given an instance (G, k), first determines
whether the termination conditions are satisfied. If not, it computes the branch-
ing rule and produces two smaller instances by replacing (G, k) by (G1, k1)
and (G2, k2), respectively. The termination conditions and the branching rules
are then recursively applied to (G1, k1) and (G2, k2). We get a vertex cover of
size at most k if the algorithm terminates in a search tree node with the second
termination condition is satisfied but the first not.

Concerning the size of the search tree, every application of the branching
rule produces two smaller instances. In particular, the value of parameter k is
decreased by one in both smaller instances. Hence, the depth of the search tree
is bounded from above by k. The branching vector is clearly (1, 1) and we have

Tk = Tk−1 + Tk−1.

With d1 = k−k1 = 1, d2 = k−k2 = 1, and d := max{d1, d2}, the characteristic
polynomial is then

zd = zd−d1 + zd−d2

which gives the only root α = 2. Then, the size of the search tree is upper-
bounded by O(2k) and the runtime of the algorithm is O(2k · |V |).
Remark: With refined case distinctions, more sophisticated branching rules,
and the interleaving technique [142], the runtime of the search tree algorithm is
improved to O(1.2745kk4 + k|V |) [36].

82 Basic Concepts and Ideas

9.4.2 Case Study 2: Multicut in Trees

Multicut in Trees asks for, given an input tree T = (V, E), a multicut set M
of at most k edges whose removal separates all vertex pairs given in a set H
of h ≥ 0 pairs of vertices in V . We call the uniquely determined path in T
between vertices u and v of a vertex pair (u, v) ∈ H the demand path of (u, v).
For paths P1 and P2, we write P1 ⊆ P2 when the vertex set (and edge set) of P2

contains that of P1.
All paths with two endpoints u and v for which there is a vertex pair (u, v) ∈

H , i.e., all demand paths, are the forbidden subgraphs characterizing the goal
graph of Multicut in Trees. Since H is a part of the problem input and
a demand path can be arbitrarily long, this characterization is an infinite for-
bidden subgraph characterization. We show that this characterization admits a
data reduction to a base subset.

The base subset contains only two subgraphs, demand paths of length one
or two. The data reduction consists of three rules. We say that we contract
an edge {u, v} by replacing this edge and its two endpoints by a new vertex w
with N(w) := (N(u) ∪ N(v)) \ {u, v}.

Idle Edge. If there is a tree edge with no demand path passing through it,
then contract this edge.

Dominated Edge. If all demand paths that pass through edge e1 of T also
pass through edge e2 of T , then contract e1.

Dominated Path. If P1 ⊆ P2 for two demand paths, then delete P2.

The correctness and the polynomial runtimes of the rules are shown in Chap-
ter 8. We summarize these findings in Lemma 9.1.

Lemma 9.1. The above reduction rules are correct and they can be executed
in O(h · |V |3 + h3 · |V |) worst-case time such that finally no more rules are
applicable.

The following lemma shows that the “iff”-relation as required for a data
reduction to base subsets in Section 9.3 holds.

Lemma 9.2. There is a demand path in T iff there is a length-two or length-
one demand path in the reduced tree T ′ after exhaustive application of the three
data reduction rules.

Proof. The claim follows directly from Lemmas 8.3 and 8.4.

Note that, in order to destroy a length-one demand path, we have to put
the only edge of this path into the multicut set M . Therefore, the branching
rule for this forbidden subgraph finds a length-one demand path in the reduced
tree T ′ and specifies only one smaller instance: contracting the edge, deleting
the vertex pairs from H whose demand paths passing through this edge, and
decreasing parameter value by one. For a length-two demand path we have

9.5 Concluding Remarks 83

a branching rule finding a length-two demand path in T ′ and specifying two
smaller instances: one of them contracting the first edge of the length-two path
and deleting all vertex pairs from H whose demand paths pass through this
edge, the other doing the same with the second edge of this path. In both
new instances the value of parameter k is decreased by one. The termination
conditions are whether k ≤ 0 and whether H = ∅.

With branching vectors (1) and (1, 1), it is easy to compute the size of
the search tree which is upper-bounded by 2k. By combining the runtime in
Lemma 9.1 with the search tree size, the runtime of the algorithm amounts
to O(2k · (h · |V |3 + h3 · |V |)).
Remark: A more simple search tree algorithm for Multicut in Trees with
the same upperbound on the search tree size but not based on the forbidden
subgraph characterization is discussed in [97].

9.5 Concluding Remarks

Graph modification problems with forbidden subgraph characterizations are
a fertile ground for fixed-parameter research, in particular, designing depth-
bounded search tree algorithms.

One direction for future research could be to investigate how standard heuris-
tic techniques such as branch-and-bound or A∗ from artificial intelligence [164]
can be used in the standard depth-bounded search tree technique to obtain
further speed-ups in practice.

The automated generation of branching rules has become a hot topic in the
field of fixed-parameter algorithm engineering [72, 85, 107, 124, 143]. Herein,
the idea is to use the sheer computing power of machines to explore a large num-
ber of case distinctions. A successful framework for computer-generated search
trees for graph modification problems is provided in [85, 107]. To extend the
framework to other graph or non-graph problems and to examine the practical
relevance of these search tree algorithms remains an issue of future research.

84 Basic Concepts and Ideas

Chapter 10

Cluster Editing

In this chapter we show that Cluster Editing is solvable in O(2.27k + |V |3)
worst-case time by a depth-bounded search tree algorithm based on a forbidden
subgraph characterization. This gives a simple and efficient exact algorithm
for this NP-complete problem in case of small parameter values k (number of
deletions and additions). We follow parts of [86].

Recall that the Cluster Editing problem is defined as follows:

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Task: Find a set P of at most k two-element subsets of V such
that the graph G′ = (V, E′) with E′ := E 	 P consists of a disjoint
union of cliques. (Adding the edges in P \E and deleting the edges
in E ∩ P results in a disjoint union of cliques.)

A graph that consists of a disjoint union of cliques is called a cluster graph.
Set P is called cluster editing set. Cluster graphs can be characterized by a
forbidden induced subgraph, P3. According to the scheme given in Section 9.3,
we first describe a simple algorithm in Section 10.1 solving Cluster Editing
in O(3k · |V |3) time. A more refined search tree strategy with improved search
tree size 2.27k is given in Section 10.2. The technically most intricate part
is to prove that we need only a branching into two subcases for some special
subgraphs (Lemma 10.2). Based on an automated generation of branching rules
Gramm et al. [85, 107] improved the search tree size to 1.92k.

10.1 Basic Branching Strategy

First, we formulate the forbidden subgraph characterization for cluster graphs
in the following easy to prove lemma.

Lemma 10.1. A graph G = (V, E) consists of disjoint cliques iff there are no
three vertices u, v, w ∈ V which induce a P3 in G.

We call three vertices which induce a P3 in G a conflict triple.

85

86 Cluster Editing

In other words, if G does not consist of disjoint cliques, then we can find
a conflict triple between which we either have to insert or to delete an edge in
order to destroy the forbidden induced P3. In the following, we describe the
straightforward branching rule according to P3.

Let (G, k) denote the input instance with at most k edge modifications al-
lowed. The branching rule first determines whether there exists a conflict triple
in G and, if existing, finds one. Let u, v, and w denote the three vertices of
the conflict triple and {u, v} and {u, w} be the two edges of the P3 induced by
the conflict triple. The branching rule specifies three smaller new instances as
follows:

(B1) G1 = (V, E1) with E1 := E \ {u, v} and k1 := k − 1.

(B2) G2 = (V, E2) with E2 := E \ {u, w} and k2 := k − 1.

(B3) G3 = (V, E3) with E3 := E ∪ {v, w} and k3 := k − 1.

The two termination conditions are:

• k ≤ 0?

• Is G {P3}-free?

The search tree algorithm starts with the input graph G and, if the termi-
nation conditions are not satisfied, applies the branching rule specifying three
smaller instances shown above. Then, the branching rule is recursively applied
to the three smaller instances. The algorithm reports a solution if and only if,
at one search tree node, the second termination condition is satisfied but the
first is not.

Proposition 10.1. Cluster Editing can be solved in O(3k · k2 + |V |3) time.

Proof. The branching rule and the resulting search tree algorithm suggested
above is obviously correct. Concerning the runtime, we observe the following.
We can first apply the kernelization process shown in Chapter 7 which can be
done in O(|V |3) time (Theorem 7.1). After that, we employ the search tree
with size clearly bounded by O(3k). Hence, it remains to justify the factor k2

which stands for the computational overhead related to every search tree node.
First, note that in a further preprocessing step, we can once set up a linked list
of all conflict triples. This is clearly covered by the O(|V |3) term. Secondly,
within every search tree node (except for the root) we deleted or added one edge
and, thus, we have to update the conflict list accordingly. Due to Theorem 7.1,
we only have O(k2) graph vertices now. Moreover, if the addition or deletion
of an edge {u, v} creates new conflict triples, then each of these new conflict
triples has to contain at least one of the vertices u and v. Thus, at most O(k2)
new conflict triples can be created by the addition or deletion of edge {u, v}.
With the same argument, the addition or deletion of an edge {u, v} can make at
most O(k2) conflict triples disappear. Using a doubly-linked list of all conflict
triples, one can update the list, after adding or deleting an edge of the graph,

10.2 Refined Branching Strategy 87

in O(k2) time: after adding or deleting edge {vi, vj}, vi, vj ∈ V , we iterate over
all O(k2) many vertices vl ∈ V , vl 6= vi and vl 6= vj . Only the status of the
vertex triples {vi, vj , vl} can be changed by this modification, either by causing
a new conflict (then, the triple has to be added to the conflict list) or by being
a conflict solved by the modification (then, the triple has to be deleted from the
conflict list). This update for one vertex triple can be done in constant time, by
employing a hash table or by using a size-|V |3 array to store, for every vertex
triple, pointers to possible entries in the conflict list. Summarizing, the conflict
list can be updated in O(|V |) = O(k2) time.

The interleaving technique introduced by Niedermeier and Rossmanith [142]
can be applied to improve Proposition 10.1:

Corollary 10.1. Cluster Editing can be solved in O(3k + |V |3) time.

Proof. Niedermeier and Rossmanith [142] show that, in case of a polynomial size
problem kernel, by doing the “kernelization” repeatedly during the course of the
search tree algorithm whenever possible, the polynomial factor in parameter k
can be replaced by a constant factor.

10.2 Refined Branching Strategy

We improve the runtime of the search tree algorithm from Section 10.1 by
making a case distinction with three cases and giving for each case a branching
rule. Each of the new branching rules achieves a branching number smaller than
three. Hence the search tree size is decreased.

Given a graph G = (V, E), we start with distinguishing three main cases that
may apply when considering the conflict triple u, v, and w with edges {u, v}
and {u, w}.

(C1) Vertices v and w do not share a common neighbor, i.e. @x ∈ V, x 6= u :
{v, x} ∈ E and {w, x} ∈ E.

(C2) Vertices v and w have a common neighbor x 6= u and {u, x} ∈ E.

(C3) Vertices v and w have a common neighbor x 6= u and {u, x} /∈ E.

Regarding case (C1), we show in the following lemma that, here, a branching
into two cases (B1) and (B2) as described in Section 10.1 suffices.

Lemma 10.2. Given a graph G = (V, E), a nonnegative integer k, and a
conflict triple u, v, w ∈ V , if v and w do not share a common neighbor be-
sides u, then branching subcase (B3) cannot lead to a better solution than both
subcases (B1) and (B2), and can therefore be omitted.

Proof. We prove this claim by a counting argument. Consider a cluster graph G′

which is obtained by applying a cluster editing set to G. Herein, we did add

88 Cluster Editing

uu

vv ww

NG∩G′(v) NG∩G′(w)

G G′

Figure 10.1: In case (C1), adding edge {v, w} does not need to be considered.
Here, G is the given graph and G′ is a cluster graph resulting by applying a
cluster editing set that contains insertion of edge {v, w} to G. The dashed lines
denote the edges being deleted to transform G into G′, and the bold lines denote
the edges being added. Observe that the drawing only shows that parts of the
graphs (in particular, edges) which are relevant for our argumentation.

{v, w} (see Figure 10.1). We use NG∩G′(v) to denote the set of vertices which
are neighbors of v in G and in G′. Without loss of generality, assume that

|NG∩G′(w)|
(∗)

≤ |NG∩G′(v)|.

We then construct a new graph G′′ from G′ by deleting all edges incident to w.
Deleting all edges incident to w results in a new clique containing only vertex w.
Together with the fact that G′ is a cluster graph, we can infer that G′′ is also a
cluster graph. We compare the size of the cluster editing set P ′′ transforming G
into G′′ to the size of the cluster editing set P ′ transforming G into G′:

• P ′ inserts {v, w} while P ′′ does not;

• P ′′ deletes {u, w} while P ′ does not;

• P ′ adds |NG∩G′(v)| edges {w, x}, x ∈ NG∩G′(v), while P ′′ does not;

• P ′′ deletes |NG∩G′(w)| edges {w, x}, x ∈ NG∩G′(w), while P ′ does not;

Herein, we omitted possible vertices which are neighbors of w in G′ but not
neighbors of w in G because they would only increase the size of P ′.

Since P ′ and P ′′ make the same modifications with respect to the other parts
of G, we obtain

|P ′| − |P ′′| ≥ |NG∩G′(v)| + 1 − |NG∩G′(w)| − 1
(∗)

≥ 0.

Therefore, the size of P ′′ is not greater than the size of P ′, i.e., we do not
need more edge additions and deletions to obtain G′′ from G than to obtain G′

from G. Note that P ′′ does not contain the insertion of the edge {v, w}. This

10.2 Refined Branching Strategy 89

means that there always exists an optimal cluster editing set which, for a conflict
triple u, v, w where v and w share no common neighbor besides u, does not insert
edge {v, w}. This is why we can omit (B3) for such a conflict triple.

Lemma 10.2 shows that in case (C1) a branching into two subcases is suf-
ficient, namely to recursively consider graphs G1 = (V, E \ {u, v}) and G2 =
(V, E \ {u, w}), each time decreasing the parameter value by one.

In order to achieve branching rules for cases (C2) and (C3), we introduce
an annotation Ψ mapping any vertex pair to a three-element set {“permanent”,
“forbidden”, “none”}. The semantics of the mapping is as follows:

Ψ({u, v}) = “permanent” means that {u, v} ∈ E and the edge {u, v} cannot
be deleted.

Ψ({u, v}) = “forbidden” means that {u, v} /∈ E and the edge {u, v} cannot be
inserted.

Ψ({u, v}) = “none” means that there is no information available about the
edge {u, v} and it can be edited.

We apply the following data reduction rule to an annotated graph G:

Annotation Rule For every three vertices u, v, w ∈ V :

1. If Ψ({u, v}) = Ψ({u, w}) = permanent, then the edge {v, w}, if it is not
in E, has to be added to E and Ψ({v, w}) := permanent.

2. If Ψ({u, v}) = permanent and Ψ({u, w}) = forbidden, then the edge {v, w},
if it is in E, has to be deleted from E and Ψ({v, w}) := forbidden.

The correctness and the runtime of Annotation Rule follows directly from
its description.

Lemma 10.1. Annotation Rule is correct and can be done in O(|V |3) time.

With the annotation mapping Ψ and Annotation Rule, we are ready to
describe the branching rules for cases (C2) and (C3).

For case (C2) where the vertices v and w of a conflict triple u, v, w have a
common neighbor x 6= u with {u, x} ∈ E, we make the following branching:
In the first branch, we add edge {v, w}. In the second and third branches, we
delete edges {u, v} and {u, w}, respectively, as illustrated by Figure 10.2:

• Add {v, w} as labeled by 2© in Figure 10.2. We have only one new smaller
instance with a parameter value decreased by one.

• Set Ψ({v, w}) = forbidden and delete {u, v}, as labeled by 3©. This creates
the new conflict triple u, v, x. Since adding {u, v} is forbidden, in order
to destroy the P3 induced by u, v, x, there are only two possibilities to
consider:

– Delete {v, x}, as labeled by 5©.

90 Cluster Editing

u

uu u u

uu

u

v

vv v v

vv

v

w

ww w w

ww

w

x

xx x x

xx

x

−1

−2−2 −3−3

1©

2© 3© 4©

5© 6© 7© 8©

Figure 10.2: The branching rule for case (C2). Bold lines denote edges annotated
as permanent, dashed lines edges annotated as forbidden.

– Set Ψ({v, x}) = permanent and delete {u, x}. With Annotation Rule,
we then delete {w, x}, too, as labeled by 6©.

By combining these two possibilities into the branching subcase where we
delete the edge {u, v}, we obtain two new smaller instances, one with the
deletion of edges {u, v} and {v, x} and a parameter value decreased by
two; the other with the deletion of edges {u, v}, {u, x}, and {w, x} and a
parameter value decreased by three.

• Set Ψ({v, w}) = forbidden and delete {u, w} (4©). Because this case is
symmetric to the previous one, we have also two new smaller instances
with a parameter value decreased by two or three, respectively.

In summary, the branching rule for case (C2) specifies five new smaller in-
stances and its branching vector is (1, 2, 3, 2, 3).

For case (C3), we derive a branching rule as illustrated by Figure 10.3:

• Delete {u, v}, as labeled by 2©. The obtained smaller instance has a
parameter value decreased by one.

• Set Ψ({u, v}) = permanent and delete {u, w}, as labeled by 3©. With
Annotation Rule, we can additionally set Ψ({v, w}) as forbidden. We then
identify a new conflict triple u, v, x. Not being allowed to delete {u, v},
we have only two possibilities to destroy the P3 induced by u, v, x:

– Delete {v, x}, as labeled by 5©.

– Set Ψ({v, x}) = permanent. This implies that {u, x} needs to be
added and {w, x} needs to be deleted due to Annotation Rule, as
labeled by 6©.

10.2 Refined Branching Strategy 91

u

uu u u

uu

u

v

vv v v

vv

v

w

ww w w

ww

w

x

xx x x

xx

x

−1

−2−2 −3−3

1©

2© 3© 4©

5© 6© 7© 8©

Figure 10.3: The branching rule for case (C3).

By combining these two possibilities into the branching subcase where
we delete the edge {u, w}, we have two new smaller instances, one with
the deletion of edges {u, w} and {v, x} and a parameter value decreased
by two; the other with the deletion of edges {u, w} and {w, x} and the
insertion of edge {u, x} and a parameter value decreased by three.

• Set Ψ({u, v}) = Ψ({u, w}) = permanent and add {v, w}, as labeled by 4©.
The vertices u, w, and x induce a P3. To destroy this P3 without delet-
ing {u, w}, we have only two possibilities:

– Delete {w, x} as labeled by 7©. We then also need to delete {v, x}.

– Add {u, x}, as labeled by 8©.

By combining these two possibilities into the branching subcase that adds
the edge {v, w}, we obtain two new smaller instances, one with the deletion
of edges {v, x} and {w, x} and the insertion of edge {v, w} and a parameter
value decreased by three; the other with the insertion of edges {v, w}
and {u, x} and a parameter value decreased by two.

It follows that the branching rule for case (C3) specifies five new smaller
instances and its branching vector is (1, 2, 3, 3, 2).

In summary, this leads to a refinement of the branching with the new worst-
case branching vector (1, 2, 2, 3, 3), yielding branching number 2.27. The algo-
rithm stops whenever the parameter value has reached 0 or below or when G
is P3-free. We obtain a search tree size of O(2.27k). This results in the following
theorem.

Theorem 10.1. Cluster Editing can be solved in O(2.27k + |V |3) time.

92 Cluster Editing

10.3 Concluding Remarks

In [85, 107], by using an automated generation of more intricate branching rules
based on more complicated base distinctions, an at least theoretical improve-
ment over the search tree size given here has been achieved. More precisely,
the improved upper bound on the search tree size is O(1.92k). To what extent
this smaller worst-case bound also has practical significance remains an issue
of future research. Note that the computer-generated search tree has a signifi-
cantly increased number of branching rules which causes increased overhead in
the implementation etc.

We feel that the whole field of data clustering problems might benefit from
more studies on the parameterized complexity of the many problems related
to this field. One possible subject of future research could be the so-called
p-Cluster Editing problem introduced by Shamir et al. [163]. The parame-
terized complexity of this problem is still open when we consider the combined
parameter consisting of the number of allowed edge modifications and the num-
ber p of clusters. Note that, parameterized only by the number p of clusters,
there is no hope for fixed-parameter tractability because Shamir et al. [163]
showed that p-Cluster Editing is NP-complete for p ≥ 2.

Chapter 11

Closest 3-Leaf Power

Most depth-bounded search tree algorithms solving graph modification prob-
lems work directly on the input graph. Branching rules specify new instances
consisting of subgraphs of the input graph. In this chapter we present a fixed-
parameter algorithm solving the Closest 3-leaf power problem. This search
tree algorithm does not directly work on the input graph but on a simplified
special graph. The technically most difficult part of this chapter is the proof of
Lemma 11.3 which justifies the strategy of working on the simplified graph. In
addition, we also give a further example for a forbidden subgraph characteriza-
tion. We follow partly [59].

11.1 Problem Definition and Previous Results

Problem Definition. In order to give a formal definition of the problem
studied here, we need the following notion which was introduced by Nishimura
et al. [144]. Herein, we use dG(u, v) to denote the length of a shortest path
between vertices u and v in graph G.

Definition 11.1. For an unrooted tree T with leaves one-to-one labeled by the
elements of a set V , the `-leaf power of T is a graph, denoted T `, with T ` :=
(V, E), where

E := {{u, v} | u, v ∈ V and dT (u, v) ≤ `}.

The tree T is called an `-leaf root of T `.

See Figure 11.1 for two examples of leaf powers. The recognition problem
for `-tree powers is defined as follows:

`-Leaf Power Recognition (LP`)

Input: A graph G.

Question: Is there a tree T such that T ` = G?

93

94 Closest 3-Leaf Power

2-leaf power 3-leaf power

2-leaf root 3-leaf root

1

11

1 22

22

33

33

44

44

55

55

66

66

77

77

Figure 11.1: Leaf powers and leaf roots. The leaves of a leaf root stand in
one-to-one correspondence to the vertices of its leaf power.

The main problem of this chapter is an “approximate” version of the recog-
nition problem:

Closest `-Leaf Power (CLP`)

Input: A graph G = (V, E) and a nonnegative integer k.

Task: Find a set X of at most k vertex pairs, i.e., X ⊆ V × V
and |X | ≤ k, such that the graph G′ = (V, E′) with E′ := E 	 X is
an `-leaf power. (Adding the edges in X \ E and deleting the edges
in E ∩ X result in an `-leaf power.)

More precisely, this problem is denoted as CLP` Edge Editing. In the
literature there exist two variations of this problem:

• CLP` Edge Insertion: Only inserting edges into G is allowed to ob-
tain T ` (that is, E(T `) ⊇ E(G));

• CLP` Edge Deletion: Only deleting edges from G is allowed to ob-
tain T ` (that is, E(T `) ⊆ E(G)).

In addition, we examine the problem that considers deleting vertices instead
of edges.

• CLP` Vertex Deletion: Find a set of at most k vertices whose removal
transforms G into an `-leaf power.

We remark that CLP2 is equivalent to Cluster Editing. In other words,
each cluster graph is a 2-leaf power: We construct for each clique in a cluster
graph a star with the leaves labeled by the vertices of the clique and then insert

11.1 Problem Definition and Previous Results 95

edges between the center vertices of the stars such that the center vertices induce
a path. The resulting tree is clearly a 2-leaf root of the cluster graph. Conversely,
every two adjacent vertices of a 2-leaf power G one-to-one correspond to two
leaves having the same parent in the corresponding 2-leaf root T . Thus, all
leaves in T having the same parent correspond to vertices of a clique in the
leaf power G. From the definition of 2-leaf powers, two leaves having distinct
parents correspond to two non-adjacent vertices in G. Furthermore, because
each leaf has only one parent, each vertex in G can be in only one clique. Then,
G is a cluster graph.

Motivation. Motivated by applications in computational biology, Nishimura
et al. [144] introduced the notion of leaf powers : A fundamental problem in
computational biology is to reconstruct the evolutionary history of a set of
species from biological data. This evolutionary history is typically modelled
by a phylogenetic tree. Each leaf of a phylogenetic tree represents a distinct
species and each internal vertex represents a speciation event. Modelling the
interspecies similarity by a graph where the vertices are the species and the
edges represent the evolutionary similarity between the vertices, the problem of
forming a phylogenetic tree can be framed as the problem of constructing a leaf
root from a given graph.

Note that the input graphs are derived from some evolutionary similarity
data which is usually inexact in practice and may have erroneous edges. Such
errors may result in graphs which have no leaf root. Hence, it is natural to
consider the “error correction setting”, namely Closest `-Leaf Power.

Previous Results. Graph powers are a classical concept in graph theory [30,
Section 10.6] with recently increased interest from an algorithmic point of view.
The `-power of a graph G = (V, E) is the graph G` = (V, E′) with {u, v} ∈ E′ iff
there is a path of length at most ` between u and v in G. We say G is the `-root
of G` and G` is the `-power of G. It is NP-complete to decide whether a given
graph is an `-power [135]. By way of contrast, one can decide in O(|V |3) time
whether a graph is an `-power of a tree for any fixed ` [116]. In particular, it can
be decided in linear time whether a graph is a square of a tree [130, 127]. Kearney
and Corneil [116] introduced the Closest `-Tree Power problem determining
whether a given graph can be modified by adding or deleting at most k edges
such that the resulting graph has an `-tree root. Unfortunately, this problem
turns out to be NP-complete for ` ≥ 2 [116, 110], even for the special case that
the vertex degree of the `-tree root is upper-bounded by four [61].

In addition, Lin et al. [129], Chen et al. [42], and Chen and Tsukiji [43]
examined the variant of leaf powers where all inner vertices of the root tree have
degree at least three. The corresponding algorithmic problems to decide whether
a graph has such an `-root are called `-Phylogenetic Root (PR`) [129].
PR` is solvable in polynomial time for ` ≤ 4 [129]. For ` ≥ 5, its complexity
is open. Moreover, Chen et al. [42] and Chen and Tsukiji [43] showed that,
under the assumption that the maximum vertex degree of the phylogenetic root

96 Closest 3-Leaf Power

dart gembull

Figure 11.2: 5-vertex graphs that occur as forbidden induced subgraphs for
3-leaf powers.

is bounded from above by a constant, there is a linear-time algorithm that
determines whether a graph has an `-phylogenetic root (that is, an `-leaf root
with minimum vertex degree three) for arbitrary `.

Concerning the recognition problem of leaf powers, Nishimura et al. [144]
showed that, for ` ≤ 4, LP` is solvable in O(|V |3) time. The complexity of
this problem for ` ≥ 5 is still open. In contrast, Closest `-Leaf Power
for ` ≥ 2 is NP-complete [126, 59]. The NP-completeness of CLP` Vertex
Deletion for ` ≥ 2 follows directly from a result by Lewis and Yannakakis [128],
who showed that the vertex deletion problem is NP-complete for any nontrivial
hereditary graph property. To the best of our knowledge, except for the case ` =
2 (for more results of CLP2 which is equivalent to Cluster Editing we refer
to Chapters 7 and 10) these graph modification problems so far have only led
to complexity hardness results. We are not aware of any results concerning
polynomial-time approximation or nontrivial exact algorithms.

In Section 11.3, we show the fixed-parameter tractability with respect to
the number k of edge modifications for Closest 3-Leaf Power by giving
a search tree algorithm. To this end, we develop a novel forbidden subgraph
characterization of 3-leaf powers in the next section. We mention in passing that
the fixed-parameter tractability of Closest 4-Leaf Power with the number
of edge modifications as parameter is shown in a similar way, that is, also using
a search tree algorithm based on a forbidden subgraph characterization [57, 58].

11.2 Forbidden Subgraph Characterization for

3-Leaf Powers

In this section we derive an induced forbidden subgraph characterization of 3-
leaf powers: They are chordal graphs that contain no induced bull, dart, or gem
(see Figure 11.2). Note that chordal graphs forbid all induced chordless cycles
with length four or higher. In other words, this characterization of 3-leaf powers
admits an infinite set of forbidden subgraphs.

As we will see, 3-leaf powers are closely connected to the concept of critical
cliques and critical clique graphs, which were introduced by Lin et al. [129]. For

11.2 Forbidden Subgraph Characterization for 3-Leaf Powers 97

G

CC(G)

Figure 11.3: A graph G and its critical clique graph CC(G). Ovals denote the
critical cliques of G.

easier distinction from the elements of G, we use the term nodes for vertices in
the critical clique graph.

Definition 11.2. A critical clique of a graph G is a clique K where the vertices
of K all have the same set of neighbors in G \K, and K is maximal under this
property.

Definition 11.3. Given a graph G = (V, E). Let C be the collection of its
critical cliques. Then the critical clique graph CC(G) is a graph (C, EC) with

{Ki, Kj} ∈ EC ⇐⇒ ∀u ∈ Ki, v ∈ Kj : {u, v} ∈ E.

That is, the critical clique graph has the critical cliques as nodes, and two nodes
are connected iff the corresponding critical cliques together form a larger clique.

An example of a graph and its critical clique graph is shown in Figure 11.3.
Due to Definition 11.3, every vertex of G belongs to exactly one critical clique.
The critical clique graph of G can be constructed in O(|V | · |E|) time: As
long as there are two adjacent vertices u and v which have the same closed
neighborhood, i.e., N [u] = N [v], we “merge” them into a new vertex, that is,
we delete u and v and create a new vertex with the neighborhood equal to N(u).
After iterating through all pairs of adjacent vertices, the resulting graph is then
the critical clique graph.

The following connection to 3-leaf powers can be shown:

Lemma 11.1. If a graph G is a 3-leaf power, then every clique in G contains
vertices of at most two critical cliques.

98 Closest 3-Leaf Power

Proof. If two vertices of G are adjacent to the same inner vertex in a 3-leaf
root T of G, then they have identical neighborhoods in G, since their distances
to other leaves in T are identical. Therefore, vertices from different critical
cliques cannot be adjacent to the same inner vertex of T . For the purpose of
contradiction, we assume that there is a clique K in G that contains vertices
of at least three critical cliques. Then the vertices of K must be adjacent to at
least three different inner vertices of T . Two of three inner vertices in a tree
have distance at least 2, which already yields a distance of 4 between their leaf
children. This implies that their leaf children cannot be in a clique, contradicting
the assumption that their leaf children are part of clique K.

The following lemma is decisive for the proof of the forbidden subgraph
characterization and the fixed-parameter algorithms in the next section. Herein,
a C4 is a cycle induced by four vertices.

Lemma 11.2. For a {C4}-free graph G, the following are equivalent:

(1) CC(G) contains a triangle.

(2) G contains a bull, dart, or gem (see Figure 11.2) as an induced subgraph.

Proof. (1) ⇒ (2): Consider three nodes in CC(G) that form a triangle and
take one vertex of each of the corresponding critical cliques in G. These
three vertices are pairwise connected by an edge and must have pairwise
distinct neighborhoods. We make a case distinction based on whether
there exists a non-common neighbor that is connected to exactly one of
the three vertices or not. In each of these cases, we can get a bull, dart,
or gem in G. For details on the case distinction refer to [59].

(2) ⇒ (1): Assume that G contains a forbidden subgraph. Let u, v, w be the
vertices of a triangle in the forbidden subgraph (in the case of the gem,
the triangle which contains both degree-3 vertices). Then u, v, w form a
clique. Let x and y be the remaining two vertices in the subgraph. Since
each of u, v, w is adjacent to a different combination of x and y, they
belong to three different critical cliques. By Definition 11.3 the triangle
formed by vertices u, v, w exists in CC(G).

Utilizing Lemmas 11.1 and 11.2, we obtain a forbidden subgraph character-
ization of 3-leaf powers.

Theorem 11.1. For a graph G, the following are equivalent:

(1) G is a 3-leaf power.

(2) G is chordal and contains no bull, dart, or gem as an induced subgraph.

(3) CC(G) is a forest.

11.3 Algorithms 99

Proof. (1) ⇒ (2): If G is a leaf power, then G must be chordal [129]. Moreover,
it is easy to observe that each of bull, dart, and gem contains a triangle
whose three vertices have distinct neighborhoods and have to belong to
three distinct critical cliques. Thus, by Lemma 11.1, if G is a 3-leaf power,
then G contains none of bull, dart, and gem as an induced subgraph.

(2) ⇒ (3): If G is chordal, then so is CC(G), since if CC(G) contained a hole,
we could also find a hole in G by taking one arbitrary vertex from each
critical clique on the cycle. By Lemma 11.2, CC(G) contains no triangle. A
triangle-free, chordal graph is clearly acyclic. Thus, it follows that CC(G)
is a forest.

(3) ⇒ (1): We prove this by constructing a 3-leaf root of G from the given
critical clique graph CC(G) of G: First, we consider every connected com-
ponent of the forest CC(G) individually. For a connected component which
is a tree, we construct a new tree by attaching to each node of the tree one
new leaf node for each graph vertex belonging to the corresponding crit-
ical clique. Then we join the trees newly constructed for the connected
components of CC(G) together by creating a new node and connecting
this node to an arbitrary inner node of each of these trees. We show in
the following that the resulting tree T is a 3-leaf root of G.

On the one hand, consider two adjacent vertices u and v with u 6= v of G.
They have to be in the same critical clique or in two adjacent critical
cliques. The former case implies that the leaf nodes corresponding to u
and v have the same parent node in T and, thus, the distance in T between
them is two. In the latter case, the leaf nodes corresponding to u and v
are attached to two adjacent nodes in T . Therefore, the distance in T
between these two leaf nodes is three.

On the other hand, consider two leaf nodes which have a distance of two
or three in T . They have the same parent node or their parent nodes are
adjacent. This implies that the two vertices in G corresponding to these
two leaf nodes have to belong to the same critical clique or two adjacent
critical cliques and they, thus, are adjacent in G. This shows that T is a
3-leaf root of G.

11.3 Algorithms

First, we show fixed-parameter tractability results with respect to the number
of editing operations k for CLP3 Edge Insertion, CLP3 Edge Deletion,
and CLP3 Edge Editing (Section 11.3.1). Then, we reuse the ideas derived
for the edge versions to solve CLP3 Vertex Deletion (Section 11.3.2).

100 Closest 3-Leaf Power

11.3.1 Edge Modifications (Overview)

Since the characterization of 3-leaf powers from Theorem 11.1 contains infinitely
many forbidden subgraphs, including all induced chordless cycles of length at
least four, we cannot directly derive a search tree algorithm from this charac-
terization. It seems also hard to give a data reduction to a base subset with
respect to the infinite set of forbidden subgraphs. Lemma 11.2 provides the
main idea behind the algorithms given in the following: Compared with a {C4,
bull, dart, gem}-free graph G, its corresponding critical clique graph CC(G) is
much more simple, that is, CC(G) is triangle-free. Editing a triangle-free graph
into a forest is a much easier task than editing an arbitrary graph into a 3-leaf
power. Following this idea, our algorithms consist of two steps. The first step
is working on the input graph G and it gets rid of all induced C4s, bulls, darts,
and gems in G by edge deletions and insertions. In order to destroy these four
forbidden subgraphs, we can clearly apply Cai’s result [32] with respect to de-
signing depth-bounded search tree algorithms based on a finite set of forbidden
subgraphs, see Section 9.3. The size of the search tree is upperbounded by Nk

where N denotes the maximum size of the four forbidden subgraphs. The run-
time for finding one of the four subgraphs is clearly O(|V |5) since they contain
at most five vertices. Thus, the overall runtime of the first step is O(Nk · |V |5).
The second step works then on the critical clique graphs of the resulting graphs
output by the first step. Depending on whether only edge deletions, only edge
insertions, or both of them are allowed, this step applies different methods to
transform the triangle-free critical clique graphs into forests.

The following central lemma of this section guarantees the correctness of
working on the critical clique graphs in the second step of the algorithms.

Lemma 11.3. There is always an optimal solution for CLP3 Edge Editing,
CLP3 Edge Deletion, or CLP3 Edge Insertion that is represented by
edge editing operations on CC(G). That is, one can find an optimal solution
that does not delete any edges within a critical clique; furthermore, in this opti-
mal solution, between two critical cliques either all or no edges are inserted or
deleted.

Proof. (idea) We consider here only CLP3 Edge Editing, but the same ar-
gumentation holds for CLP3 Edge Deletion and CLP3 Edge Insertion.
Observe that deleting an edge within a critical clique or inserting or deleting
some but not all edges between two critical cliques results in splitting one critical
clique in G into at least two critical cliques in the resulting graph, that is, the
vertices of a critical clique of G belong to different critical cliques of the resulting
graph. Thus, if we can construct an optimal solution for CLP3 Edge Editing
on G which splits no critical clique of G, then we have shown the lemma. Let
Fopt be an arbitrary optimal solution for CLP3 Edge Editing on G = (V, E),
and Gopt := (V, E	Fopt). If Fopt splits no critical clique of G, then we are done;
otherwise, for a critical clique K of G, there are at least two critical cliques K1

and K2 in Gopt which both have common vertices with K. We claim that there

11.3 Algorithms 101

Gopt

G′

G

v
v

v
v

uu

u

u K

K2

K1

N

N1

N1N1

N2

N2N2

N3

N3N3

N4

N4N4

N5

N5N5 N6

N6

N6

K ′

K ′′

G′′

Figure 11.4: Illustration of the proof of Lemma 11.3. Circles denote vertex
subsets and ovals denote critical cliques. Lines denote the edge {u, v} and
edges between u, v and the vertex subsets. Only the edges having u or v as
one endpoint are displayed. Set N contains all neighbors of u and v in G. The
vertices in N1 (or N6) are contained in the critical clique K1 (or K2) in Gopt.
Set N2 (or N5) contains the vertices only adjacent to u (or v) in Gopt. Set N3

contains the common neighbors of u and v in Gopt and N4 := N \ (N1 ∪ N2 ∪
N3 ∪ N5 ∪ N6). Obviously, sets N1, . . . , N6 are pairwise disjoint. Graphs G′

and G′′ are obtained by editing edges incident to u or v in Gopt.

102 Closest 3-Leaf Power

exists a solution which does not split K and is at least as good as Fopt. In the
following we show the claim for the simple case that K = {u, v}. For |K| > 2
the claim can be shown in basically the same way.

Consider a critical clique K = {u, v} with N denoting K’s neighborhood
in G as shown in the top left part in Figure 11.4. The optimal solution Fopt

splits K into two critical cliques K1 and K2. Suppose that K1 = {u} ∪ N1

and K2 = {v}∪N6 as shown in Gopt in Figure 11.4. Moreover, suppose that the
neighborhood of K1 contains N2∪N3 and the neighborhood of K2 contains N3∪
N5. We set N4 := N \ (N1 ∪ N2 ∪ N3 ∪ N5 ∪ N6). Comparing Gopt and G we
can identify the edge modifications in Fopt concerning the vertices u and v:

• Insertion of the edges between vertex u and the vertices in (N1∪N2∪N3)\
N and the edges between vertex v and the vertices in (N3 ∪N5 ∪N6) \N ;

• Deletion of the edge {u, v} and the edges between vertex u and the vertices
in (N4 ∪ N5 ∪ N6) ∩ N and the edges between vertex v and the vertices
in (N1 ∪ N2 ∪ N4) ∩ N .

In order to show the claim, consider the two graphs G′ and G′′, shown in
the lower part of Figure 11.4. These two graphs are obtained by editing edges
in Gopt which are incident to u or v. Note that in G′ and G′′ the critical clique K
is not split. Obviously, the only difference between the sets of critical cliques
of Gopt and G′ (or G′′) is that the critical clique K2 (or K1) in Gopt has in G′

(or G2) one vertex less while the critical clique K1 (or K2) in Gopt has in G′

(or K2) one vertex more. Thus, due to the forest structure of CC(Gopt), it is
easy to observe that CC(G′) (or CC(G′′)) is also a forest and G′ (or G′′) is a 3-
leaf power (Theorem 11.1). Let F ′ (or F ′′) denote the set of edge modifications
which transform G into G′ (or G′′). In other words, F ′ (or F ′′) is a solution of
CLP3 Edge Editing on G.

The set F ′ contains the following edge modifications concerning the vertices u
and v:

• Insertion of the edges connecting u or v with the vertices in (N1 ∪ N2 ∪
N3) \ N ;

• Deletion of the edges between u or v and the vertices in (N4∪N5∪N6)∩N .

Similarly, F ′′ contains the following edge modifications concerning the ver-
tices u and v:

• Insertion of the edges connecting u or v with the vertices in (N3 ∪ N5 ∪
N6) \ N ;

• Deletion of the edges between u or v and the vertices in (N1∪N2∪N4)∩N .

Since the transformation from Gopt to G′ and the one from Gopt to G′′ do not
affect the edges that are not incident to u or v, we have |F ′|+ |F ′′| ≤ 2 · |Fopt|.
Therefore, at least one of F ′ and F ′′ is at least as good as Fopt. This completes
the proof of the claim for the critical clique K. Repeatedly applying the claim
to each critical clique split by Fopt we obtain the lemma. For a more complete
proof refer to [59].

11.3 Algorithms 103

uu

vv

xxx

w

Figure 11.5: An illustration of destroying cycles in CC(G) by merge operations.
By inserting edges {u, v} and {u, x}, the two critical cliques corresponding to
nodes u and v have the same neighborhood. They have to be merged into
one critical clique corresponding to node w. This merge operation destroys the
length-four cycle containing nodes u and v.

In the following, we give only a brief description of the second step of the
algorithms. More details can be found in [59].

Note that after modifying CC(G), two or more nodes in CC(G) might obtain
identical neighborhoods. Since each node in CC(G) has to represent a critical
clique in G, a merge operation is needed, which replaces these nodes in CC(G)
by a new node with the same neighborhood as the original nodes. Therefore,
in the following we assume that after each modification operation, we check for
every pair of nodes whether a merge operation between them is possible; this
can be done in O(n · m) time.

In order to make CC(G) a forest, we have to destroy all cycles in it. A
shortest cycle can be found in O(n ·m) time [109]. This cycle can be destroyed
by either deleting at least one edge of this cycle (CLP3 Edge Deletion),
triggering a merge operation for two nodes on this cycle (CLP3 Edge Edit-
ing), or both (CLP3). See Figure 11.5 for an illustration of destroying a cycle
in CC(G) by a merge operation. Recall that two nodes can be merged iff they
are adjacent and they have the same neighborhood. Thus, in order to merge
two nodes Ki and Kj , we have to insert an edge between them if they are not
already adjacent; furthermore, we need to delete or insert edges such that Ki

and Kj have the same neighborhood.
As shown in the proof of Theorem 11.1, if CC(G) has more than one con-

nected component, we can solve the problem for each component independently,
and then connect the generated leaf roots by adding a new inner vertex and con-
necting it to an arbitrary inner vertex of each leaf root. This allows us in the
following, without loss of generality, to focus on connected graphs.

Edge Deletion. As stated above, the task is to transform CC(G) into a forest
by edge deletions.

Observe that, since CC(G) contains no triangle, a merge operation between
two nodes in CC(G) can only be triggered if the two nodes form a connected
component. However, for a connected CC(G) with more than two nodes, no
optimal solution of CLP3 Edge Deletion can produce a connected component
of two nodes; otherwise, at least one edge deletion was not necessary. Thus,

104 Closest 3-Leaf Power

no merge operation is needed when we destroy cycles by deleting edges. The
following lemma follows directly from this observation.

Lemma 11.4. For a triangle-free critical clique graph CC(G), we can find an
optimal solution for CLP3 Edge Deletion by finding a maximum weight
spanning tree for CC(G), where edges are weighted by the product of the sizes
of the critical cliques corresponding to their two endpoints.

With Lemma 11.4, the second step here can be done in O(|E| · log |V |) time
by applying standard methods finding maximum weight spanning trees [45, 111,
179]. Since the maximum edge number of C4, bull, dart, and gem is six, the
runtime of the first step is O(6k · |V |5). Summarizing the two steps, we obtain
the following theorem:

Theorem 11.2. CLP3 Edge Deletion with k edge deletions allowed is solv-
able in O(6k · |V |5) time.

Edge Insertion Here, to modify CC(G) to a forest, we again use a depth-
bounded search tree based on forbidden subgraphs. Note that to destroy cycles
by edge insertions, we have to trigger merges between nodes in CC(G). Since
forests have infinitely many forbidden subgraphs, we show that, if CC(G) can
be transformed into a forest by at most k edge insertions, then there exists a
cycle whose length is bounded from above by a function of k. A search tree
algorithm can then be derived based on a branching rule with respect to this
cycle. To this end, we prove a connection between the triangulation of a hole
and the merge operations that turn a cycle into a tree.

A triangulation of a hole C = (VC , EC), where VC denotes the set of the
vertices on this cycle and EC the set of the edges, is a set D of chords placed
into C such that there is no hole in C′ = (VC , EC ∪ D). A triangulation D of
a graph G is minimal if no proper subset of D triangulates G. The following
lemma is proven in [59].

Lemma 11.5. Each set of edges inserted into a cycle C of a critical clique
graph to transform C into a tree is a triangulation of C.

Kaplan et al. [114] showed that a minimal triangulation of an n-vertex-cycle
consists of n−3 chords. This implies that a graph that can be triangulated by at
most k edge insertions cannot have a chordless cycle of length more than k + 3.
With Lemma 11.5, we can easily derive a branching rule with respect to this
length-bounded cycle: By trying all possible merge operations for a forbidden
cycle with at most k + 3 vertices, we get the following theorem. For a proof of
this theorem refer to [59].

Theorem 11.3. CLP3 Edge Insertion with k edge insertions allowed is
solvable in O((k + 3)k · |V |5) time.

11.3 Algorithms 105

Edge Editing The algorithm for CLP3 Edge Insertion can be easily ex-
tend to solve CLP3 Edge Editing by additionally taking edge deletions into
account. We distinguish two types of cycles: the short cycles having length at
most k + 3, and the long cycles having length greater than k + 3.

We can destroy a short cycle in CC(G) by deleting at least one edge from
it, or by merging some critical cliques. This means we have at most k + 3
possible edge deletions and at most (k + 3)2 possible merge operations between
a pair of nodes. However, merge operations with both edge deletion and edge
insertion are more complicated than merge operations with only edge insertion:
For each non-common neighbor of two critical cliques, we can either insert edges
or delete edges to transform it into a common neighbor. With at most k edge
modifications allowed, a merge operation between two critical cliques is possible
only if they have at most k non-common neighbors. Hence we have at most 2k

different ways to merge two critical cliques. Altogether, we now have (k + 3) +
(k + 3)2 · 2k branching subcases to transform a short cycle into a tree.

For long cycles, we must only consider edge deletions as shown by the fol-
lowing lemma that is proven in [59].

Lemma 11.6. 1. A long cycle in CC(G) cannot be transformed into a tree
solely by edge insertions.

2. In order to solve CLP3 Edge Editing on a graph with only long cycles,
there is no need to insert edges.

By combining the algorithms for the edge deletion and insertion versions,
we obtain the following theorem whose proof can be found in [59].

Theorem 11.4. CLP3 Edge Editing with k edge editing operations allowed
is solvable in O(k2k · |V |5) time.

11.3.2 Vertex Deletion

We use a similar approach to solve CLP3 Vertex Deletion as for the edge
variants. This first step works on input graph G and gets rid of C4s, bulls, darts,
and gems. The second step transforms then the resulting CC(G) into forests.

There is a “vertex deletion variant” of Lemma 11.3 which can be proven by
using a similar counting argument as in the proof of Lemma 11.3. A detailed
proof is given in [59].

Lemma 11.7. All optimal solutions for CLP3 Vertex Deletion can be
represented by node deletions on CC(G). That is, if one vertex in a critical
clique is deleted, then all vertices in the critical clique are deleted.

Observe that the second step, destroying cycles in CC(G) by deleting ver-
tices, is exactly the Feedback Vertex Set (FVS) problem (for definition
see Section 3.1). However, the nodes in CC(G) represent critical cliques in G.
Then, deleting one node in CC(G) corresponds to deleting several vertices in G.
We have to associate each node in CC(G) with a weight equal to the size of the

106 Closest 3-Leaf Power

corresponding clique and to solve a weighted version of FVS. Raman et al. [152]
gave a fixed-parameter algorithm which can also solve the weighted version of
FVS. By applying this algorithm in the second step, we obtain the following
result. For the proof of the theorem refer to [59].

Theorem 11.5. CLP3 Vertex Deletion with k vertex deletions allowed is
solvable in O((12k log k)k · |V |5) time.

11.4 Concluding Remarks

We list several open questions and future challenges with respect to the Closest
3-Leaf Power problem.

• It remains open to provide a non-trivial data reduction to a problem kernel
for Closest 3-Leaf Power. For more details on data reduction to
problem kernels refer to Chapter 6.

• Also open is the problem to find good polynomial-time approximation
algorithms for Closest 3-Leaf Power.

• One challenge is to investigate whether similar fixed-parameter tractability
results can be achieved for the closely related Closet `-Phylogenetic
Root problem studied in [42, 129]. Forbidding degree-2 nodes there in
the output trees seems to make things more elusive, though.

• From a more applied point of view, it would be interesting to see how
small the combinatorial explosion in the number of modifications can be
made for CLP3 and its variants.

Moreover, the algorithms for the edge editing, edge insertion, and ver-
tex deletion variants require to know the number of modifications k in
advance, whereas the algorithm for the edge deletion variant finds an op-
timal solution even without this knowledge. It would be interesting to see
whether we can find fixed-parameter algorithms for the first three variants
with this desirable property.

We mention that for Closest 4-Leaf Power we derived a forbidden subgraph
characterization and similar fixed-parameter algorithms [57, 58]. However, the
corresponding forbidden subgraph characterization becomes much more compli-
cated and, therefore, causes a much increased algorithmic complexity. As long
as it remains open to determine the complexity of `-Leaf Power Recogni-
tion for ` > 4, it seems to make little sense to study the more general Closest
`-Leaf Power for ` > 4.

Part V

Parameterization by
Structure

107

Chapter 12

Basic Concepts and Ideas

Until now we have presented several algorithm design methods for deriving
fixed-parameter algorithms where the parameter is always the size of the solu-
tion, such as the “edge cut” size for Multicut in Trees, the number of vertex
removals for Feedback Vertex Set, and the number of edge modifications
for Cluster Editing and Closest 3-Leaf Power. The aim of this chapter
is to investigate a different parameterization, the so-called “parameterization
by structure.” One of the most prominent structural parameters is the notion
of treewidth developed by Robertson and Seymour [158]. From an algorithmic
viewpoint, parameterizing by structure seems to provide a promising alterna-
tive to solve the problems that are hard to approximate and fixed-parameter
intractable with respect to solution size. Since a problem carries usually many
parameters which represent some structural aspects of the input, there are many
meaningful ways to parameterize a problem by structure. In this chapter we will
introduce the “distance from triviality” measurement as a prospective way of
determining reasonable structural problem parameters and we present two sim-
ple examples demonstrating the potential of parameterizing by distance from
triviality. The dynamic programming technique, the seemingly most commonly
used method for designing fixed-parameter algorithms with respect to structural
parameters, will be thoroughly discussed in the next two chapters with two case
studies.

12.1 Distance From Triviality

As introduced in Chapter 1, given an instance (x, k) of a parameterized (and,
as a rule, NP-hard) problem, parameterized complexity theory offers a two-
dimensional framework for studying the computational complexity of the prob-
lem: the input size n := |(x, k)| and the parameter value k (usually a non-
negative integer). The most important issue herein is whether a problem is
fixed-parameter tractable with respect to the chosen parameter k or not. From
the viewpoint of complexity theory, the goal is find out whether or not the in-

109

110 Basic Concepts and Ideas

herent, seemingly unavoidable “combinatorial explosion” of the corresponding
problem can be restricted to the considered parameter.

The two-dimensional view on problems by means of parameterization opens
new and interesting opportunities for attacking otherwise hard problems: the
study of different parameterizations for one and the same problem. Many prob-
lems naturally offer a whole selection of parameters and, as a rule, these prob-
lems can be parameterized in various reasonable ways according to these param-
eters. For example, Fellows [74] discusses at least five different parameterizations
of the Max Leaf Spanning Tree problem.

Roughly speaking, there are at least two fundamentally different ways of
parameterization: “parameterizing by solution” and “parameterizing by struc-
ture.”1 The former one, which uses the solution size of the corresponding opti-
mization problems as parameter, seems to be the most natural and most com-
mon parameterization. We have discussed this kind of parameterization in pre-
vious parts for Multicut in Trees (Chapters 8 and 9), Feedback Vertex
Set (Chapter 3), and other graph modification problems. In the following, we
discuss the latter one in more detail with particular interest in how to determine
a reasonable structural parameter.

We start with an example given by the NP-complete Vertex Cover prob-
lem: Given an undirected graph with n vertices, the goal is to find a vertex sub-
set with minimum cardinality such that each graph edge has at least one of its
endpoints in this subset. Parameterized by the solution size k, the currently best
fixed-parameter algorithms solve Vertex Cover in O(1.2745kk+kn) time [36].
Considering special graph classes, we remark that Vertex Cover is trivially
solvable in trees: Root the tree at an arbitrary vertex and, based on the obser-
vation that taking a leaf into the cover set is never better than taking its parent,
recursively prune the tree in a bottom-up manner. One would like to extend
this trivial solution process of Vertex Cover in trees to graphs which are in
structure similar to trees. Now, for example, consider the parameter d defined
as the number of edges that have to be deleted from a graph to transform it
into a tree. In this sense parameter d measures the “distance” of a graph from
a tree and one may ask whether Vertex Cover is fixed-parameter tractable
when parameterized by d. In this simple example the answer is clearly “yes”:
By applying standard algorithms to compute an arbitrary spanning tree of the
given graph, we can find d edges whose removal from the given graph results
in a tree.2 We then enumerate all minimal vertex sets which “cover” these d
edges, which can be done in O(2d ·n) time with n denoting the number of graph
vertices. For each of the enumerated vertex sets whose number is bounded from
above by 2d, we delete the already covered edges from the input graph. The
resulting graph is clearly a forest. Solving Vertex Cover in linear time on

1Note, however, that in the context of approximability up to a factor (1+ ε) a parameter k
such as k = 1/ε would make sense as well.

2 The problem seeking for a minimum set of edges whose removal transforms a graph into
a tree is also called Feedback Edge Set, the edge-deletion version of Feedback Vertex
Set, and is equivalent to the problem of computing a spanning tree. It is well-known that a
spanning tree can be found in polynomial time [45, 111, 179].

12.1 Distance From Triviality 111

the remaining forest completes the algorithm which runs in O(2d · n) time.
We extend now the “distance from a tree” concept from the simple exam-

ple of Vertex Cover to a broader setting, leading to a generic framework of
parameterizing hard problems by structure. We call this framework parame-
terizing by distance from triviality. This framework was introduced in [95]. In
general, this framework consists of two parts:

1 Identify the trivially (in most cases, polynomial-time) solvable cases for the
problem—the triviality—and determine a certain measure that reflects the
distance between the trivially solvable and hard problem instances—the struc-
tural parameter;

2 Design a fixed-parameter algorithm with the distance measure determined
above as structural parameter.

Concerning the first part, one of the deepest examples for the distance from
triviality parameterization is clearly the notion of bounded treewidth developed
by Robertson and Seymour [158]. Without going into details, the basic mo-
tivation for considering this concept can be derived from the fact that many
NP-hard graph problems (such as Vertex Cover) become easy (linear-time
solvable) on trees. Treewidth then measures how close a graph is to the trivial
problem instance tree and, if this parameter is small, then many otherwise hard
graph problems can be solved efficiently (see [27, 28, 154] for surveys). Trees
have treewidth one. In this sense treewidth measures the distance from the trivi-
ality “tree” and problems such as Vertex Cover are fixed-parameter tractable
with respect to this structural parameter [169]. Comparing the treewidth ω of
a given graph with the number d of edge deletions required to transform the
graph into a tree, it is easy to see that ω ≤ d + 1: To transform a graph into a
tree (or forest), we need to delete at most d vertices from the graph. Adding all
these d vertices to each bag of the tree decomposition of the resulting tree (or
forest). We have then a tree decomposition of the input graph with width at
most d+1. Thus, the treewidth ω is upperbounded by d+1. For the definitions
of tree decomposition and treewidth, we refer to [27, 28, 119, 154].

We now turn our attention to the second part of the framework and will
thoroughly discuss the dynamic programming technique, the until now most
commonly used technique for designing fixed-parameter algorithms for struc-
tural parameters. For several decades dynamic programming has been used to
design exact algorithms, in most cases polynomial-time algorithms, such as in
the fields of sequence comparison and tree alignments [182, 118, 90, 84]. Sev-
eral well-known exact algorithms for NP-hard problems are based on dynamic
programming, such as the Bellman algorithm and the Held-Karp algorithm for
the Traveling Salesman problem [21, 106] or the Dreyfus-Wagner algorithm
solving Minimum Steiner Tree in Graphs [66].

Roughly speaking, dynamic programming works in a “bottom-up” fashion:
It starts by computing solutions to the smallest subinstances, and continues to
larger and larger subinstances until the input instance is solved. During the
bottom-up process, the solutions to smaller subinstances are stored in some

112 Basic Concepts and Ideas

tables and these stored solutions are then used for computing the solutions of
larger subinstances. For more details on dynamic programming on its own, we
refer to standard algorithm textbooks [45, 101, 121, 161, 171]. We will illustrate
the benefits of dynamic programming for parameterization by structure by giv-
ing two fixed-parameter algorithms for Multicommodity Demand Flow in
Trees and Multicut in Trees in the next two chapters.

We conclude this section with a remark on the correlation between the com-
plexity of the determination of a distance parameter and the “quality” of the
determined distance parameter. For example, consider Vertex Cover param-
eterized by treewidth ω and the number d of edges between a graph and a tree
considered above. For both parameterizations there are fixed-parameter algo-
rithms solving Vertex Cover in O(2ω ·n) [169] and O(2d ·n) time, respectively,
where n denotes the number of graph vertices. As mentioned above, treewidth ω
is always bounded from above by d + 1. This means that the parameterization
with treewidth as parameter seems to be more interesting. In contrast, however,
it is NP-complete to determine the treewidth of a graph while parameter d is
computable in polynomial time by applying standard spanning tree algorithms.
As a consequence, in order to give an efficient fixed-parameter algorithm with
respect to a structural parameter, we should not consider the two parts of the
framework as separate, but rather as interrelated: The computational complex-
ity of both parts—the determination of the parameter and the algorithm based
on this parameter—has to be taken into account.

In the next two sections we provide two case studies for parameterizing by
distance from triviality.

12.2 Case Study 1: Clique

The Clique problem is defined as follows:

Input: A graph G = (V, E) and a nonnegative integer `.

Question: Does G contain a clique, i.e., a complete subgraph,
with at least ` vertices?

This problem can also be formulated as a graph modification problem.

Input: A graph G = (V, E) and a nonnegative integer `.

Task: Find a set V ′ of vertices with |V ′| ≤ |V | − ` whose removal
transforms G into a clique?

Clique is one of the classical NP-complete problems [115] and it is not
polynomial-time approximable within a factor of |V |1−ε for any ε > 0, unless
any problem in NP can be solved in probabilistic polynomial time [104]. Con-
cerning parameterized complexity, Clique is W[1]-complete with respect to
parameter ` [65]. Here we exhibit fixed-parameter tractability with respect to
the distance from a trivial case.

12.3 Case Study 2: Power Dominating Set 113

Our trivial case is the class of cluster graphs : graphs which are a disjoint
union of cliques. Clique can be trivially solved in linear time on such graphs.
We examine Clique on graphs which are “almost” cluster graphs, namely, on
graphs which are cluster graphs with k edges added. Observe that determining
the distance parameter, i.e., finding the added k edges, is exactly the Cluster
Deletion problem defined in Chapter 7. An algorithm running in O(1.53k +
|V |3) time for this problem was given by Gramm et al. [86, 85].

It remains to show how to solve Clique for the “almost cluster graph” G
after identifying the k added edges and the corresponding cluster graph G′. If
the largest clique in G is not one which is already contained in G′, then each
of its vertices must have gained in degree by at least one compared to G′. This
means it can only be formed by a subset of the up to 2k vertices “touched” by
the added edges. Hence, we solve Clique for the subgraph of G induced by
the up to 2k vertices which are endpoints of the added edges. This step can
be done for example by using Robson’s algorithm for Independent Set [159]
on the complement graph in O(1.222k) = O(1.49k) time, which is dominated
by the above time bound for the Cluster Deletion subproblem. The largest
clique for G is simply the larger of the clique found this way and the largest
clique in G′. We obtain the following theorem:

Theorem 12.1. Clique for a graph G = (V, E) which is a cluster graph
with k edges added can be solved in O(1.53k + |V |3) time.

12.3 Case Study 2: Power Dominating Set

The Power Dominating Set problem is motivated from applications in elec-
tric networks [105]. The task is to seek for a minimum cardinality set of vertices
such that, by placing monitoring devices (so-called PMUs) at the vertices in
this set, all vertices are observed. The vertex set is call power dominating set.
The rules for observation are:

• Observation Rule 1 (OR1): A vertex in the power domination set
observes itself and all of its neighbors.

• Observation Rule 2 (OR2): If an observed vertex v of degree d ≥ 2
is adjacent to d − 1 observed vertices, then the remaining unobserved
neighbor vertex becomes observed as well.3

We can now formulate the Power Dominating Set problem:

Input: A graph G = (V, E) and a nonnegative integer `.

Task: Find a power dominating set of size at most `, that is, a
subset M ⊆ V of vertices such that by placing a PMU in every v ∈
M , all vertices in V are observed?

3This is motivated by Kirchhoff’s law in electrical network theory. The original definition
of Haynes et al. [105] is a bit more complicated and the equivalent definition presented here
is due to Kneis et al. [120].

114 Basic Concepts and Ideas

It is shown in [99, 151] that Power Dominating Set is equivalent to a
graph modification problem called Valid Orientation with Minimum Ori-
gin.

Power Dominating Set is NP-complete [105] and is not polynomial-time
approximable within (1− ε) · ln |V | for any ε > 0 [73, 99]. Parameterized by the
size of power dominating set, Power Dominating Set is W[2]-hard [99, 120].
There is a simple algorithm solving Power Dominating Set in trees in linear
time [99, 151].4 Since we use this algorithm as a building block for our result,
we briefly sketch how it proceeds. This algorithm works bottom-up from the
leaves and adds every vertex to the power dominating set which has at least
two unobserved children. Then it updates the observation status of all vertices
according to the two observation rules and prunes completely observed subtrees,
since they no longer affect observability of other vertices.

Our goal is now to find an efficient algorithm for input graphs that are
“nearly” trees. More precisely, we aim for a fixed-parameter algorithm for
graphs which are trees with k edges added.

As a first step we present a simple algorithm with quadratic running time
for the case of one single added edge.

Lemma 12.1. Power Dominating Set for a graph G = (V, E) with n := |V |
which is a tree with one edge added can be solved in O(n2) time.

Proof. Graph G contains exactly one cycle and a collection of trees Ti touching
the cycle at their roots.

We use the above mentioned linear-time algorithm to find an optimal solution
for each Ti. When it reaches the root ri, several cases are possible:

• The root ri needs to be in the power dominating set M , and we can remove
it. This breaks the cycle, and we can solve the remaining instance in linear
time.

• The root ri is not in M , but already observed. Then all children of ri in Ti

except for at most one are observed, or we would need to take ri into M .
Then, we can remove Ti except for ri and except for the unobserved child,
if it exists. The root ri remains as an observed degree-2 or degree-3 vertex
on the cycle.

• The root ri still needs to be observed. This is only possible if it has
exactly one child in Ti which is unobserved since otherwise ri either would
be in M , or be observed. As in the previous case, we keep ri and the
unobserved child, and the rest of Ti can again be removed.

Then, we apply OR2 to the vertices on the cycle, as long as possible. If
there are still unobserved vertices, then at least one vertex on the cycle has to
be added to M . We simply try each vertex. After each choice, the rest of the
cycle decomposes into a tree, after adding the selected vertex to M , applying

4Haynes et al. [105] give a far more complicated linear-time algorithm for Power Domi-
nating Set in trees.

12.3 Case Study 2: Power Dominating Set 115

OR1 and OR2, and deleting the selected vertex. The remaining tree can be
handled in linear time. From all possible choices, we keep the one leading to
a minimal M . Since there are O(n) vertices on the cycle, this takes O(n2)
time.

Lemma 12.1 is applicable whenever each vertex is part of at most one cycle.
We now generalize this result.

Theorem 12.2. Power Dominating Set for a graph which is a tree with
k edges added is fixed-parameter tractable with respect to k.

Proof. We first treat all trees which are attached in single points to cycles as in
the proof of Lemma 12.1. What remains are degree-2 vertices, degree-3 vertices
with a degree-1 neighbor, and other vertices of degree 3 or greater, the joints.
For a vertex v, let deg(v) denote its degree, that is, the number of its adjacent
vertices. We branch into several cases for each joint:

• The joint v is in M . We can prune it and its incident edges.

• The joint v is not in M . Note that the only effect v can still have is that
a neighbor of v becomes observed from application of OR2 applied to v.
We branch further into deg(v) · (deg(v)−1) cases for each pair (w1, w2) of
neighbors of v with w1 6= w2. In each branch, we omit the edges between v
and all neighbors of v except w1 and w2. Clearly any solution of such an
instance provides a solution for the unmodified instance. Furthermore, it is
not too hard to show that if the unmodified instance has a solution of size s,
then on at least one branch we will also find a solution of size s. To see this,
consider a solution M for the unmodified problem. Vertex v is observed;
this can only be either because a neighbor w1 of v was put into M , or
because there is a neighbor w1 of v such that vertex v became observed
by applying OR2 to w1. Furthermore, as mentioned, there can be at most
one vertex w2 which becomes observed by OR2 applied to v. Then M is
also a valid solution for the branch corresponding to the pair (w1, w2).

In each of the less than (deg(v))2 branches we can eliminate the joint. If
we branch for all joints in parallel, we end up with an instance where ev-
ery connected component is a tree or a cycle with attached degree-1 vertices,
which can be solved in O(n2) time. The number of cases to distinguish is
∏

v is joint(deg(v))2. Since there are at most 2k joints, each of maximum de-

gree k, the total running time is roughly bounded by O(n2 ·24k log k), confirming
fixed-parameter tractability.

Remark: Note that a tree with k edges added has treewidth bounded
by k + 1 [25]. We refer to [99, 151] for a fixed-parameter algorithm for Power
Dominating Set with treewidth ω as parameter. Given a graph G with n
vertices and given a tree decomposition of G with width ω, the algorithm runs
in O(cω2

· n) time with a very big constant c.

116 Basic Concepts and Ideas

12.4 Concluding Remarks

The art of parameterizing problems is of key importance to better understand
and cope with computational intractability. In contrast to approximation algo-
rithms where the approximation ratio is tied to the optimization goal, we have
more than one possible parameterizations of a given problem. The parameteri-
zation with distance from triviality as parameter seems to be a natural way of
parameterizing problems and opens new views on well-known hard problems.
In particular, consider problems such as Power Dominating Set which are
fixed-parameter intractable with respect to the solution size and hard to approx-
imate. Parameterizing by structural parameters as we have done for Power
Dominating Set in Section 12.3 and in [99] seems to be the only reasonable
way to attack these problems.

Determining structural parameters, it is worth remarking that the tractable
trivial case may refer to polynomial-time solvability as well as fixed-parameter
tractability.5 An example for the latter case is Dominating Set in planar
graphs which is fixed-parameter tractable [7, 9]. These results were extended to
graphs of bounded genus [53, 68], genus here measuring the distance from the
“trivial case” (because settled) planar graphs. Also observe that with the ad-
vancement of scientific achievements also the range of triviality may be extended
and new parameterizations might emerge in this process.

Furthermore, for some problems, the distance from triviality could be a com-
bination of more than one parameters. Consider the Multicut in Graphs
problem which is the generalization of Multicut in Trees (Chapter 8) on
general graphs: Given a graph and a set of vertex pairs, find a minimum cardi-
nality set of edges whose removal disconnects every input vertex pair. On the
one hand, from the fact that Multicut in Trees is NP-complete, we know that
Multicut in Graphs is fixed-parameter intractable with respect to treewidth.
On the other hand, it was shown in [49] that this problem is NP-complete even
if there are only three input vertex pairs, which excludes the fixed-parameter
tractability with the number of vertex pairs as parameter. However, we can eas-
ily solve the problem in trees when there are only constantly many input vertex
pairs: We need to remove at most c edges to separate c vertex pairs in trees. By
trying all possibilities of removing at most c edges, we can compute the optimal
solution in polynomial time. We have as the triviality a tree with constantly
many vertex pairs. Using the combination of treewidth ω and the number of in-
put vertex pairs l measuring the distance from triviality, Multicut in Graphs
can be solved in O(ll+ω+1 · (|V |+ |E|)) time for a given graph G = (V, E) with
a given tree decomposition with width ω [94].

Finally we emphasize that not only graph problems fall into the parameter-
izing by distance from triviality framework. An example with Satisfiability
is given by Szeider [166, 167]. It is easy to observe that a boolean formula in
conjunctive normal form which has a matching between variables and clauses
that matches all clauses is always satisfiable. For a formula F , considered as

5The latter being of particular interest when attacking W[1]-hard problems as shown for
the W[1]-complete Clique in Section 12.2.

12.4 Concluding Remarks 117

a set of m clauses over n variables, define the deficiency as δ(F) := m − n.
The maximum deficiency is δ∗(F) := maxF ′⊆F δ(F ′). Szeider shows that the
satisfiability of a formula F can be decided in O(2δ∗(F) · n3) time [166]. Note
that a formula F with δ∗(F) = 0 has a matching as described above. Again,
δ∗(F) is a structural parameter measuring the distance from triviality in our
sense.

118 Basic Concepts and Ideas

Chapter 13

Multicommodity Demand
Flow in Trees

In this chapter, we study an NP-hard (and MaxSNP-hard) problem in trees—
Multicommodity Demand Flow—from the viewpoint of structural param-
eterization. This problem deals with demand flows between pairs of vertices
and tries to maximize the value of routed flows. We prove the fixed-parameter
tractability of this problem with respect to the maximum number of the input
flows at any tree vertex. Herein, we partly follow [98].

13.1 Problem Definition and Previous Results

The Multicommodity Demand Flow in Trees (MDFT) problem is defined
as follows.

Input: A tree network T = (V, E), where each edge e is associated
with a positive integer c(e) as its capacity, and a collection F of flows
which is encoded as a list of pairs of vertices of T ,

F = {fi | fi := (ui, vi), ui ∈ V, vi ∈ V, ui 6= vi, 1 ≤ i ≤ l}.

Each flow f ∈ F has associated an integer demand value d(f) and a
real valued profit p(f).
Task: Remove a subset of the flows in F such that the set F ′ of
the remaining flows is routable and maximizes

∑

f∈F ′ p(f). A sub-
set F ′ ⊆ F is routable (in T) if the flows in F ′ can be simultaneously
routed without violating any edge capacity of the tree.1

The tree T is termed the supply tree. Throughout this chapter let n := |V |
and l := |F |. The vertices u, v are called the two endpoints of the flow f =

1That is, for any edge e the sum of the demand values of the flows routed through e does
not exceed c(e).

119

120 Multicommodity Demand Flow in Trees

(u, v). Note that, for a tree, the path between two distinct vertices is uniquely
determined and can be found in linear time. Thus, we can assume that each
flow f = (u, v) ∈ F is given as a path between u and v. We use Fv to denote the
set of demand flows passing through vertex v. A demand flow passes through
vertex v if it has v as one of its endpoints or v lies on the flow’s path.

Multicommodity flow problems find many applications as in telecommuni-
cation, routing, and railroad transportation [147, 174]. For example, Ahuja et
al. [4] modeled a problem called “racial balancing of schools” as a multicom-
modity flow problem, where one seeks for an optimal assignment of students to
schools such that the total distance traveled by the students is minimized and
the desired ethnic composition for each school is achieved. We refer to Chekuri
et al. [39] and Garg et al. [82] with respect to further relevance of studying
MDFT.

It follows from the results of Garg et al. [82] that MDFT is NP-complete
and MaxSNP-hard even in the case of unit demands and unit profits. For this
special case of unit demands and unit profits, they gave a factor-two polynomial-
time approximation algorithm. Chekuri et al. [39] showed that in the special
case of MDFT with unit demands but arbitrary profits the natural linear pro-
gramming relaxation yields a factor-four approximation. They further showed
that, under the assumption that the maximum flow demand is at most the min-
imum edge capacity, in the general case with arbitrary demands and arbitrary
profits the natural linear programming relaxation of MDFT has an integrality
gap of at most 48, improving previous work of Chakrabarti et al. [35] which
dealt with path instead of tree networks. Both papers, however, concentrate on
the polynomial-time approximability of MDFT and its still NP-complete special
cases.

Concerning exact algorithms, we are only aware of the recent work of Anand
et al. [12] where (a special case of) MDFT is referred to as “call admission
control problem.” For the special case of MDFT restricted to instances with
unit demands and unit profits, they presented a fixed-parameter algorithm with
run time O(2d ·d! · |I|O(1)), where |I| denotes the size of the input instance and d
denotes the number of flows to be rejected in order to “enable” all remaining
flows. Hence, their version of MDFT is fixed-parameter tractable with respect
to parameter d defined in this way.

By way of contrast, for the general MDFT problem, we subsequently show
that it is fixed-parameter tractable with respect to the new parameter

k := max
v∈V

|Fv|.

That is, parameter k denotes the maximum number of the input flows passing
through any vertex of the given tree network. We call the parameter k the vertex
cutwidth of the given instance. The motivation for considering this parameteri-
zation is that, if all demand flows are vertex-disjoint, then MDFT can be solved
trivially: We can determine the routability of every demand flow independently
from other demand flows. If the demand of a flow exceeds the minimum capac-
ity of the edges it is passing then this demand flow cannot be routed. Thus, the

13.2 The Algorithm 121

a := a1a2 . . . akv
De

00 . . . 00
00 . . . 01

...
11 . . . 11

Figure 13.1: Table De for edge e = (u, v) with Fv := {fv
1 , fv

2 , . . . , fv
kv
} with kv ≤

k

instance settings with vertex-disjoint demand flows are a “triviality” for MDFT
and the distance of an input instance from this triviality is measured by the
vertex cutwidth k considered here.

Our fixed-parameter algorithm relies on the dynamic programming technique
and has a runtime of O(2k · l · n). This fixed-parameter algorithm is superior
to approximative solutions whenever k is of limited size, a realistic assumption
for several applications. Without going into details, we remark that MDFT
restricted to paths and unit flow demands can be solved in polynomial time [39]
and if, in addition, all flows have unit profits, then there is a linear-time solving
algorithm [98].

13.2 The Algorithm

The fixed-parameter algorithm is based on dynamic programming. We begin
with some agreements that simplify the presentation and analysis of the algo-
rithm. Then, we describe the algorithm in detail and after that we prove its
correctness and analyze its time complexity.

13.2.1 Agreements and Basic Tools

We assume that we deal with arbitrarily rooted trees. Thus, an edge e = (u, v)
reflects that u is the parent vertex of v. In particular, using the rooted tree
structure, we will solve MDFT in a bottom-up fashion by dynamic programming
from the leaves to the root. In this context, we use T [v] to denote the subtree
of the input tree rooted at vertex v.

The core idea of the dynamic programming is based on the following defini-
tion of tables which are used throughout the algorithm. For each edge e = (u, v)
with Fv := {fv

1 , fv
2 , . . . , fv

kv
} ⊆ F we construct a table De as illustrated in Fig-

ure 13.1. Table De has 2kv rows which correspond to all possible kv-vectors a
over {0, 1}, i.e., binary vectors having kv components. Each of these vectors
represents a route schedule for the flows in Fv. The ith component ai of a cor-
responds to flow fv

i , and ai = 0 means that we do not route flow fv
i and ai = 1

means that we do route fv
i . Furthermore, to refer to the set of routed flows, we

define r(a) := {i | ai = 1, 1 ≤ i ≤ kv}. Table entry De(a) stores the maximum

122 Multicommodity Demand Flow in Trees

profit which we can achieve according to the route schedule encoded by a with
the flows which have at least one of their endpoints in T [v].

13.2.2 Dynamic Programming Algorithm

The algorithm works bottom-up from the leaves to the root. Having computed
all tables De for the edges e connected to the root vertex, MDFT will be solved
easily as pointed out later on. The algorithm starts with “leaf edges” which are
initialized as follows. For an edge e = (u, v) connecting a leaf v with its parent
vertex u, the table entries for the at most 2k rows a can be easily computed as

De(a) :=

{

0, if c(e) <
∑

i∈r(a) d(fv
i);

∑

i∈r(a) p(fv
i), otherwise.

Then, the main algorithm consists of distinguishing between three cases.

Case 1. Consider an edge e = (u, v) connecting two non-leaf ver-
tices u and v where v has only one child w connected to v by edge
e′ = (v, w).

The sets of flows passing through vertices u, v, and w are denoted by Fu :=
{fu

1 , . . . , fu
ku
}, Fv := {fv

1 , . . . , fv
kv
}, and Fw := {fw

1 , . . . , fw
kw

}. Moreover, we
use Fe and Fe′ to denote the sets of flows passing through e and e′ and we
have Fe = Fu ∩ Fv and Fe′ = Fv ∩ Fw.

First, if Fe ∩ Fe′ = ∅, then the given instance can be divided into two
smaller instances, one consisting of subtree T [v] and the flows inside it and the
other consisting of the original tree without the vertices below v and the flows
therein. The optimal solution for the original instance then is the sum of the
optimal solutions of the two smaller instances. An optimal solution of the first
smaller instance is already computed and it is obtained from a maximum entry
of table De′ . In order to compute an optimal solution of the second smaller
instance, we can treat v as a leaf and proceed as for leaf edges as described
above.

Second, if Fe ∩ Fe′ 6= ∅, then there are some flows passing through both e
and e′. Recall that entry De(a) for a kv-vector a shall store the maximum
profit with respect to the route schedule encoded by a that can be achieved
by the flows with at least one of their endpoints in T [v]. We partition Fv into
two sets, Fv ∩ Fw and Fv \ Fw. The value of De(a) is thus the sum of the
maximum of the entries of De′ which have the same route schedule for the flows
in Fv ∩ Fw as encoded in a, and the profit achieved by the flows in Fv \ Fw

obeying the route schedule encoded by a. Let Bv := {i | fv
i ∈ (Fv ∩ Fw)},

Bw := {i | fw
i ∈ (Fv ∩ Fw)}, and j := |Bv| = |Bw|.2 To easier obtain the

maximum of the entries of De′ which have the same route schedule for the flows
in Fv ∩Fw, we condense table De′ with respect to Bw. The condensation of De′

with respect to Bw is to keep only the components of the kw-vector a′ of De′

2Clearly, Bv and Bw refer to the same sets of demand flows. Note, however, that they
may differ due to different “naming” of the same flow in the two tables De and De′ .

13.2 The Algorithm 123

which correspond to the demand flows in Fv ∩ Fw . More precisely, for a route
schedule a′ condensed with respect to Bw, we obtain

De′(a′) := max{De′(a′) | a′ = π(Bw)(a
′)}.

Herein, π(Bw)(a
′) returns the projection of a′ onto the j components of a′ that

correspond to Bw. Then, using A := {i | fv
i ∈ Fe} to refer to the set of the flows

in Fv passing through edge e, the entries of De are computed as follows.

De(a) :=

{

0, if c(e) <
∑

i∈A d(fv
i);

De′(π(Bv)(a)) +
∑

i∈(r(a)\Bv) p(fv
i), otherwise.

Obeying the route schedule encoded by the kv-vector a, the terms De′(π(Bv)(a))
and

∑

i∈(r(a)\Bv) p(fv
i) denote the profits achieved by the flows in Fv ∩ Fw and

in Fv \ Fw, respectively.
Case 2. Consider an edge e = (u, v) connecting two non-leaf ver-

tices u and v where v has two children w1 and w2 connected to v by
edges e′ = (v, w1) and e′′ = (v, w2).

We use Fu := {fu
1 , . . . , fu

ku
}, Fv := {fv

1 , . . . , fv
kv
}, Fw2

:= {fw1
1 , . . . , fw1

kw1
},

and Fw2
:= {fw2

1 , . . . , fw2

kw2
} to denote the sets of flows passing through ver-

tices u, v, w1, and w2. As in Case 1, Fe = Fu ∩ Fv, Fe′ = Fv ∩ Fw1 , and
Fe′′ = Fv ∩ Fw2 .

With the same argument as in Case 1, if one of Fe ∩ Fe′ and Fe ∩ Fe′′ is
empty, we can divide the given instance into two smaller instances and solve
them separately. Thus, we assume that they are not empty. Similar to Case 1,
we “partition” Fv into Fv ∩ Fw1 , Fv ∩ Fw2 , and (Fv \ Fw1) \ Fw2 . For a kv-
vector a, one might simply set De(a) equal to the sum of the maximum of the
entries of De′ which have the same route schedule as encoded in a for the flows
in Fv ∩ Fw1 , the maximum of the entries of De′′ which have the same route
schedule as encoded in a for the flows in Fv ∩ Fw2 , and the profit achieved
by the flows in (Fv \ Fw1) \ Fw2 obeying the route schedule encoded by a.
However, if (Fv ∩ Fw1) ∩ (Fv ∩ Fw2) 6= ∅, that is, due to the tree structure,
Fw1 ∩ Fw2 6= ∅, then the edges e′ and e′′ have some common flows. Then, for
each flow between T [w1] and T [w2] scheduled to be routed in both subtrees, we
have to once subtract its profit from the sum to avoid double counting . Let

Bv
1 := {i | fv

i ∈ (Fv ∩ Fw1)}; Bw1
1 := {i | fw1

i ∈ (Fv ∩ Fw1)};
Bv

2 := {i | fv
i ∈ (Fv ∩ Fw2)}; Bw2

2 := {i | fw2

i ∈ (Fv ∩ Fw2)};
Bw1

3 := {i | fw1

i ∈ (Fw1 ∩ Fw2)}; Bw2
3 := {i | fw2

i ∈ (Fw1 ∩ Fw2)}.

Note that |Bv
1 | = |Bw1

1 |, |Bv
2 | = |Bw2

2 |, |Bw1
3 | = |Bw2

3 |, Bw1
3 ⊆ Bw1

1 , and Bw2
3 ⊆

Bw2
2 . As in Case 1, we condense De′ and De′′ . More specifically, we condense

De′ with respect to Bw1
1 and De′′ with respect to Bw2

2 :

De′(a′) := max{De′(a′) | a′ = π(B
w1
1)(a

′)};

De′′(a′′) := max{De′′(a′′) | a′′ = π(B
w2
2)(a

′′)}.

124 Multicommodity Demand Flow in Trees

vv

uu

v1

v2

vq−2

w1

w1

w2

w2

w3

w3

wq

wq

Figure 13.2: Transformation of an arbitrary tree into a binary tree.

Then, using A := {i | fv
i ∈ Fe}, the entries of De are computed as follows.

De(a) :=

{

0, if c(e) <
∑

i∈A d(fv
i);

α + β, otherwise.

Herein,

α := De′(π(Bv

1)(a)) + De′′(π(Bv

2)(a)) − γ,

β :=
∑

i∈(r(a)\(Bv

1∪Bv

2))

p(fv
i),

γ :=
∑

i∈B
w1
3 ,π({i})(a)=1

p(fw1

i).

In order to avoid double counting of common flows of edges e′ and e′′, γ has
been subtracted in the above determination of De.

Case 3. Consider an edge e = (u, v) connecting two non-leaf vertices
u and v where v has q > 2 children w1, w2, . . . , wq.

We add q − 2 new vertices v1, v2, . . . , vq−2 to T and we transform T into
a binary tree as illustrated in Figure 13.2. Each of these new vertices has ex-
actly two children. Vertex v1 is the parent vertex of w1 and w2, v2 is the
parent vertex of v1 and w3, and so on. Thus, v becomes the parent vertex
of vq−2 and wq. The edge between wi and its new parent vertex is assigned
the same capacity as the edge between wi and v in the original tree. The
edges (v, vq−2), (vq−2, vq−1), . . . , (v2, v1) between the new vertices obtain un-
bounded capacity. The flows have the same endpoints as in the original in-
stance. It is easy to see that the solutions for the new and the old tree are the
same, and thus Case 1 and Case 2 suffice for handling the new binary tree. This
concludes the description of the dynamic programming algorithm.

13.3 Concluding Remarks 125

13.2.3 Main Result

The above described dynamic programming algorithm leads to the following.

Theorem 13.1. MDFT can be solved in O(2k · l · n) time, where k denotes
the maximum number of demand flows passing through any vertex of the given
supply tree, i.e., k := maxv∈V |Fv|.

Proof. The correctness of the algorithm basically follows directly from its de-
scription. To this end, however, note that when the D-tables of all edges of
the supply tree are computed, we may easily determine the final optimum by
comparing the tables of the without loss of generality at most two edges leading
to the root. Moreover, by means of a top-down traversal from the root to the
leaves we can easily determine the actual subset of routable flows that led to
the overall maximum profit.

Concerning the algorithm’s runtime, observe that table De for edge e = (u, v)
has at most O(2k) entries. For a vertex v with more than two children, as
described in Section 13.2.2, we add some new vertices to construct a binary tree.
The resulting tree at most doubles in size. Moreover, since Fv′ ⊆ Fv for each of
the new vertices v′, the D-tables of the new edges have at most O(2k) entries.
Assuming that all basic set operations such as union, set minus, etc. between
two sets having at most l elements can be done in O(l) time, the computation
of a new table from its at most two child tables takes O(2k · l) time.

Altogether, the algorithm then takes O(2k · l · n) time.

13.3 Concluding Remarks

Employing dynamic programming, we obtained a fixed-parameter tractability
result for Multicommodity Demand Flow in Trees with respect to the
vertex cutwidth parameter. This result complements previous work mainly
dealing with the polynomial-time approximability of this and related problems.
Moreover, this exact algorithm is conceptually simple enough to allow easy
implementation and may appear as profitable alternative to existing approxi-
mation algorithms. Clearly, the immediate challenge is to significantly improve
the exponential time bound of our algorithm.

Note that the vertex cutwidth parameter in our fixed-parameter tractability
result relates to the maximum number of flows passing through any vertex of
the input tree. The natural question arises what happens when we consider
the edge cutwidth by replacing “vertex” by “edge.” Somewhat surprisingly, a
simple adaption of the reduction used in [82, Theorem 4.2] to show the NP-
completeness of MDFT shows that MDFT is NP-complete even when there are
at most six demand flows passing through an edge. Hence there is no hope
for fixed-parameter tractability with respect to the edge cutwidth parameter
defined as “maximum number of demand flows passing through any edge of
the tree network.” Finally, it seems worth studying the complexity of MDFT
when parameterized by the number of the demand flows through any vertex

126 Multicommodity Demand Flow in Trees

in a solution instead of the vertex cutwidth parameter, namely the number of
demand flows through any vertex in the input (as we did here). We leave it as
an open question to determine the parameterized complexity for this modified
parameterization.

Chapter 14

Weighted Multicut in Trees

In Chapters 8 and 9 we have shown the fixed-parameter tractability of the
Multicut in Trees problem with respect to the number of removed edges by
two different means, kernelization and a depth-bounded search tree. Here, we
will provide a new parameterization for this problem with respect to a structural
parameter which is defined in a similar way as the vertex cutwidth parameter
for Multicommodity Flow in Trees in Chapter 13. This fixed-parameter
algorithm solves actually the weighted version of Multicut in Trees which is
defined as follows.

Weighted Multicut in Trees
Input: An undirected tree T = (V, E), n := |V |, and a collection H
of h pairs of vertices in V , H = {(vi, ui) | vi, ui ∈ V, vi 6= ui, 1 ≤ i ≤
h}. Each edge e ∈ E has a positive real weight w(e) > 0.
Task: Find a subset E′ of E with minimum total weight whose
removal separates each pair of vertices in H .

We call the uniquely determined path in T between vertices u and v of a vertex
pair (u, v) ∈ H the demand path of (u, v).

Since (unweighted) Multicut in Trees is a special case of Weighted
Multicut in Trees where w(e) = 1 for all e ∈ E, we can infer that the
weighted case is also NP-complete and MaxSNP-hard [82]. With arbitrary edge
weights, the search tree algorithm and the data reduction given in Chapters 8
and 9 cannot be directly applied to the weighted case. We now will present a
fixed-parameter algorithm solving the weighted case with respect to the follow-
ing parameter:

k := the maximum number of demand paths

passing through some tree vertex.

The algorithm runs in O(3k · h ·n) time. Both of this parameter and the vertex
cutwidth parameter in Chapter 13 measure the number of paths over some
vertex. Thus, we call this parameter k vertex cutwidth as well. Observe that this

127

128 Weighted Multicut in Trees

parameterization is also motivated by the observation that we can trivially solve
the problem if all demand paths in H are pairwise vertex-disjoint. Therefore,
this is a “triviality” for the Weighted Multicut in Trees problem and the
vertex cutwidth parameter measures the distance of a given instance from this
triviality.

Partly following [96], we first introduce a special variant of the Set Cover
problem, so-called Tree-like Weighted Set Cover (TWSC), which is more
general than Weighted Multicut in Trees. In Section 14.1 we present
some complexity results for this problem. Then, we show that there is a
parameterized reduction from Weighted Multicut in Trees with vertex
cutwidth as parameter to TWSC with subset size as parameter. Thus, the
fixed-parameter algorithm given in Section 14.2 for TWSC can be applied to
solve Weighted Multicut in Trees as well. Besides its relation to Multi-
cut in Trees, TWSC is motivated by applications in tree decomposition based
computing [22] and bioinformatics [148]. In Section 14.2, we present a fixed-
parameter algorithm solving TWSC with respect to the parameter subset size.
Together with the parameterized reduction this algorithm implies the above
mentioned O(3k · h · n) time algorithm for Weighted Multicut in Trees.

14.1 Multicut in Trees and Tree-Like Set Cover

We introduce an NP-complete special case of Weighted Set Cover and then
show its relation to Weighted Multicut in Trees.

14.1.1 Tree-Like Weighted Set Cover (TWSC)

Basic Definitions. (Weighted) Set Cover is one of the most prominent
NP-complete problems [80]. The basic Set Cover problem (optimization ver-
sion) is defined as follows:

Input: A ground set S = {s1, s2, . . . , sn} and a collection C of
subsets of S, C = {c1, c2, . . . , cm}, ci ⊆ S for 1 ≤ i ≤ m.
Task: Find a subset C′ of C with minimal cardinality which covers
all elements in S, i.e.,

⋃

c∈C′ c = S.

Assigning weights to the subsets and minimizing total weight of the collec-
tion C′ instead of its cardinality, one naturally obtains the Weighted Set
Cover problem. We call C′ the minimum set cover of S resp. the minimum
weight set cover . Define the occurrence of an element s ∈ S in C as the num-
ber of the subsets in C which contain s. An element with occurrence of one is
called unique. Set Cover remains NP-complete even if the occurrence of each
element is bounded from above by two [149].

Definition 14.1 (Tree-like subset collection).
Given a ground set S = {s1, s2, . . . , sn} and a collection C of subsets of S,
C = {c1, c2, . . . , cm}, ci ⊆ S for 1 ≤ i ≤ m, we say that C is a tree-like subset

14.1 Multicut in Trees and Tree-Like Set Cover 129

collection of S if we can organize the subsets in C in an unrooted tree T such that
every subset one-to-one corresponds to a node of T and, for each element sj ∈ S,
1 ≤ j ≤ n, all nodes in T corresponding to the subsets containing sj induce a
subtree of T .

We call T the underlying subset tree and the property of T that, for each s ∈
S, the nodes containing s induce a subtree of T is called the consistency property
of T . Observe that the consistency property also is of central importance in
Robertson and Seymour’s famous notion of tree decompositions of graphs [158,
119, 27, 28]. By results of Tarjan and Yannakakis [168], we can test whether a
subset collection is a tree-like subset collection and, if yes, we can construct a
subset tree for it in linear time. Therefore, in the following, we always assume
that the subset collection is given in form of a subset tree. For convenience, we
denote the nodes of the subset tree by their corresponding subsets. We define
the height of a subset tree as the minimum height of all rooted trees which can
be obtained by taking one node of the subset tree as the root.

Example 14.1. For S = {s1, s2, s3}, the subset collection C = {c1, c2, c3}
where c1 = {s1, s2}, c2 = {s2, s3}, and c3 = {s1, s3} is not a tree-like subset
collection. These three subsets can only be organized in a triangle. By way
of contrast, if c1 = {s1, s2, s3} instead, then we can construct a subset tree
(actually a path) with these three nodes and two edges, one between c1 and c2

and one between c1 and c3.

We now define the special variant of Set Cover considered here.

Tree-like Weighted Set Cover (TWSC):
Input: A ground set S = {s1, s2, . . . , sn} and a tree-like collec-
tion C of subsets of S, C = {c1, c2, . . . , cm}, ci ⊆ S for 1 ≤ i ≤
m, and

⋃

1≤i≤m ci = S. Each subset in C has a positive real
weight w(ci) > 0 for 1 ≤ i ≤ m. The weight of a subset collec-
tion is the sum of the weights of all subsets in it.
Task: Find a subset C′ of C with minimum weight which covers all
elements in S, i.e.,

⋃

c∈C′ c = S.

Motivation and Previous Results. TWSC is motivated by the following
two concrete applications in practice. The first application deals with dynamic
programming on tree decompositions. It is well-known that graphs with small
treewidth allow for efficient solutions of otherwise hard graph problems [27].
The core tool is dynamic programming on tree decompositions. As discussed
in [22], the main bottleneck of this approach is memory space consumption
which is exponential with respect to the treewidth. To attack this problem, one
can try to minimize the redundancy of information stored by avoiding to keep
all dynamic programming tables in memory. This can be formulated as TWSC,
where the tree decomposition serves as the subset collection and each tree node
is assigned a positive weight equal to the size of the dynamic programming
table associated with it. With the help of the TWSC formalization, experiments

130 Weighted Multicut in Trees

showed memory savings of around 80 to 90 % [22]. The second application arises
in computational molecular biology. In their work on vertebrate phylogenomics,
Page and Cotton [148] formulate the problem of locating gene duplications as
Tree-like Unweighted Set Cover: given a so-called species tree in which
each node has a set of gene duplications associated with it, find the smallest set of
nodes whose union includes all gene duplications. Assigning each node a positive
weight equal to the minimum number of distinct “episodes” of duplications at
this node and solving Tree-like Weighted Set Cover on this tree seems
to be a prospective way to answer one of their open questions dealing with
minimizing the number of episodes of all covered duplications.

Set Cover appears to be very hard from an algorithmic point of view. Un-
less NP has slightly super-polynomial time algorithms, the best polynomial-time
approximation algorithm achieves approximation factor Θ(lnn) [73]. In addi-
tion, from the viewpoint of parameterized complexity, the problem is known to
be W[2]-complete [65] (with respect to the parameter “number of chosen cov-
ering sets”) which excludes fixed-parameter tractability in this respect. The
special case of TWSC where T should be a path instead of a tree has been well-
studied under the name Set Cover with Consecutive Ones Property
(SCC1P): A Set Cover instance can also be represented by a binary coeffi-
cient matrix M over {0, 1} where the rows correspond to the elements in S, the
columns correspond to the subsets in C, and an entry is set to “1” if the corre-
sponding element is contained in the corresponding subset; otherwise, it is set
to “0.” A matrix M has the consecutive ones property if there is a permutation
of its columns that leaves the “1”s appearing consecutively in every row. In the
SCC1P problem, we deal with Set Cover instances whose coefficient matrices
have the consecutive ones property. It is well-known that SCC1P can be solved
in polynomial time [139, 173].

A Simple Solution for the Unweighted Case Tree-like Unweighted
Set Cover can be solved by a simple polynomial-time algorithm as described in
the following. The following lemma will be helpful in developing our algorithm.

Lemma 14.1. Given a tree-like subset collection C of S together with its un-
derlying subset tree T , then each leaf of T is either a subset of its parent node
or it has a unique element.

Proof. Consider a leaf c = {s1, s2, . . . , sr} of the subset tree. Let c′ be its parent.
We show that, if c is not a subset of c′, i.e., (c\ c′) 6= ∅, then c contains a unique
element. Assume that c contains no unique element. Thus, for each si ∈ (c\ c′),
1 ≤ i ≤ k, there is a subset c′′ different from c which contains si. According to
the consistency property of the subset tree, all subsets on the path from c to c′′

must also contain si. Since the uniquely determined path from c to c′′ must
pass through c′, si has to be in c′. This contradicts si ∈ (c \ c′).

We process the subset tree T in a bottom-up manner, i.e., we begin with
the leaves. By Lemma 14.1, each leaf of T is either a subset of its parent node
or it contains a unique element from S. If a leaf c contains a unique element,

14.1 Multicut in Trees and Tree-Like Set Cover 131

the only choice to cover this element is to put c into the set cover. Then, we
delete c from T and c’s elements from other subsets. If c is completely contained
in its parent node, it is never better to take c into the set cover than to take
its parent node. Hence, we can safely delete it from the subset tree. After
processing its children, an internal node becomes a leaf and we can iterate the
described process. Thus, we obtain the following result.

Proposition 14.1. Tree-like Unweighted Set Cover can be solved in O(m·
n) time.

Page and Cotton [148] in their work on phylogenomics implicitly dealt with
Tree-like Unweighted Set Cover only giving a heuristic solution seem-
ingly unaware of the simple polynomial-time solvability.

Complexity Results for TWSC. The key idea of the above algorithm for
Tree-like Unweighted Set Cover is that we never put a set into the de-
sired subset collection C′ which is a subset of other subsets in the collection C.
However, if we associate each subset with an arbitrary positive weight and ask
for the set cover with minimum weight, then this strategy is no longer valid.

Proposition 14.2. The decision version of Tree-like Weighted Set Cover
is NP-complete.

Proof. TWSC is clearly in NP. To show its NP-hardness, we reduce the general
(unweighted) Set Cover problem to it. Given a Set Cover instance with
the ground set S and the subset collection C, we construct a new subset collec-
tion C′ := C ∪ {cm+1} with an additional subset cm+1 := S. All subsets in C′

except cm+1 have unit weight, w(ci) = 1 for 1 ≤ i ≤ m, and w(cm+1) = m + 1.
Then, the ground set S and the new subset collection C′ form an instance
of TWSC, the underlying tree being a star with center cm+1.

Since this reduction is gap-preserving, by Feige’s result for Set Cover [73]
it directly follows that the best polynomial-time approximation for TWSC
is Θ(lnn) unless NP has slightly super-polynomial time algorithms. Moreover,
because this reduction also preserves the total weight of the optimal solution
in the sense of parameterized complexity theory [65], we also can infer W[2]-
hardness for TWSC with respect to the parameter “total weight of the solution”
of the set cover. This excludes fixed-parameter tractability for this parameteri-
zation [65]. The reduction above shows also that TWSC remains NP-complete
even if the subset tree has height one. In the following, we will show that several
other relevant variations of TWSC are also NP-complete. The first corollary
follows from the NP-completeness of the variant of Set Cover where the oc-
currence of elements is bounded from above by 2 [149] and the reduction used
above.

Corollary 14.1. The decision version of Tree-like Weighted Set Cover
is NP-complete even if the occurrence of each element from S in the subsets of
the collection C is at most 3.

132 Weighted Multicut in Trees

Corollary 14.2. The decision version of Tree-like Weighted Set Cover
is NP-complete even if the underlying subset tree is a balanced binary tree.

For more complexity results for TWSC and a proof of Corollary 14.2, we refer
to [96]. A structural parameterization for TWSC with bounded occurrence has
been studied in [95].

14.1.2 Weighted Multicut in Trees and TWSC

In the following, we show a parameterized reduction from Weighted Mul-
ticut in Trees to Tree-like Weighted Set Cover. Together with the
fixed-parameter algorithm in Section 14.2 for TWSC, this parameterized reduc-
tion implies that Weighted Multicut in Trees is fixed-parameter tractable
with respect to the vertex cutwidth parameter.

Theorem 14.1. There is parameterized reduction from Weighted Multicut
in Trees to Tree-like Weighted Set Cover running in O(h · n) time
such that the maximum subset size of the Tree-like Weighted Set Cover
instance is equal to the vertex cutwidth parameter of the Weighted Multicut
in Trees instance.

Proof. Given an instance of Weighted Multicut in Trees, we create a new
tree T ′ by adding some new vertices to the input tree T = (V, E), n := |V |. We
replace each edge e = {u, v} ∈ E with a new vertex we and we connect it by
two edges with u and v. The set of these new vertices is denoted as V ′. The
new tree T ′ = (V ∪V ′, E′) has 2n−1 vertices and 2n−2 edges. Then, we create
a set P containing the paths in T which connect the vertex pairs in H . For a
vertex pair (ui, vi) ∈ H , there is a unique path pi in T connecting ui and vi. We
can determine pi in O(n) time and we put it into P . Furthermore, we create
a set Pe for each e ∈ E which contains the paths in P passing through e, and
a set Pv for each v ∈ V containing the paths in P passing through v. Note
that Pv contains the paths starting or ending at v as well. The Tree-like
Weighted Set Cover instance then consists of the ground set P and the
subset collection C := C1 ∪ C2, where C1 := {Pe | e ∈ E} and C2 := {Pv | v ∈
V }. We have

⋃

Pe∈C1
Pe = P . Each subset Pe in C1 is defined to have the

same weight as its corresponding edge e, i.e., w(Pe) := w(e). Since Weighted
Multicut in Trees asks for a subset of the edge set, we have to give the
subsets Pv in C2 a weight such that none of them will be in the minimum
weight set cover: w(Pv) :=

∑

e∈E w(e) + 1 for all v ∈ V . It is clear that C is a
tree-like subset collection: The underlying subset tree is T ′ by associating the
subsets Pe ∈ C1 with the vertices we ∈ V ′ and the subsets Pv ∈ C2 with the
vertices v ∈ V . The maximum subset size corresponds to the vertex cutwidth of
the Weighted Multicut in Trees instance, the maximum number of paths
passing through a vertex or an edge.

It is easy to see that an optimal solution {Pe′
1
, Pe′

2
, . . . , Pe′

l
} for the TWSC

instance corresponds to an optimal solution {e′1, e
′
2, . . . , e

′
l} for the Weighted

Multicut in Trees instance and vice versa. The runtime of the reduction is
clearly O(h · n).

14.2 Algorithm for TWSC 133

14.2 Algorithm for TWSC

We show that TWSC is fixed-parameter tractable with respect to the parameter
maximal subset size k, i.e., k := maxc∈C{ |c| }. This implies that the problem
can be efficiently solved for small values of k. To facilitate the presentation of the
algorithm, we will describe, in the first subsection, how to solve the problem for
binary subset trees, an also NP-complete special case (cf. Corollary 14.2), and
then, in the second subsection, we extend the described algorithm to arbitrary
trees.

14.2.1 TWSC with Binary Subset Tree

The dynamic programming processes the underlying subset tree bottom-up, i.e.,
first the leaves, then the nodes having leaves as their children, and finally the
root. For a given tree-like subset collection C with its underlying subset tree T ,
we define for each node ci of T a set A(ci) which contains all elements occurring
in the nodes of the subtree with ci at the root:

A(ci) :=
⋃

c∈T [ci]

c ,

where T [ci] denotes the node set of the subtree of T rooted at ci.
Moreover, we associate with each node c of T a table Dc. Table Dc has

three columns, the first two corresponding to the two children of c and the third
to c. The rows of the table correspond to the elements of the power set of c,
i.e., there are 2k′

rows if c = {s1, s2, . . . , sk′}, k′ ≤ k. Figure 14.1 illustrates
the structure of table Dc for a node c having two children c′ and c′′. Table Dc

has 3 · 2k′

= O(2k) entries. Entry Dc(x, y) is defined as follows:

Dc(x, y) := the minimum weight to cover the elements in

x ∪ (A(y) \ c) by using the subsets in the

subtree T [y] for y ∈ {c, c′, c′′} and x ⊆ c.

During the bottom-up process, the algorithm fills out such a table for each
node. For an internal node c, the entries of the columns corresponding to c′

and c′′ can be directly retrieved from Dc′ and Dc′′ , which have been already
computed before we arrive at node c.1 Using the values from the first two
columns, we can then compute the entries in the column of c. After Dr for the
root r of the subset tree is computed, we can find the minimum weight to cover
all elements in S in the entry Dr(r, r). In the following, we describe the subtle
details how to fill out the table for a node in the tree. We distinguish three
cases:

Case 1: Node c := {s1, s2, . . . , sk′} is a leaf:

1Note that these two columns are only needed to make the description of the computation
of the last column more simple. For the purpose of implementation, the table Dc needs only
the column corresponding to c.

134 Weighted Multicut in Trees

Dc c′ c′′ c

∅
{s1}
{s2}

...
c := {s1, s2, . . . , sk′}

Figure 14.1: Table Dc for node c := {s1, s2, . . . , sk′} with k′ ≤ k having two
children c′ and c′′.

Since c has no child, columns c′ and c′′ are empty. We can easily compute
the third column:

Dc(x, c) :=

{

0, if x = ∅;
w(c), otherwise.

Case 2: Node c := {s1, s2, . . . , sk′} has only one child c′:
The column c′′ of Dc is empty. The first step to fill out the table is to get

the values of the first column from the table Dc′ . If there is one element sj ,
1 ≤ j ≤ k′, in set x which does not occur in T [c′], i.e., x * A(c′), then it
is impossible to cover x ∪ (A(c′) \ c) by using only the subsets in T [c′]. The
entry Dc(x, c′) is then set to ∞. Otherwise, i.e., x ⊆ A(c′), in order to get the
value of Dc(x, c′), we have to find the (uniquely determined) row in table Dc′

which corresponds to the subset x′ of c′ satisfying x′∪(A(c′)\c′) = x∪(A(c′)\c).
Due to the consistency property of tree-like subset collections, each element in c
also occurring in T [c′] is an element of c′. Hence we get

x ∪ (A(c′) \ c) = x ∪ (c′ \ c) ∪ (A(c′) \ c′).

We set x′ := x ∪ (c′ \ c). Since x ⊆ A(c′) and x ⊆ c, it follows that x ⊆ c′.
Therefore, also x′ ⊆ c′ and there is a row in Dc′ corresponding to x′. Thus,
Dc(x, c′) is set equal to Dc′(x

′, c′). Altogether, we have:

Dc(x, c′) :=

{

∞, if x * c′;
Dc′(x ∪ (c′ \ c), c′), if x ⊆ c′.

The second step is to compute the last column of Dc using the values from
the column for c′. For each row corresponding to a subset x of c, we have to
compare the two possibilities to cover the elements of x∪(A(c)\c), either using c
to cover elements in x and using some subsets in T [c′] to cover the remaining
elements or using solely subsets in T [c′] to cover all elements:

Dc(x, c) := min{w(c) + Dc(∅, c
′), Dc(x, c′)}.

Case 3: Node c := {s1, s2, . . . , sk′} has two children c′ and c′′:
In this case, the first step can be done in the same way as in Case 2, i.e.,

retrieving the values of the columns c′ and c′′ of Dc from tables Dc′ and Dc′′ .

14.2 Algorithm for TWSC 135

In order to compute the value of Dc(x, c), for a row x corresponding to a
subset of c, we also compare the two possibilities to cover x ∪ (A(c) \ c), either
using c to cover x or not. In this case, however, we have two subtrees T [c′]
and T [c′′] and, hence, we have more than one alternative to cover x ∪ (A(c) \
c) by only using subsets in T [c′] and T [c′′]. As a simple example consider a
subset x ⊆ c that has only two elements, i.e., x = {s′1, s

′
2}. We can cover

it by using only subsets in T [c′], only subsets in T [c′′], or a subset in T [c′]
to cover {s′1} and a subset in T [c′′] to cover {s′2} or vice versa. Therefore,
for x := {s′1, s

′
2, . . . , s

′
k′′} ⊆ c with k′′ ≤ k′,

Dc(x, c) := min

w(c) + Dc(∅, c′) + Dc(∅, c′′),
Dc(∅, c′) + Dc(x, c′′),
Dc({s′1}, c

′) + Dc(x \ {s′1}, c
′′),

Dc({s
′
2}, c

′) + Dc(x \ {s′2}, c
′′),

...
Dc(x \ {s′2}, c

′) + Dc({s′2}, c
′′),

Dc(x \ {s′1}, c
′) + Dc({s′1}, c

′′),
Dc(x, c′) + Dc(∅, c′′)

.

With these three cases, we can fill out Dc for all nodes c. The entry Dr(r, r)
stores the minimum weight to cover all elements where r denotes the root of
the subset tree. In order to construct the minimum weight set cover, we can,
using table Dr, find out whether the computed minimum weight is achieved by
taking r into the minimum weight set cover or not. Then, doing a traceback,
we can recursively, from the root to the leaves, determine the subsets in the
minimum weight set cover. Note that, if we only want to know the minimum
weight, we can discard the tables Dc′ and Dc′′ after filling out Dc, for each
internal node c with children c′ and c′′, to reduce the required memory space
from O(2k · m) to O(2k).

Theorem 14.1. Tree-like Weighted Set Cover with an underlying binary
subset tree can be solved in O(3k · m · n) time, where k denotes the maximum
subset size, i.e., k := maxc∈C |c|.

Proof. The correctness of the above algorithm directly follows from the above
description.

Concerning the runtime of the algorithm, the size of table Dc is bounded from
above by 3 ·2k for each node c since |c| ≤ k. Using a proper data structure, such
as a hash table, the retrieval of a value from one of the tables corresponding
to the children can be done in constant time. Thus, the two columns of Dc

corresponding to the two children c′ and c′′ can be filled out in O(2k) time. To
compute an entry in the column c, which corresponds to a subset x of c, the
algorithm compares all possibilities to cover some elements of x by the subsets
in T [c′]. There can be only 2|x| such possibilities. Hence, it needs O(2|x|) steps to
compute Dc(x, c) for each subset x of c. Since all set operations needed between
two sets with maximum size of n can be done in O(n) time, the runtime for

136 Weighted Multicut in Trees

computing Dc is

n · (

|c|
∑

j=1

(

|c|

j

)

O(2j)) + O(2|c|) = O(3|c| · n).

Therefore, the computation of the tables of all nodes can be done in O(3k ·m ·n)
time. During the traceback, we visit, from the root to leaves, each node only
once and, at each node, can in constant time find out whether or not to put this
node into the set cover and with which entries in the tables of the children to
continue the traceback. Thus, the traceback works in O(m) time.

14.2.2 TWSC with Arbitrary Subset Tree

Our subsequent main result gives a fixed-parameter algorithm that solves TWSC
on arbitrary subset trees.

Theorem 14.2. Tree-like Weighted Set Cover can be solved in O(3k ·
m · n) time, where k denotes the maximum subset size, i.e., k := maxc∈C |c|.

Proof. Using the same construction as illustrated in Figure 13.2, we transform
an arbitrary tree into a binary tree. For an internal node c with l > 2 children
nodes, c1, c2, . . ., cl, we add l − 2 new nodes c12, c123, . . ., and c1···l−1 into the
subset tree. All newly added nodes are set equal to c and have weight w(c) + 1.
Observe that the newly added nodes c12, c123, . . . , c1···l−1 can never be in an
optimal set cover, since they cover the same elements as c but have higher
weight. Hence, there is a one-to-one correspondence between the solution for
the arbitrary subset tree and the solution for the binary subset tree. Then, we
can apply the algorithm in Section 14.2.1 to the binary tree which contains at
most 2n nodes.

Together with Theorem 14.3, we get our main result of this chapter.

Theorem 14.3. Weighted Multicut in Trees can be solved in O(3k ·h ·n)
time, where k denotes the vertex cutwidth, i.e., the maximum number of paths
passing through a vertex or an edge, h denotes the number of vertex pairs, and n
denotes the number of tree vertices.

14.3 Concluding Remarks

Garg et al. [82] have shown that Multicut in Trees is equivalent to the so-
called Tree-representable Set Cover problem. A (weighted) Set Cover
instance (S, C) is called a tree-representable set system if there is a tree T in
which each edge is associated with a subset in C such that, for each element s ∈
S, the edges corresponding to the subsets containing s induce a path in T . There
are polymomial-time algorithms to decide whether a given Set Cover instance
is tree-representable [23]. The problem of deciding whether a given Set Cover

14.3 Concluding Remarks 137

instance is tree-representable has been extensively studied in different contexts
such as testing whether a given binary matroid is graphic [170].

Compare Tree-representable Set Cover with Tree-like Set Cover.
Both problems have an underlying tree and, in both problems, the subsets
containing an element should induce a connected substructure. In the tree-
representable case, however, these subsets induce only a path whereas in the
tree-like case they induce a tree. Furthermore, the subsets in the subset collec-
tion are associated with the edges of the tree in the tree-representable case and
the subsets are associated with the nodes of the tree in the tree-like case. Con-
cerning their complexity, for the unweighted case, Tree-representable Set
Cover is NP-complete, since Multicut in Trees is NP-complete [82], while
Tree-like Set Cover can be easily solved in polynomial time as shown in
Proposition 14.1. By way of contrast, due to the equivalence between Multicut
in Trees and Tree-representable Set Cover, Tree-representable
Weighted Set Cover can be reduced to TWSC. The reverse reduction,
if valid, seems to be hard to show. In this sense, we have the “paradoxical
situation” that, whereas the unweighted case of TWSC is much easier than
Tree-representable Set Cover, the weighted case of TWSC seems harder
than Tree-representable Weighted Set Cover. This observation might
be an interesting research subject for future research.

The application of TWSC, namely the reduction of the space requirement
of dynamic programming (for problems such as Vertex Cover, Dominating
Set etc.) on (nice) tree decompositions of graphs, where parameter k (which
corresponds to treewidth there) is typically between 5 and 20, underpins the
practical relevance of the parameterization by subset size. Using TWSC, mem-
ory savings of up to 90 and more have been achieved in this way [22]. An
interesting potential for further applications appears in recent work of Mecke
and Wagner [133] in the context of railway optimization problems. They studied
a special case of TWSC where the subset collection is almost “path-like.” Other
applications of TWSC are conceivable with respect to acyclic hypergraphs and
their applications for relational databases [168], and several other fields with set
covering applications to be explored in future research. Finally, it is an inter-
esting task for future research to investigate the relation between tree-like set
covering and set covering with almost consecutive ones property as introduced
by Ruf and Schöbel [160].

138 Weighted Multicut in Trees

Part VI

Conclusion

139

Chapter 15

Conclusion

There is a long list of graph modification problems arising in various fields of ap-
plications. A very natural and promising approach to attack these, in most cases
NP-complete, problems is to design fixed-parameter algorithms. In this thesis
we have investigated four general techniques for designing fixed-parameter al-
gorithms, namely, iterative compression, data reduction, depth-bounded search
trees, and parameterization by structure. We gave a brief description of the gen-
eral scheme behind each technique and demonstrated with several case studies
how to adapt the general scheme to individual problems.

Summary. In contrast to Section 1.4, we organize the following summary of
results according to the considered problems. We use n and m to denote the
number of the graph vertices and the graph edges, respectively.

• Feedback Vertex Set. We gave a fixed-parameter algorithm running
in O(ck ·m) time where k denotes the size of the feedback vertex set and c
is a constant (Chapter 3 and Chapter 4). Moreover, we modified this
algorithm to obtain an enumeration algorithm for Feedback Vertex
Set with the same runtime (Chapter 5).

• Edge Bipartization. An O(2k · m2) time algorithm was described in
Chapter 4 where k is the size of the edge bipartization set.

• Cluster Editing. We provided two data reduction rules and showed a
problem kernel of size O(k2) with k denoting the size of the cluster editing
set (Chapter 7). A search tree algorithm running in O(2.27k + n3) time
was presented in Chapter 10.

• Closest 3-Leaf Power. A forbidden subgraph characterization and a
search tree algorithm based on this characterization have been derived in
Chapter 11.

• Multicut in Trees. An exponential-size problem kernel was shown by
means of eight data reduction rules (Chapter 6). In addition, we gave a

141

142 Conclusion

simple O(2k · n2) time algorithm by applying the search tree technique
(Chapter 9). It turned out that parameterization by a structural param-
eter, the vertex cutwidth, provides an efficient algorithm for the weighted
case (Chapter 13).

• Multicommodity Demand Flow in Trees. We presented a fixed-
parameter algorithm with respect to the maximum number k of flows
passing through a vertex in the tree network. The runtime is O(2k · n2).

Future research. The obvious next step is to try to improve the results
achieved in this work. The exponential-size problem kernel for Multicut in
Trees, the fixed-parameter algorithm for Feedback Vertex Set with a rel-
atively high exponential term due to the big constant, and the search tree al-
gorithms for Closest 3-Leaf Power seem to be the prime candidates for
future improvements. Implementation of the algorithms and experiments with
real-world data would be necessary to make a fair judgement of the performance
of the algorithms in practice. Additional heuristical tuning methods should be
taken into account when the algorithms are applied in some applications. For
instance, several encouraging results of algorithm engineering in the realm of
fixed-parameter algorithms have been presented for Vertex Cover [2, 3, 8, 38].

Further specializing and deepening the techniques discussed in this thesis
seems to be a challenging task. While data reduction and search trees are
already considered to be “well-established” methods, iterative compression and
parameterization by structure are relatively new and have not been “sufficiently”
studied. For example, a constant-factor approximation algorithm has been used
to replace the iteration procedure as a speed-up method for iterative compression
(Chapter 4). A speed-up method for the compression procedure could be to use
approximation algorithms to “steer” the compression procedure. For instance,
instead of the brute-force partition, a smarter and more efficient partition of size-
(k + 1) solutions could be achieved. Attacking (in particular, W[1]-hard with
respect to some natural parameters) problems using new parameters might be
an interesting subject for future research. Estivill-Castro et al. [70] have started
some work in this direction. They show, among other things, that the W[2]-
complete Dominating Set problem can be solved in O(103k ·nO(1)) time with
the maximum number of leaves of the spanning trees of the input graph as
parameter k.

We have shown in this thesis several problem kernels, in particular, the
exponential-size problem kernels for Multicut in Trees and Minimum Clique
Cover. On the one hand, we felt that it might not be easy to derive polynomial-
or even linear-size kernels for these two problems. On the other hand, we are
not aware of any tools to show that the exponential-size problem kernels are
the best possible for Multicut in Trees and Minimum Clique Cover with
respect to polynomial-time data reductions. It is a fundamental challenge to
derive a framework for proving (relative) lower bounds for problem kernel sizes
(see [40] for a fist result on linear bounds on problem kernel size). Little is
known here.

Bibliography

[1] K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter
tractability and completeness IV: On completeness for W[P] and PSPACE
analogs. Annals of Pure and Applied Logic, 73:235–276, 1995. 6

[2] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H.
Suters, and C. T. Symons. Kernelization algorithms for the Vertex Cover
problem: theory and experiments. In Proc. of 6th ACM-SIAM ALENEX,
pages 62–69. ACM-SIAM, 2004. 44, 142

[3] F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons.
Scalable parallel algorithms for FPT problems. To appear in Algorithmica,
2005. 142

[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Springer, 1994. 3, 120

[5] J. Alber. Exact Algorithms for NP-hard Problems on Networks: Design,
Analysis, and Implementation. PhD thesis, Wilhelm-Schickard-Institut
für Informatik, Universität Tübingen, Germany, 2003. 40

[6] J. Alber, N. Betzler, and R. Niedermeier. Experiments on data reduction
for optimal domination in networks. In Proc. of 1st INOC, pages 1–6,
2003. Long version to appear in Annals of Operations Research. 40, 54,
55

[7] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier.
Fixed parameter algorithms for Dominating Set and related problems on
planar graphs. Algorithmica, 33(4):461–493, 2002. 116

[8] J. Alber, F. Dorn, and R. Niedermeier. Experimental evaluation of a
tree decomposition based algorithm for Vertex Cover on planar graphs.
Discrete Applied Mathematics, 145(2):219–231, 2005. 142

[9] J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. Rosamond,
and U. Stege. A refined search tree technique for Dominating Set on planar
graphs. Journal of Computer and System Sciences, 71(4):385–405, 2005.
116

143

144 Bibliography

[10] J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial-time data re-
duction for Dominating Set. Journal of the ACM, 51:363–384, 2004. 40,
51, 54, 55

[11] J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Computing the similar-
ity of two sequences with nested arc annotations. Theoretical Computer
Science, 312:337–358, 2004. 9, 75

[12] R. S. Anand, T. Erlebach, A. Hall, and S. Stefanakos. Call control with k
rejections. Journal of Computer and System Sciences, 67:707–722, 2003.
120

[13] T. Asano and T. Hirata. Edge-deletion and edge-contraction problems.
In Proc. of 14th ACM STOC, pages 245–254, 1982. 4

[14] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation: Combi-
natorial Optimization Problems and Their Approximability Properties.
Springer, 1999. 8

[15] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for
the undirected feedback vertex set problem. SIAM Journal on Discrete
Mathematics, 3(2):289–297, 1999. 21, 32

[16] M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors.
Handbooks in Operations Research and Management Science (Volume 7):
Network Models. Elsevier, 1995. 3

[17] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine
Learning, 56(1):89–113, 2004. 4, 47, 48

[18] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth. Approximation
algorithms for the feedback vertex set problem with applications to con-
straint satisfaction and Bayesian inference. SIAM Journal on Computing,
27(4):942–959, 1998. 4, 22, 32

[19] A. Becker, R. Bar-Yehuda, and D. Geiger. Randomized algorithms for the
Loop Cutset problem. Journal of Artificial Intelligence Research, 12:219–
234, 2000. 4, 21, 42

[20] A. Becker, D. Geiger, and A. A. Schäffer. Automatic selection of loop
breakers for genetic linkage analysis. Human Heredity, 48:49–60, 1998. 4

[21] R. Bellman. Dynamic programming treatment of the Traveling Salesman
Problem. Journal of the ACM, 9(1):61–63, 1962. 111

[22] N. Betzler, R. Niedermeier, and J. Uhlmann. Tree decompositions of
graphs: saving memory in dynamic programming. In Proc. of 2nd CTW,
pages 56–80, 2004. Long version to appear in Discrete Optimization. 8,
10, 128, 129, 130, 137

Bibliography 145

[23] R. E. Bixby and D. K. Wagner. An almost linear time algorithm for graph
realization. Mathematics of Operations Research, 13:99–123, 1988. 136

[24] M. Bläser. Computing small partial coverings. Information Processing
Letters, 85(6):327–331, 2003. 15

[25] H. L. Bodlaender. Classes of graphs with bounded treewidth. Technical
Report RUU-CS-86-22, Department of Computer Science, Utrecht Uni-
versity, The Netherlands, 1986. 115

[26] H. L. Bodlaender. On disjoint cycles. International Journal of Foundations
of Computer Science, 5:59–68, 1994. 21

[27] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In
Proc. of 22nd MFCS, volume 1295 of LNCS, pages 19–36. Springer, 1997.
111, 129

[28] H. L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209:1–45, 1998. 111, 129

[29] J. M. Bower and H. Bolouri, editors. Computational Modeling of Ge-
netic and Biochemical Networks (Computational Biology). The MIT Press,
2001. 3

[30] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey.
SIAM Monographs on Discrete Mathematics and Applications, 1999. 8,
76, 95

[31] N. H. Bshouty and L. Burroughs. Massaging a linear programming so-
lution to give a 2-approximation for a generalization of the Vertex Cover
problem. In Proc. of 15th STACS, volume 1373 of LNCS, pages 298–308.
Springer, 1998. 15

[32] L. Cai. Fixed-parameter tractability of graph modification problems for
hereditary properties. Information Processing Letters, 58:171–176, 1996.
10, 48, 79, 100

[33] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. Advice classes of
parameterized tractability. Annals of Pure and Applied Logic, 84:119–
138, 1997. 43

[34] P. J. Carrington, J. Scott, and S. Wasserman. Models and Methods in
Social Network Analysis. Cambridge University Press, 2005. 3

[35] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation
algorithms for the unsplittable flow problem. In Proc. of 5th APPROX,
volume 2462 of LNCS, pages 51–66. Springer, 2002. 120

[36] L. S. Chandran and F. Grandoni. Refined memorization for vertex cover.
Information Processing Letters, 93(3):123–131, 2005. 15, 19, 81, 110

146 Bibliography

[37] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71(3):360–383,
2005. 48

[38] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Taillon.
Solving large FPT problems on coarse-grained parallel machines. Journal
of Computer and System Sciences, 67(4):691–706, 2003. 142

[39] C. Chekuri, M. Mydlarz, and F. B. Shepherd. Multicommodity demand
flow in a tree (extended abstract). In Proc. of 30th ICALP, volume 2719
of LNCS, pages 410–425. Springer, 2003. 120, 121

[40] J. Chen, H. Fernau, I. A. Kanj, and G. Xia. Parametric duality and
kernelization: Lower bounds and upper bounds on kernel size. In Proc. of
22nd STACS, volume 3404 of LNCS, pages 269–280. Springer, 2005. 142

[41] J. Chen, I. A. Kanj, and W. Jia. Vertex Cover: Further observations and
further improvements. Journal of Algorithms, 41:280–301, 2001. 44, 51

[42] Z.-Z. Chen, T. Jiang, and G. Lin. Computing phylogenetic roots with
bounded degrees and errors. SIAM Journal on Computing, 32(4):864–
879, 2003. 95, 106

[43] Z.-Z. Chen and T. Tsukiji. Computing bounded-degree phylogenetic roots
of disconnected graphs. Journal of Algorithms, 59(2):125–148, 2004. 95

[44] J. Chuzhoy and J. S. Naor. Covering problems with hard capacities. In
Proc. 43rd IEEE FOCS, pages 481–489, 2002. Long version to appear in
SIAM Journal on Computing. 15

[45] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2nd edition, 2001. 31, 104, 110, 112

[46] D. G. Corneil, Y. Perl, and L. Stewart. Cographs: recognition, application
and algorithms. Congressus Numerantium, 43:249–258, 1984. 76

[47] M. Costa, L. Létocart, and F. Roupin. Minimal multicut and maximal
integer multiflow: A survey. European Journal of Operational Research,
162:55–69, 2004. 54

[48] G. Călinescu, C. G. Fernandes, and B. A. Reed. Multicuts in unweighted
graphs and digraphs with bounded degree and bounded tree-width. Jour-
nal of Algorithms, 48:333–359, 2003. 54

[49] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and
M. Yannakakis. The complexity of multiterminal cuts. SIAM Journal on
Computing, 23(4):864–894, 1994. 116

[50] P. Damaschke. On the fixed-parameter enumerability of Cluster Editing.
In Proc. of 31st WG, volume 3787 of LNCS, pages 283–294. Springer,
2005. 7, 9, 33, 48

Bibliography 147

[51] P. Damaschke. Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction. Theoretical Computer Science, 351(3):337–350,
2006. 33, 36

[52] F. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and
K. Stevens. An O∗(2O(k)) FPT algorithm for the undirected feedback
vertex set problem. In Proc. of 11th COCOON, volume 3595 of LNCS,
pages 859–869. Springer, 2005. 6, 9, 20, 21, 22

[53] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and
H-minor-free graphs. Journal of the ACM, 52(6):866–893, 2005. 116

[54] E. D. Demaine and N. Immorlica. Correlation clustering with partial
information. In Proc. of 6th APPROX, volume 2764 of LNCS, pages 1–
13. Springer, 2003. 48

[55] R. Diestel. Graph Theory. Springer, 3rd edition, 2005. 8

[56] I. Dinur and S. Safra. The importance of being biased. In Proc. of 34th
ACM STOC, pages 33–42, 2002. 15

[57] M. Dom. Error Compensation in Leaf Root Problems (in German). Mas-
ter’s thesis, Wilhelm-Schickard-Institut für Informatik, Universität Tübin-
gen, Germany, 2004. 96, 106

[58] M. Dom, J. Guo, F. Hüffner, and R. Niedermeier. Extending the tracta-
bility border for closest leaf powers. In Proc. of 31st WG, volume 3787 of
LNCS, pages 397–408. Springer, 2005. 9, 76, 96, 106

[59] M. Dom, J. Guo, F. Hüffner, and R. Niedermeier. Error compensation in
leaf power problems. Algorithmica, 44(4):363–381, 2006. 9, 10, 76, 93,
96, 98, 102, 103, 104, 105, 106

[60] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truß. Fixed-
parameter tractability results for feedback set problems in tournaments.
In Proc. of 6th CIAC, volume 3998 of LNCS, pages 321–332. Springer,
2006. 9

[61] M. Dom, J. Guo, and R. Niedermeier. Bounded degree Closest k-Tree
Power is NP-complete. In Proc. of 11th COCOON, volume 3595 of LNCS,
pages 757–766. Springer, 2005. 9, 76, 95

[62] M. Dom, J. Guo, R. Niedermeier, and S. Wernicke. Minimum membership
set covering and the consecutive ones property. In Proc. of 10th SWAT,
LNCS. Springer, 2006. 9

[63] R. G. Downey. Parameterized complexity for the skeptic. In Proc. of 18th
IEEE CCC, pages 147–169, 2003. 6

148 Bibliography

[64] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness. Congressus Numerantium, 87:161–187, 1992. 21

[65] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999. 5, 6, 22, 76, 112, 130, 131

[66] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks,
1:195–207, 1972. 111

[67] E. S. El-Mallah and C. J. Colbourn. The complexity of some edge deletion
problems. IEEE Transactions on Circuits and Systems, 35(3):354–362,
1988. 4

[68] J. Ellis, H. Fan, and M. R. Fellows. The Dominating Set problem is fixed
parameter tractable for graphs of bounded genus. Journal of Algorithms,
52(2):152–168, 2004. 116

[69] D. Emanuel and A. Fiat. Correlation clustering – minimizing disagree-
ments on arbitrary weighted graphs. In Proc. of 11th ESA, volume 2832
of LNCS, pages 208–220. Springer, 2003. 48

[70] V. Estivill-Castro, M. Fellows, M. Langston, and F. Rosamond. FPT is
P-time extremal structure I. In Proc. 1st ACiD, pages 1–41, 2005. 142

[71] G. Even, J. Naor, B. Schieber, and L. Zosin. Approximating minimum
subset feedback sets in undirected graphs with applications. SIAM Journal
on Computing, 13(2):255–267, 2000. 4

[72] S. Fedin and A. S. Kulikov. Automated proofs of upper bounds on the
running time of splitting algorithms. In Proc. of 1st IWPEC, volume 3162
of LNCS, pages 248–259. Springer, 2004. 83

[73] U. Feige. A threshold of lnn for approximating set cover. Journal of the
ACM, 45:634–652, 1998. 114, 130, 131

[74] M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions
in FPT. In Proc. of 29th WG, volume 2880 of LNCS, pages 1–12. Springer,
2003. 39, 110

[75] M. R. Fellows. New directions and new challenges in algorithm design and
complexity, parameterized. In Proc. of 8th WADS, volume 2748 of LNCS,
pages 505–520. Springer, 2003. 6

[76] H. Fernau. On parameterized enumeration. In Proc. of 8th COCOON,
volume 2383 of LNCS, pages 564–573. Springer, 2002. 33, 36

[77] P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback set problems.
In D. Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial
Optimization, Vol. A, pages 209–258. Kluwer, 1999. 22

Bibliography 149

[78] S. Fiorini, N. Hardy, B. A. Reed, and A. Vetta. Planar graph bipartization
in linear time. In Proc. of 2nd GRACO, volume 19 of Electronic Notes in
Discrete Mathematics, pages 226–232, 2005. 31

[79] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srinivasan. An
improved approximation algorithm for Vertex Cover with hard capacities.
In Proc. of 30th ICALP, volume 2719 of LNCS, pages 164–175. Springer,
2003. 15

[80] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979. 4, 75, 128

[81] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM Journal on Computing,
25(2):235–251, 1996. 28

[82] N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation
algorithms for integral flow and multicut in trees. Algorithmica, 18:3–30,
1997. 53, 54, 58, 62, 120, 125, 127, 136, 137

[83] J. Gramm. Fixed-Parameter Algorithms for the Consensus Analysis of Ge-
nomic Sequences. PhD thesis, Wilhelm-Schickard-Institut für Informatik,
Universität Tübingen, Germany, 2003. 75

[84] J. Gramm. A polynomial-time algorithm for the matching of crossing
contact-map patterns. IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics, 4(1):171–180, 2004. 111

[85] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated gen-
eration of search tree algorithms for hard graph modification problems.
Algorithmica, 39(4):321–347, 2004. 9, 83, 85, 92, 113

[86] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data
clustering: Exact algorithms for clique generation. Theory of Computing
Systems, 38(4):373–392, 2005. 10, 47, 49, 50, 85, 113

[87] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Data reduction, exact,
and heuristic algorithms for Clique Cover. In Proc. of 8th ACM-SIAM
ALENEX, pages 86–94. ACM-SIAM, 2006. 9, 39, 43

[88] J. Gramm, J. Guo, F. Hüffner, R. Niedermeier, H.-P. Piepho, and
R. Schmid. A better algorithm for compact letters displays—a rendezvous
between theoretical computer science and applied statistics. Manuscript,
Institut für Informatik, FSU Jena, Germany, April 2006. 9, 42

[89] J. Gramm, J. Guo, and R. Niedermeier. On exact and approximation
algorithms for distinguishing substring selection. In Proc. of 14th FCT,
volume 2751 of LNCS, pages 195–209. Springer, 2003. Long version to
appear under the title “Parameterized intractability of distinguishing sub-
string selection” in Theory of Computing Systems. 9, 75

150 Bibliography

[90] J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-
annotated sequences. ACM Transactions on Algorithms, 2(1):44–65, 2006.
9, 111

[91] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algo-
rithms for Closest String and related problems. Algorithmica, 37(1):25–42,
2003. 75

[92] S. Guha, R. Hassin, S. Khuller, and E. Or. Capacitated vertex covering.
Journal of Algorithms, 48(1):257–270, 2003. 15

[93] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Im-
proved fixed-parameter algorithms for two feedback set problems. In Proc.
of 9th WADS, volume 3608 of LNCS, pages 158–168. Springer, 2005. Long
version to appear under the title “Compression-based fixed-parameter al-
gorithms for Feedback Vertex Set and Edge Bipartization” in Journal of
Computer and System Sciences. 9, 21

[94] J. Guo, F. Hüffner, E. Kenar, R. Niedermeier, and J. Uhlmann. Complex-
ity and exact algorithms for Multicut. In Proc. of 32nd SOFSEM, volume
3831 of LNCS, pages 303–312. Springer, 2006. 9, 61, 116

[95] J. Guo, F. Hüffner, and R. Niedermeier. A structural view on parameter-
izing problems: distance from triviality. In Proc. of 1st IWPEC, volume
3162 of LNCS, pages 162–173. Springer, 2004. 10, 111, 132

[96] J. Guo and R. Niedermeier. Exact algorithms and applications for Tree-
Like Weighted Set Cover. To appear in Journal of Discrete Algorithms,
2005. 10, 128, 132

[97] J. Guo and R. Niedermeier. Fixed-parameter tractability and data re-
duction for Multicut in Trees. Networks, 46(3):124–135, 2005. 10, 53,
83

[98] J. Guo and R. Niedermeier. A fixed-parameter tractability result for
Multicommodity Demand Flow in Trees. Information Processing Letters,
97(3):109–114, 2006. 10, 119, 121

[99] J. Guo, R. Niedermeier, and D. Raible. Improved algorithms and com-
plexity for power domination in graphs. In Proc. of 15th FCT, volume
3623 of LNCS, pages 172–184. Springer, 2005. 9, 114, 115, 116

[100] J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of
generalized Vertex Cover problems. In Proc. of 9th WADS, volume 3608
of LNCS, pages 36–48. Springer, 2005. Long version to appear under the
title “Parameterized complexity of Vertex Cover variants” in Theory of
Computing Systems. 9, 15

Bibliography 151

[101] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.
112

[102] B. V. Halldórsson, M. M. Halldórsson, and R. Ravi. On the appxoxima-
bility of the Minimum Test Collection problem. In Proc. of 19th ESA,
volume 2161 of LNCS, pages 158–169. Springer, 2001. 45

[103] F. Harary. Graph Theory. Addison-Wesley, 1969. 3

[104] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182:105–142, 1999. 112

[105] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning.
Domination in graphs: applied to electric power networks. SIAM Journal
on Discrete Mathematics, 15(4):519–529, 2002. 113, 114

[106] M. Held and R. M. Karp. A dynamic programming approach to sequencing
problems. Journal of SIAM, 10:196–210, 1962. 111

[107] F. Hüffner. Graph Modification Problems and Automated Search Tree
Generation. Master’s thesis, Wilhelm-Schickard-Institut für Informatik,
Universität Tübingen, Germany, 2003. 83, 85, 92

[108] F. Hüffner. Algorithm engineering for optimal graph bipartization. In
Proc. of 4th WEA, volume 3503 of LNCS, pages 240–252. Springer, 2005.
20, 25, 31

[109] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM
Journal on Computing, 7(4):413–423, 1978. 103

[110] T. Jiang, G. Lin, and J. Xu. On the closest tree kth root problem.
Manuscript, Department of Computer Science, University of Waterloo,
2000. 95

[111] D. Jungnickel. Graphs, Networks and Algorithms. Springer, 1999. 3, 8,
104, 110

[112] A. B. Kahng, S. Vaya, and A. Zelikovsky. New graph bipartizations for
double-exposure, bright field alternating phase-shift mask layout. In Proc.
of Asia and South Pacific Design Automation Conference, pages 133–138,
2001. 28

[113] I. Kanj, M. Pelsmajer, and M. Schaefer. Parameterized algorithms for
feedback vertex set. In Proc. of 1st IWPEC, volume 3162 of LNCS, pages
235–247. Springer, 2004. 22

[114] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized
completion problems on chordal, strongly chordal, and proper interval
graphs. SIAM Journal on Computing, 28(5):1906–1922, 1999. 80, 104

152 Bibliography

[115] R. M. Karp. Reducibility among combinatorial problems. In R. Miller
and J. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press, 1972. 15, 21, 112

[116] P. E. Kearney and D. G. Corneil. Tree powers. Journal of Algorithms,
29(1):111–131, 1998. 95

[117] E. Kenar and J. Uhlmann. Multicut in graphs. Study work, Wilhelm-
Schickard-Institut für Informatik, Universität Tübingen, Germany, 2005.
61

[118] P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion.
SIAM Journal on Computing, 24(2):340–356, 1995. 111

[119] T. Kloks. Treewidth: Computations and Approximations, volume 842 of
LNCS. Springer, 1994. 111, 129

[120] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. Parameterized power
domination complexity. Information Processing Letters, 98(4):145–149,
2006. 113, 114

[121] D. E. Knuth. The Art of Computer Programming, Volume 1 (Fundamental
Algorithms). Addison-Wesley, 3rd edition, 1997. 112

[122] J. Könemann, G. Konjevod, O. Parekh, and A. Sinha. Improved approx-
imations for tour and tree covers. Algorithmica, 38(3):441–449, 2004. 15

[123] L. T. Kou, L. J. Stockmeyer, and C. K. Wong. Covering edges by cliques
with respect to keyword conflicts and intersection graphs. Communica-
tions of the ACM, 21:135–138, 1978. 42

[124] A. S. Kulikov. Automated generation of simplification rules for SAT and
MAXSAT. In Proc. of 8th SAT, volume 3569 of LNCS, pages 430–436.
Springer, 2005. 83

[125] O. Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theoretical Computer Science, 223(1-2):1–72, 1999. 78

[126] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clus-
tering. Acta Informatica, 23(3):311–323, 1986. 47, 96

[127] L. C. Lau. Bipartite roots of graphs. In Proc. of 15th ACM-SIAM SODA,
pages 952–961. ACM-SIAM, 2004. 95

[128] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary
properties is NP-complete. Journal of Computer and System Sciences,
20(2):219–230, 1980. 4, 96

[129] G. Lin, P. E. Kearney, and T. Jiang. Phylogenetic k-root and Steiner
k-root. In Proc. of 11th ISAAC, volume 1969 of LNCS, pages 539–551.
Springer, 2000. 95, 96, 99, 106

Bibliography 153

[130] Y. L. Lin and S. S. Skiena. Algorithms for square roots of graphs. SIAM
Journal on Discrete Mathematics, 8(1):99–118, 1995. 95

[131] C. Lund and M. Yannakakis. The approximation of maximum subgraph
problems. In Proc. of 20th ICALP, volume 700 of LNCS, pages 40–51.
Springer, 1993. 21

[132] C. Lund and M. Yannakakis. On the hardness of approximating mini-
mization problems. Journal of the ACM, 41:960–981, 1994. 42

[133] S. Mecke and D. Wagner. Solving geometric covering problems by data
reduction. In Proc. of 12th ESA, volume 3221 of LNCS, pages 760–771.
Springer, 2004. 137

[134] B. Monien. The bandwidth minimization problem for caterpillars with
hair length 3 is NP-complete. SIAM Journal on Algebraic and Discrete
Methods, 7:505–512, 1986. 53

[135] R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete
Applied Mathematics, 54(1):81–88, 1994. 95

[136] A. Nagurney, editor. Innovations in Financial and Economic Networks.
Edward Elgar Publishing, 2003. 3

[137] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some
edge modification problems. Discrete Applied Mathematics, 113:109–128,
2001. 4, 76

[138] G. L. Nemhauser and L. E. Trotter. Vertex packing: structural properties
and algorithms. Mathematical Programming, 8:232–248, 1975. 44

[139] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. Wiley, 1988. 130

[140] R. Niedermeier. Ubiquitous parameterization—invitation to fixed-
parameter algorithms. In Proc. of 29th MFCS, volume 3153 of LNCS,
pages 84–103. Springer, 2004. 6

[141] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Uni-
versity Press, 2006. 6, 33, 40

[142] R. Niedermeier and P. Rossmanith. A general method to speed up fixed-
parameter-tractable algorithms. Information Processing Letters, 73:125–
129, 2000. 39, 43, 44, 78, 81, 87

[143] S. Nikolenko and A. Sirotkin. Worst-case upper bounds for SAT: auto-
mated proof, 2003. Presented at 15th European Summer School in Logic
Language and Information (ESSLLI 2003), Student Session. 83

[144] N. Nishimura, P. Ragde, and D. M. Thilikos. On graph powers for leaf-
labeled trees. Journal of Algorithms, 42(1):69–108, 2002. 93, 95, 96

154 Bibliography

[145] J. Orlin. Contentment in graph theory: covering graphs with cliques.
Indigationes Mathematicae, 80:406–424, 1977. 42

[146] J. Ott, editor. Analysis of Human Genetic Linkage: Revised. The John
Hopkins University Press, 1991. 4

[147] A. E. Ozdaglar and D. P. Bertsekas. Routing and wavelength assignment
in optical networks. IEEE/ACM Transactions on Networking, 11(2):259–
272, 2003. 120

[148] R. D. M. Page and J. A. Cotton. Vertebrate phylogenomics: reconciled
trees and gene duplications. In Proc. of 7th Pacific Symposium on Bio-
computing, pages 536–547, 2002. 8, 10, 128, 130, 131

[149] C. H. Papadimitriou and M. Yannakakis. Optimization, approxima-
tion, and complexity classes. Journal of Computer and System Sciences,
43:425–440, 1991. 8, 28, 128, 131

[150] M. Pop, D. S. Kosack, and S. L. Salzberg. Hierarchical scaffolding with
Bambus. Genome Research, 14:149–159, 2004. 28

[151] D. Raible. Algorithms and Complexity Results for Power Domination in
Networks (in German). Master’s thesis, Wilhelm-Schickard Institut für
Informatik, Universität Tübingen, Germany, 2005. 114, 115

[152] V. Raman, S. Saurabh, and C. R. Subramanian. Faster fixed parameter
tractable algorithms for undirected feedback vertex set. In Proc. of 13th
ISAAC, volume 2518 of LNCS, pages 241–248. Springer, 2002. 22, 42,
106

[153] V. Raman, S. Saurabh, and C. R. Subramanian. Faster algorithms for
feedback vertex set. In Proc. of 2nd GRACO, volume 19 of Electronic
Notes in Discrete Mathematics, pages 273–279, 2005. 22

[154] B. A. Reed. Algorithmic aspects of tree width. In B. A. Reed and C. L.
Sales, editors, Recent Advances in Algorithms and Combinatorics, pages
85–107. Springer, 2003. 111

[155] B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals.
Operations Research Letters, 32:299–301, 2004. 8, 9, 13, 18, 19, 20, 25,
28

[156] F. Roberts, editor. Applications of Combinatorics and Graph Theory to
the Biological and Social Sciences. Springer, 1989. 3

[157] F. Roberts, editor. Graph Theory and Its Applications to Problems of
Society. SIAM, 1993. 3

[158] N. Robertson and P. D. Seymour. Graph minors. II: Algorithmic aspects
of tree-width. Journal of Algorithms, 7:309–322, 1986. 109, 111, 129

Bibliography 155

[159] J. M. Robson. Algorithms for maximum independent sets. Journal of
Algorithms, 7:425–440, 1986. 113

[160] N. Ruf and A. Schöbel. Set covering with almost consecutive ones prop-
erty. Discrete Optimization, 1(2):215–228, 2004. 137

[161] D. Sankoff and J. Kruskal, editors. Time Warps, String Edits, and Macro-
molecules. Addison-Wesley, 1983. Reprinted in 1999 by CSLI Publications.
112

[162] B. Schwikowski and E. Speckenmeyer. On enumerating all minimal solu-
tions of feedback problems. Discrete Applied Mathematics, 117(1–3):253–
265, 2002. 34

[163] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems.
Discrete Applied Mathematics, 144(1–2):173–182, 2004. 47, 48, 92

[164] S. C. Shapiro. Encyclopedia of Artificial Intelligence. John Wiley & Sons,
2nd edition, 1992. 83

[165] R. Sharan and R. Shamir. Algorithmic approaches to clustering gene ex-
pression data. In T. Jiang, Y. Xu, and M. Q. Zhang, editors, Current Top-
ics in Computational Molecular Biology, pages 269–300. The MIT Press,
2002. 47

[166] S. Szeider. Minimal unsatisfiable formulas with bounded clause-variable
difference are fixed-parameter tractable. Journal of Computer and System
Sciences, 69(4):656–674, 2004. 75, 116, 117

[167] S. Szeider. On fixed-parameter tractable parameterizations of SAT. In
Proc. of 6th SAT, volume 2919 of LNCS, pages 188–202. Springer, 2004.
116

[168] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.
Addendum in SIAM Journal on Computing, 14(1): 254-255, 1985. 129,
137

[169] J. A. Telle and A. Proskurowski. Practical algorithms on partial k-trees
with an application to domination-like problems. In Proc. of 3rd WADS,
volume 709 of LNCS, pages 610–621. Springer, 1993. 111, 112

[170] W. T. Tutte. An algorithm for determining whether a given binary ma-
troid is graphic. Proc. Amer. Math. Soc., 11:905–917, 1960. 137

[171] G. Valiente. Algorithms on Trees and Graphs. Springer, 2002. 112

[172] V. V. Vazirani. Approximation Algorithms. Springer, 2003. 8

156 Bibliography

[173] A. F. Veinott and H. M. Wagner. Optimal capacity scheduling. Operations
Research, 10:518–532, 1962. 130

[174] A. M. Verweij, K. Aardal, and G. Kant. On an integer multicommodity
flow problem from the airplane industry. Technical Report UU-CS-1997-
38, Utrecht University, The Netherlands, 1997. 120

[175] K. Weihe. Covering trains by stations or the power of
data reduction. In Proc. of 1st ALEX, pages 1–8, 1998.
http://rtm.science.unitn.it/alex98/proceedings.html. 40, 70

[176] K. Weihe. On the differences between “practical” and “applied”. In Proc.
of 4th WEA, volume 1982 of LNCS, pages 1–10. Springer, 2000. 40, 70

[177] S. Wernicke. On the Algorithmic Tractability of Single Nucleotide
Polymorphism (SNP) Analysis and Related Problems. Master’s thesis,
Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Ger-
many, 2003. 28

[178] S. Wernicke, J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Avoid-
ing forbidden submatrices by row deletions. In Proc. of 30th SOFSEM,
volume 2932 of LNCS, pages 349–360. Springer, 2004. Long version to ap-
pear under the title “The computational complexity of avoiding forbidden
submatrices by row deletions” in International Journal of Foundations of
Computer Science. 9

[179] D. B. West. Introduction to Graph Theory. Prentice-Hall, 2nd edition,
2000. 8, 104, 110

[180] M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing,
10(2):297–309, 1981. 4

[181] M. Yannakakis. Node-deletion problems on bipartite graphs. SIAM Jour-
nal on Computing, 10(2):310–327, 1981. 4

[182] K. Zhang and D. Shasha. Simple fast algorithms for the editing dis-
tance between trees and related problems. SIAM Journal on Computing,
18(6):1245–1262, 1989. 111

Tabellarischer Lebenslauf

Name: Jiong Guo
Geburtsdatum : 28.11.1970
Geburtsort: Chengdu, V. R. China
Staatsangehörigkeit: Chinesisch
Anschrift: Markt 14

07743 Jena
Familienstand: verheiratet, 1 Kind

09.1977 - 07.1982 11. Grundschule von Chengdu.
09.1982 - 07.1985 21. Gymnasium von Chengdu.
09.1985 - 07.1988 7. Gymnasium von Chengdu.
09.1988 - 07.1992 Studium des Fachs Informatik an der University of Electronic

Science and Technology of China.
30.07.1992 Abschluss des Studiums als Bachelor of Science.

08.1992 - 09.1995 Systemverwalter und Softwareentwickler an der Industrial
and Commercial Bank of China in Chengdu.

10.1995 - 07.1996 Systemverwalter und Softwareentwickler an der Guotai
Securities Ltd. in Chengdu.

08.1996 - 02.2002 Studium des Fachs Informatik mit Nebenfach Wirtschafts-
wissenschaften an der Universität Tübingen.

20.02.2002 Abschluss des Studiums als Diplom-Informatiker.
03.2002 - 10.2004 wissenschaftlicher Angestellter am Institut für Informatik

der Universität Tübingen.
10.2004 - 04.2006 wissenschaftlicher Angestellter am Institut für Informatik

der Universität Jena.

Jena, 28. April 2006

	I Introduction
	Introduction
	Graph Modification Problems
	Fixed-Parameter Algorithms
	Preliminaries
	Summary of Results

	II Iterative Compression
	Basic Concepts and Ideas
	Iteration
	Case Study 1: Vertex Cover
	Case Study 2: Multicut in Trees
	Case Study 3: Cluster Deletion

	Compression
	Case Study 1: Vertex Cover
	Case Study 2: Cluster Deletion

	Concluding Remarks

	Feedback Vertex Set
	Problem Definition and Previous Results
	The Algorithm
	Iteration
	Compression

	Concluding Remarks

	Speed-up Methods
	Compression without Partition
	Constant-Factor Approximation Instead of Iteration
	Concluding Remarks

	Compression-Based Enumeration
	Feedback Vertex Set
	Concluding Remarks

	III Data Reduction and Problem Kernels
	Basic Concepts and Ideas
	Data Reduction
	Case Study 1: Feedback Vertex Set
	Case Study 2: Vertex Cover
	Case Study 3: Minimum Clique Cover

	Problem Kernel
	Case Study 1: Vertex Cover
	Case Study 2: Minimum Clique Cover

	Concluding Remarks

	Cluster Editing
	Problem Definition and Previous Results
	Data Reduction Rules
	Problem Kernel
	Concluding Remarks

	Multicut in Trees
	Problem Definition and Previous Results
	Parameter-Independent Reduction Rules
	Parameter-Dependent Reduction Rules
	Some Notation and Definitions
	Parameter-Dependent Data Reduction Rules

	Some Observations on Reduced Instances
	Problem Kernel
	Problem Kernel for Caterpillars
	Problem Kernel for Spiders of Caterpillars
	Problem Kernel for General Trees

	Concluding Remarks

	IV Search Trees Based on Forbidden Subgraphs
	Basic Concepts and Ideas
	Forbidden Subgraph Characterizations
	Depth-Bounded Search Trees
	Search Trees Based on Forbidden Subgraphs
	Two Case Studies
	Case Study 1: Vertex Cover
	Case Study 2: Multicut in Trees

	Concluding Remarks

	Cluster Editing
	Basic Branching Strategy
	Refined Branching Strategy
	Concluding Remarks

	Closest 3-Leaf Power
	Problem Definition and Previous Results
	Forbidden Subgraph Characterization for 3-Leaf Powers
	Algorithms
	Edge Modifications (Overview)
	Vertex Deletion

	Concluding Remarks

	V Parameterization by Structure
	Basic Concepts and Ideas
	Distance From Triviality
	Case Study 1: Clique
	Case Study 2: Power Dominating Set
	Concluding Remarks

	Multicommodity Demand Flow in Trees
	Problem Definition and Previous Results
	The Algorithm
	Agreements and Basic Tools
	Dynamic Programming Algorithm
	Main Result

	Concluding Remarks

	Weighted Multicut in Trees
	Multicut in Trees and Tree-Like Set Cover
	Tree-Like Weighted Set Cover (TWSC)
	Weighted Multicut in Trees and TWSC

	Algorithm for TWSC
	TWSC with Binary Subset Tree
	TWSC with Arbitrary Subset Tree

	Concluding Remarks

	VI Conclusion
	Conclusion

