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Preface

This thesis summarizes some of my results on NP-hard graph problems that have

applications in the areas of network clustering and querying. The research for

obtaining these results was performed from June 2007 to April 2011. Until Decem-

ber 2010, I was with the Friedrich-Schiller-Universität Jena as a member of the chair

for Theoretical Computer Science/Complexity Theory then held by Rolf Niedermeier.

From June 2007 until May 2010, I was supported by a PhD fellowship of the Carl-Zeiss-

Stiftung; from June 2010 until December 2010, I received funding from the Deutsche

Forschungsgemeinschaft (DFG), as a researcher in the DFG project “Parameterized

Algorithmics for Bioinformatics” (PABI, NI 369/7). In January 2011, I joined the chair

for Algorithmics and Complexity Theory at TU Berlin held by Rolf Niedermeier, who,

in the meantime, had moved from Friedrich-Schiller-Universität Jena to TU Berlin.

Currently, I am supported by the TU Berlin.

I want to express my gratitude to Rolf Niedermeier for giving me the opportunity

to work in his group and for his advice and support that eventually led to this thesis.

Furthermore, I want to thank my colleagues and former colleagues Nadja Betzler,

René van Bevern, Robert Bredereck, Jiehua Chen, Michael Dom, Jiong Guo, Sepp

Hartung, Falk Hüffner, Hannes Moser, André Nichterlein, Rolf Niedermeier, Manuel

Sorge, Johannes Uhlmann, and Mathias Weller for creating an enjoyable working

atmosphere and for many inspiring and instructive discussions. Moreover, I owe

sincere thanks to my coauthors Nadja Betzler, René van Bevern, Daniel Brügmann,

Michael R. Fellows, Jiong Guo, Sepp Hartung, Falk Hüffner, Iyad A. Kanj, Hannes Moser,

Rolf Niedermeier, Alexander Schäfer, Johannes Uhlmann, and Mathias Weller for the

pleasant and productive cooperation. In particular, I would like to thank René van

Bevern for his implementation of the algorithms in Chapter 6. Finally, I want to thank

the anonymous referees of several journals and scientific conferences for many pieces

of advice that helped improving this work.

The results in this thesis are partially contained in journal and conference

publications that were created in close collaboration with coauthors. Below, I

will describe which publications contributed to which chapters, and I will also

my specify my contributions to these publications. Further work to which I have

contributed but that is not part of this thesis is concerned with parameterized

algorithmics for graph modification problems [van Bevern et al. 2010, Brügmann

et al. 2009, Komusiewicz and Uhlmann 2008, Weller et al. 2011], computational mass

spectrometry [Komusiewicz et al. 2011], and for further problems in in graph-based

data clustering [Fellows et al. 2011b, Guo et al. 2008, 2010a, Hüffner et al. 2009, 2010,

Komusiewicz et al. 2009, Schäfer et al. 2011]. The latter collection of publications

deals with extensions of the classical clustering notion, for example with hierarchical

clusterings. In this work, the focus is on “classical” clusterings, that is, partitions of a

set of objects.
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Part II: Clustering. Chapter 2 is based on parts of the publication “Alternative

Parameterizations for Cluster Editing”, which appeared in the proceedings of the 37th

International Conference on Current Trends in Theory and Practice of Computer Science

(SOFSEM ’11) [Komusiewicz and Uhlmann 2011]; a full version of this publication

is in preparation. I proposed to study the parameter “local modification bound”,

participated in the development of the reduction from 3-SAT to CLUSTER EDITING,

and observed the connections between CLUSTER DELETION and PARTITION INTO

TRIANGLES. Furthermore, I developed the kernelization algorithms.

Chapter 3 is based on the two publications “A More Relaxed Model for Graph-

Based Data Clustering: s-Plex Cluster Editing”, which appeared in SIAM Journal on

Discrete Mathematics [Guo et al. 2010b], and “Editing Graphs Into Disjoint Unions of

Dense Clusters”, to appear in Algorithmica [Guo et al. 2011]. Preliminary versions of

these publications appeared in the proceedings of the 5th International Conference on

Algorithmic Aspects in Information and Management (AAIM ’09) [Guo et al. 2009b], and

the 20th International Symposium on Algorithms and Computation (ISAAC ’09) [Guo

et al. 2009a]. I devised the search tree algorithm for s-PLEX-CLUSTER EDITING,

the data reduction approach for AVERAGE-s-PLEX-CLUSTER EDITING, and polished

the W[1]-hardness proof for µ-CLIQUE-CLUSTER EDITING. The presented forbidden

subgraph characterizations were developed jointly by all coauthors.

Chapter 4 is based on the publication “Average Parameterization and Partial

Kernelization for Computing Medians”, which appeared in the Journal of Com-

puter and System Sciences [Betzler et al. 2011b]; a preliminary version appeared

in the proceedings of the 9th Latin American Theoretical Informatics Symposium

(LATIN ’10) [Betzler et al. 2010b]. Jiong Guo developed the framework for obtaining

fixed-parameter algorithms for the parameter “average distance” and proposed to

study CONSENSUS CLUSTERING in this context; I developed the presented structural

kernelizations. The definition of structural kernelization was developed jointly by all

coauthors.

Part III: Querying. Chapters 5 and 7 are based on so far unpublished results

that were all obtained autonomously. Chapter 6 is based on the publication

“Parameterized Algorithmics for Finding Connected Motifs in Biological Networks”,

which appeared in the IEEE/ACM Transactions on Computational Biology and Bioin-

formatics [Betzler et al. 2011a]; a preliminary version appeared in the proceedings of

the 19th Annual Symposium on Combinatorial Pattern Matching (CPM ’08) [Betzler

et al. 2008]. I developed most of the parameterized algorithms and hardness results

for LIST-COLORED GRAPH MOTIF and supervised the algorithm implementation. Fur-

thermore, I simplified and extended the initial W[1]-hardness proof for BICONNECTED

GRAPH MOTIF.

Berlin, September 2011 Christian Komusiewicz
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Networks are universal models for describing the behavior of complex systems.

The analysis of networks has, for this reason, become a ubiquitous tool in the modern

sciences [Barabási 2002]. Many of the systems which are described by such network

models emerge from the interaction of thousands of protagonists: the world wide web

has billions of pages, social networks have up to hundreds of millions of members,

protein interaction networks have thousands of proteins and tens of thousands of

interactions. The analysis of these networks therefore has to make use of algorithms.

In computer science and mathematics, networks are commonly referred to as graphs.

Researchers have been engaged in the study of algorithms for graphs long before

the emergence of computer science, and the field of graph algorithms continues to

be an important area of computer science. As graphs or networks are models for

complex systems it comes as no surprise that many computational problems arising

in graphs turn out to be computationally hard, in particular NP-hard. This means that

there is good evidence that, in general, one cannot solve these problems efficiently

because the running time of any algorithm that solves this problem grows super-

polynomially with the size of the input [Garey and Johnson 1979]. For instances with

thousands of nodes, algorithms whose running times are super-polynomial running

in the input size are definitely infeasible. The importance of network analysis is

therefore contrasted by the large amount of computational resources that is needed

for performing this analysis.

Several approaches have been proposed to cope with the NP-hardness of com-

putational problems: heuristics (cf. [Michalewicz and Fogel 2004]) either drop the

demand of finding an exact solution or abandon the aim of providing a bound on

the worst-case running time; approximation algorithms (cf. [Vazirani 2001]) drop

the demand of finding an optimal solution but are able to find in polynomial time

a provably good solution. In this work, we follow the approach of parameterized

algorithmics [Downey and Fellows 1999, Flum and Grohe 2006, Niedermeier 2006].

The aim of parameterized algorithmics is to identify structural properties of input

instances that strongly influence the complexity of a computational problem at hand.

Whereas in classical complexity theory one measures the complexity of a problem

with respect to the overall size of an input instance, parameterized algorithmics

makes use of an additional parameter. The hope is that for instances in which this

parameter is small we can devise efficient algorithms that exactly solve the problem.

The parameterized approach to NP-hard problems is not only theoretically interesting

but it can also lead to practical algorithms for solving NP-hard problems. The reason

is that the input instances that one faces usually do exhibit a certain structure. Social

networks, road networks, and protein interaction networks for example are all sparse,

that is, the overall number of pairwise interactions or connections in such networks

is much smaller than the maximum possible number of interactions or connections.

A running time analysis that only uses the overall input size as measure is not fully

capable of reflecting how much the sparseness of a graph may help in solving a
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problem. In contrast, in parameterized algorithmics one can elegantly measure the

running time of algorithms as a function of the input size and some sparseness

parameter. Such a sparseness parameter is for example the maximum degree of a

network. In ideal cases, one may find for a particular application scenario a parameter

that is small in all the instances that we may encounter and an algorithm that is fast in

case this parameter is small.

We study the parameterized complexity of computational problems that have

applications in two areas of network analysis: clustering and querying. As network

analysis is a universal paradigm for understanding complex systems, the problems

and algorithms considered in this work are not limited to a particular application

scenario. As a running example, however, we will often refer to applications in the

analysis of protein interaction networks. Protein interaction networks are graphs

whose vertices represent the proteins of a cell. Two vertices of the graph are

connected by an edge if a physical interaction between them has been experimentally

detected [Barabási and Oltvai 2004]. Clustering and querying are natural approaches

to organize and explore the information that is contained in a protein interaction

network.

Network clustering is the task of assigning the vertices of the network into groups

such that the groups contain network vertices that are similar to each other. These

groups are often referred to as communities [Palla et al. 2005] or modules [Przulj et al.

2004, Sharan et al. 2007] of networks. In the case of protein interaction networks,

modules are sets of proteins that perform a common biological task, for example,

proteins that play a role in the regulation of the cell cycle. The clustering of a protein

interaction network then aims at partitioning the protein set into modules. These

modules can then be used for instance to predict the function of proteins [Sharan et al.

2007].

Network clustering is a global analysis task that aims at uncovering the structure

of a network. In contrast, the querying of network searches for local structures in a

network that have certain properties. One example for a querying problem in protein

interaction networks is the identification of signaling pathways that are similar to

other known signaling pathways [Scott et al. 2006, Shlomi et al. 2006, Hüffner et al.

2007]. The input of such a problem consists of two parts. One part is a path, that is, a

linear sequence of interacting proteins. The other part is a complete network , and the

task is to find, if it exists, a path in the network that is similar to the given path.

The aim of this work is to make progress toward solving NP-hard computational

problems from the areas of network clustering and querying. In particular, we

aim at identifying interesting parameters that may be useful for a wide range of

computational problems in network analysis, not only restricted to the problems

considered in this work. The results in this work are somehow asymmetric in the

sense that for clustering our results are so far mostly of theoretical interest, whereas for

querying we also provide implementations for some of our algorithms. In our opinion,
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one reason for this “gap” is that, because querying is a local analysis task, for querying

problems it is easier to algorithmically exploit local—and thus small—parameters.

In the remainder of this introductory part, we briefly overview the algorithmic and

graph-theoretic concepts that are employed in this work.
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Chapter 1

Preliminaries

In this chapter, we give an overview of the central concepts and techniques of

parameterized algorithmics that we make use of. We also summarize the graph-

theoretic notions that are featured throughout this work.

1.1 NP-hard Problems

Most of the computational problems in this work are formulated as decision problems.

Formally, a decision problem is defined by a language L ⊆ Σ
∗ where Σ is a finite

alphabet. The task is to decide whether for a given input x ∈ Σ
∗ we have x ∈ L

or x ∉ L. We refer to instances with x ∈ L as yes-instances of L. In this work, we are only

concerned with decidable problems, that is, problems for which there is an algorithm

that always terminates. A central property of any decidable problem is the amount

of computational resources that is needed to solve this problem. These resources are

usually referred to as complexity measures. In this work, we are concerned with the

standard complexity measure of running time. In standard complexity theory, the

running time of an algorithm that decides a problem L is measured as a function of

the input size.

The two most important classes of decidable decision problems are P and NP.

The class P contains the problems that can be decided in polynomial time by a

deterministic Turing machine. The class NP contains the problems that can be

decided in polynomial time by a nondeterministic Turing machine. A widely believed

conjecture in computer science is that there are problems in NP that can not be

solved in polynomial time by a deterministic algorithm. This is known as the famous

P6=NP conjecture. The most important class of these problems is the class of NP-

hard problems which is is defined by polynomial-time reductions between problems.

A problem A ⊆ Σ
∗ reduces to a problem B ⊆ Σ

∗ (abbreviated as A ≤p B ) if there is

a polynomial-time computable function f : Σ∗ → Σ
∗ such that x ∈ A if and only if

f (x) ∈ B . This means that problem B is at least as hard as problem A with respect to the

7
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notion of polynomial-time solvability. A problem B is NP-hard if for all problems A ∈
NP we have A ≤p B . An NP-hard problem is thus at least as hard as any problem

in NP, again with respect to polynomial-time solvability. An NP-hard problem that

is also contained in NP is called NP-complete. For an introduction to the theory of

NP-completeness and a still very comprehensive overview of NP-complete decision

problems, we refer the reader to the book of Garey and Johnson [1979]. While most

of the problems in this work are defined as decision problems, our algorithms are

usually also capable of solving the natural optimization problem that corresponds to

the decision problem (sometimes with a small running-time overhead).

Different ways to cope with NP-hard problems have been proposed. One approach

that has been intensively studied in the field of theoretical computer science are

approximation algorithms which are defined for optimization problems. Here, the

aim is not to decide a problem but to find a solution that minimizes (maximizes)

some objective function. A polynomial-time factor-c approximation is an algorithm

that finds in polynomial time a solution whose objective function value is at most c

times the optimum (at least c times the optimum). There are problems for which

arbitrarily small approximation factors can be obtained. However, most of the

problems considered in this work are hard for the classes APX or MaxSNP which means

that, under plausible complexity theoretic assumptions, there is a constant c for which

a factor-c approximation can not be obtained in polynomial time. For an introduction

to approximation algorithms, we refer to Vazirani [2001].

1.2 Parameterized Algorithmics

The algorithmic approach to NP-hard problems that is followed in this work is

known as parameterized algorithmics. In the following, we introduce the notions

and techniques of parameterized algorithmics and the algorithmic techniques that

we make use of. A more comprehensive introduction to the topic can be found in the

monographs of Downey and Fellows [1999], Flum and Grohe [2006], and Niedermeier

[2006].

Fixed-Parameter Tractability. The basic idea of fixed-parameter algorithms is to

accept a super-polynomial running time, but to confine the running time “explosion”

to a parameter k . To this end, parameterized decision problems consist of two

components.

Definition 1.1. A parameterized problem is a language L ⊆ Σ
∗ ×Σ

∗. The second

component is the parameter.

The aim for a parameterized problem is to achieve a good running time in case the

parameter is small, or “fixed”. This aim is captured by the following central definition

of parameterized algorithmics.
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Definition 1.2. A parameterized problem L is fixed-parameter tractable if there is a

deterministic algorithm that decides for every input instance (I ,k) of L in f (k)·poly(|I |)
time whether (I ,k) ∈ L, where f is a computable function only depending on k. The

corresponding complexity class is called FPT.

We call an algorithm with the running time f (k) · poly(|I |) a fixed-parameter

algorithm for L. The notion of fixed-parameter tractability is sometimes confused

with “polynomial time for constant k”. Fixed-parameter tractability, however, makes a

stronger demand: the degree of the polynomial function of |I | must be completely

independent from k . The class of fixed-parameter tractable problems is actually

contained in the class of problems that are polynomial-time solvable for constant k .

This class is called XP.

Definition 1.3. A parameterized problem L is contained in the class XP if there is a

deterministic algorithm that decides for every input instance (I ,k) of L whether (I ,k)∈ L

in f (k) · |I |g (k) time, where f and g are computable functions only depending on k.

W[1]-hardness. Assuming P6=NP, it is clear that not all parameterized problems

are fixed-parameter tractable, since otherwise parameterizing an NP-hard problem

by a constant parameter would immediately lead to a deterministic polynomial-

time algorithm for this problem. There are, however, also many problems in XP

that have resisted all attempts at developing fixed-parameter algorithms for them.

To show that a parameterized problem in XP is unlikely to admit fixed-parameter

algorithms, Downey and Fellows [1995a,b, 1999] developed a theory of parameterized

intractability by means of devising a completeness program with complexity classes. A

basic level of (presumable) parameterized intractability is captured by the complexity

class W[1]. There is good reason to believe that problems that are hard for W[1] are

not fixed-parameter tractable. To show this stronger form of hardness, a reduction

concept was introduced.

Definition 1.4. A parameterized reduction reduces a problem instance (I ,k) in f (k) ·
poly(|I |) time to an instance (I ′,k ′) such that (I ,k) is a yes-instance if and only if (I ′,k ′)

is a yes-instance and k ′ = g (k), where g is a function only depending on k.

If for a given parameterized problem L there is a W[1]-hard parameterized

problem L′ such that there is a parameterized reduction from L′ to L, then L is

also W[1]-hard. A problem is W[1]-complete if it is W[1]-hard and also contained

in W[1]. Recent surveys discussing parameterized hardness were presented by Chen

and Meng [2008] and Downey and Thilikos [2011].

After defining the basic concepts of parameterized algorithmics, we will describe

a central algorithmic approach for obtaining fixed-parameter tractability results.
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Data Reduction and Kernelization. Polynomial-time preprocessing is a practical

approach to attack NP-hard problems. The hope is that the preprocessing reduces

the original instance to a smaller one, which can then be solved by a determin-

istic algorithm that has super-polynomial running time. In the one-dimensional

classical complexity theory there is no way to measure the effect of preprocessing:

a polynomial-time algorithm that provably reduces an instance I of size |I | of an

NP-hard problem to an instance I ′ with |I | > |I ′| of the same problem implies a

deterministic polynomial-time algorithm that solves an NP-hard problem: repeating

this algorithm roughly |I | times yields an instance of constant size.

For parameterized problems, one can circumvent this problem, since one has the

parameter as secondary measurement. The idea is to show that if the instance size is

much larger than some function of k , then one can apply a preprocessing that shrinks

the instance. This is captured by the notion of reduction to a problem kernel, also

called problem kernelization.

Definition 1.5. Let L ⊆Σ
∗×Σ

∗ be a parameterized problem. A reduction to a problem

kernel for L is a polynomial-time computable function f : Σ∗ ×Σ
∗ → Σ

∗ ×Σ
∗ that

reduces an instance (I ,k) of L to an instance (I ′,k ′) with the following properties:

– (I ,k)∈ L ⇔ (I ′,k ′) ∈ L,

– k ′ ≤ k, and

– |I ′| ≤ g (k) for a computable function g that depends only on k.

The instance that is produced by the kernelization algorithm is called problem

kernel. If g is a polynomial function, then the problem kernel is called poly-

nomial problem kernel. While every fixed-parameter tractable problem admits a

kernelization [Downey and Fellows 1999], there are problems that, under reasonable

complexity-theoretic assumptions, do not admit kernelizations that produce poly-

nomial problem kernels [Bodlaender et al. 2009, Bodlaender 2009, Dom et al. 2009,

Fortnow and Santhanam 2011].

Kernelization algorithms are often represented by a set of data reduction rules. We

define data reduction rules as a reduction from an instance of (I ,k) of a parameterized

problem L to an instance (I ′,k ′) of a parameterized problem. We say that a data

reduction rule is correct if (I ,k) ∈ L if and only if (I ′,k ′) ∈ L. We say that a data

reduction rule has been exhaustively applied if any further application of this rule does

not modify the instance. An instance is called reduced with respect to a set of data

reduction rules if each data reduction rule in the set has been exhaustively applied.

For more on the topic of problem kernelization, we refer to surveys by Fellows

[2006], Guo and Niedermeier [2007], and Bodlaender [2009].

Multivariate Algorithmics. Recently, the notion of “multivariate algorithmics” has

been a new motif in the scientific discourse about parameterized algorithmics [Fel-
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lows 2009, Niedermeier 2010]. The concept of multivariate algorithmics aims

at reflecting the fact that many of the results and questions in parameterized

algorithmics have become so detailed and multi-faceted that it appears they are not

fully absorbed by the standard notions of parameterized algorithmics. We give some

examples for how multivariate algorithmics extends parameterized algorithmics.

First, an increasing number of parameters for NP-hard problems are so-called

combined parameters. A combined parameter is a parameter that consists of two or

more parts that are independent from each other. We define combined parameters as

tuples of single parameters. For example, the combined parameter (k1,k2) consists of

the independent parts k1 and k2. Formally, one does not need to extend the definition

of parameterized problems to show fixed-parameter tractability or W[1]-hardness

with respect to a combined parameter, since the independent parts can be encoded

into one parameter. When parameterizing by combined parameters, several questions

emerge, for example: Can one of the parts of the combined parameters be removed

without giving up fixed-parameter tractability? What are the relations between the

parts of the combined parameter?

Second, for many problems, attempts are made to increase the number of

parameters for which the parameterized complexity of the problem is known. The aim

is to obtain a comprehensive picture of the computational complexity of the problem.

For example, when a problem has been shown to be W[1]-hard when parameterized

by the parameter solution size k , it is natural to ask whether it is fixed-parameter

tractable parameterized by |I | − k , where |I | is often referred to as “dual parameter”.

This comprehensive overview of fixed-parameter tractability and intractability results

for a problem naturally applies also to combined parameters, which further increases

the number of possible results for a problem, and thus yields an even more detailed

analysis of problem. In order to justify the study of certain parameterizations of a

problem, it is useful to compare parameters with each other. In this work, we say that a

parameter k is stronger than a parameter l for a problem L if there is a function f such

that in every possible input instance of problem L it holds that k ≤ f (l ), and for some

fixed value for parameter k there are instances of L in which l is arbitrarily large. This

means that fixed-parameter tractability for the stronger parameter k implies fixed-

parameter tractability for parameter l , while fixed-parameter tractability for l does

not necessarily imply fixed-parameter tractability for k .

1.3 Graph Theory

We briefly define the main concepts of graph theory that are used throughout this

work.

An undirected graph G is a tuple (V ,E ), where V is the vertex set and E ⊆ {{u, v} |
{u, v} ⊆ V } is the edge set. Unless stated otherwise, we use n to denote the number
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of vertices of G which we also refer to as order of G . The number of edges is usually

denoted by m and referred to as size of G . Two vertices u, v ∈V are adjacent if {u, v} ∈
E . A vertex v is incident with an edge e if v ∈ e , that is, v is an endpoint of e . For a

vertex v , we denote with N (v) := {u ∈ V | {u, v} ∈ E } the neighborhood of v . The closed

neighborhood is defined as N [v ] := N (v)∪ {v}. We use deg(v) = |N (v)| to denote the

degree of the vertex v . We say that a graph G has maximum degree∆ if for every vertex v

in G it holds that deg(v)≤∆.

For a set V ′ ⊆V , the induced subgraph G[V ′] is the graph over the vertex set V ′ with

the edge set {{v, w }∈ E | v, w ∈V ′}. For a vertex set S ⊆V we use G−S as an abbreviation

for G[V \ S], and for a vertex v ∈ V , we use G − v as an abbreviation for G[V \ {v}]. An

isomorphism of two graphs G = (V ,E ) and H = (W,F ) is a bijection f : V → W , such

that any two vertices u and v of G are adjacent in G if and only if f (u) and f (v) are

adjacent in H . A matching in a graph G = (V ,E ) is a set M of edges of E such that no two

edges in M have a common endpoint, that is, for each pair of edges e1 = {u, v} and e2 =
{x, y} in M we either have e1∩e2 =; or e1 = e2. A path is a graph P = (V ,E ) with vertex

set V := {v1, . . . , vn} and edge set E := {{v1, v2}, . . . , {vn−1, vn}}. The vertices v1 and vn are

the endpoints of P . The path on n vertices is denoted as Pn .

Connectivity and Cut-vertices. Two vertices u and v in an undirected graph G are

called connected if G contains as subgraph a path with the endpoints u and v . An

undirected graph is called connected if every pair of vertices is connected. The

maximal connected subgraphs of a graph are its connected components. A vertex u in

an undirected graph G is called a cut-vertex if G contains two vertices v, w with v 6= u

and w 6= u such that every path from v to w contains u. If an undirected graph is

connected and has no cut-vertex, then it is biconnected. In general, if a graph cannot

be disconnected by deletion of any set of p − 1 vertices, it is called p-connected. A

bridge in an undirected graph G is an edge {u, v} such that in G every path between u

and v contains {u, v}. If a graph is connected and has no bridge, then it is bridge-

connected. A graph is called p-edge-connected if it cannot be disconnected by deletion

of any set of p −1 edges.

Graph Properties. A graph property is a nonempty proper subset Π of the set of

all graphs. We say that a graph has property Π if it is isomorphic to a graph in Π.

A graph property that is closed under the operation of deleting vertices (and hence,

taking induced subgraphs) is called hereditary. Hereditary graph properties can be

described by forbidden induced subgraphs [Greenwell et al. 1973]. This means that

for each hereditary graph property Π there exists a set F of graphs such that a given

graph G fulfills Π if and only if G is F-free, that is, G does not contain any graph fromF

as induced subgraph.
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Graph Modification Problems. Many of the problems considered in this work are

graph modification problems. In these problems the aim is to obtain a graph with

a prespecified graph property by applying modifications to this graph. Commonly

considered modification types are vertex deletions, edge deletions, or edge modifica-

tions (that is, edge insertions and deletions). A generic formulation of vertex deletion

problems is as follows.

Π-VERTEX DELETION

Input: An undirected graph G and a nonnegative integer k .

Question: Is there a set S of at most k vertices such that G − S has

property Π?

TheΠ-VERTEX DELETION problem is NP-hard for hereditary graph properties Π [Lewis

and Yannakakis 1980]. Edge modification problems can be formulated as follows.

Π-EDITING

Input: An undirected graph G and a nonnegative integer k .

Question: Can G be transformed by up to k edge deletions and insertions

into a graph that has property Π?

Edge deletion problems can be formulated analogously. For edge modification

problems, there is no general NP-hardness result for hereditary graph properties. For

example, the problem of deleting a minimum number of edges to obtain a forest can

be solved in polynomial time, since it is equivalent to computing a spanning tree of

each connected component. For a given graph modification problem, we refer to a

set of allowed modifications whose application yields the desired graph property as a

solution of the problem.
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(a) The input graph G. (b) By deleting the three dashed edges

and inserting the bold edge, G is

transformed into a cluster graph.

Figure 1.1: An example of CLUSTER EDITING.

An important task in the analysis of networks is the partition of the network

vertices into cohesive groups, clusters. In the example of protein interaction networks,

these clusters should correspond to functional modules [Barabási and Oltvai 2004,

Przulj et al. 2004, Sharan et al. 2007]. The common theme of many clustering

algorithms that are used for clustering protein interaction networks is that the

clustering solution depends crucially on the edges of the network, and to a lesser

extent on other knowledge about the proteins such as for example sequence similarity.

In other words, many clustering algorithms for protein interaction networks are graph-

based. The intuitive idea behind this approach (and, in fact, behind graph-based data

clustering in general) is that the input network is considered to be a similarity graph,

that is, there is an edge between two vertices if and only if these two vertices are similar.

There is an abundance of clustering algorithms that have been suggested for

clustering protein interaction networks, and the algorithmic approaches range from

spectral analysis [Inoue et al. 2010] to Markov-clustering [Krogan et al. 2006] to min-

cut-based clustering algorithms [Hartuv and Shamir 2000, Przulj et al. 2004]. So far,

the contribution of parameterized algorithmics to the particular task of clustering

protein interaction networks is negligible since the commonly proposed approaches

do not involve solving an NP-hard optimization problem. In the field of parameterized

algorithmics, the most extensively studied graph clustering approach is the NP-

hard CLUSTER EDITING problem [Böcker et al. 2009, 2011, Chen and Meng 2010,

Dehne et al. 2006, Fellows et al. 2007, Guo 2009, Gramm et al. 2005]:

CLUSTER EDITING

Input: An undirected graph G = (V ,E ) and an integer k ≥ 0.

Question: Can G be transformed by up to k edge deletions and insertions into

a cluster graph?

Herein, a cluster graph is a vertex-disjoint union of cliques or, equivalently, a graph

that does not contain an induced path on three vertices (a P3). The connected

components of a cluster graph are the clusters of the clustering solution. Figure 1.1

shows an example of CLUSTER EDITING. Informally, the idea behind CLUSTER EDITING

can be described as follows. A clustering is an equivalence relation since it partitions
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the objects into equivalence classes, the clusters. A good clustering is one in which the

elements of a cluster are similar to each other. Furthermore, elements from different

clusters should be different from each other. Hence, a good clustering of a similarity

graph partitions the vertex set into clusters such that there are many edges inside the

clusters and few edges between clusters. This aim can be reformulated as inserting few

edges inside clusters and deleting few edges between clusters. The CLUSTER EDITING

problem thus corresponds to finding a clustering that is closest to the observed input

similarities.

While the CLUSTER EDITING model has been successfully applied to cluster real-

world biological data [Böcker et al. 2009, Rahmann et al. 2007, Wittkop et al. 2010,

2011], there have been so far no attempts to apply this model to protein interaction

networks. The reason lies in

– the large size of the protein interaction networks, which prohibits using the

current state-of-the-art fixed-parameter algorithms for CLUSTER EDITING, and

in

– the structure of these networks which makes it unlikely that the clustering

produced by CLUSTER EDITING is reasonable.1

Our main interest thus lies in making progress toward answering the following two

questions:

– Can we identify new interesting parameterizations for graph-based data-

clustering problems that increase the range of instances for which we can find

optimal solutions to NP-hard graph-based data clustering problems?

– Can the CLUSTER EDITING model be “tweaked” to yield better clustering

models for protein interaction networks? In particular, do the fixed-parameter

tractability results that have been established for CLUSTER EDITING carry over

to these new clustering problems?

In the next three chapters, we study these questions. We use CLUSTER EDITING as the

“origin” of our exploration and study generalizations of and other problems related

to CLUSTER EDITING as well as new parameterizations of CLUSTER EDITING.

Related work. The NP-hardness of CLUSTER EDITING, also known as CORRELATION

CLUSTERING ON COMPLETE GRAPHS, has been shown several times [Křivánek and

Morávek 1986, Shamir et al. 2004, Bansal et al. 2004]. The problem remains NP-

hard when the solution may contain at most two clusters [Shamir et al. 2004].

The parameterized complexity of CLUSTER EDITING with respect to the parameter

number k of edge modifications has been extensively studied. After a series of im-

provements [Gramm et al. 2005, Fellows et al. 2007, Protti et al. 2009, Guo 2009, Böcker

1See Chapter 3 for a more detailed discussion.
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et al. 2009, Chen and Meng 2010], the currently fastest fixed-parameter algorithm

for parameter k has running time O(1.62k + m) [Böcker 2011], and the currently

smallest problem kernel contains at most 2k vertices [Chen and Meng 2010]. Several

experimental studies demonstrate that fixed-parameter algorithms can be applied

to solve real-world instances of CLUSTER EDITING [Dehne et al. 2006, Böcker et al.

2009, 2011]. A particularly promising approach seems to be the combination of fixed-

parameter algorithms with a parameter-dependent data reduction strategy [Böcker

et al. 2011]. So far, however, the currently fastest implementation for solving CLUSTER

EDITING uses a combination of an ILP-formulation and a cutting-plane algorithm

of Grötschel and Wakabayashi [1989] with a parameter-dependent data reduction

strategy [Böcker et al. 2011]. As to approximability, there is a polynomial-time-

approximation scheme for maximizing |V | · (|V | − 1)/2− k , that is, the sum of vertex

pairs whose relation is not changed by the edge modification set S [Bansal et al.

2004]. In contrast, minimizing k is APX-hard [Charikar et al. 2005]; the currently

best approximation ratio is 2.5 [Ailon et al. 2008, van Zuylen and Williamson 2009]. A

closely related NP-hard clustering problem is CONSENSUS CLUSTERING which can be

seen as a special case of edge-weighted CLUSTER EDITING [Ailon et al. 2008, van Zuylen

and Williamson 2009].

Several generalizations of CLUSTER EDITING have been studied with respect

to their algorithmic properties. For example, CLUSTER EDITING is a special case

case of HIERARCHICAL-TREE CLUSTERING [Křivánek and Morávek 1986, Guo et al.

2010a]. The variant of CLUSTER EDITING that allows the input graph to contain

“uncertain edges” is referred to as FUZZY CLUSTER EDITING [Bodlaender et al. 2010]

or CORRELATION CLUSTERING ON GENERAL GRAPHS [Charikar et al. 2005]. FUZZY

CLUSTER EDITING parameterized by the “number of modified certain edges” has

received some attention attention [Bodlaender et al. 2010, Bousquet et al. 2011, Marx

and Razgon 2011] since it is—in terms of fixed-parameter tractability—equivalent

to MULTICUT parameterized by the size of the cut set. Very recently, the fixed-

parameter tractability of both problems was shown [Bousquet et al. 2011, Marx and

Razgon 2011]. At the moment this is however a mere classification result since the

running times of the corresponding fixed-parameter algorithms for FUZZY CLUSTER

EDITING are huge. It is fixed-parameter tractable to enumerate all inclusion-minimal

solutions to CLUSTER EDITING [Damaschke 2010]. Further theoretical studies present

fixed-parameter tractability results for generalizations of CLUSTER EDITING that allow

overlap between the clusters of the cluster graph [Damaschke 2010, Fellows et al.

2011b].

There are further combinatorial models for graph-based data clustering. For

example, Hartuv and Shamir [2000] proposed a network clustering algorithm that

repeatedly removes the edges of a minimum-cardinality cut until each connected

component (that is, cluster) of the graph is “highly connected”. Recently, a further

graph clustering model was proposed in which each cluster is allowed to have at most
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q outgoing edges and should fulfill further density constraints for example “missing

at most p edges to be a clique” [Heggernes et al. 2010, Lokshtanov and Marx 2011].

Note that in both of these clustering models the overall number of edges (or missing

edges) that disagree with the clustering is not minimized; this is a difference from the

clustering approaches in this work, which demand a clustering that minimizes this

number.

Overview of Part II. In Chapter 2, we study how “local degree bounds” influence the

complexity of CLUSTER EDITING and of its edge-deletion version CLUSTER DELETION.

We show that even for graphs with constant maximum degree CLUSTER EDITING

and CLUSTER DELETION are NP-hard and that this implies NP-hardness even if

every vertex is incident with only a constant number of edge modifications. We

furthermore obtain lower bounds for running times of fixed-parameter algorithms

with the parameter number k of edge modifications. Finally, we show that CLUSTER

EDITING becomes easier in case the number of clusters is fixed by presenting a

problem kernelization for the parameter “number d of clusters and local modification

bound t ”.

In Chapter 3, we discuss drawbacks of CLUSTER EDITING in certain application sce-

narios and propose several generalizations of CLUSTER EDITING that could be applied

to circumvent these drawbacks. We then study the parameterized complexity of these

generalizations with respect to the parameter “number of edge modifications”. The

aim of this study is two-fold. First, we believe that the proposed generalizations are

more appropriate clustering models for protein interaction networks than CLUSTER

EDITING. Second, we further explore the applicability of clique relaxations in the area

of fixed-parameter algorithms. Roughly speaking, our result is that it is possible to

replace clique models for clusters with clique relaxations as long as there is a second

combinatorial handle, the “slack” parameter s which measures how much the clique

requirement is relaxed.

In Chapter 4 we study the CONSENSUS CLUSTERING problem, which is closely

related to edge-weighted CLUSTER EDITING. The aim of CONSENSUS CLUSTERING is

the integration of disagreeing clusterings into a new clustering that has a minimum

amount of disagreement with the input clusterings. We show that CONSENSUS

CLUSTERING is fixed-parameter tractable with respect to the parameter average

distance of the input cluster. In other words, we demonstrate that the problem

becomes easy in case the average disagreement between the input clusters is small.

We also identify further related parameters for CONSENSUS CLUSTERING and present

a new kernelization concept: structural kernelization.



Chapter 2

Cluster Editing with Locally

Bounded Modifications

In this chapter, we study the effect of “bounding the local amount of edge modifica-

tions” in instances of CLUSTER EDITING which we defined as follows.

CLUSTER EDITING

Input: An undirected graph G = (V ,E ) and an integer k ≥ 0.

Question: Can G be transformed by up to k edge deletions and insertions into

a cluster graph?

Our studies are motivated by the observation that, so far, the proposed fixed-

parameter algorithms for CLUSTER EDITING almost exclusively examine the parameter

number k of edge modifications [Böcker et al. 2009, 2011, Chen and Meng 2010,

Gramm et al. 2005, Guo 2009]. This focus on the parameter k is contrasted by the

observation that k is often not really small for real-world instances. For example in

a protein similarity data set that has been frequently used for evaluating CLUSTER

EDITING algorithms, the instances with n ≥ 30, n being the number of vertices, have an

average number k of edge modifications that is between 2n and 4n [Böcker et al. 2009].

Still, the fixed-parameter algorithms can solve many of these instances [Böcker et al.

2009, 2011], which raises the question whether there are “hidden parameters” that are

implicitly exploited by these algorithms. We therefore aim at identifying promising

new parameterizations for CLUSTER EDITING that help to separate easy from hard

instances.

One of the parameters under consideration in this chapter is a stronger parameter

than the number k of edge modifications. We call this parameter local modification

bound t . In the following, we refer to a set of edge deletions and insertions as edge

modification set.

Definition 2.1. Let G = (V ,E ) be an undirected graph, and let S be an edge modification

21
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set for G. We say that S is locally-t -bounded if for every vertex v ∈V it holds that

|S ∩ {{u, v} | u ∈V \ {v}}| ≤ t .

Informally, this means that a locally-t -bounded edge modification set performs at

most t edge modifications on each vertex of the input graph. Another intuitive way of

looking at locally-t -bounded edge modification sets is to visualize the graph that has

vertex set V and edge set S. If S is locally-t -bounded, then this graph has maximum

degree t .

The local modification bound t relates to the overall number k of edge modifi-

cations in the following way: First, any edge modification set S is clearly locally-|S|-
bounded. Second, the local modification bound t can be arbitrarily small compared

to the overall number of edge modifications. Hence, the local modification bound t

is indeed a stronger parameter than the overall number of edge modifications. We

expect that in most practically relevant instances the local modification bound t is

much smaller than the overall number of edge modifications. As we observe here, the

local modification bound is upper-bounded by the maximum degree ∆ of the input

graph which is the second parameter that we consider.

Unfortunately, as we show in this chapter, it turns out that CLUSTER EDITING is

NP-hard already for constant ∆ and also for constant t . To contrast these NP-hardness

results, we show that parameterizing by the combined parameter “upper bound d

on the number of clusters and local modification bound t ” yields fixed-parameter

tractability.

In addition, we also consider the CLUSTER DELETION problem in which only edge

deletions are allowed.

CLUSTER DELETION

Input: An undirected graph G = (V ,E ) and an integer k ≥ 0.

Question: Can G be transformed by up to k edge deletions into a

cluster graph?

Our results for CLUSTER DELETION are roughly the same as for CLUSTER EDITING,

although for CLUSTER DELETION we obtain, somewhat surprisingly, hardness results

for even more restricted cases than for CLUSTER EDITING.

Related Work. As discussed in the introduction to Part II, there are many results

for CLUSTER EDITING parameterized by the number k of edge modifications. Other

parameterizations have played a marginal role so far. To the best of our knowledge, the

only other parameter that has been considered is the so-called cluster vertex deletion

number which is the number of vertices one needs to delete in order to obtain a cluster

graph. CLUSTER EDITING and CLUSTER DELETION are both fixed-parameter tractable

with respect to the cluster vertex deletion number of the input graph [Komusiewicz
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and Uhlmann 2011, Uhlmann 2011]. However, the running times of the algorithms for

this parameter seem to be impractical so far.

A variant of CLUSTER EDITING in which the number of clusters is fixed (instead

of upper-bounded as we consider in Section 2.2) has been previously studied: For

every d ≥ 2 it is NP-hard to decide whether the input graph can be transformed by

at most k edge modifications into a graph with exactly d clusters [Shamir et al. 2004].

Guo [2009] showed that this variant of CLUSTER EDITING admits a problem kernel

consisting of at most (d +2) ·k +d vertices.

While not as extensively studied as CLUSTER EDITING, some results have been

obtained for CLUSTER DELETION as well: CLUSTER DELETION is NP-hard in general

and when one demands that the cluster graph has exactly d ≥ 3 clusters but

polynomial-time solvable when one demands that the cluster graph has exactly two

clusters [Shamir et al. 2004]. CLUSTER DELETION can be solved in O(1.415k +n3) time

by a search tree algorithm [Böcker and Damaschke 2011].

Our Results. Table 2.1 summarizes our findings which are as follows. We present

a reduction from 3-SAT to CLUSTER EDITING which yields several hardness results.1

First, it shows that CLUSTER EDITING is NP-hard even on input graphs with maximum

degree six. Second, it shows that CLUSTER EDITING is NP-hard even when every edge

modification set of size at most k is locally-4-bounded. Hence, the local modification

bound itself is not a suitable parameter for CLUSTER EDITING. Finally, the reduction

from 3-SAT shows that CLUSTER EDITING does not admit an algorithm with running

time 2o(k) ·poly(|V |) time unless the so-called exponential time hypothesis fails. The

exponential time hypothesis states that k-SAT, k ≥ 3, cannot be solved within a

running time of 2o(n) or 2o(m), where n is the number of variables and m is the

number of clauses in the input k-CNF formula. This approach for showing super-

polynomial lower bounds for running times goes back to work of Impagliazzo et al.

[2001]; a survey by Woeginger [2003] discusses, among other things, some aspects of

the exponential time hypothesis. In this context, algorithms with running time 2o(p)

for some parameter p are called subexponential-time algorithms. Our result on the

nonexistence of such a subexponential-time algorithm for the parameter k negatively

answers a recent conjecture by Cao and Chen [2010].

For CLUSTER DELETION, we can show hardness for even more restricted cases by

observing close connections to PARTITION INTO TRIANGLES. We show that CLUSTER

DELETION is NP-hard even when the input graph has maximum degree four, and

that it is NP-hard even when every solution of size at most k is locally-2-bounded.

Again, we also observe that our results imply that CLUSTER DELETION does not

admit an algorithm with running time 2o(k) · poly(|V |) unless the exponential time

1Previous NP-hardness results were obtained for example by reductions from 3-DIMENSIONAL

MATCHING [Křivánek and Morávek 1986] or EXACT COVER BY 3-SETS [Shamir et al. 2004].
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Parameter CLUSTER EDITING CLUSTER DELETION

∆ NP-hard for ∆= 6 NP-hard for ∆≥ 4, ∈ P for ∆≤ 3

t NP-hard for t = 4 NP-hard for t = 2

k No 2o(k) ·poly(n) algorithm No 2o(k) ·poly(n) algorithm

(d , t ) 4 ·d t -vertex kernel 2 ·d t -vertex kernel

Table 2.1: Summary of our results for CLUSTER EDITING and CLUSTER DELETION and the

parameters maximum degree ∆, local modification bound t , number k of edge modifications,

and the combined parameter (d , t). The results for parameter k hold unless the exponential

time hypothesis fails.

hypothesis fails. We also show that CLUSTER DELETION is polynomial-time solvable

on graphs with maximum degree three, thus achieving a dichotomy with respect to

the maximum degree of the input graph.

We complement the negative results for CLUSTER EDITING and CLUSTER DELE-

TION by showing that both problems are fixed-parameter tractable with respect to the

combined parameter (d , t ), where d is an upper bound on the number of clusters in

the cluster graph and t is the local modification bound. More precisely, we consider

a constrained version of both problems that might be of independent interest. Our

algorithms for these problems are based on simple data reduction rules that produce

in O(|V |3) time a problem kernel consisting of at most 4 · d t vertices (in the case

of CLUSTER EDITING) and 2 ·d t vertices (in the case of CLUSTER DELETION).

2.1 Constant Maximum Degree and Constant Local Modifica-

tion Bound

We show that CLUSTER EDITING is NP-hard even when restricted to graphs with

maximum degree six. To the best of our knowledge the previous NP-hardness proofs

require an unbounded degree [Křivánek and Morávek 1986, Bansal et al. 2004, Shamir

et al. 2004]. As an immediate consequence of our NP-hardness proof, CLUSTER

EDITING is NP-hard even for a constant local modification bound. The following

structural lemma will be used in our proof of NP-hardness.

Lemma 2.1. Let G = (V ,E ) be an undirected graph. There is a minimum-cardinality

solution S producing a cluster graph G ′ such that for all vertices u, v ∈ V with |N (u)∩
N (v)| ≤ 1 and {u, v} 6∈ E it holds that u and v are in different clusters of G ′.

Proof. Assume that there is a minimum-cardinality solution S that yields a cluster

graph G ′ such that there is a pair of vertices u, v ∈V with |N (u)∩N (v)| ≤ 1 and {u, v} 6∈
E that are in the same cluster K of G ′. We show that one can construct from S a
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solution S ′ with |S ′| ≤ |S| that yields a cluster graph G ′′ in which either u or v is a

singleton cluster.

Let X := N (u)∩ N (v) be the common neighborhood of u and v in G , let Kv :=
K ∩N (v) \ X , and let Ku := K ∩N (u) \ X . Note that |X | ≤ 1. Without loss of generality,

assume that |Kv | ≥ |Ku |. Then, u is in G adjacent to at most ⌊(|K |−1)/2⌋ vertices in K

since |Ku | ≤ ⌊(|K | − 3)/2⌋ and since u has in G at most one further neighbor in K

(because |X | ≤ 1). Therefore, cutting u from K yields a solution S ′ with |S ′| ≤ |S|
since this operation “undoes” at least ⌈(|K | − 1)/2⌉ edge insertions and causes at

most ⌊(|K |−1)/2⌋ additional edge deletions.

Exhaustively applying the modification above for each such pair of vertices results

in a minimum-cardinality solution with the desired property. Since each application

of this modification produces at least one singleton cluster, there can be at most n

iterations of this procedure. Hence, a solution with the desired property does indeed

exist.

In the CLUSTER EDITING instances created by the reduction, all nonadjacent

vertices have at most one vertex in common. Hence, the lemma above implies that

in every one of these instances there is an optimal solution that only deletes edges.

For the NP-hardness proof we present a reduction from 3-SAT, which has as

input a boolean formula φ in 3-CNF and asks whether there is an assignment to

the variables of φ that fulfills all clauses of φ.2 The basic idea of the reduction is as

follows. For each variable xi of a given 3-CNF formula φ, we construct a variable

cycle of length 4 · #(i ), where #(i ) denotes the number of clauses that contain xi . It

is easy to verify that only deleting every second edge yields a minimum-cardinality

edge modification set for transforming an even-length cycle into a cluster graph. The

corresponding two possibilities are used to represent the two choices for the value

of xi . Moreover, for each clause C j containing the variables xp , xq , and xr , we connect

the three corresponding variable cycles by a clause gadget. In doing so, the goal is to

ensure that if the solutions for the variable gadgets correspond to an assignment that

satisfies C j , then one needs only four edge modifications for the clause gadget and

otherwise one needs at least five edge modifications. Let m be the number of clauses

in φ and observe that, since φ is a 3-CNF formula, the overall number of vertices

in the variable cycles is 12m. Our construction guarantees that there is a satisfying

assignment for φ if and only if the constructed graph can be transformed into a cluster

graph by exactly 6m + 4m = 10m edge modifications, where 6m modifications are

used for the variable cycles and 4m modifications are used for the clause gadgets. The

details follow.

Given a 3-CNF formula φ consisting of the clauses C0, . . . ,Cm−1 over the vari-

ables {x0, . . . , xn−1}, construct a CLUSTER EDITING-instance (G = (V ,E ),k) as follows.

2A similar reduction was previously used to show NP-hardness of the TRANSITIVITY EDITING problem

which is defined on directed graphs [Weller et al. 2011].
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a j

q4π(q, j )+1

q4π(q, j )+2

p4π(p, j ) p4π(p, j )+1

r4π(r, j )

r4π(r, j )+1

Figure 2.1: Illustration of the clause gadget for a clause C j = (xp ∨ xq ∨ xr ).

For each variable xi , 0 ≤ i < n, G contains a variable cycle that consists of the

vertices V v
i

:= {i0, . . . , i4#(i )−1} and the edges E v
i

:= {{ik , ik+1} | 0 ≤ k < 4#(i )} (for

ease of presentation let i4#(i ) = i0). We use the following notation for the edges of

variable cycles: the edges {i0, i1}, {i2, i3}, . . . , {i4#(i )−2, i4#(i )−1} of the variable cycle of xi

are called even, all other edges are called odd. So far, the constructed graph consists of

a disjoint union of cycles. Next, we add a clause gadget to G for each clause of φ.

In the construction of the clause gadgets, we need for each clause C in the variable

cycles of C ’s variables a fixed set of vertices that are “reserved” for C . To this end,

suppose that for each variable xi an arbitrary but fixed ordering of the clauses that

contain xi is given, and let π(i , j ) denote the position of a clause C j that contains xi in

this ordering. We now give the details of the construction of the clause gadgets. Let C j

be a clause containing the variables xp , xq , and xr (either negated or nonnegated).

We construct a clause gadget connecting the variable gadgets of xp , xq , and xr . First,

we add a new vertex a j . Furthermore, let E c
j

denote the edge set of the clause

gadget and let E c
j

contain for each i ∈ {p, q,r } the edges {a j , i4π(i , j )} and {a j , i4π(i , j )+1}

if xi occurs nonnegated in C j or the edges {a j , i4π(i , j )+1} and {a j , i4π(i , j )+2}, otherwise.

See Figure 2.1 for an illustration. Finally, let V :=
⋃n−1

i=0
V v

i
∪

⋃m−1
j=0

{a j } and E :=
⋃n−1

i=0
E v

i
∪

⋃m−1
j=0

E c
j
. This completes the construction of G = (V ,E ).

Theorem 2.1. CLUSTER EDITING is NP-hard even when restricted to graphs with

maximum vertex degree six.

Proof. Let φ be a 3-SAT formula and let G be constructed from φ as described above.

We show the correctness of the reduction by showing the following claim.

φ is satisfiable ⇔G can be transformed into a cluster graph by at most k :=
10m edge modifications

In the following, we use the characterization of cluster graphs as the graphs that do

not contain an induced P3, that is, an induced path on three vertices.
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a j

q4π(q, j )+1

q4π(q, j )+2

p4π(p, j ) p4π(p, j )+1

r4π(r, j )

r4π(r, j )+1

Figure 2.2: Illustration that all induced P3s that contain a j can be destroyed by four additional

edge deletions if all odd edges in the variable cycle of xp are deleted (observe that xp occurs

nonnegated in C j , since a j is adjacent to p4π(p, j ) and p4π(p, j )+1). The four edge deletions

incident with a j are marked by dotted lines.

⇒: Given a satisfying assignment β for φ we can transform G into a cluster graph

as follows. For each variable xi delete the odd edges of the variable cycle of xi

if β(xi ) = true and the even edges otherwise. Moreover, for each clause C j proceed

as follows. Assume that C j contains the variables xp , xq , and xr . Without loss of

generality assume that the literal that corresponds to xp is true. All induced P3s that

contain a j can be destroyed by the deletion of the four edges with one endpoint

being a j and the other endpoints from V v
q ∪V v

r (see Figure 2.2). For the variable

cycles, we perform altogether
∑

0≤i<n #(i )/2 = 6m edge modifications, and for each

clause gadget four edges are deleted. Hence, 10m edge modifications are performed

overall. By construction, every induced P3 contains either three vertices of the same

variable cycle or at least one of the a j ’s. Hence, all induced P3s are destroyed and the

resulting graph is a cluster graph.

⇐: Let S denote an optimal solution for G of size at most k := 10m. To show that φ

is satisfiable, we need some observations about the structure of G and S.

First, we show that 10m is a lower bound on any solution for G . By the construction

of G , for every nonadjacent pair of vertices u, v in G , it holds that |N (u)∩ N (v)| ≤ 1.

Therefore, we can assume, by Lemma 2.1, that S performs only edge deletions (since

no nonadjacent vertices end up in the same cluster). Furthermore, note that for each

variable xi the variable cycle contains #(i )/2 edge-disjoint induced P3s with all three

vertices on the cycle and that deleting either all even or all odd edges are the only

two optimal ways to destroy these induced P3s. Hence, G contains 6m edge-disjoint

induced P3s such that all three vertices of the induced P3 are in the same variable

cycle. Clearly, at least 6m edge deletions are needed for these induced P3s. For each

clause a j , 0 ≤ j < m, at least four edge deletions are needed to destroy all induced P3s

that contain a j . Since at least 6m edges are deleted in the variable cycle, this means

that for each clause C j exactly four edges incident with a j are deleted by S, and that
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for each variable cycle either all even or all odd edges are deleted.

Consider the assignment β for φ that, for each xi , 0 ≤ i < n, sets β(xi ) := true

if all odd edges of V v
i

are deleted and sets β(xi ) := false if all even edges of V v
i

are

deleted. We show that β is a satisfying assignment. Consider an arbitrary clause C j

containing the variables xp , xq , and xr . Since exactly four edge deletions are incident

with a j , the edges that are incident with the vertices of the variable cycle of one

variable of C j , say xp , are not deleted by S. Without loss of generality, assume that xp

appears nonnegated in C j . Then the two vertices of V v
p that are adjacent to a j

are p4π(p, j ) and p4π(p, j )+1. Since S is a solution, the edge {p4π(p, j ), p4π(p, j )+1} is not

deleted by S. Hence, all odd edges of V v
p are deleted, and therefore the assignment β

fulfills clause C j .

We can use the presented reduction to obtain further hardness results for CLUSTER

EDITING. Since the constructed graph has maximum degree six, every optimal

solution is locally-6-bounded. This is due to the fact that if a vertex v is incident with

more than 6 edge modifications, then one can obtain a better solution by undoing

these edge modifications and deleting all edges that are incident with v in G .

This observation can be strengthened even further by observing that, by the

construction of G , we either need more than 10m edge modifications or that the

maximum number of edge modifications per vertex is four. The latter can be seen

as follows. As described in the proof of Theorem 2.1, if there is a solution of size at

most 10m, then there is also a solution that only performs edge deletions and that has

the following further properties. It performs 6m edge deletions in the variable cycles,

and on each vertex in the variable cycle at most one of the deleted edges is incident.

Note that each of the vertices in the variable cycle has at most one neighbor in a clause

gadget. Hence, for each vertex of the variable cycle at most two edge deletions are

performed on incident edges. Furthermore, for each clause gadget exactly four edge

deletions are performed. Hence, we can assume that there is a solution that is locally-

4-bounded.

Corollary 2.1. CLUSTER EDITING is NP-hard even when for every yes-instance there is

a solution that is locally-4-bounded.

Our final hardness result for CLUSTER EDITING can be drawn from the observation

that the solution size is ten times the number of clauses in the 3-CNF formula. By our

reduction, a subexponential-time algorithm for CLUSTER EDITING parameterized by k

would imply an algorithm for solving 3-SAT that has running time subexponential in

the number m of clauses. The same can be observed for the number |V | of vertices in

the CLUSTER EDITING instance. Hence, we arrive at the following.

Theorem 2.2. CLUSTER EDITING cannot be solved in 2o(k)·poly(|V |) time or in O(2o(|V |))

time unless the exponential time hypothesis fails. This holds even when the input graph

has maximum degree six.
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v v v

Figure 2.3: The three different neighborhoods in a 4-regular neighborhood restricted

PARTITION INTO TRIANGLES instance. None of these graphs contains a clique of order four.

For CLUSTER DELETION, we can obtain hardness for even more restricted input

graphs by observing close connections to PARTITION INTO TRIANGLES on graphs with

maximum degree four. As recently shown by van Rooij et al. [2011], PARTITION INTO

TRIANGLES is NP-hard even when the input graph G = (V ,E ) is 4-regular. Moreover, NP-

hardness persists even when for each vertex v ∈V the graph G[N [v ]] is isomorphic to

one of the three graphs shown in Figure 2.3 [van Rooij et al. 2011]. In the following, we

refer to such graphs as 4-regular neighborhood restricted graphs. The following easy

observation is useful for establishing the connection to CLUSTER DELETION.

Observation 2.1. Let G = (V ,E ) be a 4-regular neighborhood-restricted graph. Then G

does not contain any clique of order four or more.

The observation says that if we use a 4-regular neighborhood-restricted graph as

input graph for CLUSTER DELETION, then the largest clusters in the resulting cluster

graph are triangles. In the next lemma, we show that the case in which every cluster is

a triangle is optimal. Let n := |V | in what follows.

Lemma 2.2. Let G = (V ,E ) be an instance of PARTITION INTO TRIANGLES such that G

is a 4-regular neighborhood-restricted graph. Then, G is a yes-instance of PARTITION

INTO TRIANGLES ⇔ (G ,k := n) is a yes-instance of CLUSTER DELETION.

Proof. We show both directions separately.

⇒: Let I be a yes-instance of PARTITION INTO TRIANGLES, and let G1, . . . ,Gn/3

denote a set of triangles into which the input graph can be partitioned. Note that

each Gi contains three edges and three vertices. Since G is 4-regular, it has 2n edges.

Hence, there are exactly n edges that are not contained in any Gi . Deleting these edges

from G yields a cluster graph, since each component is a triangle.

⇐: Let S ⊆ E be an edge set of size at most k := n such that deleting S from G

yields a cluster graph G ′. By Observation 2.1, every cluster contains at most three

vertices. Each cluster on three vertices has exactly three edges and clusters with one

or two vertices have less edges than vertices. Consequently, G ′ has at most n edges.

Since |S| ≤ n and |E | = 2 ·n, G ′ has exactly n edges. Hence, every cluster is a triangle.

Consequently, the clusters are a set of vertex-disjoint triangles, and I is thus a yes-

instance of PARTITION INTO TRIANGLES.

The above lemma directly implies a polynomial-time many-to-one reduction

from PARTITION INTO TRIANGLES on 4-regular neighborhood-restricted graphs
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to CLUSTER DELETION on 4-regular neighborhood-restricted graphs: all that needs to

be done is to set k := n. Our main result that can be obtained by using this reduction

is as follows.

Theorem 2.3. CLUSTER DELETION is NP-hard even on 4-regular graphs.

Note that since the input graph of the CLUSTER DELETION instance is 4-regular,

and since every cluster must be a triangle we can assume that the edge deletion set is

locally-2-bounded.

Corollary 2.2. CLUSTER DELETION is NP-hard even when for yes-instances every

solution is locally-2-bounded.

Finally, we can also obtain lower bounds for the running time of CLUSTER

DELETION with respect to parameter k . PARTITION INTO TRIANGLES does not admit

a subexponential-time algorithm even on 4-regular neighborhood restricted graphs

unless the exponential time hypothesis fails [van Rooij et al. 2011]. Since we can

reduce such instances of PARTITION INTO TRIANGLES to CLUSTER DELETION instances

on the same graph with k =n, we arrive at the following.

Theorem 2.4. CLUSTER DELETION cannot be solved in 2o(k) ·poly(n) time or in 2o(n)

time unless the exponential time hypothesis fails. This holds even when the input graph

is 4-regular.

In the following, we present a polynomial-time algorithm for CLUSTER DELETION

in case the input graph has maximum degree three. Hence, we obtain the following di-

chotomy: CLUSTER DELETION is polynomial-time solvable on graphs with maximum

degree three, and NP-hard, otherwise. The main idea of the presented algorithm is as

follows. The algorithm starts by exhaustively applying two data reduction rules. One

rule deals with all isolated clusters and, as we show, hence with all clusters of size

four. The other rule deals with a certain type of triangles. We then show that after

these reduction rules have been exhaustively applied, we can reduce our instance to

a weighted version of CLUSTER DELETION whose input graph is triangle-free. Finally,

we show that this instance can be solved by computing a maximum-weight matching.

Next, we present the two reduction rules in detail. The aim of the first reduction

rule is to deal with all clusters of size four. Suppose that the final cluster graph contains

such a cluster of size four. Then, since the input graph G has maximum degree three,

this cluster must be a connected component and thus an isolated clique of G . Hence,

we can remove all vertices that are part of these clusters in O(n) time with the following

trivial reduction rule.

Reduction Rule 2.1. Remove from G all connected components that are cliques.

Clearly, Rule 2.1 is correct and can be exhaustively applied in O(n) time. We now

present the second data reduction rule.
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Reduction Rule 2.2. If G contains three vertices u, v, and w such that

– {u, v, w } induces a triangle in G, and

– there is no vertex x ∈V \ {u, v, w } that has at least two neighbors in {u, v, w },

then delete all edges between {u, v, w } and V \ {u, v, w }, decrease k by the number of

performed edge deletions, and remove {u, v, w } from G.

Lemma 2.3. Rule 2.2 is correct and can be exhaustively performed in O(n) time.

Proof. We first prove the correctness of the rule, and then show its running time. To

show the correctness of the rule, we show that there is an optimal solution that yields

a cluster graph in which {u, v, w } is a cluster. Let S ⊆E be an optimal solution, let G ′ :=
(V ,E\S) be the resulting cluster graph, and assume that {u, v, w } does not form a cluster

of G ′. Then, either three or two edges between u, v , and w are deleted (if only one edge

is deleted then u, v , and w induce a P3). In the first case, we can obtain a solution S ′ by

undoing all three edge deletions between u, v , and w and instead deleting the at most

three edges between {u, v, w } and V \ {u, v, w }. Clearly |S ′| ≤ |S|. In the second case,

suppose that {u, v} is not deleted by S. Then, {u, v} is a cluster of G ′. We can obtain a

solution S ′ from S by undoing the deletion of {u, w } and {v, w } and instead deleting at

most one edge between w and V \{u, v, w }. Since |S ′| < |S|, S is not an optimal solution,

a contradiction.

The running time can be seen as follows. First, we can label in O(n) time the

edges of all triangles to which Rule 2.2 applies by checking for each vertex v ∈ V

whether N [v ] contains a triangle that fulfills the condition of the rule. Then, we

can delete in O(n) time all unlabeled edges that have a common endpoint with a

labeled edge, since these are precisely the “outgoing” edges of a triangle that fulfills the

condition of the rule. After the deletion of these edges, the rule has been exhaustively

applied since the application of the rule does not create “new” triangles to which the

rule can be applied. This can be seen as follows. Observe that the endpoints of an

edge e that is deleted by Rule 2.2 do not have any common neighbors, since one

of e ’s endpoints is in a triangle in which no two vertices have a common neighbor

outside the triangle and G has maximum degree three. Now suppose that the deletion

of an edge e produces a triangle T = {u, v, w } to which Rule 2.2 applies. Clearly, e

must be incident with one vertex from T . Hence, assume without loss of generality

that e = {u, x}. Since the triangle T did not fulfill the condition of the rule before

the deletion of {u, x}, the vertex x must have another neighbor in T , say w . This

contradicts the observation that the endpoints of a deleted edge do not have any

common neighbors. Hence, Rule 2.2 can be exhaustively applied in one pass which

can be performed in O(n) time.

A graph with maximum degree three to which neither Rule 2.1 nor Rule 2.2 applies

has a special structure: For every triangle {u, v, w }, there is at least one other vertex x



32 2 Cluster Editing with Locally Bounded Modifications

that has two neighbors, say u and v , in the triangle. Then, u and v have two common

neighbors. Since the graph has maximum degree three and since they are adjacent, it

holds that N [u]= N [v ]. Note that since the graph does not contain cliques of size four

after Rule 2.1 has been applied, there is also no further vertex y that is adjacent to two

vertices in {u, v, w }. Altogether this leads to the following observation.

Observation 2.2. Let G be a graph with maximum degree three that is reduced with

respect to Rules 2.1 and 2.2. Then, every triangle contains exactly two degree-three

vertices u and v with N [u]= N [v ].

The above observation can be used in the following way: the vertices u and v are

part of exactly two triangles, and they can be in at most one of those triangles in a

cluster graph. Furthermore, the two vertices that are neighbors of u and v are part of

exactly one triangle since they have at most one further neighbor. Hence, all triangles

come in isolated pairs of which at most one is a cluster of the cluster graph. We can

show that in this case two vertices in the intersection of two triangles end up in the

same cluster. We can therefore “get rid” of these triangles by reducing the problem to

a weighted version of CLUSTER DELETION by merging the two vertices. The resulting

instance of this weighted version is triangle-free which makes it possible to compute

an optimal solution by computing a maximum-weight matching.

Lemma 2.4. Let (G ,k) be an instance of CLUSTER DELETION such that G has maximum

degree three and G is reduced with respect to Rules 2.1 and 2.2. Then, (G ,k) can be solved

in O(
p

n ·n) time.

Proof. Let (G ,k) be as described in the lemma. We describe a polynomial-time

algorithm for (G ,k) that consists of two main steps. First, we reduce (G ,k) to a triangle-

free instance of the following edge-weighted version of CLUSTER DELETION:

WEIGHTED CLUSTER DELETION

Input: An undirected graph G = (V ,E ), an edge-weight function ω : E →
N\ {0}, and an integer k ≥ 0.

Question: Is there an edge set S ⊆ E such that deleting S from G results in

a cluster graph and
∑

e∈S ω(e)≤ k?

Afterwards, we show that triangle-free instances of WEIGHTED CLUSTER DELETION can

be solved in polynomial time by computing a maximum-weight matching.

The reduction from CLUSTER DELETION to WEIGHTED CLUSTER DELETION works

as follows. First, we set ω(e) = 1 for each e ∈ E and thus obtain an instance

of WEIGHTED CLUSTER DELETION. Clearly, this instance is equivalent to the original

instance. Then, we further apply the following reduction rule to reduce this instance

of WEIGHTED CLUSTER DELETION into a triangle-free instance of WEIGHTED CLUSTER
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DELETION.3 As long as G contains a triangle, do the following. Let u and v denote

the degree-three vertices of the triangle with N [u] = N [v ] (by Observation 2.2 there

is exactly one such pair of vertices). Furthermore, let w and x denote the other two

neighbors of u and v . Remove u from G and set ω(v, w) := 2 and ω(v, x) := 2. Note that

after u is removed from G , v has degree two and it is furthermore not contained in a

triangle in G .

The correctness of the reduction rule described above can be seen as follows.

Since N [u] = N [v ] and by Observation 2.2, u and v are a so-called critical clique,

that is, a maximal vertex set in which all vertices have the same closed neighborhood.

Furthermore, all edges incident with u and v have weight one since u and v are still

part of a triangle. Every optimal solution puts u and v into the same cluster which

can be seen as follows. Suppose that there is an optimal solution S that puts u and v

into different clusters. Since S is optimal, there must be a vertex w such that one of u

and v , say u is in a cluster with w : otherwise, undoing the deletion of {u, v} yields a

better clustering. Then, by undoing the deletions of {u, v} and {v, w } and deleting at

most one other edge instead, we obtain a better solution. As a consequence, if {u, w }

is deleted by an optimal solution, then also {v, w } is deleted by this solution. Hence,

every optimal solution before the removal of u one-to-one corresponds to an optimal

solution after the removal of u (and the subsequent increase of the edge weights).

After all triangles have been replaced by edges of weight two, we have a triangle-

free instance of WEIGHTED CLUSTER DELETION. We now show that this instance can

be solved in polynomial time. The basis of this algorithm is the following claim:

Let G = (V ,E ) be a triangle-free graph, let S ⊆ E be an edge set, and let M :=
E \ S. Then, (V ,E \ S) is a cluster graph ⇔ M is a matching.

This claim can be seen as follows. Since G is triangle-free, any cluster graph that can

be obtained by edge deletions has clusters of size at most two. Hence, the edges of

this cluster graph are a matching. The converse is also true, since any two edges of

a matching do not have an endpoint in common. Therefore, the graph that contains

these edges and all vertices of the input graph is a cluster graph. Furthermore, since
∑

e∈S

ω(e)=
∑

e∈E

ω(e)−
∑

e∈M

ω(e)

for S ⊆ E and M := E \ S, minimizing the sum of the weights of the deleted edges is the

same as maximizing the weight of the matching. Hence, we can compute an optimal

solution for the triangle-free WEIGHTED CLUSTER DELETION instance by computing a

maximum-weight matching M of G . This computation can be performed in O(
p

nm)

time [Micali and Vazirani 1980]. The overall running time is thus O(
p

nn) since the

procedure of replacing the triangles can be performed in O(n) time and m ≤ 2n.

3The presented reduction rule is similar to previous approaches for CLUSTER EDITING that replace

an unweighted instance by a weighted instance that works on the so-called critical clique graph [Böcker

et al. 2009]. For the sake of completeness we include a short proof of correctness.
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Altogether, we arrive at the following.

Theorem 2.5. CLUSTER DELETION can be solved in O(
p

nn) time when the input graph

has maximum degree three.

Proof. Given an instance of maximum degree three, we first exhaustively

apply Rule 2.2 in O(n) time. Then, we exhaustively apply Rule 2.1, also in O(n)

time. Note that the application of Rule 2.1 does not produce any triangle to

which Rule 2.2 applies. Hence, the instance is reduced with respect to both rules.

Consequently, Lemma 2.4 can be applied; the overall running time follows.

2.2 Fixed-Parameter Tractability for the Combined Parameter

“Number of Clusters and Local Modification Bound”

In the hardness results of the previous section, the number of clusters in the final

cluster graph is unbounded. A natural question thus is: how does the number of

clusters affect the computational complexity for instances that have a fixed local

modification bound t ? We answer this question by showing that a constrained

version of CLUSTER EDITING is fixed-parameter tractable with respect to the combined

parameter “number d of clusters in the target graph and local modification bound t ”.

We choose the following formulation to incorporate d and t into the problem:

(d , t )-CONSTRAINED-CLUSTER EDITING:

Input: An undirected graph G = (V ,E ), a function τ : V → {0, . . . , t }, and

nonnegative integers d and k .

Question: Can G be transformed into a cluster graph G ′ by applying at

most k edge modifications such that G ′ has at most d clusters and each

vertex v ∈V is incident with at most τ(v) modified edges?

We use τ during our algorithm to keep track of the number of modifications that

each vertex has been incident with. We can initially set τ(v) := t for each v ∈ V

and directly obtain the constraints posed by the local modification bound t . We

refer to the corresponding problem in which only edge deletions are allowed as

(d , t )-CONSTRAINED-CLUSTER DELETION. Clearly, CLUSTER EDITING is the same

as (n,n)-CONSTRAINED CLUSTER EDITING with τ(v) = n for each v ∈ V . We present a

set of polynomial-time data reduction rules to show the fixed-parameter tractability

of (d , t )-CONSTRAINED-CLUSTER EDITING and (d , t )-CONSTRAINED-CLUSTER DELE-

TION with respect to the combined parameter (d , t ). Before presenting these rules,

we discuss several aspects of the problem formulation and parameterization.

Concerning the problem formulation, in many application scenarios a reasonable

upper bound for the number of clusters d is given in advance. Furthermore, the

local modification bound t yields another measure of closeness of the cluster graph to
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the input graph. In comparison to CLUSTER EDITING, (d , t )-CONSTRAINED-CLUSTER

EDITING allows to further constrain the solution by adjusting the values of d and t . In

certain application scenarios this may help to obtain better clusterings.

In this sense, (d , t )-CONSTRAINED-CLUSTER EDITING directly corresponds to

a multi-criteria optimization problem where there is a trade-off between finding

solutions that have small values of d , t , or k .

Concerning the parameterization, one can observe that for some instances k is

not bounded by a function in d and t . Consider for example a graph G = (V ,E ) that

consists of two cliques K1 and K2, each of order |V |/2. Furthermore, let each v ∈ K1

have exactly one neighbor in K2 and vice versa. An optimal solution for this graph is to

delete all |V |/2 edges between K1 and K2. Hence, the parameter k is very large for this

instance, whereas d = 2 and t = 1. In general, we can always assume t ≤ k . The general

relation between d and k is a bit more tricky. For example, in case G is connected, we

can assume d ≤ k + 1 since we can create at most k + 1 connected components by

applying k edge modifications to G . Furthermore, in case G does not contain isolated

cliques, we can assume d ≤ 2k , since at least one edge modification is incident on

each clique in the final cluster graph. In most application scenarios, the connected

components of the input graph are processed independently from each other. Hence,

we usually have d ≤ k+1 for real-world instances. In summary, the parameters d and t

can be arbitrarily small compared to k , are bounded from above by a linear function

of k when G does not contain isolated cliques, and are usually smaller than k for real-

world instances.

We now show that (d , t )-CONSTRAINED-CLUSTER EDITING is fixed-parameter

tractable with respect to (d , t ). More precisely, we present four data reduction rules

for (d , t )-CONSTRAINED-CLUSTER EDITING that produce a problem kernel consisting

of at most 4·d t vertices. The first two rules identify edge modifications that have to be

performed by every solution, since otherwise there would be vertices to which more

than t edge modifications are incident.

Reduction Rule 2.3. If G contains two adjacent vertices u, v ∈ V such that |N (u) \

N [v ]| > 2t , then remove {u, v} from E and set τ(v) := τ(v)−1, τ(u) := τ(u)−1, and k :=
k −1.

Reduction Rule 2.4. If G contains two nonadjacent vertices u, v ∈ V such that |N (u)∩
N (v)| > 2t , then add {u, v} to E and set τ(v) := τ(v)−1, τ(u) := τ(u)−1, k := k −1.

Lemma 2.5. Rules 2.3 and 2.4 are correct and can be exhaustively performed in O(n3)

time.

Proof. Let (G = (V ,E ),d , t ,k) be an input instance of (d , t )-CONSTRAINED-CLUSTER

EDITING. We show the correctness of each rule and then bound the running time of

exhaustively applying both rules.
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Let u and v be as described in Rule 2.3. We show that every locally-t -bounded

solution deletes the edge {u, v}. Suppose that there is a locally-t -bounded solution S

that does not delete {u, v}, let G ′ be the cluster graph that results from applying S to G ,

and let K be the cluster of G ′ such that u, v ∈ K . Clearly, |K ∩N (u) \ N [v ]| ≤ t since at

most t inserted edges are incident with v . Then, however, more than t deleted edges

are incident with u. This contradicts that S is a solution.

Let u and v be as described in Rule 2.4. We show that every solution adds the

edge {u, v}. Suppose that there is some solution S that does not add {u, v}, let G ′ be

the cluster graph that results from applying S to G , and let K be the cluster of G ′ such

that u ∈ K and v 6∈ K . Since at most t deleted edges are incident with u, we have |N (u)∩
N (v)∩K | > t . Then, however more than t deleted edges are incident with v . This

contradicts that S is a solution.

To achieve a running time of O(n3) we proceed as follows. First, we initialize for

each pair of vertices u, v ∈ V three counters, one counter that counts |N (u)∩ N (v)|,
one counting |N (u) \ N [v ]|, and one counting |N (v) \ N [u]|. For each such pair, this

is doable in O(n) time when an adjacency matrix has been constructed in advance.

Hence, the overall time for initializing the counters for all possible vertex pairs is O(n3).

All counters that warrant an application of either Rule 2.3 or Rule 2.4 are stored in

a list. We call these counters active. Next, we apply the reduction rules. Overall,

since k ≤ n2 the rules can be applied at most n2 times. As long as the list of active

counters is nonempty, we perform the appropriate rule for the first active counter of

the list. It remains to update all counters according to the edge modification applied

by the rule. Suppose Rule 2.4 applies to u and v , that is, {u, v} is added. Then, we

have to update the counters for each pair containing v or u. For v , this can be done

in O(n) time, by checking for each w 6= v , whether u must be added to N (v)∩N (w ) or

added to N (v)\ N [w ] or removed from N (w )\ N [v ] (for each counter this can be done

in O(1) time by using the constructed adjacency matrix). For each updated counter,

we also check in O(1) time whether it needs to be added to/removed from the list of

active counters. The case that Rule 2.3 applies to u and v can be shown analogously.

Overall, we need O(n3) time to initialize the counters and O(n3) time for the exhaustive

application of the rules.

The following reduction rule simply checks whether the instance contains vertices

to which already more than t modifications have been applied. Clearly, in this case

the instance is a no-instance.

Reduction Rule 2.5. If there is a vertex v ∈V with τ(v) < 0, then output “no”.

The final rule simply identifies isolated cliques that cannot be merged or split,

and whose removal thus does not destroy solutions of (d , t )-CONSTRAINED-CLUSTER

EDITING.
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Reduction Rule 2.6. If there is an isolated clique K in G such that |K | > 2t , then

remove K from G and set d := d −1.

Lemma 2.6. Rule 2.6 is correct and can be exhaustively performed in O(m) time.

Proof. The running time of the rule is obvious; for the correctness we show that K is a

cluster of any cluster graph that can be obtained by a locally-t -bounded solution.

Since |K | > 2t , there is at least one vertex that is adjacent to at least t vertices of K

in any cluster graph that can be obtained by a locally-t -bounded solution. Hence,

there is a cluster K ′ of size at least t +1 that contains only vertices from K . Since every

vertex from K that is not part of K ′ is incident with at least t + 1 edge deletions, we

have K ⊆ K ′. Furthermore, we have K ′ = K since adding a vertex v ∈V \ K to K causes

at least 2k edge insertions that are incident with v .

We now show that applying Rules 2.3–2.6 yields a problem kernel.

Theorem 2.6. (d , t )-CONSTRAINED-CLUSTER EDITING admits a 4 ·d t -vertex problem

kernel which can be found in O(n3) time. It is thus fixed-parameter tractable with

respect to the parameter (d , t ).

Proof. We first show the problem kernel size and then bound the running time of the

kernelization.

Let (G = (V ,E ),d , t ,k) be an input instance of (d , t )-CONSTRAINED-CLUSTER

EDITING and let G be reduced with respect to Rules 2.3–2.6. We show the following:

(G ,d , t ,k) is a yes-instance ⇒ G has at most 4 ·d t vertices.

Let S be a solution of the input instance and let G ′ be the cluster graph that results

from applying S to G . We show that every cluster Ki of G ′ has at most 4t vertices.

Assume toward a contradiction that there is some Ki in G ′ with |Ki | > 4t . Since G is

reduced with respect to Rule 2.6, there must be either an edge {u, v} in G such that u ∈
Ki and v ∈V \ Ki or a pair of vertices u, v ∈ Ki such that {u, v} is not an edge in G .

Case 1: u ∈ Ki , v ∈V \Ki and {u, v} ∈ E . Since at most t −1 edge insertions are incident

with u, it has in G at least 3t +1 neighbors in Ki . Furthermore, since at most t edge

deletions are incident with v , it has in G at most t neighbors in Ki . Hence, there are

at least 2t +1 vertices in Ki that are neighbors of u but not neighbors of v . Therefore,

Rule 2.3 applies in G , a contradiction to the fact that G is reduced with respect to this

rule.

Case 2: u, v ∈ Ki and {u, v} 6∈ E . Both u and v are in G adjacent to at least |Ki | − (t −
1) vertices of Ki \ {u, v}. Since |Ki | > 4t they thus have in G at least 2t + 1 common

neighbors. Therefore, Rule 2.4 applies in G , a contradiction to the fact that G is reduced

with respect to this rule.

We have shown that |Ki | ≤ 4t for each cluster Ki of G ′. Since G ′ has at most d

clusters, the overall bound on the number of vertices follows.
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It remains to bound the running time of exhaustively applying Rules 2.3–2.6. By

Lemma 2.5, the exhaustive application of Rules 2.3 and 2.4 runs in O(n3) time. After

these two rules have been exhaustively applied, Rules 2.5 and 2.6 can be exhaustively

applied in O(m) time.

The data reduction rules can be adapted to the case that only edge deletions are

allowed. Indeed, we can show a 2 ·d t -vertex problem kernel for (d , t )-CONSTRAINED-

CLUSTER DELETION by replacing 2t by t in Rule 2.3 (note that Rule 2.4 is not suitable

for CLUSTER DELETION since it adds an edge). More precisely, we have the following

two reduction rules specifically for CLUSTER DELETION.

Reduction Rule 2.7. If G contains two adjacent vertices u, v ∈ V such that |N (u) \

N [v ]| > t , then remove {u, v} from E and set τ(v) := τ(v)−1, τ(u) := τ(u)−1, and k :=
k −1.

Lemma 2.7. Rule 2.7 is correct and can be exhaustively applied in O(n3) time.

Proof. The running time was already shown in the proof of Lemma 2.5. Hence, we

only show the correctness of the rule.

Every locally-t -bounded solution deletes at most t edges incident with u. Hence,

in the cluster graph that results from applying such a solution, u has at least one

neighbor w 6∈ N [v ]. Hence, the solution must also delete {u, v}. Otherwise the graph is

not a cluster graph.

The second rule deals with isolated clusters in G .

Reduction Rule 2.8. If there is an isolated clique K in G, then remove K from G and

set d := d −1.

The correctness of the rule follows from the simple observation that this isolated

clique produces at least one cluster. Finally, we also apply Rule 2.5 in order to find

vertices to which too many edge modifications have been applied. Altogether, the

exhaustive application of these rules yields a 2 ·d t -vertex problem kernel, as we show

in the following.

Theorem 2.7. (d , t )-CONSTRAINED-CLUSTER DELETION admits a 2·d t -vertex problem

kernel which can be found in O(n3) time. It is thus fixed-parameter tractable with

respect to the parameter (d , t ).

Proof. The proof works in complete analogy to the proof of Theorem 2.6, the only

difference is that we can show that every cluster of the cluster graph has at most 2t

vertices instead of 4t vertices.

Let G be a graph that is reduced with respect to Rules 2.7, 2.8, and 2.5. We show

that each cluster of every cluster graph that can be obtained by a locally-t -bounded
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has size at most 2t . Assume toward a contradiction that there is such a cluster

graph that contains a cluster K that has more than 2t vertices. Since G is reduced

with respect to Rule 2.8, there must be a pair of vertices u ∈ K and v ∈ V \ K such

that {u, v} is an edge in G . Since the solution is locally-t -bounded, v has in G at most t

neighbors in K . Hence, u has in G more than t neighbors that are not neighbors of v .

Therefore, Rule 2.7 applies, a contradiction to the assumption that G is reduced.

2.3 Concluding Remarks

The presented hardness and tractability results provide a more detailed view on the

computational complexity of CLUSTER EDITING and CLUSTER DELETION. Several

open questions and research tasks concerning CLUSTER EDITING arise immediately

from these results. In addition, we identify a number of further more methodological

research questions that apply to graph modification problems in general.

– Concerning the NP-hardness of CLUSTER EDITING for graphs with bounded

degree, achieving a complexity-dichotomy, as we now have for CLUSTER

DELETION, would be desirable. We conjecture that CLUSTER EDITING on graphs

with maximum degree three is solvable in polynomial time. For graphs with

maximum degree four or five, we have no conjecture at the moment.

– Concerning the polynomial-time solvability of CLUSTER DELETION in graphs

with maximum degree three, it would be interesting to extend this tractability

result to the edge-weighted version. So far, we have only shown that this edge-

weighted version is polynomial-time solvable on triangle-free graphs (in the

proof of Theorem 2.5). While graphs with maximum degree three seem to be

rather artificial input instances, this result could still be practically relevant since

such graphs could be produced in the course of recursive search tree algorithms.

– Concerning the parameter “local modification bound t ” several questions

arise. For example, is CLUSTER EDITING polynomial-time solvable when

the solution is locally-1-bounded? Another question is whether there are

other graph modification problems for which this parameter yields fixed-

parameter tractability? A good candidate seems to be the FEEDBACK ARC SET IN

TOURNAMENTS problem, which appears to be “easier” than CLUSTER EDITING.4

– Concerning the combined parameter “number d of clusters and local mod-

ification bound t ”, developing a search tree algorithm would complement

our problem kernelization results. Moreover, experimental studies should be

performed to analyze what typical values of d and t are in real-world instances,

4For example, FEEDBACK ARC SET IN TOURNAMENTS can be solved in time that is subexponential in

the size of the solution [Alon et al. 2009, Karpinski and Schudy 2010].
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and to determine whether adding our data reduction rules provides a speed-up

for some instances.

– Finally, further suitable parameterizations of CLUSTER EDITING should be

explored. These could be structural graph parameters but also parameters that

are related to the solution such as for example the parameter “number of edge

deletions performed by the solution”. This parameter could be considerably

smaller than the parameter number of edge modifications.



Chapter 3

Clique Relaxation-Based

Generalizations of Cluster Editing

In this chapter, we study the parameterized complexity of four generalizations of

CLUSTER EDITING. The common feature of the problems under consideration is that

the demand for the clusters to be cliques is replaced by other models for dense graphs.

Formally, the problems can be seen as instances of the following class of problems:

Π-CLUSTER EDITING

Input: An undirected graph G = (V ,E ), a density property Π, and a

nonnegative integer k .

Question: Can G be transformed by up to k edge deletions and insertions

into a Π-cluster graph, that is, a graph in which every connected component

satisfies Π?

Formally, the density property Π can be any graph property. Setting Π :=“the set of all

cliques” we arrive exactly at CLUSTER EDITING. In our study, we consider four other

graph properties for Π: s-defective cliques, s-plexes, average-s-plexes, and µ-cliques.

These density properties are sometimes called “clique relaxations” since they pose

weaker demands on the density of the graph than the clique model. Three of the

considered clique relaxations have a “slack” parameter s ≥ 0 that measures how much

the clique demand is relaxed. For example, a graph G = (V ,E ) is an s-plex if it has

minimum degree |V |−s. For s = 1, this definition is equivalent to the clique definition;

for s > 1, the density requirement is “relaxed”.

The remainder of this chapter is organized as follows. First, we give some

motivation for the study of these relaxed variants of CLUSTER EDITING. Then, we

present the considered problem variants, point to related work for the considered

density properties, and summarize our findings. Afterwards, we present our results

in detail for each of the studied variants.

41
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(a) The input graph. (b) An optimal solution

for CLUSTER EDITING: two

clusters arise.

(c) An optimal solution for 3-

PLEX CLUSTER EDITING:

one cluster arises.

Figure 3.1: An example of optimal solutions for two different cases of Π-CLUSTER EDITING.

Dashed edges are deleted edges; edge insertions are bold.

Motivation. Although CLUSTER EDITING has been shown to yield high-quality

clusterings, for example for protein similarity data [Wittkop et al. 2007, Rahmann et al.

2007] data, there are scenarios in which CLUSTER EDITING has drawbacks. In particu-

lar, applying CLUSTER EDITING to the simple undirected graph that underlies a protein

interaction network typically does not result in a useful clustering. The problem is

that CLUSTER EDITING deals poorly with the many low-degree vertices in scale-free

protein interaction networks: In a minimum-cardinality solution of CLUSTER EDITING,

each vertex v of the input graph ends up in a cluster of order at most 2 ·deg(v)+ 1

(putting v in a larger cluster is always worse than putting it in a singleton cluster).

For example, degree-one vertices end up in clusters of order at most three. Hence,

many modules of the protein interaction network are “split” by a minimum-cardinality

solution of CLUSTER EDITING, and the clustering produced by CLUSTER EDITING

contains a core consisting of the vertices of high degree and many very small clusters

that only contain vertices of low degree. The behavior of cutting away low-degree

proteins from their biological modules has been identified as a weakness of several

clustering algorithms for protein interaction networks [Inoue et al. 2010]. By choosing

a density property that is less strict, one counteracts this behavior by allowing the

clusters to contain some elements that have lower degree (see Figure 3.1). For example,

in a minimum-cardinality solution for s-PLEX-CLUSTER EDITING a vertex may end up

in clusters of order up to 2 ·deg(v)+ 2− s. There is clearly a trade-off between the

“amount of relaxation” and clustering quality: if the density requirement is relaxed

too much, then the complete protein-interaction network fulfills the requirement and

thus the clustering algorithm outputs only one cluster containing all proteins in this

case.

Another advantage of choosing clique relaxations as demand for the clusters lies in

the observation that the number k of edge modifications usually decreases compared

to CLUSTER EDITING.1 This observation entails two positive aspects. First, it reflects

1More precisely, for each of the considered Π-CLUSTER EDITING problems, the minimum-cardinality

solution is always at most as large as the minimum-cardinality solution for CLUSTER EDITING, since each

of the considered clique relaxations is less strict than cliques.
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(

µ-cliques, 0 <µ< 1

(

cliques ≡ 1-cliques ≡ 1-plexes

(

s-defective cliques

(

s-plexes

(

average-s-plexes

(

0-cliques

Figure 3.2: Inclusion relations between the considered density properties for fixed s > 1.

the premise that fewer edge modifications mean that we introduce fewer “errors” into

our final cluster solution, because then the computed Π-cluster graph is closer to the

original input graph. This is in accordance with the maximum parsimony principle:

the natural hypothesis that the less one perturbs the input graph the more robust and

plausible the achieved clustering is (also see Böcker et al. [2009] for making this point

for CLUSTER EDITING). Second, it means that the number k of edge modifications

becomes a better parameter since it is possibly much smaller. Next, we define each of

the four density properties under consideration in this chapter.

Definitions of the Clique Relaxations. The first clique relaxation that we consider is

to allow a fixed number s of missing edges in each cluster:

Definition 3.1. A graph G = (V ,E ) is an s-defective clique if G is connected and |E | ≥
|V | · (|V |−1)/2− s.

We call {u, v} 6∈ E a missing edge of G . A 0-defective clique is nothing but a clique. By

increasing s, the clique model can be more and more relaxed. The concept of defective

cliques has been used in biological networks to represent a clique with exactly one

edge missing [Yu et al. 2006]. We generalize this notion2 by allowing up to s missing

edges.

The second considered clique relaxation is the s-plex notion which restricts the

number of missing edges per vertex or, equivalently, the minimum degree for each

vertex.

Definition 3.2. A graph G = (V ,E ) is an s-plex if the minimum vertex degree in G is at

least |V |− s.

2Yu et al. [2006] introduced a different generalization of defective cliques that is more restrictive than

the one considered here.
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Cliques are 1-plexes and vice versa. As for s-defective cliques, the density

requirement can be more and more relaxed by increasing s. The s-plex concept has

applications, for example, in social network analysis [Seidman and Foster 1978, Cook

et al. 2007, Memon et al. 2007].

The third clique relaxation that we consider for the clusters is a variation of

the s-plex notion that we call average-s-plex. In contrast to the s-plexnotion, which

demands that the minimum degree of a graph G = (V ,E ) be |V | − s, average-s-plexes

restrict the average degree of the graph G = (V ,E ).

Definition 3.3. The average degree of a graph G = (V ,E ) is defined as d̄ = 2|E |/|V |. A

graph G = (V ,E ) is an average-s-plex if its average degree d̄ G is at least |V |− s.

This density property is thus a relaxation of the s-plex notion. We are not aware of

previous studies on average-s-plexes.

Finally, we consider a fourth density property, called µ-clique. Herein, the density

parameter µ captures the ratio of edges in the graph versus the number of edges in a

complete graph with the same number of vertices.

Definition 3.4. The density of a graph G = (V ,E ) is defined as 2|E |/(|V |(|V | − 1)). A

graph G = (V ,E ) is a µ-clique for a rational constant 0 ≤ µ ≤ 1 if the density of G is at

least µ.

We assume that µ is represented by two constant integers a and b such that µ =
a/b. Observe that for µ = 0 every graph is a µ-clique, and that a graph is a 1-clique if

and only if it is a clique. The µ-clique concept was studied, for example, by Abello et al.

[2002] and is also referred to as µ-dense graph [Kosub 2004].

For any fixed s, there is the following relationship between these density prop-

erties: An s-defective clique is also an s-plex, but not vice versa. An s-plex is also

an average-s-plex, but not vice versa. The µ-clique definition does not directly

compare to the other three density properties, since the density parameter µ does

not, in contrast to s, measure the density in relation to the overall number of vertices.

An overview of the inclusion relations between these four density properties is given

in Figure 3.2.

Our Results. We show that for s-defective clique-cluster graphs, s-plexes, and

average-s-plexes, the Π-CLUSTER EDITING problem is fixed-parameter tractable for

the combined parameter (s,k). Informally, this means that we can extend the fixed-

parameter tractability result of CLUSTER EDITING with respect to the parameter k as

long as we also include the parameter s, which measures the “amount of relaxation”

that is allowed. For the first two considered clique relaxations, s-defective cliques

and s-plexes, it is possible to use the well-known technique of characterizing the

respective target graphs via forbidden induced subgraphs, which then implies fixed-

parameter tractability with respect to k via a general result due to Cai [1996]. In
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(a) This graph is an average-4-plex since it

has average degree more than 2.

(b) Deleting the degree-5 vertex results in

a graph that is not an average-4-plex since

its average degree is less than 1.

Figure 3.3: The property of being an average-s-plex is not hereditary.

contrast, for average-s-plexes this approach fails, since the property of being an

average-s-plex is not hereditary, as shown in Figure 3.3. Hence, we follow a different

approach here: we reduce the problem to a weighted version and then show that this

weighted version can be reduced in polynomial time to an equivalent instance with at

most 4k2 +8sk vertices. Finally, we show that for µ-cliques, the Π-CLUSTER EDITING

problem is W[1]-hard with respect to the parameter k .

3.1 s-Defective Clique-Cluster Editing

In this section, we focus on the s-DEFECTIVE CLIQUE-CLUSTER EDITING problem:

given a graph G = (V ,E ), decide whether G can be transformed by at most k edge

modifications into an s-defective clique-cluster graph, that is, a graph in which every

connected component is an s-defective clique. The NP-hardness of s-DEFECTIVE

CLIQUE-CLUSTER EDITING can be shown by reduction from CLUSTER EDITING [Guo

et al. 2009a]. We show that s-defective clique-cluster graphs are characterized by

forbidden induced subgraphs with at most 2(s + 1) vertices. This characterization

directly leads to fixed-parameter tractability of s-DEFECTIVE CLIQUE EDITING with

respect to the parameter (s,k) by means of a search tree algorithm.

We start with some preliminaries. If we delete an arbitrary vertex of an s-defective

clique-cluster graph, then the resulting graph is still an s-defective clique-cluster

graph. Hence, the property of being an s-defective clique-cluster graph is hereditary.

It can thus be described by a set of forbidden induced subgraphs. A graph H is a

minimal forbidden induced subgraph for s-defective clique-cluster graphs if H is not

an s-defective clique-cluster graph but every induced proper subgraph of H is an s-

defective clique-cluster graph. Clearly, a graph is an s-defective clique-cluster graph

if and only if it contains no minimal forbidden induced subgraph. Next, we show

that, for s ≥ 1, every minimal forbidden induced subgraph of s-defective clique-cluster

graphs contains at most 2(s + 1) vertices. Recall that for s = 0 the only forbidden

induced subgraph is the path on three vertices [Gramm et al. 2005, Shamir et al. 2004].

Theorem 3.1. For s ≥ 1, every minimal forbidden induced subgraph of s-defective
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clique-cluster graphs contains at most 2(s + 1) vertices. Given a graph that is not an

s-defective clique-cluster graph, a minimal forbidden induced subgraph can be found

in O(nm) time.

Proof. Assume toward a contradiction that there exists a minimal forbidden induced

subgraph H = (W,F ) with |W | > 2(s +1). Clearly, we can assume that H is connected,

since otherwise we can keep one connected component that is not an s-defective

clique and delete all other connected components.

First, we consider the case that H contains a cut-vertex v . Let U denote a set of s+2

vertices which together with v induce a connected graph H ′ := H [U ∪ {v}]. Clearly, v

remains a cut-vertex in H ′. We show that H ′ is not an s-defective clique-cluster

graph, a contradiction to the minimality of H . Let U1, . . . ,Uℓ denote the connected

components of H ′− v . At least (
∑ℓ

i=1 |Ui | · (|U \Ui |))/2 edges are missing in H ′. This

sum is minimal for ℓ= 2 and |U1| = 1, in which case it is s+1. Hence, it is always larger

than s and thus H ′ is not an s-defective clique-cluster graph. Since s + 3 ≤ 2(s + 1)

for s ≥ 1, H ′ is a proper subgraph of H which contradicts the minimality of H .

In the following, we assume that H does not contain any cut-vertex. Moreover, we

can assume that no vertex v of H is adjacent to all other vertices of H , since otherwise

we can delete v to obtain a connected graph that has the same number of missing

edges as H , a contradiction to the minimality of H . Hence, there are at least s + 2

missing edges in H , since every vertex is incident with at least one missing edge. Let v

be an arbitrary vertex of H and let A :=W \ N [v ]. Since the deletion of v results in an s-

defective clique-cluster graph, it follows that in H−v there are at most s missing edges.

Hence, there exists a vertex u that is adjacent to all vertices of H − v . Clearly, u ∈ A,

since, otherwise, u would be adjacent to all vertices in G . Then, the deletion of u

reduces the number of missing edges by one. Hence, H −u is connected and has at

least s+1 missing edges. Consequently, H−u is not an s-defective clique-cluster graph,

a contradiction to the minimality of H .

To find a minimal forbidden induced subgraph proceed as follows. Given a

graph H = (W,F ) that is not an s-defective clique-cluster graph, check for every v ∈W

whether H − v is an s-defective clique-cluster graph in O(n +m) time and delete v if

this is not the case. Observe that we have to consider every vertex at most once, since

if H − v is an s-defective clique-cluster graph, then H ′ − v is an s-defective clique-

cluster graph for every induced subgraph H ′ of H containing v . Hence, the overall

running time is O(nm).

The forbidden subgraph characterization given in Theorem 3.1 directly leads to

fixed-parameter tractability with respect to the parameter (s,k) [Cai 1996]. More

precisely, we can use the following search tree algorithm to find a solution of size at

most k . As long as the given graph is not an s-defective clique-cluster graph find

a minimal forbidden induced subgraph and branch into all cases (at most
(2s+1

2

)

) to

destroy this subgraph by inserting or deleting an edge between two of its vertices.
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Since in each case we can decrease the parameter k by one, the size of the search tree

is O
(

(2s+1
2

)k
)

. Putting all together, we arrive at the following.

Theorem 3.2. s-DEFECTIVE CLIQUE-CLUSTER EDITING can be solved in O
(

(2s+1
2

)k ·nm
)

time and hence is fixed-parameter tractable with respect to the parameter (s,k).

The bound given in Theorem 3.2 should be seen as a first step: it shows

fixed-parameter tractability but it can certainly be improved. For the next prob-

lem, s-PLEX-CLUSTER EDITING, we actually show how such an improvement can be

performed.

3.2 s-Plex-Cluster Editing

In this section, we study s-PLEX-CLUSTER EDITING: given a graph G = (V ,E ), decide

whether G can be transformed by at most k edge modifications into an s-plex cluster

graph, that is, a graph in which every connected component is an s-plex. The

NP-hardness of s-PLEX-CLUSTER EDITING can be shown by slightly modifying an NP-

hardness proof for CLUSTER EDITING [Guo et al. 2010b]. First, in Section 3.2.1, we

show that s-plex cluster graphs can be characterized by minimal forbidden induced

subgraphs with O(s) vertices. Then, in Section 3.2.2, we show that a forbidden

induced subgraph can be found in O(n ·m) time. Altogether, this means that s-PLEX-

CLUSTER EDITING is fixed-parameter tractable with respect to (s,k) by applying Cai’s

theorem [Cai 1996]. We then demonstrate two improvements of this first classification

result. First, we show how to improve the running time for finding an induced

forbidden subgraph to O(s · (n +m)). Next, in Section 3.2.3, we present a—compared

to the brute-force branching that stands behind Cai’s theorem [Cai 1996]—more

efficient branching strategy for s-PLEX-CLUSTER EDITING that leads to a search tree

of size O((2s +⌊
p

s⌋)k ).

3.2.1 Description of the Forbidden Induced Subgraphs

Analogously to s-defective clique-cluster graphs, we say that a graph H is a minimal

forbidden induced subgraph if it is not an s-plex cluster graph but every induced

proper subgraph of H is an s-plex cluster graph. In the following, our goal is to

identify and describe the set Fs,min of all minimal forbidden induced subgraphs for

s-plex cluster graphs. More precisely, we first give a graph-theoretic description of the

minimal forbidden induced subgraphs. Then, we show that the number of vertices in

every minimal forbidden induced subgraph is upper-bounded by s + ts +1, where

ts := ⌊−0.5+
p

0.25+ s⌋.

Note that for a nonnegative integer i it holds that i · (i +1) ≤ s if and only if i ≤ ts .
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Finally, we show that the upper bound of s + ts + 1 on the number of vertices of

a minimal forbidden induced subgraph is tight. That is, we show that for every s ≥ 2

there exist minimal forbidden induced subgraphs with exactly this number of vertices.

We begin with a graph-theoretic description of the minimal forbidden induced

subgraphs. The starting point are the connected graphs that contain a vertex that is

not adjacent to exactly s other vertices. These graphs clearly are not s-plex cluster

graphs. Let C denote the set of connected graphs. Define

C(s, i ) := {H = (W,F ) ∈ C : (|W | = s + i +1)∧ (∃w ∈W : degH (w )= i )}

and

F(s, j ) :=
j

⋃

i=1

C(s, i ).

Next, motivating the definitions of C(s, i ) and F(s, j ), we show that all minimal

forbidden induced subgraphs are contained in F(s,n − s −1). Then we refine this

characterization by showing that a graph from C(s, i ) is minimal if and only if its

minimum vertex degree is i and all neighbors of a degree-i vertex are cut-vertices.

Lemma 3.1. G is an s-plex cluster graph ⇔ G is F(s,n − s −1)-free.

Proof. ⇒: Since the property of being an s-plex cluster graph is hereditary, all induced

subgraphs of G are s-plex cluster graphs. Hence, G is F(s,n − s −1)-free since the

graphs in F(s,n − s −1) are not s-plex cluster graphs.

⇐: We show the contraposition. If G is not an s-plexcluster graph, then G contains

a connected component C = (W,F ) that is not an s-plex. Since every connected

component with at most s + 1 vertices is an s-plex, we have |W | ≥ s + 2. Consider a

vertex v ∈ W of minimum degree. Since W does not form an s-plex, it contains at

least s vertices that are not adjacent to v . Hence, we can find an induced subgraph

of G from C(s,degG (v))⊆F(s,n − s −1) using breadth-first search starting at v .

In the following lemma, we precisely describe the minimal forbidden induced

subgraphs.

Lemma 3.2. A graph H ∈ C(s, i ) is a minimal forbidden induced subgraph for s-

plex-cluster graphs ⇔ the minimum vertex degree of H is i and for every v ∈ V (H )

with degH (v) = i the neighbors of v are cut-vertices.

Proof. ⇒: We show the contraposition. First, assume that H contains a vertex v with

degH (v) < i . Then, by breadth-first search starting at v , we can find a set S ⊂V (H ) such

that H [S] ∈ C(s,deg(v)). Hence, H is not minimal. Second, assume that there exists a

degree-i vertex v with a neighbor u that is not a cut-vertex. Then, by deleting u we

obtain a graph from C(s, i −1), that is, H is also not minimal.

⇐: Consider an arbitrary vertex v ∈ V (H ). We show that H ′ := H − v is an s-plex

cluster graph. Note that H ′ contains s + i vertices and the minimum vertex degree
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in H ′ is i − 1. First, all vertices w ∈ V (H ′) with degH ′ (w ) ≥ i are not adjacent to at

most s−1 other vertices. Second, consider an arbitrary degree-(i −1) vertex u ∈V (H ′).

Note that u is a neighbor of v in H (since the minimum degree in H is i ). Therefore, v

is a cut-vertex in H and the deletion of v separates from u at least one of the s

vertices nonadjacent to u in H . As a consequence, u is not adjacent to at most s −1

other vertices in the connected component of H ′ containing u. In summary, every

vertex w ∈ V (H ′) is not adjacent to at most s − 1 other vertices in the connected

component in H ′ in which it is contained. Hence, H ′ is an s-plex cluster graph.

Based on the description of the minimal forbidden induced subgraphs given in

Lemma 3.2, we show that the number of vertices in a minimal forbidden induced

subgraph is bounded by O(s). To this end, we show that the set Fs,min of all minimal

forbidden induced subgraphs is contained in F(s, ts), that is, the number of vertices

of every minimal forbidden induced subgraph is upper-bounded by s + ts +1.

Theorem 3.3. A graph G is an s-plex-cluster graph ⇔ G is F(s, ts)-free.

Proof. It is sufficient to show that all minimal forbidden induced subgraphs are

contained in F(s, ts). Assume toward a contradiction that there exists a minimal

forbidden induced subgraph H not contained in F(s, ts). By Lemma 3.1, H ∈F(s,n −
s −1). This implies that H ∈ C(s, i ) for some i with i · (i +1) > s (or, equivalently, i > ts).

Since H is a minimal forbidden induced subgraph, according to Lemma 3.2, the

minimum vertex degree of H is i . Let v ∈ V (H ) be a degree-i vertex. Note that,

according to Lemma 3.2, all neighboring vertices NH (v) = {u1,u2, . . . ,ui } of v are

cut-vertices. For every neighboring vertex u j of v let U j denote the set of vertices

in V (H ) that are not reachable from v in H −u j . On the one hand, note that |U j | ≥ i

for every 1 ≤ j ≤ i since the minimum vertex degree of H is i and since for every

vertex w ∈U j it holds that NH (w ) ⊆ (U j ∪ {u j }) \ {w }. On the other hand, since v has

degree i = |V (H )|− s −1 in H , we have
∑i

j=1 |U j | ≤ s. Hence, there must exist at least

one r , 1 ≤ r ≤ i , with |Ur | ≤ s/i < i ·(i +1)/i = i +1. Therefore, |Ur | = i . Moreover, since

the minimum vertex degree in H is i , Ur ∪ {ur } forms a clique of size i +1 and thus by

deleting all but one vertex of Ur we obtain a graph in C(s,1) which is by definition not

an s-plex cluster graph. This contradicts the assumption that H is a minimal forbidden

induced subgraph.

So far, we have shown that the number of vertices of every minimal forbidden

induced subgraph is at most s+ts+1. Clearly, this implies that the number of minimal

forbidden induced subgraphs is upper-bounded by a function of s. The number

of minimal forbidden induced subgraphs may, however, be exponential in s. Note

that the maximum number of vertices in a minimal forbidden induced subgraph is

of greater algorithmic importance than the exact number of the minimal forbidden

induced subgraphs: providing a smaller upper bound on the number of vertices of
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s = 7

Figure 3.4: A minimal forbidden induced subgraph on 10 vertices for 7-plex cluster graphs.

The black vertex is a vertex with minimum degree and all its neighbors are cut-vertices.

minimal forbidden induced subgraph would directly improve the exponential part of

the running time of the search tree algorithms presented in Section 3.2.3. However,

we show that the upper bound of s + ts + 1 on the number of vertices in a minimal

forbidden induced subgraph is tight. To this end, we show that for every s ≥ 2 there is

at least one minimal forbidden induced subgraph which is contained in C(s, ts).

Consider the graph shown in Figure 3.4. It contains 10 vertices and the black

vertex has degree two. Hence, this graph is contained in C(7,2) (note that t7 = 2).

Moreover, the black vertex is the only vertex with degree two and all its neighbors are

cut-vertices. Hence, according to Lemma 3.2 the shown graph is a minimal forbidden

induced subgraph for s = 7. This example can be generalized to every s ≥ 2. That is, for

every s we can construct a minimal forbidden induced subgraph contained in C(s, ts)

as follows. We start with a star with center vertex v and ts leaves, say u1, . . . ,uts
. Then,

for every u j we add a clique C j in such a way that
∑ts

j=1
|C j | = s and that all cliques

are of same size plus/minus one. Finally, we make all vertices in C j adjacent to u j ,

1 ≤ j ≤ ts . Since
∑ts

j=1
|C j | = s (and ts · (ts +1) ≤ s by definition), we have |C j | ≥ ts +1,

and, as a consequence, v is the only vertex of degree ts and the degree of all other

vertices is at least ts +1. Since the deletion of u j separates the vertices in C j from v ,

all neighbors of v are cut-vertices. Hence, by Lemma 3.2, the constructed graph is a

minimal forbidden induced subgraph.

Summarizing, we arrive at the following.

Proposition 3.1. For every s ≥ 2 there exists a minimal forbidden induced subgraph

contained in C(s, ts).

Consequently, the forbidden induced subgraph characterization achieved in

Theorem 3.3 is tight.

3.2.2 Finding a Minimal Forbidden Induced Subgraph

In this subsection, we focus on efficiently finding a minimal forbidden induced

subgraph. We show that, given a graph G that is not an s-plex cluster graph, a minimal

forbidden induced subgraph can be found in O(s · (n +m)) time.

We first present an algorithm (Algorithm A, see Figure 3.5) that, given a graph H =
(W,F ) ∈ C(s, i ) (for some i ≥ 1), checks in O(|W | + |F |) time whether H is a minimal
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Input: H = (W,F ) from C(s, i ).

Output: “yes”, if H is a minimal forbidden subgraph;

an induced subgraph H ′ ∈ C(s, i ′) of H with i ′ < i , otherwise.

1 v := argminw∈W {degH (w )}

2 if degH (v)< i then

3 return a connected graph induced by NH [v ]∪S

where S contains s vertices from W \ NH [v ]

4 Let Cutvertices be the set of cut-vertices of H

5 if ∃v ∈W : (NH (v) \ Cutvertices) 6= ; then

6 return graph H −w for an arbitrary w ∈ (NH (v) \ Cutvertices)

7 return “yes”

Figure 3.5: Algorithm A checks whether a forbidden induced subgraph is minimal. If not, it

computes a smaller forbidden induced subgraph.

forbidden induced subgraph. If this is the case, then it outputs “yes”, otherwise it

returns an induced subgraph of H contained in C(s, i ′) with i ′ < i .

Lemma 3.3. Let H = (W,F ) ∈ C(s, i ). Algorithm A (Figure 3.5) computes in O(|W | +
|F |) time an induced subgraph H ′ ∈ C(s, i ′) of H, with i ′ < i , or outputs “yes” if H is a

minimal forbidden induced subgraph.

Proof. Consider lines 1 to 3 of the algorithm. If a vertex v in H has degree less than i ,

then we can clearly find a graph from C(s,degH (v)) by choosing NH [v ] and a set S ⊆
W \ NH [v ] of s further (arbitrary) vertices such that H [NH [v ]∪S] is connected. This is

doable in linear time by breadth-first search starting at v .

Consider lines 4 to 6. If one of the neighboring vertices of v , say w , is no cut-vertex,

then we can delete w from H obtaining a graph from C(s, i −1). Note that cut-vertices

can be computed in linear time [Tarjan 1972].

Consider line 7. The minimum vertex degree of H is i and the neighbors of every

degree-i vertex are cut-vertices. Hence, according to Lemma 3.2, H is a minimal

forbidden induced subgraph.

Algorithm A can be used iteratively to find a minimal forbidden induced subgraph.

When starting with an arbitrary graph contained inF(s,n−s−1), Algorithm A has to be

applied up to n times in the worst case, resulting in an overall running time of O(n ·m)

for finding a minimal forbidden induced subgraph. Combining this running time for

finding a minimal forbidden induced graph with Cai’s theorem [Cai 1996] leads to the

following.

Proposition 3.2. s-PLEX-CLUSTER EDITING can be solved in O(
(s+ts+1

2

)k ·nm) time.
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Input: H = (W,F ) from C(s, i ) with i > s

Output: An induced subgraph H ′ ∈ C(s, i ′) of H with i ′ ≤ s

1 u := argminw∈V {degH (w )}

2 if degH (u) ≤ s then

3 return a connected graph induced by NH [u]∪S

where S contains s vertices from W \ NH [u]

4 Let v ∈V be a vertex with degH (v) = i

5 NH (v) := {u1,u2, . . . ,ui }

6 Let K := {K1,K2, . . . ,Kl } with l ≤ s

denote the connected components of H −NH [v ]

7 Construct an auxiliary bipartite graph B = (XN , XK ,R) with

8 XN := {xu j
| 1 ≤ j ≤ i },

9 XK := {xKq
| 1 ≤ q ≤ l }, and

10 R := {{xu j
, xKq

} | ∃{u j , v ′} ∈ F with v ′ ∈ Kq }

11 r := argminq∈{1,...,l }{degB (xKq
)}

12 CC := {u j | xu j
∈ NB (xKr

)}

13 Ĥ := H − (CC \ {w }) for an arbitrary vertex w ∈CC

14 v ′ := argminw∈V (Ĥ ){degĤ (w )}

15 return a connected graph induced by NĤ [v ′]∪S

where S contains s vertices from V (Ĥ \ NĤ [v ′]

Figure 3.6: Algorithm B to compute a forbidden induced subgraph with O(s) vertices.

This can be significantly improved as we show in the following. First, we show that

the polynomial part of the running time can be improved. In particular, we show how

to achieve, for constant s, linear running time for finding a minimal forbidden induced

subgraph. To this end, we develop an algorithm (Algorithm B, see Figure 3.6) that,

given a forbidden induced subgraph H = (W,F ) fromF(s,n−s+1), finds in O(s ·(|W |+
|F |)) time a forbidden induced subgraph from F(s, s). Since the number of vertices in

such a subgraph is O(s), we can then apply Algorithm A iteratively O(s) times to obtain

a minimal forbidden induced subgraph.

Lemma 3.4. Let H = (W,F ) ∈ C(s, i ) with i > s. Algorithm B (Figure 3.6) computes

in O(s · (|W |+ |F |)) time an induced subgraph H ′ ∈ C(s, i ′) of H with i ′ ≤ s.

Proof. Consider lines 1 to 3. If degH (u)≤ s, then we can clearly find a set S ⊂W \NH [u]

of s vertices such that H [NH [u]∪S] is connected and |S| = s. This graph is in C(s, i ′)

for some i ′ ≤ s.

In the following, let v denote a vertex with degree i (line 4). We use the following

observation:
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If one of the neighboring vertices of a degree-i vertex v is a cut-vertex,

then there exists at least one vertex in H with degree at most s.

This can be seen as follows. Assume that x ∈ NH (v) is a cut-vertex and let U ⊆ W

denote the vertices not reachable from v in H − x. Since a vertex w ∈ U can only be

adjacent to vertices in U∪{x} and |U | ≤ s (by definition of C(s, i )), we have degH (w )≤ s.

According to this observation, when entering line 5 of Algorithm B, we know that

none of the vertices in NH (v) = {u1,u2, . . . ,ui } is a cut-vertex. To make use of the

observation, the remaining part of the algorithm is devoted to finding a set of vertices

from NH (v) whose removal leads to a connected graph in which one neighbor of v is

a cut-vertex. To this end, one constructs an auxiliary bipartite graph B = (XN , XK ,R)

(lines 5-10). Concerning the running time needed for the construction of B , note that

the degree of a vertex in XN is at most s since H − NH [v ] contains exactly s vertices

and, hence, XK has size at most s. Thus, to define R , one iterates over the edge

set F and, given an edge {u j , v ′} with v ′ ∈ Kq , one can decide in O(s) time whether

the edge {xu j
, xKq

} is contained in R . Thus, the bipartite auxiliary graph B can be

constructed in O(s · (|W |+ |F |)) time.

Consider lines 11 to 13. By choosing a “component vertex” xKr
of minimum

degree, we ensure that the set CC is a minimum-cardinality set of vertices from NH (v)

separating at least one connected component in K from v . That is, CC separates the

vertices in Kr from v . Let w be an arbitrary vertex of CC . By the deletion of all but one

vertex from CC (line 13), we ensure that the graph Ĥ = H −(CC \{w }) is still connected

and contains at least one cut-vertex, namely w . Hence, according to the observation

above, Ĥ contains a vertex of degree at most s. Let v ′ be a minimum-degree vertex

of Ĥ (line 14). As a consequence, degĤ (v ′) ≤ s and we can clearly find a set S ⊆ V (Ĥ)

of s vertices such that H ′ := Ĥ[NĤ [v ′] ∪ S] is connected. Note that H ′ is contained

in C(s,degĤ (v ′)) ⊆F(s, s). Altogether, the running time is O(s · (|W |+ |F |)).

Summarizing, we obtain a linear-time algorithm for finding a minimal forbidden

induced subgraph if s is a constant. In particular, this means we can find a forbidden

induced subgraph comprising at most s + ts +1 vertices in linear time.

Theorem 3.4. Let G = (V ,E ) be a graph that is not an s-plex cluster graph. Then, a

minimal forbidden induced subgraph can be found in O(s · (n +m)) time.

Proof. Let C = (W,F ) be a connected component of G that is not an s-plex. Let v

be a vertex of minimum degree in C . Clearly, by breadth-first search starting at v we

can find a set S ⊆ W of s vertices such that H := G[NG [v ]∪ S] is connected. Note

that H ∈ C(s,degH (v)). If degH (v) > s, then we can apply Algorithm B (Figure 3.6)

once to find a forbidden induced subgraph H ′ from F(s, s). In order to find a minimal

forbidden induced subgraph, we apply Algorithm A (Figure 3.5) at most O(s) times.

Hence, the overall running time is O(s · (n +m)).
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3.2.3 A Refined Search Tree Algorithm

We present a search tree algorithm that is based on the forbidden subgraph char-

acterization from Section 3.2.1 and yields an improved exponential running time

part compared to Proposition 3.2. The idea is to find a minimal forbidden induced

subgraph, and to consider all possibilities to destroy this subgraph. In comparison to

the algorithm behind Proposition 3.2, we present a more detailed look at the forbidden

induced subgraph and the possibilities to destroy this subgraph. This results in a

smaller search tree size.

Theorem 3.5. s-PLEX-CLUSTER EDITING can be solved in O((2s +⌊
p

s⌋)k · s · (n +m))

time.

Proof. Given an instance (G ,k) of s-PLEX CLUSTER EDITING, we search in G for a

minimal forbidden induced subgraph from F(s, ts). By Theorem 3.4, this can be

done in O(s · (n +m)) time. If G does not contain an induced subgraph from F(s, ts),

then G already is an s-plex cluster graph and we are done. Otherwise let S be a set of

vertices inducing a forbidden subgraph G[S] ∈ C(s, i ) ⊆ F(s, ts), where i ≤ ts . In the

following, let v denote a vertex with degG[S](v) = i . By the definition of C(s, i ), such

a vertex must exist. Branch into the different possibilities to destroy the forbidden

induced subgraph G[S] and then recursively solve the instances that are created in the

respective search tree branches. The branching stops when k ≤ 0.

For branching, either insert edges incident with v or delete edges in G[S]. It

is sufficient to only consider these edge modifications since, if none of these is

performed, then G[S] remains connected and there are s vertices in G[S] that are not

adjacent to v , contradicting the s-plex-cluster graph definition.

First, consider edge insertions between v and vertices u ∈ S \ N [v ]. Since G[S] ∈
C(s, i ) and v has degree i in G[S], we have |S \ N [v ]| = s. Therefore, branch into s cases,

inserting a different edge in each search tree branch. The parameter decreases by 1 in

each branch.

Next, consider edge deletions. In each remaining branch, there is at least one

vertex u ∈ S such that u and v become disconnected, that is, they are in different

connected components of the final s-plex cluster graph. We now show that for

each u ∈ S it is sufficient to create one search tree branch in which at least one edge

deletion is performed for the case that u and v are not connected in the final cluster

graph. Let Sl ⊂ S denote the vertices that have distance exactly l to v in G[S]. We first

consider the vertices in S1 (the neighbors of v in G[S]), then the vertices in S2, and so

on.

For each u ∈ S1, create a search tree branch in which one disconnects u and v .

Clearly this means that one has to delete the edge {u, v}. To branch on the vertices

in S2, one can assume that the vertices from N [v ]= {v}∪S1 end up in the same cluster,

since we have already considered all possibilities of removing edges between v and
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the vertices in S1. Therefore, when considering the case that a vertex u ∈ S2 and v

are not connected in the final cluster graph, one must delete all edges between u and

its neighbors in S1. At least one such edge must exist because u ∈ S2. Therefore, for

each case, one creates a search tree branch in which the parameter is decreased by at

least 1.

The case distinction is performed for increasing values of l , always assuming

that v and the vertices in S1 ∪ S2 ∪ . . .∪ Sl−1 end up in the same cluster of the final

cluster graph. Hence, when considering the case that v and a vertex u ∈ Sl end up in

different clusters, one creates a search tree branch in which the edges between u and

its neighbors in Sl−1 are deleted, and at least one of these edges must exist. Hence,

one creates |S|−1 = s + i ≤ s + ts branches in which edges are deleted. Together with

the s cases in which edge insertions are performed, one branches into 2s + i cases,

and in each branch, the parameter is decreased by at least 1. Branching is performed

only as long as k > 0. Hence, the search tree has size O((2s + ts )k ) = O((2s +⌊
p

s⌋)k ),

since ts = ⌊−0.5+
p

0.25+ s⌋. Using breadth-first search, the steps at each search tree

node can be performed in O(s ·(n+m)) time which results in the claimed running time

bound.

A further way to improve the algorithm for s-PLEX-CLUSTER EDITING is to develop

a kernelization for s-PLEX-CLUSTER EDITING. This is indeed possible, as s-PLEX-

CLUSTER EDITING admits a problem kernel of at most (8s2−6)·k+8(s−1)2 vertices that

can be computed in O(n4) time [Guo et al. 2010b]. Combining this problem kernel

with the search tree of Theorem 3.5 and the technique of interleaving search tree

and problem kernelization [Niedermeier and Rossmanith 2000] leads to the following

running time.

Theorem 3.6. s-PLEX-CLUSTER EDITING can be solved in O((2s +⌊
p

s⌋)k +n4) time.

The advantage of the running time of Theorem 3.6 is that the exponential running

time part is now added (instead of multiplied) to the polynomial running time part.

Theorem 3.5, however, gives linear running time for constant values of s and k .

3.3 Average-s-Plex-Cluster Editing

Here, we consider the AVERAGE-s-PLEX-CLUSTER EDITING problem, which is NP-hard

for every constant s ≥ 1 [Guo et al. 2009a]. As already shown in Figure 3.3, being an

average-s-plex graph is not a hereditary graph property. Hence, the fixed-parameter

tractability of AVERAGE-s-PLEX-CLUSTER EDITING cannot be shown by a forbidden

subgraph characterization as in the case of s-DEFECTIVE CLIQUE-CLUSTER EDITING

and s-PLEX-CLUSTER EDITING. Hence, we follow a different approach to show fixed-

parameter tractability with respect to (s,k). Our algorithm consists of two main steps.
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First, we reduce the original problem to a weighted version. Then, we show the fixed-

parameter tractability of the weighted version by describing two polynomial-time data

reduction rules that yield instances which contain at most 4k2 + 8sk vertices. Note

that formally these instances are not problem kernels since they can have unbounded

weights.

We begin with describing a weighted version of AVERAGE-s-PLEX-CLUSTER EDIT-

ING. We introduce three types of weights: two vertex weights and one edge weight. The

idea behind these weight types is the following: whenever there are two vertices in G

that cannot be separated by at most k edge modifications, we can merge them into

a new “super-vertex” since it is clear that they must end up in the same connected

component of the solution. We say that a super-vertex v “comprises” a vertex u of the

input graph if u is merged into v . When doing so, we must remember for each such

super-vertex v

– how many vertices of the input graph v comprises,

– how many edges there are between the vertices that v comprises, and

– for each vertex w not comprised by v , how many vertices that v comprises are

adjacent to w .

The first two aspects can be remembered by introducing two weights for v where

– σ(v) keeps track of the number of vertices comprised by v , and

– δ(v) keeps track of the number of edges between these vertices.

The third aspect can be stored as the edge weight ω(e) for the edge e = {w, v}. Herein,

we call a vertex pair having no edge between them a “nonedge”. Then, edges have

edge weight at least one and nonedges have edge weight zero. In the following, we will

assume that the weight functions δ and ω have the following limits on their values:

– For every v ∈V , it must hold that δ(v)≤σ(v) · (σ(v)−1)/2.

– For every edge {u, v} it must hold that ω({u, v}) ≤σ(u) ·σ(v).

We call this property σ-limited. Informally, it ensures that there is indeed an

undirected graph from which the weighted graph can be obtained by merging vertices

and it is also necessary for showing the size-bound on the reduced instance.

We introduce the following two notions for these weighted graphs. The “size” of

a vertex set S is simply defined as σ(S) :=
∑

v∈S σ(v). The average degree d̄ (Vi ) of a

connected component G[Vi ] can be computed as

d̄ (Vi ) =
2
∑

v∈Vi
δ(v)+

∑

v∈Vi

∑

u∈N(v) ω({u, v})

σ(Vi )
.

The sum in the numerator of the fraction is simply the sum of all edges of the original

graph that are “stored” in the weighted graph. The denominator is the number of all

comprised vertices. Hence, this is the same sum as in Definition 3.3.
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Similarly to the definition of average-s-plex cluster graphs, we say that a graph is

a weighted average-s-plex graph if for each connected component G[Vi ] the average

degree d̄(Vi ) is at least σ(Vi ) − s. For modifying the weighted graph, we allow the

following modifications:

– increasing δ(u) by one for some u ∈V ,

– increasing ω({u, v}) by one for some {u, v} ∈ E ,

– decreasing ω({u, v}) by one for some {u, v} ∈ E with ω({u, v}) > 1,

– deleting some {u, v}∈ E with ω({u, v}) = 1, and

– inserting some edge {u, v} to E and setting ω({u, v}) := 1.

Each of these operations has cost one, and the overall cost of a modification set S is

thus exactly |S|. We assume that all these operations can only be applied when the

weight function that is changed remains σ-limited after the modification.

Then, the weighted problem version is defined as follows.

WEIGHTED AVERAGE-s-PLEX-CLUSTER EDITING

Input: An undirected graph G = (V ,E ), with a vertex-weight function σ :

V → [1,n], a σ-limited vertex-weight function δ : V → [0,n2], a σ-limited

edge-weight function ω : E → [1,n2], and a nonnegative integer k .

Question: Is there a set S of at most k edge modifications such that apply-

ing S to G yields a weighted average-s-plex graph?

One can easily reduce an instance ((V ,E ),k) of AVERAGE-s-PLEX-CLUSTER EDIT-

ING to an instance of WEIGHTED AVERAGE-s-PLEX-CLUSTER EDITING: set σ(v) := 1

and δ(v) := 0 for each v ∈V , and set ω({u, v}) := 1 if {u, v}∈ E ; otherwise, set ω({u, v}) :=
0. Note that this reduction is parameter-preserving, that is, s and k are not changed.

In the following, we present two polynomial-time data reduction rules for

WEIGHTED AVERAGE-s-PLEX-CLUSTER EDITING which (as we will show in Theo-

rem 3.7) yield instances that contain at most 4k2 +8sk vertices.

Reduction Rule 3.1. Remove from G all connected components that are weighted

average-s-plexes.

The rule is obviously correct since no optimal solution modifies any edges incident

with vertices of such a connected component.

The second reduction rule identifies two vertices that have a large common

neighborhood, or a “heavy” edge between them and “merges” these vertices into a

new super-vertex.

Reduction Rule 3.2. If G contains two vertices u and v such that ω({u, v}) > k or u

and v have more than k common neighbors, then remove u from G and set

– σ(v) :=σ(u)+σ(v),
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– δ(v) := δ(u)+δ(v)+ω({u, v}), and

– ω({v, w }) :=ω({v, w })+ω({u, w }) for each w ∈V \ {u, v}.

To see the correctness of the rule, consider the following: we cannot separate u

and v using at most k edge modifications; thus, they must end up in the same

connected component. Hence, we can remove one of them, and store the information

about its adjacency in the vertex weights and edge weights of the other vertex. Note

that Rule 3.2 preserves the property of being σ-limited for both δ and ω: because the

weights of G are σ-limited, u and v “encode” vertex sets of an unweighted graph; the

new merged vertex “encodes” the union of the two vertex sets.

With these two reduction rules we can show our main result of this section.

Theorem 3.7. (WEIGHTED) AVERAGE-s-PLEX-CLUSTER EDITINGis fixed-parameter

tractable with respect to the parameter (s,k).

Proof. We first show that a yes-instance I of WEIGHTED AVERAGE-s-PLEX-CLUSTER

EDITING that is reduced with respect to Rules 3.1 and 3.2 contains at most 4k2 +8sk

vertices. Let I be such a reduced instance, and let G be the input graph of I . Since I is a

yes-instance, there is a weighted average-s-plex graph G ′ that can be obtained from G

by applying at most k edge modifications. We now bound the size of G ′. Herein, we

call a vertex v “affected” if v is an endpoint of a modified edge or if δ(v) has been

increased.

First, since G is reduced with respect to Rule 3.1, there is at least one affected

vertex in each connected component of G ′. Hence, there can be at most 2k connected

components in G ′.

Next, we show that each connected component of G ′ contains at most 2k + 4s

vertices. Assume toward a contradiction that there is a connected component Vi of G ′

such that |Vi | > 2k+4s. Let u ∈Vi be a vertex that has a maximum number of neighbors

in Vi . Since G ′ is a weighted average-s-plex graph, the average vertex degree d̄(Vi )

of G ′[Vi ] is at least σ(Vi )−s. Since |Vi | ≤σ(Vi ), u has at least |Vi |−s ≥ 2k+3s neighbors

in G ′[Vi ]. We consider two cases for σ(u).

Case 1: σ(u) ≥ σ(Vi )/2. We show that the average degree d̄ (Vi ) of G ′[Vi ] is less

than σ(Vi )−s, contradicting the assumption that G ′ is a weighted average-s-plex graph.

Since G is reduced with respect to Rule 3.2, each edge in G has weight at most k .

Furthermore, the overall edge weight increase of edges incident with u is at most k .

The average edge weight of edges incident with u in G ′ is thus at most k +1, since u

has at least 2k + 3s neighbors in G ′. However, with σ(u) ≥ σ(Vi \ {u}) ≥ 2k + 3s, this

means that the average weight of edges incident with u is at most σ(u)/2. This leads

to a low average degree. More precisely, we can bound the average degree of G ′[Vi ] as
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follows:

d̄(Vi )
(∗)
<

σ(Vi ) · (σ(Vi )−1)− (σ(u)/2) ·σ(Vi \ {u})

σ(Vi )

(∗∗)
<

σ(Vi ) · (σ(Vi )−1)− (σ(u)/2) ·4s

σ(Vi )

(∗∗∗)
≤

σ(Vi ) · (σ(Vi )−1)− (σ(Vi )/4) ·4s

σ(Vi )

<σ(Vi )− s.

Inequality (*) can be obtained from the following observations: The maximum value

that can be achieved for the sum of δ and ω of G ′[Vi ] is σ(Vi ) · (σ(Vi ) − 1) because

both δ and ω are σ-limited. From this we have to subtract the missing weight for the

edges incident with u, which, as described above, have average weight at most σ(u)/2.

Inequality (**) follows from σ(Vi \ {u}) ≥ |Vi | − 1 > 4s, and inequality (***) follows

from σ(u)≥σ(Vi )/2.

Case 2: σ(u)<σ(Vi )/2. First, we show that there must be at least one other vertex w ∈
Vi that has at least |Vi |−2s neighbors in G ′[Vi ]. Suppose that this is not the case. Then

the average degree of G ′[Vi ] can be bounded as follows

d̄
(∗)
≤

σ(Vi ) · (σ(Vi )−1)−2s · (σ(Vi )−σ(u))

σ(Vi )

(∗∗)
<

σ(Vi ) · (σ(Vi )− s)

σ(Vi )
.

Inequality (*) can be obtained from the following observations: The maximum

possible value that can be achieved for the sum of δ and ω of G ′[Vi ] is σ(Vi ) ·(σ(Vi )−1)

because both δ andω areσ-limited. From this we have to subtract the at least 2s edges

that are missing for each vertex v ∈Vi \ {u}. Inequality (**) follows from σ(Vi )−σ(u) >
σ(Vi )/2. We have thus shown that there is at least one other vertex w that is adjacent to

at least |Vi |−2s vertices in G ′. Since u has at least |Vi |−s neighbors in G ′[Vi ], there must

be at least |Vi |−3s > 2k +4s−3s = 2k + s vertices in G ′[Vi ] that are common neighbors

of u and w . Clearly, more than k+s of those vertices are common neighbors of u and w

in G . This contradicts the assumption that G is reduced with respect to Rule 3.2.

Altogether, we have shown that a reduced yes-instance contains at most 4k2 +
8sk vertices. We obtain a fixed-parameter algorithm for WEIGHTED AVERAGE-s-

PLEX-CLUSTER EDITING as follows. First we exhaustively apply the reduction rules,

which can clearly be done in polynomial time. If the reduced instance contains

more than 4k2 + 8sk vertices, then it is a no-instance. Otherwise we can solve the

problem with running time only depending on s and k , for example by brute-force

generation of all possible partitions of the graph. The fixed-parameter tractability

of AVERAGE-s-PLEX-CLUSTER EDITING then directly follows from the described

reduction to WEIGHTED AVERAGE-s-PLEX-CLUSTER EDITING.
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It would be desirable to complement the data reduction result with a depth-

bounded search tree. As already mentioned, devising such a search tree algorithm

seems to be more difficult than it was the case for s-DEFECTIVE CLIQUE-CLUSTER

EDITING and s-PLEX-CLUSTER EDITING: since being an average-s-plex is not hered-

itary, there is no forbidden local substructure that must be modified. Hence, new

techniques are necessary for obtaining such a search tree algorithm.

3.4 µ-Clique-Cluster Editing

In this section, we show that µ-CLIQUE-CLUSTER EDITING is W[1]-hard with respect to

the parameter “number k of allowed edge modifications”. The W[1]-hardness as well

as the NP-hardness are shown by a parameterized polynomial-time reduction from

the following problem:

MULTICOLORED CLIQUE

Input: An undirected graph G = (V ,E ) with a proper k-coloring c : V 7→
{1, . . . ,k} of the vertices.

Question: Is there a k-vertex clique in G consisting of exactly one vertex

from each color class?

Herein, proper means that the endpoints of every edge have different colors. MULTI-

COLORED CLIQUE parameterized by k is W[1]-hard [Fellows et al. 2009].

First, we briefly describe the basic idea of the reduction. Construct three types

of dense connected components, all of which are µ-cliques. There are k connected

components of the first type, called “color components”, each corresponding to a

color in the MULTICOLORED CLIQUE instance. The components of the second type

correspond to pairs of colors, called “color pair components”. The components of

the third type are the “vertex components”: for each vertex in G , there is a vertex

component. Finally, we connect the vertex component for a vertex v to the color

component corresponding to c(v) by 2(k−1) “docking bridges” (the exact definition of

docking bridges will be given in the following): For each color c ′ with c ′ 6= c(v), we use

two docking bridges between the vertex component for v and the color component

for c(v) to encode the edges in G between v and the vertices colored by c ′. Each of

these docking bridges is sparse, that is, a docking bridge alone is not a µ-clique. This

is the rough construction of the µ-CLIQUE-CLUSTER EDITING instance.

The decisive trick of the reduction is the following: each color class of G

corresponds to a connected component that contains a color component for this color

and vertex components for the vertices with this color. This connected component

is not a µ-clique due to the sparse vertex components and it is so large, compared

to our new parameter k ′, that we cannot transform it into a µ-clique by inserting

edges. However, cutting away exactly one vertex component corresponding to some
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vertex v turns this connected component into a µ-clique. This means we have to

cut 2(k − 1) docking bridges connecting the vertex component for v to the color

component. The construction of the docking bridges and the densities of the color

and vertex components again force that cutting one docking bridge has to separate

two small parts of the docking bridge, called “edge tails”, from the color and vertex

components and the docking bridge. An edge tail does not fulfill the condition of µ-

cliques and corresponds to an edge between v and a vertex from the color class that

the docking bridge represents. Finally, the separated edge tails are connected to the

color pair components by edge insertions. The density of the color pair components

allow them to be connected to exactly two edge tails which represent an edge between

the two corresponding color classes. Altogether, the vertex components separated

from the color components correspond to the vertices in the clique sought for in

MULTICOLORED CLIQUE, and the edge tails separated from the vertex components and

added to the color pair components correspond to the edges between the vertices in

the clique.

In our reduction, we need to ensure that some of the constructed components

are highly connected and have the property that adding a prespecified number of

edges and vertices to these graphs results in a graph that has density exactly µ. In

the following lemma, we show that the construction of these graphs is always possible

and that it can be performed in polynomial time.

Lemma 3.5. Given four positive integers a, b, c, and d, where a < b and d ≤ c(c −1)/2,

we can construct in poly(a,b,c ,d ) time a graph G such that

− G is 2(a −1)-connected, and

− adding c vertices and d edges to G results in a graph that has density exactly a/b and

has average degree more than a.

Proof. Without loss of generality, assume that b −a > 1 and that a > 1. Otherwise we

can show the claim using 2a instead of a and 2b instead of b. We set the number of

vertices of G to n := (2b −1)c and the number of edges to m := ac(2bc −1)−d . First,

since

2m < 2ac(2bc −1)≤ 2(b −2)c(2bc −1)

= (2bc −4c)(2bc −1)

< (n −3c)(n +c)

< n(n −1)

there is indeed a simple graph with the claimed number of edges. Moreover, since

m

n
=

ac(2bc −1)−d

(2bc −1)c
= a −

d

(2bc −1)c
> a −1,

G has at least (a−1) ·n edges. This means that we can construct G in polynomial time

such that it is 2(a−1)-connected [Harary 1962]. The density of the graph G ′ that results
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from adding c vertices and d edges to G is

2(m +d )

(n +c)(n +c −1)
=

2(ac(2bc −1)−d +d )

(2bc −c +c)(2bc −c −1+c)
=

2ac(2bc −1)

(2bc)(2bc −1)
=

a

b
.

The average degree of G ′ follows directly.

With this “subroutine” at hand, we can show the following.

Theorem 3.8. For all fixed 0 <µ< 1, µ-CLIQUE-CLUSTER EDITING is NP-complete and

W[1]-hard with respect to the number k of allowed edge modifications.

Proof. Let a and b be two fixed integers such that µ := a/b and assume without loss

of generality that a > n6 and b > n6. Let C with |C | = k be the set of colors in the

MULTICOLORED CLIQUE instance G = (V ,E ). Let Vc := {v ∈ V | c(v) = c}. Assume

that ∀c 6= c ′ : |Vc | = |Vc ′ | (in case |Vc | < |Vc ′ | for some c ,c ′ ∈ C one can add isolated

vertices of color c) and let l := |Vc |. In the following, we describe in detail the

construction of the components of theµ-CLIQUE-CLUSTER EDITING instance. We first

describe the construction of “docking bridges” which are used to connect vertex and

color components and then the construction of the different types of components.

Construction of Docking Bridges. The docking bridges encode information about

the adjacencies of G . This is done by adding tails of a specific length to the docking

bridges. To this end, we assign to each ordered vertex pair (u, v) with c(u) 6= c(v) an

integer πuv between 1 and x where x = 12n2 +1. Herein, the following rules should be

obeyed:

1. No two pairs get the same number.

2. If there is an edge between u and v , then |πuv −πvu | = 1 and all numbers z

with |z −πuv | ≤ 2 or |z −πvu | ≤ 2 should be reserved, that is, they should not be

assigned to any other vertex pair.

3. If there is no edge between u and v , then |πuv −πvu | = 2 and all numbers z

with |z −πuv | ≤ 1 or |z −πvu | ≤ 1 should be reserved.

4. If a number i is assigned to a vertex pair or reserved, then x − i should not be

assigned to any vertex pair.

Observe that, since x > 12n2, such an assignment is always computable in polynomial

time. These numbers will be needed to identify the edges in E .

For a vertex v with color c(v), we connect the vertex component Kv of v to the

color component Kc(v) with 2(k −1) docking bridges. For each color c ′ 6= c(v) we add

a pair of docking bridges as illustrated in Figure 3.7. Each docking bridge consists

of 4k(k − 1)+ 1 edge-disjoint paths all of length 2l . A docking bridge is divided by

the common vertices of the paths into l “intervals”; each interval corresponds to a

vertex in Vc ′ and consists of 4k(k − 1) + 1 length-two paths. The vertices lying on

these paths with the exception of the two endpoints are called “middle” vertices in this
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Kc(v) Kv

u1

u1

u2

u2

u3

u3

u4

u4

Figure 3.7: An example of a docking bridge pair between a vertex component Kv and a color

component Kc(v). These two docking bridges correspond to a color class c ′ with c ′ 6= c(v)

and Vc ′ = {u1,u2,u3,u4}. Thus, each docking bridge has four intervals. Here, for the the sake of

simplicity, only three length-two paths are drawn in each interval (in the construction, there

are 4k(k −1)+1 such paths in each interval). To each interval of the docking bridges we add

edge tails. Here, we show the edge tails for u2 (the gray vertices are the vertices that are in the

cycles of the edge tails) for πvu2 = 5, x = 11, and y = 0 (we therefore create two cycles, one of

length y +πvu2 = 5 and one of length y + x −πvu2 = 6).

interval. However, the orders of the vertices in Vc ′ according to which they appear on

the two corresponding docking bridges are reversed as shown in Figure 3.7. Note that

all docking bridges have the same endpoints, one in Kv and the other in Kc(v). Since

the length of docking bridges can be extended to nd for an arbitrary large constant d ,

we can assume that each of the docking bridges has density less than µ.

Next we add “edge tails” to the docking bridges. For each interval of a docking

bridge which corresponds to a vertex w , we add two edge tails that are two cycles with

length y +πvw and y +x−πvw , respectively. Herein, y is a large integer such that each

of the two cycles alone has density less than µ. This can be achieved for example by

setting y := ab. See Figure 3.7 for an example of a color component and its docking

bridges to a vertex component.

Now we describe the construction of the three types of components.

Color Pair Components. For each (unordered) pair of colors, add two color pair

components K 1 and K 2, where K 1 should satisfy the following requirements:

– Adding two edges to connect two vertex-disjoint cycles that together have length

at most x +2y +1 with K 1 results in a graph with density at least µ.

– Connecting two cycles with total length more than x +2y +1 will decrease the

density below µ.
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Lemma 3.5 shows that K 1 can be constructed in polynomial time such that adding

two vertex-disjoint cycles that together have a length equal to x + 2y + 1 results in

a graph that has density exactly µ. Note that by Lemma 3.5 and since a > n6, the

second part of the requirement also holds: adding a cycle of length more than x+2y+1

decreases—compared to adding a shorter cycle—the average degree of the connected

component while further increasing the size of the connected component. Hence,

such a component has density less than µ. The same requirement should also be

fulfilled by K 2 with the length threshold of the cycles being x +2y −1.

Vertex Components. For each vertex v , add a component Kv satisfying the following

requirements:

– Kv is 2(a −1)-connected.

– The graph that contains Kv and α := (k−1)((l −1)(4k(k−1)+x+2y)+8k(k−1)−
2+x+2y) vertices and β := (k−1)((l −1)(8k(k−1)+x+2y+2)+8k(k−1)+x+2y)

edges of the docking bridges incident with Kv has density exactly µ.

– The density will decrease below µ if more than α vertices of the docking bridges

are included.

These requirements are needed to argue that the graph resulting from disconnect-

ing Kv from the corresponding color component Kc(v) has densityµ. By Lemma 3.5, we

can construct in polynomial time a graph that fulfills the first two requirements. The

fulfillment of the third requirement again follows from Lemma 3.5 and the observation

that adding more docking bridges decreases the average degree and increases the

number of vertices in the connected component, resulting in a graph that has density

less than µ.

Color Components. For each color c the color component Kc has to fulfill the

following requirements. Herein, v is an arbitrary vertex from Vc , and we use Kc(v) to

denote Kc in order to emphasize this fact.

– Kc(v) is 2(a −1)-connected.

– The graph that consists of

1. Kc(v),

2. the l − 1 vertex components corresponding to the vertices of Vc(v) \ {v}

together with all docking bridges that connect these vertex components

with Kc(v), and

3. further γ := (k − 1)(l − 1)(4k(k − 1) + x + 2y) vertices and δ := (k − 1)(l −
1)(8k(k − 1) + x + 2y + 2) edges from the docking bridges between Kc(v)

and Kv
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Kc(v) Kv

u1

u1

u2

u2

u3

u3

u4

u4

Figure 3.8: Illustration of the situation where the second requirement for the vertex

components applies. The dashed lines represent edge deletions. Here, the two docking bridges

between Kv and Kc(v) are destroyed by deleting the edges in the intervals corresponding

to u2. Moreover, the middle vertices of these intervals belong to the connected component

containing Kv with the only exception of two middle vertices of the first docking bridge.

Observe that two edge tails corresponding to the vertex pair (v,u2) are separated from Kv

and Kc(v).

has density exactly µ.

– Adding more vertices from the docking bridges between Kc(v) and Kv to this

graph results in a graph with density less than µ.

By Lemma 3.5, we can construct in polynomial time a graph that fulfills the first

two requirements. The fulfillment of the third requirement again follows from the

observation that adding more than γ vertices from the docking bridges between Kc(v)

and Kv decreases the average degree while increasing the number of vertices. Hence,

the graph has density less than µ in this case.

We complete the construction of the µ-CLIQUE-CLUSTER EDITING instance by

setting its parameter to k ′ := 2k(k−1)(4k(k−1)+3). Let (H ,k ′) denote the constructed

instance of µ-CLIQUE-CLUSTER EDITING. We prove the theorem by showing the

following claim:

(G ,k) is a yes-instance of MULTICOLORED CLIQUE ⇔ (H ,k ′) is a yes-

instance of µ-CLIQUE-CLUSTER EDITING.

⇒: Given a size-k clique X := {v1, v2, . . . , vk} of the MULTICOLORED CLIQUE

instance, we disconnect the vertex components which correspond to the vertices in X

from their color components.

Observe that, in order to disconnect a vertex component from a color component,

one needs 2(k − 1)(4k(k − 1) + 1) edge deletions, that is, the edge deletions to cut

every docking bridge at some interval. More precisely, to disconnect the vertex
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component Kvi
from Kc(vi ), we cut the docking bridges incident with Kvi

at the

intervals corresponding to the vertices in X \ {vi } as shown in Figure 3.8. Note that

in Figure 3.8 we use two additional edge deletions to separate two edge tails from the

vertex component and the color component. Altogether, we use 2(k − 1) additional

edge deletions to separate 2(k−1) edge tails which correspond to the edges between vi

and X \ {vi }. By the construction of Kvi
and Kc(vi ) we can conclude that the resulting

two connected components, one containing Kvi
and the other containing Kc(vi ), fulfill

the condition of µ-cliques. Further, we add edges between the separated edge tails

and the color pair components. According to the assignment of integers from the

interval [1, x] to the ordered vertex pairs, the edge tails can be pairwise put together

such that each pair has a total length of either x + 2y − 1 or x + 2y + 1. Then, we

connect each pair with a total length of x + 2y + 1 to one color pair component K 1

and each pair with a total length of x+2y −1 to one K 2. According to the construction

of the color pair components, all resulting components are µ-cliques. Here, we need

altogether 2k(k−1) edge insertions. Putting edge deletions and insertions together, we

have made 2k(k−1)(4k(k−1)+1)+4k(k−1)= 2k(k−1)(4k(k−1)+3) edge modifications.

⇐: By construction, the connected components of the µ-CLIQUE-CLUSTER

EDITING instance that contain l vertex components and one color component have

density less than µ. We cannot transform these connected components into µ-cliques

by splitting the vertex or color components, since these components are 2(a − 1)-

connected and a > n6 > k4. By the same reason, we cannot transform such a

connected component into a µ-clique with at most k ′ edge insertions. Therefore, at

least one vertex component has to be disconnected from each color component.

Since there are 2(k − 1)(4k(k − 1) + 1) edge-disjoint paths between a vertex

component and a color component, we need at least 2(k − 1)(4k(k − 1) + 1) edge

deletions for each color. This means that from a solution for (H ,k ′) only 4k(k − 1)

modifications remain to be specified. Therefore, for at least one color, we have at

most 4(k −1) edge modifications.

From the construction of vertex and color components we know that, when

separating a vertex component Kv from a color component Kc(v), there have to be

exactly (k −1)(x+2y) vertices that are separated from both the connected component

that contain Kv and the connected component that contains Kc(v). Since Kv and Kc(v)

are inseparable, these vertices come from the docking bridges between Kv and Kc(v)

and edge tails attached to the docking bridges. Note that, since each docking bridge

consists of 4k(k − 1)+ 1 edge-disjoint paths, we cannot separate enough vertices by

deleting at most 4(k − 1) edges of docking bridges. The only choice is to separate

some edge tails from the docking bridges. From Figure 3.8 we can observe that by

deleting two edges we can separate at most x +2y vertices from the docking bridges,

namely, separating the two edge tails, one having length y + i and the other having

length x + y − i , attached to the intervals whose length-two paths are destroyed while

separating Kv from Kc(v) (in Figure 3.8, this is the interval corresponding to u2).
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Separating other edge tails or separating only a part of an edge tail requires at least

two edge deletions and leaves less than x +2y vertices separated. Thus, all separated

edge tails come from the intervals where Kv is separated from Kc(v).

Observe that these separated edge tails are not µ-cliques and connecting them to

each other by at most 2k(k −1) edge insertions cannot transform them into µ-cliques

because their sizes are at least y+1 for a large integer y . Hence, the only possibility is to

connect them to the 2k(k −1) color pair components. This means one edge insertion

for each edge tail. From the construction of color pair components, vertex-disjoint

cycles with a total length at most x+2y+1 can be attached to K 1’s, while vertex-disjoint

cycles with a total length at most x + 2y − 1 can be attached to K 2’s. Thus, we are

forced to group the edge tails into at most k(k −1) groups such that the groups can be

partitioned to two same-size subsets; in one, each group has a total length at most x+
2y + 1 and, in the other, each has a total length at most x + 2y − 1. According to the

assignment for the ordered vertex pairs described above, this is only possible when

each group consists of two edge tails, one corresponding to the vertex pair (u, v) and

the other corresponding to the vertex pair (v,u), and there is an edge between u and v

in the original instance. This means that the k vertices whose corresponding vertex

components are separated from the color components form a clique.

3.5 Concluding Remarks

We have introduced four generalizations of CLUSTER EDITING and presented fixed-

parameter tractability and intractability results for each of them. In particular, we have

shown the following:

– s-DEFECTIVE CLIQUE-CLUSTER EDITING and s-PLEX-CLUSTER EDITING can

be handled by the technique of “finding and destroying” forbidden induced

subgraphs that leads to search tree algorithms for both problems.

– AVERAGE-s-PLEX-CLUSTER EDITING demands a different approach since the

graph property that shall be obtained is not hereditary. We can still obtain fixed-

parameter tractability with respect to (s,k) by a combination of reduction to a

weighted problem version and data reduction.

– µ-CLIQUE-CLUSTER EDITING is W [1]-hard with respect to the parameter k .

Future research tasks for these four problems could be as follows:

– For s-DEFECTIVE CLIQUE-CLUSTER EDITING and s-PLEX-CLUSTER EDITING

first experimental implementations could be developed. Then, comparisons

with CLUSTER EDITING concerning the running times and the quality of the

produced clusterings should be performed. For protein-interaction networks, a

measure of clustering quality could be functional coherence of the clusters (see

Section 7.2 for more details on functional coherence of protein sets).
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– For AVERAGE-s-PLEX-CLUSTER EDITING, a more efficient algorithm is desirable.

In particular, can we describe an efficient branching strategy despite the fact

that being an average-s-plex cluster graph is not hereditary?

– For µ-CLIQUE-CLUSTER EDITING, a completely different approach is needed.

What are useful additional parameters for coping with this density property?

– It would be interesting to study for the first three density properties, how the

parameter number k of edge modifications behaves with increasing s. Is there

a range of s values for which k decreases particularly fast for increasing s? If yes,

does this imply that an optimal s-value lies within this range?

For all four problems also the edge deletion variants of the clustering problems have

been studied [Guo et al. 2009a]. For s-defective cliques, s-plexes, and average-s-

plexes the results are roughly the same as for their editing versions: the edge deletion

variants of the clustering problems are NP-hard but fixed-parameter tractable with

respect to the parameter (s,k). For µ-cliques, the situation is different: so far, only the

NP-hardness of the edge deletion version of µ-CLIQUE-CLUSTER EDITING is known,

its fixed-parameter tractability with respect to the number k of edge modifications

remains open, we conjecture that this problem is W[1]-hard as well. Summarizing,

our results indicate that clique relaxation-based network clustering can be “handled”

by the means of parameterized algorithmics, but that it is necessary to include the

slack parameter s that measures the “distance” of the clique relaxation to the clique

model into the parameterization.



Chapter 4

Average Parameterization and

Structural Kernelization for

Consensus Clustering

In this chapter, we present a parameterization approach for so-called consensus

problems as well as a new kernelization concept that extends the standard notion of

kernelization and is useful in case a small (for example, polynomial) standard problem

kernel cannot be achieved. Informally, consensus problems are problems in which

one is given a set of combinatorial objects, for example permutations, over a base set S

and wants to find a median object that has minimum distance to the input objects.

We present both the parameterization and the kernelization concept by applying

them to the NP-hard CONSENSUS CLUSTERING problem which is closely related to

a special case of edge-weighted CLUSTER EDITING [Ailon et al. 2008] and arises

in attempts to reconcile clustering information. CONSENSUS CLUSTERING has

applications for example in the clustering of gene expression data [Monti et al. 2003]

and in the identification of protein families [Nikolski and Sherman 2007].

The input of CONSENSUS CLUSTERING is a set of partitions over a base set S and

the goal is to find a median partition that minimizes the sum of distances to the input

partitions. Herein, the distance between two partitions is the sum of element pairs

that are clustered differently in the two partitions. Following the notation introduced

by Goder and Filkov [2008], we call two elements a,b ∈ S co-clustered with respect to

a partition C if a and b occur together in one of the sets in C and anti-clustered if a

and b occur in different sets in C . Then, the distance dist(Ci ,C j ) between two input

partitions Ci and C j is defined as the number of unordered pairs {a,b} of elements

from the base set S such that a and b are co-clustered in one of Ci and C j and anti-

clustered in the other. This distance is sometimes referred to as Mirkin metric or

Mirkin distance; more precisely, the Mirkin distance is defined as 2 ·dist(Ci ,C j ) [Meilă

69
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C1 = {{a,b}, {c}, {d }} dist(C1,C2) = 2

C2 = {{a,b,c}, {d }} dist(C1,C3) = 3

C3 = {{a,c}, {b,d }} dist(C2,C3) = 3

Figure 4.1: An input instance of CONSENSUS CLUSTERING with base set S = {a,b,c,d}. For this

instance, the parameter average distance d is (2+3+3)/3 = 8/3. Both C1 and C2 are median

partitions of C = {C1,C2,C3}, that is, of all partitions of S they have minimum Mirkin distance

to C.

2005]. Altogether, this leads to the following problem definition.

CONSENSUS CLUSTERING

Input: A set C = {C1, . . . ,Cn} of partitions over a base set S and a

nonnegative integer k .

Question: Is there a partition C of S with
∑

Ci∈C dist(C ,Ci ) ≤ k?

In the following, we refer to the elements of a partition of S as clusters of this partition.

An example of a CONSENSUS CLUSTERING instance is shown in Figure 4.1. A reduction

of CONSENSUS CLUSTERING to edge-weighted CLUSTER EDITING is roughly as follows:

Build a graph whose vertices are the elements of S. For each vertex pair, introduce a

“positive” and a “negative” edge whose value is the part of the overall Mirkin-distance

that is caused by anti-clustering (or co-clustering) the endpoints of the edges in a

partition of S. This graph with positive and negative edges can then be translated into

an “equivalent” edge-weighted graph.

The standard way of parameterizing CONSENSUS CLUSTERING would be to use k

as parameter. A closer inspection reveals that this parameter is very large unless the

input partitions are almost identical: every pair that is co-clustered in one partition

and anti-clustered in at least one other partition contributes a value of at least one to

this parameter. Hence, we consider a parameter that is stronger than this parameter:

the average distance d of the input partitions which we define as

d :=
∑

Ci ,C j∈C dist(Ci ,C j )

n · (n −1)
.

The advantage of parameter d over the standard parameter k is especially

pronounced in instances where the number of input partitions is large compared to

the number of elements. This could be the case when the input partitions are defined

by categorical features of the elements. Suppose, for instance, that the element set

is a relatively small set of human diseases, and that for each disease and for a large

set of human genes it is known whether or not this gene is expressed (that is, active)

in patients that have this disease. Then, each gene defines a partition of the diseases
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into two categories; one category contains the diseases where the gene is expressed

and the other one contains the diseases where the gene is not expressed. In such an

instance, the number of partitions is much larger than the number of elements.

At first sight, it is not clear that the parameter average distance of the input

partitions is always smaller than the standard parameter; however, it can be seen

by examining the relation between average distance of the input partitions and the

“average distance d̄ of the median partition to the input distances”. Intuitively, the

parameter d̄ can be much smaller than the parameter d : since d is the average

distance between the input partitions, there must be at least one input partition whose

average distance to the other input partitions is at most d , and a median partition

could even be “closer” to the input partitions. For the most part, this intuition is true,

but d̄ cannot be arbitrarily small compared to d , since one can show that d ≤ 2d̄ as

follows.

Let C be a set of n input partitions of a CONSENSUS CLUSTERING instance, let d

be the average distance between the input partitions, let P be a median partition of C,

and let d̄ :=
∑

C∈C dist(P,C )/n denote the average distance of P to C. By the triangle

inequality, the following is easy to see:

d =
(

∑

C∈C

∑

C ′∈C\{C }

dist(C ,C ′)
)

/(n(n −1))

≤
(

∑

C∈C

∑

C ′∈C\{C }

dist(C ,P)+dist(C ′,P)
)

/(n(n −1))

= 2 ·
(

∑

C∈C

∑

C ′∈C\{C }

dist(C ,P)
)

/(n(n −1))

= 2 ·
(

∑

C∈C
dist(C ,P)

)

/n = 2d̄ .

Hence, we have d̄ ≤ d ≤ 2d̄ , which means that the parameters d and d̄ are roughly

“equivalent”. Furthermore, this observation also implies that d is always smaller

than the standard parameter k which can be seen as follows. By definition d̄ =
∑

C∈C dist(P,C )/n. Moreover, we can assume that n > 2, since for n = 2 CONSENSUS

CLUSTERING is polynomial-time solvable [Filkov and Skiena 2004]. Then, it imme-

diately follows that d <
∑

C∈C dist(P,C ) = k . Note that the parameter d can also be

arbitrarily small compared to the k . For instance, when the input has two elements a

and b and contains n/2 times the partition {{a,b}} and n/2 times the partition {{a}, {b}}.

Then k is at least n/2 in a yes-instance whereas d < 1. Summarizing, the parameter

“average distance d between the input partitions” is stronger than the parameter

“overall distance k of the solution to the input partitions”, and, up to a constant factor,

equivalent to the parameter “overall distance k of the solution to the input partitions”.

A further motivation for the parameter d can be drawn from a consensus

clustering approach that applies to heterogeneous input partitions [Goder and Filkov

2008]. This approach tries to deal with the problem that a consensus between
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clusterings that are too different is not likely to yield useful information. The idea is

to first cluster the input partitions into groups that are similar and then to compute

a median partition for each group of similar partitions. In these groups of similar

partitions the parameter d should be much smaller than in the original input instance.

Related Work. The NP-hardness of CONSENSUS CLUSTERING was shown by Křivánek

and Morávek [1986] and later also by Wakabayashi [1998]. In case the input consists

of only two partitions, CONSENSUS CLUSTERING is polynomial-time solvable: each

input partition is a median partition [Filkov and Skiena 2004]. In contrast, the

minimization version of CONSENSUS CLUSTERING is APX-hard even if the input

consists of only three partitions [Bonizzoni et al. 2008]; the current best polynomial-

time approximation algorithms achieve an approximation factor of 4/3 [Ailon et al.

2008, van Zuylen and Williamson 2009]. For the maximization version of CONSENSUS

CLUSTERING, in which wants to maximize
(|S|

2

)

·n−k , a polynomial-time approximation

scheme (PTAS) can be achieved [Bonizzoni et al. 2008]. Various heuristics and

approximation algorithms for CONSENSUS CLUSTERING have been experimentally

evaluated [Bertolacci and Wirth 2007, Goder and Filkov 2008]. The general task of

integrating a set of given partitions into a new median partition is also known as cluster

ensemble problem [Strehl and Ghosh 2002]; other approaches for cluster ensemble

problems are for example based on hypergraph partitioning [Strehl and Ghosh 2002]

or bipartite graph partitioning [Fern and Brodley 2004].

Our Results. We initiate the study of CONSENSUS CLUSTERING in the context

of parameterized algorithmics. We show that CONSENSUS CLUSTERING is fixed-

parameter tractable with respect to the parameter d by presenting a data reduction

rule that leads to an instance with 16d/3 elements. We furthermore show fixed-

parameter tractability of CONSENSUS CLUSTERING with respect to another parameter,

the “number of dirty elements” which can be much smaller than the parameter d .

These results are embedded into a general algorithmic framework that is applicable

to other consensus problems as well. Moreover, we present a new kernelization

concept, structural kernelization.1 The idea behind structural kernelization is that we

shrink some “dimension” or “property” of the input instance in order to obtain fixed-

parameter tractability. In the standard problem kernel definition, this dimension is

the overall input size; in the presented algorithms for CONSENSUS CLUSTERING it is

the number |S| of elements. Structural kernelization is a general concept completely

independent of average parameterization and consensus problems, and we believe

that it can be useful for a wide range of problems.

1In previous work [Betzler et al. 2011b], we used the term “partial kernelization”. We now find

structural kernelization to be the more appropriate term.
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4.1 The General Framework and Structural Kernelization

In the first part of this section, we present a general framework for achieving fixed-

parameter tractability with respect to the parameter “average distance between the

input objects” for consensus problems such as CONSENSUS CLUSTERING. So far, the

presented framework has been also applied to KEMENY SCORE and SWAP MEDIAN

PARTITION [Betzler et al. 2010a, 2011b], and further applications are conceivable.

Subsequently, we define the concept of structural kernelization that is employed in

our general framework and discuss the relationship between structural kernelization

and other recently proposed extensions of the kernelization definition.

The framework consists of the following four main steps.

Step 1. Define a “tidiness/dirtiness” concept that divides the base set S into a “tidy”

part and a “dirty” part. Subsequently prove that an instance of the underlying

consensus problem can be solved in polynomial-time when the complete input

is tidy.

Step 2. Show that the size of the dirty part of S is upper-bounded by a polynomial only

depending on the average distance d between the given combinatorial objects.

Step 3. Develop polynomial-time data reduction rules which shrink the size of the

tidy part of S, generating an equivalent problem instance of smaller size. Then

show that in the reduced instance the size of the tidy part of S can be upper-

bounded by a polynomial only depending on the size of the dirty part of S and,

thus, also the average distance d .

Step 4. Show that the desired median object can be found in a running time whose

exponential running time part only depends on the number of elements in S,

and not on the number of input objects.

When applicable, this framework yields fixed-parameter tractability with respect

to the parameter “average distance” but also with respect to the parameter “size of the

dirty part of S”. In general, fixed-parameter tractability also follows for nonpolynomial

functions in Steps 2 and 3, but so far in all applications of the framework polynomial

bounds were obtained. A special feature of our framework is that in Step 3 we perform

a data reduction that does not lead to a problem kernel but that is used to obtain fixed-

parameter tractability via Step 4. Hence, this data reduction does not lead to a bound

on the overall input size but it shrinks an important part of the input structure. We

therefore refer to this type of kernelization as structural kernelization. In the example

of CONSENSUS CLUSTERING, we shrink the size of the tidy part of the input, and in
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a reduced instance the overall number of elements is bounded by a function of the

average distance d . The term “structural” refers to the fact that only the number of

elements is bounded, but not the number of input partitions. We formalize the ideas

behind this kernelization concept as follows.

Definition 4.1. Let (I ,k) be an instance of a parameterized problem L, where I ∈ Σ
∗

denotes the input instance and k ∈ Σ
∗ a parameter. Let s : Σ∗ → Σ

∗ (the structure) be a

computable function such that L is fixed-parameter tractable with respect to s(I ). The

problem L admits a structural problem kernel if there is a polynomial-time algorithm

that computes an instance (I ′,k ′) of the same problem such that:

– (I ,k) is a yes-instance if and only if (I ′,k ′) is a yes-instance,

– k ′ ≤ f (k), and

– s(I ′) ≤ g (k)

for computable functions f and g .

For I , k , and s meeting the above conditions, the existence of a structural problem

kernel directly implies fixed-parameter tractability with respect to the parameter k .

Note that structural kernelization can be seen as a generalization of the standard

problem kernelization that reduces an instance of a problem to an instance whose

size is bounded by a function of the parameter: choosing s(I ) := |I |directly leads to the

standard problem kernel definition. In the following, we discuss the relation between

structural kernelization and two other “new” kernelization concepts.

One of the recently proposed extensions of the standard problem kernelization

definition are weak kernels [Jiang and Zhu 2010]: weak kernels are defined for a

class of search problems, and the idea of weak kernels is to reduce the size of the

search space. Consider for example a vertex deletion problem parameterized by the

number of vertex deletions. A data reduction that produces an instance in which

there is a set S of at most f (k) vertices such that every vertex that will be deleted

by an optimal solution is contained in S is a weak kernelization: the overall size

of the instance is not necessarily reduced, but one has computed the “small” set of

vertices S on which a brute-force algorithm directly yields fixed-parameter tractability.

The structural kernelization concept is more general in the sense that the part of

the input that is reduced could be any structural property of the input such as the

treewidth or branchwidth of an input graph. For example, in a fixed-parameter

algorithm for the k -CYCLE problem on planar graphs parameterized by the cycle

length k , Dorn et al. [2010] make use of the fact that a planar graph with branchwidth

at least 4
p

k +1 − 3 always contains a cycle of length at least k . Consequently,

instances whose branchwidth is larger than 4
p

k +1−3 can be decided in polynomial

time.2 Since k -CYCLE is fixed-parameter tractable with respect to the branchwidth

2The branchwidth of a planar graph is computable in polynomial time [Seymour and Thomas 1994].
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of the graph [Bodlaender 1993] this approach of dealing with instances with large

branchwidth can be seen as a structural kernelization where the branchwidth is the

structure s.

Another recently proposed extension of the standard kernelization definition are

Turing kernels [Fernau et al. 2009, Lokshtanov 2009]. Here, the idea is to allow that

the reduction is not a many-to-one reduction (as in the standard definition) but a

Turing reduction. That is, in a Turing kernelization one may create polynomially many

problem kernels and somehow “combine” the results for these problem kernels. For

example, one could create |I | problem kernels such that the original instance is a yes-

instance if and only if at least one of the created problem kernels is a yes-instance.

Turing kernelizations have been proposed for parameterized problems that do not

admit a standard problem kernel of polynomial size [Fernau et al. 2009, Lokshtanov

2009, Schäfer et al. 2011]. The differences between Turing kernelization and structural

kernelization are as follows. In Turing kernelizations, the aim is, as for standard

problem kernelization, to reduce the overall size of the created instances; in structural

kernelization the aim is only to reduce a certain part of the input structure. In Turing

kernelizations, one is allowed to produce many kernels and combine them; structural

kernelizations as we define them are many-to-one reductions.

In the next section, we begin to describe how the presented framework can be

applied to CONSENSUS CLUSTERING. In particular, we describe how to define the dirty

and tidy part of S, as demanded by Step 1.

4.2 Structural Properties of Tidy and Dirty Pairs

In this section, we present a definition of tidy and dirty pairs and then study two

special cases of this definition. We will then show that for both special cases an

instance is solvable in polynomial-time when the input contains only tidy pairs. This

corresponds to Step 1 of the framework. Then, we will show that in both cases, the

number of dirty pairs is upper-bounded by a polynomial function of the average

distance d . This corresponds to Step 2 of the framework. Moreover, for both cases, we

observe structural properties of the instance that can be inferred from the existence of

tidy pairs and which are then exploited by the data reduction rules. These structural

properties will then also explain why we choose these two particular special cases of

our definition.

Our general definition of tidiness and dirtiness is motivated by the following

observations. An input instance with d = 0 is clearly trivial since all input partitions

are equal: the median partition is identical to all input partitions. In such an input

instance each element pair is either co-clustered in all partitions or anti-clustered in

all partitions. Such element pairs are prototypical tidy pairs, since for such pairs it is

clear how a median partition places them: If two elements a and b are co-clustered in
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all n partitions, then they are co-clustered in a median partition as well. If they are anti-

clustered in all n partitions, then they are anti-clustered in a median partition. This

property of such pairs also holds if there are element pairs in the instance that are not

tidy in this sense (this can be shown by an easy “improvement argument”; we omit the

details). Informally, the tidiness/dirtiness concept tries to separate the tidy element

pairs from element pairs that are especially “untidy”. More precisely, the decision

whether an element pair is considered to be dirty or tidy is based on the fraction of

input partitions in which this element pair is co-clustered and anti-clustered. To this

end we introduce the following notation. Given a set C of partitions of a base set S

and two elements a,b ∈ S, we denote with co(a,b) the number of partitions in C in

which a and b are co-clustered and with anti(a,b) the number of partitions in C in

which a and b are anti-clustered. A generic definition of tidy and dirty element pairs

is as follows.

Definition 4.2. Let C be a set of n partitions of a base set S, and let t be a rational

number with 1/2 ≤ t ≤ 1.

– A pair of elements a,b ∈ S is called a t -tidy pair of C if co(a,b)> t ·n or anti(a,b)>
t ·n.

– The predicate (ab)t is true if co(a,b)> t ·n.

– The predicate (a ↔ b)t is true if anti(a,b)> t ·n.

– A pair of elements a,b ∈ S is called a t -dirty pair (a#b)t of C if co(a,b) ≤ t ·n

and anti(a,b)≤ t ·n.

Note that it is only interesting to consider t ≥ 1/2, since for t < 1/2 every element

pair is a t -tidy pair, since co(a,b)+anti(a,b)=n. We use two different thresholds t for

considering element pairs as dirty. In the first and more strict case we set t := 3/4. In

the second case we set t := 2/3.3 As we show in the following, both thresholds imply

interesting structural properties of dirty and tidy element pairs in the input instance.

Roughly speaking, in both cases we observe that the presence of tidy pairs implies

properties on other element pairs in their “neighborhood”.

First, we examine the effect of tidy pairs for t = 3/4. The main observation to

exploit is that for a 3/4-tidy pair of elements a and b the values of co(a,c) and co(b,c)

for some third element c differ by less than n/4.

Lemma 4.1. Let {a,b,c} be a set of three elements. Then,

– (ab)3/4 ∧ (ac)3/4 ⇒ co(b,c)> n/2, and

– (ab)3/4 ∧ (a ↔ c)3/4 ⇒ anti(b,c) >n/2.

3The case t = 2/3 was proposed simultaneously for CONSENSUS CLUSTERING and KEMENY SCORE.

Later it was observed that for KEMENY SCORE setting t = 3/4 leads to better kernelization results [Betzler

et al. 2010a]. Consequently, we also consider t = 3/4 for CONSENSUS CLUSTERING.
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Proof. We show both statements separately.

First, let (ab)3/4 and (ac)3/4 hold. By definition, there are less than n/4 partitions

in which a and b are not co-clustered, that is, anti(a,b) < n/4. Hence, of the more

than 3n/4 partitions in which a and c are co-clustered, there are less than n/4

partitions in which a and b are not co-clustered. Therefore, a, b, and c are co-clustered

in more than n/2 partitions which also implies that co(b,c)> n/2.

Second, let (ab)3/4 and (a ↔ c)3/4 hold. By definition, there are less than n/4

partitions in which a and c are co-clustered, that is, co(a,c) < n/4. Hence, of the

more than 3n/4 partitions in which a and b are co-clustered, there are less than n/4

partitions in which a and c are co-clustered. Therefore, in more than n/2 partitions it

holds that a and b are co-clustered and a and c are anti-clustered. In these partitions

also b and c are anti-clustered which implies anti(b,c)> n/2.

For t < 3/4 we cannot make a similar inference on the values of co(b,c)

and anti(b,c) for an element pair b,c that forms t -tidy pairs with a third element a.

This can be seen from the following counterexample. Let the input consist of the

following partitions:

Ci := {{a,b,c}},1 ≤ i ≤ n/2−1,

Ci := {{a,b}, {c}},n/2 ≤ i ≤ 3n/4−1,

Ci := {{a,c}, {b}},3n/4 ≤ i ≤n −1,

Cn := {{a}, {b}, {c}}.

Then, co(a,b) = 3n/4− 1 and co(a,c) = 3n/4− 1. With increasing n these values are

arbitrarily close to 3n/4. Hence, for any t < 3/4 and sufficiently large n both (ab)t

and (ac)t hold. The value of co(b,c), however, is only n/2−1. Hence, 3/4 is the smallest

value for which a statement similar to Lemma 4.1 can be obtained. For 2/3-tidy pairs,

the conclusions that can be drawn from the existence of tidy pairs are therefore less

strict. Informally, the difference is that for 2/3-tidy pairs we only make observations

about other 2/3-tidy pairs, whereas for 3/4-tidy pairs we could make observations

about all other pairs.

Lemma 4.2. Let {a,b,c} be a set of three elements where b and c form a 2/3-tidy pair.

Then,

– (ab)2/3 ∧ (ac)2/3 ⇒ (bc)2/3, and

– (ab)2/3 ∧ (a ↔ c)2/3 ⇒ (b ↔ c)2/3.

Proof. We prove both statements separately.

First, let (ab)2/3 ∧ (ac)2/3 hold. Then, there are more than n/3 partitions in

which a, b, and c are co-clustered. Hence, co(b,c) > n/3 which implies (bc) since b

and c form a 2/3-tidy pair.
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Second, let (ab)2/3 and (a ↔ c)2/3 hold. Then, there are more than n/3 partitions in

which a and b are co-clustered and a and c are anti-clustered. Hence, anti(b,c) > n/3

which implies (b ↔ c)2/3 since b and c form a 2/3-tidy pair.

As in the case of Lemma 4.1 and 3/4-tidy pairs, Lemma 4.2 is tight in the sense that

for any t < 2/3 we cannot obtain a similar result. This can be seen from the following

counterexample. Let the input consist of the following partitions:

Ci := {{a,b,c}},1 ≤ i ≤ n/3,

Ci := {{a,b}, {c}},n/3+1 ≤ i ≤ 2n/3−1,

Ci := {{a,c}, {b}},2n/3 ≤ i ≤n −2,

Ci := {{a}, {b}, {c}},n −1 ≤ i ≤ n.

In this instance, co(a,b)= 2n/3−1 and co(a,c) = 2n/3−1. Hence, for any t < 2/3 and

sufficiently large n both (ab)t and (ac)t hold. The value of anti(b,c), however, is 2n/3.

Consequently, (b ↔ c)t also holds. Therefore, a statement similar to Lemma 4.2 does

not hold for any t < 2/3.

The fact that t = 3/4 and t = 2/3 lead to the most general definition of tidy pairs

for which statements like Lemma 4.1 and Lemma 4.2, respectively, can be obtained is

the reason for considering these particular values for t . As we will see in Sections 4.3

and 4.4, the difference between Lemma 4.1 and Lemma 4.2, that is, the circumstance

that for 2/3-tidy pairs, we can only observe properties for other 2/3-tidy pairs, results

in very different data reduction rules for the two tidiness definitions. In particular, the

data reduction rule for 3/4-tidy pairs is much simpler than the one for 2/3-tidy pairs.

Next, we show that CONSENSUS CLUSTERING is polynomial-time solvable in case

the input contains only 2/3-tidy pairs. This serves as an indication that the definitions

of dirtiness and tidiness may lead to fixed-parameter tractability results. Note that,

since every 3/4-tidy pair is also a 2/3-tidy pair, the following proposition also shows

the polynomial-time solvability in case the input only contains 3/4-tidy pairs.

Proposition 4.1. CONSENSUS CLUSTERING is solvable in polynomial time if the input

contains only 2/3-tidy pairs.

Proof. Let C be a median partition. We show that the following two statements are

true.

1. If (ab)2/3, then a and b are co-clustered in C .

2. If (a ↔ b)2/3, then a and b are anti-clustered in C .

Clearly, since there are only 2/3-tidy pairs, any pair a,b ∈ S must fulfill either (ab)2/3

or (a ↔ b)2/3. Hence, the two statements specify for each pair of elements whether

they are co-clustered or not.
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To prove the first statement, suppose that there is a median partition C not

fulfilling it. Then, there must exist two clusters Sa and Sb of C with a ∈ Sa and b ∈ Sb.

One can further partition both Sa and Sb into each time two subsets. More specifically,

let S1
a := {x ∈ Sa : (ax)2/3} and S2

a := Sa \ S1
a . The sets S1

b
and S2

b
are defined analogously

with respect to b. In this way, by replacing Sa and Sb with S1
a ∪ S1

b
, S2

a , and S2
b

, one

obtains a modified partition C ′. Consider any x ∈ S1
a and any y ∈ S2

a. Then, (x ↔ y)2/3

follows from (ax)2/3, (a ↔ y)2/3, and Lemma 4.2. The same is true with respect to

S1
b

and S2
b

. Moreover, if x ∈ S1
a and y ∈ S2

b
, this means that (ax)2/3 and (b ↔ y)2/3,

implying by Lemma 4.2 and using (ab)2/3 that (x ↔ y)2/3. It remains to consider x ∈ S1
a

and y ∈ S1
b

. Then, again the application of Lemma 4.2 yields (x y)2/3. Thus, C ′ is a

better partition than C is because in C ′ now (ab)2/3 holds for all elements a,b ∈ S1
a∪S1

b

(without causing any increased cost elsewhere). This contradicts C being a median

partition, proving the first statement. The second statement is proved analogously.

For an input instance that only contains 2/3-tidy pairs, a polynomial-time

algorithm for computing a median partition P thus is as follows: Initially set P =
;. Pick an arbitrary element a ∈ S. Then, create a set Sa that contains a and all

elements b ∈ S for which (ab)2/3 holds. Add Sa as one element to P , and remove Sa

from S and all input partitions. Repeat this process until S =;.

We have thus completed Step 1 of the framework. In Step 2 we show that the

number of dirty pairs is bounded from above by a polynomial of the average distance

of the input partitions.

Lemma 4.3. For an input instance of CONSENSUS CLUSTERING with average dis-

tance d

– the number of 3/4-dirty pairs is less than 8d/3, and

– the number of 2/3-dirty pairs is less than 9d/4.

Proof. We first show the statement for 3/4-dirty pairs, and then show how the bound

for 2/3-dirty pairs can be achieved.

We claim that every dirty pair (a#b)3/4 contributes at least 3n2/8 to
∑

Ci ,C j∈C dist(Ci ,C j ),

which is the overall distance between the input partitions. Given that, the statement

of Lemma 4.3 follows by observing that
∑

Ci ,C j∈C dist(Ci ,C j ) = d · n · (n − 1). Hence,

it remains to prove the claim. First, recall that for every dirty pair co(a,b) ≥ n/4

and anti(a,b) ≥ 3n/4. Clearly, co(a,b) + anti(a,b) = n. To show that a dirty pair

(a#b)3/4 contributes at least 3n2/8 to the overall distance, note that each pair makes

the contribution

co(a,b) · (n −co(a,b))+anti(a,b) · (n −anti(a,b))= 2 ·co(a,b) ·anti(a,b). (4.1)

The product of two rational numbers x and y with x+y = n reaches a maximum for x =
y = n/2 and decreases with decreasing x ≤ n/2. Hence, for x ≥ n/4, the product is at

least (n/4) ·(3n/4). The minimum contribution is thus at least 2 ·(n/4) ·(3n/4) = 3n2/8.
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For 2/3-dirty pairs, we claim that every dirty pair (a#b)2/3 contributes at

least 4n2/9 to the overall distance
∑

Ci ,C j∈C dist(Ci ,C j ). Given that, the statement

of Lemma 4.3 follows as in the proof for 3/4-dirty pairs. Recall that for every dirty pair

co(a,b) ≥ n/3 and anti(a,b) ≥ n/3. Again, co(a,b)+anti(a,b) = n and any pair makes

the contribution 2·co(a,b)·anti(a,b). Using the same arguments as for 3/4-dirty pairs,

it follows that the minimum contribution is at least 2 · (n/3) · (2n/3) = 4n2/9.

In the next two sections, we show how Steps 3 and 4 can be carried out

for 3/4-dirtiness (Section 4.3) and 2/3-dirtiness (Section 4.4) and present our main

fixed-parameter tractability results for CONSENSUS CLUSTERING.

4.3 Data Reduction for 3/4-Tidy Elements

Step 3 of our framework now calls for a polynomial-time data reduction that reduces

the number of elements that only appear in tidy pairs or, equivalently, that do not

appear in any dirty pair. For 3/4-tidy pairs, we call these elements 3/4-tidy elements

and all other elements 3/4-dirty elements. For 3/4-tidy elements, we devise a very

simple data reduction rule that is mainly based on Lemma 4.1. This rule exploits the

observation that for a 3/4-tidy element the set of elements with which it is co-clustered

in more than 3n/4 input partitions forms a cluster of every median partition.

Reduction Rule 4.1. Let a ∈ S be a 3/4-tidy element, and let K := {a}∪ {b ∈ S | (ab)3/4}.

Then, remove the elements of K from all input partitions, and set

k := k −
(

∑

{a,b} ⊆K

anti(a,b)

)

−
∑

a∈K

∑

b∈S\K

co(a,b).

Lemma 4.4. Rule 4.1 is correct and can be exhaustively performed in O(n · |S|2) time.

Proof. Let a and K be as defined in Rule 4.1. By Lemma 4.1, for each pair of

elements b,c ∈ K it holds that co(b,c) > n/2 > anti(a,b). Furthermore, for each pair

of elements b ∈ K and c ∈ S \ K it holds that anti(a,b)> n/2 > co(a,b). We show that a

partition C that does not contain K as one of its clusters is not a median partition.

Let C be a partition that does not contain K as one of its clusters, and let dist(C ) :=
∑

Ci∈C dist(C ,Ci ) denote the distance of this median partition to the input partitions.

Then, either there is a cluster K ′ that contains elements from K and elements from S\K

or there are at least two clusters K1 and K2 that are subsets of K .

In the first case, we can obtain a better partition by replacing K ′ with the two

clusters K1 := K ′ \ K and K2 := K ∪K ′. Clearly, the distance from this new partition

to the input partitions is

dist(C )+
∑

a∈K1

∑

b∈K2

co(a,b)−anti(a,b).
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Since anti(a,b)> co(a,b) for all pairs in the sum, this is smaller than dist(C ). Hence, C

is not a median partition.

In the second case, we can obtain a better partition by replacing K1 and K2 with

the cluster K ′ =K1∪K2. The distance from this new partition to the input partitions is

dist(C )+
∑

a∈K1

∑

b∈K2

anti(a,b)−co(a,b).

Since co(a,b)> anti(a,b) for all pairs in the sum, this is smaller than dist(C ). Hence, C

is not a median partition. The decrement in k is precisely the distance that is caused

by the elements of K in a median partition of the original input instance.

It remains to show the running time. In O(n · |S|2) time we can compute co(a,b)

and anti(a,b) for each pair of elements and for each element the number of dirty

pairs that it is contained in. Then, we build in O(n · |S|2) time a complete graph G

that contains all the elements of S, and additionally store for each vertex a the

number of dirty pairs that its corresponding element is contained in and for each

edge {a,b} whether (ab)3/4 or (a ↔ b)3/4 holds. As long as the graph contains a vertex

that does not appear in a dirty pair, we perform Rule 4.1 (K can be computed by

scanning through the adjacency list of the vertex). Then we remove K from G and

simultaneously update the number of dirty pairs that every vertex is contained in. This

can be done within the same running time as removing K from G since we check for

every removed edge {a,b} whether (ab)3/4 or (a ↔ b)3/4 hold, and update the number

of dirty pairs if neither is the case. When every element appears in at least one dirty

pair, the rule has been exhaustively applied. Since every edge is visited only a constant

number of times using this approach, the overall running time for the application of

the rule after the graph G has been constructed is O(n · |S|2) also. The overall running

time follows.

After the exhaustive application of Rule 4.1, every element appears in at least

one 3/4-dirty pair which leads to our main result for the parameter average distance.

Theorem 4.1. 1. CONSENSUS CLUSTERING can be reduced in O(n · |S|2) time to a

structural problem kernel with less than 16d/3 elements in S, all of which are 3/4-

dirty.

2. CONSENSUS CLUSTERING is fixed-parameter tractable with respect to the average

distance d between the input partitions as well as with respect to the number

of 3/4-dirty elements.

Proof. Consider an instance I that is reduced with respect to Rule 4.1. Clearly, every

element in I is 3/4-dirty. By Lemma 4.3, the number of 3/4-dirty pairs in I is less

than 8d/3. Hence, the overall number of elements in a reduced instance is less than 2·
8d/3 = 16d/3. Hence, CONSENSUS CLUSTERING admits a structural problem kernel

with less than 16d/3 elements which can be computed in O(n · |S|2) time.
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The second part of the theorem follows from the observation that we can solve

CONSENSUS CLUSTERING by trying all possible partitions (whose number is clearly

a function of d in the structural problem kernel), computing their distance to the

input partitions in polynomial time, and then outputting “yes” when a partition with

distance at most k has been found.

4.4 Data Reduction for 2/3-Tidy Elements

In this section, we show that we can also obtain fixed-parameter tractability results

by considering 2/3-tidy/dirty pairs instead of 3/4-tidy/dirty pairs. While this does

not lead to a better bound on the number of elements with respect to the average

distance d , we obtain fixed-parameter tractability with respect to the parameter

“number of 2/3-dirty elements”, that is, the number of elements that are contained

in at least one 2/3-dirty pair. This parameter can be much smaller than the average

distance d . Consider for example the following instance:

Ci := {{s1, s2, . . . , sm}},1 ≤ i ≤ 2n/3+1,

Ci := {{{s1}, {s2}, . . . , {sm}},2n/3+2 ≤ i ≤ n.

The instance does not contain any 2/3-dirty pairs and, consequently, also no 2/3-dirty

elements. The average distance d of the input partitions, however, increases with

increasing m since for constant n each pair of elements makes a constant contribution

to the overall distance among the input partitions. Therefore, the average distance d

can be arbitrarily large even in instances that do not contain any 2/3-dirty pairs or

any 2/3-dirty elements. Note that by Lemma 4.3 the number of 2/3-dirty pairs is less

than 9d/4. Hence, the parameters “number of 2/3-dirty pairs” and “number of 2/3-

dirty elements” are stronger parameters than the average distance d . This also holds

for the parameters “number of 3/4-dirty pairs” and “number of 3/4-dirty elements”

which can be shown by adapting the example above. These two parameters, however,

are also always at least as large as the number of “number of 2/3-dirty pairs” and

“number of 2/3-dirty elements”. Furthermore, as the example above shows, they can

also be arbitrarily large compared to the “number of 2/3-dirty pairs” and “number

of 2/3-dirty elements”.

For notational simplicity, we refer to 2/3-dirty pairs/elements and 2/3-tidy

pairs/elements simply as dirty pairs/elements and tidy pairs/elements in the follow-

ing. Also, we use (ab), (a ↔ b), and (a#b) instead of (ab)2/3, (a ↔ b)2/3, and (a#b)2/3.

Roughly speaking, the aim of our data reduction rule is to find subsets of S that

contain many tidy elements a,b for which (ab) holds. If these subsets are too large,

then we can reduce the instance. In order to find such subsets, we describe a partition

of S that is based on its tidy elements. In the following, let S1 denote the tidy elements

of S, and S2 the dirty elements. First, we describe a partition P1 = {S1
1, . . . ,S l

1} of S1
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into equivalence classes according to the tidy pairs in S1. Then, we show that these

equivalence classes also induce a partition of S2.

For each equivalence class S i
1 ∈ P1, we demand that

– ∀a ∈ S i
1 ∀b ∈ S i

1 : (ab) and

– ∀a ∈ S i
1 ∀b ∈ S \ S i

1 : (a ↔ b).

Observe that, by Lemma 4.2, the partition P1 of S1 fulfilling these requirements is well-

defined, since the predicate (ab) describes a transitive relation over S1. Using P1, we

define the subsets S i
2 of S2 as follows:

S i
2 := {a ∈ S2 | ∃b ∈ S i

1 : (ab)}.

Informally, each S i
2 is the set of elements a ∈ S2 that are often co-clustered with at least

one element b ∈ S i
1. We also define one additional set S0

2 that contains all elements a ∈
S2 such that there is no b ∈ S1 for which (ab) holds.

Finally, we obtain a set of subsets P = {S0,S1, . . . ,S l } of S by setting S i := S i
1 ∪ S i

2

for 1 ≤ i ≤ l and S0 := S0
2. We call this set of subsets tidiness-based. The following

lemma shows that P is indeed a partition of S, and also provides some further

structural properties of P .

Lemma 4.5. Let P = {S0,S1, . . . ,S l } be a tidiness-based set of subsets of S constructed as

described above. Then, P is a partition of S, and for each S i ∈ P it holds that

– ∀a ∈ S i ∀b ∈ S : (ab)⇒ b ∈ S i and

– ∀a,b ∈ S i , i ≥ 1 : (ab)∨ (a#b).

Proof. First, we show that P is a partition. By Lemma 4.2, it is easy to verify that the

claim holds for the partition P1 of S1. By definition,
⋃l

i=0
S i

2 = S2. We now show that for

each a ∈ S2 there is exactly one set S i
2 that contains a, and, thus, that P is a partition

of S. By definition, S0 does not overlap with any other set S i , i ≥ 1. Now, suppose

that there are two sets S i
2, i ≥ 1, and S

j
2, j ≥ 1, j 6= i , containing a. Then there are two

elements b ∈ S i
1 and c ∈ S

j
1 such that (ab) and (ac) holds. Since P1 is a partition of S1,

we have c ∉ S i
1 and thus also b(↔ c). But then it follows from Lemma 4.2 that (b ↔ a)

holds (since we have (b ↔ c) and (ca)). This clearly contradicts (ab). We have thus

shown that P is a partition of S.

We now show that for each S i ∈ P it holds that ∀a ∈ S i∀b ∈ S : (ab) ⇒ b ∈ S i .

Suppose that there is a pair of elements a ∈ S i and b ∈ S j , j 6= i , for which (ab) holds.

By definition, this can be only the case if a ∈ S2 and b ∈ S2. Without loss of generality,

assume that i ≥ 1. This means that there is some element c ∈ S i
1 with (ac). However,

by Lemma 4.2, then also (cb) must hold. This contradicts b ∉ S i .

Finally, we show that for each S i ∈ P , i ≥ 1, it holds that ∀a,b ∈ S i : (ab)∨ (a#b).

Suppose that there is some S i containing two elements a and b for which (a ↔ b)
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holds. By definition of S i
1, one of a and b must be from S i

2, say a ∈ S i
2, and there must be

some c ∈ S i
1 such that (ac) holds. By Lemma 4.2, we have (c ↔ b). This means, however,

that, also by Lemma 4.2, we have (b ↔ d ) for all d ∈ S i
1. This contradicts b ∈ S i .

Informally, Lemma 4.5 says that inside any S i ∈ P we have only pairs that are co-

clustered in more than 2n/3 input partitions or dirty pairs; between two subsets S i ∈ P

and S j ∈ P we have only dirty pairs or pairs that are anti-clustered in more than 2n/3

input partitions. Clearly, the elements in S i
1 then are co-clustered in more than 2n/3

partitions with all elements in S i and are anti-clustered in more than 2n/3 partitions

with all elements in S\S i . This means that an S i with too many elements in S i
1 is forced

to become a set of a median partition. With the subsequent data reduction rule, we

remove these sets from the input.

We introduce the following notation for subsets of S.

Definition 4.3. Let E and F be subsets of S. We denote with

– dp(E ) := {{a,b} | a,b ∈ E ∧ (a#b)} the set of dirty pairs among the elements of E,

and with

– dp(E ,F ) := {{a,b} | a ∈ E ,b ∈ F ∧ (a#b)} the set of dirty pairs between E and F .

Using this notation, our data reduction rule reads as follows.

Reduction Rule 4.2. Let P be a tidy-based partition of S. If there is an S i ∈ P such that

|S i
1| > |dp(S i )|+ |dp(S i ,S \ S i )|.

Then, remove the elements of S i from all input partitions, and set

k := k −
(

∑

a,b∈Si

anti(a,b)

)

−
∑

a∈Si

∑

b∈S\Si

co(a,b)

Lemma 4.6. Rule 4.2 is correct and can be exhaustively performed in O(n · |S|2) time.

Proof. Let S i be as described in Rule 4.2. The correctness proof is based on the

following.

Claim: Every median partition C contains one cluster C j such that S i =
C j .

For our proof, we only consider clusters C j that contain at least one element of S i . In

what follows, we partition each such C j into four subsets. Figure 4.2 shows these sets

and their relation to S i .

– C
j
1 := {a ∈ C j ∩S i | ∀b ∈ C j \ S i : (a ↔ b)} contains those elements from S i that

do not appear in dirty pairs with elements from C j \ S i .
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S i C j

C
j
1

C
j
2 C

j
3 C

j
4

Figure 4.2: The subsets of a cluster C j with respect to the set Si as defined in the proof

of Lemma 4.6. Solid edges are between elements a and b for which (ab) holds; dashed edges

are between elements that form a dirty pair; elements a and b for which (a ↔ b) holds have no

edge between them.

– C
j
2 := {a ∈C j ∩S i | ∃b ∈C j \ S i : (a#b)} contains the (dirty) elements from S i that

form a dirty pair with some element from C j \ S i .

– C
j
3 := {a ∈C j ∩ (S \ S i ) | ∃b ∈ S i ∩C j : (a#b)} contains the elements of C j \ S i that

form a dirty pair with some element from S i ∩C j .

– C
j
4 :=C j \ (C

j
1 ∪C

j
2 ∪C

j
3 ) contains all other elements.

We prove the claim in three steps. First, we show that |C j
1 | ≥ |C j

2 | implies C j = (C
j
1 ∪C

j
2 ).

Then, we show that there is exactly one C j with C j = (C
j
1 ∪C

j
2 ). Finally, we show that

in a median partition, there is no C j with |C j
1 | < |C j

2 |. The first two of these statements

imply that there is exactly one cluster C j with C j ⊆ S i . The third statement implies that

there can be no other clusters that have nonempty intersection with S i . Altogether,

this means that in a median partition there is exactly one cluster C j with C j ∩S i 6= ;,

which proves the correctness of Rule 4.2.

Now, we show that in a median partition C , there is no C j such that |C j
1 | ≥

|C j
2 | and C j 6= (C

j
1 ∪C

j
2 ). More precisely, we show that for any partition C which

contains such a cluster C j there is an alternative partition C ′ that has lower cost. This

partition C ′ is constructed as follows: replace the cluster C j by two new clusters C
j
1 ∪

C
j
2 and C

j
3 ∪C

j
4 . We now show that C ′ has lower cost than C . Let d (C ) denote the cost

of the partition C , and let d (C ′) be the cost of the partition C ′. Clearly, the costs of C

and C ′ differ only in the costs for the pairs that contain one element from C
j
1 ∪C

j
2 and

one from C
j
3 ∪C

j
4 . For each pair of elements a ∈C

j
1 ∪C

j
2 and b ∈C

j
3 ∪C

j
4 , partition C ′

saves the cost of anti(a,b) compared to C , since these two elements now appear in

different clusters. However, this means that C ′ has an additional cost of co(a,b) for

each such pair. Note that, by definition, the following holds:

– (ab)⇒ (co(a,b)−anti(a,b)>n/3),

– (a ↔ b)⇒ (anti(a,b)−co(a,b)> n/3), and

– (a#b) ⇒ (|anti(a,b)−co(a,b)| ≤ n/3).
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Overall, the cost difference between C and C ′ is then

d (C )−d (C ′) =
∑

a∈C
j

1∪C
j

2

∑

b∈C
j

3∪C
j

4

anti(a,b)−co(a,b)

(∗)
>

∑

a∈C
j

1

∑

b∈C
j

3

n

3
−

∑

a∈C
j

2

∑

b∈C
j

3

n

3

(∗∗)
≥ 0.

Inequality (∗) follows from the following four facts:

1. ∀a ∈C
j
1 ∪C

j
2∀b ∈C

j
4 : (a ↔ b). Hence, anti(a,b)−co(a,b)> 0 for b ∈C

j
4 .

2. ∀a ∈ C
j
1∀b ∈ C

j
3 : (a ↔ b). Hence, anti(a,b)−co(a,b) > n/3 for b ∈ C

j
4 for these

pairs.

3. ∀a ∈ C
j
2∀b ∈ C

j
3 : (a ↔ b)∨ (a#b). Hence, anti(a,b)− co(a,b) ≥ −n/3 for these

pairs.

4. C
j
3 ∪C

j
4 6= ;. Hence, the first sum is indeed strictly larger than the term in the

second row.

Inequality (∗∗) follows from the fact that |C j
1 | ≥ |C j

2 |. Thus, we have shown that in a

median partition there can be no clusters C j with |C j
1 | ≥ |C j

2 | and C j 6= (C
j
1∪C

j
2 ). Hence,

we can have clusters C j of two types, those with C j = (C
j
1 ∪C

j
2 ) and those with |C j

1 | <
|C j

2 |.
Next, we show that in a median partition, there is exactly one cluster with C j =

(C
j
1 ∪C

j
2 ). Let Ciso be the set of clusters C j with C j = (C

j
1 ∪C

j
2 ), that is, the clusters that

are “isolated” from S \S i . Let C be a partition that creates more than one cluster in Ciso.

We show that there is an alternative partition C ′ that merges two clusters of Ciso to a

new cluster and that has lower cost than C . First, there must be two clusters C j ∈Ciso

and C l ∈Ciso such that |(C j∪C l )∩S1| >dp(C j∪C l ), because, otherwise, the union of all

clusters in Ciso has more dirty pairs than tidy elements. However, this is also the case

for all other clusters C h , since for these clusters we have |C h
1 | < |C h

2 |, which means that

then S i has more dirty pairs than tidy elements, contradicting the precondition of the

reduction rule. Our alternative partition C ′ merges C j and C l into a new cluster C j∪C l .

All other clusters are the same as in C . The costs of C and C ′ differ only with respect to

pairs that contain one element a ∈ C j and one element b ∈ C l . For each pair, putting

the elements in the same cluster instead of two different clusters saves co(a,b) and
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costs anti(a,b). The cost difference between C and C ′ is thus

d (C )−d (C ′) =
∑

a∈C j

∑

b∈C l

co(a,b)−anti(a,b)

(∗)
≥

∑

a∈(C j∪C l )∩S1

n

3
−|dp(C j ,C l )| ·

n

3

(∗∗)
> 0.

Inequality (∗) follows from the two facts

1. ∀a ∈ C j∀b ∈C l : (ab)∨ (a#b). Hence, all pairs a ∈ C j ,b ∈ C l either form a dirty

pair (then co(a,b)−anti(a,b)≥−n/3) or it holds that co(a,b)−anti(a,b)>n/3.

2. ∀a ∈ (C j ∪C l )∩S1∀b ∈C j ∪C l : (ab). Hence, for these pairs co(a,b)−anti(a,b)>
n/3.

Inequality (∗∗) follows from the fact that |(C j ∪C l )∩S1| > dp(C j ∪C l ). Hence, parti-

tion C is clearly not a median partition. We have thus shown that in a median partition

there is at most one cluster C j with C j = (C
j
1 ∪C

j
2 ), and possibly some other clusters C l

with |C l
1| < |C l

2|. Furthermore, by the precondition of Rule 4.2, this means that there

must be exactly one cluster C j with C j = (C
j
1 ∪C

j
2 ) in a median partition C .

We complete the proof of the correctness of Rule 4.2 by showing that in a median

partition there is no cluster C l with |C l
1| < |C l

2|. Let C j be the cluster with C j = (C
j
1∪C

j
2 ).

We show that a median partition C never contains a cluster C l with |C l
1| < |C l

2|,
since then we can obtain a better partition C ′ by removing C l

1 ∪C l
2 from C l and

merging C l
1 ∪C l

2 and C j into a new cluster C j ∪C l
1 ∪C l

2. First, observe that, by the

precondition of Rule 4.2, we have |(C j ∪C l )∩S1| > dp(C j ∪C l )+dp(C j ∪C l ,S\(C j ∪C l )).

Otherwise we would have |S i ∩S1| < dp(S i )+dp(S i ,S \ S i ), since already C j ∪C l
1 ∪C l

2

has less tidy elements than dirty pairs, and for each other cluster C h from D there are

more dirty pairs than tidy elements (since |C h
1 | < |C h

2 |). We now compare the cost of C

with the cost of C ′. First, the costs have changed for pairs with a ∈C j and b ∈C l
1 ∪C l

2,

where in C ′ we have—compared to C —an additional cost of anti(a,b) and save a

cost of co(a,b), since a and b are now in the same clusters. Second, the costs have

changed for pairs a ∈C l
1 ∪C l

2 and b ∈C l
3 ∪C l

4, where in C ′ we have—compared to C —

an additional cost of co(a,b) and save a cost of anti(a,b). Overall, the cost difference
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is

d (C )−d (C ′) =
∑

a∈C j

∑

b∈C l
1∪C l

2

co(a,b)−anti(a,b)

+
∑

a∈C l
1∪C l

2

∑

b∈C l
3∪C l

4

anti(a,b)−co(a,b)

(∗)
> −|dp(C j ,C l ∩S i )| ·

n

3
+

∑

a∈C j∩S1

∑

b∈C l
1∪C l

2

n

3

−|dp(C
j
2 ,C

j
3 )| ·

n

3
+

∑

a∈C l
1

∑

b∈C l
3∪C l

4

n

3

(∗∗)
≥

n

3
· (|C j ∩S1| · |C l

1 ∪C l
2|+ |C l

1| · |C
l
3 ∪C l

4|)

−
n

3
· (|dp(C j ,C l ∩S i )|+ |dp(C l

2,C l
3)|)

(∗∗∗)
> 0.

Inequality (∗) follows from the following facts:

1. ∀a ∈C j∀b ∈C l
1 ∪C l

2 : (ab)∨ (a#b),

2. ∀a ∈C l
1∀b ∈C l

3 ∪C l
4 : (a ↔ b), and

3. ∀a ∈C l
2∀b ∈C l

3 ∪C l
4 : (a ↔ b)∨ (a#b).

Inequality (∗∗) is straightforward, and inequality (∗ ∗ ∗) follows from the fact

that |(C j ∪C l
1)∩S1| > dp(C j ∪C l

1 ∪C l
2)+dp(C j ∪C l

1 ∪C l
2,S \ (C j ∪C l

1 ∪C l
2)). A median

partition thus does not contain a cluster C l with |C l
1| < |C l

2|. Therefore, a median

partition contains exactly one cluster C j that contains all the elements from Si and

no other elements. The decrement in k is precisely the distance that is caused by the

elements of S1 in a median partition of the original input instance. Altogether, this

proves the correctness of Rule 4.2.

It remains to show the running time of Rule 4.2. In O(n · |S|2) time we can

compute co(a,b) and anti(a,b) for each pair of elements and for each element the

number of dirty pairs that it is contained in. Then, we build in O(n · |S|2) time a

complete graph G that contains all the elements of S, and furthermore store for each

edge {a,b} whether (ab) or (a ↔ b) hold. We then compute the subgraph of G that

only contains the tidy elements and edges {a,b} for which (ab) holds. The connected

components of this graph are precisely the sets of the partition P1 of S1. Then, we label

the vertices of S2 by the (at most one) set S i
1 of P1 to which they are connected by an

edge {a,b} for which (ab) holds. Then, we compute for each Si the values of |dp(S i )|
and |dp(S i ,S\S i )|. Each of these steps can be performed in O(n·|S|2) time by traversing

the edge set once. Then, as long as P1 contains a set S i
1 to which Rule 4.2 applies, we
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perform the rule and simultaneously update the value of |dp(S j ,S \ S j )| for all other

sets S j . This can be done within the same running time as removing S i from G since

we check for every removed edge a,b whether it corresponds to a dirty pair between S i

and some other S j , and update |dp(S j ,S \ S j )| if this is the case. Since every edge is

visited only a constant number of times using this approach, the overall running time

for the exhaustive application of the rule is O(n · |S|2).

In the following theorem, we combine Steps 3 and 4 of our framework: we show

that exhaustively applying the reduction rule yields an equivalent instance whose

number of elements is less than 9d . Observe that this bound on |S| is worse than

the bound of 16d/3 achieved in Theorem 4.1. However, we obtain fixed-parameter

tractability with respect to the parameter “number of 2/3-dirty elements” which—as

we have shown—is possibly much smaller than d .

Theorem 4.2. 1. An exhaustive application of Rule 4.2 produces in O(n · |S|2) time

a structural problem kernel for CONSENSUS CLUSTERING with less than 9d

elements.

2. CONSENSUS CLUSTERING is fixed-parameter tractable with respect to the param-

eter “number of 2/3-dirty elements in S”.

Proof. By Lemma 4.6, Rule 4.2 can be performed exhaustively in O(n · |S|2) time.

Therefore, consider an instance I = (C,S,k) that is reduced with respect to the

reduction rule. With S1 we denote the tidy elements of I , and with S2 we denote the

elements of S that appear in dirty pairs. By Lemma 4.3, the number of dirty pairs in I

is less than 9d/4. Hence, the size of the set S2 containing the elements appearing in

dirty pairs is less than 9d/2. It remains to bound the number of tidy elements. For this,

consider the tidy-based partition P of S. Since the reduction rule cannot be applied,

the number of tidy elements of each set S i ∈ P is bounded by the number of dirty pairs

that contain at least one element from S i . The overall size of the set S1 containing the

non-dirty elements can thus be bounded by

|S1| ≤
∑

Si∈P

|dp(S i )+dp(S i ,V \ S i )| < 9d/2. (4.2)

The second inequality follows from the fact that we have at most 9d/4 dirty pairs and

that the dirty pairs between different sets S i ,S j ∈ P have to be counted twice. Hence,

a reduced instance contains at most |S1|+ |S2| < 2 · (9d/2) < 9d elements.

The second part of the theorem follows from the observation that by Inequality 4.2,

the number of tidy elements is upper-bounded by the number of dirty pairs. Since the

number of dirty pairs is at most quadratic in the number of dirty elements, the number

of tidy elements is upper-bounded by a polynomial of the number of dirty elements.

Hence, one can solve CONSENSUS CLUSTERING by trying all possible partitions (whose

number is a function of the number of dirty elements in the structural problem
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total solution distance k

¹

average solution distance d̄ ≈ average input distance d

¹

3/4-dirty elements ≈ 3/4-dirty pairs

¹

2/3-dirty elements ≈ 2/3-dirty pairs

Figure 4.3: The relationship between the discussed parameters for CONSENSUS CLUSTER-

ING: a downward ’¹’ means that the parameter on the bottom is stronger than the one on

top, parameters in the same box are “equivalent” since one is upper-bounded by a function of

the other and vice versa.

kernel), computing their distance to the input partitions in polynomial time, and then

outputting “yes” when a partition with distance at most k has been found.

4.5 Concluding Remarks

We have presented fixed-parameter tractability results for three different parame-

terizations of CONSENSUS CLUSTERING: average distance of the input partitions,

number of 3/4-dirty elements, and number of 2/3-dirty elements. In Figure 4.3 we

provide a condensed view of the relationships between the parameters considered

for CONSENSUS CLUSTERING in this work. Our results rely on the new technique

of structural kernelization. Since our work initiates the study of CONSENSUS

CLUSTERING in the field of parameterized algorithmics and also introduces structural

kernelizations, there are numerous research tasks worth pursuing.

– An efficient solving algorithm would complement our kernelization results. For

the parameter d , an algorithm with running time O(n|S|2 + 4.24d ) has been

recently shown [Dörnfelder et al. 2011]. Can we also obtain efficient algorithms

for the stronger parameters “number of 2/3-dirty pairs” and “number of 2/3-

dirty elements”?

– For KEMENY SCORE, recent experimental studies confirmed the usefulness of

dirtiness-based data reduction rules [Betzler et al. 2010a]. Similar studies

should be also performed for CONSENSUS CLUSTERING. In particular, it seems

interesting to compare the two dirtiness definitions with each other, since one

yields better results for the parameter average distance d whereas the other



4.5 Concluding Remarks 91

yields fixed-parameter tractability for the stronger parameter “number of 2/3-

dirty pairs”.

– In CONSENSUS CLUSTERING the input consists only of partitions of S. This

assumption is often too strict for realistic input settings. For example, one

benchmark data set for CONSENSUS CLUSTERING consists of 22 clusterings

of 8124 mushrooms (this data set belongs to the UCI machine learning

repository [Frank and Asuncion 2010]). Each clustering is defined by an

attribute, for example the color of the mushroom cap, but some values are

missing from the data. To cope with these missing values van Zuylen and

Williamson [2009] suggested to allow that the input consists of partitions of

subsets of S and to measure the distance between the median partition and

each input partition only for the subset S ′ of S that is partitioned by this input

partition. The resulting problem is called PARTIAL CONSENSUS CLUSTERING.

Can our approach also be applied to PARTIAL CONSENSUS CLUSTERING?

– The presented kernelization results are closely related to kernelization results

for the KEMENY SCORE problem [Betzler et al. 2010a, 2011b] for which similar

definitions of 3/4-dirtiness and 2/3-dirtiness were proposed. Interestingly,

for CONSENSUS CLUSTERING we can obtain with both dirtiness definitions a

structural problem kernel that is linear in d whereas for KEMENY SCORE the 3/4-

dirtiness definition leads to a structural problem kernel with at most 11d

elements and the 2/3-dirtiness so far only leads to a structural problem kernel

with at most 162d 2 + 9d elements. This leads to the question whether the

kernelization results—either for CONSENSUS CLUSTERING and 3/4-dirtiness or

for KEMENY SCORE and 2/3-dirtiness—can be significantly improved or whether

there are significant differences between the two problems in this regard.

– The usefulness and limits of the structural kernelization concept should be

further explored. In the presented example, the “structure” of the input that

was reduced was the number of elements which is somehow also related to the

overall input size. In Section 4.1, we briefly described a reduction approach

due to Dorn et al. [2010] that can be seen as a structural kernelization for

branchwidth. Are there further nontrivial applications of structural kerneliza-

tion where the dimension that is reduced is a structural parameter? Like Turing

kernelization (cf. [Fernau et al. 2009, Lokshtanov 2009, Schäfer et al. 2011]), this

could be a promising way to attack problems that do not admit a polynomial-

size standard problem kernel (see [Bodlaender et al. 2009, Bodlaender 2009,

Dom et al. 2009, Fortnow and Santhanam 2011] for more on lower bounrds for

problem kernel sizes).
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The second main part of this work deals with computational problems that arise

in the context of the so-called querying of protein interaction networks. The input of

such a querying problem consists of two main parts, the query which is either a small

set of proteins or a small protein interaction network, and the host is a large protein

interaction network. Usually the query and the host are from different species, and

the task is to identify subnetworks of the host that are similar to the query [Sharan

and Ideker 2006]. If such a subnetwork is found, then it can be conjectured that this

subnetwork is a functional module also in the species of the host. In this work, we call

subnetworks of the host that are similar to the query “occurrences of the query”.

This rather informal description of the network querying problem gives rise to

different formalizations, usually depending on the biological function of the query.

When the query is for example a signaling path, then the querying problem is modeled

as finding a high-scoring path in the host network whose proteins fulfill additional

similarity constraints [Shlomi et al. 2006]. In most querying scenarios it is imperative

to make assumptions about the interactions among the vertices of the host that

are similar to the query. For the querying of signaling paths this is obvious, since

a similar pathway is expected to have a similar succession of acting proteins. For

protein complexes, van Dam and Snel [2008] showed that the interaction patterns

are evolutionary conserved. Hence, the occurrence should have an interaction

pattern that is similar to the interaction pattern of the query. Consequently, most

mathematical formalizations of the task of network querying are thus related to the

NP-hard SUBGRAPH ISOMORPHISM problem [Garey and Johnson 1979].

In this work, we consider several formulations of the querying problem. Unless

stated otherwise we use G = (V ,E ) to denote the query and H = (W,F ) to denote the

host. All of these formulations have the following aspects in common.

Injectivity. We only consider formulations where each protein of the query is

mapped to exactly one protein of the host. Furthermore, two proteins of the query

should be mapped to different proteins of the host. Hence, we seek a function f that

injectively maps from the protein set V of the query to the protein set W of the host.

In other words, we look for a bijective mapping from V to a subset S of W . Note that

in one case, the study of LIST-COLORED GRAPH MOTIF in Chapter 6, we also allow

deletion of proteins from V , that is, we look for a maximum-cardinality subset V ′

of V such that we can find an injective mapping from V ′ to W that fulfills the further

constraints given by the problem formulation.

Orthology Constraints. A common approach to ensure that the occurrence is

indeed biologically similar to the query is to add orthology constraints. This means

that for each protein in the query we only allow that it is mapped to proteins that are

orthologs of this protein, that is, proteins that are evolutionary closely related to this

protein. Formally, the input contains for every protein p ∈ V a set of proteins L(p)
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such that for the mapping m it must hold that m(p) ∈L(p). We refer to L as ortholog

list of p and to the elements of L(p) as orthologs of p . If a graph G is associated with

such a family of ortholog lists, then we say that L is a list-coloring of V and that G

is a list-colored graph. In the formulations under consideration in this work, the list-

coloring is given either for the query graph or the host graph.

Prohibition of “Gap Proteins”. In order to keep the problems under consideration

conceptually simple, we do not consider the addition of further proteins that are not

explicitly matched to any protein of the query. Such proteins might be needed, for

example, to connect different subgraphs of the occurrence.

The differences between the formulations of the different querying problems that

we consider lie in what we call the “mapping criterion”. Herein, the mapping criterion

is simply a function that, given a mapping m from V to a subset S of W , decides

whether this mapping is valid. For example, one can demand that the mapping is a

graph isomorphism from G to H [S]. Another example is to ask for a mapping m that

maps to a connected subgraph.4 Hence, in this case the mapping m is valid if H [S] is

connected. In the following, we give a mathematical definition of mapping criteria c .

Let M(G = (V ,E ), H = (W,F )) := { f | f : V → S,S ⊆ W } be the set of all mappings

from the vertex set of G to the vertex set of H . Then, the mapping criterion cG ,H

for two graphs G and H is a boolean function cG ,H : M(G , H ) → {0,1}. We say that

a mapping m : V → S ⊆W is valid under cG ,H if cG ,H (m) = 1; otherwise, we say that m

is not valid under cG ,H .

Altogether, the aspects above lead to the following generic definition of occur-

rence.

Definition 4.4. Let G = (V ,E ) and H = (W,F ) be two undirected graphs, let L : V → 2W

be a list-coloring of V , and let cG ,H be a mapping criterion for G and H. We then call

an induced subgraph H [S] of H an occurrence of G in H when there is a mapping m :

V → S such that

– ∀v ∈V : m(v) ∈L(v), and

– m is valid under cG ,H .

A generic formalization of the network querying problem that we consider then

reads as follows.

NETWORK QUERYING:

Input: A query graph G = (V ,E ), a host H = (W,F ), a list-coloring L : V →
2W of V and a mapping criterion c .

Task: Find an occurrence H [S] of G .

4This is precisely the criterion of the LIST-COLORED GRAPH MOTIF problem studied in Chapter 6.
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(a) The list-colored input query and the

host.
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(b) Two induced subgraphs of H that are not occur-

rences of G: H1 is not isomorphic to G, and in H2 the

vertices v3 and v4 must be mapped to vertices that are

not adjacent (because of the list-coloring).
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H3

(c) The induced subgraph H3 of H is an occurrence of G:

mapping each vertex of G to the first vertex/color of its

ortholog list is an isomorphism from G to H3.

Figure 4.4: An example of NETWORK QUERYING in which one demands that the mapping from

query to host is an isomorphism.

The interaction pattern of the query is often referred to as topology of the

query. So far, many of the available implementations for variants of NETWORK

QUERYING are limited to sparse topologies such as paths or trees [Sharan and Ideker

2006]. We believe that there are two reasons for these limitations. First, in many

biologically relevant application scenarios, the queries are intrinsically sparse. For

example, this is the case for queries that are signaling pathways or collections of such

pathways [Shlomi et al. 2006, Dost et al. 2008]. A second reason for this limitation

lies in the fact that sparse topologies appear to be algorithmically easier to handle

than arbitrary topologies. In fact, almost all of the presented querying algorithms

for these sparse topologies are color-coding based fixed-parameter algorithms for the

parameter “query size”. However, for arbitrary topologies, parameterization by the

query size is often not applicable because SUBGRAPH ISOMORPHISM parameterized

by solution size is W[1]-hard. Hence, for arbitrary query topologies other parameters

have to be considered.

In this work, we present fixed-parameter tractability and intractability results

on NETWORK QUERYING for topology-free querying, dense topologies, and arbitrary
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topologies. We also perform computational experiments concerning the performance

of some of the presented algorithms with respect to running time as well as biological

quality of the reported occurrences.

Related Work. We quickly review the work that has been presented in the area of

network querying for formulations of the querying problems that differ from the

ones considered in this work. To our knowledge, the notion of “network querying”

was coined by Kelley et al. [2003] who developed a network alignment algorithm

PATHBLAST and used PATHBLAST for aligning complete protein interaction networks

with each other as well as single pathways (the queries) with complete networks.

The PATHBLAST algorithm finds high-scoring paths in a so-called alignment graph,

which is a graph in which each vertex corresponds to a pair of proteins, one from

the query and one from the host. Several algorithms have been proposed for the

special cases when the query is a path [Shlomi et al. 2006, Hüffner et al. 2007, 2008]

or tree-like [Blin et al. 2010b, Dost et al. 2008]. In work that is also related to network

querying, Sharan et al. [2005] presented an algorithm that, given two interaction

networks, finds subnetworks of both networks that are dense, and whose proteins

have high sequence-similarity. These subnetworks are supposed to form conserved

protein complexes. Since they look simultaneously for similar subnetworks in both

networks and not only one, this approach can be seen as a generalization of the

querying problem.

Overview over Part III. In Chapter 5, we present a case study for the querying

problem when the mapping criterion can be informally described as “the occurrence

has to be dense”. We give a biological motivation for this criterion and consider two

different density demands. We show that in case one demands that the occurrence

is a clique, then one can obtain very efficient fixed-parameter algorithms for protein

interaction networks by using parameters related to the so-called degeneracy of the

host network and the query size. Afterwards, we show that if one demands that the

occurrence is a so-called µ-clique, which is a relaxation of the clique definition, then

the problem becomes much harder, since it is W[1]-hard with respect to the so-called

dual parameter.

In Chapter 6, we study the LIST-COLORED GRAPH MOTIF problem, a variant of the

querying problem that demands that the occurrence is a connected subgraph of the

host. More precisely, the LIST-COLORED GRAPH MOTIF problem asks for a maximum-

cardinality subset of the query that has an occurrence in the host. This querying

problem has applications in the identification of protein complexes in protein

interaction networks [Bruckner et al. 2010] and in the identification of reaction motifs

in metabolic networks [Lacroix et al. 2006]. We consider three different parameters

for this problem: query size k , the solution size k ′ ≤ k , and the parameter n − k ,

where n is the number of vertices in the host. We present fixed-parameter algorithms
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for parameters k and k ′, and W[1]-hardness for the parameter n − k . Moreover, we

also perform computational experiments on protein interaction networks concerning

the speed of our algorithms as well as the biological relevance of the computed

occurrences. Additionally, we show that demanding stronger types of connectivity

such as biconnectivity or two-edge connectivity leads to W[1]-hardness with respect

to the parameter “query size”.

In Chapter 7 we study the querying problem for arbitrary query topologies when

we demand that the mapping from query to occurrence is an injective homomor-

phism. We present an improved algorithm for this querying problem parameterized by

the combined parameter “maximum number of orthologs maxv∈V |L(v)| and number

of query proteins with at least three orthologs”. We also show that we can apply our

algorithm when one demands that the query is isomorphic to the occurrence.

Furthermore, we show that, for some query-host combinations, homomorphism-

based querying yields better results in terms of biological quality than isomorphism-

based querying.
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Chapter 5

Parameterization by Degeneracy

and Dual—A Case Study for Dense

Queries

In this chapter, we study network querying problems in which we demand that

the occurrence of the query is a dense graph. The two types of dense graphs that

we consider in this context are cliques and µ-cliques. The aim of this chapter is

mainly to give an easy-to-follow example of how the identification of small parameters

can lead to very efficient algorithms for problems that are very hard in general.

Nevertheless, we also believe that the problems under consideration might be of

interest in biologically motivated querying scenarios. In the following, we discuss

why demanding that the occurrence of a query has to be dense is reasonable in some

application scenarios.

As discussed for example by Sharan et al. [2005], many protein complexes form

dense subgraphs of protein interaction networks. In fact, for certain types of protein

complexes, cliques can be seen as a perfect model of protein complexes [Sharan

et al. 2005]. Hence, for queries that are protein complexes, it is likely that the

interaction pattern represents a dense graph. Since there is evidence that interactions

in evolutionary related complexes are conserved [van Dam and Snel 2008] the

occurrence of such a dense query should also be dense. Moreover, even in case the

topology of the protein complex is completely unknown, a dense subgraph of the host

that also fulfills the orthology-constraints given by the list-coloring of the query is a

good candidate for a complex. Querying problems for dense query topologies are

therefore a relevant research topic from a theoretical as well as from an applied point

of view.
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5.1 The Querying Problem for Cliques

As argued above, it is not uncommon to have queries that are cliques. In case the host

contains a perfect match of the query, that is, in case all interactions are conserved by

evolution, the occurrence should be a clique as well. We therefore define the problem

of finding a perfect match for a query that is a clique as follows:

LIST-COLORED CLIQUE QUERYING:

Input: A clique G = (V ,E ), a graph H = (W,F ), and a list-coloring L : V →
2W of V .

Task: Find, if it exists, a vertex set S ⊆ W such that H [S] is a clique, and

there is a one-to-one mapping f from V to S such that ∀v ∈ V : f (v) ∈
L(v).

Obviously, a special case of LIST-COLORED CLIQUE QUERYING is CLIQUE, the problem

of finding a clique of size k . Therefore, the negative computational results for CLIQUE

hold for LIST-COLORED CLIQUE QUERYING as well. This means, for example, that LIST-

COLORED CLIQUE QUERYING is W[1]-hard with respect to |V |, or that it is NP-hard to

approximate the problem of finding a sub-occurrence of G in H that has maximum

order within a factor of |V |1−ε for any ε> 0 [Zuckerman 2007].

These negative results indicate that solving LIST-COLORED CLIQUE QUERYING

is very hard and might lead to the conclusion that solving LIST-COLORED CLIQUE

QUERYING is not feasible for protein interaction networks, considering that they

contain several thousand vertices. In the following, we demonstrate that such a

conclusion is premature. Moreover, we show that an efficient algorithm for LIST-

COLORED CLIQUE QUERYING can be derived by simple combinatorial observations

and algorithms.

First of all, consider the case that the host H is a clique. Then, an efficient

polynomial-time algorithm for checking whether H contains an occurrence of query G

works as follows. Since H is a clique, H [S] is a clique for every S ⊆W as well. Hence, all

that needs to be done is to check whether there is an injective mapping from V to W

that respects the list-coloring of V . This can be achieved as follows. Create an auxiliary

bipartite graph M where the two parts are V and W , respectively. Insert an edge

between a vertex v ∈ V and a vertex w ∈ W if and only if w ∈L(v). Then, an injective

mapping m from the vertices in V to the vertices in W such that for each v ∈V it holds

that m(v) ∈L(v) is a matching in M . Hence, after constructing M in O(|V | · |W |) time,

such a mapping can be found in O(|V | · |W | ·
p
|V |+ |W |) time by using the matching

algorithm of Hopcroft and Karp [1971].

Proposition 5.1. Let (G , H ,L) be an instance of LIST-COLORED CLIQUE QUERYING

such that H is a clique. Then, LIST-COLORED CLIQUE QUERYING can be solved in O(|V |·
|W | ·

p
|V |+ |W |) time.
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Consequently, LIST-COLORED CLIQUE QUERYING is NP-hard only in case H is not

a clique, and the actual combinatorial “challenge” for solving LIST-COLORED CLIQUE

QUERYING lies in finding a clique in H that contains an occurrence of G . In the

following, we gradually develop a strategy for finding this clique by using increasingly

“refined” parameterizations.

A trivial observation is that any clique in H is completely contained in the

neighborhood of some vertex w ∈ W . Hence, one can find an occurrence of G by the

following simple algorithm: For each vertex w ∈ W , enumerate all maximal cliques K

in N [w ]. For each such clique K , check whether H [K ] contains an occurrence of G . By

using a modified version of the Bron-Kerbosch algorithm for enumerating maximal

cliques [Tomita et al. 2006] and Proposition 5.1 we can achieve the following.

Proposition 5.2. LIST-COLORED CLIQUE QUERYING can be solved in O(|W | · 3∆(H)/3 ·
|V | · |W | ·

p
|V |+ |W |) time, where ∆(H ) is the maximum degree of H.

The running time of Proposition 5.2 is not really useful for protein interaction

networks, since these networks usually contain so-called “hubs” which are proteins

that participate in many interactions. For example, the yeast protein interaction

networks that was used in the experiments of Chapter 6 and Chapter 7 has maximum

degree 971. For this instance, the running time of the algorithm is clearly infeasible

if it is anywhere close to its worst-case estimate. Hence, the question is whether

we can avoid the parameter maximum degree ∆(H ) in our algorithm. Clearly, it

would be desirable to obtain fixed-parameter tractability with respect to the parameter

“average degree of H”. This, however, is not possible since one could simply add a

sufficiently large (but polynomial in |W |) set of degree-1 vertices to H and obtain a

graph with constant average degree. A fixed-parameter algorithm for the parameter

“average degree” would thus imply P=NP. Nevertheless, it is possible to improve

on Proposition 5.2 by using the parameter “degeneracy d of H” instead of the

maximum degree.

Definition 5.1. The degeneracy of a graph G is the smallest integer d such that every

induced subgraph of G has at least one vertex with degree at most d.

Degeneracy is a measure for the sparseness of a graph and was originally

introduced as coloring number of a graph [Erdös and Hajnal 1966]. Trees, for

example, have degeneracy one since every induced subgraph of a tree has at least

one leaf. Notably, the degeneracy of protein interaction networks is much smaller

than its maximum degree. For example, the above-mentioned yeast network that

has maximum degree 971 has degeneracy 23. In the following, we roughly describe

a simple enumeration algorithm for this parameter.

First, find a vertex v of minimum degree in H and enumerate all maximal cliques

in N [v ]. Since H has degeneracy d , it follows that N [v ] ≤ d + 1. Hence, the

enumeration takes only f (d ) time. Then, for each enumerated maximal clique K ⊆
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N [v ], check whether H [K ] contains an occurrence of G using Proposition 5.1. If

none of the enumerated maximal cliques contains an occurrence of G , then one does

not need to consider v anymore. Therefore, remove v from H and consider again a

vertex of minimum degree (which is again at most d by the definition of degeneracy).

Continue until either an occurrence of G has been found, or H is the empty graph. The

running time of this algorithm can be bounded as follows. The enumeration of the

maximal cliques in H can be performed in O(d · |W | ·3d/3) time by using an algorithm

of Eppstein et al. [2010]. This algorithm roughly follows the approach presented above,

namely, looking for a vertex of minimum degree and then enumerating all maximal

cliques that contain this vertex, and uses some further speed-up techniques. For the

time that is needed for checking for all the enumerated cliques whether they contain

an occurrence of G observe the following.

First, we can build in O(|V | · |W |) time a matrix L with a row for each v ∈ V and a

column for each w ∈ W such that L(v, w ) = 1 if w ∈ L(v), and L(v, w ) = 0, otherwise.

We can then use this matrix to create for each enumerated maximal clique K and each

vertex v ∈V a new set of ortholog lists LK (v) that contains only vertices of K . This can

be done in O(d 2) time since |V | ≤ d and |K | ≤ d , and by using the matrix L to check

whether w ∈ L(v) for each pair of v ∈ V and w ∈ K . After this, an occurrence of G

in H [K ] can be found in O(d 2 ·
p

d ) by using Proposition 5.1. The overall running time

can then be bounded as follows.

Proposition 5.3. LIST-COLORED CLIQUE QUERYING can be solved in O(|V | · |W |+ |W | ·
3d/3 ·d 3 ·

p
d) time, where d is the degeneracy of H.

This running time is a significant improvement over the running time of Propo-

sition 5.2, and for most real-world instances, it will lead to a very fast algorithm for

solving LIST-COLORED CLIQUE QUERYING. Still, even this result can be improved

in case |V | is almost as large as d . The simple observation that we can exploit is

that when enumerating maximal cliques in N [v ] for some vertex v ∈ W that has

degree at most d , we only need to consider cliques that have size at least |V |. These

cliques have the property that all of their vertices have at most d − (|V |−1) neighbors

in N [v ] \ K . Using an algorithm that is based on the enumeration of minimal vertex

covers in the complement graph, we can enumerate all maximal cliques K ⊆ N [v ]

with this property in O(2d−|V | ·d 3) time [Komusiewicz et al. 2009]. Again, we use the

algorithm behind Proposition 5.1 to check whether H [K ] contains an occurrence of G

for each enumerated maximal clique K . The overall running time thus amounts to the

following.

Proposition 5.4. LIST-COLORED CLIQUE QUERYING can be solved in O(|V | · |W |+ |W | ·
2d−(|V |) ·d 5 ·

p
d ) time, where d is the degeneracy of H.

Note that the degeneracy d , and therefore also d −|V |, can be determined in linear

time [Batagelj and Zaversnik 2003]. Depending on the values of d and d−|V | one could
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then choose between the algorithms of Propositions 5.3 and 5.4.

Summarizing, we have given evidence that LIST-COLORED CLIQUE QUERYING can

be solved very efficiently on protein interaction networks. In the next section, we

explore the computational complexity of the querying problem when we search for

a different type of dense graphs: µ-cliques.

5.2 On Finding µ-Cliques

The clique requirement is often too strict for modeling real-world data such as protein

interaction networks since it requires that the input data is error-free. However,

current protein interaction networks contain many errors. In particular, there are

many false negative interactions, that is, interactions that take place in biology but are

missing from the data [Yu et al. 2006]. For example, some interactions only act over

a very short period of time and therefore cannot be detected by current experimental

methods. Still, in case the query is known to exhibit a dense interaction pattern in

the query graph, one aims to find an occurrence of the query that also has many

interactions. One of the most natural ways to model density is to demand that a

certain ratio of edges is present in a graph. This is precisely the notion of µ-cliques

which we already considered in Chapter 3.

Definition 5.2. The density of a graph G = (V ,E ) is defined as 2|E |/(|V |(|V | − 1)). A

graph G = (V ,E ) is called µ-clique for a rational constant 0 ≤µ≤ 1 if the density of G is

at least µ.

Hence, it is interesting to study the querying problem when we look for µ-

cliques instead of cliques. Unfortunately, we will demonstrate that the problem of

querying for such µ-cliques is much harder than querying cliques. More precisely, we

demonstrate that already deciding whether a host graph H contains any µ-clique of

a given size is much harder than the querying problem for cliques, and that many of

the approaches presented for maximal cliques fail. The problem that we consider is

formalized as follows:

µ-CLIQUE:

Input: A graph G = (V ,E ), and a nonnegative integer k .

Question: Is there a vertex set S ⊆ V of size at least k such that G[S] is

a µ-clique?

The strongest parameterization presented for LIST-COLORED CLIQUE QUERYING

was d −k , where d is the degeneracy of H and k is the number of vertices in the query.

For µ-CLIQUE we show that parameterization by |V |−k leads to W[1]-hardness. Note

that |V |−k is always larger than d −k and can be arbitrarily large compared to d −k ;

it is therefore a weaker parameter than d −k .
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Theorem 5.1. For any fixed µ, 0 < µ < 1, µ-CLIQUE is W[1]-hard with respect to the

parameter n −k, where n is the number of vertices in the input graph.

Proof. We reduce from the W[1]-hard CLIQUE problem [Downey and Fellows 1995b,

1999]. Let (G = (V ,E ),k ′) be an instance of CLIQUE, that is, G is an undirected graph,

and we ask whether G contains a clique of order k ′. Assume without loss of generality

that µ = a/b, and that a > 2|V |. In the following, we describe how to construct a

graph G∗ such that deleting k vertices from G∗ yields a µ-clique if and only if G has

a clique of size k .

The idea of the construction can be roughly described as follows. We add to G

a large and dense graph H = (W,F ) that has minimum degree much larger than |V |.
Then, we add edges between H and G such that in the resulting graph G∗, all vertices

from V have degree |V |. Then we show that G∗ is not a µ-clique and that, because

of the way H is constructed, only by deleting exactly k ′ vertices from V that induce a

clique in G we can obtain a subgraph of G∗ that has density µ and at least |W |+|V |−k ′

vertices. The crucial observation that helps proving that we must delete a clique is that

1. by deleting a clique, we remove |V |+ (|V |−1)+ . . .+ (|V |−k ′+1) = |V | ·k ′− (k ′−
1) ·k ′/2 edges from G∗, and

2. by deleting a set of vertices that is not a clique, we remove more edges from G∗.

Next, we describe the details of the construction. We construct H = (W,F ) such

that it fulfills the following condition: A graph that contains H as induced subgraph

and

– |V |−k ′ additional vertices and

– |E |+
(

∑

v∈V (|V |−degG (v))
)

− (|V | ·k ′− (k ′−1) ·k ′/2) additional edges

has density exactly µ = a/b. By Lemma 3.5 we can construct H in poly(a,b, |V |) time

such that it fulfills this condition and such that

– H is 2(a −1)-connected, and

– a graph that contains H and the above described additional number of vertices

and edges has average degree more than a.

Let G∗ := (V ∪W,E ∪F ) be the disjoint union of the graphs G and H . In G∗, we then

add for each vertex v ∈V exactly |V |−degG (v) edges between v and H (the neighbors

of v in H can be arbitrarily chosen). After adding these edges, every vertex v ∈ V has

degree exactly |V | in G∗. A schematic illustration is presented in Figure 5.1.

We complete the construction of the µ-CLIQUE instance by setting k := n − k ′

(recall that n denotes the number of vertices in the µ-CLIQUE instance, that is, n =
|V |+ |W |). This described construction can be clearly performed in polynomial time.

Note that the parameter of the CLIQUE instance is k ′ and the parameter of the µ-

CLIQUE instance is n −k = k ′, that is, the reduction is parameter-preserving. To prove

the theorem, it thus remains to show the following claim:
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G

(a) The input

graph G of

the CLIQUE

Instance.

G H
..
.
..
..

(b) The connections to the gad-

get graph H that is added to G.

For each vertex v of G we add 4−
deg(v) edges between v and H .

G H
..
.
..
..

(c) Deleting in G∗ a clique of size

three from G deletes 3 ·4−3 = 9

edges from G∗. If a set of three

deleted vertices is not a clique

in G, more edges are deleted.

Figure 5.1: An illustration of the reduction presented in the proof of Theorem 5.1.

(G ,k ′) is a yes-instance of CLIQUE ⇔ (G∗,k) is a yes-instance of µ-CLIQUE.

⇒: Let S := {v1, . . . , vk ′} be a size-k ′ clique in G . We show that G∗−S is a µ-clique

with k vertices. Clearly, the overall number of vertices in G∗ − S is n − k ′ := k . The

overall number of edges in G∗−S is |F |+|E |+
(

∑

v∈V (|V |−degG (v))
)

−(|V |·k ′−(k ′−1)·
k ′/2) which can be seen as follows. First, note that, by construction, G∗ has |F |+ |E |+
(

∑

v∈V (|V |−degG (v))
)

edges. Hence, it remains to show that the number of edges that

have at least one endpoint in S is |V | ·k ′− (k ′−1) ·k ′/2. Since S is a size-k ′ clique and

since each vertex v ∈ S has degree exactly |V | in G∗, each vertex v ∈ S has exactly |V |−
(k ′−1) neighbors in (W ∪V )\S. Furthermore, there are exactly

(k
2

)

= (k ′−1)·k ′/2 edges

in G[S]. Hence, the overall number of edges with at least one endpoint in S is

k ′ · (|V |− (k ′−1))+ (k ′−1) ·k ′/2) = |V | ·k ′− (k ′−1) ·k ′/2.

The claimed overall number of edges in G∗− S follows. Consequently, G∗ − S is a µ-

clique.

⇐: Let S ⊆ W ∪V be a vertex set such that G∗− S is a µ-clique of size at least k .

Clearly, |S| ≤ k . We show that G contains a size-k clique by showing the following

claims. First, we show that it can be assumed that S ⊆V . Second, we show that |S| = k ′.

Finally, we show that G[S] is a clique.

First, we show that it can be assumed that S ⊆ V . Suppose that S contains some

vertex w ∈ W . Note that w has in G∗ at least 4|V | −k ′ > |V | neighbors in W since H

(which is a subgraph of G∗) is 4|V |-connected (because 2(a−1) ≥ 4|V |). Let v be some

arbitrary vertex in V \S. Clearly, v has degree at most |V | in G∗−S. Therefore, deleting

the set S ′ := {w }∪S \ {v} from G∗ yields a graph that has more edges than G∗−S and,

obviously, the same number of vertices. Since G∗−S is a µ-clique, so is G∗−S ′. This

“replacement procedure” can be applied as long as S contains a vertex from W . Hence,

we can assume without loss of generality that S ⊆V .



108 5 Parameterization by Degeneracy and Dual—A Case Study for Dense Queries

Second, we show that |S| = k ′. More precisely, we show that for all vertex

sets S := {v1, . . . , vi } of size i < k it holds that G∗−S has density less than µ. Let S ′ :=
{v1, . . . , vi , . . . vk} be an arbitrary size-k superset of S. Note that G∗−S ′ has at most

|F |+ |E |+
(

∑

v∈V

(|V |−degG (v))

)

− (|V | ·k ′− (k ′−1) ·k ′/2)

edges which can be seen as follows. The number of edges in G∗ is m := |F | + |E | +
(

∑

v∈V (|V |−degG (v))
)

. The graph G∗
1 := G∗− v1 has at most m − |V | edges, since the

minimum degree in G∗ is |V |. Consequently, the graph G∗
2 :=G∗

1 −v2 has at most m −
|V |− (|V |−1) edges, the graph G∗

3 := G∗
2 − v3 has at most m −|V |− (|V |−1)− (|V |−2)

edges, and so on. Hence, the number of edges in G∗−S ′ is at most

m−|V |−(|V |−1)−. . .−(|V |−k ′+1) = |F |+|E |+
(

∑

v∈V

(|V |−degG (v))

)

−(|V |·k ′−(k ′−1)·k ′/2).

This means, by construction of H , that G∗−S ′ has density at most µ. For illustrative

purposes, suppose that G∗ − S is obtained from G∗ − S ′ by adding, one by one, the

vertices from S ′ \ S. Furthermore, note that G∗ − S ′ has, again by construction of H ,

average degree more than a > 2|V |. Finally note that the vertices that are added to G∗−
S ′ have degree at most |V | in the final graph G∗−S. This means that G∗−S must have

density less than µ since G∗−S ′ has average degree at least 2|V | and adding a vertex

to a graph whose degree is (after it has been added to the graph) less than the average

degree of the graph before the vertex has been added reduces the density (note that

by adding at most k ′ < |V | vertices to G∗−S ′ we always produce a graph with average

degree more than |V |). Summarizing, the graph G∗−S has density less than µ if |S| < k ′.

Finally, we show that G[S] is a clique. Note that, as argued above, G∗ − S has

at most F | + |E | +
(

∑

v∈V (|V |−degG (v))
)

− (|V | · k ′ − (k ′ − 1) · k ′/2) edges. Hence, by

construction of H and by the fact that G∗ − S is a µ-clique, it also holds that G∗ − S

has exactly this many edges. Let mS denote the number of edges in G[S]. The number

of edges that are removed from G∗ by the deletion of S is
∑

v∈S |V | −mS , since every

vertex has degree exactly |V | in G∗. It follows that mS = (k ′−1) ·k ′/2) and, therefore,

that G[S] is a clique.

Somehow counterintuitively, the reduction used in Theorem 5.1 suggests that in

order to obtain a graph with density µ it might be of advantage to delete a clique from

the input graph. Hence, one cannot expect that a set of vertices that is removed from

the input graph in order to obtain a µ-clique induces a sparse graph.

5.3 Concluding Remarks

The two problems studied in this chapter are very different from each other concern-

ing the status of their tractability in protein interaction networks. For LIST-COLORED
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CLIQUE QUERYING, it is clear that we can develop an efficient implementation whereas

for µ-CLIQUE, which does not even contain orthology-constraints, there are so far only

negative results. Therefore, the next steps that could be taken for each problem are

quite different:

– For LIST-COLORED CLIQUE QUERYING an implementation could be developed.

As argued above, the restriction that the occurrence must be a clique is probably

too strict. Still, the results for some querying scenarios could possibly be

improved if we first check whether there is indeed such a perfect match, which

as shown here is not too costly in terms of running time.

– Further extensions of LIST-COLORED CLIQUE QUERYING should be considered

such as finding an occurrence of maximum-cardinality in case there is no

occurrence of order |V |. These extensions should increase the number of

instances in which a match is indeed found.

– Other clique relaxations, for example s-plexes, that is, graphs in which each

vertex has at most s − 1 “missing” edges, could be considered in order to

cope with noise in the data. For constant s the problem of finding such s-

plexes should be fixed-parameter tractable with respect to the degeneracy of

the host graph. For unbounded s, we conjecture that the problem is W[1]-

hard for the parameter (d , s). In general, the hope is to find a clique relaxation

that represents the “middle ground” between the computational hardness of

finding µ-cliques and the inflexibility of using cliques.

– For µ-CLIQUE, a thorough computational complexity analysis of µ-CLIQUE

considering further parameters such as minimum degree or degeneracy should

be undertaken. Because µ-CLIQUE appears to be much harder than CLIQUE, it is

probably necessary to consider the combination of several parameters in order

to obtain fixed-parameter tractability results.
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Chapter 6

Parameterizing Topology-free

Querying by Query and Solution

Size

The task of finding so-called graph motifs is a variant of the querying problem where

the mapping criterion demands that the occurrence is connected. The rationale

behind this model is that a set of proteins that forms a connected subgraph is more

likely to form a protein complex than a disconnected set of proteins. Since the

connectedness of the occurrence only depends on the topology of the host network

and not on the topology of the query, we can view the query simply as a set of colors,

where each color represents a protein or, in different application scenarios, some other

functional unit, such as a reaction in a metabolic network. In fact, we mainly follow a

formal definition given by Lacroix et al. [2006]:

LIST-COLORED GRAPH MOTIF:

Input: A multiset of colors M (the query or motif), an undirected

graph H = (W,F ) (the host), and a list-coloring L : W → 2M of W .

Task: Find maximum-cardinality sets S ⊆ W and M ′ ⊆ M such that the

induced subgraph H [S] is connected and there is a one-to-one mapping f

from S to M ′ such that ∀v ∈ S : f (v) ∈L(v).

An occurrence of a motif M in H is a set of vertices S ⊆ W such that |S| = |M |, H [S] is

connected, and there are x vertices of color c in S if and only if M contains c exactly x

times. For each vertex of the host, we are given a set of query colors that it can be

“matched” to. Note that this is equivalent to specifying for each query color a vertex

set S ⊆W that it can be matched to. Also note that in this formulation, the query can be

a multiset instead of a set, this is motivated by the application in metabolic networks

that we describe below. An example input instance is shown in Figure 6.1.

111
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Figure 6.1: An input instance of LIST-COLORED GRAPH MOTIF with a colorful motif M , host

graph H , and a list-coloring L. The subgraph H1 is an occurrence of M since it is connected

and the shown coloring is a bijective mapping from M to the vertices of H1 that uses for each

vertex vi only colors from L(vi ). In contrast, H2 is not an occurrence since it is not connected

and H3 is not an occurrence, since the “first” color of the motif is not contained in the color

lists of v1, v2, and v3.

Fellows et al. [2011a] studied a restricted variant of LIST-COLORED GRAPH MOTIF,

called GRAPH MOTIF, which is the special case of LIST-COLORED GRAPH MOTIF where

each vertex is associated with a single color. These types of graphs will be called vertex-

colored (instead of list-colored) in this chapter. For vertex-colored graphs we denote

by L(v) the (uniquely determined) color of v . An even further restricted variant of

GRAPH MOTIF demands that the motif is a set instead of a multiset. We call motifs that

are sets colorful.

Next, we briefly describe two applications for LIST-COLORED GRAPH MOTIF in the

area of biological network analysis.

Reaction Motifs in Metabolic Networks

The LIST-COLORED GRAPH MOTIF problem was originally defined in the context of

finding motifs in metabolic networks [Lacroix et al. 2006]. Here, the motif is a multiset

of reaction types and the given network is a reaction graph: vertices correspond to

reactions, and two vertices are connected if the corresponding reactions can occur

successively, that is, the products of one reaction are the inputs of the other reaction

or vice versa. The task is to find a subgraph of the reaction graph that is connected

and has exactly the reaction types specified by the motif. Since a specific reaction may

be classified as an instance of more than one reaction type, the vertices of the reaction

graph may be colored by more than one color resulting in a list-colored graph.
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Topology-free Querying of Protein interaction Networks

Bruckner et al. [2010] proposed the following approach for querying protein interac-

tion networks in case the topology of the query is unknown. Since the topology of

the query is unknown, it is simply a set of proteins that is known to form a protein

complex in some species A and the task is to identify similar complexes in a different

species B . To this end, every protein of the query is identified by one color and

a protein in the interaction network receives the colors of all query proteins with

similar sequence (that is, the BLAST1 score exceeds a predefined threshold). The

main point is that, since the topology of the query is unknown, no assumptions about

the topology of the subnetwork that corresponds to this protein complex are made,

with one exception: the subnetwork should be connected or almost connected, that

is, it should be possible to make it connected with few insertions of nonorthologs.

Furthermore, of all occurrences of the query meeting these criteria, one with a

maximum-weight spanning tree should be reported: The edge weights in the network

correspond to interaction probabilities. Accordingly, a spanning tree with large weight

corresponds to a high interaction probability among the proteins of the putative

complex. This leads to a weighted version of LIST-COLORED GRAPH MOTIF with the

further restriction that the motif is a set because each protein of the query is identified

with a unique color.

Known Results. We first summarize the current state of the art concerning the

algorithmic complexity of GRAPH MOTIF, that is, the special case where H is vertex-

colored. Formulated as a decision problem, GRAPH MOTIF is NP-complete even if

the input graph is a tree [Lacroix et al. 2006]. This NP-completeness result was later

strengthened by showing that the problem is NP-hard even when the input multiset M

actually is colorful (that is, a set) and the input graph is a tree with maximum vertex

degree three [Fellows et al. 2011a]. Moreover, NP-completeness has also been shown

for the case that M consists of only two colors and the input graph is restricted to

be bipartite with maximum degree four [Fellows et al. 2011a]. Given the apparent

hardness of GRAPH MOTIF, Fellows et al. [2011a] initiated a parameterized complexity

analysis showing that GRAPH MOTIF, parameterized by the motif size |M | is fixed-

parameter tractable. The algorithm with the asymptotically fastest running time for

GRAPH MOTIF is due to Guillemot and Sikora [2010], who use algebraic techniques

to solve both the problem of finding an occurrence of a motif, and the problem of

counting the number of occurrences. Dondi et al. [2011] extended the investigations

for GRAPH MOTIF by studying the case where the subgraph induced by the chosen

motif vertices does not need to be connected. Furthermore, they showed that GRAPH

MOTIF is hard in terms of polynomial-time approximability and presented a first fixed-

parameter algorithm for the parameter “solution size” |S| [Dondi et al. 2011]. The

1http://blast.ncbi.nlm.nih.gov/

http://blast.ncbi.nlm.nih.gov/
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Table 6.1: An overview of the complexity results for the different variants of the LIST-COLORED

GRAPH MOTIF problem.

coloring of graph and motif running time bounds/complexity

vertex-colored graph and colorful motif 2|S| · poly(n) [Guillemot and Sikora 2010]

2n−|M | ·poly(n) (Theorem 6.3)

vertex-colored graph and multiset motif 4|S| · poly(n) [Guillemot and Sikora 2010]

W[1]-hard for n−|M | (Theorem 6.4)

list-colored graph and multiset motif 10.88|M | ·poly(n) (Theorem 6.1)

29.6|S| ·poly(n) (Theorem 6.2)

W[1]-hard for n−|M | (Theorem 6.4)

algorithm with the best asymptotic running time for GRAPH MOTIF and parameter |S|
runs in O(4|S| · |S|2 ·m) time on m-edge graphs [Guillemot and Sikora 2010].

Concerning LIST-COLORED GRAPH MOTIF, there are fewer results, although the

hardness results for GRAPH MOTIF clearly hold as well. Bruckner et al. [2010]

presented a fixed-parameter algorithm for LIST-COLORED GRAPH MOTIF with a worst-

case running time of O(|M |! · 3|M | · m). They also showed that on many real-world

instances the actual running time is much smaller than this worst-case estimate, and

successfully applied their algorithm to protein interaction networks. Furthermore,

a web-server for solving LIST-COLORED GRAPH MOTIF (relying on fixed-parameter

algorithms and an integer linear programming formulation) is available [Bruckner

et al. 2009]. Blin et al. [2010a] presented a further algorithm for LIST-COLORED GRAPH

MOTIF, based on a 0/1-integer programming formulation.

Our Results. We present fixed-parameter algorithms as well as parameterized

hardness results for several variants of LIST-COLORED GRAPH MOTIF. In Section 6.1,

we consider different parameterizations for LIST-COLORED GRAPH MOTIF.

First, considering the parameter |M |, we present an algorithm that solves LIST-

COLORED GRAPH MOTIF in O(10.88|M | ·m) time on host graphs with m-edges. Second,

we consider the parameter solution size |S|. Adapting an approach of Dondi et al.

[2011] for GRAPH MOTIF, we present a randomized algorithm for LIST-COLORED

GRAPH MOTIF that runs in O(29.6|S| · |S| ·m) time. For both parameterizations, we thus

improve on the currently best worst-case running time bounds.

Third, we consider the parameter n − |M |. Note that this parameter is always at

most as large as the dual parameter n −|S|, that is, the number of vertices that are not

in a solution. We show that in general LIST-COLORED GRAPH MOTIF becomes W[1]-

hard for the parameter n−|M |, and that for the special case where M is colorful and H

is vertex-colored, LIST-COLORED GRAPH MOTIF can be solved in O(2n−|M | ·m) time.

An overview of our results and further state-of-the art results for special cases of LIST-

COLORED GRAPH MOTIF is given in Table 6.1.
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We implemented our two fixed-parameter algorithms for LIST-COLORED GRAPH

MOTIF parameterizing in the one case by |M | and in the other case by |S|. We

developed and implemented a number of further heuristic speed-ups for both

algorithms, and we report here on their performance for real-world instances.2 As one

example of such a heuristic speed-up, we identify cases in which applying a different

color-coding procedure helps in decreasing the running time. Furthermore, we

identify cases in which the application of a simple (randomized) brute-force algorithm

yields a speed-up.

We applied our algorithms in the context of querying of protein interaction

networks, showing that both the algorithm with parameter |M | and the algorithm with

parameter |S| can solve almost all of the considered input instances within 10 minutes,

and that in most cases the algorithm with parameter |M | outperforms the algorithm

with parameter |S|. Furthermore, we examined the quality of the solutions by testing

them for enrichment of functional annotation terms: for each solution, which is a set

of proteins, we retrieved functional annotation terms from public databases [Barrell

et al. 2009, SGD project, Tweedie et al. 2009] and applied the GO::TermFinder

tool [Boyle et al. 2004] to find annotation terms that have a statistically significant

overrepresentation compared to random protein sets. We found that about 79% have

a significant enrichment in at least one functional annotation and that 100% of the

solutions of size at least four show this enrichment. Furthermore, the percentage

of solutions that have this functional enrichment is roughly the same for solutions

with |S|/|M | ≥ 40%, and is lower when |S|/|M | < 40%.

Finally, we further chart the range of (theoretical) tractability of LIST-COLORED

GRAPH MOTIF by exploring what happens if we demand “more” than simple connec-

tivity. We show that if one requires that the found motif shall not only be connected

but biconnected or bridge-connected (see Section 1.3 for formal definitions), then, in

both cases, the corresponding LIST-COLORED GRAPH MOTIF problem becomes W[1]-

complete with respect to the parameter motif size. Since these are the two simplest

ways of demanding more than connectivity, this shows that the request for connected

motifs is already a topology demand close to the border between tractability and

intractability. These W[1]-hardness results also generalize to higher connectivity

demands such as p-connectivity and p-edge connectivity (see Section 1.3 for formal

definitions). Even further, W[1]-hardness also holds for uncolored graphs, where

one searches for a p-(edge)-connected subgraph and the parameter is the number

of subgraph vertices.

2Source code available at http://fpt.akt.tu-berlin.de/graph-motif/

http://fpt.akt.tu-berlin.de/graph-motif/
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6.1 Searching for Connected Motifs

In this section, we provide and analyze randomized fixed-parameter algorithms for

LIST-COLORED GRAPH MOTIF and the parameters motif size |M | and solution size |S|.
Note that, since |S| ≤ |M |, fixed-parameter tractability with respect to |S| implies fixed-

parameter tractability with respect to |M |. On the contrary, the inverse is not true

since |S| can be much smaller than |M |. We provide fixed-parameter algorithms for

both single parameters because for the parameter |M | a better worst-case running

time bound can be achieved. Furthermore, we study the parameterized complexity

of LIST-COLORED GRAPH MOTIF for the dual parameter n −|M |.

6.1.1 Parameter Motif Size

We present a color-coding algorithm that partially resembles the algorithm for GRAPH

MOTIF by Fellows et al. [2011a]. This algorithm employs the color-coding technique

which was introduced for special cases of the SUBGRAPH ISOMORPHISM problem by

Alon et al. [Alon et al. 1995]. The main idea is to randomly color the vertices of the

graph, and then to solve the corresponding problem under the assumption that the

subgraph that is searched for obtains a colorful coloring, that is, all of the vertices of

the subgraph have pairwise different colors. This assumption often leads to an easier

problem. The whole procedure of coloring and then solving the subsequent problem

on the colored graph is repeated until the subgraph that is searched for has obtained

with high probability a colorful coloring in at least one of the repetitions. We say that a

randomized algorithm solves a problem with error probability ε if the probability that

it fails to return the correct answer is at most ε. Note that the randomized algorithms

in this work do not make false positive errors, that is, if the algorithm returns that a

graph has an occurrence of a motif, then such an occurrence does indeed exist.

Our color-coding algorithm follows the main scheme presented above. First,

randomly assign to each vertex one out of |M | labels. Then, in case all vertices of an

occurrence have received pairwise different labels (we call this event a good labeling),

we can use dynamic programming to find this occurrence.

Theorem 6.1. LIST-COLORED GRAPH MOTIF can be solved with error probability ε

in O(| ln(ε)| ·10.88|M | ·m) time.

Proof. Without loss of generality, we can assume that M is colorful. Otherwise we

can transform M and H as follows: For each color c that occurs occ(c) times, we

add occ(c) new colors to M and completely remove c from H . Furthermore, for every

vertex v in H with c ∈ L(v), we remove c from L(v) and add the occ(c) new colors

to L(v). Let M ′ and H ′ be the thus modified motif and graph, respectively. We now

solve the problem of finding an occurrence of M ′ in H ′. Each such occurrence clearly

corresponds to an occurrence of M in H .
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Let L = {l1, l2, . . . , l |M |} denote a set of |M | distinct labels. We randomly assign the

labels of L to the vertices of the graph and solve the problem of finding an occurrence

of the motif M under the assumption that all vertices of the occurrence have received

a different label. The problem of finding a colorful occurrence of M that has the labels

of L is solved by dynamic programming. First, we extend our notion of occurrence.

Let J ⊆ (L ∪ M ) be a set that contains labels as well as colors. An occurrence of J is

defined as a set of vertices S such that the vertices of S have exactly the labels of J ∩L,

and there is an injection f : S → J ∩M such that f (v) ∈L(v) for each vertex v . The idea

is that with the set J we store both the set of labels L∩ J that we have “used” so far, and

the colors that the vertices with the labels in L ∩ J are assigned. This way, we can find

for each combination of sets M ′ ⊆ M and L′ ⊆ L, |L′| = |M ′|, an occurrence of M ′ that

has the labels of L′.

We use two dynamic programming tables D and T . The table D has entries for

each vertex, and sets J ⊆ L ∪M . The aim of the dynamic programming procedure is

to compute the values of D such that Dv (J) = 0 if there exists an occurrence of J that

contains v , and Dv (J) > 0, otherwise. The table T has entries for each vertex v , each

color c ∈ L(v) and sets J ⊆ L ∪ M . The aim is to compute the values of T such

that Tv,c (J) = 0 if there is an occurrence of J ⊎ {label(v),c} in which v receives the

color c , and Tv,c (J) > 0, otherwise. Clearly, for each v , we have to create Tv,c (J), only

for c with c ∈L(v) and for J such that c 6∈ J and v 6∈ J .

We initialize the table T with Tv,c (;) = 0. In the recursion, we fill in the values for

increasing sizes of J for both T and D. First, we use table T to calculate values of D:

Dv (J) = min
c∈L(v)

{Tv,c (J \ {label(v),c}),1}.

The correctness of this recurrence follows from the definition of the table entries.

Then, we calculate the value for Tv,c (J) branching into two cases. The first case is

that there is a neighbor u of v such that there is an occurrence of J that contains u.

The second case is that J can be partitioned into two sets J ′ and J \ J ′ such that

there is an occurrence of J ′∪ {label(v),c} and of (J \ J ′)∪ {label(v),c} such that in both

occurrences v is contained and has color c . The “score” for these occurrences can be

found in the table T . The recurrence reads as follows:

Tv,c (J) = min
u∈N(v),

J ′⊂J

{

Du(J),

Tv,c (J ′)+Tv,c (J \ J ′)

}

.

If there is a v ∈ W such that Dv (L ∪M ) = 0, then there is an occurrence of L ∪M

in H . A maximum-cardinality occurrence can be found by finding a vertex v and a

maximum-cardinality set J such that Dv (J) = 0. The vertex set that corresponds to the

occurrence can be computed by doing a simple traceback.

For the running time consider the following. Clearly, |L ∪ M | = 2|M |. The

recurrence for table D and the first part of the recurrence for table T can be computed
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in O(22|M | · |M | · m) time overall. For the second part of the recurrence of table T ,

Björklund et al. [Björklund et al. 2007] showed that recurrences of this type can be

solved in 2x ·poly(x) time, when the base set over which the table is defined has size x.

Here, this base set is L ∪ M and it has size 2 · |M |. This results in a running time

of 22·|M | · poly(2|M |) = 4|M | · poly(|M |) for the dynamic programming procedure for

each table Tv,c , and thus in a running time of 4|M | · poly(|M |) · n for all such tables.

For the random labeling, each vertex of W is labeled with one of |M | labels under

uniform distribution. Then, the probability of a good labeling is |M |!/|M ||M | > e−|M |.

Therefore, the number of trials needed to obtain a good labeling with probability 1−ε

is O(| ln(ε)|·e |M |). The total running time thus amounts to O(| ln(ε)|·e |M |·4|M |·poly(|M |)·
m)=O(| ln(ε)| ·10.88|M | ·m).

6.1.2 Parameter Solution Size

In this section, we present an algorithm for the parameter solution size |S|, applying

an idea of Dondi et al. [2011] to our algorithm from Section 6.1.1. The approach can

be roughly described as follows. Let S ⊂ W be a solution of LIST-COLORED GRAPH

MOTIF, and let M ′ ⊆ M be a submotif such that there is an injection f from S to M ′

with f (v) ∈ L(v) for each v ∈ S. Clearly, to distinguish the vertices of S using color-

coding, one only needs to use |S| many labels. However, we do not know in advance

what colors the color set M ′ comprises. Hence, the idea is to use a further color-coding

step, this time mapping the colors of M to the colors of a newly created set Mk of

size k = |S| in order to obtain an equivalent instance that has a motif of size |S|. The

problem of finding an occurrence of Mk is fixed-parameter tractable with respect to

the parameter |S| since we can apply our algorithm from Section 6.1.1. This extends

the fixed-parameter tractability result of Dondi et al. [2011] for GRAPH MOTIF with

respect to the parameter |S| to LIST-COLORED GRAPH MOTIF. In the following, we

present the details of the algorithm and bound its running time.

Theorem 6.2. LIST-COLORED GRAPH MOTIF can be solved with error probability ε

in O(| ln(ε)| ·29.6|S| · |S| ·m) time.

Proof. The algorithm proceeds as follows. Starting with k = 1, it finds an occurrence

of size k if such an occurrence exists. The value k will be incremented by one as

long as a solution has been found. If for some value of k the algorithm fails to find

a solution, then with high probability no size-k solution exists and the algorithm

reports the solution of size k − 1 that was found previously. We now describe in

detail how the algorithm works for a fixed value of k . First, create a new set of k

colors Mk := {c1, . . . ,ck }. Then, construct a mapping φ : M → Mk by mapping each

color c ∈ M uniformly at random to a color in Mk . Create a new graph H ′ from H as

follows. For each vertex v and each c ∈L(v), remove c from L(v) and add φ(c) to L(v).

We now use the algorithm from Section 6.1.1 to find an occurrence of Mk in G ′. If
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no occurrence was found, then repeat the procedure above without changing k until

either an occurrence was found, or we can, with sufficiently low error probability,

conclude that H contains no occurrence of a size-k subset of M .

First, we show that if there is a size-k set M ′ ⊆ M such that there is an occurrence S

of M ′ in H , then with probability at least e−k we create an instance that has an

occurrence of Mk in H ′: Since each color of M ′ is mapped uniformly at random to

one of the colors of Mk , the probability that all colors of M ′ are mapped to pairwise

different colors of Mk is at least k !/kk > e−k . In this case, S is an occurrence of Mk

in H ′.

Second, we show that if the algorithm finds an occurrence S of Mk in H ′, then

there is also a size-k set M ′ ⊆ M such that S is an occurrence of M ′ in H . Let S be

an occurrence of Mk in H ′, and let f be an injection from S to Mk (which must exist

since S is an occurrence of Mk ). Since f is an injection, f (v) 6= f (u) for each pair of

vertices u, v ∈ S, u 6= v . Hence, by choosing for each vertex v of S an arbitrary color c

such that φ(c) = f (v), we obtain a set M ′ of k pairwise different colors such that S is

an occurrence of M ′ in H .

We now bound the running time of the algorithm for some fixed k . Suppose there

is a size-k set M ′ ⊆ M such that there is an occurrence S of M ′ in H . The probability,

that each color of M ′ was mapped to a different color in Mk is at least e−k . The problem

of finding an occurrence of Mk in H ′ can be solved with constant error probability

in O(10.88k ·m) time by using the algorithm from Section 6.1.1. Hence, the probability

that this algorithm finds an occurrence of Mk in H ′ (and consequently an occurrence

of some size-k subset M ′ ⊆ M in H ) is at least O(e−k). Repeating the procedure of

coloring M and then applying the algorithm from Section 6.1.1 O(ek) times, a size-

k occurrence of some M ′ ⊆ M , if such an occurrence exists, is found with constant

probability. Hence, for fixed ε we can solve the problem of finding with constant error

probability an occurrence of some size-k subset of M in O(| ln(ε)| · ek · 10.88k ·m) =
O(| ln(ε)| ·29.6k ·m) time. If no such occurrence has been found, we can conclude that

with probability at least 1−ε no such occurrence exists.

In the overall algorithm loop, we abort as soon as k = |S|+1, since by definition of

the solutions size |S|, no occurrence of a size-(|S| +1) subset of M exists. The overall

running time bound follows.

6.1.3 Dual Parameterization

We study the parameterized complexity of LIST-COLORED GRAPH MOTIF for the so-

called dual parameter n −|M |, where n := |W |. At first, this parameterization appears

to be uninteresting since the motif is very small compared to the network. However, in

some applications, there are many vertices of the input graph that can be removed by

a simple data reduction since their color-lists do not contain any colors of the motif.

After this data reduction, the remaining graph has modest size, and furthermore often
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contains several connected components (this observation was also made by Bruckner

et al. [2010]). For many of these components, the motif is relatively large compared

to the order of the connected component. Then, only few vertices may be “removed”

from this component to obtain the motif. Unfortunately, in general the LIST-COLORED

GRAPH MOTIF problem becomes W[1]-hard as we show later in this section. However,

for the simple case, when the graph is vertex-colored instead of list-colored and

the motif is colorful, we obtain fixed-parameter tractability. The simple idea of the

corresponding search tree algorithm is to branch on vertices in H that have the same

color. Each occurrence of the motif contains at most one of these two vertices since

the motif is colorful. In the following, we describe this algorithm in detail.

Theorem 6.3. For colorful motifs and vertex-colored graphs LIST-COLORED GRAPH

MOTIF can be solved in O(2n−|M | ·m) time.

Proof. Given a vertex-colored n-vertex graph H = (W,F ) and a colorful motif M , the

algorithm proceeds as follows. Initially, set d := n − |M |. Clearly, we can assume that

every color of M appears in H , otherwise we can simply remove this color from M .

Furthermore, let M ′ be a maximum-cardinality subset of M such that there is an

occurrence of M ′ in H . For d ≤ 1, the graph must contain two vertices u and v

such that L(v) = L(u). At most one of these vertices belongs to an occurrence of M ′.

Accordingly, the algorithm recursively finds occurrences of M ′ in H [W \ {u}] and

in H [W \ {v}]. In each recursive branch, set d := d − 1. In case d = 0, the graph H

contains exactly the colors of M . Then, the largest occurrence of a subset of M is

simply the largest connected component of H . There is at least one search tree leaf in

which H has a connected component whose colors are M ′. Hence, the overall solution

is the largest occurrence that was found over all recursive calls in the search tree.

As to the running time, the search tree has size O(2d ) since it has depth d and

branches into two cases at each search tree node. Furthermore, the operations at each

search tree node can be performed in O(m) time.

Unfortunately, Theorem 6.3 does not carry over to the general LIST-COLORED

GRAPH MOTIF problem. On the contrary, we show that the problem becomes W[1]-

hard for vertex-colored graphs and motifs that consist of two colors, and also for

colorful motifs when the input graph is list-colored.

Theorem 6.4. LIST-COLORED GRAPH MOTIF is W[1]-hard with respect to the parameter

n−|M | even if the input graph H is vertex-colored and the motif M consists of two colors.

Proof. We reduce from the W[1]-complete INDEPENDENT SET [Downey and Fellows

1999] problem:

Input: An undirected graph G and a nonnegative integer k .

Question: Is there a size-k vertex set S such that G[S] has no edges?
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G G ′

e∗

Figure 6.2: An example of the reduction from INDEPENDENT SET to GRAPH MOTIF with two

colors. Black vertices in G ′ have color b, white vertices have color w . For k = 3, the motif

contains two times the color b and seven times the color w . Hence, one must delete three

black vertices from G ′ to obtain an occurrence. Since in G there is no independent set of size

three, one must delete the two neighbors of at least one white vertex in G ′.

Given an instance (G = (V ,E ),k) of INDEPENDENT SET, we build an instance of LIST-

COLORED GRAPH MOTIF as follows. The motif M is a multiset over two colors b and w

such that M contains the color b exactly |V | −k times and the color w exactly |E | +1

times. Each vertex v ∈ V is colored with color b. Furthermore, each edge {u, v} ∈ E

is replaced by a path of length two, that is, we remove {u, v} from G , add a new

vertex e{u,v} to G and insert edges between u and e{u,v} and v and e{u,v}. Each new

vertex receives the color w . Finally, we add one further vertex e∗ with color w and add

edges between e∗ and every vertex that has color b. Let G ′ denote the resulting vertex-

colored graph. The construction can be clearly performed in polynomial time. Note

that n−|M | = k . An example of this reduction is shown in Figure 6.2. We complete the

proof by showing that

G has a size-k independent set ⇔ G ′ has an occurrence of M .

⇒: Let S be a size-k independent set in G . Consider the graph G ′′ that is obtained

from G ′ by removing S. We show that G ′′ is an occurrence of M . Consider the colors

of G ′′. Since all k vertices that have been removed from G ′ have color b there are |V |−k

vertices that have color b and |E | + 1 vertices that have color w in G ′′. It remains to

show that G ′′ is connected. Since e∗ is adjacent to all vertices of V , the subgraph that

is induced by V ∪ {e∗} is connected. Furthermore, every other vertex is adjacent to

at least one vertex of V . Suppose that this is not the case, then for some vertex e{u,v}

both u and v are in S. This contradicts the fact that S is an independent set in G .

⇐: Let S be a vertex set such that removing S from G ′ results in an occurrence

of M , that is, a graph that is connected and has the colors of M . By construction of G ′

and M , S has size k and contains only vertices that have color b. Hence, these vertices

correspond to vertices of G . We show that S is an independent set in G . Suppose

that this is not the case, then there must be two vertices u, v ∈ S such that {u, v} ∈ E .

Then, however, both neighbors of e{u,v} in G ′ are in S. This contradicts the fact that

removing S from G ′ results in a connected graph.
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By slightly modifying the construction in the proof of Theorem 6.4, we can also

transfer this result to the case that the motif is colorful. The only difference is that

instead of using two colors b and w , we use two sets of colors B = {b1, . . . bn−k }

and W = {w1, . . . wm+1}. Every color that was colored by b now receives the color list B

and every color that was colored by w receives the color list W . The motif is B ∪ M .

The correctness proof works analogously.

Theorem 6.5. LIST-COLORED GRAPH MOTIF is W[1]-hard with respect to the parameter

n −|M | even if M is colorful.

Theorems 6.4 and 6.5 exclude any hope for fixed-parameter algorithms for LIST-

COLORED GRAPH MOTIF parameterized by the dual parameter n−|M |. However, as we

show in Section 6.2, there are some cases in which even a brute-force algorithm for

guessing the set of vertices to delete is faster than the color-coding fixed-parameter

algorithms for parameters |M | and |S|, respectively. Hence, it seems worthwhile to

find further special cases in which LIST-COLORED GRAPH MOTIF is fixed-parameter

tractable with respect to n − |M | or to study n − |M | in combination with other

parameters.

6.2 Application to Querying of Protein Interaction Networks

We applied our algorithms for LIST-COLORED GRAPH MOTIF to topology-free querying

of protein interaction networks. As described in the introduction, the input of the

graph motif instance here is a colorful motif and the vertices in H are list-colored. Our

program is written in the C++ programming language, uses the Boost Graph Library3,

and consists of ≈ 1000 lines of code. The source code is publicly available.4

6.2.1 Implementation Details

This section describes some details that distinguish the implemented algorithms

from those specified in Section 6.1. Given a graph H = (W,F ) and a colorful

motif M , our implemented algorithms not only find a maximum-cardinality subset

S ⊆ W such that H [S] is an occurrence of M , but also compute S such that the

weight of a spanning tree of H [S] is maximized. Our implementation provides three

algorithms: the first is a simple (randomized) brute-force approach. This algorithm

is not used on its own, but as a subroutine of the other two algorithms. The second

algorithm solves LIST-COLORED GRAPH MOTIF with the parameter motif size |M | as

described in Section 6.1.1. The third algorithm solves LIST-COLORED GRAPH MOTIF

with the parameter solution size |S| as described in Section 6.1.2. The algorithm

3http://www.boost.org/
4http://fpt.akt.tu-berlin.de/graph-motif

http://www.boost.org/
http://fpt.akt.tu-berlin.de/graph-motif
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with parameter |M | and the algorithm with parameter |S| resort to the brute-force

approach if it is expected to outperform the dynamic programming routines described

in Section 6.1.1. This is, for example, the case if the dual parameter (Section 6.1.3) is

small.

6.2.1.1 Randomized Brute-Force

Given a LIST-COLORED GRAPH MOTIF instance comprising a graph H = (W,F ), a

colorful motif M , and a natural number k , this algorithm proceeds as follows: it

chooses a size-k set S ⊆ W uniformly at random and checks whether H [S] is an

occurrence of a subset of M . This verification step is carried out by computing

a maximum-cardinality matching in the bipartite graph B = (S ⊎ M ,F ), where an

edge {v,c} ∈ F with v ∈ S and c ∈ M exists if and only if c ∈ L(v). If all vertices

in S are matched and H [S] is connected, then H [S] is an occurrence of a size-k

subset of M . The process of randomly choosing subsets of H is repeated a sufficient

number of times so that an existing occurrence of a size-k subset of M is found

with high probability. More precisely, the probability that a size-k occurrence is

chosen is at least 1/
(|W |

k

)

. Hence, we repeat the procedure of guessing and verifying

a solution O(| ln(ε)| ·
(|W |

k

)

) times to obtain an error probability of at most ε. For

each motif occurrence found in the process, its maximum-weight spanning tree is

computed. An occurrence with the maximum-weight spanning tree among all size-

k occurrences is reported. Since we have to repeat the procedure O(| ln(ε)| ·
(|W |

k

)

)

times, the algorithm works fast if k is small or close to |W |. In the latter case, the

dual parameter (Section 6.1.3) is small. However, Randomized Brute-Force is not a

fixed-parameter algorithm with respect to the parameter k or the parameter |W |−k .

6.2.1.2 Parameter Motif Size

In contrast to the algorithm described in Section 6.1.1, the implemented algorithm

does not employ the (theoretical) result by Björklund et al. [2007] to quickly evaluate

the given recurrences. Instead, they are straightforwardly evaluated by dynamic

programming. However, we implemented heuristics to reduce the running time of

the algorithm.

Overall Strategy

Each connected component of the input graph H is processed independently. For

each connected component, the Randomized Brute-Force procedure described in Sec-

tion 6.2.1.1 is applied if it is expected to outperform the color-coding algorithm from

Section 6.1.1. Otherwise the color-coding algorithm is invoked. Next, we describe the

implementation details of the color-coding algorithm.
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Increasing the Success Probability of Color-Coding

The running time depends to a large extent on the number of trials needed to achieve

a good labeling with sufficiently high probability. We implemented two approaches to

increase the probability of a motif occurrence to receive a good labeling. This, in turn,

reduces the number of trials needed to achieve a sufficiently low error probability. The

two approaches are described in the following two paragraphs.

Separating Color Sets. This approach to increase the probability of a motif occur-

rence to receive a good labeling is due to Bruckner et al. [2010]. Assume that there is

a separating color subset C such that the color list of each vertex either contains no

colors from C or exclusively colors from C . In this case, we can improve on standard

color-coding. Let W1 be the vertices that contain only colors from C and let W2 be

the vertices that contain no colors from C . If the given motif contains k1 colors

from C and k2 colors not from C , then the occurrence of the motif must contain

k1 vertices from W1 and k2 vertices from W2. Thus, we may draw the labels for W1

and W2 from disjoint label sets L1 and L2, respectively. The probability for a good

labeling is the probability that the vertices in W1 and W2 receive a good labeling. This

results in a good labeling of vertices with a probability of (k1!/k
k1

1 ) · (k2!/k
k2

2 ) instead

of (k1 + k2)!/(k1 + k2)k1+k2 . Separating color subsets, if they exist, can be computed

in O(k ·m) time by finding connected components in an auxiliary graph [Bruckner

et al. 2010].

Injective Color-Coding. Assume that C is a separating color set, as described above,

such that the sought colorful motif M contains k colors from C . Moreover, let WC be

the vertices that contain only colors of C . Observe that the probability that WC receives

a good labeling is k !/kk while the probability of guessing a vertex subset of WC that is

part of a motif-occurrence is 1/
(|WC |

k

)

. As a result, if the latter probability is higher than

the former, then we avoid the standard color-coding technique. Instead, we choose a

random subset of WC and label its vertices injectively.

Our experiments (see Section 6.2.2) showed that the combination of these two

heuristics reduces the number of color-coding trials tremendously.

6.2.1.3 Parameter Solution Size

As described in Section 6.1.2, the algorithm works by iterating over all possible solution

sizes from k := 1 to |S| + 1. Color-coding is applied repeatedly to obtain a colorful

motif M ′ ⊆ M with |M ′| = k . In each repetition, the algorithm for the parameter motif

size (Section 6.2.1.2) is applied to M ′ and H (with new color lists, as described in Sec-

tion 6.1.2). We use the following two approaches to heuristically improve the running

time of this algorithm:
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Injective Color-Coding. Similar to Section 6.2.1.2, Injective Color-Coding may be

applied to increase the probability that a size-k subset of M with an occurrence in H

receives a good coloring. This applies if k !/kk is less than 1/
(|M |

k

)

. In this case, we

reduce the number of trials needed to obtain good colorings for the subsets of M by

injectively coloring a randomly chosen size-k subset of M .

Lower Bounds for Solution Size. The algorithm for the parameter solution size

checks whether size-k subsets of M have occurrences in H , iterating over increasing

values of k and starting with k = 1. A lower bound on the solution size allows us to skip

many of these iterations by not increasing k by only one, but setting it to the currently

best known lower bound. Such a lower bound on the solution size can be obtained

using Random Occurrence Guessing (see Section 6.2.1.1). We also use Randomized

Brute-Force to find size-(|M |−k +1) occurrences in H if this approach is expected to

outperform the color-coding algorithm for finding size-k occurrences.

As for the algorithm for parameter |M |, these two heuristics reduce the number

of color-coding trials needed before a solution is found (see Section 6.2). However,

the overall number of trials needed is usually higher than for the algorithm with

parameter |M |. The reason is that we have to perform color-coding twice: once for

the motif colors and once for the vertex labels.

6.2.2 Experiments

Data Acquisition

We tested our algorithms on three weighted protein interaction networks (the weights

denote interaction probabilities) from yeast (5430 proteins, 39936 interactions), fly

(6650 proteins, 21275 interactions), and human (7915 proteins, 28972 interactions)

that were assembled by Bruckner et al. [2010]; the queries were complexes from the

same three species. We considered the following four combinations of network and

complexes: we queried yeast complexes in the human network and in the fly network,

human complexes in the yeast network, and fly complexes complexes in the yeast

network.5 For each complex of the query species we created an instance of LIST-

COLORED GRAPH MOTIF as follows. Each query protein was identified with a unique

color, the proteins of the networks received the colors of all query proteins whose

sequence similarity to the network protein exceeded a predefined threshold. This

threshold was set to a BLAST score of 10−7. Table 6.2 shows the total number of

instances, grouped into categories of small (|M | ≤ 7), medium (8 ≤ |M | ≤ 14) , and

large motif size (|M | ≥ 15).

5This somewhat arbitrary choice of query–host combinations was based on the convenient availability

of the sequence similarity data.
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Table 6.2: Comparison of the algorithms with parameters |M | and |S. Herein, unsolved

instances needed either more than 10 minutes of time or more than 900 MiB of space. All

values shown are for the set of solved instances only. All instances were processed with a

maximum error probability of 0.1%.

(a) Results for the algorithm with parameter |M | (Section 6.2.1.2).

# instances avg. size time (secs) avg. # coloring trials

|M | solved unsolved |M | |S| avg. max. standard improved

1–7 1089 0 2.20 1.27 0.00 0.07 36.43 1.07

8–14 47 2 10.55 4.09 2.62 59.08 9.7 ·104 22.23

≥ 15 18 3 21.28 5.33 0.43 7.59 4.1 ·1012 8.28

(b) Results for the algorithm with parameter |S| (Section 6.2.1.3)

# instances avg. size time (secs) avg. # coloring trials

|M | solved unsolved |M | |S| avg. max. standard improved

1–7 1089 0 2.20 1.27 0.00 0.08 416.35 0.82

8–14 43 6 10.55 3.63 1.50 55.05 2.8 ·108 65.44

≥ 15 14 7 21.28 3.43 0.02 0.07 1.1 ·1013 41.72

Computational Setting

The experiments have been executed on a standard desktop PC with 2.2 GHz Athlon64

CPU and 1 GiB of RAM. For each network-motif pair, we aborted execution after 10

minutes or if the memory limit of 900 MiB was exceeded.

For each pair of complex (equivalently, motif) and network, we computed the

largest subset of the motif that has an occurrence in the network. Of these, we

output the occurrence with the spanning tree of maximum weight. This implies that

we cannot stop the color-coding process after a motif occurrence has been found.

Instead, we have to execute all color-coding trials in order to find the maximum-

weight motif occurrence with the given error probability.

Experimental results

Table 6.2 summarizes the results. The average running time of the solved instances is

lower for the algorithm with parameter |S| (Section 6.2.1.3) than for the algorithm with

parameter motif size |M | (Section 6.2.1.2). However, the algorithm with parameter |M |
is able to solve more instances within the running time limit of 10 minutes. As one

would expect, these are the instances where the motif occurrences were large. This

is also the reason why the average size of the occurrences found by the algorithm

with parameter |S| is smaller. It is notable that, while we set an upper limit of 10
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Table 6.3: Results for the algorithms with parameters |M | and |S when Randomized Brute

Force was not used as a subroutine. Herein, unsolved instances needed either more than 10

minutes of time or more than 900 MiB of space. All values shown are for the set of solved

instances only. All instances were processed with a maximum error probability of 0.1%.

(a) Results for the algorithm with parameter |M | without

Randomized Brute-Force

# instances avg. size time (secs)

|M | solved unsolved |M | |S| avg. max.

1–7 1089 0 2.20 1.27 0.00 0.44

8–14 42 7 10.45 3.43 8.12 113.82

≥ 15 14 7 21.71 3.43 0.10 0.72

(b) Results for the algorithm with parameter |S| without Ran-

domized Brute Force

# instances avg. size time (secs)

|M | solved unsolved |M | |S| avg. max.

1–7 1089 0 2.20 1.27 0.00 0.60

8–14 41 8 10.39 3.27 6.71 159.17

≥ 15 14 7 21.71 3.43 0.18 1.75

minutes to solve an instance, all instances solved within this time limit were solved in

a few seconds. Most instances could be solved within milliseconds. We conclude that

usually the algorithm with parameter |M | should be applied instead of the algorithm

with parameter |S|, since it was able to solve more instances and is outperformed by

the algorithm for parameter |S| only for “easier” instances.

The effect of the heuristics for reducing the number of color-coding trials (see

Sections 6.2.1.2 and 6.2.1.3) is also shown in Table 6.2. For both algorithms, there

is a difference of several orders of magnitude between the number of color-coding

trials that are needed with and without heuristics, and this difference is especially

pronounced for the more difficult instances with large motifs. Furthermore, we

examined how the inclusion of the Randomized Brute-Force algorithm helps in

reducing the overall running time for both algorithms. The running times of the

algorithms without the Randomized Brute-Force subprocedure are shown in Table 6.3

a) and b), respectively. For both algorithms there is a decrease in the number of

solved instances and an increase in the average running times, demonstrating the

usefulness of Randomized Brute-Force for some instances. Furthermore, since the

average occurrence size of the solved instances is smaller when Randomized Brute-

Force is not used, we conclude that Randomized Brute-Force is useful when |S| is
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relatively large.

6.2.3 Related implementations

Bruckner et al. [2009, 2010] developed a web-service tool (TORQUE) to solve an

extension of our problem allowing for insertions of vertices that are not part of the

motif. They combine several algorithms: a color-coding procedure for small motifs, an

Integer Linear Programming formulation for large motifs, and a shortest-path based

heuristic. The main difference of our implementation compared to TORQUE is that

TORQUE allows for insertion of additional/uncolored vertices in order to establish

the connectivity of the solution set. That is, TORQUE reports solutions that contain

uncolored vertices that connect different connected components of colored vertices if

this results in a larger overall occurrence size. Furthermore, the number of deletions,

that is, the number of motif colors that are not in an occurrence, is limited for TORQUE

(for example, for motifs/queries of size 10, the occurrence has to contain at least six

vertices that are colored). In summary, the solutions of TORQUE are usually larger

than our solutions and TORQUE may not remove all of the uncolored vertices by data

reduction, since some of them might be needed to connect colored vertices. Hence,

we solve a different problem, and our running times do not compare directly to the

ones of Bruckner et al. [2010]. Blin et al. [2010a] provide a Cytoscape plug-in (based

on a Linear Pseudo-Boolean optimization solver) for LIST-COLORED GRAPH MOTIF

with insertions. Again, this makes a comparison of running times difficult, since our

algorithm solves a more restricted problem.

Our color-coding algorithm can handle larger motifs than the color-coding

algorithm of Bruckner et al. [2010] who use Integer Linear Programming to handle

queries/motifs of size > 10. Furthermore, our algorithm almost always terminates

within few seconds which is not the case for the algorithm of Bruckner et al. [2010].

This encourages both the application of our algorithm in case insertions are explicitly

forbidden and makes desirable the extension of our algorithm to the more general

problem that allows for insertions. One advantage of our approach is that the overall

number of solutions is much larger than for TORQUE since we always report the

largest occurrence that was found, that is, we allow an arbitrary number of deletions.

Hence, it can be applied in case TORQUE does not yield a solution.

6.2.4 Functional Enrichment of Predicted Complexes

We examine the quality of the solutions that were found by our algorithm by

assessing the enrichment of functional terms in the protein sets of the solutions.

For each solution, we retrieved the functional annotation terms from the SGD

database [SGD project] (for the yeast network), the GOA database [Barrell et al. 2009]

(for the human network), or FlyBase [Tweedie et al. 2009] (for the fly network). Then,
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Figure 6.3: Comparison of the number of solutions with the number of solutions that showed

a significant enrichment of at least one functional annotation term. Along the x-axis, the

solutions are grouped into five categories, according to the value of solution size/query size.

we used the GO::TermFinder tool [Boyle et al. 2004] to find functional annotation

terms that have a statistically significant overrepresentation compared to random

protein sets. This is done by computing for each functional annotation term the

p-value (that is, probability) of its abundance in the solution under the hypothesis

that the solution does not show an overrepresentation of this functional annotation

term. The reported p-values are corrected for multiple hypotheses testing using the

Bonferroni method and the threshold for considering an enrichment as significant

was set to p < 0.05. Since the solutions should be complexes, they are expected to

have a common function. Hence, the percentage of solutions that have a common

function is a measure of the solution quality.

First, we examined how the percentage of functionally enriched solutions corre-

lates with solution sizes. We found that of the solutions with size two or three, which

make up roughly 85% of the solutions, more than 78% have a significant enrichment

of at least one functional annotation term. Of the solutions of size at least four,

100% had a significant enrichment of at least one functional annotation term. We

therefore examined how the relation between query size and solution size influences

the solution quality. Our results are shown in Figure 6.3. For solutions whose size is

more than 40% of the query, the ratio of enriched vs nonenriched is roughly the same.

For solutions whose size is less than 40% of the query, the percentage of enriched

solutions drops. We thus conjecture that the maximum number of allowed deletions

should be set to roughly |M |/2. For some instances, this is more than the number

of deletions that are allowed by TORQUE, and possibly the percentage of instances

that have a solution in TORQUE could be increased without a drop-off in solution

quality by allowing more deletions. However, our results also show that by excluding

insertions, the number of vertices in the solution is often very small. Hence, a limited

number of insertions should be permitted. So far, however, the precise number of

insertions that should be allowed seems to be unexplored.
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6.3 On Finding More Robust Motifs

Lacroix et al. [2006] motivated the study of (variants) of the GRAPH MOTIF problem by

considerations comparing “topological motifs” with “functional motifs”. The GRAPH

MOTIF problem only poses a minimal demand on the motif topology by requiring

connectedness. The question arises what happens if we ask for somewhat “more

robust” motifs, replacing the connectedness demand by standard graph-theoretic

demands for biconnectivity, bridge-connectivity, and the like. Surprisingly, as we

will show in this section, these seemingly small steps toward topologically more

constrained motifs already lead to W[1]-hardness results, destroying the hope for fixed-

parameter algorithms for these GRAPH MOTIF variants. Indeed, we will prove even

stronger results, perhaps of independent interest, by showing that the problems of

deciding on the existence of fixed-size biconnected or bridge-connected subgraphs,

parameterized by the size of the subgraphs, are W[1]-hard. Moreover, we extend

these results to higher connectivity demands. Furthermore, we answer an open

question of Dondi et al. [2007] by showing that the parameter “number of connected

components” in a graph motif leads to a W[1]-hard problem.

6.3.1 Biconnected Subgraphs of Size Exactly k

Originally, the GRAPH MOTIF problem was suggested, because it imposes the least

possible restriction on the topology of the occurrence of the motif [Lacroix et al.

2006]. One way of extending the GRAPH MOTIF problem in this spirit is to search

for biconnected occurrences instead of connected occurrences of the motif. Recall

that a graph is biconnected if it has no cut-vertex. For example in the scenario

of protein interaction network querying, demanding biconnectivity could be used

to demand occurrences with higher interaction probabilities, without restricting the

actual topology of the occurrence too much. The decision version of the problem can

be formulated as follows:

BICONNECTED GRAPH MOTIF

Input: A multiset of colors M (the motif), and a vertex-colored undirected

graph H = (W,F ).

Question: Does there exist an S ⊆W such that the induced subgraph H [S]

is biconnected and there is a bijection between the colors of the vertices

in S and M?

We will show that BICONNECTED GRAPH MOTIF is W[1]-complete when parameterized

by the motif size M . In fact, we prove an even stronger result. Consider the special case

that M contains only one color c , |M | = k , and all vertices in G have color c . Then, the

resulting problem is to find a biconnected subgraph of size exactly k :
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ag

G G ′

Figure 6.4: An example of the transformation of a CLIQUE instance with k = 3 into a

BICONNECTED SUBGRAPH instance with k ′ = 15. White vertices in G ′ belong to V1, black

vertices to V2.

BICONNECTED SUBGRAPH:

Input: An undirected graph G = (V ,E ) and a nonnegative integer k .

Question: Does there exist an S ⊆ V of size k such that the induced

subgraph G[S] is biconnected?

Note that looking for a biconnected subgraph of order at least k is solvable in

polynomial time by removing all cut-vertices of the graph and then finding the largest

component. However, restricting the order of the biconnected subgraph to exactly k

makes the problem surprisingly hard. We prove the parameterized hardness by

reduction from the CLIQUE problem, which is known to be W[1]-complete [Downey

and Fellows 1999] with respect to the order of the clique searched for.

CLIQUE

Input: An undirected graph G and a nonnegative integer k .

Question: Is there a complete subgraph of order k in G?

Theorem 6.6. BICONNECTED SUBGRAPH is W[1]-complete with respect to the parame-

ter k.

Proof. To show the W[1]-hardness, we give a parameterized many-one reduction from

CLIQUE to BICONNECTED SUBGRAPH.

Let (G ,k) be a CLIQUE instance. We construct a graph G ′ from G by replacing every

edge e of G with a simple path pe that has
(k

2

)

+1 internal new vertices. The vertex set

of G ′ can be partitioned into two vertex sets V1 and V2, where V1 contains the vertices

that correspond to vertices of the original graph G and V2 contains the new internal

path vertices. An example of this transformation is shown in Figure 6.4. Note that the

reduction works for arbitrary path lengths greater than
(k

2

)

. For reasons of simplicity,

we choose the path length to be
(k

2

)

+1.

We prove in the following that G has a clique of order k if and only if G ′ has a

biconnected subgraph of order k ′ = k+
(k

2

)

·(
(k

2

)

+1). If G has a clique C of order k , then

the subgraph that is induced by the k vertices of C and by the vertices on the
(k

2

)

paths

that were created from the
(k

2

)

clique edges of C in G has order exactly k +
(k

2

)

· (
(k

2

)

+1).

Clearly, this subgraph is also biconnected.
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It remains to show that if G ′ has a biconnected subgraph of order k ′ = k+
(k

2

)

·(
(k

2

)

+
1), then G has a clique of order k . Let G ′ have a biconnected subgraph G ′[S] of order k .

If S contains one vertex of a path pe , then it must contain all vertices from pe , because

otherwise G ′[S] would not be biconnected. Hence, the number of vertices k ′ in S can

be expressed as k ′ = a +b · (
(k

2

)

+1), where a = |S ∩V1| and b denotes the number of

paths in G ′ that correspond to edges of G .

We show that b must be
(k

2

)

. First, if b >
(k

2

)

, then, since we can assume without loss

of generality that k ≥ 3, k ′ > (
(k

2

)

+1)·(
(k

2

)

+1) > k+
(k

2

)

·(
(k

2

)

+1), a contradiction. Second,

we consider the case that b <
(k

2

)

. Since it must hold that k+
(k

2

)

·(
(k

2

)

+1) = a+b ·(
(k

2

)

+1),

in this case one must have that a >
(k

2

)

. This means that there are more than
(k

2

)

vertices

in V1 which must form a biconnected graph by inserting less than
(k

2

)

paths from V2.

Clearly, this it not possible. Hence, we have shown that b =
(k

2

)

and thus also a = k .

Since G ′[S] contains exactly
(k

2

)

paths consisting of vertices from V2 and each path

must connect two vertices of A, all vertices of A are pairwise connected via a path of

length
(k

2

)

. Hence, the subgraph G[A] must be a clique of order k since it contains

exactly k vertices and exactly
(k

2

)

edges.

Using a characterization of W[1] by Chen et al. [2005], the containment of

BICONNECTED SUBGRAPH in W[1] can be shown in complete analogy to Guo et al.

[2007, Theorem 12].

6.3.2 Bridge-connected Motifs and Motifs of Higher Connectivity

Another way to augment the connectivity demands is to search for bridge-connected

motifs. We define BRIDGE-CONNECTED SUBGRAPH in complete analogy to BICON-

NECTED SUBGRAPH, simply replacing the demand for biconnectivity by the demand

for bridge-connectivity. Recall that a graph is bridge-connected when it has no bridge,

that is, an edge {u, v} such that every path between u and v contains {u, v}. The

reduction from CLIQUE as used in the proof of Theorem 6.6 works also for bridge-

connected subgraphs. Since W[1]-membership also follows in complete analogy

to Guo et al. [2007, Theorem 12] for bridge-connected motifs as well, we can state

the following theorem.

Theorem 6.7. BRIDGE-CONNECTED SUBGRAPH is W[1]-complete with respect to the

parameter “number of subgraph vertices”.

In addition, we can generalize the hardness results to higher-connected graph

motifs. To this end, consider the following problem.

p-CONNECTED SUBGRAPH:

Input: An undirected graph G = (V ,E ) and a nonnegative integer k .

Question: Does there exist an S ⊆ V of size k such that the induced

subgraph G[S] is p-connected?
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Observe that p-CONNECTED SUBGRAPH is nontrivially posed only if p ≤ k . Otherwise

the answer is clearly always “No”.

Theorem 6.8. p-CONNECTED SUBGRAPH is W[1]-complete with respect to the parame-

ter k.

Proof. We further extend the construction used for the proof of Theorem 6.6 as follows:

We add a set A of p−2 additional vertices to G ′ = (V ′,E ′), that is, we have V ′ :=V1∪V2∪
A. Furthermore, for every vertex a ∈ A we have an edge from a to every vertex of V ′\{a}.

The desired motif size is increased by p −2, that is, we set k ′ := k +
(k

2

)

· (
(k

2

)

+1)+p −2.

As a p-connected component must consist of at least p vertices, we have p ≤ k and,

thus, the new parameter k ′ can be expressed as a function of k .

In the following, we prove that G contains a clique of order k if and only if there is

a p-connected subgraph of order k ′ in G ′.

Given a clique of order k in G , as argued in the proof of Theorem 6.6, we can find

a biconnected subgraph of order k +
(k

2

)

· (
(k

2

)

+1) that contains only vertices of V1 ∪V2.

Adding the vertices of A to this subgraph obviously results in a p-connected subgraph

of order k ′.

Given a p-connected subgraph G ′[S] of order k ′ := k +
(k

2

)

·(
(k

2

)

+1)+p −2, we show

that the vertex set S ∩V1 corresponds to vertices that form a clique in G . We start

by proving that A must be a subset of S. Assume that there is an a ∈ A with a ∉ S.

Then, in G ′[V ′\{a}] all vertices v j ∈ V2 have degree p − 1 and, hence, cannot be part

of a p-connected subgraph. In addition, since G[V ′\({a}∪V2)] is not p-connected,

it cannot contain a p-connected subgraph. Thus, we know that A ⊆ S and, hence,

all motif vertices are exactly (p − 2)-connected via vertices of A. Hence, we have to

choose k +
(k

2

)

· (
(k

2

)

+ 1) vertices of V1 ∪V2 that increase the connectivity by two. As

argued in the proof of Theorem 6.6, this can only be achieved by choosing vertices

of V1 that correspond to a clique.

W[1]-membership can be shown in complete analogy to Guo et al. [2007, Theorem

12], and is therefore omitted.

In complete analogy, we obtain the following.

Theorem 6.9. p-EDGE CONNECTED SUBGRAPH is W[1]-complete with respect to the

parameter k.

6.4 Concluding Remarks

We have proposed and implemented new fixed-parameter algorithms for solving

the LIST-COLORED GRAPH MOTIF problem. We also applied these algorithms for

the topology-free querying of protein interaction networks. Our experiments show

that realistic LIST-COLORED GRAPH MOTIF instances can be solved efficiently by
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our implementations. However, we also encountered some instances where our

color-coding based algorithm fails. Furthermore, our implementations are at the

moment not able to deal with the insertion of gap proteins. Nevertheless, we believe

that our current algorithm can serve as a base implementation that—with further

improvements—should be able to cope with all relevant inputs in the scenario of

topology-free querying of protein interaction networks. Hence, further work on LIST-

COLORED GRAPH MOTIF and variants thereof is a worthwhile task. We point out three

directions whose investigation seems promising.

– As already mentioned, our algorithms should be extended to deal with the

insertion of “gap proteins” as proposed by Lacroix et al. [2006] and Bruckner et al.

[2010]. In addition, it should be investigated how a variant of LIST-COLORED

GRAPH MOTIF that finds a largest occurrence with a bounded number of edge

insertions compares to TORQUE [Bruckner et al. 2010] and to our results. This

could be an appropriate way to deal with networks in which many edges are

missing, without adding vertices to the solution that are not similar to any query

proteins.

– The enumeration variant of LIST-COLORED GRAPH MOTIF that reports all

occurrences of a motif is also of practical relevance. Unfortunately, the problem

of enumerating all occurrences of a motif is not fixed-parameter tractable with

respect to |M | since there can be Ω(n |M |) occurrences of a motif M . Also,

it is not possible to obtain an output-sensitive enumeration algorithm that

enumerates k occurrences of the motif in f (k) · poly(n) time, since already

reporting one occurrence is NP-hard. For fixed values of |M |, the situation could

be different, however. Hence, an interesting question is whether there is an

enumeration algorithm that can enumerate k solutions in f (k) · g (|M |) ·poly(n)

time, where f and g are functions only depending on k and |M | respectively.

Such an algorithm was presented for example for finding a fixed number x of

high-scoring pathways in protein interaction networks [Lu et al. 2007]; it is not

clear, however, whether this is also possible for LIST-COLORED GRAPH MOTIF.

– As shown in Section 6.1.3, LIST-COLORED GRAPH MOTIF is in general W[1]-hard

with respect to the parameter k := n − |M |. In our experiments, we observed

that the Randomized Brute-Force algorithm works well in case k is small, since

it has running time nk ·poly(n). It would therefore be interesting to consider k in

combination with other parameters, for example the size of the color lists in the

host graph H . This might lead to fixed-parameter tractability for more general

cases than vertex-colored graphs (as presented in Section 6.1.3).



Chapter 7

Querying with Arbitrary Topologies

and Bounded Number of Orthologs

After having studied the querying problem for dense queries (in Chapter 5)

and topology-free querying (in Chapter 6), we now consider querying problems

for arbitrary query topologies. So far, the implementations for querying problems

are restricted to path- and tree-like query topologies [Blin et al. 2010a,b, Dost et al.

2008, Hüffner et al. 2007, Sharan and Ideker 2006, Scott et al. 2006]. While these

topologies are of great biological importance since they model for example signaling

pathways [Scott et al. 2006], the query may not always have such a sparse topology.

Protein complexes, for example, are often expected to have a dense interaction pattern

in protein interaction networks [Sharan et al. 2005]. For protein complexes it has also

been observed that interactions are evolutionary conserved [van Dam and Snel 2008].

Hence, if the query is a protein complex whose interactions are known, then it is

reasonable to search for an occurrence in which the interactions of the query are also

present. In other words, interactions should be “preserved” by the function that maps

the query proteins to the proteins of the host network.

Fagnot et al. [2008] proposed to model this “preservation of interactions” by

demanding that the mapping is an injective homomorphism.

Definition 7.1. Let G = (V ,E ) and H = (W,F ) be two undirected graphs. An injective

homomorphism from G to H is an injective mapping m : V →W such that if {u, v}∈ E

then {m(u),m(v)} ∈ F .

In graph-theoretic terms, the existence of an injective homomorphism from G

to H means that H has a (not necessarily induced) subgraph H ′ that is isomorphic

to G ; the isomorphism from G to H ′ is an injective homomorphism from G to H .

Since finding an injective homomorphism is a computationally hard task—

CLIQUE for example is a special case of this problem—Fagnot et al. [2008] proposed

to also consider the additional structural information that is given by the orthology

135



136 7 Querying with Arbitrary Topologies and Bounded Number of Orthologs

�
�
�

�
�
�

��������
��
��
��

������

����

��
��
��

��
��
��

����

����

v1

v2

v3

v4

L(v1) = {

L(v2) = {

L(v3) = {

L(v4) = {

}

}

}

}

,

,

,

,

,

G H

(a) An input instance with µG = 3 (since v1

has three orthologs) and µH = 3 (since v1, v2,

and v3 have a common ortholog).
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(b) Mapping each vertex of G to the first

vertex/color of its ortholog list is an injective

homomorphism from G to H . Note that

the graph induced by
⋃

v∈V {m(v)} is a super-

graph of G.

Figure 7.1: A µG -INJECTIVE-HOMOMORPHISM instance with query graph G and host graph H .

constraintsL which are also input of network querying problems. More precisely, they

called ortholog lists (µG ,µH )-bounded if each protein of the query G has at most µG

orthologs in the host H and each protein in the host H has at most µH orthologs in the

query G . An example of a query graph G with (3,2)-bounded ortholog lists is shown

in Figure 7.1 (a). The additional information about the list structures allows for a more

fine-grained analysis of the computational complexity of the querying problem. For

example, if µG ≤ 2, then an injective homomorphism from G to H can be computed

in polynomial time [Fagnot et al. 2008]. As defined in the introduction to Part III, we

refer to the collection of ortholog lists as list-coloring of the query graph.

Combining the ortholog list bounds with requiring that the mapping should be an

injective homomorphism, Fagnot et al. [2008] arrived at the following problem:

(µG ,µH )-INJECTIVE HOMOMORPHISM:

Input: A query graph G = (V ,E ) and a host graph H = (W,F ), and

a (µG ,µH )-bounded list coloring L : V → 2W of V .

Question: Is there an injective homomorphism m : V → W such that for

all v ∈V it holds that m(v)∈L(v)?

We refer to an injective homomorphism from G to H for which it holds that m(v) ∈L(v)

for all v ∈ V as an orthology-respecting injective homomorphism (orih for short), and

to any mapping for which the latter holds as orthology-respecting mapping.

We present an easy-to-implement fixed-parameter algorithm for (µG ,µH )-

INJECTIVE HOMOMORPHISM. Since the running time of our algorithm does not

depend on µH , we refer to the problem as µG -INJECTIVE-HOMOMORPHISM which is
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equivalent to (µG ,µH )-INJECTIVE HOMOMORPHISM with unbounded µH . An example

of an instance of µG -INJECTIVE-HOMOMORPHISM is presented in Figure 7.1.

We also apply our algorithm to the problem that is obtained when subgraph

isomorphism instead of injective homomorphism is used as mapping criterion.

µG -SUBGRAPH-ISOMORPHISM

Input: A query graph G = (V ,E ) and a host graph H = (W,F ), and

a (µG ,µH )-bounded list coloring L : V → 2W of V .

Question: Is there a subgraph isomorphism m : V → W such that for

all v ∈V it holds that m(v) ∈L(v)?

The difference between the two problems is that µG -INJECTIVE-HOMOMORPHISM

demands finding a subgraph of H that is isomorphic to G whereas µG -SUBGRAPH-

ISOMORPHISM demands finding an induced subgraph of H that is isomorphic

to G . In the case of perfect data, µG -SUBGRAPH-ISOMORPHISM would correspond

to demanding that the occurrence perfectly resembles the query. Protein interaction

networks, however, are noisy. For example, there are many false negative interactions,

that is, interactions that take place in biology but are missing from the data [Yu et al.

2006]. One could thus expect that µG -INJECTIVE-HOMOMORPHISM handles noisy data

better than µG -SUBGRAPH-ISOMORPHISM. In fact, the proposal to use injective homo-

morphisms instead of subgraph isomorphisms was made in particular to deal with

missing interactions [Fagnot et al. 2008].

We implemented our algorithms for µG -INJECTIVE-HOMOMORPHISM and for µG -

SUBGRAPH-ISOMORPHISM and applied them for the querying of protein complexes in

protein interaction networks. Our results indicate that injective homomorphism may

indeed be a more appropriate model for querying of protein complexes than subgraph

isomorphism.

In the following, we give a survey of the known results for the problems under

consideration and summarize our findings.

Previous Work. µG -INJECTIVE-HOMOMORPHISM was introduced by Fagnot et al.

[2008], who showed that the problem is NP-hard for µG > 2 and polynomial-time

solvable, otherwise. They also described an algorithm that solves µG -INJECTIVE-

HOMOMORPHISM in O((µG )k ·k ·(|V |+|E |)) time, where k is the number of vertices in G

that have at least two orthologs in H . The µG -INJECTIVE-HOMOMORPHISM problem is

NP-hard even in very restricted cases, for example even in case G and H are bipartite

with maximum degree one and two [Fertin et al. 2009], and a maximization variant

of the problem is hard to approximate even if both G and H are linear forests [Brevier

et al. 2010]. In case the query G is a path, tree, or has tree-like structure (for example by

having bounded tree-width), the problem can be solved by the color-coding technique

in c |V | ·poly(|V | + |W |) time where c is a constant [Blin et al. 2010b, Dost et al. 2008,

Hüffner et al. 2008, Scott et al. 2006].
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Our results. We present an algorithm for µG -INJECTIVE-HOMOMORPHISM with

running time O((µG − 1)k ′ · (|V |2 + |V ||E |)+ |W |2), where k ′ is the number of vertices

in G that have at least three orthologs in H . Note that the parameter k ′ can be much

smaller than k since it does not count vertices with exactly two orthologs. Compared

to the O(((µG )k · k · (|V | + |E |)))-time algorithm of Fagnot et al. [2008], our algorithm

improves on the exponential part of the worst-case running time, but it has worse

polynomial running time. We believe that the latter is acceptable, since in many

instances k is almost as large as |V | (see also Section 7.2 for more on typical parameter

values). Furthermore, the running time in practice is dominated by the instances for

which the parameter is large. Hence, tuning the running times for these instances

leads to algorithms with considerably better average running times.

We then present an improved analysis of our algorithm, showing that the base

in the exponential function can be expressed by using the geometric mean of the

numbers in the multiset that contains the number |L(v)| − 1 for each v ∈ V (we will

describe in Section 7.1 how this number is computed and how it relates exactly to µG ).

This bound is better in case there are only few vertices with many orthologs. We also

apply our algorithm for solving µG -SUBGRAPH-ISOMORPHISM, achieving a running

time of O((µG −1)k ′ · |V |3 +|W |2).

We then evaluate our algorithms for µG -INJECTIVE-HOMOMORPHISM and for µG -

SUBGRAPH-ISOMORPHISM in the context of querying protein complexes in protein

interaction networks, showing that the theoretical speed-up achieved by our algo-

rithm carries over into practice.1 Furthermore, we examine the differences in using

injective homomorphisms or subgraph isomorphisms as mapping criteria, showing

that more putative complexes are reported when using injective homomorphisms

instead of subgraph isomorphisms, while the functional coherence of the reported

matches remains roughly the same. We see this is as evidence that for currently

available protein interaction networks, using injective homomorphism as mapping

criterion is preferable to using subgraph isomorphism.

7.1 A New Algorithm for µG -INJECTIVE-HOMOMORPHISM

In this section, we describe our new algorithm for µG -INJECTIVE-HOMOMORPHISM in

detail and analyze its running time. Before doing so, we briefly outline the algorithm

of Fagnot et al. [2008], and then describe the main idea that we exploit in our algorithm

in order to achieve an improved running time.

The algorithm of Fagnot et al. [2008] works as follows. Recall that we are given the

query graph G = (V ,E ), the host graph H = (W,F ) and the list-coloring L of G . First, a

1We do not perform comparisons with the algorithm of [Fagnot et al. 2008] (which has not been

implemented), but rather with a search tree algorithm that we believe actually outperforms the algorithm

of Fagnot et al. [2008].
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bipartite graph is built, where one part of the vertex set is V and the other part is the

set of orthologs of V , that is,
⋃

v∈V L(v). For each vertex v ∈ V an edge to each of its

orthologs is inserted. Then, there is a one-to-one correspondence between matchings

of cardinality |V | in this bipartite graph and orthology-respecting injective mappings

from V to W . The algorithm then finds an orih from G to H by enumerating all

matchings of cardinality |V | in this bipartite graph and checking for each enumerated

matching whether the corresponding orthology-respecting injective mapping fulfills

the homomorphism condition. This is basically a brute-force approach that—in

the analysis—makes use of the fact that the number of enumerated matchings is at

most (µG )k , where k is the number of vertices in the query that have at least two

orthologs in the host.

A very similar algorithm that has the same exponential running time bound is

a recursive search tree algorithm which works as follows. Start by choosing some

vertex v in G . Then, for each w ∈ L(v) branch into the case that there is an orih that

maps v to w . Since |L(v)| ≤ µG , this creates at most µG search tree branches. For

each branch, recursively solve the problem of finding an injective homomorphism

from G to H with the further restriction that in the recursive search tree branch,

we can assume that the injective homomorphism f from G to H maps v to a fixed

vertex w ∈ L, that is, f (v) = w . Note that for a vertex v with only one ortholog

one actually does not need to branch, one can simply set f (v) = w , where w is the

single vertex of L(v). Using standard search tree analysis, the size of the search tree

is O((µG )k ): We branch for each of the k vertices with two or more orthologs; the tree

thus has depth k . The overall search tree size follows from the fact that the maximum

degree of the search tree is µG . Observe that it is also possible that the search tree has

size exactly (µG )k . This happens when |L(v)| = µG for each of the k vertices with at

least two orthologs. Basically, with this approach there is no way to avoid branching

into µG cases since we do not know in advance which of the cases leads to success.

In other words, while in a node of the search tree algorithm we have already fixed the

mapping f for a vertex set V ′ ⊆ V , we have no information at all about the vertices

in V \V ′.

The main idea of our algorithm can be described as follows. By iteratively building

up the query graph G , we can solve µG -INJECTIVE-HOMOMORPHISM by solving at

most µG · |V | instances of an “intermediate” problem. We show that this intermediate

problem can be solved in O(µG −1)k ′ · (|V |+ |E |)+|W |2) time, where k ′ is the number

of vertices with at least three orthologs. We explain the motivation behind using an

intermediate problem, and its main advantage by comparing it with the search tree

algorithm described above.

Recall that in the search tree algorithm, at each search tree node there is a set of

vertices V ′ ⊆ V for which one has already fixed the mapping, that is, we are given a

mapping f : V ′ →W and we want to find a mapping f ′ : V →W such that for each v ∈
V ′ we have f ′(v) = f (v). We say that f ′ extends f .
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Definition 7.2. Let f : X1 → Y and g : X2 → Y be two functions where X1, X2, and Y

are arbitrary sets. We say that g extends f if X1 ⊆ X2 and ∀x ∈ X1 : f (x) = g (x).

In the search tree algorithm described above, we cannot really make use of the

fact that we are only looking for an extension of f : In the worst case, for every

vertex v ∈V \V ′ there are µG vertices in L(v), and it might be that only for one choice

there is an orih f ′ with f ′(v) = w . However, the reason that w is the only feasible way

to map v does not necessarily depend on f . The trick of the intermediate problem is

that we always have two mappings. The first mapping f : V ′ →W is an orih from G[V ′],

and the aim is, as in the search tree algorithm described above, to find an orih that

extends f ′. The second mapping m : (V \ V ′) → W is an orih from G[V \ V ′], that

is, the graph that is induced by those vertices of V that are not mapped by f , to the

host graph H . The advantage lies in the observation that we can either obtain an orih

from G to H by combining f and m, or we can find at least one vertex in V \V ′ for which

we only have to consider µG −1 possibilities (instead of µG ). We thus can exclude at

least one possibility from our exhaustive search. This is the basis of our running time

improvement.

Next (in Section 7.1.1), we will specify the intermediate problem and show how to

solve it within the claimed running time. Afterwards (in Section 7.1.2), we show how

to solve µG -INJECTIVE-HOMOMORPHISM by solving at most µG · |V | instances of the

intermediate problem.

7.1.1 Solving Injective Homomorphism With Candidate Mappings

As described above, in our algorithm for µG -INJECTIVE-HOMOMORPHISM we will

repeatedly create a situation in which we have two mappings f and m from disjoint

domains whose union is V . The aim is to find an injective homomorphism from G

to H that extends f . Formally, we want to solve the following problem.

µG -INJECTIVE-HOMOMORPHISM-WITH-CANDIDATE MAPPING (HCM):

Input: A query graph G = (V ,E ) and a host graph H = (W,F ), a (µG ,µH )-

bounded list coloring L : V → 2W of V , an orih f : V ′ → W from G[V ′]

to W , an orih m : (V \V ′) →W from G[V \V ′] to W .

Question: Is there an orih f ′ : V →W from G to H that extends f ?

We now present an algorithm that solves HCM in O((µG −1)k · (|V |+ |E |)+|W |2) time,

where k is the number of vertices in V \V ′ with at least three orthologs. More precisely,

the algorithm does the following. If the instance is a yes-instance, that is, if an orih

from G to H that extends f exists, then the algorithm returns such an orih. Otherwise

it returns the empty set. We call this algorithm HCM-Solve, and its pseudo-code is

shown in Figure 7.2. Again, the main idea of the algorithm is that either we combine

the mappings f and m or there is at least one vertex v ∈ V \ V ′, that is, a vertex that
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HCM-Solve(G = (V ,E ), H = (W,F ),L, f : V →W,m : (V \V ′) →W )

1 if f ∪m is conflict-free then: return f ∪m

2 else:

3 find conflict { j , l } in f ∪m with j ∈V \V ′
⊲ At least one vertex must be from V \V ′

4 for each w ∈L( j ) \ {m( j )}: ⊲ At most µG −1 branches for v j

5 if f ∪ {( j , w )} is conflict-free then:

6 f ′ ←HCM-Solve(G , H ,L, f ∪ {( j , w )},m \ {( j ,m( j ))})

7 if f ′ 6= ; then: return f ′

8 return ;

Figure 7.2: Pseudo-code of HCM-Solve. The mappings f and m are represented as sets of

ordered pairs. In case a conflict-free mapping has been found it is returned. Otherwise the

algorithm branches into all possible ways to resolve the conflict without introducing conflicts

in f .

is mapped by m, for which we can show that f ′(v) 6= m(v). For this vertex we must

consider only µG −1 possibilities for branching. We now describe HCM-Solve in detail.

The procedure HCM-Solve first checks whether combining f and m yields an orih

from G to H . Slightly abusing notation, we use f ∪m to denote the mapping that

results from combining f and m.2 Since f and m are orthology-respecting, so is f ∪m.

Hence, it remains to determine whether f ∪m is an injective homomorphism from G

to H . To this end, we introduce the notion of conflicts.

Definition 7.3. Let G = (V ,E ) and H = (W,F ) be two undirected graphs, and let g : V →
W be a mapping from V to W . A pair { j , l } of vertices j , l ∈V , j 6= l , forms a conflict in g

if

– { j , l }∈ E and {g ( j ), g (l )} ∉ F , or

– g ( j ) = g (l ).

Mappings not containing any conflict are called conflict-free.

Observation 7.1. Let G = (V ,E ) and H = (W,F ) be two undirected graphs. A

mapping g : V → W is an injective homomorphism from G to H if and only if g is

conflict-free.

Observation 7.1 follows from the definition of conflicts: The first part of the

conflict definition is fulfilled whenever the mapping is not a homomorphism; the

second part of the definition is fulfilled whenever the mapping is not injective.

Conversely, a mapping that does not contain any conflict is a homomorphism and

it is injective.

2Since f and m have disjoint domains, this formulation is well-defined.
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As a consequence of Observation 7.1, we can determine whether a mapping is

an injective homomorphism by checking whether it contains any conflicts. The

main observation that HCM-Solve uses is that if there is a conflict in the candidate

mapping f ∪m, then one of the two vertices of the conflict is mapped by f , and the

other vertex is mapped by m. This fact is expressed by the following observation.

Observation 7.2. Let G = (V ,E ) and H = (W,F ) be two undirected graphs, and let f :

V ′ →W and f : (V \V ′)→W , be two mappings such that

– f is an injective homomorphism from G[V ′] to H, and

– m is an injective homomorphism from G[V \V ′] to H.

Then, f ∪m does not contain any conflict {i , j } such that {i , j } ⊆ V ′ or {i , j } ⊆ V \ V ′.

If f ∪m is conflict-free, then it is an injective homomorphism from G to H.

The first part of the observation follows from the fact that f and m are conflict-

free within their respective domains. Hence, if there is a conflict, then this conflict

must contain one vertex from V ′ and one vertex from V \ V ′. The second part of the

observation follows from the fact that the domain of f ∪m is V . Since it is conflict-free,

it is thus an injective homomorphism from G to H .

If f ∪m is conflict-free, then it is according to Observation 7.2 an injective homo-

morphism from G to H . Clearly, f ∪m also extends f . Hence, an orih from G to H that

extends f has been found, and the procedure thus correctly returns it.

Otherwise there is at least one conflict in f ∪ m. In order to resolve this

conflict, HCM-Solve recursively branches into several cases. If one of the search tree

branches is successful, then it returns an orih from G to H .

Let { j , l } be an arbitrary conflict in f ∪ m. By Observation 7.2, we can assume

without loss of generality that j ∈ V \ V ′ and l ∈ V ′. Since the aim in HCM is to find

an orih f ′ that extends f , we know that f ′(l ) = f (l ). This implies that f ′( j ) 6= m( j )

which can be seen as follows. Since f ′ is an orih from G to H it is conflict-free. In

case f ′( j ) = m( j ), however, j and l still form a conflict. Hence, if there is an orih f ′

from G to H that extends f , then it holds that f ′( j ) ∈L( j )\{m( j )}. The procedure HCM-

Solve branches into all possible cases to map j . Let w ∈ L( j ) \ {m( j )} be one such

possibility. Clearly, if there is an orih from G to H that extends f and maps j to w ,

then f ∪{ j , w } is conflict-free. Hence, we only have to recurse if this is the case. For the

recursion, one has to ensure that we create again an instance of HCM. This is done as

follows.

First, f ∪ {( j , w )} becomes the mapping that shall be extended. Since f ∪ {( j , w )}

is conflict-free it is an injective homomorphism from G[V ′ ∪ { j }] to H . Since f

is orthology-respecting, and w ∈ L( j ), f ∪ {( j , w )} is also orthology-respecting.

Second, m \ {( j ,m( j ))} becomes the other part of the candidate mapping. Since it

is a subset of m, it is also conflict-free and orthology-respecting. Furthermore, the
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domain of m \ {( j ,m( j ))} is V \ (V ′ ∪ { j }). The domains of the two mappings are

therefore disjoint, their union is V , and they are orihs from their respective domains.

Consequently (G , H ,L, f ∪ {( j , w )},m \ {( j ,m( j ))}) is an instance of HCM, which is

solved by a recursive call to HCM-Solve.

After a recursive call is finished, the algorithm checks whether an orih was found

by the recursive call. If this is the case, then it correctly returns it. Otherwise the

algorithm proceeds with the next recursive call. If none of the recursive calls found

an orih, then there is no orih that extends f . Hence, the algorithm correctly returns

the empty set in this case.

In the following, we bound the running time for this algorithm.

Lemma 7.1. HCM can be solved in O((µG −1)k ′ · (|V |+ |E |)+|W |2) time, where k ′ is the

number of vertices in V \V ′ that have at least three orthologs in H.

Proof. The correctness of the algorithm was shown above; it remains to show the

running time bound. Suppose that in a preprocessing, we have computed an

adjacency matrix of H in O(|W |2) time.

First, consider the case that f ∪m is conflict-free. Then, the running time of the

algorithm is the time needed for checking whether f ∪m is conflict-free. One can

check in O(|V |) time whether f ∪m is injective as follows. Label for each vertex v ∈V

its mapping “destination” with color c f if v is mapped by f and color cm if v is mapped

by m. Then, return a conflict when there is a vertex in W that has been labeled with

both colors. Checking whether the mapping is an injective homomorphism can be

performed in O(|E |) time by checking for each edge in G whether its endpoints are

mapped to vertices that are adjacent in H (for each edge this check takes constant time,

since we have precomputed the adjacency matrix). In case f ∪m is conflict-free, HCM-

Solve thus achieves the claimed running time bound. Note that in O(|V |+|E |) time we

can also list all conflicts (we will make use of this in the following).

In the case that f ∪m is not conflict-free, we prove the running time bound by

induction on k ′. For the base case k ′ = 0, the algorithm does the following. First,

it computes in O(|V | + |E |) time a list of all conflicts in f ∪ m. Since f ∪ m is not

conflict-free, the algorithm has found a conflict { j , l } with j ∈ V ′. Since k ′ = 0, we

have |L( j )| ≤ 2. In case |L( j )| = 1 the algorithm simply returns ; because it does not

recurse. In case |L( j )| = 2, the algorithm “recurses” into one case since |L( j )\m( j )| = 1.

Let w be the uniquely determined vertex in L( j ) \ m( j ). By keeping the labels of the

labeling procedure described above, we can determine in constant time whether w

is already used by some other vertex in f (in this case the algorithm can immediately

return the empty set) or some other vertex in m (in this case the algorithm updates

the list of conflicts). Furthermore, we can find in O(deg( j )) time all neighbors of j

that are mapped to a vertex that is not adjacent to w . Depending on whether this

neighbor is mapped by f or m, we return the empty set or update the conflict list.

This is done until either the mapping is conflict-free, or the empty set is returned.
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The overall running time is O(|V | + |E |) for computing the initial list of conflicts,

and O(
∑

v∈V O(1)+O(deg(v))) = O(|V | + |E |) for updating the set of conflicts for each

vertex with at most two orthologs that is contained in a conflict that the procedure

“branches” on. Hence, the overall running time bound holds for k ′ = 0.

For k ′ > 1, the running time bound can be seen as follows. First, we can compute

in O(|V |+|E |) a list of all conflicts. Then, we arbitrarily choose one of these conflicts. In

case the chosen conflict contains a vertex with three or more orthologs that is mapped

by m, we branch into at most µG −1 cases. In each of the recursively created instances,

the number of vertices in V \ V ′ with at least three orthologs has decreased by one.

The time needed for solving them is therefore O((µG −1)k ′−1 · (|V | + |E |)). The overall

running time needed for the recursion then is

O((µG −1) · (µG −1)k ′−1 · (|V |+ |E |)) =O((µG −1)k ′
· (|V |+ |E |)).

In case the conflict contains a vertex j ∈ V \ V ′ with at most two orthologs, we can

(as for k ′ = 0) simply “move” this vertex from m to f and update the set of conflicts

in O(deg( j )) time. Hence, the overall time that is spent on vertices with at most two

orthologs before recursing is O(|V |+ |E |). The overall running time bound follows.

7.1.2 Solving µG -INJECTIVE-HOMOMORPHISM

We now describe how we can solve µG -INJECTIVE-HOMOMORPHISM by solving HCM.

The main idea here is to iteratively build up the query graph G , starting with a graph

consisting of only one vertex and adding vertices one by one, computing an injective

homomorphism for the current induced subgraph of G in each step. The pseudo-code

of this algorithm (called IterativeMap) is shown in Figure 7.3. It takes as input the query

graph G , the host graph H , and the family of ortholog lists L. Let vi denote the i -th

vertex added to the subgraph of G for which the intermediate solution is computed,

and let Gi :=G[{v1, . . . , vi }]. IterativeMap first computes an orih from G1 to H . Then, it

computes an orih from G2 to H , from G3 to H , and so on. If for some i , there is no orih

from Gi to H , then the procedure is aborted, and the algorithm outputs that there is no

solution. In the following, we describe how the orih from Gi to H is computed. Note

that, with the exception of G1, we have already computed an orih from Gi−1 to H and

this orih is stored in the variable m.

When computing the orih from Gi to H , the algorithm first branches into all

possible cases to map vi to an ortholog in w ∈ W . For each w ∈ W , {(vi , w )}

is an orih from G[{vi }] to H . Furthermore, the variable m stores an orih

from G[{v1, . . . , vi−1}] to H (which was computed in the previous iteration of the main

loop). Hence, (G[{v1, . . . , vi }], H ,L, {(vi , w )},m) is an instance of HCM. This instance is

solved by a call to HCM-Solve.

The procedure HCM-Solve then either returns an orih from G[{v1, . . . , vi }] or the

empty set. In the first case, the algorithm sets m ← f ′ and continues with computing
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IterativeMap(G = ({v1, . . . , vn},E ), H ,L)

1 V ′ ←;
2 m ←;
3 for i := 1 to n:

4 V ′ ←V ′∪ {vi }

5 f ′ ←;
6 for each w ∈L(vi ): ⊲ Try all cases for mapping vi

7 f ′ ←HCM-Solve(G[V ′], H ,L, {(vi , w )},m)

8 if f ′ 6= ; then: break ⊲ I.h. from G[V ′] to H is found

9 if f ′ =; then: return “no solution” ⊲ There is no i.h. from G[V ′] to H

10 m ← f ′

11 return “m is a solution”

Figure 7.3: Pseudo-code of the procedure IterativeMap that solves µG -INJECTIVE-HOMO-

MORPHISM by solving HCM. It returns either an orih f or reports that no such injective

homomorphism exists. Herein, ‘i.h.’ stands for injective homomorphism.

an orih from Gi+1 to H . In the second case, there is no orih from Gi to H , since for

each w ∈ L(vi ) there is no orih from Gi to H that extends {(vi , w )}. In this case, the

algorithm correctly returns that the instance does not have a solution.

After the n-th iteration of the main loop of IterativeMap, m stores an orih

from Gn = G to H and the algorithm thus correctly returns that the instance has a

solution m.

The overall running time of this algorithm can be bounded as follows.

Proposition 7.1. µG -INJECTIVE-HOMOMORPHISM can be solved in O((µG −1)k ′ ·(|V |2+
|V ||E |)+ |W |2) time, where k ′ is the number of vertices in V ′ that have at least three

orthologs in H.

Proof. The correctness of the algorithm was shown above. It thus remains to bound

its running time.

Overall, there are at most |V | iterations of the main loop. In each iteration, the

algorithm adds one vertex (vi ) to V ′ and thus also to G[V ′]. The overall time needed

for this is O(|V |+ |E |). All other steps can be either performed in constant time or they

are part of the branching and the calls to HCM-Solve in Lines 6–8 of the algorithm.

In the following, assume that we have chosen vn to be one of the vertices that have

at least three orthologs. Then, in each call to HCM-Solve, the mapping m contains

at most k ′ − 1 vertices which have at least three orthologs in H . Furthermore, the

graph G[V ′] is a subgraph of H . Hence, by Lemma 7.1 each call of HCM-Solve can be

solved in O((µG −1)k ′−1 · (|V |+ |E |)+|W |2) time. The overall number of calls to HCM-
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Solve is at most |V |µG . Hence, the overall time that is spent on these calls is

|V | ·µG ·O((µG −1)k ′−1 · (|V |+ |E |)+|W |2).

Note that the O(|W |2) term in this running time is due to the computation of the

adjacency matrix of H . Since this computation needs to be done only once, we arrive

at the claimed overall running time bound.

Proposition 7.1 implies a direct combinatorial polynomial-time algorithm for µG =
2; so far the polynomial-time solvability was shown by a reduction to 2-SAT [Fagnot

et al. 2008]. Furthermore, the running time for this polynomial-time algorithm

was O(|V |3) [Fagnot et al. 2008]. Our algorithm runs in O(|V | · (|V | + |E |)+ |V |2) time

in this case, since |W | ≤ 2 · |V |. This is true because every vertex in G has at most two

orthologs in H , and we can assume that every vertex in H is an ortholog of at least one

vertex in G . Hence, we also obtain an improved running time for the case µG = 2.

7.1.3 A More Detailed Running Time Analysis

In the following, we give a more detailed analysis of the search tree size which leads

to a more precise running time bound of the iterative search tree algorithm. The

motivation for this analysis is the fact that using µG as the basis of the exponential

function that bounds the search tree size is rather crude since this is the maximum

of |L(v)| over all v ∈ V . We found that in the application to querying of protein

complexes often many proteins of the query have only few orthologs in the host,

while there are few proteins of the query that have many orthologs in the host. In

these instances µG was often more than twice as large as the arithmetic mean of

ortholog list sizes. We show that for such instances we can achieve a bound that

is much better than (µG − 1)k ′
. In the following, suppose without loss of generality

that {v1, . . . , vk } ⊆ V is the set of vertices in G that have at least two orthologs

in H . Furthermore, let (l1, l2, . . . , lk ), li = |L(i )|, denote the vector that contains for

each vertex from {v1, . . . , vk } exactly one entry with the number of its orthologs. We

call (l1, . . . , lk ) the orthology-list vector of G , and (l1 − 1, l2 − 1, . . . , lk − 1) the reduced

orthology-list vector. The main idea of the improved running time bound is that the

search trees produced by HCM-Solve have size at most

k
∏

i=1

(li −1),

that is, the search tree size is upper-bounded by the product of the numbers in

the reduced orthology-list vector. Note that since all 2’s in the orthology-list vector

become 1’s in the reduced orthology-list vector, they do not contribute to the size of

the search tree (as we also showed in the proof of Lemma 7.1).

This observation leads to the following running time bound.
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Theorem 7.1. µG -INJECTIVE-HOMOMORPHISM can be solved in O((µ̃G )k ′ · (|V |2 +
|V ||E |) + |W |2) time, where k ′ is the number of vertices in G that have at least three

orthologs in H, and µ̃G := (
∏k

i=1(li −1))1/k ′
is the geometric mean of the numbers in the

reduced orthology-list vector of G.

Proof. The algorithm is the same algorithm as in Proposition 7.1. Hence, we prove the

theorem by bounding the running time of the algorithm. The polynomial part of the

running time is bounded as in Proposition 7.1; in the following, we give a more fine-

grained analysis of the number of search tree nodes created by the calls to HCM-Solve

in one iteration of the main loop of IterativeMap.

Suppose that in IterativeMap, we branch on the vertex vi , that is, we call HCM-

Solve li times. For each of these li initial calls to HCM-Solve, we can bound the size of

the search tree that is created as
∏k

j=1, j 6=i (l j −1)) because for each vertex v j , j < i , in

the recursive branching in HCM-Solve we branch into at most l j −1 cases. Hence, the

overall number of search tree nodes created in the li initial calls to HCM-Solve is

li ·
k

∏

j=1, j 6=i

(l j −1) ≤ 2 ·
k ′
∏

j=1

(l j −1).

The inequality above follows from the observation that either li ≤ 2 or li ≤ 2 · (li −1).

The base of the search tree size follows simply from taking the k ′-th root of the

overall number of search tree nodes since the tree has depth at most k ′. The overall

running time bound follows as in the proof of Proposition 7.1.

The geometric mean of a multiset of numbers is always at most as large as the

arithmetic mean, and the two are only equal if all numbers of the set are the same. For

our instances, this is the case when |L(v)| =µG for all v ∈V . In this case, we have µ̃G =
µG −1, that is, we achieve precisely the running time stated by Proposition 7.1. In the

case of protein complex querying, however, µ̃G is usually much smaller than µG .

Of course, this better analysis also applies to the search tree algorithm described in

the beginning of Section 7.1. Hence, it is not “exclusive” to our algorithm. Note that for

the standard search tree algorithm the worst-case search tree size is the product of the

numbers in the orthology-list vector (as opposed to the reduced orthology-list vector).

Somehow counterintuitively, the geometric mean of the numbers in the orthology-

list vector might be smaller than µ̃G , for example, in case one vertex in G has four

orthologs and all other vertices in G have two orthologs. This is explained by the fact

that we define µ̃G by taking the k ′-th root of the search tree size (instead of the k-th

root). Hence, in the example above, k can be arbitrarily large whereas k ′ = 1, and thus

the fact that µ̃G is larger than the geometric mean of the orthology-list vector is not a

contradiction to our claimed running time improvement.
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7.1.4 Solving µG -SUBGRAPH-ISOMORPHISM

In this section, we briefly outline how the presented algorithm can be adapted to

solve µG -SUBGRAPH-ISOMORPHISM. The iterative procedure, that is, the main loop

of the algorithm remains exactly the same. This is correct, since its correctness

relies mainly only on two facts that also apply to µG -SUBGRAPH-ISOMORPHISM.

First, if there is an orthology-respecting subgraph-isomorphism from G to H , then

there is also an orthology-respecting subgraph-isomorphism from every induced

subgraph of G to H . Second, each vertex v ∈ V can only be mapped to a

vertex in L(v). Given these two facts, the correctness completely relies on the

procedure that solves the problem of finding an orthology-respecting subgraph-

isomorphism that extends one mapping f and is given a candidate mapping f ∪m.

For µG -INJECTIVE-HOMOMORPHISM this problem is solved by HCM-Solve. For µG -

SUBGRAPH-ISOMORPHISM, we can use the same algorithm, the only difference is that

we need a new definition of conflicts.

Definition 7.4. Let G = (V ,E ) and H = (W,F ) be two undirected graphs, and let g :

V → W be a mapping from V to W . A pair { j , l } of vertices j , l ∈ V , j 6= l , forms an

isomorphism-conflict in g if

– { j , l }∈ E and {g ( j ), g (l )} ∉ F , or

– { j , l }∉ E and {g ( j ), g (l )} ∈ F , or

– g ( j ) = g (l ).

By using isomorphism-conflicts instead of conflicts, we obtain an algorithm with

almost the same running time for solving the intermediate problem. The correctness

of this algorithm can be shown in complete analogy to the correctness of HCM-Solve.

We therefore omit the details. The difference in the running time follows from the fact

that we need O(|V |2) time for finding and listing the conflicts in a mapping.

Theorem 7.2. µG -SUBGRAPH-ISOMORPHISM can be solved in O((µ̃G )k ′ · |V |3 + |W |2)

time, where k ′ is the number of vertices in G that have at least three orthologs in H,

and µ̃G := (
∏k

i=1(li − 1))1/k ′
is the geometric mean of the numbers in the reduced

orthology-list vector of G.

7.2 Application to Querying of Protein Interaction Networks

In this section, we apply our algorithm to the problem of querying protein interaction

networks for protein complexes. Our experiments show that our iterative algorithm

not only has an improved theoretical worst-case running time, but that it also

performs better on real-world data than the previously proposed search tree algo-

rithm [Fagnot et al. 2008]. Furthermore, we compare the quality of the occurrences

that are returned using injective homomorphism with the ones returned when using

subgraph isomorphism as mapping criterion.
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Experimental Setup. We used protein interaction networks from yeast (5430 pro-

teins and 39936 interactions), fly (6650 proteins, 21275 interactions), and human

(7915 proteins, 28972 interactions) that were taken from Bruckner et al. [2010]. The

queries were complexes from the same three species. We considered the following

four combinations of query and host: with yeast complexes we queried both human

and fly networks; with human and fly complexes we queried the yeast network.3

For each protein of the query, we collected all proteins in the host network whose

sequence similarity to the query protein exceeded a predefined threshold, and created

the corresponding lists of orthologs. The similarity threshold was set to a BLAST

score of 10−7. We then removed all proteins from the query that did not have any

orthologs in the host, and solved µG -INJECTIVE-HOMOMORPHISM and µG -SUBGRAPH-

ISOMORPHISM for the remaining subcomplex. In the following, we refer to these

subcomplexes as queries.

The program is written in the Java Programming Language and comprises

approximately 1300 lines of code.4 Graphs are represented with their adjacency

matrices, allowing for fast testing of adjacency for two given vertices. Experiments

were run on an Intel Core-i3-550 processor with 3.2 GHz, 512 KB L2 cache, and 4 GB

main memory running under the Debian GNU/Linux 6.0 operating system with Java

version 1.6.0_12.

We implemented our algorithm (to which we refer as iterative algorithm in the

following) and a search tree algorithm that is basically like the search tree algorithm

described in the beginning of Section 7.1. The iterative algorithm was implemented

as described in Section 7.1; the search tree algorithm was implemented in the

following way. For G = ({v1, . . . , vn},E ), the algorithm starts with branching into the

at most µG possibilities to map v1. Consider one such possibility, say v1 is mapped

to w1. Then, the algorithm removes w1 from the ortholog lists of each vi , i <
1, and recursively branches into all possibilities to map v2. Herein, only those

possibilities are considered that do not introduce any conflict between v1 and v2, that

is, they are an injective homomorphism (or subgraph isomorphism) from G[{v1, v2}]

to H . Then, the algorithm branches into all valid possibilities to map v3, and so

on. Branching is performed until either an injective homomorphism (or subgraph

isomorphism) from G to H has been found, or all recursive branchings return that

no such injective homomorphism (or subgraph isomorphism) exists. Note that

this search tree algorithm should outperform the algorithm that is based on the

enumeration of matchings Fagnot et al. [2008], since we recurse only into branches

that do not introduce any conflicts. Hence, we do not necessarily enumerate all

injective mappings from G to H .

We also performed the following simple reduction rule before actually starting the

3This somewhat arbitrary choice of query–host combinations was based on the convenient availability

of the sequence similarity data.
4Source code available at http://fpt.akt.tu-berlin.de/blm

http://fpt.akt.tu-berlin.de/blm
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Table 7.1: Running times of the iterative algorithm and a search tree algorithm for

homomorphism and isomorphism queries and different sequence similarity thresholds t .

Running times are given in milliseconds, n denotes the size of the queries, ‘#’ denotes the

number of instances for the respective size category, the number of asterisks (‘*’) denotes the

number of instances that could not be solved within 30 minutes.

Homomorphism Isomorphism

threshold n # Iterative Search Tree Iterative Search Tree

t = 10−5 3 ≤ n ≤ 5 427 0.06 0.14 0.08 0.23

6 ≤ n ≤ 9 194 0.07 0.14 0.07 0.19

10 ≤ n ≤ 19 101 1.33 3436.49 0.08 4585.33

20 < n 44 *2.86 ****3351.87 0.17 **2812.03

t = 10−7 3 ≤ n ≤ 5 409 0.03 0.09 0.03 0.13

6 ≤ n ≤ 9 185 0.05 0.09 0.02 0.08

10 ≤ n ≤ 19 91 0.05 4300.27 0.04 5673.72

20 < n 45 0.72 ***57.31 0.12 *6186.80

t = 10−9 3 ≤ n ≤ 5 392 0.03 0.07 0.02 0.11

6 ≤ n ≤ 9 175 0.03 0.05 0.03 0.09

10 ≤ n ≤ 19 88 0.03 1019.85 0.04 957.06

20 < n 40 *0.33 **24.49 *0.18 *1493.53

algorithms.

Reduction Rule 7.1. If there is a vertex v ∈ V with exactly one ortholog w, then

remove w from the ortholog lists of all vertices in V \ {v}.

The effect of this rule was not very pronounced, although for our instances, it

appeared that the search tree algorithm benefited more from it.

Running Times. Table 7.1 shows the average running times of the instances with

at least three proteins in the query for both algorithms and isomorphism and

homomorphism querying. Our main observations are as follows. First, for queries of

size at most 9, both algorithms are very fast; the average running time is less than one

millisecond for these instances. For queries of size at least 10 the problem becomes

much harder and the differences between the algorithms are more pronounced; for

these instances, our algorithm is faster than the search tree algorithm by several orders

of magnitude. This behavior can be observed for all three considered thresholds and

for injective homomorphisms and isomorphisms. While the search tree algorithm

exceeded the running time limit of 30 minutes in altogether 13 instances, the iterative

search tree algorithm exceeded this limit in only three instances. For both algorithms,
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Table 7.2: Parameter values and expected speed-up for the considered input instances: kavg

denotes the average number of vertices with at least two orthologs, k ′
avg denotes the average

number of vertices with at least three orthologs, kmax is the maximum number of vertices with

at least two orthologs, k ′
max is the maximum number of vertices with at least two orthologs,

suavg is the average speed-up predicted by computing the worst-case search tree sizes, sumax

is the maximum of the speed-ups predicted by computing the worst-case search tree sizes.

threshold n kavg k ′
avg kmax k ′

max suavg sumax

t = 10−5 3 ≤ n ≤ 5 2.34 1.79 5 5 1.35 9

6 ≤ n ≤ 9 4.32 3.26 9 9 3.04 19.15

10 ≤ n ≤ 19 8.34 6.14 19 17 42.20 2880

20 < n 27.0 19.46 62 52 84,185,953 3,657,466,365

t = 10−7 3 ≤ n ≤ 5 2.17 1.67 5 5 1.28 9

6 ≤ n ≤ 9 4.07 3.10 9 9 2.79 27

10 ≤ n ≤ 19 7.53 5.47 17 15 57.87 4096

20 < n 23.8 16.78 49 43 17,313,034 669,570,338

t = 10−9 3 ≤ n ≤ 5 2.09 1.60 5 5 1.27 9

6 ≤ n ≤ 9 3.91 2.96 9 9 2.78 30.38

10 ≤ n ≤ 19 7.05 5.11 16 13 91.63 4096

20 < n 22.19 16 44 42 9,758,122 340,650,885

solving µG -INJECTIVE-HOMOMORPHISM takes longer than solving µG -SUBGRAPH-

ISOMORPHISM. Furthermore, as one would expect, the instances in which the ortholog

lists are longer because the similarity threshold is less strict (t = 10−5) were harder for

the algorithm than the instances with shorter ortholog lists (t = 10−7 and t = 10−9).

Surprisingly, one query that could not be solved within 30 minutes by the iterative

search tree algorithm for t = 10−9 was solvable for t = 10−7.

The running time improvement is much larger than expected by merely com-

paring the theoretical worst-case running times of the two algorithms. Hence, one

could assume that it is due to a particularly bad implementation of the search tree

algorithm. We thus examined the input instances more closely, to see whether the

observed running time improvement really corresponds to the theoretical analysis of

the worst-case running time.

First, we computed the parameter values for both algorithms, that is, the number k

of vertices that have at least two orthologs (which is the parameter for the search tree),

and the number k ′ of vertices that have at least three orthologs (which is the parameter

for the iterative algorithm). Table 7.2 shows for each considered threshold t and for

the different query size categories the average and maximum values of k and k ′. As

expected, k is on average larger than k ′. However, the difference between the average
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values of k and k ′ is not large enough to explain the observed speed-up. For example,

for queries of size at least 20 and t = 10−5 the average value of k was 27 and the average

value of k ′ was 19.46, which does not explain the observed running time differences

for this set of instances, especially since for the vertices with two orthologs we branch

only into two cases. Of course, average parameter values can be deceiving since the

instances with particularly high parameter values contribute much more to the overall

running times than the instances with low parameter values. The difference between

the maximum value of k and the maximum value of k ′, however, is also not large

enough to explain the running time improvement. Hence, we directly computed the

worst-case sizes of both search trees by multiplying the numbers in the orthology-list

vector, yielding the worst-case search tree size Tst for the search tree algorithm, and in

the reduced orthology-list vector, yielding the worst-case search tree size Titer for the

iterative algorithm. We then calculated an expected speed-up factor Tst/Titer for each

instance. The average and maximum speed-up for each set of instances is also shown

in Table 7.2. Both the average and the maximum expected speed-up factors are much

larger than one would expect by merely considering the differences in the parameter

values. Since Tst and Titer are worst-case estimates, these predicted speed-up factors

are not actually achieved, but they can help explaining the observed running time

differences.

Functional Coherence. We studied the quality of the matches that were found by

the algorithm with respect to functional similarities between matched proteins. One

aim of our analysis is to assess the differences between isomorphism and injective

homomorphism matching. To this end, each reported match was tested for the

enrichment of gene ontology terms using the GO::Term Finder Software [Boyle et al.

2004]: For each solution, we retrieved functional annotation terms from the SGD

database [SGD project] (for the yeast network), the GOA database [Barrell et al. 2009]

(for the human network), or FlyBase [Tweedie et al. 2009] (for the fly network). Then,

we used the GO::TermFinder tool [Boyle et al. 2004] to find functional annotation

terms that have a statistically significant overrepresentation compared to random

protein sets. This is done by computing for each functional annotation term the p-

value of its abundance in the solution under the hypothesis that the solution is a

random set of proteins. The reported p-values are corrected for multiple hypotheses

testing using the Bonferroni method and the threshold for considering an enrichment

as significant was set to p < 0.05. Since the solutions should be complexes, they are

expected to have a common function, participate in the same biological process, or

appear in the same cellular component.

Table 7.3 shows for each considered similarity threshold and for each combination

of query and host the number of reported matches and the number of the reported

matches that had a statistically significant enrichment of annotations for function,

cellular component, or biological process.
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Table 7.3: Functional coherence in the predicted complexes for homomorphism and

isomorphism queries and different sequence similarity thresholds t . The total number of

matches that were found is denoted by ’#’; the columns with the number of matches with

significant enrichment of GO annotations for cellular component, function, and biological

process are denoted by C, F, and P, respectively.

Homomorphism Isomorphism

threshold query host # C F P # C F P

t = 10−5 human yeast 177 148 153 162 101 72 83 85

fly yeast 41 32 36 38 20 11 15 17

yeast fly 8 6 5 5 8 6 5 5

yeast human 13 11 11 11 12 10 10 10

t = 10−7 human yeast 179 153 158 167 91 65 78 78

fly yeast 37 31 32 34 19 11 16 17

yeast fly 6 4 3 5 6 4 3 5

yeast human 14 12 13 12 13 11 12 11

t = 10−9 human yeast 169 148 148 158 81 59 66 70

fly yeast 37 32 32 35 19 11 15 17

yeast fly 4 3 3 4 4 3 3 4

yeast human 13 11 11 10 12 10 10 9

The most notable difference is that when the yeast protein interaction network

is the host, the number of matches reported by injective homomorphism is much

higher than for isomorphism. The percentage of reported matches for injective

homomorphism that have an enrichment for at least one GO term is in most cases also

higher than for isomorphism. When using yeast proteins as query, both approaches

have basically the same outcome. These results indicate that, in some cases, injective

homomorphisms might be preferable to isomorphisms. For instance, this could be

the case when the percentage of false negative interactions is lower in the host than in

the query.

7.3 Concluding Remarks

We have presented new algorithms for solving the querying problem with arbitrary

topologies. We also contributed the, to our knowledge, first implementation for

querying with arbitrary topologies. While our implementation is probably not as

advanced as most biological applications would demand (for example, we have not

touched at all on edge-weighted versions of querying), we were able to report on some

results that indicate that injective homomorphisms are a useful querying model also
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for arbitrary topologies.

– Further heuristic improvements of the implemented algorithms are conceivable.

For the search tree algorithm this seems to be worthwhile for several reasons.

First, in contrast to the iterative algorithm it can be used to enumerate

all injective homomorphisms from the query to the host. Second, it is possible

that with such heuristic improvements, the search tree algorithm could be

improved so much that it is better than the iterative algorithm. This is due to

the fact that in the search tree algorithm there is more freedom in choosing the

vertex to branch on. In the iterative algorithm, there might be always only one

conflict, which means that there is no freedom at all to choose the vertex to

branch on.

– As we have shown, µG -INJECTIVE-HOMOMORPHISM and µG -SUBGRAPH-ISO-

MORPHISM are fixed-parameter tractable with respect to the combined param-

eter (µG ,k) where k is the number of proteins in the query that have at least

three orthologs. Is it possible to achieve a polynomial-size problem kernel for

this combined parameter? In other words, can we develop data reduction rules

that remove vertices with at most two orthologs?

– Studying the more difficult problem of finding a maximum-cardinality subset

of the query that can be matched to the host (in the case of µG -SUBGRAPH-

ISOMORPHISM this is related to the MAXIMUM COMMON SUBGRAPH problem

which has applications for example in the analysis of chemical compounds [Cao

et al. 2008]) would be interesting. From an applied standpoint, this would

help in increasing the number of instances for which a match in the host is

found, especially for larger queries. From an algorithmic standpoint it would be

interesting to study whether our iterative algorithm is also useful for this more

general problem or not.

– Finally, implementations for other problem variants that are able to cope with

noise in the data such as the maximization variant proposed by Brevier et al.

[2010] should be developed in order to increase the availability and flexibility of

querying tools for arbitrary topologies.
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Chapter 8

Summary

In this work, we have reported on algorithmic progress for combinatorial problems in

the areas of network clustering and querying. An overview over the specific results is

given in the introductions of Part II and Part III. Instead of repeating the single findings

for each problem, we attempt to bundle our results into cohesive groups, clusters if

you will, that are defined by their algorithmic contributions.

Data Reduction. Data reduction and kernelization are perhaps the most important

contributions of parameterized algorithmics to practical computing. In this thesis we

have made the following contributions to this area of parameterized algorithmics.

In Chapter 4, we presented a new kernelization concept: structural kernelizations

and discussed how this new kernelization concept relates to other recently introduced

extensions of standard problem kernels. We demonstrated an application of structural

kernelizations to CONSENSUS CLUSTERING. The idea of structural kernelizations

is to reduce not necessarily the overall size of the input but the “size” of an

important structural measure of the input. We believe that the definition of structural

kernelization nicely extends the standard problem kernel definition, and that this

concept can find applications for a wider range of problems. In fact, many claimed

problem kernels are formally not “real” problem kernels. For example, some

kernelizations for graph problems result in graphs that contain f (k) vertices but

arbitrarily large edge-weights. For these instances, the size of the instance is not

bounded by the parameter, but the data reduction routine results in an instance in

which an important part of the input—the number of vertices—is bounded. These

kernelizations can be seen as structural kernelizations. An example for such a

data reduction routine is the algorithm that was used to show the fixed-parameter

tractability of WEIGHTED AVERAGE-s-PLEX-CLUSTER EDITING in Section 3.3.

This brings us to the second contribution that we have made in the area of data

reduction. We have presented several data reduction algorithms that result in what

could be called “multivariate problem kernels” because the “size” of the problem
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kernel depends on several variables: In Section 3.3, our data reduction approach

for WEIGHTED AVERAGE-s-PLEX-CLUSTER EDITING produces instances with 4k2 +
8sk vertices, where k is the number of edge modifications, and s is the “slack”

parameter in the definition of average-s-plexes. In Section 2.2, we presented a

kernelization for (d , t )-CONSTRAINED-CLUSTER EDITING and (d , t )-CONSTRAINED-

CLUSTER DELETION that produces problem kernels with at most O(d · t ) vertices,

where d is the number of clusters and t is the local modification bound. In Chapter 4,

our structural kernelizations for CONSENSUS CLUSTERING are also standard problem

kernels for the combined parameter “average distance d of the input partitions and

number n of input partitions”. We believe that, going forward, multivariate problem

kernels will be an intriguing research area for achieving detailed measures of the

effectiveness of data reduction algorithms. Measuring the “size” of problem kernels by

more than one parameter is of course not only limited to the standard problem kernel

definition, but could also be applied to structural kernelization, weak kernels [Jiang

and Zhu 2010], or Turing kernelization [Fernau et al. 2009, Lokshtanov 2009].

Identification of New Parameters. As the running time of fixed-parameter algo-

rithms depends exponentially on the value of the parameter, finding the “right”

parameter is of utmost importance. We believe that the area of parameter identifica-

tion is still somewhat underdeveloped in the field of parameterized algorithmics. We

have contributed to this area in the following ways.

For average-degree based density definitions, we have introduced (in Chapter 3)

the average-s-plex model, which naturally introduces a slack parameter s that can be

used to obtain fixed-parameter tractability results. Given the apparent hardness of

computational problems that involve average-degree based models for dense graphs,

which can be witnessed for example in the W[1]-hardness results in Sections 3.4

and 5.2, defining such problems by using the average-s-plex model introduces the

further structural parameter s which could then lead to fixed-parameter tractability

results.

For edge modification problems we have introduced (in Chapter 2) the parameter

“local modification bound t ” which is an interesting alternative to the standard param-

eter “number k of edge modifications”. While it appears that this parameter alone will

usually not lead to fixed-parameter tractability results, we have demonstrated that in

combination with other parameters we can obtain fixed-parameter tractability results

that complement those for standard parameters.

For consensus problems, we have demonstrated (in Chapter 4) how fixed-

parameter tractability can be achieved for the parameter “average distance of the

input objects”. We believe that parameterizing by this parameter can lead to fixed-

parameter tractability results for a wide range of problems that contain as input a set

of objects with a naturally defined pairwise distance function between them. This

includes but is not limited to median problems.
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For querying problems, we have presented several hardness and tractability results

for parameters that describe the structure of the orthology constraints such as “the

maximum number of orthologs” or “the number of colors in the query”. With

the help of these parameters one obtains a more detailed view of the structure

of the instances of typical querying problems. Furthermore, we have presented

(in Chapter 5) a parameterization that can be smaller than the degeneracy of the host

graph. This parameterization can be seen as an easy example for “parameterizing

below guarantee”: we know that the query in this particular querying problem must

be smaller than the degeneracy, and that the case in which it is equal to the degeneracy

is “easy”.

Multivariate Implementations & Their Experimental Analysis. We have developed

implementations of parameterized algorithms for topology-free querying (in Chap-

ter 6) and querying with arbitrary topologies (in Chapter 7). Both implementations

use more than one parameter and, hence, are examples of “multivariate implementa-

tions”.

For topology-free querying, we have considered three different parameters: the

query size, the solution size, and the corresponding dual parameter. For the first

two parameters we compared the fixed-parameter algorithms, showing that—for

our algorithms—parameterization by query size is better than parameterization

by solution size although the latter is usually the smaller parameter. For the

third parameter, we demonstrated the usefulness of an XP-algorithm with running

time nk+O(1). In particular, we showed that using the XP-algorithm to complement

the fixed-parameter algorithms yielded a significant speed-up for many instances. In

this sense, our implementation is a primitive example of a multivariate algorithm that

exploits several parameters and works well when at least one of them is small.

In the case of querying with arbitrary topologies, we have also implemented and

compared algorithms that use two different parameters. Our experimental analysis

demonstrated (in particular the analysis of the parameter values and the expected

search tree sizes) that even a seemingly incremental improvement in the worst-case

running time may result in a large speed-up factor in real-world instances.
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Chapter 9

Outlook

We conclude with a collection of open questions and suggestions for future research

that are inspired by the findings in this work. We attempt to order these suggestions

starting with the ones that are the most theoretical and address fundamental

questions, gradually moving to the ones that are more applied. The recurrent

theme of these suggestions could be phrased as “carving out the transformation from

parameterized algorithmics to multivariate algorithmics”.

Theoretical Foundations. Parameterized Algorithmics has led to a plethora of

algorithm design and analysis tools, for example kernelization, that can be used to

analyze algorithmic properties of combinatorial problems. These tools appear to be

tailor-made for parameterizations with one parameter. The development of all these

tools is more or less rooted in the basic question whether for instances (I ,k) of a

parameterized problem a running time of f (k) ·poly(n) can be achieved or not. As

combined parameterizations where the parameter consists of several independent

“components” become increasingly important, a multitude of questions concerning

possible running times for such a combined parameter arise. Consider for example

a parameterized problem with a combined parameter (k , l ) that consists of two

independent parts k and l . Suppose that this problem is fixed-parameter tractable for

the combined parameter (k , l ), for example because there is an algorithm of running

time k l ·poly(n). Assuming that k and l are really independent, there can be instances

in which k is much smaller than l . For these instances, a running time of l k ·poly(n)

would be preferable. How can one prove that such a running time cannot be achieved

under plausible complexity-theoretic assumptions? A possibility would be to show

that the problem is NP-hard for constant k , but what if this is not the case? Can

one build a framework, for instance by adapting parameterized complexity theory, to

answer this type of questions?

Similar questions can be posed for kernelizations of parameterized problems with

a combined parameter. How can one show that while a kernel of size f (k) ·poly(l ) is
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possible, it is not possible to achieve a kernel of size f (l )·poly(k)? Or similarly, how can

one show that while a kernel of size O(k · l ) is achievable, one cannot achieve a kernel

of size O(k + l )? Can such lower bounds for the kernel size for combined parameters

be obtained by using the lower bound techniques for single parameters [Bodlaender

et al. 2009, Bodlaender 2009, Dell and van Melkebeek 2010, Dom et al. 2009, Fortnow

and Santhanam 2011]?

Identifying and Sorting Parameterizations. A lot of research in parameterized

algorithmics focuses on the development of algorithmic techniques and frameworks

for showing lower bounds on the computational complexity of parameterized prob-

lems. From an applied point of view, an equally important part of parameterized

algorithmics is what has been coined “the art of parameterization” [Niedermeier

2006, 2010] since the first step of obtaining a useful fixed-parameter algorithm is

to identify the parameter. Apart from considering the more traditional parameters

such as “solution size” and “treewidth”, it has been suggested for example to identify

parameters by studying trivial special cases [Cai 2003, Guo et al. 2004] or by analyzing

the structure of instances that are created by NP-hardness proofs [Komusiewicz et al.

2011]. We propose a further approach for parameter identification. The idea of

this approach is to automatically analyze the structure of typical input instances for

a problem under consideration. For example for graphs, there is an abundance of

structural parameters that might be of interest for a particular problem. On the one

side, a large number of potential parameters is beneficial since it increases the number

of possibilities to attack a hard problem. On the other side, the larger the number

of possible parameters, the harder it is to find the “best” parameter. A way out of

this quandary could be to examine a set of typical instances, for example a set of

graphs, and to estimate the value of all parameters that have been applied for NP-hard

graph problems. Usually, the size of the input graphs, and the number of possible

parameters prohibits a manual examination of the set of input instances. Hence, one

should aim at implementing a tool for the automatic estimation of parameter values

in such a set of input instances. Note that for such a tool one does not necessarily

have to compute the actual parameter values (which for many structural parameters

is an NP-hard problem itself). Instead, one can also use approximation algorithms

and heuristics. After a promising set of input parameters has been identified in

this way, one can focus on the development of fixed-parameter algorithms for these

parameters.

Another related way of parameter identification would be to study the behavior

of known exact algorithms for an NP-hard problem that outperform their theoretical

worst-case running time for a certain set of input instances. Then, one could search

for structural parameters that are small for this set of instances, and large for instances

in which the algorithm does not perform well. Subsequently, one could show that the

problem is fixed-parameter tractable for one of the found structural parameters. Once
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a parameter has been identified in this way, one has also identified a target for further

reducing the running time or increasing the “range” of tractable instances.

A further challenge that has been created by the increasing number of possible

parameters is to keep track of the results that have been achieved for all the

different parameterization of a particular problem. Also, it becomes increasingly

difficult to understand the relationships between possible parameters. However,

with an increasing number of parameters, the relationship between them becomes

more complicated. We believe that a considerable effort should be made to

“sort” the results on the relationship between different parameterizations for a

problem. In Section 4.5, we have attempted to do so for the different parameters

that we identified for CONSENSUS CLUSTERING, but of course this overview of the

parameterizations for CONSENSUS CLUSTERING is very far from complete. We believe

that for almost every parameterized problem there are many more interesting and

practically relevant parameters that can be discovered. Providing for each particular

problem a “condensed” view of the different parameterized complexity results and of

the relationships between the parameters then becomes more and more important.

Adaptive Implementations of Fixed-Parameter Algorithms. Fixed-parameter algo-

rithms are only one way for exactly solving computationally hard problems: they

compete, for example, with running-time heuristics and integer linear programs. We

believe that the impact of parameterized algorithmics to practical computing can and

should be increased in the future.

One way of doing so is the continued improvement of fixed-parameter algorithms

with respect to a known parameter for a problem, for example by improving the

overall worst-case running time, or by developing better kernelization algorithms

that produce smaller kernels. A further way of increasing the power of fixed-

parameter algorithms for solving instances of a particular problem is to continually

add implementations for different parameterizations of this problem. An ultimate

goal would be to develop a meta-algorithm that—depending on the parameter values

in a particular instance of a problem—switches between different parameterizations.

This switching could take place even during the course of an algorithm. For example,

if a recursive search tree algorithm for some parameter k creates an instance for which

it seems advantageous to solve it by a fixed-parameter algorithm for parameter l , then

such an algorithm could simply switch to the parameter l . This approach is not at all

limited to “pure” fixed-parameter algorithms but it could also be used to augment the

power of other approaches to hard problems such as integer linear programs.
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M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clustering. Acta

Informatica, 23(3):311–323, 1986. Cited on pp. 18, 19, 23, 24, and 72.

V. Lacroix, C. G. Fernandes, and M.-F. Sagot. Motif search in graphs: Application to metabolic

networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(4):360–

368, 2006. Cited on pp. 98, 111, 112, 113, 130, and 134.

J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is NP-

complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. Cited on p. 13.

D. Lokshtanov. New Methods in Parameterized Algorithms and Complexity. PhD thesis,

Universitetet i Bergen, Bergen, Norway, 2009. Cited on pp. 75, 91, and 158.

D. Lokshtanov and D. Marx. Clustering with local restrictions. In Proceedings of the

38th International Colloquium on Automata, Languages and Programming (ICALP ’11),

Part 1, volume 6755 of Lecture Notes in Computer Science, pages 785–797. Springer, 2011.

Cited on p. 20.

S. Lu, F. Zhang, J. Chen, and S.-H. Sze. Finding pathway structures in protein interaction

networks. Algorithmica, 48(8):363–374, 2007. Cited on p. 134.

D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by the size of

the cutset. In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC ’11),

pages 469–478. ACM, 2011. Cited on p. 19.
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