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Tag der öffentlichen Verteidigung: 17. November 2009



Zusammenfassung

Diese Arbeit beschäftigt sich mit kombinatorischen Problemen, welche als Verall-
gemeinerungen der beiden klassischen Graphprobleme Vertex Cover und Ma-

ximum Matching aufgefasst werden können. Das Vertex Cover-Problem ist
wie folgt definiert. Gegeben ein ungerichteter Graph, finde eine kleinstmögliche
Knotenteilmenge, die jede Kante

”
abdeckt“, d.h. dass einer der beiden Endpunkte

jeder Kante in der Knotenteilmenge liegt. Dieses Problem wird auch oft
”
Kno-

tenüberdeckungsproblem“ genannt. Das Maximum Matching-Problem fragt
nach einer größtmöglichen Kantenteilmenge in einem ungerichteten Graphen, so
dass sich die gewählten Kanten keinen Endpunkt teilen. Dieses Problem sucht
also nach einer möglichst großen Anzahl von Knotenpaaren, die durch eine Kante
verbunden sind. In bipartiten Graphen wird dieses Problem auch oft

”
Heirats-

problem“ genannt.

Sowohl Vertex Cover als auch Maximum Matching haben eine lange
Geschichte; diese Probleme wurden schon in den Anfangsjahren der Informa-
tik untersucht und sind immer noch Gegenstand der aktuellen Forschung. Es
gibt für beide Probleme viele Anwendungen, beispielsweise in der Bioinformatik,
der Computer-Chemie oder auch in der Verkehrsplanung. Maximum Matching

wird in unzähligen Anwendungen als Hilfsroutine zur Lösung anderer Aufgaben
eingesetzt.

Ein fundamentaler Unterschied von Vertex Cover und Maximum Mat-

ching ist ihre algorithmische Komplexität: während Maximum Matching in
Polynomzeit lösbar ist, was üblicherweise als effizient angesehen wird, ist Ver-

tex Cover NP-schwer. Das bedeutet, dass es vermutlich keinen Polynomzeital-
gorithmus für Vertex Cover gibt. Beide Probleme haben aber auch Gemein-
samkeiten, die sich in der beiden Problemen zugrundeliegenden Struktur

”
Kante“

widerspiegeln. Tatsächlich liegt diesen Gemeinsamkeiten auch ein berühmtes Er-
gebnis von König zugrunde, welches besagt, dass Vertex Cover und Maximum

Matching in bipartiten Graphen äquivalent sind und damit Vertex Cover

in bipartiten Graphen ebenfalls in Polynomzeit lösbar ist.

Die Probleme, die in dieser Arbeit untersucht werden, lassen sich grob in Kno-
tenüberdeckungsprobleme und generalisierte Matching-Probleme unterteilen. Die
Knotenüberdeckungsprobleme können wie folgt beschrieben werden. Für eine be-
stimmte Grapheigenschaft und gegebenem Graph, lösche möglichst wenige Kno-
ten, so dass der resultierende Graph die besagte Grapheigenschaft besitzt. Ver-

tex Cover entspricht diesem Problem mit Grapheigenschaft
”
kantenfrei“. Wir

formulieren also die Knotenüberdeckungsprobleme als Knotenlöschungsprobleme,
d.h. statt eine gewisse Struktur (wie z.B. Kanten) zu überdecken, sprechen wir
von der Zerstörung der Struktur mit Hilfe von Knotenlöschungen. Die Matching-
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iv Zusammenfassung

Probleme können wie folgt beschrieben werden. Gegeben sei ein ungerichteter
Graph.

• Finde eine größtmögliche Anzahl von Kopien eines fest vorgegebenen zu-
sammenhängenden Graphen mit mindestens drei Knoten, die paarweise
knotendisjunkt sind.

• Finde eine größtmögliche Anzahl von Kanten, die paarweise einen gewissen
Mindestabstand haben müssen.

Diese Probleme sind alle NP-schwer, d.h. es kann vermutlich keine Polynomzeital-
gorithmen zum Finden einer optimalen Lösung geben. Doch auch für NP-schwere
Probleme können oft positive Resultate erzielt werden. Eine Möglichkeit sind
Heuristiken, die oft bei bestimmten Instanzen in der Praxis sehr gute Lösungen
liefern, deren Laufzeiten und/oder Lösungsgüten aber nicht bewiesen werden
können. Eine weitere Herangehensweise sind Approximationsalgorithmen, wel-
che in Polynomzeit eine Lösung finden, die nur um einen beweisbaren Faktor von
einer optimalen Lösung abweicht. Die Probleme, die in dieser Arbeit behandelt
werden, sind jedoch alle im besten Fall nur mit einem konstanten Faktor appro-
ximierbar, was in der Praxis oftmals nicht ausreichend ist. Eine weiterer Ansatz
sind parametrisierte Algorithmen. Die Grundidee hierbei ist, die kombinatorische
Komplexität eines NP-schweren Problems nicht nur bezüglich der Eingabegröße
zu analysieren, sondern auch einen geschickt gewählten Parameter mit in die
Analyse einfließen zu lassen. Ein Problem ist festparameter-handhabbar bezüglich
eines Parameters k, wenn eine optimale Lösung einer Instanz der Größe n in
Zeit f(k) · poly(n) gefunden werden kann. Die Idee dahinter ist, dass man für
Instanzen mit kleinem Parameter gute Laufzeiten erhält, unabhängig von der
Gesamtgröße der Eingabeinstanz. Diese Arbeit beschäftigt sich im Wesentlichen
mit diesem parametrisierten Ansatz. Ein wichtiges Konzept, um zu zeigen, dass
ein parametrisiertes Problem festparameter-handhabbar ist, sind Problemkerne.
Ein Problemkern ist grob gesagt eine in Polynomzeit konstruierbare Instanz, die
zur Eingabeinstanz äquivalent ist, aber deren Größe nur von dem Parameter (und
nicht mehr von der Eingabegröße) abhängig ist. Aus einer optimalen Lösung für
den Problemkern kann man dann eine optimale Lösung für die Eingabeinstanz
berechnen. Im Folgenden werden die Ergebnisse dieser Arbeit im Überblick be-
schrieben.

Bounded-Degree Vertex Deletion. Hierbei handelt es sich um das Problem,
einen gegebenen Graph durch Löschen von maximal k Knoten in einen Graph mit
konstantem Maximalgrad zu überführen. Das wichtigste Ergebnis dazu ist ein Al-
gorithmus, der in polynomieller Zeit zwei Knotenteilmengen berechnet, so dass
man davon ausgehen kann, dass eine Knotenteilmenge immer in einer optimalen
Lösung ist, dass die andere von der Suche nach einer optimalen Lösung ausge-
schlossen werden kann, und dass eine optimale Lösung für den Rest des Graphen
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eine bestimmte Mindestgröße besitzt. Dieses Ergebnis liefert einen Problemkern
mit O(k1+ǫ) Knoten für ein beliebiges konstantes ǫ > 0. Weitere Ergebnisse sind
ein parametrisierter Algorithmus mit der Laufzeit O((d + 2)k + kn) und ein paar
schnellere Algorithmen für einen Spezialfall des Problems. Weiterhin wird gezeigt,
dass das Problem vermutlich nicht mehr festparameter-handhabbar bezüglich Pa-
rameter k ist, wenn der Maximalgrad des Zielgraphen Teil der Eingabe ist.

Regular-Degree Vertex Deletion. Hierbei handelt es sich um das Problem,
einen Graph durch Löschen von maximal k Knoten in einen regulären Graph zu
überführen. Dieses Problem hat eine offensichtliche Ähnlichkeit zu Bounded-

Degree Vertex Deletion, verhält sich aber aufgrund von hier nicht näher
erläuterten Eigenschaften in wesentlichen Aspekten deutlich anders. Für dieses
Problem wird gezeigt, dass es NP-schwer und festparameter-handhabbar bezüglich
Parameter k ist. Das Hauptergebnis ist ein Problemkern mit O(k3) Knoten.

Knotenlöschungsprobleme und iterative Kompression. Iterative
Kompression ist eine im Jahr 2004 entwickelte Technik, die auf struktureller In-
duktion und Kompression von Zwischenlösungen basiert. Diese Technik wurde in
den letzten Jahren erfolgreich zur Lösung von einigen jahrelang offenen Problemen
eingesetzt. Fast alle diese Probleme sind Knotenlöschungsprobleme. In beinahe
allen Anwendungen dieser Technik wird eine Kompressionsaufgabe gelöst, wel-
che bei einer gegebenen Zwischenlösung nach einer davon disjunkten kleineren
Lösung fragt. Für eine große Klasse von Knotenlöschungsproblemen wird gezeigt,
für welche Fälle die Kompressionsaufgabe NP-schwer ist und für welche Fälle
sie in Polynomzeit gelöst werden kann. Für die in Polynomzeit lösbaren Fälle
ergibt sich daraus auch direkt ein effizienter Festparameter-Algorithmus für das
entsprechende Knotenlöschungsproblem, unter anderem für einen Spezialfall des
oben beschriebenen Bounded-Degree Vertex Deletion.

Graph Packing. Bei diesem Problem geht es darum, in einem gegebenen
Graph mindestens k knotendisjunkte Kopien eines festen Graphen H zu finden.
Es wird zuerst ein Problemkern mit O(k2) Knoten für das Problem, mindestens
k knotendisjunkte Dreiecke zu finden, gezeigt. Dieses Ergebnis verbessert ein be-
kanntes Resultat und hat den Vorteil, dass es auf beliebige zusammenhängende
Graphen H erweitert werden kann, was zu einem Problemkern mit O(kh−1) Kno-
ten führt, wobei h die Anzahl der Knoten in H ist.

Induced Matching. Hier geht es darum, mindestens k Kanten zu finden,
so dass sie paarweisen Abstand mindestens zwei haben. Bezüglich des Para-
meters k ist dieses Problem vermutlich nicht festparameter-handhabbar, daher
wird die parametrisierte Komplexität dieses Problems auf speziellen Graphklas-
sen untersucht. Untersucht werden unter anderem planare Graphen, Graphen
mit beschränktem Knotengrad, bipartite Graphen und Graphen mit beschränkter
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Baumweite. Das Hauptergebnis ist ein Problemkern der Größe O(k) in planaren
Graphen.

Maximum s-Plex. Bei diesem Problem geht es darum, in einem gegebenen
Graph einen induzierten Teilgraph zu finden, in dem jeder Knoten zu maxi-
mal s− 1 anderen nicht benachbart ist. Dabei soll die Anzahl der Knoten in dem
Teilgraph größtmöglich sein. Für s = 1 entspricht dies dem klassischen Maximum

Clique-Problem. Es ist offensichtlich, dass der Komplementärgraph eines Gra-
phen, zu dem jeder Knoten zu maximal s−1 anderen nicht benachbart ist, Maxi-
malknotengrad s−1 hat. Dies stellt einen direkten Bezug zu Bounded-Degree

Vertex Deletion her. Es wird eine Implementierung basierend auf den theo-
retischen Ergebnissen für Bounded-Degree Vertex Deletion beschrieben.
Dieser Ansatz ist in Experimenten für viele Graphen um Größenordnungen schnel-
ler als bisher bekannte Methoden.
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This thesis is structured into nine chapters. After a brief introduction in
Chapter 1, all notation that is used throughout the thesis is described in Chap-
ter 2. After that, I describe the central problems and give an overview on existing
and new results in Chapter 3. Then, the subsequent two chapters deal with the
covering problems (formulated as vertex deletion problems) Bounded-Degree

Vertex Deletion (Chapter 4) and Regular-Degree Vertex Deletion

(Chapter 5). Chapter 6 studies some central aspects of a technique called iter-
ative compression with respect to a wide class of vertex deletion problems. The
subsequent two chapters consider the Maximum Matching generalizations H-

Packing (Chapter 7) and Induced Matching (Chapter 8). Finally, we report
about an implementation and corresponding experimental results for Maximum

s-Plex (Chapter 9), a problem that is closely related to Bounded-Degree

Vertex Deletion. In the following, I briefly sketch my contributions.

Chapter 4 considers Bounded-Degree Vertex Deletion, the problem
of deleting a minimum number of vertices from a given graph such that the re-
sulting graph has bounded degree, where the degree bound is a constant. The
main result is a generalization of a well-known local optimization algorithm for
Vertex Cover to Bounded-Degree Vertex Deletion. This local opti-
mization algorithm also gives an “almost linear” problem kernel for Bounded-

Degree Vertex Deletion. The research was initiated by Jiong Guo and Rolf
Niedermeier. The local optimization algorithm for Bounded-Degree Vertex

Deletion (Section 4.3) was devised by Jiong Guo, Michael R. Fellows, Rolf
Niedermeier, and me in various discussions. A first version of the local optimiza-
tion algorithm was presented at the 26th International Symposium on Theoretical
Aspects of Computer Science (STACS ’09) [FGMN09b]. Unfortunately, this ver-
sion had a flaw, which was spotted by Jǐŕı Sgall (Charles University, Prague,
Czech Republic). However, the repaired version is based on exactly the same
technique with only few a modifications. I developed the description of the (re-
paired) local optimization algorithm and the correctness proof. Moreover, some
fixed-parameter algorithms are presented. The fixed-parameter algorithm for
Bounded-Degree Vertex Deletion (Section 4.4.1) goes back to an idea
by Jiong Guo. The improved fixed-parameter algorithm (Section 4.4.2) for a
special case of Bounded-Degree Vertex Deletion is due to Rolf Nieder-
meier and me. The improved fixed-parameter algorithm was presented (among
other results) at the 8th International Symposium on Experimental Algorithms
(SEA ’09) [MNS09]. I found a fixed-parameter algorithm based on iterative
compression (Section 4.5), where a linear-time subroutine that solves Maximum

Matching on a restricted graph class to speed up the algorithm has been found
by Manuel Sorge. It is also shown that Bounded-Degree Vertex Deletion

is presumably not fixed-parameter tractable if the degree bound is part of the
input. This hardness result (Section 4.6) was found in joint discussions together
with Michael R. Fellows, Jiong Guo, and Rolf Niedermeier.

Chapter 5 considers Regular-Degree Vertex Deletion, the problem
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of deleting a minimum number of vertices from a given graph such that the re-
maining graph is regular, where the degree of the regularity is constant. The
Regular-Degree Vertex Deletion problem was proposed by Dimitrios
Thilikos. An NP-completeness proof, a problem kernel, and a fixed-parameter
algorithm are presented. The results were obtained by Dimitrios Thilikos and
me in a number of discussions. The results were presented at the 2nd Algorithms
and Complexity in Durham Workshop (ACiD ’06) [MT06] and appeared in the
Journal of Discrete Algorithms [MT09].

Chapter 6 considers the iterative compression technique for vertex deletion
problems; this study was initiated by me. We analyze the computational com-
plexity of a generally occurring subtask when applying the iterative compression
technique to vertex deletion problems. The proofs for the polynomial-time solv-
able cases are based on an iterative compression algorithm for Cluster Vertex

Deletion; I came up with the idea of using matching techniques, the complete
algorithm was then developed by Falk Hüffner. I devised the modifications for
the other polynomial-time solvable cases. The hardness results were obtained
in various discussions together with Michael F. Fellows, Jiong Guo, and Rolf
Niedermeier. I discovered a relation to a framework by Yannakakis and also
developed the hardness proofs for the cases in which the framework cannot be
used. The results are presented at the 34th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS ’09) [FGMN09a]. Some parts
of the introduction to iterative compression also appear in a survey on iterative
compression [GMN09].

Chapter 7 considers H-Packing, the problem of packing a maximum num-
ber of vertex-disjoint copies of a fixed graph into a given graph. I initiated
the study of H-Packing and present problem kernels for several cases; these
problem kernels were also developed by me. The results were presented at the
35th Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM ’09) [Mos09].

Chapter 6 considers the problem of packing a maximum number of edges
that have pairwise distance at least two into a given graph. The study of the
Induced Matching problem in Chapter 8 was initiated by Jiong Guo and
Rolf Niedermeier. The fundamental parameterized complexity results for vari-
ous graph classes were found by Somnath Sikdar and me in various discussions.
The hardness reduction for bipartite graphs was found by Saket Saurabh and
Daniel Lokshtanov. I devised the linear problem kernel and the dynamic pro-
gramming result. The results were presented at the 1st International Frontiers
of Algorithmics Workshop (FAW ’07) [MS07b] and appeared in Discrete Applied
Mathematics [MS09b].

Finally, Chapter 9 considers the Maximum s-Plex problem, a generalization
of Maximum Clique, and reports about implementation and experiments based
on fixed-parameter techniques. I initiated the experimental work on Maximum

s-Plex. I implemented and tested a first prototype, in later stages many of the



implementation work was done by Manuel Sorge. He also conducted many of the
experiments. The results are presented at the 8th International Symposium on
Experimental Algorithms (SEA ’09) [MNS09].

Jena, January 2010 Hannes Moser
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Chapter 1
Introduction

This thesis deals with combinatorial problems that can be viewed as generaliza-
tions of the classical Vertex Cover and Maximum Matching problems.

Covering Problems. The Vertex Cover problem is a well-studied NP-
hard combinatorial problem with many applications in different areas [BYE85,
Hoc97]. One important example is conflict resolution in computational biochem-
istry [LBI+01]. After a series of experiments there might exist conflicts between
the results of the experiments. For instance, when aligning DNA sequences, there
usually exist conflicts between sequences in the sample (e.g., caused by sequenc-
ing errors). One possible way to resolve these conflicts is to remove sequences
from the sample, until there are no conflicts anymore, and the goal is to remove
as few sequences as possible. One can model this situation with a graph, where
the vertices correspond to sequences and there is an edge between two vertices
whenever there is a conflict between the corresponding sequences. Now, the task
is to delete a minimum number of vertices from the graph such that the remaining
graph contains no edges. In other words, the task is to find a smallest subset S
of vertices such that every edge contains at least one vertex of S, that is, every
edge is covered by at least one vertex in S.

Vertex Cover

Instance: An undirected graph.
Task: Delete a minimum number of vertices from the graph such that
there remain no edges.

Vertex Cover is very closely related to finding maximum-cardinality cliques.
A clique is a subgraph in which there exists an edge between each pair of vertices.
Finding large cliques is important in many practical applications and has been
subject of the second DIMACS implementation challenge in 1995 [DIM95]. Re-
cent papers describe applications in computational finance [BBP05, BBP06] and
computational biochemistry and genomics [BW06, CLS+05]. Moreover, clique
finding also plays a role in classical computer science fields such as the analysis

1
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of web graphs for instance to identify web communities [FLG00] or “link farms”
(for the purpose of spam deletion and analysis) [STKA07]. Finding maximum-
cardinality cliques via an algorithm for Vertex Cover in the complement
graph turns out to be a successful approach in practice for many such prob-
lems [ACF+04, AFLS07, ALSS06, CLS+05].

However, in many practical applications such as social [SF78] and biologi-
cal [CLS+05] network analysis, cliques have been criticized for their overly re-
strictive nature or modeling disadvantages. Hence, more relaxed concepts of
dense subgraphs such as s-plexes [SF78] are of interest, where one demands that
each s-plex vertex does not need to be connected to all other vertices in the s-
plex but to all but s− 1. Thus, cliques are 1-plexes. One important part of this
thesis follows this line of research; we theoretically analyze a generalized Vertex

Cover problem, which asks for a minimum-cardinality vertex subset whose dele-
tion results in a graph of bounded degree s− 1; the complement of the resulting
graph is an s-plex. We also implement an algorithm to solve this generalized
Vertex Cover problem and show that one can use it to efficiently find large
s-plexes in real-world graph instances. The generalized Vertex Cover problem
can be formulated as a vertex deletion problem:

Π-Vertex Deletion

Instance: An undirected graph and a desired graph property Π.
Task: Delete a minimum number of vertices such that the remaining
graph has property Π.

In other words, the task is to find a minimum number of vertices that “cover”
all structures that violate Π. Vertex Cover is simply Π-Vertex Deletion

where Π is the property “graph with no edges”, and the problem that is used to
find s-plexes as described above is Π-Vertex Deletion where Π is the prop-
erty “graph of bounded degree s − 1”. Many more NP-hard graph problems
can be expressed as such a vertex deletion problem, as for instance Vertex

Bipartization and Undirected Feedback Vertex Set, where the corre-
sponding property Π is “bipartite graph” and “cycle-free graph”, respectively.
Vertex deletion problems are one type of problems considered in this thesis. The
other problems can be characterized as variants of the Maximum Matching

problem.

Matching Problems. The Maximum Matching problem is a classical com-
binatorial problem in computer science with many applications (for instance,
in computer vision [CWC+96], medicine [SGW+05], and computational biol-
ogy [WMFH04]) and many theoretical results [LP86].

Maximum Matching

Instance: An undirected graph.
Task: Find a maximum number of vertex-disjoint edges in the graph.
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Maximum Matching is polynomial-time solvable (e.g., [Edm65]). It can be
considered as the “dual” of Vertex Cover with respect to linear programming
covering-packing duality [Vaz01]. In this thesis, we consider mainly two types of
NP-hard generalizations of Maximum Matching: instead of finding a maximum
number of edges, one asks for

1. a maximum number of vertex-disjoint copies of some fixed graph occurring
as subgraphs in the given graph, or

2. a maximum number of edges such that each pair of edges fulfills some
distance constraints.

Such generalized matching problems have various applications in computational
biology [ABWB+09, CR02], communication networks [BBK+04, SMS06, SSM06,
KMPS04, KMPS07], and applications ranging from information theory to the
design of efficient statistical experiments [Yus07].

NP-Hard Problems. All problems described above except Maximum Match-

ing are NP-hard. It is a widely believed assumption that NP-hardness implies a
combinatorial explosion in the solution space that leads to running times growing
exponentially with the input size. Therefore, large instances of NP-hard problems
cannot always be solved to optimality in a reasonable amount of time. In contrast,
polynomial-time solvable problems like Maximum Matching are considered to
be solvable efficiently. However, as the above generalizations of Vertex Cover

and Maximum Matching, many problems of high practical relevance are NP-
hard [GJ79]. There are several approaches to solve NP-hard problems in practice.
The most common concepts for that purpose are

• heuristics,

• approximation algorithms, and

• fixed-parameter algorithms.

Heuristics drop the demand for good running time guarantees or useful quality
guarantees. They are usually tuned to give good results on typical instances, but
they might fail for some others. A simple heuristic for Vertex Cover works as
follows. Start with an empty vertex set S, and then iteratively select a vertex v of
maximum degree, add v to S and delete v and its incident edges from the graph,
until the resulting graph contains no edges. The resulting set S is a vertex cover,
that is, S covers all edges of the graph; however, one can construct instances
for which this algorithm produces solutions that are far from optimal [PS98]. In
general, heuristics have the drawback that there is no guarantee for good running
times and/or good solution quality.
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Approximation algorithms (see [ACG+99, Vaz01]) demand for good running
time guarantees (that is, polynomial-time solvability), but instead cease the de-
mand for an optimal solution, while still providing provable bounds on the so-
lution quality. A simple approximation algorithm for Vertex Cover works as
follows. Starting with an empty set S, while there exists an edge e in the graph,
add e to S and remove e and both its endpoints from the graph, until there is are
no more edges left. It is easy to see that S is a vertex cover. Each edge that has
been added to S must be covered by at least one of its endpoints, but S contains
both endpoints. Hence, S is at most twice as large as an optimal vertex cover.
Thus, for any graph the algorithm finds a vertex cover that does not contain
more than twice the number of vertices of an optimal vertex cover, hence this
algorithm guarantees an approximation factor of two.

There are approximation algorithms that can find a solution with an arbitrar-
ily good approximation factor in polynomial time (such an algorithm is called
polynomial-time approximation scheme). Unfortunately, most of the problems
considered in this paper do not admit such an approximation algorithm. For
instance, the best-known approximation factor for Vertex Cover is two, and
a lower bound of the factor is 1.36 assuming P 6= NP [DS05], and these results
translate to a large class of vertex deletion problems. Likewise, the generalized
matching problems sketched above are generally APX-hard and do therefore not
admit an arbitrarily good approximation algorithm. However, many applications
of these problems usually demand for optimal or at least nearly optimal solutions.

Fixed-parameter algorithms [DF99, Nie06, FG06] find optimal solutions for
NP-hard problems within provable running time bounds. As to be expected, such
algorithms have exponential running times; however, for many problems (as most
of the problems considered in this thesis) it is possible to confine the exponential
running time part to a parameter, that is, the running time of the algorithm
is exponential in the parameter, but only polynomial in the input size. If the
parameter is small, which is often a reasonable assumption, then the algorithm
runs efficiently, even for larger problem instances. For instance, for the Vertex

Cover problem, a parameter k is the size of an optimal vertex cover. A very
simple parameterized algorithm for Vertex Cover based on recursive branching
works as follows. Select any edge e in the graph and branch into the two cases
of putting one of the two endpoints of e into the vertex cover and delete the
chosen vertex and all its incident edges. If there are no more edges to branch on
while we deleted at most k vertices, then we have found a solution. A branching
can be done in O(n) time, and we obtain the overall running time O(2k · n).
For example, with this algorithm we can solve quite large instances with k = 30
and n = 1000 [Hüf07]. The best-known fixed-parameter algorithm for Vertex

Cover runs in O(1.274k +kn) time [CKX06], which even allows to solve instance
for k = 120 and n = 1000 [Hüf07].
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Outline. In this thesis, we concentrate on the parameterized approach for the
above-mentioned vertex deletion and matching problems. In the next chapter,
we describe the parameterized approach in more detail and give a brief intro-
duction to the most important techniques. We also provide the notation that is
used throughout this thesis. Then, in Chapter 3, we give a short overview on the
most important known results for vertex deletion and matching problems in the
context of parameterized algorithmics, and a short description of our contribu-
tions. Chapters 4–6 mainly deal with vertex deletion problems, and Chapters 7
and 8 are mainly devoted to generalized matching problems. After that, we turn
our attention to the experimental results presented in Chapter 9, where we de-
scribe the relation of Π-Vertex Deletion with Π being the property “graph
of bounded degree s − 1” and the problem of finding s-plexes and report about
our experimental results. The thesis finishes in Chapter 10 with a brief outlook.
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Chapter 2
Preliminaries

2.1 Basic Graph Theory

A graph is a tuple (V, E), where V is a finite set of vertices and E is a set
of edges, which are size-two subsets of V , that is E ⊆ {{u, v} | {u, v} ⊆ V }.
Note that by this definition the edges are not directed and there are no multiple
edges or self-loops, that is, the graphs considered in this thesis are simple and
undirected. The complement of a graph G = (V, E) is the graph Ḡ := (V, Ē),
where Ē := {{u, v} | {u, v} ⊆ V } \E. For a graph G = (V, E), we write V (G) to
denote its vertex set and E(G) to denote its edge set. By default, we use n and m
to denote the number of vertices and edges, respectively, of a given graph. Two
vertices u, v ∈ V are adjacent if {u, v} ∈ E. A vertex v ∈ V and an edge e ∈ E
are incident if v ∈ e.

For a vertex v ∈ V (G), the set NG(v) := {u ∈ V | {u, v} ∈ E} is the set of
neighbors of v. The closed neighborhood of v is defined as NG[v] := NG(v)∪{v}.
For S ⊆ V , the set NG(S) :=

⋃

v∈S N(v) \S is the neighborhood of S. The closed
neighborhood is denoted as NG[S] := NG(S)∪S. If the graph G is clear from the
context, then we also write N(v), N [v], N(S), and N [S] instead of NG(v), NG[v],
NG(S), and NG[S], respectively. The degree of a vertex v is the number of its
neighbors |N(v)|. If every vertex in G has degree at most d, then we say that G
has maximum degree d. For a vertex set S ⊆ V , we write G[S] to denote the graph
induced by S in G, that is, G[S] := (S, {e ∈ E | e ⊆ S}). For a vertex v ∈ V ,
we also write G − v instead of G[V \ {v}] and for a vertex set S ⊆ V we also
write G− S instead of G[V \ S].

A path is a sequence of vertices v1, . . . , vp with {vi, vi+1} ∈ E for all 1 ≤
i < p, where all the vertices vi are distinct. The number of edges of a path
is its length. A cycle is a path with {vp, v1} ∈ E. The girth of a graph is
the length of a shortest cycle in it. A clique is a complete graph, that is, a
graph in which all vertices are pairwise adjacent. A Kn is a clique of n vertices.
The graph K3 is also called triangle. A Pn is a path of n vertices, and Cn is

7
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a cycle of n vertices. A wheel is a graph W that has a vertex v ∈ V (W ) that
is adjacent to all other vertices such that W − v is a cycle. For s ≥ 1, the
graph K1,s := ({u, v1, . . . , vs}, {{u, v1}, . . . , {u, vs}}) is an s-star, or simply star.
The vertex u is the center of the star and the vertices v1, . . . , vs are the leaves
of the star. A ≤s-star is an s′-star with s′ ≤ s and a <s-star is an s′-star
with s′ < s. A graph is connected if there is a path between any two vertices.
For a connected graph G, a cut-vertex is a vertex v ∈ V such that G− v is not
connected. The distance between two vertices u, v is the length of a shortest path
between u and v. The distance between two edges e1, e2 is the smallest distance
between any two vertices u ∈ e1 and v ∈ e2.

Given an undirected graph G = (V, E) and an edge subset E ′ ⊆ E, to sub-
divide the edges E ′ in G means to remove from G all edges in E ′, and then to
add for each edge {u, v} ∈ E ′ a vertex xu,v, making it adjacent to u and v. The
vertices in {xu,v | {u, v} ∈ E ′} are called subdivision vertices.

For a family of graphs H we define V (H) :=
⋃

H∈H V (H) and E(H) :=
⋃

H∈H E(H). We say that a graph H ′ is a copy of H if H ′ is isomorphic to H . For
a graph G and a graph H , we say that H ′ is a copy of H in G if H ′ is a subgraph
of G and H ′ is a copy of H . Given two graphs H1 and H2, the intersection of H1

and H2 is defined as V (H1) ∩ V (H2). A packing P of a graph H in a graph G is
a set of pairwise vertex-disjoint copies of H in G.

Matching Basics. Given an undirected graph G = (V, E), an edge subset M ⊆
E is called a matching if the edges in M are pairwise disjoint. A matching M is
maximal if there exists no edge e ∈ (E \M) such that M ∪ {e} is a matching.
A matching M is maximum if there exists no larger matching. A vertex v ∈ V
is matched if there exists an edge in M that is incident to v. A vertex v ∈ V is
unmatched if it is not matched. An M-alternating path is a path in G that starts
with an unmatched vertex, and then contains, alternately, edges from E \ M
and M . If an M-alternating path ends with an unmatched vertex, then it is
called M-augmenting path.

Graph Properties. A graph property Π is a (possibly infinite) set of graphs.
We also write that a graph G satisfies Π if G ∈ Π. A graph property Π is heredi-
tary if it is closed under deleting vertices, that is, if G ∈ Π, then for any induced
subgraph G′ of G, G′ ∈ Π. A hereditary graph property is non-trivial if it is sat-
isfied by infinitely many graphs and it is not satisfied by infinitely many graphs.
A hereditary graph property is determined by the components if a graph G satis-
fies Π whenever every connected component of G satisfies Π. For any hereditary
property Π there exists a set of “minimal” forbidden induced subgraphs, that is,
forbidden graphs for which every induced subgraph satisfies Π [GHK73]. If Π is a
hereditary property that is determined by the components, then the correspond-
ing set of forbidden induced subgraphs only contains connected graphs.

A graph is planar if it can be embedded in the plane, that is, it can be drawn
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in a plane such that the edges only intersect in their endpoints. Every planar
graph contains a vertex of degree at most five, which is a consequence of Euler’s
formula.

For more about graph theory, we refer to the books by Diestel [Die05] and
West [Wes01].

2.2 Parameterized Complexity and

Fixed-Parameter Algorithms

Since many graph problem are NP-hard, it seems hopeless to solve them exactly
in polynomial time. However, NP-hardness expresses the computational hard-
ness of a problem in the worst case, and there often exist even large instances of
NP-hard problems that can be solved in reasonable time. The reason is that such
instances might contain some structure that can be exploited by an algorithm.
Such structure can often be expressed by a parameter (usually a nonnegative in-
teger), and then one can do a two-dimensional worst-case analysis that measures
the growth of the running time depending on the input size and the parameter.
The hope is that the seemingly unavoidable combinatorial explosion of the run-
ning time can be restricted to the parameter. Then, if the parameter is small,
which is often a reasonable assumption, the problem can be solved efficiently even
on large instances.

For instance, for the Vertex Cover application sketched in Chapter 1 (se-
quence alignment), it is reasonable to assume that the solution is small; otherwise,
one would have to remove too many sequences from the sample, which is an in-
dication that the sample contains too many errors in order to derive meaningful
results. Other types of parameters restrict the structure of the input graph; for
instance, there are problems where the input typically has a tree-like structure
which can be exploited to find an optimal solution (see also Section 2.3.4).

Downey and Fellows [DF99] first describe a formal framework for such a two-
dimensional analysis of problems.

Definition 2.1. A parameterized problem is a language L ⊆ Σ∗×Σ∗, where Σ is
a finite alphabet. The second component is called the parameter of the problem.

Throughout this thesis the parameter is a nonnegative integer, and there-
fore we assume that L ⊆ Σ∗ × N. For (I, k) ∈ L, the two dimensions of the
parameterized complexity analysis are then the input size n := |(I, k)| and the
parameter k. Since in our applications all parameter values are upper-bounded
by |I|, we can simply assume n := |I| in our asymptotic considerations. The
following notion expresses that a parameterized problem can be solved efficiently
for small parameter values.

Definition 2.2. A parameterized problem L is fixed-parameter tractable with
respect to the parameter k if there exists an algorithm that decides in f(k)·poly(n)
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time whether (I, k) ∈ L, where f is a computable function only depending on k.
The complexity class containing all fixed-parameter tractable problems is called
FPT.

In other words, a parameterized problem is fixed-parameter tractable if it can
be solved in time that is exponential in the parameter, but only polynomial in the
input size. There are several techniques to show that a parameterized problem
is fixed-parameter tractable. In the next section, we introduce some of the most
important ones used in this thesis, like problem kernelization (Section 2.3.1),
bounded search trees (Section 2.3.2), iterative compression (Section 2.3.3), and
dynamic programming on tree decompositions (Section 2.3.4). There also exist
parameterized problems that are likely to be not fixed-parameter tractable. Anal-
ogously to the concept of NP-hardness, Downey and Fellows [DF99] developed
a framework containing reduction and completeness notions in order to show
hardness of parameterized problems. See Section 2.3.5 for more details.

For a more detailed introduction to parameterized algorithmics and parame-
terized complexity theory we refer to the books by Downey and Fellows [DF99],
Flum and Grohe [FG06], and Niedermeier [Nie06].

2.3 Basic Fixed-Parameter Techniques

In this section, we outline some of the most important techniques in the field of
fixed-parameter algorithmics that are applied in this thesis. Concerning the first
three techniques, see also a recent survey by Hüffner et al. [HNW08] for a more
detailed description with many examples.

2.3.1 Problem Kernelization

To solve NP-hard problems, polynomial-time preprocessing is a natural approach.
The main idea is to use preprocessing to remove the “easy” parts of the input in
order to obtain the computationally hard “core” of the instance. One important
requirement of such preprocessing in our context is that they preserve the ability
to solve the problem to optimality, that is, that an optimal solution for the
reduced instance can be used to derive an optimal solution for the input instance.

In the classic one-dimensional analysis of algorithms, it is difficult to measure
the quality of such an “exact” polynomial-time preprocessing, since any prepro-
cessing step with provable effectiveness (that is, a guarantee that the preprocess-
ing step will reduce the instance) could be applied repeatedly until the remaining
instance is empty, which would imply P = NP. The picture changes completely
if we consider parameterized problems. Here, the parameter can be used to show
provable size bounds of the instance after applying the preprocessing algorithm.
Such a reduced instance is called problem kernel.
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Definition 2.3. Let L ⊆ Σ∗ × N be a parameterized problem. A reduction to
a problem kernel or kernelization is a polynomial-time transformation of an in-
stance (I, k) to an instance (I ′, k′) such that (I, k) ∈ L if any only if (I ′, k′) ∈
L, |I ′| ≤ g(k) for some arbitrary computable function g depending only on k,
and k′ ≤ k.

Thus, a problem kernelization is an algorithm that replaces the input instance
by an equivalent instance whose size depends only on k and not on the input size
anymore. The size of the problem kernel is |I ′|. However, for many graph prob-
lems, the kernel size is often stated with respect to the number of vertices only.
Moreover, a problem kernel with O(k) vertices is often called “linear problem
kernel”, although it might contain O(k2) edges. In this thesis, most of the ker-
nelization results are stated with respect to the number of vertices.

A problem kernelization is often described via data reduction rules. A data
reduction rule is an algorithm that replaces in polynomial time an instance (I, k)
with an instance (I ′, k′), where |I ′| < |I|, such that (I, k) ∈ L if and only
if (I ′, k′) ∈ L. A problem instance to which none of a given set of reduction
rules applies is called reduced with respect to these rules.

For an example of a problem kernel, consider the parameterized version of
Vertex Cover, where the size of a vertex cover is bounded by the parameter k.
If there is a vertex v of degree at least k + 1, then one may assume that v is in
the vertex cover, since otherwise all neighbors of v have to be in the cover, which
would be more than k. Therefore, as a first data reduction rule, we add all vertices
with at least k+1 neighbors to the vertex cover, and for each vertex that is added,
we decrease the parameter k by one. After that, a second data reduction rule
deletes all degree-0 vertices, which is obviously correct. If the remaining graph
is a yes-instance, that is, there exists a vertex cover S of size at most k, then
the remaining graph contains at most k2 edges and at most k + k2 vertices, since
each vertex in S has a most k neighbors, and there are no edges between vertices
in N(S). Therefore, a last data reduction rule returns the reduced graph if it
contains at most k2 edges and at most k+k2 vertices; otherwise, it returns a trivial
no-instance. The resulting instance is a O(k2)-size problem kernel for Vertex

Cover with respect to the parameter k. The currently best problem kernel for
Vertex Cover has at most 2k vertices [NT75, CKJ01]. This kernelization has
found practical applications in computational biology, where it helps to make
problem instances small enough such that they can be solved exactly [AFLS07].

It is not difficult to see that any parameterized problem that admits a problem
kernel is fixed-parameter tractable. The corresponding fixed-parameter algorithm
simply solves the problem by brute force on the problem kernel. The contrary is
also true:

Theorem 2.1 ([CCDF97]). For every parameterized problem that is fixed-para-
meter tractable there exists a problem kernel and vice versa.

Unfortunately, the theorem cannot be used to get an efficient fixed-parameter
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algorithm from a problem kernel or a small (e.g., polynomial size) problem kernel
from a fixed-parameter algorithm. It is mainly used to establish fixed-parameter
tractability or the existence of a problem kernel.

Problem kernelization is a very powerful tool to show the effectiveness of
data reduction rules. Moreover, since it preserves the ability to solve the problem
exactly, virtually any method can be used to solve the problem on the kernel (like
fixed-parameter algorithms, but also approximation and heuristic algorithms).
However, problem kernelization is not restricted to serve as a pure preprocessing
step. There is theoretical [NR00] and practical [ALSS06] evidence that it can
be efficiently interleaved with the main solving algorithm (in particular bounded
search trees, see Section 2.3.2). For instance, our experimental results in Chap-
ter 9 are heavily based on such methods, achieving speedups of several orders of
magnitude in practice.

A “success story” for kernelization is Cluster Editing, the problem of
adding and deleting at most k edges of a graph such that every connected compo-
nent becomes a clique. Here, a first problem kernel had O(k2) vertices [GGHN05],
where k is the number of allowed editing operations. The kernelization has been
gradually improved [FLRS07, PdSS09], and the best-known kernel size is now 4k
vertices [Guo09]. Kernelization algorithms for Cluster Editing have also found
applications in practice [BBK09, DLL+06]. As another example, for the (undi-
rected) Feedback Vertex Set problem, a kernel of O(k3) vertices [Bod07] has
recently been improved to O(k2) vertices [Tho09], where k is the feedback vertex
set number of the given graph.

For more about kernelization refer to a survey by Guo and Niedermeier [GN07a].

2.3.2 Bounded Search Trees

It is usually inevitable to use some exponential-time method in order to solve
an NP-hard problem to optimality. A standard way to do so is a systematic
exhaustive search, which can be organized in a tree-like fashion. The basic idea is
to find in polynomial-time a small part of the input such that at least one element
of that part has to be in an optimal solution. We then branch into several cases
of choosing an element of the small part to be in the solution, and then proceed
recursively until a solution is found. A search tree corresponds to the recursive
calls of such an algorithm. If we can bound the number of cases in each search tree
node as well as the height of the tree (the maximum number of nested recursive
calls), then we obtain a fixed-parameter algorithm. The number of recursive
calls is the number of nodes in the according tree. This number is governed by
linear recurrences with constant coefficients. These can be solved by standard
mathematical methods [Nie06]. If the algorithm solves a problem instance of
size s and calls itself recursively for problem instances of sizes s− d1, . . . , s− di,
then (d1, . . . , di) is called the branching vector of this recursion. It corresponds
to the recurrence Ts = Ts−d1

+ · · ·+ Ts−di
for the asymptotic size Ts of the overall
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search tree.

For instance, for parameterized Vertex Cover, where the size of a vertex
cover is bounded by a parameter k, a small part of the input that contains at least
one element of an optimal solution is a single edge in the graph, because we know
that each edge must be covered by at least one of its endpoints. Thus, we select
an arbitrary edge e = {u, v} of the graph, and branch into the two subcases of
adding u or v to the vertex cover. At least one of the two assumptions is correct.
Then, if we decided that for example u is in the vertex cover, then we can delete u
and all incident edges from the graph and proceed with the remaining instance.
In each branching step, one vertex is deleted from the graph. After at most k
recursive steps we either obtain an instance without edges, and we have found
a solution, or the remaining instance has still some edges, which means that
the corresponding path from the search tree root to the leaf cannot lead to a
solution of size at most k. The branching vector corresponding to this recursion
is (1, 1). This leads to a search tree of size O(2k). The selection of an edge and the
branching can be done in O(n) time and therefore we obtain a fixed-parameter
algorithm with running time O(2k · n).

Bounded search tree algorithms for Vertex Cover combined with data
reduction rules can be very fast in practice, allowing to solve real-world instances
with several thousand vertices [ALSS06]. Our experimental results in Chapter 9
are also based on a bounded search tree approach combined with data reduction
rules.

Again, a “success story” is Cluster Editing, the problem of adding and
deleting at most k edges of a graph such that every connected component be-
comes a clique. A first search tree algorithm by Gramm et al. [GGHN05] runs
in O(2.27k + n3) time [DLL+06], which was improved to O(1.92k + n3) by a
computer-generated search tree algorithm [GGHN04]. The approach by Gramm
et al. [GGHN05] has been adapted to weighted instances [RWB+07]. Böcker et
al. [BBBT09] improved the running time of the weighted version to O(1.82k +n3).
This approach has also been experimentally tested and compared with other ap-
proaches [BBK09].

2.3.3 Iterative Compression

Until 2004, the parameterized complexity of several important NP-hard mini-
mization problems was open. Then, Reed, Smith, and Vetta [RSV04] introduced
in a very short paper a new technique that is now called iterative compression.
Meanwhile, based on this technique, a number of the mentioned open questions
could be positively answered by giving corresponding fixed-parameter algorithms.
To become more specific, let us consider the NP-complete Vertex Bipartiza-

tion problem.
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Vertex Bipartization

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at most k such
that G− S is bipartite?

The central part of iterative compression is a compression routine, which, given
a graph and a size-(k + 1) solution of Vertex Bipartization, either computes
a smaller solution or proves that no smaller solution exists. This compression
routine runs in O(3k · km) time [RSV04]. An algorithm to solve Vertex Bipar-

tization uses the compression routine as follows. Start with V ′ = ∅ and S = ∅;
clearly, the empty set is a solution for an empty graph. Iterating over all graph
vertices, step by step add one vertex v /∈ V ′ from V to both V ′ and S. Then,
S is still a solution for G[V ′], although possibly not a minimum one. If in a
step |S| ≤ k, then proceed with the next step; otherwise, use the compression
routine with input G[V ′] and S to obtain a smaller solution, if it exists. If
there exists a smaller solution than k + 1, then proceed with the next step using
the smaller solution; otherwise, G[V ′] is a no-instance and therefore G is also
a no-instance. Since eventually V ′ = V , one obtains a solution for G once the
algorithm returns S. The algorithm runs in O(3k ·knm) time. With an improved
analysis, this can be improved to O(3k · nm) time [RSV04, Hüf09]. In other
words, Vertex Bipartization is fixed-parameter tractable with respect to the
parameter k. Note that there exist several variants of the original proof [RSV04]
that strive for an improved presentation [Hüf09, LSS09].

Similar breakthroughs were achieved, e.g., for the NP-complete problems
Undirected Feedback Vertex Set [DFL+07, GGH+06, CFL+08], Directed

Feedback Vertex Set [CLL+08], and Almost 2-Sat [RO09]. See also
[GMN09] for a survey about iterative compression.

While applying the compression routine is usually straightforward, finding a
compression routine is not. It is not even clear that a compression routine with
useful running times exists even if we know that the corresponding parameterized
problem is fixed-parameter tractable. In Chapter 6, we give an overview about
known results that have been achieved using iterative compression, and we give
an iterative compression framework for vertex deletion problems. Moreover, for
a large class of vertex deletion problems that are covered by the framework,
we analyze the computational complexity of the compression task, which is the
computational task that is solved by the compression routine.

2.3.4 Tree Decomposition Based Algorithms

Many NP-hard graph problems such as Vertex Cover can be solved in poly-
nomial time on trees. This motivates to study such problems in graphs that are
similar to trees. Tree decompositions are a formal way to describe the “tree-
likeness” of a given graph [Bod06, Klo94].
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Figure 2.1: Example of a graph (left) and a corresponding tree decomposition of
width two (right).

Definition 2.4. Let G = (V, E) be a graph. A tree decomposition of G is a
pair ({Xi | i ∈ I}, T ), where each Xi is a subset of V , called a bag, and T is a
tree with the elements of I as nodes. The following three properties must hold:

1.
⋃

i∈I Xi = V,

2. for every edge e ∈ E there is an i ∈ I such that e ⊆ Xi, and

3. for all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

The width of ({Xi | i ∈ I}, T ) equals max{|Xi| | i ∈ I} − 1. The treewidth of G
is the minimum k such that G has a tree decomposition of width k.

Note that trees have treewidth one. In Figure 2.1 we give an example of a
graph and a tree decomposition of width two. An important property of tree de-
compositions of width k is that each bag Xi that is not a leaf of the decomposition
tree is a separator containing at most k + 1 vertices, that is, after the deletion
of the vertices in Xi the graph decomposes into at least two connected compo-
nents (for example, the bag {2, 6, 7} in Figure 2.1 is clearly a separator). As one
consequence, in order to solve some problem on a graph, we process the bags in
the tree decomposition in a bottom-up manner and do dynamic programming,
storing all possible solutions for each bag Xi in a table that uses f(k) space for
some function f only depending on k. This yields a fixed-parameter algorithm
with respect to the parameter k. For example, for Vertex Cover one can use a
table of 2k+1 entries for each bag Xi, one for each possible intersection of Xi with
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a vertex cover, and an entry contains the minimum size of a vertex cover in the
graph corresponding to the subtree rooted at i in the decomposition tree T . Once
we computed all entries for a node i, one can reuse them to compute solutions
on Xj, where j is the parent node of i.

A limiting factor of the dynamic programming technique using tree decom-
positions is the construction of tree decompositions of small width. Given an
undirected graph G and an integer k, the problem to determine whether the
treewidth of G is at most k is NP-complete [ACP87]. There exist various algo-
rithms (e.g., heuristics or approximation algorithms) to compute a tree decom-
position of small width. See, e.g., the survey by Bodlaender and Koster [BK08].
The problem to determine whether the treewidth of a graph is at most k is fixed-
parameter tractable with respect to the treewidth k as the parameter [Bod96],
and a tree decomposition can be constructed in f(k) · (n + m) time, where f is
a function only depending on k.

For the description of tree decomposition based algorithms it is convenient to
use a nice tree decomposition, which has a particularly simple structure [Klo94].

Definition 2.5. A tree decomposition ({Xi | i ∈ I}, T ) is called a nice tree de-
composition if the following conditions are satisfied (we suppose the decomposition
tree T to be rooted at some arbitrary but fixed node):

1. Every node of the tree T has at most two children.

2. If a node i has two children j and k, then Xi = Xj = Xk (in this case i is
called a join node).

3. If a node i has one child j, then either

(a) |Xi| = |Xj| + 1 and Xj ⊂ Xi (in this case i is called an introduce
node), or

(b) |Xi| = |Xj| − 1 and Xi ⊂ Xj (in this case i is called a forget node).

A part of a nice tree decomposition for the example in Figure 2.1 is given
in Figure 2.2. A given tree decomposition can be transformed into a nice tree
decomposition in linear time:

Lemma 2.1 (Lemma 13.1.3 of [Klo94]). Given a tree decomposition of a graph G
that has width ω and O(n) nodes, where n is the number of vertices of G. Then
we can find in O(n) time a nice tree decomposition of G that also has width ω
and O(n) nodes.

2.3.5 Parameterized Reductions and W-Hardness

In analogy to the concept of NP-hardness in classical “one-dimensional” com-
plexity theory, Downey and Fellows [DF99] developed a framework providing a
reducibility and completeness program.
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Figure 2.2: A part of a nice tree decomposition of the graph in Figure 2.1. Each
node is marked with a letter denoting the node type: leaf node (L), introduce
node (I), forget node (F), and join node (J).

Definition 2.6. A parameterized reduction from a parameterized problem L ⊆
Σ∗ × N to another parameterized problem L′ ⊆ Σ∗ × N is a function that, given
an instance (I, k), returns in time f(k) ·poly(|(I, k)|) an instance (I ′, k′) (with k′

depending only on k) such that (I, k) ∈ L if and only if (I ′, k′) ∈ L′.

A parameterized problem L belongs to W [t] if L reduces to a weighted satis-
fiability problem for the family of circuits of weft at most t and depth at most
some function of the parameter k. For more about this characterization, see the
book by Downey and Fellows [DF98]. For this thesis, it is only important to know
that W[t]-hard problems are unlikely to be fixed-parameter tractable, for t ≥ 1.

In this thesis, we reduce from two standard parameterized problems to show
W[t]-hardness for t ∈ {1, 2}.

Independent Set

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at least k such
that there are no edges in G[S]?

Dominating Set

Input: A graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at most k such
that every vertex of V either belongs to S or has a neighbor in S?

The Independent Set problem is W[1]-complete and the Dominating Set

problem is W[2]-complete [DF98]. For more about parameterized complexity
theory, also refer to the book by Flum and Grohe [FG06] and a survey by Chen
and Meng [CM08].
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Chapter 3
Overview

In this chapter, we give a short survey of general results concerning vertex dele-
tion (Section 3.1) and packing problems (Section 3.2), with a focus on results in
the context of parameterized complexity analysis. Section 3.3 provides a short
summary of the results presented in this thesis.

3.1 Vertex Deletion Problems

The decision version of Π-Vertex Deletion (cf. Chapter 1) can be formulated
as follows. Let Π be any graph property.

Π-Vertex Deletion

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at most k such
that G− S ∈ Π?

Lewis and Yannakakis [LY80] showed that if Π is a non-trivial hereditary graph
property that can be tested in polynomial time, then Π-Vertex Deletion is
NP-complete. Analogous results exist for bipartite graphs, where only Vertex

Cover is solvable in polynomial time; all other Π-Vertex Deletion problems
are NP-complete [Yan81b]. Concerning approximation, it follows from the re-
ductions by Lewis and Yannakakis [LY80], which are approximation-preserving,
that no vertex deletion problem on hereditary properties can be approximated
better than Vertex Cover (best-known approximation factor 2). For the same
reason, the APX-hardness of Vertex Cover [PY91] and the polynomial-time
approximation lower bound of 1.36 assuming P 6= NP [DS05] carry over to ver-
tex deletion problems on nontrivial hereditary properties (see also [LY93]). A
generic approximation framework has been presented by Fujito [Fuj98], which
yields non-trivial constant-factor approximation algorithms for various proper-
ties. Moreover, there exist infinitely many vertex deletion problems on nontrivial
hereditary properties with infinitely many minimal forbidden induced subgraphs
that are factor-2 approximable within polynomial time [Fuj99].

19
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If the set of forbidden induced subgraphs corresponding to the property Π is
finite, then Π-Vertex Deletion is fixed-parameter tractable with respect to
the parameter k: in this case, the forbidden induced subgraphs have constant size,
and one can use a simple bounded search tree algorithm that finds a forbidden
induced subgraph, and branches into all cases of deleting a vertex of this subgraph.
Cai [Cai96] showed that this also works if the set of forbidden induced subgraphs
is not known (one has only an algorithm that can test in polynomial time whether
a graph is in Π).

If the property Π is closed under taking minors (that is, closed under deleting
vertices, deleting edges, and contracting edges), then due to a deep result by
Robertson and Seymour [RS04] there exists an algorithm that decides Π-Vertex

Deletion in time f(k) · n3; hence, Π-Vertex Deletion is fixed-parameter
tractable with respect to the parameter k. However, this result is non-constructive
and the hidden constants are huge. An example for a minor-closed property Π
is “planar”; for this property there also exists a constructive proof by showing
an fixed-parameter algorithm for Π-Vertex Deletion that runs in in f(k) · n2

time [MS07a].

There exist more results for other particular properties Π. For example, Undi-

rected Feedback Vertex Set corresponds to the case that Π means “cycle-
free” whereas for Vertex Bipartization Π means “bipartite”. Undirected

Feedback Vertex Set has been intensively studied in terms of parameter-
ized algorithms [Bod94, BBYG00, RSS02, KPS04, RSS05, DFL+07, GGH+06,
CFL+08] and kernelization [BECF+06, Bod07, Tho09]. For Vertex Biparti-

zation there exist several variants of a fixed-parameter algorithm [RSV04, Hüf09,
LSS09], which has also been implemented and tested successfully on real-world in-
stances [Hüf07, Hüf09]. These algorithms are based on the iterative compression
technique. See Chapter 6 for more details.

We refer to Table 3.1 for an overview on known and new parameterized com-
plexity results for particular vertex deletion problems.

Related Problems. There also exists a classification of the parameterized com-
plexity for the dual parameterization of Π-Vertex Deletion: the input is an
undirected graph G and an integer k ≥ 0, and one asks whether there exists a size-
k induced subgraph of G that fulfills Π. For instance, if Π is the set of all edge-free
graphs (that is, the property “edge-free”), then the problem is the dual param-
eterization of Vertex Cover, that is, the W[1]-complete Independent Set

problem. Khot and Raman [KR02] showed that the problem is W[1]-complete if
Π contains all edge-free graphs but not all complete graphs, and fixed-parameter
tractable if Π contains all complete graphs but not all edge-free graphs.

A class of problems that is closely related to vertex deletion problems are
graph modification problems. Here, for some fixed graph property Π, the in-
put is a graph, and the task is to apply a minimum number of modifications
to the graph such that Π is fulfilled. Allowed graph modifications are usually
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Table 3.1: Fixed-parameter algorithms and problem kernel sizes for various vertex deletion problems. Bounded-Degree-d
Vertex Deletion is abbreviated by BDD-d, Regular-Degree-d Vertex Deletion by RDD-d, where d is a constant.
For the exact definitions of the problems considered in this thesis, refer to the corresponding chapter.

problem property Π algorithm kernel (vertices)
Vertex Cover edge-free O(1.2738 + kn) [CKX06] 2k [CKJ01]
Vertex Bipartization bipartite O(3k ·mn) [RSV04, Hüf09, LSS09] open
Feedback Vertex Set cycle-free O(5k · kn2) [CFL+08] O(k2) [Tho09]
Chordal Deletion chordal f(k) · poly(n) [Mar09] open
Planar Deletion planar f(k) · n2 [MS07a] open
Wheel-Free Deletion wheel-free W[2]-hard [Lok08]
Cluster Vertex Deletion (induced P3)-free O(2k · k6 log k + nm) [Ch. 6] O(k2) [HKMN09a]
BDD-1 (non-induced P3)-free O(2k · k2 + kn) [Ch. 4] 15k [Ch. 4]
BDD-d (non-induced K1,(d+1))-free Hitting Set [Ch. 4] O(k1+ǫ) [Ch. 4]
RDD-d d-regular O((d + 2)k · kn) [Ch. 5] O(k3) [Ch. 5]
H-Free Vertex Deletion H-free Hitting Set [Ch. 7] O(kh−1) [Ch. 7]
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edge insertion, edge deletion, and vertex deletion. In this thesis, we restrict our
attention to graph modification problems restricted to vertex deletion as the only
allowed modification. Graph modification problems have been intensively studied
in literature, see, e.g., [Sha02, Guo06].

Vertex deletion problems have also been studied in other classes of graphs,
in particular, directed graphs. For instance, the parameterized complexity of
Directed Feedback Vertex Set, the problem of delete a minimum number
of vertices in order to remove all directed cycles from a directed graph, was a
long-standing open problem. Chen et al. [CLL+08] settled this open problem by
showing that Directed Feedback Vertex Set is fixed-parameter tractable
with respect to the number of deleted vertices as parameter. The algorithm by
Chen et al. [CLL+08] has also been implemented and tested in practice [FWY09].
Directed Feedback Vertex Set has also been studied in tournaments, that
is, directed graphs in which there exists a directed edge between any two vertices.
In such graphs, Directed Feedback Vertex Set can be solved in O(2k ·
n2(log n + k)) time, where k is the number of deleted vertices, and admits a
problem kernel of O(k3) vertices [DGH+09].

3.2 Generalized Matching Problems

The first generalized matching problem that will be studied in this thesis, H-

Packing, asks for at least k vertex-disjoint copies of a fixed graph H in a given
graph G. If H is a connected graph with at least three vertices, then H-Packing

becomes NP-complete [KH78] and also APX-complete [Kan94]. There exists a
simple polynomial-time approximation algorithm that greedily finds an inclusion-
maximal set of copies of H in G, yielding an approximation factor of |V (H)|
(cf. [Yus07]). There are further results for particular graphs H , e.g., if H is a
clique. See Chapter 7 for more details.

Concerning parameterized complexity, the H-Packing problem can be solved
in 2|V (H)|·k · poly(n) time with a randomized algorithm [Kou08] and in 22|V (H)|·k ·
poly(n) time [CKL+09] with a deterministic algorithm, which has been improved
to 2(2|V (H)|−1)·k · poly(n) [FLLW09]. The deterministic algorithms also work for a
weighted variant of the problem within the same running time bounds. Hence,
H-Packing is fixed-parameter tractable with respect to parameter k. Further
results exist for particular graphs H . See Chapter 7 for more details.

The second generalized matching problem considered in this thesis, Induced

Matching, asks for at least k edges in a given graph such that the edges have
pairwise distance at least two. This problem is NP-hard [SV82] and cannot be
approximated to within a factor of n1/2−ǫ for any ǫ > 0 [OFGZ08] in general
graphs. It has various applications, mainly in (wireless) networks. The problem
has been studied intensively in restricted graph classes with respect to its “classi-
cal” computational complexity and approximation. In Chapter 8 we give a more
detailed overview.
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There are numerous related problems, for instance, packing of graphs from a
given family H (each copy must be isomorphic to some H ∈ H) [LP09], pack-
ing on directed graphs [BHR08], factor problems (every vertex must be part
of some copy of H) [CTW09, GRC+98], edge-disjoint packing [MPS04], and
many more (see [Yus07]). There exists also some research concerning problems
that combine H-Packing with distance constraints, like Triangle Packing

with the additional constraints that the triangles should have distance at least
two [CH06, Cam09].

3.3 Summary of Results

An important part of this thesis is on problem kernelization for various vertex
deletion and generalized matching problems.

The first part of this thesis is mainly devoted to vertex deletion problems for
degree-based graph properties. The first studied problem is Bounded-Degree-

d Vertex Deletion, where the task is to delete at most k vertices such that
the remaining graph has maximum degree d. This problem is mainly motivated
by an application in finding dense subgraphs, for instance in biological and social
networks. The main result in Chapter 4 is a generalization of a local optimiza-
tion algorithm for Vertex Cover theorem by Nemhauser and Trotter [NT75],
which yields an almost linear problem kernel for Bounded-Degree-d Vertex

Deletion, that is, a problem kernel of O(k1+ǫ) vertices for any constant ǫ > 0.
The problem can be solved with a fixed-parameter algorithm based on a simple
bounded search tree that is also presented in that chapter; such an approach
together with various data reduction rules is then implemented and tested on
real-world instances in Chapter 9. An additional result is a fixed-parameter al-
gorithm based on iterative compression for the special case d = 1, running in
O(2k · k2 + kn) time. Moreover, it is shown that Bounded-Degree-d Vertex

Deletion becomes W[2]-complete for unbounded d.
Chapter 5 is devoted to a vertex deletion problem for a non-hereditary degree-

based graph property, namely Regular-Degree-d Vertex Deletion, where
the task is to delete at most k vertices such that the remaining graph is regular
with constant degree d. Since the graph property is not hereditary, the gen-
eral NP-hardness framework by Lewis and Yannakakis [LY80] does not apply.
Therefore, we provide an NP-hardness proof for Regular-Degree-d Vertex

Deletion. This problem is similar to Bounded-Degree-d Vertex Dele-

tion in some sense, but it has some very different properties due to the fact that
the underlying graph property is non-hereditary. The main result in Chapter 5 is
an O(k3)-vertex problem for Regular-Degree-d Vertex Deletion for con-
stant d. Furthermore, we show a fixed-parameter algorithm based on a bounded
search tree approach.

Chapter 6 deals with the iterative compression technique. Since iterative com-
pression has been particularly useful to derive fast fixed-parameter algorithms
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for vertex deletion problems, we first give an overview on known applications
of that technique. Then, we investigate the computational complexity of a gen-
eral “compression task” centrally occurring in all known applications of iterative
compression. The core issue (particularly but not only motivated by iterative
compression) is to determine the computational complexity of, given an already
inclusion-minimal solution for an underlying (typically NP-hard) vertex deletion
problem in graphs, to find a better disjoint solution. The complexity of this task
so far has been lacking a systematic study. We consider a large class of ver-
tex deletion problems for hereditary graph properties on undirected graphs and
show that, except for few cases which are polynomial-time solvable, the others
are NP-complete. This class includes problems such as Vertex Cover (here
the corresponding compression task is decidable in polynomial time) or Undi-

rected Feedback Vertex Set (here the corresponding compression task is
NP-complete).

Chapter 7 is devoted to H-Packing, the problem of packing at least k copies
of a fixed graph H into a given graph. We first give a problem kernel of O(k2)
vertices for Triangle Packing, that is, H-Packing with H being a triangle.
This improves known results, and the advantage of our technique is that it can
be applied to general H-Packing, yielding a kernel of O(k|V (H)|−1) vertices. As
a side result, we obtain a new type of kernel for Hitting Set, which can be used
to kernelize a large class of vertex deletion problems.

Chapter 8 deals with the Induced Matching problem, the problem of pack-
ing at least k edges such that the edges have pairwise distance at least two.
This problem is W[1]-hard with respect to the parameter k in general graphs.
Therefore, we study the parameterized complexity of Induced Matching in re-
stricted graph classes. We provide fixed-parameter tractability results for planar
graphs, bounded-degree graphs, graphs with girth at least six, bipartite graphs,
line graphs, and graphs of bounded treewidth. In particular, we give a linear-size
problem kernel for planar graphs.

In Chapter 9 we apply methods of algorithm engineering for the problem of
finding maximum s-plexes in a graph. An s-plex denotes a vertex subset in a
graph inducing a subgraph where every vertex has edges to all but at most s ver-
tices in the s-plex. Cliques are 1-plexes. In analogy to the special case of finding
maximum-cardinality cliques, finding maximum-cardinality s-plexes is NP-hard.
This problem can be formulated as the dual parameterization of Bounded-

Degree Vertex Deletion. Our implementation is based on the theoretical
work from Chapter 4, and experiments indicate the competitiveness of our ap-
proach, for many real-world graphs outperforming the previously used methods.



Chapter 4
Bounded-Degree Vertex Deletion

In this chapter, we consider the problem of deleting at most k vertices from a
given graph in order to obtain a graph of maximum degree d for any fixed d. The
underlying graph property “each vertex has degree at most d” is hereditary. We
call this problem Bounded-Degree-d Vertex Deletion. Clearly, for d = 0,
this problem is equivalent to Vertex Cover. For Vertex Cover, there exists
a classical local optimization theorem by Nemhauser and Trotter [NT75], which,
among other things, delivers a 2k-vertex problem kernel. The main contribution
in this chapter is a generalization of the theorem by Nemhauser and Trotter for
Bounded-Degree-d Vertex Deletion. In terms of problem kernelization,
our generalization yields a linear-vertex problem kernel for Bounded-Degree-

d Vertex Deletion for d ≤ 1, and an almost linear-vertex problem kernel
for d ≥ 2, that is, we can show that there exists a problem kernel of O(k1+ǫ)
vertices for any constant ǫ > 0. Moreover, we show various fixed-parameter
algorithms for Bounded-Degree-d Vertex Deletion, with a focus on the
case d = 1, where we obtain an algorithm running in O(2k · k2 + kn) time using
iterative compression. On the negative side, we show that Bounded-Degree-

d Vertex Deletion is W[2]-complete with respect to the parameter k if the
maximum degree d is unbounded.

The generalization of the Nemhauser-Trotter theorem is the main result in
this chapter. It is presented in Section 4.3. After that, two search tree algorithms
are given in Section 4.4, followed by the algorithm based on iterative compression
in Section 4.5. Finally, we present our completeness result in Section 4.6.

4.1 Introduction and Known Results

A bdd-d-set for a graph G = (V, E) is a vertex subset whose removal from G
yields a graph in which each vertex has degree at most d. The central problem
of this chapter is defined as follows.
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Bounded-Degree-d Vertex Deletion

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a bdd-d-set S ⊆ V of size at most k for G?

Applications. To advocate and justify research on Bounded-Degree-d Ver-

tex Deletion, we describe an application in computational biology (also see
Chapter 9). In the analysis of genetic networks based on micro-array data, a
clique-centric approach has shown great success [BCK+05, CLS+05]. Roughly
speaking, finding cliques or near-cliques (called paracliques [CLS+05]) has been
a central tool. Since finding cliques is computationally hard (also with respect
to approximation), Chesler et al. [CLS+05, page 241] stated that “cliques are
identified through a transformation to the complementary dual Vertex Cover

problem and the use of highly parallel algorithms based on the notion of fixed-
parameter tractability.” More specifically, in these Vertex Cover-based algo-
rithms polynomial-time data reduction (such as the NT-Theorem) plays a decisive
role [Lan08] (also see [AFLS07]) for efficient solvability of the given real-world
data. However, since biological and other real-world data typically contain er-
rors, the demand for finding cliques (that is, fully connected subgraphs) often
seems overly restrictive and somewhat relaxed notations of cliques are more ap-
propriate. For instance, Chesler et al. [CLS+05] introduced paracliques, which
are achieved by greedily extending the found cliques by vertices that are con-
nected to almost all (para)clique vertices. An elegant mathematical concept of
“relaxed cliques” is that of s-plexes [SF78], where one demands that each s-plex
vertex does not need to be connected to all other vertices in the s-plex but to
all but s − 1. Thus, cliques are 1-plexes. The corresponding problem to find
maximum-cardinality s-plexes in a graph is basically as computationally hard as
clique detection is [BBH09, CST+07, KHMN09]. However, as Vertex Cover

is the complementary dual problem for clique detection, Bounded-Degree-d
Vertex Deletion is the dual problem for s-plex detection: an n-vertex graph
has an s-plex of size k if and only if its complement graph has a solution set for
Bounded-Degree-d Vertex Deletion with d = s− 1 of size n− k, and the
solution sets can directly be computed from each other. The Vertex Cover

polynomial-time data reduction algorithm has played an important role in the
practical success story of analyzing real-world genetic and other biological net-
works [BCK+05, CLS+05]. Our new polynomial-time data reduction algorithms
for Bounded-Degree-d Vertex Deletion have the potential to play a sim-
ilar role. We implemented most of the algorithms presented in this chapter and
obtained promising results, see Chapter 9 for further details.

Hardness and Approximation. Bounded-Degree-d Vertex Deletion

is a vertex deletion problem for the hereditary graph property “each vertex has
degree at most d” and therefore NP-complete due to a general result by Lewis and
Yannakakis [LY80]. Bounded-Degree-1 Vertex Deletion is the parame-
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Table 4.1: Our parameterized complexity results for Bounded-Degree-d Ver-

tex Deletion. Here, the parameter k denotes the size of a minimum bdd-d-set,
and ǫ > 0 is an arbitrary constant.

case algorithm problem kernel (vertices)

d = 1 O(2k · k2 + kn) [Sec. 4.5] 15k [Sec. 4.3]

d ≥ 2 O((d + 2)k + n(k + d)) [Sec. 4.4]
O(k(k + d)d) [Sec. 4.2]

O(k1+ǫ) [Sec. 4.3]

d unbounded W[2]-complete [Sec. 4.6]

terized dual of Dissociation Number and therefore NP-complete on C4-free
bipartite graphs of maximum degree three [Yan81a, BCL04].

Concerning approximation, it follows from the reductions by Lewis and Yan-
nakakis [LY80], which are approximation-preserving, that Bounded-Degree-d
Vertex Deletion cannot be approximated better than Vertex Cover (ap-
proximation lower bound of 1.36 assuming P 6= NP [DS05]). For the same rea-
son, the APX-hardness of Vertex Cover [PY91] is carried over to Bounded-

Degree-d Vertex Deletion. For d ≤ 1, the best-known approximation
factor is 2 [Fuj98], and for d ≥ 2 the best-known approximation factor is 2 +
log(d) [OB03].

Parameterized Complexity. Bounded-Degree-d Vertex Deletion is
fixed-parameter tractable with respect to the parameter k for constant d, which
can be seen easily by reduction to (d + 2)-Hitting Set by enumerating all
(d + 1)-stars (a star with d + 1 leaves) in the given graph; a (d + 1)-star is the
minimal forbidden subgraph for Bounded-Degree-d Vertex Deletion. The
corresponding algorithm runs in O(ck + nd+2), where c = d + 1 + O(1/(d + 2))
for d ≥ 2 [NR03] and in O(2.08k+n3) for d = 1 [Wah07]. There also exists a search
tree algorithm with running time O((d+k)k+1 ·n) [NRT05] and an algorithm that
enumerates all minimal solutions in O((d + 2)k · (k + d)2 ·m) time [KHMN09].

We show a simple O(k2)-vertex problem kernel for Bounded-Degree-d
Vertex Deletion in Section 4.2, because we use the corresponding reduction
rules in our implementation (Chapter 9). Moreover, one can use the O(k2)-vertex
problem kernel to (quickly) kernelize a graph before applying other (slower) reduc-
tion rules (we apply this idea in Section 4.5). We provide search tree algorithms
for general Bounded-Degree-d Vertex Deletion and for the case d = 1 in
Section 4.4. These algorithms do not improve the exponential running time part
compared to the simple reduction to Hitting Set mentioned above. However,
for practical purposes as described in Chapter 9, these search tree algorithms
are better suited, because they are simple to implement. See Table 4.1 for an
overview on all results in this chapter.
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4.2 A Quadratic-Vertex Problem Kernel

Bounded-Degree-d Vertex Deletion admits a very simple O(k(k + d)d)-
vertex problem kernel, which is a generalization of the well-known quadratic-
vertex kernel for Vertex Cover attributed to Buss [BG93]. The corresponding
data reduction rules are as follows.

Reduction Rule 4.1. If there exists a vertex v ∈ V of degree more than d + k,
then delete v from G and decrease k by one.

This data reduction rule is correct, because v is always in an optimal bdd-
d-set S: if one assumes that v 6∈ S, then at least k + 1 of the neighbors of v
would have to be contained in S, a contradiction. Therefore, v is contained in
every minimum-cardinality bdd-d-set and can be safely deleted, decreasing the
parameter k by one.

Reduction Rule 4.2. If there exists a vertex v ∈ V such that each vertex in N [v]
has maximum degree d, then delete v from G.

This rule is obviously correct, as no minimum-cardinality solution would con-
tain v, and the neighbors of v still have bounded degree d after the deletion
of v.

Lemma 4.1. Reduction Rule 4.1 and Reduction Rule 4.2 can be applied in O(n(k+
d)) time.

Proof. In order to show the running time, we claim that a yes-instance contains
at most n(k + d) edges. To this end, assume that G contains more than n(k + d)
edges. Then, G contains an induced subgraph of minimum degree d + k + 1: to
see this, simply delete all vertices of degree at most d+k from G; this removes at
most n(d+k) edges, hence, after the deletion of all vertices of degree at most d+k,
there has to remain an induced subgraph of G of minimum degree d + k + 1. In
this subgraph of minimum degree d + k + 1, assuming that any vertex is not in
a bdd-d-set S yields that more than k of its neighbors have to be in S. Thus,
there is no bdd-d-set of size at most k in this graph. Thus, the graph G is a
no-instance. This shows the claim.

Next, we show the running time. The first step is to test whether E(G) >
n(k + d), and if so, abort returning “no-instance”. This is correct due to our
claim and the test can be performed in O(n(k + d)) time (simply count the
edges and abort if there are too many). Otherwise, proceed by iterating over
all vertices and deleting them if they have degree more than k + d. Hence, it
takes O(|V (G)|+ |E(G)|) = O(n(k+d)) time in total in order to apply Reduction
Rule 4.1.

Likewise, iterating over all vertices, checking the degree condition in Reduction
Rule 4.2, and deleting the corresponding vertices, can be done in O(n(k + d))
time.



4.3 A Local Optimization Algorithm 29

In the following, assume that the instance (G, k) is reduced with respect to
Reduction Rule 4.1 and Reduction Rule 4.2.

Lemma 4.2. An instance that is reduced with respect to Reduction Rule 4.1 and
Reduction Rule 4.2 contains at most O(k(k + d)d) vertices.

Proof. Assume that S is a bdd-d-set of size k. Due to Reduction Rule 4.1, each
vertex has degree at most d + k. Therefore, |N(S)| ≤ k(d + k). Clearly, each
vertex in D := N(S) has degree at most d in G − S, because S is a bdd-d-set.
Thus, for the vertices in F := N(D) \ S we know that |F | ≤ k(d + k)d. Due
to Reduction Rule 4.2, there are no further neighbors of F \ (C ∪ D), that is,
S∪D∪F contains all vertices of the reduced instance, and we obtain the claimed
bound k + k(d + k) + k(d + k)d = O(k(k + d)d) on the number of vertices in the
reduced instance.

The following theorem follows immediately.

Theorem 4.1. Bounded-Degree-d Vertex Deletion admits a problem ker-
nel of O(k(k + d)d) vertices, which can be constructed in O(n(k + d)) time.

In the next section, we will see that a significantly better kernel size can be
obtained.

4.3 A Local Optimization Algorithm

Nemhauser and Trotter [NT75] proved a famous theorem in combinatorial opti-
mization. In terms of the NP-hard Vertex Cover problem, it can be formulated
as follows:

NT-Theorem [NT75, BYE85]. For an undirected graph G = (V, E), one can
compute in polynomial time two disjoint vertex subsets A and B such that the
following three properties hold:

1. If S ′ is a vertex cover of the induced subgraph G− (A ∪ B), then A ∪ S ′ is
a vertex cover of G.

2. There is a minimum-cardinality vertex cover S of G with A ⊆ S.
3. For every vertex cover S ′′ of the induced subgraph G− (A ∪B),

|S ′′| ≥ |V \ (A ∪ B)|
2

.

In other words, the NT-Theorem provides a polynomial-time data reduction
for Vertex Cover. That is, for vertices in A it can already be decided in
polynomial time to put them into the solution set and vertices in B can be
ignored for finding a solution. Hochbaum [Hoc82] first explained that the NT-
Theorem is very useful for approximating Vertex Cover. The point is that the
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search for an approximate solution can be restricted to the induced subgraph G−
(A∪B). The NT-Theorem directly delivers a factor-2 approximation for Vertex

Cover by choosing V \B as the vertex cover. Chen et al. [CKJ01] first observed
that the NT-Theorem directly yields a 2k-vertex problem kernel for Vertex

Cover, where the parameter k denotes the size of the solution set. Indeed,
this is in a sense an “ultimate” kernelization result in parameterized complexity
analysis [DF99, FG06, Nie06] because there is good reason to believe that there
is a matching lower bound 2k for the kernel size unless P = NP [KR08].

Since its publication numerous authors have referred to the importance of the
NT-Theorem from the viewpoint of polynomial-time approximation algorithms
(e.g., [BYE85, Khu02]) as well as from the viewpoint of parameterized algorith-
mics (e.g., [AFLS07, CKJ01, GN07a, CC08]). The relevance of the NT-Theorem
comes from both its practical usefulness in solving Vertex Cover [ACF+04] as
well as its theoretical depth having led to numerous further studies and follow-up
work [AFLS07, BYE85, BYRH09, CC08].

In this section, our contribution is to provide a version of the NT-theorem
that generalizes to Bounded-Degree-d Vertex Deletion. The correspond-
ing algorithmic strategies and proof techniques, however, are not achieved by a
generalization of known proofs of the NT-Theorem.

Theorem 4.2 (BDD-DR-Theorem). For an undirected graph G = (V, E) and any
constant ǫ > 0, one can compute in O(n4 ·m) time two disjoint vertex subsets A
and B such that the following three properties hold:

1. If S ′ is a bdd-d-set of the induced subgraph G − (A ∪ B), then A ∪ S ′ is a
bdd-d-set of G.

2. There is a minimum-cardinality bdd-d-set S of G with A ⊆ S.
3. For every bdd-d-set S ′′ of the induced subgraph G− (A ∪B), for d ≤ 1,

|S ′′| ≥ |V \ (A ∪ B)|
d3 + 4d2 + 6d + 4

and for d ≥ 2,

|S ′′|1+ǫ ≥ |V \ (A ∪B)|
c

for some constant c depending on d and ǫ.

There is a significant difference to the NT-theorem for Vertex Cover:
for d ≥ 2, with our technique we can only get arbitrarily close to a linear de-
pendence of the minimum solution size on the number of vertices in |V \ (A∪B)|.
The first two properties of Theorem 4.2 are called the local optimality conditions,
since they guarantee that we can “locally” decide to take all vertices in A into an
optimal solution set and vertices in B can be ignored for finding a solution. The
third property of Theorem 4.2 is called the size condition.

As a direct application of Theorem 4.2 we obtain a problem kernel (by simply
removing A ∪ B from the graph and setting k := k − |A|):
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Corollary 4.1. For d ≤ 1, Bounded-Degree-d Vertex Deletion admits a
problem kernel of at most (d3 + 4d2 + 6d + 4) · k vertices, and for constant d ≥ 2,
Bounded-Degree-d Vertex Deletion admits a problem kernel of O(k1+ǫ)
vertices for any constant ǫ > 0. Both problem kernels can be computed in O(n4·m)
time.

We begin to describe the main algorithm that computes two sets A and B as
claimed in Theorem 4.2.

4.3.1 The Main Algorithm

The first step to prove Theorem 4.2 is to greedily compute a factor-(d + 2) ap-
proximate bdd-d-set X for G. To this end, we use the following easy-to-verify
forbidden subgraph characterization of bounded-degree graphs: A graph G has
maximum degree d if and only if there is no (d + 1)-star (a star with d + 1 leaves)
as a subgraph in G. With a straightforward greedy algorithm, compute a maxi-
mal (d + 1)-star packing of G, that is, a set of vertex-disjoint (d + 1)-stars that
cannot be extended by adding another (d + 1)-star. Let X be the set of ver-
tices of this star packing. Since the number of stars in the packing is a lower
bound for the size of a minimum bdd-d-set, X is a factor-(d + 2) approximate
bdd-d-set. Greedily remove vertices from X such that X is still a bdd-d-set, and
finally set Y := V \ X. These two vertex sets X and Y are the starting point
for the search for the two vertex subsets A and B that fulfill the properties in
Theorem 4.2; as we will see, we can restrict A to be a subset of X and B to be a
subset of Y .

Since X is a factor-(d + 2) approximate bdd-d-set, it is clear that every bdd-
d-set S ′′ contains at least |X|/(d + 2) vertices, that is, |S ′′| ≥ |X|/(d + 2).
Thus, |X| ≤ |S ′′| · (d + 2). Roughly speaking, this shows that the size condi-
tion (third property) of Theorem 4.2 is fulfilled by choosing A := ∅ and B :=
Y = V \X. However, this choice of A and B will in general not guarantee that the
first two properties of Theorem 4.2 are fulfilled. To fulfill the first two properties,
only a subset of Y can be chosen to be contained in B, but this subset should be
as large as possible in order to fulfill the size condition, that is, one has to bound
the size of Y \ B with respect to |X|. The most important lemma, whose proof
is deferred to the next subsections, shows that if Y = V \X is too big compared
to X, then one can find two vertex sets A′ ⊆ X and B′ ⊆ Y that fulfill the local
optimality conditions such that B′ is not empty.

Lemma 4.3. Let G = (V, E) be a graph with a bdd-d-set X. If Y = V \ X
contains more than (d + 1)2 · |X| vertices for d ≤ 1 or more than O(|X|1+ǫ)
vertices for d ≥ 2, then one can find in O(n3m) time two vertex subsets A′ ⊆ X
and B′ ⊆ Y such that the following three properties hold:

1. If S ′ is a bdd-d-set of the induced subgraph G− (A′ ∪B′), then A′ ∪ S ′ is a
bdd-d-set of G.
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Algorithm: ComputeAB (G)
Input: An undirected graph G = (V,E).
Output: Vertex subsets A and B satisfying the three properties of Theorem 4.2.

1 A← ∅, B ← ∅
2 Compute a (d + 2)-factor approximate bdd-d-set X for G.
3 Y ← V \X
4 if d ≤ 1 then
5 if |Y | ≤ (d + 1)2 · |X| then return (A, B)
6 if d ≥ 2 then
7 if |Y | ≤ c′ · |X|1+ǫ then return (A, B)
8 (A′, B′)← FindExtremal (G, X).
9 G← G− (A′ ∪ B′)

10 A← A ∪A′

11 B ← B ∪B′;
12 goto line 2

Figure 4.1: Pseudo-code of the main algorithm for computing A and B. The
exact value of the constant c′, which is depending on d and ǫ, is determined later
in the proof of Proposition 4.4. The pseudo-code of FindExtremal is given in
Figure 4.5.

2. There is a minimum-cardinality bdd-d-set S of G with A′ ⊆ S.

3. The subset B′ is not empty.

Note that the first two properties, that is, the local optimality conditions, are
the same as the first two properties in Theorem 4.2. As the third property in
Theorem 4.2, we also call the third property in Lemma 4.3 the size condition.
The reason is as follows. The main algorithm iteratively applies the algorithm
behind Lemma 4.3 and removes A′ and B′ from G and recomputes X, until
the preconditions of Lemma 4.3 are not fulfilled anymore. The union of all A′’s
and B′’s, respectively, then forms the sets A and B with the properties that are
stated in Theorem 4.2. Since B′ is never empty, we have a guarantee that B
“grows bigger” in each iteration, which will eventually bound the size of Y \ B,
and this bound will almost directly imply the size condition of Theorem 4.2.

In the following, we show the correctness of this approach. Let FindEx-

tremal1 be an algorithm that finds two subsets A′ and B′ as stated in Lemma 4.3.
Figure 4.1 shows the pseudo-code of the main algorithm that will be used to show
Theorem 4.2. The algorithm starts initializing A and B with empty sets in line 1,
and then it computes a factor-(d + 2) approximate bdd-d-set X in line 2 and the

1The name “FindExtremal” comes from extremal combinatorics arguments that we use
in the proof. Such arguments are often used for parameterized algorithms and problem kernel-
ization, see, e.g., [ECFLR05].
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remaining vertices Y in line 3. If the set Y is small compared to X (conditions
in line 5 or line 7), then (A, B) is returned. If the set Y is too big compared
to X (that is, the conditions in line 5 or line 7 are not fulfilled), then, in line 8,
the graph G and the vertex set X are passed to the procedure FindExtremal,
which computes two sets A′ and B′ satisfying the properties in Lemma 4.3. The
sets A′ and B′ are then added to A and B in lines 10 and 11, respectively. Finally,
in line 12 the algorithm starts over and computes a factor-(d + 2) approximate
solution for the new graph G in line 2. Since B′ is never empty due to Lemma 4.3,
the conditions in line 5 or line 7 will eventually be fulfilled (because in each iter-
ation at least one vertex is added to B, thus eventually Y \ B will be “small”),
and the algorithm returns the vertex subsets A and B. It remains to show that A
and B fulfill the three properties of Theorem 4.2, and that the running time of
ComputeAB is O(n4 ·m).

Lemma 4.4. The sets A and B computed by ComputeAB fulfill the three prop-
erties given in Theorem 4.2.

Proof. First, we prove that A and B fulfill the first two properties of Theorem 4.2.
The proof is by a simple inductive argument: assume that in some iteration of
ComputeAB the two vertex subsets A and B of a graph G fulfill the first two
properties (local optimality conditions) of Theorem 4.2 with respect to G (call this
assumption a), and that FindExtremal returns in line 8 two vertex subsets A′

and B′ of G′ := G− (A∪B) that fulfill the first two properties (local optimality
conditions) of Lemma 4.3 with respect to the graph G′ (call this assumption b).
We show that then A∪A′ and B∪B′ fulfill the first two properties of Theorem 4.2
with respect to G as well:

1. If S ′ is a bdd-d-set of the induced subgraph G′ − (A′ ∪ B′) = G − (A ∪
A′ ∪ B ∪ B′), then A′ ∪ S ′ is a bdd-d-set of G′ (due to assumption b), and
therefore A∪A′∪S ′ is a bdd-d-set of G (due to assumption a). This shows
the first property.

2. There is a minimum-cardinality bdd-d-set S of G with A ⊆ S (due to
assumption a). Since the graph property “bounded degree d” is heredi-
tary, S \ (A∪B) is a bdd-d-set for G′ = G− (A∪B). There is a minimum-
cardinality bdd-d-set S ′ of G′ with A′ ⊆ S ′ (due to assumption b). Since S ′

has minimum cardinality, |S ′| ≤ |S \ (A∪B)|. The set S ′∪A is a bdd-d-set
of G (due to assumption a), and because A ⊆ S we know that |S ′∪A| ≤ |S|.
Since S has minimum cardinality, S ′ ∪ A has minimum-cardinality, and
thus S ′ ∪A is a minimum-cardinality bdd-d-set that contains A′ ∪A. This
shows the second property.

The sets A = ∅ and B = ∅ (line 1) trivially fulfill the first two properties of
Theorem 4.2, and by the above inductive argument the sets A and B returned
by ComputeAB fulfill these properties as well.

It remains to show that the sets A and B fulfill the third property.
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3. Let V ′ := V \ (A ∪ B). Since the condition in line 5 (for d ≤ 1) or line 7
(for d ≥ 2) is true, we know that either |Y | ≤ (d + 1)2 · |X| and therefore

|V ′| = |X|+ |Y | ≤ (1 + (d + 1)2) · |X| (for d ≤ 1), or

|Y | = O(|X|1+ǫ) and therefore

|V ′| = |X|+ |Y | = O(|X|1+ǫ) (for d ≥ 2).

Recall that X is a factor-(d+2) approximate bdd-d-set for G′ := G−(A∪B).
Thus, |X| ≤ (d + 2) · |S| for an arbitrary bdd-d-set S.

For d ≤ 1, one obtains |V ′| ≤ (1 + (d + 1)2) · |X| ≤ (1 + (d + 1)2)(d + 2) · |S|
and therefore

|S| ≥ |V ′|
(1 + (d + 1)2)(d + 2)

=
|V ′|

d3 + 4d2 + 6d + 4
.

For d ≥ 2, one obtains |V ′| = O(|X|1+ǫ) = O(|S|1+ǫ) and therefore

|S|1+ǫ ≥ |V
′|

c

for some constant c. This shows the third property.

Next, we show the running time of ComputeAB.

Lemma 4.5. Algorithm ComputeAB runs in O(n4 ·m) time.

Proof. With the described simple greedy approach, computing a factor-(d + 2)
approximate solution in line 2 takes O(n+m) time. Each call of FindExtremal

in line 8 takes O(n3 · m) time. FindExtremal always returns two sets A′

and B′ such that B′ is not empty (Lemma 4.3), hence after at most n iterations
of ComputeAB, Y must be small compared to X and ComputeAB returns in
line 5 (for d ≤ 1) or line 7 (for d ≥ 2). Thus, in total, we find the sets A and B
in O(n4 ·m) time.

With Lemmas 4.4 and 4.5, the proof of Theorem 4.2 is completed.
The remaining part of this section is dedicated to the proof of Lemma 4.3

by providing a description of the algorithm FindExtremal. The description
is divided into an outline (Section 4.3.2), the description of a method to show
the local optimization conditions (Section 4.3.3), the description of an important
subroutine (Section 4.3.4), and finally a description of FindExtremal together
with the correctness proofs (Section 4.3.5).
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Y

X

(a) Each vertex in X is the center of a
star with four leaves in Y .

Y

X A′ := CX

B′ := C

(b) Each vertex in A′ is the center of a
star with four leaves in B′ ⊆ Y . The
dashed lines illustrate that there are no
edges between B′ and the rest of the
graph in G−A′.

Figure 4.2: Some simple cases for FindExtremal, assuming d = 3.

4.3.2 The Ingredients of FindExtremal

We prove Lemma 4.3 by describing an algorithm called FindExtremal that,
given an undirected graph G and a bdd-d-set X such that Y := V \X is “large”
compared to X, finds two subsets A′ ⊆ X and B′ ⊆ Y such that they fulfill the
local optimality conditions and such that B′ is not empty (see Lemma 4.3). We
first focus on the local optimality conditions:

1. If S ′ is a bdd-d-set of the induced subgraph G− (A′ ∪ B′), then A′ ∪ S ′ is
a bdd-d-set of G.

2. There is a minimum-cardinality bdd-d-set S of G with A′ ⊆ S.

Informally speaking, these two properties guarantee that one can always assume
that there exists a minimum-cardinality bdd-d-set that contains all vertices in A′

and no vertex in B′. We use this informal interpretation for the following step-
by-step explanation of the main obstacles that FindExtremal has to bypass.

How to Fulfill the Local Optimality Conditions. The fundamental idea to
show the local optimality conditions is to use the forbidden subgraph characteri-
zation of bounded-degree graphs: a graph G has maximum degree d if and only if
there is no (d+1)-star (a star with d+1 leaves) as a subgraph in G. To illustrate
the idea, let us first assume that there is a packing of vertex-disjoint (d + 1)-stars
in G such that each vertex in the bdd-d-set X is the center of such a star (thus,
all leaves are in Y ). Hence, each vertex in X is “covered” by the star packing. See
Figure 4.2a for an example. Then, due to the forbidden subgraph characteriza-
tion, a minimum-cardinality bdd-d-set has to contain at least one vertex of each
star, thus a minimum-cardinality bdd-d-set contains at least |X| vertices, and X
(that is, the set of all centers) is therefore a minimum-cardinality bdd-d-set of G.
Thus, for A′ := X and B′ := Y there exists a minimum-cardinality bdd-d-set
that contains all vertices in A′ and no vertex in B′.

Obviously, in general there might not exist a vertex-disjoint packing of (d+1)-
stars whose centers cover all vertices in X; rather, it can happen that one is only
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Y

X A′

Y \N(X)

N(X \ A′) \X N(X)

X \ A′

B′

Figure 4.3: Illustration of the structure of the graph with bdd-d-set X (assum-
ing d = 3), its neighborhood N(X), and all remaining vertices Y \ N(X). The
sets A′ and B′ fulfill the A′-star cover property and the restricted neighborhood
properties, because there is a (d + 1)-star with center in A′ and four leaves in B′

for each vertex in A′ and there are no edges between B′ and X \A′ and no edges
between B′ and N(X \ A′) \X (illustrated by dashed lines).

able to find a subset CX of X whose vertices are centers of (d+1)-stars with leaves
in Y . Now suppose that the subset CX ⊆ X is a separator in G such that the
leaves of these (d + 1)-stars are contained in a component C that is “separated”
from the rest of the graph, that is, every path from C to a vertex neither in C
nor in CX passes through CX . See Figure 4.2b for an example. Then, due to
the forbidden subgraph characterization, a minimum-cardinality bdd-d-set has to
contain at least one vertex for each (d + 1)-star with center in CX , and taking
all vertices in CX into a solution is always optimal, since each vertex in C has
degree at most d in G − CX . Thus, for A′ := CX and B′ := V (C) there exists
a minimum-cardinality bdd-d-set that contains all vertices in A′ and no vertex
in B′. If CX is not a separator as described, then this approach does not work
directly; however, as we will see, it is not necessary that A′ is a separator that
completely separates B′ from the rest of the graph; A′ and B′ only have to fulfill
the following three properties:

A′-star cover property: There exists a packing of vertex-disjoint stars in G[A′∪
B′], each star having at least d + 1 leaves, such that each vertex in A′ is the
center of such a star.

Restricted X-neighborhood property: There are no edges between B′ and
X \ A′.

Restricted Y -neighborhood property: There are no edges between B′ and
N(X \ A′) \X.

See Figure 4.3 for an illustration. Note the difference to the case illustrated in
Figure 4.2b: with these three properties, the set A′ is not necessarily a separator.
Intuitively, the A′-star cover property is needed to prove that there exists an op-
timal bdd-d-set containing A′, the restricted X-neighborhood property is needed
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to avoid that a vertex in B′ has degree more than d in G−A′, and the restricted
Y -neighborhood property is needed to avoid that a neighbor of a vertex in B′

has degree more than d in G−A′ (because, since X is a bdd-d-set of G, the only
vertices of degree more than d in G− A′ can be in X \ A′ or in N(X \ A′) \X).
Roughly speaking, then, similarly to the ideas outlined above, it is always optimal
to take all vertices in A′ into the solution, and the vertices in B′ do not have to
be considered for an optimal solution, since they and their neighbors have degree
at most d in G−A′; the formal correctness proof is given in Section 4.3.3. With
the A′-star cover property and the restricted neighborhood properties we are now
ready to sketch how FindExtremal works.

FindExtremal in a Nutshell. The algorithm FindExtremal guarantees
the A′-star cover property and the restricted X-neighborhood property as follows.
FindExtremal computes a packing of (d+1)-stars between X and Y such that
the centers CX of the stars are in X and the leaves in Y , and such that the leaves
of the stars are not adjacent to vertices in X \ CX . This is accomplished by
a procedure called StarPacking based on maximum flow techniques, which is
described in detail in Section 4.3.4. Roughly speaking, by setting A′ := CX and
by choosing B′ such that it contains all leaves of the (d+1)-stars, A′ and B′ fulfill
the A′-star cover and the restricted X-neighborhood property. The more difficult
part is to fulfill the restricted Y -neighborhood property. There might be edges
between leaves of the (d + 1)-stars and vertices in N(X \ A′) \ X. If there are
no such edges, then the A′-star cover and restricted neighborhood properties are
fulfilled. If there are such edges, then the trick is to “forbid” the vertices in X \A′,
N(X \A′)\X, and their neighbors in Y (that is, all vertices in Y within distance
at most two in G − A′ to a vertex in X \ A′). These forbidden vertices will
contain some leaves of the packing, thus the star packing between X and Y is
recomputed, but excluding the forbidden vertices. The point is, as we will see,
that if the recomputed packing can be used to construct A′ and B′ fulfilling
the A′-star cover property and the two restricted neighborhood properties in the
subgraph excluding the forbidden vertices, then they also fulfill these properties
in G. This approach of computing a packing and forbidding vertices is then
iterated until the algorithm finds two vertex subsets A′ and B′ fulfilling the local
optimality conditions. In summary, FindExtremal works roughly as follows:

1. Call StarPacking to compute a packing of (d+1)-stars (in order to fulfill
the A′-star cover property and the restricted X-neighborhood property),
excluding forbidden vertices.

2. If the restricted Y -neighborhood property can be fulfilled, then construct A′

and B′ and return.

3. Forbid vertices that prevent that the restricted Y -neighborhood property
can be fulfilled.
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4. Goto 1

Of course it has to be shown in detail that this approach always terminates and
returns a correct solution. Moreover, it still remains to consider the size condition
of Lemma 4.3.

How to Fulfill the Size Condition. Next, consider the size condition of
Lemma 4.3:

The subset B′ is not empty.

Recall the preconditions of Lemma 4.3: FindExtremal is only called if Y :=
V \X contains more than (d + 1)2 · |X| vertices for d ≤ 1 or more than O(|X|1+ǫ)
vertices for d ≥ 2. The problem is that in the iterative process of computing
a star packing and forbidding vertices, all vertices in X and Y might become
forbidden, and hence FindExtremal would not be able to return a non-empty
vertex subset B′. However, one can show that not too many vertices become
forbidden in this process, and that there will be always some vertices in B′ left.
To make this possible, it is necessary that the StarPacking procedure finds
a star packing such that the set CX of centers of (d + 1)-stars is “as large as
possible” and that the remaining vertices in X \ CX have only few neighbors
in Y . Then, roughly speaking, since X \ CX contains few vertices, there are
only few neighbors N(X \ CX) \ X, and since X is a bdd-d-set, each vertex
in N(X \CX)\X has only d neighbors in Y . Hence, there are only few forbidden
vertices, and summing up the number of all forbidden vertices over all iterations
will show that there can be only (d + 1)2 · |X| forbidden vertices in Y for d ≤ 1
or O(|X|1+ǫ) forbidden vertices for d ≥ 2.

Remarks. Note that the above description of FindExtremal is somewhat
simplified; for the case d ≤ 1 it works as described, but for the case d ≥ 2 we
actually compute a packing of stars with more than d + 1 leaves. The adapted
number of leaves depends on ǫ and |X| and guarantees that FindExtremal

iterates only a constant number of times (where the constant is depending on ǫ).
Moreover, for d ≥ 2 it is possible that the algorithm returns two subsets A′ and B′

that do not fulfill the A′-star cover and restricted neighborhood properties but
nevertheless the local optimality conditions. However, we emphasize that the
main concept is the same as for d ≤ 1, the difference becomes important in the
formal proof of the correctness of FindExtremal.

Proof Structure of the Remainder of this Section. In the following, we
shortly outline the structure of the remaining description of FindExtremal.
The main parts are as follows.

1. A proof that if A′ and B′ fulfill the A′-star cover property and the restricted
neighborhood properties, then they also fulfill the local optimality condi-
tions (Section 4.3.3).
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2. A description of the StarPacking algorithm (used by FindExtremal in
order to fulfill the A′-star cover property and the restricted X-neighborhood
property) and its correctness proof (Section 4.3.4).

3. A description of the FindExtremal algorithm and its correctness proof
(Section 4.3.5). This part is organized as follows, roughly ordered by in-
creasing technical difficulty.

(a) A pseudo-code formulation of FindExtremal.

(b) Proof of the running time of FindExtremal.

(c) Proof that FindExtremal always outputs A′ and B′ fulfilling the
local optimality conditions.

(d) Proof of the size condition, that is, that FindExtremal always re-
turns a nonempty set B′.

4.3.3 Star Cover and Restricted Neighborhood Properties

Recall that FindExtremal tries to find two subsets A′ and B′ that fulfill the
local optimality conditions and the size condition. We repeat the definition of
the A′-star cover property and the restricted neighborhood properties, and show
that these properties suffice to show the local optimality conditions.

A′-star cover property: There exists a packing of vertex-disjoint stars in G[A′∪
B′], each star having at least d + 1 leaves, such that each vertex in A′ is the
center of such a star.

Restricted X-neighborhood property: There are no edges between B′ and
X \ A′.

Restricted Y -neighborhood property: There are no edges between B′ and
N(X \ A′) \X.

See Figure 4.3 for an illustration of these properties. First, we show that these
three properties are at least as strong as the local optimality conditions, that is,
the first two properties of Lemma 4.3:

Lemma 4.6. Let A′ and B′ be two vertex subsets satisfying the A′-star cover prop-
erty and the restricted neighborhood properties. Then, the following two properties
hold:

(1) If S ′ is a bdd-d-set of the induced subgraph G − (A′ ∪ B′), then A′ ∪ S ′ is a
bdd-d-set of G.

(2) There is a minimum-cardinality bdd-d-set S of G with A′ ⊆ S.
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Proof. To prove (1), suppose that S ′ is a bdd-d-set of G′ := G − (A′ ∪ B′). To
prove that S ′′ := S ′ ∪ A′ is a bdd-d-set of G, we have to consider the vertices
in NG[B′] \ S ′′. For these vertices we have to show that their degree is at most d
in G − S ′′, that is, each vertex in NG[B′] \ S ′′ has degree at most d in G − S ′′.
To this end, we show that each vertex in NG[B′] \A′ ⊇ NG[B′] \S ′′ has degree at
most d in G−A′. Since X is a bdd-d-set of G and since A′ ⊆ X, the only vertices
that can have degree more than d in G−A′ are in X \A′ and in N(X \A′) \X,
but these vertices are neither in B′ nor are they neighbors of vertices in B′ due
to the restricted neighborhood properties, and hence each vertex in NG[B′] \ A′

has degree at most d in G− A′ and, therefore, also in G− S ′′.
Before proving (2), one needs to show that A′ is a minimum-cardinality bdd-

d-set of G[A′∪B′]. Since X is a bdd-d-set of G, the vertex subset A′ is a bdd-d-set
of G[A′ ∪B′]; moreover, due to the A′-star cover property, for each vertex v ∈ A′

there is a star with at least d + 1 leaves in B′ with center v. Since each star
has at least d + 1 leaves, it has to contain at least one vertex of a minimum-
cardinality bdd-d-set of G[A′ ∪ B′], and, therefore, every bdd-d-set of G[A′ ∪B′]
contains at least |A′| vertices, showing that A′ is a minimum-cardinality bdd-d-set
of G[A′ ∪ B′].

To prove (2), suppose that S ′ is a minimum-cardinality bdd-d-set of G. If A′ ⊆
S ′, then we are done. Therefore, assume that A′ * S ′. We show that we can
transform S ′ into a bdd-d-set S with |S| = |S ′| and A′ ⊆ S. Let A′′ := A′ \ S ′.
As shown above, the set A′ is a minimum-cardinality bdd-d-set of G[A′ ∪ B′].
Since the bounded-degree property is hereditary, S ′ ∩ (A′ ∪ B′) is a bdd-d-set
of G[A′ ∪ B′]. Since A′ is a minimum-cardinality bdd-d-set of G[A′ ∪ B′], for
the vertex subset B′′ := B′ ∩ S ′ we know that |A′′| ≤ |B′′|. We claim that the
set S := (S ′ \B′′)∪A′′ (thus, A′ ⊆ S) is also a bdd-d-set of G. Since the vertices
in B′′ are the only vertices in S ′ \ S, it suffices to show that these vertices and
their neighbors have degree at most d in G − S. As shown in the proof of (1),
each vertex in NG[B′] \ A′ has degree at most d in G− A′ and thus each vertex
in NG[B′′]\A′ has degree at most d in G−A′ and, therefore, S is a bdd-d-set of G.
Due to |A′′| ≤ |B′′|, S is a minimum-cardinality bdd-d-set of G with A′ ⊆ S.

Lemma 4.6 will be used in the proof of the correctness of FindExtremal—it
helps to make the description of the underlying algorithm and the corresponding
correctness proofs more accessible.

As described in the outline of FindExtremal (Section 4.3.2), the search
for the subsets A′ ⊆ X and B′ ⊆ Y will be driven by the search for a packing
of vertex-disjoint stars with centers in X and at least (d + 1) leaves in N(X).
Roughly speaking, the centers of such stars with at least d+1 leaves will be in A′

and their leaves will be in B′, which fulfills the A′-star cover property, but in order
to fulfill the restricted neighborhood properties the vertices for A′ and B′ have to
be selected carefully. To fulfill the third property of Lemma 4.3, which says that
the returned vertex set B′ ⊆ Y is not empty, it is necessary that the packing of
stars with centers in X and leaves in N(X), which is used to compute A′ and B′,
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contains “as many stars with at least d + 1 leaves as possible”. This is described
in more detail in the next subsection.

4.3.4 Star Packing

As outlined in the preceding subsections, given a graph G and a bdd-d-set X, the
task is to compute a star packing P with the centers of the stars being from X
and the leaves being from N(X) ⊆ Y = V \ X. The stars in the packing shall
have at most r leaves, where r depends on d and is set to

r :=

{

d + 1, if d ≤ 1,

d + 1 + ⌈|X|ǫ⌉, otherwise.

The reason for this distinction between d ≤ 1 and d ≥ 2 will become clear
later in the analysis of the algorithm. For the moment it is only important
that r ≥ d+ 1, which implies that an r-star is a forbidden subgraph. To compute
the star packing P , we relax, on the one hand, the requirement that the stars
in the packing have exactly r leaves, that is, the packing P might contain <r-
stars. On the other hand, P shall have a maximum number of edges. The rough
idea behind this requirement for a maximum number of edges is to maximize the
number of r-stars in P , and to guarantee that the leaves of many r-stars are not
adjacent to centers of <r-stars. Based on P , it is possible to “separate” many
r-stars, whose centers will be in A′ and whose leaves will be in B′, such that their
leaves are not adjacent to the center of any <r-star. This will guarantee that
there are no edges between B′ and X \A′ (restricted X-neighborhood property).
For computing such a star packing, we can restrict our attention to the bipartite
graph J induced by the edges between X and N(X), that is, V (J) = X ∪N(X)
and E(J) = {{u, v} ∈ E(G) | u ∈ X and v ∈ N(X)}. The following lemma is a
precise statement of the properties of the star packing. In the lemma, the centers
of the “separated” r-stars are contained in a vertex set CX ⊆ X and the leaves
of the remaining stars are contained in a vertex set CY ⊆ Y . The fact that there
are no edges between the leaves of the “separated” r-stars and the centers of the
remaining stars is expressed by saying that CX ∪CY is a vertex cover in J . Since
FindExtremal will call the star packing algorithm for subsets of X and Y , we
state the lemma with respect to X ′ ⊆ X and Y ′ ⊆ Y .

Lemma 4.7. In a bipartite graph J with vertex sets X ′ and Y ′, one can find
in O(n2 · m) time a ≤ r-star packing P and a vertex cover CX ∪ CY of J ,
where CX ⊆ X ′ and CY ⊆ Y ′ such that

1. every vertex of CX is the center of an r-star in P and the leaves of the
r-stars in P (with center in CX) are not in CY , and

2. every vertex of CY is a leaf in the star packing (of some ≤r-star with center
in X ′ \ CX).
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Figure 4.4: Example of a bipartite graph J , a packing P (bold edges and black
vertices) in J that fulfills the properties stated in Lemma 4.7 for r = 4, and the
additions to the graph that are used to prove Lemma 4.7 by maximum flow /
minimum cut duality (s, t, and their incident edges). The corresponding flow
network has the source s and the sink t (assuming that all edges are directed
from bottom to top), where each edge incident to s has capacity r = 4, each edge
in J has capacity ∞, and each edge incident to t has capacity 1. The dashed line
shows a minimum s-t-cut (S, T ), which can be used to compute CX and CY .

See Figure 4.4 for an example of such a packing P with vertex cover CX ∪
CY . Let ComputePacking(J ,X ′,Y ′) be an algorithm that computes such a
packing P and two vertex subsets CX and CY as stated in Lemma 4.7.

Proof. From the given bipartite graph J , construct a flow network as follows (see
Figure 4.4). Introduce two new vertices s and t, and add an edge with capacity r
from s to v for every v ∈ X ′, add an edge with capacity 1 from w to t for
every w ∈ Y ′, and add an edge with infinite capacity from v ∈ X ′ to w ∈ Y ′

if {v, w} ∈ E(J). A maximum flow f corresponds to a packing P of ≤r-stars in J .
Let (S, T ) be the corresponding cut of capacity f with s ∈ S and t ∈ T . The
set CX∪CY with CX := X ′∩T and CY := Y ′∩S is a vertex cover for J ; otherwise,
there would be an edge with infinite capacity that leaves S, contradicting the fact
that (S, T ) has capacity f . Moreover, one can observe that the vertices in CX

must be centers of vertex-disjoint r-stars, whose leaves are in T , and the vertices
in CY must be leaves of stars in the corresponding packing P (otherwise, the
cut (S, T ) would have higher capacity than the maximum flow).

A maximum flow can be computed in O(n2 · m) time using, e.g., “Dinic’s
algorithm” (cf. [Din06]).

We mention in passing that the structure that is found by Lemma 4.7 can be
interpreted as a generalization of crown structures for Vertex Cover (cf. [CFJ04,
AFLS07]) to Bounded-Degree-d Vertex Deletion.

The algorithm ComputePacking is used by FindExtremal to find A′
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and B′ that fulfill the local optimality conditions. The FindExtremal algo-
rithm is described next.

4.3.5 The FindExtremal Algorithm

As described in the outline of FindExtremal (Section 4.3.2), the approach of
the FindExtremal algorithm is to iteratively call ComputePacking and use
the returned packing P and the vertex sets CX and CY to try to obtain two
sets A′ and B′ satisfying the A′-star cover property and the restricted neighbor-
hood properties, or, if that fails, to forbid parts of graph and to try again. An
important addition for d ≥ 2, which has not been mentioned so far, is that if
FindExtremal fails too many times to find A′ and B′ satisfying the A′-star
cover property and the restricted neighborhood property, then one can directly
return two vertex sets A′ and B′ satisfying the local optimality conditions (the
first two properties of Lemma 4.3).

The description of FindExtremal is divided into four parts. First, we give a
pseudo-code description of FindExtremal, implementing the “trial-and-error”
strategy outlined above. Then, we show the running time of FindExtremal.
After that, we show that FindExtremal is correct in the sense that it returns
two subsets A′ and B′ that fulfill the local optimality conditions of Lemma 4.3.
For the output of FindExtremal there are two different cases to consider, for
one of them we show that the A′-star cover property and the restricted neighbor-
hood properties are fulfilled, and for the other case we directly show the validity
of the local optimality conditions. Note that the first case applies for all d ≥ 0,
but the latter only applies for d ≥ 2. Finally, we address the last property in
Lemma 4.3, that is, we show that the vertex subset B′ is never empty.

Pseudo-Code for FindExtremal

The pseudo-code in Figure 4.5 shows the algorithm FindExtremal. The input
to FindExtremal is a graph G and a bdd-d-set X. It starts with computing the
bipartite graph J induced by the edges between X and N(X) (line 1). Vertices
in X that are forbidden in the course of the algorithm execution are stored in
the set FX , which is initialized with an empty set (line 2). Vertices in Y that are
forbidden in the course of the algorithm execution are stored in the set FY , which
is also initialized with an empty set (line 2). The variable j counts the number
of calls of ComputePacking (line 4) and is initialized with “1” (line 3). The
algorithm always returns a vertex pair (A′, B′), where A′ = X \ FX and B′ =
Y \ FY (lines 5 and 7), that is, it returns all the vertices that are not forbidden.
There are two possible cases when (A′, B′) is returned:

1. either the vertex set CX contains all vertices in X that are not in FX (line 5)
or

2. the algorithm has iterated ⌈1/ǫ⌉+ 1 times (line 7).
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Procedure: FindExtremal (G, X)
Input: An undirected graph G and a bdd-d-set X of G.
Output: A vertex subset pair (A′, B′) satisfying the local optimality conditions.

1 J ← bipartite graph with X and N(X) as its two vertex subsets and
E(J)← {{u, v} ∈ E(G) | u ∈ X and v ∈ N(X)}

2 FX ← ∅; FY ← ∅
3 j ← 1
4 (P, CX , CY )← ComputePacking(J − (FX ∪ FY ), X \ FX , Y \ FY )
5 if CX = X \ FX then return(X \ FX , Y \ FY )
6 FX ← X \ CX ; FY ← NG[NJ(FX)] \X
7 if d ≥ 2 and j ≥ ⌈1/ǫ⌉+ 1 then return(X \ FX , Y \ FY )
8 j ← j + 1
9 goto 4

Figure 4.5: Pseudo-code of FindExtremal.

We will show that for each of these cases the pair (A′, B′) fulfills the local opti-
mality conditions. If the first case does not apply, then the algorithm computes
the new set FX of forbidden vertices in X and updates the set FY of forbidden
vertices in Y (line 6). After that, it is checked whether the second case applies
(line 7). If not, the counter j is increased by one (line 8) and the algorithm starts
over (line 9) by recomputing the star packing in line 4. See Figure 4.6 for an
example of how FindExtremal works.

In the remainder of this section, we will show the following three statements.

Statement 4.1. Algorithm FindExtremal in Figure 4.5 runs in O(n3 · m)
time.

Statement 4.2. Algorithm FindExtremal in Figure 4.5 returns two vertex
subsets (A′, B′) that fulfill the local optimality conditions:

1. If S ′ is a bdd-d-set of the induced subgraph G− (A′ ∪B′), then A′ ∪ S ′ is a
bdd-d-set of G.

2. There is a minimum-cardinality bdd-d-set S of G with A′ ⊆ S.

Statement 4.3. Let G = (V, E) be an undirected graph and let X be a bdd-d-set
of G. If Y = V \ X contains more than (d + 1)2 · |X| vertices for d ≤ 1 or
more than c′ · |X|1+ǫ vertices for d ≥ 2 (for some c′ depending on d and ǫ), then
algorithm FindExtremal in Figure 4.5 returns two vertex subsets (A′, B′) such
that B′ is not empty.

With Statements 4.1, 4.2, and 4.3, Lemma 4.3 follows immediately.
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. . .

a

CY

CX

(a) An initial star packing P (bold
edges) computed in line 4 with no
vertex being forbidden. The A′-
star cover property and the re-
stricted X-neighborhood property
could be fulfilled by choosing A′ =
CX and B′ = Y \CY . However, the
restricted Y -neighborhood prop-
erty cannot be fulfilled due to, for
example, the edge a.

FX

. . .

(b) Forbidding vertices. In line 6,
the set FX is computed, which is
used to compute the vertices of Y
excluded from the next iteration,
namely, the set FY .

A′

B′
. . .

FX

(c) Computing a new star packing P
and FX , and, then, two sets A′

and B′ that fulfill the A′-star cover
property and the restricted neigh-
borhood properties.

Figure 4.6: Example for d = 1 of how the algorithm FindExtremal in Figure 4.5
finds the two vertex subsets A′ and B′. Solid lines (bold and non-bold) denote
the edges in J , dashed lines denote the edges in E(G) \E(J). White vertices are
forbidden and excluded from further iterations for computing the star packing P .
Black vertices and bold edges are in the star packing P .

It remains to show the statements. First, we show the running time of Find-

Extremal (Statement 4.1). After that, we show that the returned sets A′ and B′

always fulfill the local optimality conditions (Statement 4.2). Finally, we show
that the set B′ is never empty (Statement 4.3).

Running Time of FindExtremal

In order to show the running time, we have to show that an updated FX (line 6)
is always a superset of an old one.

Lemma 4.8. Assume that FindExtremal does not return in line 5, that is,
CX 6= X \ FX . Let F ′

X be the set X \ CX computed in line 6. Then it holds
that FX ( F ′

X.

Proof. In line 4 of FindExtremal, the packing P and the vertex sets CX and CY

are computed for the bipartite subgraph J ′ = J − (FX ∪ FY ) with X ′ := X \ FX
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and Y ′ := Y \ FY as the two vertex subsets. Thus, since CX 6= X \ FX = X ′,
CX ( X ′, and, therefore, F ′

X = X \ CX ) X \X ′ = FX .

Lemma 4.8 shows that FindExtremal will eventually terminate (for all d ≥
0), and we can prove the running time, which shows Statement 4.1.

Proposition 4.1. Algorithm FindExtremal in Figure 4.5 runs in O(n3 ·m)
time.

Proof. In each iteration FindExtremal either returns in line 5 or line 7, or
at least one vertex from X is added to FX due to Lemma 4.8. Thus, after at
most |X| < n iterations, FX = X. Then, X \FX is empty and hence CX returned
by ComputePacking is empty, and, therefore, the condition CX = X\FX = ∅ is
true and FindExtremal returns in line 5. In each iteration, FindExtremal

calls ComputePacking, which runs in O(n2 · m) time (Lemma 4.7); all the
other operations are simple assignments, if-instructions, and neighborhood com-
putations, which take O(n + m) time.

Next, we show that the sets A′ and B′ returned by FindExtremal fulfill the
local optimality conditions (Statement 4.2).

Fulfillment of Local Optimality Conditions

In order to show Statement 4.2, that is, that FindExtremal returns two vertex
subsets (A′, B′) fulfilling the local optimality conditions, it is important to note
that

FY = NG[NJ(FX)] \X

is an invariant of FindExtremal (see line 6). We will need this invariant for
the proofs of several lemmas and propositions. The next proposition corresponds
to the case that FindExtremal returns in line 5.

Proposition 4.2. Let (P, CX, CY ) be the output of ComputePacking(J−(FX∪
FY ), X \FX , Y \FY ) (line 4). If CX = X \FX, then A′ = X \FX and B′ = Y \FY

fulfill the local optimality conditions.

Proof. We show that A′ and B′ fulfill the A′-star cover property and the restricted
neighborhood properties. Due to Lemma 4.6, the sets A′ and B′ then also fulfill
the local optimality conditions.

In line 4 of FindExtremal, the packing P and the vertex sets CX and CY

are computed for the bipartite subgraph J ′ = J − (FX ∪ FY ) with X ′ := X \ FX

and Y ′ := Y \ FY as the two vertex sets of J ′. Thus, since CX = X ′, due to
Lemma 4.7 we know that CY = ∅, since there are no stars with centers in X ′\CX =
∅. Hence, due to Lemma 4.7 the vertices in CX are centers of r-stars with leaves
in Y ′, thus A′ = X ′ and B′ = Y ′ fulfill the A′-star cover property. We emphasize
that this is also correct for the case FX = X; in this case, the set A′ is empty, and
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Figure 4.7: Illustration of the relation of the sets F j
X , F j

Y , Cj
X , Cj−1

X , and a
packing P j for r = 4. Only the r-stars with center in Cj

X in Pj are shown (there
might exist ≤r-stars with center in Cj−1

X \ Cj
X).

the A′-star cover property is trivially fulfilled. The restricted X-neighborhood
property, that is, that there is no edge between B′ and X \ A′ = FX , is fulfilled,
since all the neighbors of FX in Y are in FY = NG[NJ(FX)] \ X and therefore
not in B′ = Y \ FY . The restricted Y -neighborhood property, that is, that there
is no edge between B′ and N(X \ A′) \ X = NJ(FX), is fulfilled, since all the
neighbors of NJ(FX) are in FY and therefore not in B′.

We mention in passing that for the case FX = X all vertices in B′ have
distance at least three to vertices in X, as all vertices of distance at most two
from vertices in X are in FY . Since X is a bdd-d-set of G, the vertices in B′ thus
have degree at most d, and all their neighbors have degree at most d as well. This
is the reason why the vertices in B′ do not have to be considered for a solution
even when A′ is empty.

Next, we deal with the more involved case that FindExtremal returns in
line 7. We need to define some notation in order to be able to refer to the variables
in FindExtremal in some particular iteration. Let F j

X and F j
Y be the sets FX

and FY , respectively, in the j-th call of ComputePacking (line 4). Furthermore,
let (P j, Cj

X, Cj
Y ) be the output of the j-th call of ComputePacking(J − (F j

X ∪
F j

Y ), X \F j
X , Y \F j

Y ). Since F j
X = X \Cj−1

X (line 6) it holds that Cj−1
X = X \F j

X .
See Figure 4.7 for an illustration.

The key for the proof that FindExtremal returns two vertex sets A′ and B′

satisfying the local optimality conditions is the following result that, if FindEx-

tremal iterated sufficiently many times, then every minimum-cardinality solu-
tion contains CX .

Lemma 4.9. For j ≥ ⌈1/ǫ⌉ + 1 and d ≥ 2, the set Cj
X is contained in every

minimum-cardinality bdd-d-set of G.

The proof of Lemma 4.9 is given below. Before that, we use Lemma 4.9 to
show that the two sets (A′, B′) returned by FindExtremal in line 7 fulfill the
local optimality conditions.

Proposition 4.3. If j ≥ ⌈1/ǫ⌉ + 1 for d ≥ 2, then the following properties hold
for the vertex subsets (A′, B′) returned by FindExtremal in line 7:
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(1) If S ′ is a bdd-d-set of the induced subgraph G − (A′ ∪ B′), then A′ ∪ S ′ is a
bdd-d-set of G.

(2) There is a minimum-cardinality bdd-d-set S of G with A′ ⊆ S.

Proof. We first show the second property. Since F j
X is set to X \ Cj

X in line 6,
A′ = X \F j

X = Cj
X , and hence by Lemma 4.9 there exists a minimum-cardinality

bdd-d-set S such that A′ ⊆ S.
Next, we show the first property. Let S ′ be a bdd-d-set of G − (A′ ∪ B′).

To show that A′ ∪ S ′ is a bdd-d-set of G, it suffices to show that all vertices
in N [B′] \A′ have degree at most d in G− (A′∪S ′). Since X is a bdd-d-set of G,
X \ A′ = F j

X is a bdd-d-set for G − A′. Therefore, in G − A′, the only vertices
that possibly have degree more than d are in F j

X or adjacent to vertices in F j
X .

Since F j
Y is set to NG[NJ(F j

X)]\X (line 6), neither the vertices in B′ = Y \F j
Y nor

their neighbors N(B′) can be in F j
X or NJ(F j

X), and thus the vertices in N [B′]\A′

have degree at most d in G−A′ and therefore also in G− (A′∪S ′). Hence, A′∪S ′

is a bdd-d-set of G, which shows the first property.

With Proposition 4.2 and Proposition 4.3, Statement 4.2 follows immediately.
It remains to show Lemma 4.9. To this end, we first prove the following

lemma.

Lemma 4.10. Suppose that d ≥ 2 and Cj
X 6= X \ F j

X. If for a minimum-
cardinality bdd-d-set S it holds that |Cj

X \ S| = l, then |Cj−1
X \ S| ≥ l · ⌈|X|ǫ⌉.

Proof. The proof approach is to assume that |Cj−1
X \ S| < l · ⌈|X|ǫ⌉ and to show

that then there exists a bdd-d-set of G that is smaller than S, contradicting the
assumption that S is a minimum-cardinality bdd-d-set.

First, for a simpler presentation of the main argument, assume that v is the
only vertex in Cj

X that is not in S, that is, Cj
X \ S = {v}. Due to Lemma 4.7,

each vertex of Cj
X is the center of an r-star in the star packing P j. Since P j is a

star packing for J − (F j
X ∪F j

Y ), all the leaves of these stars are in Y \F j
Y . Recall

that r = d+1+⌈|X|ǫ⌉ (cf. Section 4.3.4). Since v 6∈ S, at least r−d = ⌈|X|ǫ⌉+1
leaves of the r-star in P j with center v must be in S, since otherwise v would
have degree more than d in G − S. Let Sv be these leaves. If Cj−1

X \ S contains
less than ⌈|X|ǫ⌉ vertices, then one obtains a smaller bdd-d-set S ′ by setting S ′ :=
(S \Sv)∪ (Cj−1

X \S), contradicting the assumption that S is minimum; the set S ′

is clearly smaller than S, and one can show that S ′ is a bdd-d-set as follows. We
only have to verify that each vertex in N [Sv] \ S ′ has degree at most d in G−S ′.
Clearly, Cj−1

X = X \ F j
X ⊆ S ′. Since X is a bdd-d-set of G, the only vertices

in G− S ′ that could have degree more than d are in F j
X and NJ(F j

X). Since F j
Y

is set to NG[NJ(F j
X)] \X (line 6), neither the vertices in Sv ⊆ Y \ F j

Y nor their
neighbors N(Sv) can be in F j

X or NJ(F j
X). Thus, the vertices in N [Sv] \ S ′ have

degree at most d in G− S ′. This shows that S ′ is a bdd-d-set of G.
Thus, Cj−1

X \ S contains at least ⌈|X|ǫ⌉ vertices. One can show in complete
analogy that if Cj

X \S contains l vertices, then Cj−1
X \S contains at least l · ⌈|X|ǫ⌉

vertices.
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Now, we are ready to prove Lemma 4.9, that is, that for j ≥ ⌈1/ǫ⌉ + 1
and d ≥ 2, the set Cj

X is contained in every minimum-cardinality bdd-d-set of G.

Proof of Lemma 4.9. In order to show the lemma, that is, that Cj
X is contained

in every minimum-cardinality bdd-d-set, we assume that there exists a minimum-
cardinality bdd-d-set S such that Cj

X 6⊆ S, and show a contradiction by proving
that S cannot have minimum-cardinality.

By assumption, Cj
X\S contains at least one vertex. By Lemma 4.10, then Cj−1

X \
S contains at least ⌈|X|ǫ⌉ vertices. By a repeated application of Lemma 4.10,
we obtain that C1

X \ S contains at least ⌈|X|ǫ⌉j−1 ≥ |X|⌈1/ǫ⌉·ǫ ≥ |X| vertices.
However, for each vertex in C1

X \ S there is a vertex-disjoint r-star (Lemma 4.7),
where r = d + 1 + ⌈|X|ǫ⌉ (cf. Section 4.3.4), and hence S would have to con-
tain more than |X| vertices in order to be a bdd-d-set. This is a contradiction
to the assumption that S has minimum cardinality, since X is a bdd-d-set of G
and therefore |X| is a trivial upper bound of the size of a minimum-cardinality
bdd-d-set of G. This shows that every minimum-cardinality bdd-d-set S con-
tains Cj

X .

In summary, FindExtremal always returns two sets A′ and B′ satisfying
the local optimality conditions. It remains to show Statement 4.3, that is, that
the returned set B′ is not empty. The key to showing this is to prove that there
cannot be too many forbidden vertices in FY compared to FX .

Number of Forbidden Vertices

Recall that one of the preconditions of Statement 4.3 is that Y contains more
than (d + 1)2 · |X| vertices for d ≤ 1 or more than O(|X|1+ǫ) vertices for d ≥ 2.
The point is, as we will show, that the set FY in FindExtremal always contains
at most (d + 1)2 · |FX | vertices for d ≤ 1 or at most O(|FX |1+ǫ) vertices for d ≥ 2.
Hence, the set B′ := Y \ FY returned by FindExtremal can never be empty.

Lemma 4.11. For each j ≥ 1, the set F j
Y has size at most r(1 + d + dj(d− 1)j) ·

|F j
X |.

Proof. We recall the definitions of some important notations. Let F j
X and F j

Y be
the sets FX and FY , respectively, in the j-th call of ComputePacking (line 4 of
FindExtremal). Furthermore, let (P j, Cj

X , Cj
Y ) be the output of the j-th call

of ComputePacking(J − (F j
X ∪ F j

Y ), X \ F j
X , Y \ F j

Y ). Note that F 1
X = F 1

Y = ∅
(line 2 of FindExtremal). Since F j

X = X \ Cj−1
X (line 6 of FindExtremal)

it holds that Cj−1
X = X \ F j

X . See Figure 4.8 for an illustration that shows the
variables that are important in this proof. Recall that F j

Y = NG[NJ(F j
X)] \ X

(line 6 of FindExtremal).

First, we bound the size of F 2
Y with respect to F 2

X . Due to Lemma 4.7,
C1

X ∪C1
Y is a vertex cover for J and thus there are no edges between F 2

X = X \C1
X
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X

Y

P j

Cj
X

F j
Y

F j
XCj−1

X

Cj
Y

Figure 4.8: Illustration of the relation of the sets F j
X , F j

Y , Cj
X , Cj

Y , Cj−1
X , and the

packing P j for r = 4.

and Y \C1
Y . Hence, since due to Lemma 4.7 every vertex in C1

Y is the leaf of a ≤r-
star with center in F 2

X , we have NJ(F 2
X) = C1

Y , and |NJ(F 2
X)| ≤ r · |F 2

X |. Since X
is a bdd-d-set of G, it follows that |F 2

Y | = |NG[NJ(F 2
X)] \X| ≤ r(d + 1) · |F 2

X |.
Two important observations for the above size bound are that F 2

Y contains
all vertices that have distance at most one to a vertex in C1

Y in G−X, and that
the vertices in C1

Y are leaves of ≤r-stars with center in F 2
X . We generalize these

observations and show the general size bound of F j
Y with respect to F j

X . To this
end, define

Dj
X := Cj−1

X \ Cj
X(for j ≥ 2).

Hence, Dj
X is exactly the set F j+1

X \ F j
X (informally speaking, the set of vertices

that are added to FX in the j-th iteration of FindExtremal), and NG[NJ(Dj
X)]\

X contains all vertices in F j+1
Y \ F j

Y .

By Lemma 4.7, Cj
X ∪Cj

Y is a vertex cover of J − (F j
X ∪ F j

Y ), and the vertices
in Cj

Y are the leaves of ≤r-stars with center in Dj
X . Thus, there are no edges

between Dj
X and Y \ (F j

Y ∪Cj
Y ) and therefore NJ(Dj

X) contains the vertices in Cj
Y

and possibly also vertices in F j
Y , but no vertices in Y \ (F j

Y ∪Cj
Y ) (cf. Figure 4.8).

The number of vertices in Cj
Y is easy to bound: since the vertices in Cj

Y are the
leaves of a ≤r-star packing with centers in Dj

X , we have

|Cj
Y | ≤ r · |Dj

X |.

For a vertex v of NJ(Dj
X)∩F j

Y , observe that v is in F j
Y because either it is in Cj′

Y

for some j′ < j, or there is a path in G−X of length at most j − j′ from v to a
vertex in Cj′

Y for some j′ < j. Hence, for 1 ≤ j′ < j, in j iterations the algorithm
FindExtremal can only add vertices to F j

Y that are at distance at most j − j′

from a vertex in Cj′

Y in G − X. To simplify the analysis, for each 1 ≤ j′ < j,

we bound the number of vertices at distance at most j + 1 from Cj′

Y in G − X.
Since G − X has bounded degree d, the number of all vertices at distance at
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most j + 1 from Cj′

Y in G−X (including the vertices in Cj′

Y ) can be bounded by

r · |Dj′

X |+ rd · |Dj′

X |+ rd(d− 1) · |Dj′

X |
+ rd(d− 1)2 · |Dj′

X |+ · · ·+ rd(d− 1)j · |Dj′

X |
= |Dj′

X | · r
(

(1 + d) + d((d− 1) + (d− 1)2 + · · ·+ (d− 1)j)
)

≤ |Dj′

X | · r
(

(1 + d) + dj(d− 1)j
)

.

In total, since F j
X =

⋃

1≤j′<j Dj′

X and Dj′

X ∩Dj′′

X = ∅ for j′ 6= j′′ (by the definition

of Dj
X), we obtain

|F j
Y | ≤

∑

1≤j′<j

|Dj′

X | · r
(

1 + d + dj(d− 1)j
)

= |F j
X | · r

(

1 + d + dj(d− 1)j
)

.

With Lemma 4.11 one can now show the following proposition, which proves
Statement 4.3.

Proposition 4.4. Let G = (V, E) be an undirected graph and let X be a bdd-d-
set of G. If Y = V \X contains more than (d + 1)2 · |X| vertices for d ≤ 1 or
more than c′ · |X|1+ǫ vertices for d ≥ 2 (for some c′ depending on d and ǫ), then
algorithm FindExtremal in Figure 4.5 returns two vertex subsets (A′, B′) such
that B′ is not empty.

Proof. For d ≤ 1 (recall that r = d + 1 in this case, cf. Section 4.3.4), if
FindExtremal returns (A′, B′) in line 5, then by Lemma 4.11 one knows
that |FY | ≤ |FX | · (d + 1)2. Since Y contains more than (d + 1)2 · |X| vertices and
since FX ⊆ X, B′ = Y \ FY cannot be empty.

For d ≥ 2 (recall that r = d + 1 + ⌈|X|ǫ⌉ in this case), if FindExtremal

returns (A′, B′) (in line 5 or line 7), then j ≤ ⌈1/ǫ⌉+ 1 (condition in line 7) and
since FX ⊆ X one knows by Lemma 4.11 that

|FY | ≤ (d + 1 + ⌈|X|ǫ⌉)
(

1 + d + d(⌈1/ǫ⌉+ 1)(d− 1)⌈1/ǫ⌉+1
)

· |X|
≤ c′ · |X|1+ǫ (for some c′ depending on d and ǫ).

Hence, since Y contains more than c′ · |X|1+ǫ vertices, B′ = Y \ FY cannot be
empty.

This finishes the proof of the local optimization theorem for Bounded-

Degree-d Vertex Deletion (Theorem 4.2).
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Remarks. Note that the entire local optimization algorithm is based on packing
stars. For example, for d = 1, it is based on a packing of stars with two leaves
(P3). We can use our local optimization algorithm also for the problem of packing
at least k copies of P3 in a given graph G, called P3-Packing. First, we compute
again a packing of stars with two leaves. If we find at least k stars, then we abort
returning “yes-instance”. Otherwise, let the set X contain the vertices of the
less than k stars, and proceed with the kernelization as described. To show that
the algorithm returns two vertex subsets A′ and B′ satisfying the A′-star cover
property for d = 1, we used the fact that there is a packing of 2-stars in G[A′∪B′]
such that each vertex in A′ is the center of one such star (and the leaves of these
2-stars are therefore in B′). Moreover, the restricted neighborhood properties
also imply that there is no P3 using vertices from B′ and G \ A′, thus using the
stars in G[A′ ∪ B′] is always optimal. The size bound and the remaining proof
then are exactly the same. Thus, we obtain the following result.

Corollary 4.2. P3-Packing admits a problem kernel of 15k vertices.

The currently best problem kernel for P3-Packing has 7k vertices [WNFC08].
This improvement stems basically from some local modification of an initial max-
imal P3-packing and would also work with our technique.

The main point we want to make here is that there seems to be a close re-
lationship between the kernelizations for star packing problems and Bounded-

Degree-d Vertex Deletion, and similar observations also hold for other pack-
ing/deletion problem pairs (cf. Chapter 7). Note that the problem of packing at
least k stars of more than two leaves (K1,l-Packing for constant l) admits a
problem kernel of O(k2) vertices [PS06]. It is conceivable that our technique also
works for this problem. However, to this end, one would have to provide a new
proof of Proposition 4.3.

4.4 Search Tree Algorithm

In this section, we describe two simple bounded search tree algorithms to solve
Bounded-Degree-d Vertex Deletion. We give an algorithm for general
constant d and a faster algorithm for d = 1. The worst-case exponential part of
the running time of these two algorithms is not better than in the running time re-
sulting by reduction to Hitting Set or in the running time of an algorithm that
enumerates all minimal solutions [KHMN09] (see Section 4.1). However, the algo-
rithms presented in this section can be interleaved with kernelization algorithms
that are particularly tailored for Bounded-Degree-d Vertex Deletion (see
Chapter 9), but which are not suitable for enumeration algorithms.
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4.4.1 General Branching Strategy

The first search tree algorithm solves the Bounded-Degree-d Vertex Dele-

tion problem for any constant d.

Theorem 4.3. Bounded-Degree-d Vertex Deletion can be solved in O((d+
2)k + n(k + d)) time.

Proof. Let (G, k) be an instance of Bounded-Degree-d Vertex Deletion.
While the graph has not bounded degree d, we choose an arbitrary vertex v ∈
V (G) with deg(v) > d. Clearly, v either needs to be deleted or all but d of its
neighbors to achieve maximum degree d. Therefore, we branch into the following
cases:

1. If v is part of the solution, then delete v from G and decrease k by one.

2. If v is no part of the solution, then choose an arbitrary subset of d + 1
neighbors of v, and, for each vertex w of the subset, branch into a subcase
by deleting w from G and decreasing k by one.

In each subcase of the branching we put at least one vertex from G into the
solution (by deleting it), and we branch into d + 2 subcases. This results in a
search tree of size O((d + 2)k). Testing whether a graph has bounded degree d
can be done in O(dn) time. In each search tree node, we kernelize the instance
before branching, using the simple O(k2)-vertex problem kernel (Theorem 4.1).
We chose this problem kernel due to its faster running time O(n(k + d)) com-
pared to the kernel based on the local optimization theorem (Corollary 4.1). In
total, this yields a running time of O((d + 2)k · k2 + n(k + d)). An improved
interleaving of the depth-bounded search tree with a problem kernel, which only
kernelizes the instance in a search tree node if the instance is larger than a certain
threshold [NR00], yields a running of O((d + 2)k + n(k + d)).

Note that a similar search tree algorithm is used to solve Regular-Degree

Vertex Deletion in Section 5.3.

4.4.2 Improved Branching Strategy for d = 1

For the practically relevant special case d = 1 (cf. Chapter 9), we give a more
refined branching strategy with an improved search tree size of O(2.31k). We
refrain from conceivable further asymptotic improvements (which appear likely
when using even further refined branching strategies) in order to keep the algo-
rithm easy to implement and efficient by avoiding the overhead incurred by more
complicated strategies.

Theorem 4.4. Bounded-Degree-1 Vertex Deletion can be solved in
O(2.31k + kn) time.
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Proof. We start with considering a vertex v of degree t > 1. Clearly, v either
needs to be deleted or all but one of its neighbors to achieve maximum degree
one. Let N(v) = {u1, . . . , ut}. We branch into the following t + 2 subcases:

1. Delete v from G and decrease k by one.

2. Delete N(v) from G and decrease k by |N(v)|.

3. For each ui ∈ N(v), 1 ≤ i ≤ t, delete N ′ := (N(v) \ {ui}) ∪ (N(ui) \ {v})
from G and decrease k by |N ′|.

The correctness of this branching can be seen as follows. First, clearly in each
subcase v either gets deleted (case 1) or it gets maximum degree one (degree zero
in case 2 and degree one in case 3). Second, the branching covers all possibilities
how v can be made a maximum-degree-one vertex: one can keep at most one
vertex from N(v) (case 3), the rest has to be deleted. If ui is the neighbor that
shall not be deleted, then clearly all vertices from N(v) \ {ui} have to be deleted
(otherwise, v would have degree greater than one) and all neighbors of ui except
for v (that is, (N(ui) \ {v}) have to be deleted (otherwise, ui would have degree
greater than one). The case of deleting all of N(v) (case 2) also needs to be
considered since, otherwise, one would miss the situation that all of v’s neighbors
have to be deleted for reasons lying outside the neighborhood of v (in other words,
if we would not consider case 2, we would miss the case that v obtains degree
zero). One obtains a branching into t+ 2 cases with the corresponding branching
vector

(1, t, t− 1 + |N(u1) \N [v]|, . . . , t− 1 + |N(ut) \N [v]|).
It is not hard to check2 that the worst-case branching vector occurs for t = 2
and |N(u1) \ N [v]| = |N(u2) \ N [v]| = 1, yielding (1, 2, 2, 2) with the branching
number 2.31. In analogy to the search tree algorithm for Bounded-Degree-d
Vertex Deletion for general d (Section 4.4.1) we can interleave the search
tree with problem kernelization, which results in O(2.31k + kn) running time in
total.

We have implemented and experimentally tested these branching strategies
(Theorem 4.3 and Theorem 4.4), interleaving them with several kernelization
methods. See Chapter 9 for more details.

4.5 Iterative Compression for d = 1

In this section, we give an improved algorithm for Bounded-Degree-1 Ver-

tex Deletion using the iterative compression technique (see Section 2.3.3). We

2We omit some details here; basically, one can argue that for t = 2 cases where |N(u1) \
N [v]| = 0 are actually easier (often avoiding branching at all) and t > 2 gives branching vectors
with smaller branching numbers.
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remark that the overall strategy used in the following is very similar to the one
known for Cluster Vertex Deletion as described in Section 6.3.1. The fun-
damental difference, in terms of corresponding forbidden subgraph characteriza-
tions, is that in the case of Cluster Vertex Deletion the task is to destroy all
induced P3’s (paths of three vertices) whereas in the case of Bounded-Degree-

1 Vertex Deletion the task is to destroy all P3’s. We will see that this permits
a faster compression routine compared to Cluster Vertex Deletion.

We first describe how to employ an assumed compression routine, and then
the compression routine itself. The general idea behind our iterative compression
is as follows. Start with V ′ = ∅ and S = ∅; clearly, S is a bdd-1-set for G[V ′].
Iterating over all graph vertices, step by step add one vertex v /∈ V ′ from V
to both V ′ and S. Then, S is still a bdd-1-set for G[V ′], although possibly
not a minimum one. One can, however, obtain a minimum one by applying a
compression routine. It takes a graph G and a bdd-1-set S for G, and returns a
minimum-cardinality bdd-1-set for G. Since eventually V ′ = V , one obtains an
optimal solution for G once the algorithm returns S. Hence, the main task is to
design a compression routine. Consider a smaller bdd-1-set S ′ as the modification
of the larger bdd-1-set S for the graph G = (V, E). This modification retains some
vertices Y ⊆ S as part of the solution set, while the other vertices in X := S \ Y
are replaced by new vertices X ′ from V \ S, where |X ′| < |X|. The idea is to try
by brute force all 2|S| − 1 nontrivial partitions of S into these two sets Y and X.
For each such partition, the vertices from Y are immediately deleted, since we
already decided to put them into the smaller bdd-1-set. Now, the task is either to
find a bdd-1-set X ′ of size less than |X| for the remaining graph or to prove that
no such X ′ exists. We call this remaining task Disjoint Compression Task.
Clearly, one requirement for the existence of a disjoint bdd-1-set X ′ is that G[X]
has maximum degree one (that is, it is P3-free). This requirement can be verified
in linear time, therefore, in the following we assume that it is satisfied.

For the compression routine, let G = (V, E) and X ⊆ V with G − X being
a graph without a P3 as a subgraph, that is, G − X has maximum degree one.
Let R := V \X. As explained above, we can also assume that G[X] has maximum
degree one. First, compute a set X1 ⊆ R of vertices that necessarily belong to
the disjoint solution by applying a series of polynomial-time executable data
reduction rules. Then, compute a set X2 ⊆ (R \ X1) such that X ′ := X1 ∪ X2

forms a minimum-size solution. If in this process one encounters a situation that
shows that the given instance has no solution, then return “no-instance”. We
start with the description of the data reduction rules. Initially, set X1 := ∅. The
four data reduction rules read as follows.

1. For each edge {u, v} in G[X], set X1 := X1 ∪ (R∩ (N(u)∪N(v))), delete u
and v from G and X, and delete R ∩ (N(u) ∪N(v)) from G and R.

2. Delete each vertex u ∈ R that is adjacent to more than one vertex in X
from G and R and set X1 := X1 ∪ {u}.
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3. For each edge {u, v} in G[R] such that |N({u, v})| = 1, choose a vertex x ∈
{u, v} that is adjacent to the vertex in N({u, v}), set X1 := X1 ∪ {x} and
delete x from G and R.

4. Delete isolated vertices and isolated edges in R from G and R.

The correctness of the first two reduction rules is due to the fact that each P3

that intersects with X in two vertices can only be destroyed if the third vertex
(from R) is in X1. The third reduction rule is correct, because the only neighbor
of {u, v} is the vertex in N({u, v}) = {w}, thus {u, v, w} induces either a triangle
(K3) or a path on three vertices P3. As a consequence, it is optimal to add a
vertex from {u, v} that is adjacent to w to X1. The fourth reduction rule is
obviously correct, as an optimal solution would never contain isolated vertices or
a vertex in an isolated edge.

These reduction rules can be easily applied exhaustively in O(n + m) time
if they are applied in the given order: To apply the first reduction rule, iterate
through each edge in G[X] and delete its neighbors in R, which takes O(n + m)
time in total. Then, for the second rule, simply check for each vertex u in R if
there are at least two neighbors in X, and if so, delete u, which takes O(n + m)
for all vertices in R. To apply the third rule, iterate over each edge {u, v} in G[R]
and test whether the neighborhood of {u, v} contains only one vertex, in which
case either u or v is deleted. In total, this takes O(n + m) time. The fourth
rule clearly takes O(n + m) time. It is important to observe that after one
particular reduction rule has been exhaustively applied, there can never again
occur a situation where the same rule could be applied again. This guarantees
that after applying the rules in their given order (the order is important, e.g.,
applying the fourth rule before the others could lead to an instance that contains
isolated vertices or edges), the instance is reduced with respect to the four data
reduction rules. Hence, an instance can be exhaustively reduced in O(n + m)
time.

After these rules have been exhaustively applied, if |X1| > |X|, then stop and
return “no-instance”. Otherwise, compute a minimum-size set X2 such that X1∪
X2 is a minimum bdd-1-set as follows.

In the following, assume that G, X, and R are reduced with respect to the data
reduction rules, that is, that none of the above rules can be applied anymore. The
following properties of G, X, and R are important for the subsequent arguments.

P1 The graph G[R] consists of isolated vertices and edges (because X obstructs
all P3’s),

P2 X forms an independent set (first reduction rule),

P3 each vertex in R is adjacent to exactly one vertex in X (reduction rules two
to four), and
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S

(a) Graph G with vertex set X , pre-
processed by the four data reduction
rules.

Y

X

(b) Corresponding Maximum

Matching instance.

Figure 4.9: Reduced Disjoint Compression Task instance (a) together with a
corresponding Maximum Matching instance (b). The bold edges in the Max-

imum Matching instance form a maximum matching M . The black vertices
in G are the vertices of a minimum-size bdd-1-set X2, X2∩X = ∅, corresponding
to M .

P4 each vertex in X is adjacent to at most one endpoint of each edge in G[R]
(P3 and third reduction rule).

An example of an instance with these properties is given in Figure 4.9a. Observe
that for each edge in G[R] at least one of its endpoints must belong to the new
solution X ′ in order to obstruct all P3’s. Moreover, for each vertex v ∈ X, all but
at most one neighbor must belong to X ′. An optimal solution that fulfills these
constraints can be easily found by reduction to Maximum Matching; the cor-
responding Maximum Matching instance is constructed by contracting every
edge in R, and a maximum matching M in that instance directly corresponds
to a solution X2 in G (see Figure 4.9b for an example). Obviously, the input
instance (G, k) is a yes-instance for Bounded-Degree-1 Vertex Deletion

if and only if |X1|+ |X2| ≤ |X|.
It remains to show the running time to solve the matching instance. Observe

that in the Maximum Matching instance the vertices in one partite set have
maximum degree two. Such an instance can be solved in linear time:

Lemma 4.12. On a bipartite graph B with partite vertex sets X and Y such
that the vertices in Y have maximum degree two, Maximum Matching can be
solved in O(n + m) time, where n and m are the number of vertices and edges
of B, respectively.

Proof. The following is a description of an algorithm that finds a maximum
matching M in B. It starts with an empty set M and then adds edges to it
as follows.

First of all, one can safely assume that an edge incident to a degree-one
vertex is always contained in a maximum matching; if an edge {u, v}, where u
has degree one, is not in a maximum matching M , then there must exist an
edge {v, w} ∈ M for some vertex w and we can simply remove {v, w} from M
and replace it by {u, v}.
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Figure 4.10: A cycle C with vertices of degree two (“inner vertices”) and vertices
of degree at least two (“exits”). Any maximum matching M can contain at most
four exits, and any matching edge that contains an inner vertex also contains
an exit. Therefore, taking every second edge on C into the matching is always
optimal. The bold edges show such a matching on C.

Therefore, in a first step, we find in O(n) time all degree-one vertices. Then,
repeat the following until there are no more degree-one vertices. Choose a degree-
one vertex u, add its incident edge {u, v} to M , and remove v from B. Note that
removing v causes that its degree-one neighbors obtain degree zero and it might
cause that some of its neighbors obtain degree one. Thus, the set of degree-one
neighbors is updated accordingly. The whole process of removing all degree-one
vertices takes O(n + m) time; there are at most n vertices to be removed, and it
takes O(deg(v)) time to update the set of degree-one neighbors if v is removed,
which sums up to O(m) in total.

The remaining graph has minimum degree two. Hence, each connected com-
ponent contains a cycle. The connected components and a cycle in each of it can
be found in O(n + m) time with a depth-first search.

From now on, let B′ be a connected component with partite vertex sets X ′ ⊆
X and Y ′ ⊆ Y and let C be a cycle in B′. Obviously, C has even length because B′

is bipartite. Since the graph has minimum degree two, the vertices in Y ′ have
degree exactly two, and therefore every second vertex on C has degree exactly
two. Moreover, every vertex in D := N(V (C)) is from Y ′ and has degree two.
There exists a maximum matching M that contains every second edge on C;
any maximum matching M ′ without that property can be easily converted to a
maximum matching of the same size with that property (see Figure 4.10). Thus,
we add every second edge on C to M and remove V (C) from B′. After that, the
neighbors D of the removed cycle have degree one, and therefore we can apply
the same process of removing all degree-one vertices as described above. This
process will remove the whole connected component B′ for the following reason.
Let v ∈ D and let w be its neighbor (we assume that C has been removed).
Since v ∈ Y ′, it follows that w ∈ X ′, and since the process of removing degree-one
vertices will remove w, the degree-two neighbors of w will obtain degree one. By
applying this argument inductively, it is clear that the process of removing degree-
one vertices will remove every vertex w′ for which there exists a path between v
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and w′ in B′. Thus, eventually, all vertices in the connected component B′ are
removed. Clearly, deleting V (C) takes linear time, and, as explained above, the
subsequent removal of degree-one vertices also takes linear time.

This shows that we can find a maximum matching in B in O(n+m) time.

Using this linear-time algorithm to solve the Maximum Matching instance,
the Disjoint Compression Task for Bounded-Degree-1 Vertex Dele-

tion can be solved in O(n + m) time. Now, we can finish the analysis of the
whole iterative compression algorithm.

Theorem 4.5. Bounded-Degree-1 Vertex Deletion can be solved in O(2k·
k2 + kn) time.

Proof. Using Theorem 4.1, we get an O(k2)-vertex problem kernel for Bounded-

Degree-1 Vertex Deletion (with O(k4) edges) in O(kn) time. On this
kernel, we apply Theorem 4.2 and obtain an O(k)-vertex problem kernel for
Bounded-Degree-1 Vertex Deletion (with O(k2) edges) in O(k12) time.
We apply the above iterative compression algorithm on that problem kernel. This
means that we have O(k) iterations, each taking O(2k ·k2) time. Herein, the factor
O(2k) derives from trying all partitions of X into two subsets. The resulting total
running time is O(kn + k12 + 2k · k2) = O(2k · k2 + kn).

Note that Bounded-Degree-1 Vertex Deletion is exceptional in the
sense that the corresponding Disjoint Compression Task can be solved in lin-
ear time. For other related problems (like Cluster Vertex Deletion), whose
corresponding Disjoint Compression Task are polynomial-time solvable, it
seems to be much more difficult to reach linear-time solvability (cf. Section 6.3.1).

4.6 Hardness

Our results in Section 4.3 show that Bounded-Degree-d Vertex Deletion

is fixed-parameter tractable with respect to the parameter k if d is a constant.
However, as we will prove in this section, the problem becomes presumably fixed-
parameter intractable for unbounded d—in other words, we show it to be W[2]-
complete.

Preliminaries. A parameterized problem L is contained in W[2] if there is a
parameterized reduction from L to the Weighted Satisfiability problem for
polynomial-size weft-two circuits of constant depth [DF98]. Herein, the weft of a
circuit C is the maximum number of “large” gates on an input-output path in C.
In a Boolean circuit, a gate (¬, ∧, ∨) is small if it has fan-in bounded by a function
of the parameter k, whereas large gates have unbounded fan-in. The depth of a
circuit C is defined as the maximum number of gates on an input-output path
in C. The weight of a truth assignment is the number of variables that are set
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true. To show W[2]-hardness, we employ the W[2]-complete Dominating Set

problem (see, e.g., [DF99]).

Dominating Set

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at most k such
that every vertex of V belongs to S or has a neighbor in S?

Theorem 4.6. For d being unbounded, Bounded-Degree-d Vertex Dele-

tion is W[2]-complete with respect to the parameter k.

Proof. The W[2]-hardness of Bounded-Degree-d Vertex Deletion can be
easily shown by a parameterized reduction from the W[2]-complete Dominating

Set problem: Pad the vertices in the Dominating Set instance with degree-one
neighbors such that every vertex has the same degree. Let d + 1 be the degree
of the resulting regular graph. For each original vertex, at least one neighbor
or the vertex itself has to be removed in order to obtain maximum degree d
(we assume without loss of generality that no newly added degree-one vertex is
removed by an optimal solution), which directly corresponds to a dominating set
in the Dominating Set instance.

Second, we show the membership of Bounded-Degree-d Vertex Dele-

tion in W[2]. Let (G = (V, E), k, d) be an instance of Bounded-Degree-d
Vertex Deletion. We construct a Boolean circuit of weft two and constant
depth, where small gates have fan-in bounded by an arbitrary fixed function of k.
This shows membership in W[2].

The Boolean circuit is given by a Boolean expression E that is satisfiable by a
weight-k truth assignment if and only if G has a k-vertex solution to Bounded-

Degree-d Vertex Deletion.
The informal idea of the construction is as follows: We have k choices to

select vertices in V to be in the solution S. For each choice, we introduce a block
of |V | Boolean variables. A Boolean subexpression E1 will ensure that only one
Boolean variable of each block can be set to true; the variable set to true in a
block corresponds directly to the choice of the corresponding vertex to be in S.
To avoid that a single vertex appears twice in a solution, we introduce a second
subexpression E2. Furthermore, we need Boolean subexpressions to express that
a vertex v ∈ V is in S (subexpression E3(v)) or has to have at least deg(v) − d
neighbors in S (subexpression E4(v)). The complete Boolean expression can then
be written as

E := E1 ∧E2 ∧
∧

v∈V +

(E3(v) ∨ E4(v)),

where V + is the set of vertices in V with degree at least d + 1. Next, we formally
describe the corresponding Boolean expressions:

The set of Boolean variables for E is

X := {c[i, u] : 1 ≤ i ≤ k, u ∈ V },
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where c[i, u] means that the ith choice of a vertex of S is vertex u. We define

E1 :=

k
∧

i=1

∧

u,u′∈V,u 6=u′

¬(c[i, u] ∧ c[i, u′]),

meaning that no two variables in the same block can be set true,

E2 :=
∧

u∈V

∧

1≤i<j≤k

¬(c[i, u] ∧ c[j, u]),

meaning that no two variables corresponding to the same vertex are set true, and

E3(v) :=
∨

1≤i≤k

c[i, v],

meaning that at least one variable corresponding to vertex v is set true in some
block. Let R(k, r) denote the set of size-r subsets of {1, . . . , k}. Finally, we define

E4(v) :=
∨

R′∈R(k,deg(v)−d)

∧

i∈R′

∨

u∈N(v)

c[i, u].

Informally speaking, this subexpression examines, for a given vertex v, every
possible subset of blocks that is large enough to witness that sufficiently many
neighbors (that is, at least deg(v) − d) of v are chosen to be in the solution.
Subexpression E4(v) checks for every block B in each such subset whether at
least one variable of a neighbor of v is set true in B and returns true if this is the
case for all blocks in the subset. Due to expression E1 we know that then there
are at least deg(v)− d neighbors of v chosen to be in the solution S.

One can easily verify that E is satisfiable by a weight-k truth assignment if and
only if G has a k-vertex solution to Bounded-Degree-d Vertex Deletion.
Moreover, the depth of the circuit is constant and the weft is two, as the only
large gates (that is, with fan-in that is not bounded by a function of k) correspond
to the outermost conjunction of E (over all v ∈ V +), the inner conjunction

∧

of E1, the outermost conjunction of E2, and the innermost disjunction of E4(v).
All other gates have fan-in bounded by some function of k.

4.7 Outlook

In this chapter, we have shown that there exists an almost linear-vertex prob-
lem kernel for Bounded-Degree-d Vertex Deletion with respect to the
parameter k for any fixed d, that is, a kernel of O(kǫ+1) vertices for any fixed d.
For d ≤ 1, the same method even gives a linear-vertex problem kernel. More-
over, we gave some simple kernelization that yields an O(k2)-vertex kernel, and
simple search tree algorithms. For d = 1, using the iterative compression tech-
nique, we gave the so far fastest algorithm for Bounded-Degree-1 Vertex
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Deletion. Finally, we showed that Bounded-Degree-d Vertex Deletion

becomes W[2]-complete with respect to the parameter k if d is unbounded; it is
therefore presumably not fixed-parameter tractable.

There remain several open questions. First of all, does there exist a linear-
vertex problem kernel for Bounded-Degree-d Vertex Deletion for any con-
stant d? Moreover, for all known fixed-parameter algorithms for that problem,
the exponential running time part is never better than (d + 1)k; a similar ob-
servation is true for Hitting Set, that is, all known algorithms for s-Hitting

Set do not run better than (s − 1)k (recall that Bounded-Degree-d Ver-

tex Deletion can be solved via reduction to (d + 2)-Hitting Set). However,
Bounded-Degree-d Vertex Deletion is a specialization of Hitting Set,
thus it would be interesting to see whether Bounded-Degree-d Vertex Dele-

tion can be solved faster than the corresponding (d+ 2)-Hitting Set instance.



Chapter 5
Regular-Degree Vertex Deletion

In this chapter, we consider the problem of deleting at most k vertices from a
given graph in order to obtain a d-regular graph for any fixed d. Compared to
Bounded-Degree-d Vertex Deletion (see Chapter 4), where the underly-
ing graph property is “each vertex has degree at most d”, which is a hereditary
graph property, here the underlying graph property is “each vertex has degree ex-
actly d”, which is a non-hereditary graph property. For almost all vertex deletion
problems that have been studied in the parameterized context, the underlying
graph property is hereditary; Regular-Degree-d Vertex Deletion is one
of the few exceptions. The standard approaches to show NP-completeness and
fixed-parameter (in-)tractability for vertex deletion problems cannot be applied
here, because they rely on the fact that the underlying graph property is hered-
itary. We show that Regular-Degree-d Vertex Deletion is NP-complete
even for planar graphs (for d ≤ 5, since every planar graph contains a vertex of
degree at most five) and triangle-free planar graphs (for d ≤ 3). Moreover, it
admits a problem kernel of O(kd(d + k)2) vertices, and it can be solved with a
search tree algorithm in O(n(k + d) + (d + 2)k) time. Thus, Regular-Degree-

d Vertex Deletion is fixed-parameter tractable with respect to parameter k
for constant d. We also prove that the dual problem, d-Regular Induced

Subgraph, is W[1]-hard with respect to parameter k for any fixed d.
First, we show the problem kernel (Section 5.2). Then, we present the search

tree algorithm (Section 5.3) and the hardness results (Section 5.4).

5.1 Introduction and Known Results

We consider the following dual parameterizations of the problem.

Regular-Degree-d Vertex Deletion

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at most k such
that G− S is d-regular?

63
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G

Figure 5.1: For 3-Regular Induced Subgraph, the graph G is a yes-instance
if and only if k ∈ {0, 1, . . . , 17, 18}. However, for its “exact version”, the same
graph is a yes-instance if and only if k ∈ {4, 8, 12, 16, 18}. For example, for k = 18,
a 3-regular induced subgraph is marked with gray vertices.

d-Regular Induced Subgraph

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at least k such
that G[S] is d-regular?

Obviously, for d = 0, these problems are equivalent to Vertex Cover and
Independent Set, respectively. The graph property “d-regular” is not hered-
itary, as an induced subgraph of a d-regular graph is not d-regular in general.
Therefore, it makes a difference to ask for a solution set of size exactly k instead
of at most k (Regular-Degree-d Vertex Deletion) or instead of at least k
(d-Regular Induced Subgraph). See Figure 5.1 for an example. As the “non-
exact” versions of the problems are weaker than (that is, can be reduced to) their
“exact” counterparts, we prove all of our hardness results for the “non-exact”
versions. However, in order to obtain a stronger statement, all algorithms in this
chapter are designed for the “exact” versions of our problems (modifications for
solving the “non-exact” versions are easy and have the same running times; note
that it seems difficult to obtain algorithms for the “non-exact” version that are
faster than algorithms for the “exact” version).

Because d-regularity is not a hereditary property, the framework of Yan-
nakakis [LY80] can not be used to show NP-completeness, and neither can the
framework by Khot and Raman [KR02] nor the algorithm by Cai [Cai96] be
used to derive the parameterized complexity of Regular-Degree-d Vertex

Deletion.

Applications. The 1-Regular Induced Subgraph problem is equivalent
to Induced Matching, which has applications in (wireless) communication
networks, secure communication channels, VLSI, and network flow problems. See
Chapter 8 for more about Induced Matching and its applications. Moreover,
regular induced subgraph problems find applications in game theory [BIL08].
There is also some relation to statistical physics [PW06].
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Table 5.1: Parameterized complexity results for Regular-Degree Vertex

Deletion (RDVD) and d-Regular Induced Subgraph (RIS) that are pre-
sented in this chapter.

problem problem kernel algorithm
RDVD O(kd(d + k)2) (Sec. 5.2) O(n(k + d) + (d + 2)k) (Sec. 5.3)
RIS W[1]-hard (Sec. 5.4)

Known Results. The NP-completeness of Regular-Degree Vertex Dele-

tion has also been shown independently by Cardoso et al. [CKL07]. Gupta et
al. [GRS06] gave an algorithm for the maximization version of d-Regular In-

duced Subgraph with running time O(cn), where c is a positive constant strictly
less than 2 and depending only on d. Moreover, they gave lower bounds on the
number of maximal d-regular induced subgraphs. Cardoso et al. [CKL07] gave
convex quadratic programs that derive an upper bound on the size of a d-regular
induced subgraph of a given graph G, and they also studied such bounds assuming
that G is regular. Cardoso and Pinheiro [CP09] gave further upper bounds based
on convex quadratic programs and also tested their methods with computational
experiments on graphs from the Second DIMACS clique challenge [DIM95].

The problem kernel in Section 5.2 and the algorithm in Section 5.3 (see Ta-
ble 5.1 for an overview) have been a starting point for further research con-
cerning the parameterized complexity of Regular-Degree-d Vertex Dele-

tion: Stewart [Ste08] showed that the fixed-parameter tractability of Regular-

Degree-d Vertex Deletion with respect to parameter k can be derived by
means of general logical methods, without using the more direct approaches that
are presented in this chapter. However, his method, based on a formulation
of Regular-Degree-d Vertex Deletion in first-order logic, is only meant
to establish fixed-parameter tractability, while our methods are more efficient.
Mathieson and Szeider [MS08a] showed that (using a quite involved reduction
from Multicolored Clique) Regular-Degree-d Vertex Deletion is
W[1]-hard with respect to the parameter k if d is part of the input, which is
equivalent to the problem of deleting at most k vertices to obtain a regular graph
without specifying the degree in advance. Additionally to deleting vertices, they
also considered edge deletion as allowed graph modification. Moreover, they in-
troduced a weighted variant of the problem, where the desired vertex degree is
specified for each vertex individually. For all their variants, they gave analogous
kernelization and hardness results, where the kernelization results combine ideas
from our kernelization in Section 5.2 and other ideas (e.g., annotation). In an
additional paper, Mathieson and Szeider [MS08b] extended their work by adding
edge insertion to the set of allowed graph modifications.

Related Problems. Regular graphs as well as regular subgraphs have been
intensively studied from a structural point of view (e.g., [Big94]), and have also
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a close relation to graph factors and factorization (see, e.g., the survey by Plum-
mer [Plu07]). An interesting combinatorial problem related to regular graphs is
to decide whether a given graph contains a d-regular subgraph. This problem
is polynomial-time solvable for d ≤ 2 [CM87]. Chvátal et al. [CFST79] showed
that it is NP-complete for d = 3 (then also called Cubic Subgraph). In a se-
ries of papers, Stewart showed that Cubic Subgraph is NP-complete on planar
graphs with maximum degree seven [Ste94] and bipartite graphs with maximum
degree four [Ste97], and that for any fixed degree d the problem is NP-complete
on general graphs as well as on planar graphs [Ste96] (where for the planar graphs
only d = 4 and d = 5 were considered, since any planar graph contains a vertex
of degree at most 5). Moreover, Cheah and Corneil [CC90] showed that it is
NP-complete to decide whether a graph of maximum degree d+ 1 has a d-regular
subgraph.

A problem that is more closely related to Regular-Degree-d Vertex

Deletion is the problem of editing a given graph with at most k editing op-
erations into a rectangular grid (“grid cleaning”), where the allowed edit opera-
tions are edge/vertex deletions and insertions. Dı́az and Thilikos [DT06] showed
that this problem, whose corresponding graph property is also non-hereditary, is
fixed-parameter tractable with respect to the parameter k. Another “cleaning
problem” is the Induced Subgraph Isomorphism problem, where the task is,
given two graphs H and G, to find a set S ∈ V (G) such that G−S is isomorphic
to H . Marx and Schlotter [MS09a] showed that this problem is fixed-parameter
tractable with respect to the parameter |S| if H is a tree and G an arbitrary
graph, or if H is a 3-connected planar graph and G is a planar graph. If H is
d-regular for any constant d, then there exists an exact algorithm solving In-

duced Subgraph Isomorphism in O(cn) time, where c is a constant strictly
less than 2 and only depending on d [GRS06]. Bonifaci et al. [BIL08] showed that
the problem of deciding the existence of a uniform Nash equilibrium in “imita-
tion simple bimatrix games” is NP-complete by proving the NP-completeness of
a related regular induced subgraph problem on directed graphs with the following
“regularity condition”: the in-degree of every vertex of the graph induced by the
solution vertex set S is exactly d and all vertices outside of S have at most d
in-neighbors in S. Bonifaci et al. [BIL08] also considered undirected graphs and
showed that d-Regular Induced Subgraph, where the degree of the desired
regular induced subgraph is not specified, is NP-complete. Moreover, they showed
that, given an undirected graph and an integer k, to decide whether there exists
a vertex subset S such that G[S] is d-regular, for some d ≥ k, is NP-complete.

5.2 A Cubic-Vertex Problem Kernel

The main result of this section is the following.

Theorem 5.1. Regular-Degree-d Vertex Deletion admits a problem ker-
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Figure 5.2: Example of a graph with clean regions C1, C2, and C3 (white ver-
tices, d = 3). The dotted edges denote the connected subgraph each clean region
induces. Dirty vertices are gray or black; boundary vertices are gray and all other
dirty vertices are black. The boundary for C1 is B1 = {b1, b2, b3}, the boundary
for C2 is B2 = {b1, b2, b4, b6, b8}, and the boundary for C3 is B3 = {b5, b7, b9}.
Note that boundaries can have vertices in common, for instance, B1 ∩B2 6= ∅.

nel of O(kd(k +d)2) vertices for d ≥ 2 and of O(k2) vertices for d = 1, which can
be constructed in O(n(k + d)) time.

The remainder of this section is dedicated to the proof of Theorem 5.1. Recall
that we derive a kernel for the “exact” version of the problem, that is, we demand
a solution of size exactly k (see Section 5.1). A kernel for the “non-exact” version
can be easily derived by a minor modification; however, the main reduction rule
is the same for both versions, thus with the present methods it seems difficult to
obtain a better problem kernel for the “non-exact” version. In the following, we
assume that the graph is stored using adjacency lists.

A central ingredient for the problem kernel is the notion of a clean region.

Definition 5.1. We call a vertex of G clean if it has degree d, and dirty other-
wise. We define a clean region in G as a maximal subset of clean vertices that
induces a connected subgraph in G.

Let {Ci | i ∈ I} be the set of all clean regions. The neighborhood of each
clean region Ci is called its boundary Bi, that is, Bi := N(Ci). A clean region Ci

is called isolated if Bi = ∅. Observe that the neighborhood of a non-isolated
clean region consists entirely of dirty vertices. See Figure 5.2 for examples of
clean regions and their boundaries. The detection of all clean regions in G can
be done in O(dn) time using a modified breadth-first search approach that does
not search “beyond” dirty vertices.

5.2.1 Data Reduction Rules

In this section, we give a series of polynomial-time executable data reduction
rules; after that, we show that these data reduction rules lead to a problem
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kernel of the claimed size. The first reduction rule deletes vertices of too low and
too high degree.

Reduction Rule 5.1. If there exists a vertex v ∈ V of degree less than d or of
degree more than d + k, then delete v and decrease k by one.

Lemma 5.1. Reduction Rule 5.1 is correct and can be exhaustively applied in
O(n(k + d)) time.

Proof. A vertex v in G with deg(v) < d obviously must be contained in the
solution S. Likewise, a vertex v with degree deg(v) > k + d must be in S, as we
would have to put more than k of its neighbors into S to achieve degree d for v.

We briefly comment on the data structure supporting the implementation of
Reduction Rule 5.1. First of all, we may assume from the beginning that |E(G)| ≤
n(k + d), because otherwise G contains a subgraph of minimum degree > k + d
and in this case we know in advance that the input graph is a no-instance. We
construct an auxiliary data structure as follows. We create an array A of length n
with entries from 0 to n − 1, where each entry i points to a linked list Li. The
entries of Li correspond to the vertices of G that have degree i in G and contain
pointers to these vertices in the adjacency list structure. Also, each vertex v
in the adjacency list structure points back to the entry of Ldeg(v) that points
to it. This structure can be built on the top of the adjacency list structure
in O(|E(G)|) = O(n(k + d)) time. It is now straightforward to verify that, using
this enhanced data structure, Reduction Rule 5.1 can be implemented to run
in O(|E(G)|) = O(n(k + d)) time.

After Reduction Rule 5.1 has been applied exhaustively, the vertices in G have
maximum degree d + k. Thus, assuming that a solution S of size k exists, we
know that its neighborhood D := N(S) has size at most k(d + k). However, we
still cannot bound the number of the remaining vertices F := V \ (S ∪ N(S)),
because there might be arbitrary big clean regions in the graph. See Figure 5.3
for an illustration of the corresponding structure of the graph. The remaining
data reduction rules deal with the clean regions in F .

Observe that taking a vertex of a clean region into the solution S causes
its clean neighbors to have a degree less than d in G− S, forcing them into
the solution as well. By applying the same argument inductively to the clean
neighbors, we can see that either no vertex of a clean region is a part of the
solution S, or the entire clean region is contained in S. This observation is
needed for the next data reduction rule.

Reduction Rule 5.2. If G contains a clean region Ci whose boundary Bi =
N(Ci) contains a vertex with more than d neighbors in Ci, then delete all vertices
in Ci from G and decrease k by |Ci|.

Lemma 5.2. Reduction Rule 5.2 is correct and can be exhaustively applied in
O(dn) time.
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Figure 5.3: Solution S for d = 3 and k = 7, its neighborhood D := N(S)
(consisting entirely of dirty vertices), and the remaining vertices F := V \(S∪D)
(consisting entirely of clean vertices). Dirty vertices are gray or black; boundary
vertices are gray and all other dirty vertices are black. The boundary of the clean
region C7 in S is not labeled. The isolated clean region C6 is part of the solution S
because we are considering the “exact” version of Regular-Degree-d Vertex

Deletion.

Proof. For the correctness, assume that a solution S of size exactly k exists, that
is, G − S is d-regular. All vertices in N(S) are dirty, since they have degree
exactly d in G − S, and hence degree greater than d in G. Therefore, a clean
region is a subset of either S or V (G) \ (S ∪N(S)).

We show that if there is a vertex v ∈ Bi with |N(v)∩Ci| > d, then Ci is a subset
of S. To this end, suppose that there exists a vertex v ∈ Bi with |N(v)∩Ci| > d
and Ci ∩ S = ∅. This means that v must be in S, but then the neighbors of v
in Ci do not have degree d in G−S, a contradiction. Therefore Ci ⊆ S and hence
Reduction Rule 5.2 is correct.

We now comment on the running time of Reduction Rule 5.2. First, we find all
clean regions by a modified breadth-first search in O(dn) time. The clean regions
are stored as linked lists. For each clean region, we go through all vertices and
their adjacency lists and, by maintaining a counter for each vertex, we count for
every dirty vertex in the boundary how many neighbors there are in this clean
region. This takes O(dn) time for all clean regions. If in this process we find
a dirty vertex whose counter exceeds r, then we delete the corresponding clean
region. This takes O(dk) time in total, since we can delete at most k vertices, each
having degree d. Therefore, the running time of exhaustively applying Reduction
Rule 5.2 is dominated by O(dn).

In the following, we assume that G is reduced with respect to Reduction
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Rules 5.1 and 5.2. Our observation that either no vertex of a clean region or the
entire clean region is contained in the solution implies that isolated clean regions
that contain more than k vertices cannot be part of the solution. This leads to
the next two reduction rules, which deal with isolated clean regions in the graph.
Recall that we are solving the exact version of Regular-Degree-d Vertex

Deletion, that is, we are demanding for a solution of size exactly k. For this
reason, we cannot just delete every isolated clean region in the graph.

Reduction Rule 5.3. If G contains an isolated clean region Ci of at least k + 1
vertices, then delete all vertices in Ci from G.

This data reduction rule is obviously correct and can be performed in O(dn)
time.

Reduction Rule 5.4. For i = d + 1, . . . , k do: if G contains s isolated clean
regions of i vertices, then modify G by deleting all but ⌊k/i⌋ of them.

Lemma 5.3. Reduction Rule 5.4 is correct an can be exhaustively applied in O(dn)
time.

Proof. An optimal solution S can contain at most ⌊k/i⌋ clean regions of size i; ad-
ditional clean regions of size i are superfluous and can therefore be safely deleted.

We can find all isolated clean regions by a modified breadth-first search
in O(dn) time. Build an array of length k − d with entries from d + 1 to k,
where entry i points to a (linked) list of all clean regions containing i vertices.
With the help of this array, it is straightforward to find (in O(k) time) and delete
(in O(dn) time) all clean regions that meet the condition of the reduction rule.
Thus, O(dn) dominates the running time required for Reduction Rule 5.4.

The idea for the next reduction rule is to replace big non-isolated clean regions
that contain more than k vertices by smaller ones, which have a size bounded by a
function of k, but contain still more than k vertices in order to get an equivalent
problem instance. In this process, the degree of the vertices in the boundary
of the corresponding clean regions must not change. For d = 1 this step does
not apply, as then each non-isolated clean region contains exactly one vertex.
For d = 2, the task is essentially just to replace long paths by shorter ones, which
can be easily dealt with (we do that later in the description of the next reduction
rule). The replacement gets more involved for d ≥ 3, as we generally must be
able to give an appropriate regular gadget with the constraints mentioned above.
We describe the technical details of the replacement in what follows, then we give
the reduction rule and, after that, we show its correctness.

We need to consider the set of edges between a clean region and its bound-
ary. Let Ei be the set of edges connecting vertices in Bi with vertices in Ci. We
search for all clean regions Ci of size greater than (x + 1)(d + 1), where x :=
max{|Bi|, ⌈(k + 1)/(d + 1)⌉}, and replace each one by a new clean region of
size (x+1)(d+1) without changing the degrees of any vertex in the corresponding
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Gu,v

Rd,x

u v

Figure 5.4: The graph Gu,v for d = 5 and a matching (bold edges) in it and the
corresponding graph Rd,x for x = 3 containing four copies of Gu,v.

boundary Bi (notice that (x+1)(d+1) ≥ x(d+1) ≥ k +1, which is important as
this prevents such a new clean region from being part of the solution). We first
describe the gadget needed for the replacement, then we state the reduction rule.

We replace a clean region Ci by a d-regular structure Rd,x of (x + 1)(d + 1)
vertices, and then reconnect the vertices in Bi with vertices in Rd,x such that Rd,x

remains clean (for this, we apply some modifications in Rd,x) and such that the
degree of the vertices in Bi is as before the replacement. The d-regular struc-
ture Rd,x is constructed as follows. Take a cycle of 2(x + 1) edges, remove every
second edge {u, v} and replace it by a graph Gu,v consisting of a (d − 1)-clique
whose vertices are all connected with v and u (notice that Gu,v is Kd+1 with an
edge removed). See Figure 5.4 for an example of such a graph Gu,v and the entire
d-regular gadget Rd,x. The resulting graph is d-regular and contains (x+1)(d+1)
vertices.

In the reduction step we reconnect vertices in Bi with vertices in Rd,x by
removing some edges in Rd,x and then connecting their endpoints with vertices
in Bi. In this process, we must assure that the new clean region does not decay
into several clean regions. Therefore, we define a set of edges M in Rd,x such
that the graph which results by removing M from Rd,x consists of exactly one
connected component: Any single Gu,v contains a matching Mu,v of size ⌈d/2⌉,
which can be constructed by using a Hamiltonian path from u to v1, removing
every second edge on it. See Figure 5.4 for an example. Let M be the union
of all Mu,v. Observe that M is a matching of size (x + 1)⌈d/2⌉ for Rd,x, since
there are x + 1 copies of Gu,v in Rd,x. Furthermore, observe that Rd,x remains
connected if we remove from it all edges of M , since in each Gu,v there is always
a u-v-path that contains no edge from Mu,v. (this property is independent of how
the set Mu,v was chosen for each Gu,v). The next reduction rule applies these
ideas (see also Figure 5.5).

Reduction Rule 5.5. For d = 2, if there exists a clean region Ci, which forms a
path, with endpoints a and b in G such that |Ci| > k + 1, then apply the following

1Such a path can be found simply by starting in u and then visiting each vertex such that
the last vertex is v—recall that Gu,v is a Kd+1 with one edge removed.
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w

Rd,x

Bi

Figure 5.5: Example of how Reduction Rule 5.5 uses the gadget Rd,x to replace a
clean region which was connected to Bi by seven edges. The example corresponds
to the most involved case 4.2 of the replacement procedure.

replacement procedure. Remove all vertices in Ci \ {a, b} from G and reconnect
the endpoints a and b of Ci by a path with k − 1 new vertices.

For d ≥ 3, if there exists a clean region Ci in G such that |Ci| > (x+1)(d+1),
where x := max{|Bi|, ⌈(k + 1)/(d + 1)⌉}, then apply the following replacement
procedure.

1. Subdivide in G all edges in Ei. Let L be the set of subdivision vertices.

2. Remove all vertices in Ci from G.

3. Add Rd,x to G, that is, set G := (V (G) ∪ V (Rd,x), E(G) ∪ E(Rd,x)).

4.1 If |L| is even, then choose, arbitrarily, a subset M ′ ⊆ M where |M ′| = |L|/2,
and remove the edges of M ′ from Rd,x. Identify, arbitrarily, their endpoints
with the vertices in L.

4.2 If |L| is odd, then choose, arbitrarily, a subset M ′ ⊆ M where |M ′| =
(|L|+ d− 2)/2, and remove the edges of M ′ from Rd,x (as we will see, d is
also odd in this case). Identify, arbitrarily, |L| − 1 of their endpoints with
all vertices in L except one (say w), and then make w adjacent with the
remaining 2|M ′| − (|L| − 1) = |L|+ d− 2− (|L| − 1) = d− 1 endpoints of
the edges in M ′.

See Figure 5.5 for an example of how the replacement works.

Lemma 5.4. Reduction Rule 5.5 is correct and can be exhaustively applied in
O(dn) time.

Proof. First, we show that the reduction rule replaces a clean region Ci of size
more than (x + 1)(r + 1) by one of size at least k + 1. Then, we show that
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this replacement always yields an equivalent problem instance. After that, we
describe how the claimed running time can be achieved.

For d ≥ 2 the replacement is clearly correct, as clean regions with more
than k + 1 vertices are replaced by clean regions with exactly k + 1 vertices. To
see that this procedure works correctly for d ≥ 3, consider the following remarks
corresponding to the steps of the reduction rule.
(1.) Since G is reduced with respect to Reduction Rule 5.2, we have |Ei| ≤ d|Bi|
and hence |L| ≤ d|Bi|.
(4.) The choice of a set M ′ of claimed size is always possible since the set M is
large enough. More formally, we verify that

|M | = (x + 1) · ⌈d/2⌉
≥ (x + 1) · d/2

≥ (|Bi|+ 1) · d/2

≥ (|L|+ d)/2 > |M ′|.
(4.1.) After removing the edges in M ′, its endpoints have degree d− 1. However,
after identifying each such endpoint with one vertex in L, all vertices in Rd,x have
degree d again, since M is a matching. Due to the properties of M mentioned
above, Rd,x is still one clean region.
(4.2.) First of all, note that (|L|+d−2)/2 is a positive integer, since |L| ≥ 1 and
since |L| = |Ei| being odd implies d to be odd; this can be easily seen by analyzing
the number of edges in G[Ci] and between Ci and Bi as 2|E ′| + |Ei| = d|Ci|,
where E ′ is the set of edges in G[Ci]. With the method in (4.1.) we can only
identify an even number of vertices in L with vertices in Rd,x. Therefore, there
remains one vertex in L which has to be made adjacent to the (d− 1) remaining
endpoints of edges in M ′. It is easy to see that afterwards all vertices in Rd,x

have degree d and that Rd,x is still one clean region.
Thus, for d ≥ 3, Reduction Rule 5.5 replaces a clean region Ci of size more

than (x + 1)(d + 1) by a clean region C ′
i of size (x + 1)(d + 1) ≥ k + 1. Moreover,

the new clean region C ′
i is connected, has the same boundary Bi as Ci, and all

vertices in Bi have the same number of neighbors in C ′
i as they had in Ci.

Next, we prove that Reduction Rule 5.5 returns an equivalent instance for
Regular-Degree-d Vertex Deletion. For this, let S be a size-k vertex set
such that G − S is r-regular, and let G′ be the graph after applying Reduction
Rule 5.5 to region Ci in G. A solution S for G cannot contain a vertex of any Ci

that changed, as Ci contains more than k vertices. We retained the vertex degree
of all vertices in Bi, C ′

i is also a clean region in G′, and we did not alter the
subgraph G− Ci = G′ − C ′

i, thus G′ − S is also r-regular. Therefore, S is also a
solution for G′. The same argument holds for the other direction: A solution S ′

for G′ cannot contain any vertex of any C ′
i, as C ′

i contains more than k vertices,
and since G− Ci = G′ − C ′

i we know that S ′ is also a solution for G.
The implementation of this reduction rule again follows the ideas of the pre-

vious ones. Again, clean regions can be detected by a modified breadth-first
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search in O(dn) time. Note that the number of edges to be subdivided in the
whole graph is at most dn. Subdividing the edges takes O(dn) time, and remov-
ing clean regions takes O(dn) time in total. The new clean regions can have at
most n vertices and O(dn) edges in total, thus the total running time for this
step is again O(dn).

5.2.2 Kernel Size

In the following, we assume that the reduction rules in Section 5.2.1 have been
applied in the given order. First, we show that the number of isolated clean
regions is bounded.

Lemma 5.5. After Reduction Rules 5.3 and 5.4 have been applied exhaustively,
the resulting graph contains at most k2 vertices in isolated clean regions.

Proof. Reduction Rule 5.3 deletes all isolated clean regions of at least k + 1
vertices. Reduction Rule 5.4 deletes all but ⌊k/i⌋ isolated clean regions of equal
size i, for each d + 1 ≤ i ≤ k. Considering all possible sizes of clean regions in
the remaining graph (at most k), we can conclude that there are at most

k
∑

i=1

⌊k/i⌋ · i ≤
k

∑

i=1

k = k2

vertices in isolated clean regions.

Summarizing, the reduced graph satisfies a bigger subset of the following
properties:

(1) All vertices in G have degree at least d and at most k + d (Reduction
Rule 5.1),

(2) each vertex of a boundary Bi has at most d clean neighbors in Ci (Reduction
Rule 5.2),

(3) the isolated clean regions of G contain in total at most k2 vertices (Reduc-
tion Rules 5.3 and 5.4),

(4) for every clean region Ci with boundary Bi,

|Ci| ≤ (d + 1)(1 + max{⌈k + 1

d + 1
⌉, |Bi|})

(Reduction Rule 5.5).

It remains to show the following.

Lemma 5.6. Let (G, k) be an instance of Regular-Degree-d Vertex Dele-

tion. If G satisfies properties (1)–(4) and contains more than dk(k +d)(k +3d+
4) + k + k(k + d) + k2 vertices, then (G, k) is a no-instance.
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Proof. Assume that a solution S of size exactly k exists, i.e., G− S is d-regular.
We define D = N(S) and F = V (G) \ (S ∪ D) and observe that S, D, F is
a 3-partition of V (G). Due to property (1) every vertex in G has degree at
most d + k. Therefore, the number of vertices in the neighborhood of S cannot
exceed k(d + k) and thus |D| ≤ k(d + k). We also observe that all vertices in F
are clean, otherwise G − S would contain a vertex not having degree d, which
contradicts S being a solution. It remains to bound the size of F . Recall that a
clean region Ci is either completely contained in S or no vertex in Ci is a member
of S, thus Ci ⊆ F . Therefore, as all vertices in F are clean, F is a union of clean
regions. Suppose that F consists of a set C = {Ci | 0 ≤ i ≤ q} of q non-isolated
clean regions. As there is no edge in G between S and F (i.e., D separates S
and F ) and all vertices in F are clean, we obtain that all boundary vertices of
the clean regions in C must be in D, i.e.,

⋃

i=1,...,q Bi ⊆ D. Also, since G − S is
d-regular, each vertex of D belongs to at most d sets in B = {B1, . . . , Bq}, and,
therefore,

∑

i=1,...,q |Bi| ≤ d · |D| ≤ dk(k + d). By property (4),

|Ci| ≤ (max{⌈k + 1

d + 1
⌉, |Bi|}+ 1)(d + 1)

≤ max{k + d + 2, |Bi| · (d + 1)}+ d + 1.

Recall that F contains at most
∑

i=1,...,q |Ci| vertices from non-isolated clean re-

gions. By property (3), no more than k2 vertices are contained in isolated regions.
Therefore,

|F | ≤ k2 +

q
∑

i=1

(max{|Bi| · (d + 1), k + d + 2}+ d + 1)

≤ k2 +

q
∑

i=1

(|Bi| · (d + 1) + k + 2d + 3)

≤ k2 +

q
∑

i=1

(|Bi| · (d + 1)) +

q
∑

i=1

(k + 2d + 3)

= k2 + dk(k + d)(d + 1) + dk(k + d)(k + 2d + 3)

= k2 + dk(k + d)(k + 3d + 4).

Thus, if there exists a solution S, since |S| = k and |D| ≤ k(k + d) we can
conclude that G can have at most dk(k + d)(k + 3d + 4) + k + k(k + d) + k2

vertices. The contra position of this argument shows the lemma.

To complete the proof of Theorem 5.1, recall that for all data reduction rules
described in Section 5.2.1, the running time was no worse than the running time
of constructing an enhanced data structure (see proof of Lemma 5.2), which
is O(|E(G)|) = O(n(k + d)). The kernel size follows directly from Lemma 5.6.
For r = 1, every non-isolated clean region contains a single vertex and Reduction



76 5 Regular-Degree Vertex Deletion

Rule 5.5 does not apply at all. This allows for a better counting of the vertices
in F (proof of Lemma 5.6), which, apart from those belonging to isolated clean
regions, are at most as many as the vertices in D. As any isolated clean region
contains exactly two vertices when r = 1, Reduction Rule 5.4 is applied only
for i = 2, leaving at most k + 1 vertices in isolated clean regions. Therefore, in
the case r = 1, the kernel has size at most |S|+2|D| ≤ k+2k(k+1)+k+1 = O(k2).

Remark. Notice that Theorem 5.1 holds also for the “non-exact” version (de-
manding a solution of size at most k) of Regular-Degree-d Vertex Dele-

tion. The only modification is that we have to replace Reduction Rule 5.4 by
the deletion of all isolated clean regions. However, the main “power” for reducing
the graph comes from Reduction Rule 5.5; therefore, it seem difficult to obtain a
better kernel size for the “non-exact” version.

5.3 Search Tree Algorithm

In this section, we describe a simple exact algorithm for Regular-Degree-

d Vertex Deletion running in O(n(k + d) + (d + 2)k) time (working for the
“exact” and “non-exact” version). It is based on a bounded search tree technique.
Let (G, k) be an instance of Regular-Degree-d Vertex Deletion. We first
describe the “non-exact” version, we then state the differences for the “exact”
version below. While the graph G is not d-regular and k > 0, we choose an
arbitrary vertex v ∈ V (G) with deg(v) > d and branch into the following cases,
where in each case we also always exhaustively apply Reduction Rule 5.1 from
Section 5.2.1 (here, we would actually only need a rule that deletes vertices of
degree less than d).

1. If v is a part of the solution, then delete v from G and decrease k by one.

2. If v is not a part of the solution (thus it remains in G), then choose an
arbitrary subset of d + 1 neighbors of v. At least one of these neighbors
must be contained in the solution in order to achieve degree d for v; thus
we branch into the d + 1 subcases, and, in each of the subcases, we choose
a neighbor, delete it from G, and decrease k by one.

Observe that, unlike for the similar search tree algorithm for Bounded-Degree-

d Vertex Deletion in Section 4.4.1 of Chapter 4, the application of a data
reduction rule that deletes low-degree vertices is necessary; otherwise, vertices of
degree less than d would never be deleted from the graph.

For the “exact” version, the algorithm branches until G is d-regular and k = 0.
That is, unlike the “non-exact” version, if the algorithm encounters a d-regular
graph, but k > 0, then it does not return but keeps on branching.

In each subcase of the branching we put at least one vertex from G into
the solution, and we branch into d + 2 subcases. This results in a search tree
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of size O((d + 2)k). The test of d-regularity can be done in O(dn) time. This
means that a solution for Regular-Degree-d Vertex Deletion can be found
in O(dn(d + 2)k) time, if it exists. Combining this with Theorem 5.1 and using
an improved interleaving method [NR00], we arrive at the following result.

Theorem 5.2. For any d ≥ 0, there exists an algorithm for Regular-Degree-

d Vertex Deletion with parameter k that runs in O(n(k +d)+(d+2)k) steps.

5.4 Hardness Results

In this section, we prove that Regular-Degree-d Vertex Deletion is NP-
complete by giving a polynomial-time many-one reduction from Vertex Cover.
As the “non-exact” version is weaker than (can be reduced to) its “exact” coun-
terpart, we give the hardness proof for the “non-exact” version. A similar inde-
pendent result is given by Cardoso et al. [CKL07], proving the NP-hardness of
finding an induced r-regular (bipartite) graph.

We give a proof that Regular-Degree-d Vertex Deletion and there-
fore also its dual parameterization d-Regular Induced Subgraph are NP-
complete. After that, we shortly describe how the proof can also be used to show
the W[1]-hardness of d-Regular Induced Subgraph.

Theorem 5.3. Regular-Degree-d Vertex Deletion is NP-complete for
every d ≥ 0. It remains NP-complete when restricted to planar graphs (for d ≤ 5)
or to triangle-free planar graphs (for d ≤ 3).

Proof. We first prove the theorem in its general statement and then we explain
how to modify the proof for its planar versions. For d = 0, Regular-Degree-d
Vertex Deletion is identical to Vertex Cover, which is known to be NP-
complete [GJ79]. For all remaining d > 0 we give a reduction from Vertex

Cover.

Let (G, k) be an instance of Vertex Cover. We construct an instance (G′, k′)
of Regular-Degree-d Vertex Deletion with d > 0 as follows: First, we
set G′ := G and k′ := k(d + 1). For each vertex v ∈ V (G) we add a copy of a
(d + 1)-vertex clique Kd+1 to G′. Let Rv be the copy of Kd+1 corresponding to
vertex v. For all vertices v ∈ V (G) we identify v with an arbitrary vertex in Rv,
that is, we set v = w for some arbitrary w ∈ V (Rv). Figure 5.6 gives an example
of a graph G and the corresponding graph G′.

We have to show that (G, k) with d = 0 is a yes-instance if and only if (G′, k′)
with d > 0 is a yes-instance.

(⇒) Suppose that there is a size-k solution S for (G, k), that is, G−S consists of
isolated vertices. We define a new solution set S ′ :=

⋃

v∈S V (Rv) of size k · (d+ 1)
for G′. Clearly, G′ − S ′ is a graph in which every connected component is an Rv,
i.e., G′ − S ′ is a d-regular graph, thus S ′ is a solution for (G′, k′).
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Figure 5.6: Example of a graph G (left) and the corresponding graph G′ (right)
with d = 2. Vertices in the solution are gray, the remaining vertices which are
not deleted are black.

(⇐) Suppose that there is a size-k′ solution S ′ for (G′, k′). We say that S ′ is
clustered if

∀v ∈ V (G) : Rv ∩ S ′ 6= ∅ ⇒ Rv ⊆ S ′.

Notice that if S ′ is clustered, then S := {v ∈ V (G) | Rv ∩ S ′ 6= ∅} is a solution
for the instance (G, k) of Vertex Cover. In the case that the solution S ′ is not
clustered, we can turn it into a clustered one according to the following claim,
which completes the proof of correctness of the reduction.

Claim: Given a solution S ′ for (G′, k′) where |S ′| ≤ k′, we can always construct
a clustered solution S ′′ for the same problem instance.

Proof of Claim: We first show that G′ − S ′ is a d-regular graph in which each
connected component is either a Rv or a d-regular subgraph containing vertices
exclusively from G. Recall that G′ − S ′ is d-regular. If v ∈ S ′ for some v ∈ G, then
we know that Rv ⊆ S ′, as otherwise some vertices in Rv would have degree smaller
than d in G′−S ′. The same argument shows that if v 6∈ S ′, then either Rv∩S ′ = ∅
or (Rv − v) ⊆ S ′. The first case implies that every neighbor w of v in G is in the
solution S ′ (and therefore Rw likewise), since otherwise v would have a degree
greater than d in G′ − S ′. The second case implies that d neighbors of v in G
must not be in the solution S ′, since otherwise v would have a degree smaller
than d in G− S ′.

With these observations we can prove the claim as follows. Assume that G′−
S ′ contains some connected components which are subgraphs only consisting of
vertices from G. Let A be the set of vertices of all such connected components
of G′ − S ′. As G′[A] is a d-regular graph, it will contain an independent set I
of size at least ⌈|A|/(d + 1)⌉ (I is constructed by greedily picking vertices and
removing their neighbors). We set S ′′ = (S ′ ∪ (A \ I)) \ {V (Rv) | v ∈ I} and we
observe that G′ − S ′′ is also a d-regular graph where each connected component is
an Rv. To show that S ′′ is a solution for (G′, k′), it remains to prove that |S ′′| ≤ k.
Observe that the above modification added at most |A| − ⌈|A|/(d + 1)⌉ vertices
to the solution and deleted at least d · ⌈|A|/(d + 1)⌉ vertices from it. Using
the tautological relation |A|/(d + 1) ≤ ⌈|A|/(1 + d)⌉, which can be rewritten
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(a) (b) (c)

Figure 5.7: (a) Cubical, (b) octahedral, and (c) icosahedral graph, which describe
the connectivity of the vertices of a cube, an octahedron, and an icosahedron,
respectively.

as |A| − ⌈|A|/(d + 1)⌉ − d · ⌈|A|/(d + 1)⌉ ≤ 0, we get

|S ′′| − |S ′| ≤ |A| − ⌈ |A|
d + 1

⌉ − d · ⌈ |A|
d + 1

⌉ ≤ 0.

Hence |S ′′| ≤ |S ′| ≤ k, and this completes the proof of the claim.

Vertex Cover remains NP-complete when restricted to triangle-free pla-
nar graphs [GJS76]. We obtain the NP-completeness of Bounded-Degree-d
Vertex Deletion on planar graphs by reducing from Vertex Cover on
triangle-free planar graphs and modifying the gadget Rv slightly: for d ≤ 3, we
use as Rv the 3-regular cubical graph (Figure 5.7a) instead of K4 in the con-
struction. For d = 4 and d = 5, we use as Rv the 4-regular octahedral graph
(Figure 5.7b) and the 5-regular icosahedral graph (Figure 5.7c) instead of K5

and K6 in the construction, respectively. Therefore, the above proof also implies
that Regular-Degree-d Vertex Deletion is NP-complete even when re-
stricted to planar graphs for d ≤ 5. Moreover, for d ≤ 3, Bounded-Degree-d
Vertex Deletion is NP-complete even on triangle-free planar graphs.

It is known that the parameterized version of Independent Set (the dual
parameterization of Vertex Cover), where the parameter is the size of the
independent set, is W[1]-hard [DF95]. The reduction in the above proof can
be used to show the W[1]-hardness of d-Regular Induced Subgraph as fol-
lows. Let (G, k) be an instance of Independent Set. It can be regarded as
an instance (G, n − k) of Vertex Cover. This instance is reduced to an in-
stance (G′, (n− k)(d + 1)) of Regular-Degree-d Vertex Deletion, which
can be regarded as an instance (G′, n(d−1)−(n−k)(d+1)) = (G′, k(d+1)) of d-
Regular Induced Subgraph. Clearly, this is a parameterized reduction, as all
these steps can be performed in polynomial time, and the parameter k′ = k(d+1)
is only depending on k and d, where d is a constant. We arrive at the following
theorem.

Theorem 5.4. d-Regular Induced Subgraph is W[1]-hard with respect to
parameter k.
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Table 5.2: Parameterized complexity of Regular-Degree Vertex Deletion

(RDVD) and Bounded-Degree Vertex Deletion (BDVD) depending on d.

RDVD BDVD
d constant FPT (Section 5.3) FPT (Section 4.4)
d part of input W[1]-hard [MS08a] W[2]-complete (Section 4.6)
d unspecified W[1]-hard [MS08a] trivial

5.5 Outlook

In this chapter, we showed how to obtain a cubic-vertex problem kernel for
Regular-Degree-d Vertex Deletion for constant d. In the construction
of the kernel we used the fact that big “clean regions” can be safely replaced by
smaller (but not too small) ones. Because r-regularity is not a hereditary prop-
erty, we had to take care that such a replacement locally maintains r-regularity.
Additionally, we gave a simple search tree algorithm for Regular-Degree-d
Vertex Deletion and showed that its dual parameterization d-Regular In-

duced Subgraph is W[1]-hard with respect to parameter k.

Although Regular-Degree-d Vertex Deletion and Bounded-Degree-

d Vertex Deletion (Chapter 4) seem to be quite similar in terms of compu-
tational and parameterized complexity for constant d, the picture changes for
unbounded or unspecified d. If d is not given in advance, that is, that we ask
that the resulting graph should be regular without specifying the degree, then
Regular-Degree Vertex Deletion is W[1]-hard [MS08a] with respect to
parameter k. Moreover, this variant of the problem is equivalent with respect to
parameterized complexity to the variant where the desired degree d is a part of
the input [MS08a]. However, Bounded-Degree Vertex Deletion is trivially
solvable if the degree is not specified (just use the maximum degree of the input
graph), but W[2]-complete with respect to parameter k if d is a part of the input
(Theorem 4.6 in Section 4.6). Therefore, it would be interesting to see whether
Regular-Degree Vertex Deletion is actually W[1]-complete or even harder
(e.g., W[2]-complete). See also Table 5.2. In this respect, to study the differences
between Regular-Degree-d Vertex Deletion and Bounded-Degree-d
Vertex Deletion, we suggest to study the following problem that generalizes
both problems.

Degree-Range-(d1, d2) Vertex Deletion

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at most k such
that G− S has degree at least d1 and at most d2?

Obviously, for d1 = 0 and d2 = d we obtain Bounded-Degree-d Vertex

Deletion, and for d1 = d2 = d we obtain Regular-Degree-d Vertex Dele-

tion.
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The results in this chapter also have some practical potential. Regular-

Degree-d Vertex Deletion for d = 1 is the dual of Induced Matching

(a relatively hard problem with many applications, see Chapter 8). This rela-
tion could be used to solve Induced Matching in practice via transformation
to Regular-Degree-1 Vertex Deletion, which is then solved using the
problem kernel and the search tree algorithm presented in this chapter. An anal-
ogous approach that exploits a similar dual relation between Bounded-Degree

Vertex Deletion (Chapter 4) and the (notoriously hard) problem of finding
maximum s-plexes (Chapter 9) is used to find maximum s-plexes efficiently in
many real-world graphs.
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Chapter 6
Vertex Deletion Problems and Iterative

Compression

With the introduction of the iterative compression technique by Reed, Smith,
and Vetta [RSV04], parameterized complexity analysis has gained a new tool
for showing fixed-parameter tractability results for NP-hard minimization prob-
lems (cf. Section 2.3.3). Many of these problems are vertex deletion problems for
hereditary graph properties. We investigate the computational complexity of a
general “compression task” centrally occurring in all known applications of itera-
tive compression. The core issue (particularly but not only motivated by iterative
compression) is to determine the computational complexity of, given an already
inclusion-minimal solution for an underlying (typically NP-hard) vertex deletion
problem in graphs, finding a better disjoint solution. The complexity of this task
so far has been lacking a systematic study. We consider a large class of vertex
deletion problems for hereditary graph properties on undirected graphs and show
that, except for few cases which are polynomial-time solvable, the others are NP-
complete. This class includes problems such as Vertex Cover and Bounded-

Degree-1 Vertex Deletion (cf. Section 4.5), where the corresponding com-
pression task is solvable in polynomial time or Undirected Feedback Vertex

Set (here the corresponding compression task is NP-complete).

We first give a short overview on the known applications of the iterative
compression technique (Section 6.1). Then, we outline an iterative compression
framework for vertex deletion problems for hereditary properties (Section 6.2).
After that, we present a complexity dichotomy for the disjoint compression task,
that is, we completely classify the disjoint compression tasks of the considered
vertex deletion problems with respect to their computational complexity (Sec-
tion 6.3).

83
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6.1 Known Results

Using iterative compression, it has been shown that several NP-hard feedback set
problems, that is, problems where the task is to destroy certain cycles with at
most k vertex or edge deletions, are fixed-parameter tractable with respect to the
parameter k:

• Vertex Bipartization: Make a graph bipartite by destroying all odd-
length cycles with at most k vertex deletions [RSV04, Hüf09, LSS09]. The
best known running time is O(3k ·mn) [Hüf09].

• Edge Bipartization: Make a graph bipartite by destroying all odd-
length cycles with at most k edge deletions; the running time is O(2k ·
m2) [GGH+06].

• Undirected Feedback Vertex Set: Destroy all cycles with at most
k vertex deletions [DFL+07, GGH+06, CFL+08]. The best known running
time is O(5k · kn2) [CFL+08].

• Directed Feedback Vertex Set: Destroy all cycles in a directed graph
with at most k vertex deletions; the running time is O(k!·4k·k3n4) [CLL+08].

• Directed Feedback Vertex Set in tournaments: Destroy all cycles in
a tournament1 with at most k vertex deletions; the running time is O(2k ·
n2(log log n + k)) [DGH+09].

• Chordal Deletion: Make a graph chordal by destroying all chordless
cycles2 with at most k vertex deletions [Mar09]. No explicit running time
is stated.

• Signed Graph Balancing: Make a signed graph balanced by destroying
all unbalanced cycles with at most k edge deletions [HBN09]. This problem
can be reduced to Edge Bipartization, yielding a running time of O(2k ·
m2) [GGH+06].

In the following, we turn our attention to the vertex deletion problems in the
above list. The desired graph property of each of these problems is hereditary.
This makes the problems particularly amenable to iterative compression (this
will become clear later in Section 6.2). For each of these graph properties except
for Directed Feedback Vertex Set in tournaments, the set of forbidden
induced subgraphs is infinite (basically cycles of all possible lengths). Therefore,
it is not immediately clear that the corresponding vertex deletion problem is fixed-
parameter tractable (cf. [Cai96]). For Directed Feedback Vertex Set in

1A tournament is a directed graph whose underlying undirected graph is complete, that is,
there is exactly one directed edge between every pair of vertices.

2A chordless cycle is an induced cycle of length at least four.
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tournaments, the benefit of using iterative compression is its simplicity and the
improved running time compared to the best-known algorithm, which is based
on a reduction to 3-Hitting Set; it can be solved in O(2.076k · poly(n))) with
a rather complicated bounded search tree approach [Wah07].

The strength of iterative compression for these types of problems lies in the
compression task (cf. Section 2.3.3). Take Undirected Feedback Vertex

Set as an example. A solution S for a graph G which is close to be optimal
reveals a lot of information about the graph structure. In particular, G − S is
free of cycles, that is, G− S is a forest. Finding a smaller solution with the help
of such a forest turns out to be a much simplified task, which the most recent
algorithm for Undirected Feedback Vertex Set solves with a bounded
search tree approach [CFL+08].

Iterative compression has also been applied to other types of problems.

• Vertex Cover: Destroy all edges of a graph by at most k vertex dele-
tions [Guo06, Pei07] (cf. Section 6.3.1). These algorithms are not com-
petitive with other (mostly search tree based) approaches, but are sim-
ple examples of how the iterative compression technique can be applied.
The best known running time based on iterative compression is O(1.443k ·
mn
√

n) [Pei07].

• Bounded-Degree-1 Vertex Deletion: Delete at most k vertices such
that the resulting graph has degree at most one (Section 4.5).

• Cluster Vertex Deletion: Delete at most k vertices such that the
resulting graph is a cluster graph, that is, each connected component forms
a clique (Section 6.3.1).

• d-Hitting Set: For a given size-m family of subsets of an n-element
ground set, where the size of each subset is at most d, choose at most k
elements such that each subset contains at least one chosen element. The
running times for d = 3, d = 4, and d = 5 are O(2.274k ·kn2), O(3.076k+m),
and O(4.076k + m), respectively [Hüf07]. As Hüffner [Hüf07] points out,
the algorithm for d = 3 is not competitive with the best-known algorithm
by Wahlström [Wah07], but can be very easily implemented when using
one of the already available Vertex Cover implementations as a subrou-
tine [ACF+04, FKH04]. For d = 4 and d = 5, the iterative compression
approach is faster than the previously fastest algorithm [Fer05] (but not
for d ≥ 6 due to an increasing polynomial overhead).

• Almost 2-Sat: Delete a minimum number of clauses to make a 2-CNF
formula satisfiable; the running time is O(15k · km3), where m is the num-
ber of clauses in the 2-CNF formula [RO09]. This result also implies that
Vertex Cover parameterized above the size of a maximum matching M ,
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that is, the task to find a vertex cover of size at most |M |+k (“above guar-
antee parameterization”) [MRS+07a], is fixed-parameter tractable with re-
spect to the parameter k, because it can be transformed to Almost 2-Sat

in f(k) · poly(n) time.

Recently, first attempts in linking iterative compression with exact algorithms
have been made. Fomin et al. [FGK+08] have iterative compression based ex-
act algorithms for Independent Set, a counting version of Hitting Set, and
Maximum Induced Cluster Subgraph, the dual problem of Cluster Ver-

tex Deletion (cf. Section 6.3.1).

Experimental Results. The Vertex Bipartization algorithm has been
heuristically improved and implemented [Hüf07, Hüf09]. The experiments on
data from computational biology show that iterative compression can outperform
other methods by orders of magnitude. For example, an instance originating from
computational biology with 102 vertices and 307 edges can be solved in 6248 sec-
onds with an ILP approach, whereas an iterative compression approach runs in 1
second, which can be further improved by algorithmic tricks [Hüf09]. For the iter-
ative compression algorithm for Signed Graph Balancing, experiments show
that this approach has about the same running time as approximation algorithms,
while producing exact solutions [HBN09].

6.2 Iterative Compression Framework and Com-

pression Task

In this section, we give a general iterative compression framework for vertex
deletion problems and describe the disjoint compression task for which we give
a complexity dichotomy (that is, a complete classification of the polynomial-
time solvable cases and the NP-hard cases) in Section 6.3. For this complexity
dichotomy, we restrict our attention to vertex deletion problems for hereditary
graph properties, that is, graph properties that are closed under vertex deletion.
The general problem is defined as follows. Let Π be a hereditary graph property.

Π-Vertex Deletion

Input: An undirected graph G = (V, E) and a nonnegative integer k.
Question: Is there a vertex subset S ⊆ V of size at most k such
that G− S ∈ Π?

For example, Undirected Feedback Vertex Set corresponds to the case
that Π means “being cycle-free” whereas for Vertex Bipartization Π means
“being free of odd-length cycles”.

First, we show how to employ the compression routine. The principle is the
same as in the example for Bounded-Degree-1 Vertex Deletion in Sec-
tion 4.5, that is, we build up the graph vertex by vertex, while always applying
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Algorithm: Iterate (G, k)
Input: An undirected graph G and a nonnegative integer k.
Output: A Π-deletion set of size at most k, or “no-instance”.

1 V ′ ← ∅
2 S ← ∅
3 while V ′ 6= V do
4 select a vertex v ∈ V \ V ′

5 V ′ ← V ′ ∪ {v}
6 S ← S ∪ {v}
7 S ← Compress(G[V ′], S)
8 if |S| > k then return “no-instance”
9 return S

Figure 6.1: Pseudo-code of the algorithm to solve Π-Vertex Deletion via
iterative compression. The pseudo-code of the algorithm Compress is given in
Figure 6.3.

the compression routine to keep the solution small. In other words, the vertices
are the augmentation elements.

Iteration. In the following, we call a solution for Π-Vertex Deletion a Π-
deletion set. The pseudo-code of the iteration algorithm is given in Figure 6.1.
We start with empty vertex subsets V ′ = ∅ and S = ∅ (lines 1 and 2); clearly,
an empty set is a Π-deletion set for an empty graph. Iterating over all graph
vertices, step by step we add one vertex v ∈ V \ V ′ to both V ′ and S (lines 4–6).
Then S is still a Π-deletion set for G[V ′]. In each step we try to find a smaller
Π-deletion set for G[V ′] by applying a compression routine (line 7). It takes the
graph G[V ′] and the Π-deletion set S for G[V ′], and returns a smaller Π-deletion
set for G[V ′], or proves that S is optimal (by returning a Π-deletion set of the
same size). Note that a smaller Π-deletion set for G[V ′] is always a minimum one
and has size |S| − 1, since S \ {v} is a minimum Π-deletion set for G[V ′ \ {v}],
and a minimum Π-deletion set for G[V ′] cannot be smaller than a minimum Π-
deletion set for G[V ′ \{v}].3 Therefore, it is a loop invariant that the compressed
Π-deletion set S is a minimum-size Π-deletion set for G[V ′]. If |S| > k (line 8),
then we can conclude that G does not have a Π-deletion set of size at most k.
Since eventually V ′ = V , we obtain a Π-deletion set of size at most k for G once
the algorithm returns S (line 9).

Note that almost all known applications of iterative compression on graph
problems with vertex subsets as solutions essentially build up the graph in this
way for the following reason. For the iterative compression to work, it is important

3In other words, Π-Vertex Deletion behaves monotonically with respect to adding ver-
tices. This follows from the fact that the graph property Π is hereditary.



88 6 Vertex Deletion Problems and Iterative Compression

Figure 6.2: Example showing that Regular-Degree-d Vertex Deletion

behaves non-monotonously with respect to vertex addition. For k = 1 and d = 2,
the input graph G (left) can be made d-regular by deleting only the black vertex
in the center. However, for an induced subgraph of G (right), a minimum-size
solution (black vertices) contains 3 > k vertices.

that we can bound the size of an intermediate solution by k. This is usually
accomplished by demanding that the problem behaves monotonously with respect
to adding the augmentation element, that is, the intermediate solution must not
become smaller by adding an augmentation element. In other words, a solution for
a graph must not be smaller than a solution for any induced subgraph. Observe
that a hereditary graph property Π immediately implies that the corresponding
Π-Vertex Deletion problem behaves monotonously with respect to vertex
addition. If a problem does not behave monotonously, then we cannot bound
the size of an intermediate solution by k. For example, Regular-Degree-d
Vertex Deletion (see Chapter 5), which is a vertex deletion problem for the
non-hereditary graph property “d-regular”, does not behave monotonously with
respect to vertex addition (see Figure 6.2).

Compression. It remains to describe the compression routine. Given an undi-
rected graph G and a solution S for Π-Vertex Deletion, the compression rou-
tine finds a smaller solution for G or proves that the solution S is of minimum size.
As for our example Bounded-Degree-1 Vertex Deletion (Section 4.5), we
reduce the compression routine to a disjoint compression routine by considering
all partitions of S into one part to keep in the solution and one part to exchange.
The compression routine works as follows. See Figure 6.3 for the correspond-
ing pseudo-code. Consider a smaller Π-deletion set S ′ as a modification of the
larger Π-deletion set S for the graph G = (V, E). This modification retains some
vertices Y ( S as part of the solution set (that is, the vertices to be deleted),
while the other vertices X := S \ Y are replaced by new vertices from V \ S.
The idea is to try by brute force all 2|S| − 1 nontrivial partitions of S into these
two sets Y and X. For each such partition, the vertices from Y are immediately
deleted from S (line 2) and G (line 3), since we already decided to take them into
the Π-deletion set. If G[X] /∈ Π, then we know that there can be no solution S ′

with S ′ ∩ S = Y ; hence, we only proceed if G[X] ∈ Π (line 4). In the remain-
ing instance G′ := G − Y , it remains to find a smaller Π-deletion set X ′ that is
disjoint from X (line 5). This task, Disjoint Compression Task, is solved by
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Algorithm: Compress (G,X)
Input: An undirected graph G and a solution S
Output: A smaller solution S′, if it exists, otherwise S.

1 for each Y ( S
2 X ← S \ Y
3 G′ ← G− Y
4 if G[X] ∈ Π then
5 X ′ ← CompressDisjoint (G′, X)
6 if |X ′| < |X| then return X ′ ∪ Y
7 return S

Figure 6.3: Pseudo-code of the compression routine for Π-Vertex Deletion.
Algorithm CompressDisjoint solves the Disjoint Compression Task.

a disjoint compression routine (CompressDisjoint). If such a smaller solution
is found, it is returned (line 6). Otherwise, after trying all possible partitions
without finding a smaller solution, we know that the solution S is optimal and
return it (line 7).

The running time of the whole algorithm can be stated as follows.

Lemma 6.1. If the Disjoint Compression Task can be solved in t1 time and
the property Π can be tested in t2 time, then Π-Vertex Deletion can be solved
in O(2k · (t1 + t2)n) time.

Proof. The loop of algorithm Iterate in Figure 6.1 (lines 3–8) can be executed
at most n times. In each iteration, the algorithm Compress in Figure 6.3 is
called (line 7). After that, Iterate aborts in line 8 if |S| > k. Therefore,
in the next iteration of the loop, S has size at most k before adding v to it
in line 6 of Iterate. Thus, S has size at most k + 1 if Compress is called.
Therefore, Compress executes its loop (lines 2–6 in Figure 6.3) at most 2k+1−1
times. Compress needs t2 time to test whether G[X] ∈ Π (line 4) and t1 time
to compress the solution X (line 5). The remaining instructions in lines 2, 3,
and 6, can be executed in linear time in the worst case. Thus, each execution of
Compress needs O(2k · (t1 + t2)) time. In total, this sums up to a running time
of O(2k · (t1 + t2)n) for algorithm Iterate.

The idea to try by brute force all nontrivial partitions of a given solution S into
two sets Y and X is applied for all known applications of iterative compression
for Π-Vertex Deletion problems, that is, Vertex Bipartization [RSV04],
Undirected Feedback Vertex Set [GGH+06, DFL+07, CFL+08], Vertex

Cover [Guo06], Cluster Vertex Deletion (Section 6.3.1), and Bounded-

Degree-1 Vertex Deletion (Section 4.5). The main difference between these
problems lies in the disjoint compression routine. The disjoint compression rou-
tines for the first two problems have exponential worst-case running time; for
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Vertex Bipartization the Disjoint Compression Task is solved via a
brute-force approach combined with maximum flow techniques [RSV04], and for
Undirected Feedback Vertex Set it is solved with a bounded search tree
approach combined with data reduction rules [CFL+08]. The disjoint compres-
sion routines for the problems Cluster Vertex Deletion and Bounded-

Degree-1 Vertex Deletion run in polynomial time and are based on match-
ing techniques, and the disjoint compression routine for Vertex Cover is a
trivial algorithm applying the simple observation that a disjoint solution X ′ must
contain all neighbors of X. From Lemma 6.1 it follows directly that for Ver-

tex Cover, Cluster Vertex Deletion, and Bounded-Degree-1 Vertex

Deletion there exists an algorithm with running time 2k ·poly(n). The results in
this chapter are driven by the question: For which other vertex deletion problems
is the Disjoint Compression Task polynomial-time solvable? The computa-
tional complexity of the Disjoint Compression Task, so far, remained widely
unclassified. For instance, the fixed-parameter tractability results (using itera-
tive compression) for Vertex Bipartization [RSV04, Hüf09] or Undirected

Feedback Vertex Set [GGH+06, DFL+07, CFL+08] left open whether the
respective Disjoint Compression Task is NP-hard or polynomial-time solv-
able.

We give a complexity dichotomy for the Disjoint Compression Task of Π-

Vertex Deletion for any hereditary property Π that is determined by the com-
ponents, that is, that a graph G satisfies Π whenever every connected component
of G satisfies Π. We can always assume that the given solution X is inclusion-
minimal, that is, for every proper subset X ′ ⊂ X it holds that G − X ′ 6∈ Π; if
it is not inclusion-minimal, then we convert it into an inclusion-minimal solution
in polynomial time as follows. Test for each v ∈ X whether G− (X \ {v}) ∈ Π,
and if so, set X := X \ {v}. The Disjoint Compression Task for Π-Vertex

Deletion can therefore be stated as follows.

Disjoint Π-Vertex Deletion

Input: An undirected graph G = (V, E) and a vertex subset X ⊆ V
such that G[X] ∈ Π, G−X ∈ Π, and X is inclusion-minimal under this
property.
Question: Is there a vertex subset X ′ ⊆ V with |X ′| < |X| such
that X ∩X ′ = ∅ and G−X ′ ∈ Π?

Our original motivation for analyzing the complexity of Disjoint Π-Vertex

Deletion comes from the desire to better understand the limitations of the it-
erative compression technique. Beyond this, Disjoint Π-Vertex Deletion

also seems to be a natural and interesting problem on its own: In combinatorial
optimization, one often may be confronted with finding alternative good solutions
to already found ones. In the setting of Disjoint Π-Vertex Deletion, this
is put to the extreme in the sense that we ask for solutions that are completely
unrelated, that is, disjoint. For instance, this demand also naturally occurs in the
context of finding quasicliques [ARS02]. The computational complexity of find-
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ing alternative solutions with less strict demands has been considered in various
contexts. Among others, the complexity of finding alternative solutions has been
studied with respect to the Hamilton Cycle problem [Pap94, Kra99]. Finally,
let us mention that there are also ties to the recent framework of reoptimization
problems [BHMW08]—there, one deals with the recomputation of a solution for
a locally modified input instance. In all these settings, however, one asks how
the knowledge of a solution can provide structural information that helps finding
an other one.

In the next section, by extending a reduction framework by Lewis and Yan-
nakakis [LY80], we contribute a complete complexity classification (polynomial-
time solvability vs. NP-completeness) of Disjoint Π-Vertex Deletion in-
cluding all of the above mentioned problems.

6.3 Complexity Dichotomy for the Compression

Task

This section is dedicated to the proof of the following theorem.

Theorem 6.1. Let Π be any non-trivial hereditary graph property that is deter-
mined by the components and that can be tested in polynomial time, and let H be
the set of forbidden induced subgraphs corresponding to Π. Disjoint Π-Vertex

Deletion is NP-complete unless H contains a P2 or a P3, and in these cases it
is polynomial-time solvable.

Theorem 6.1 applies to many vertex deletion problems in undirected graphs,
including Vertex Cover, Bounded-Degree Vertex Deletion [NRT05],
Undirected Feedback Vertex Set [GGH+06, DFL+07, CFL+08], Vertex

Bipartization [RSV04], Cluster Vertex Deletion [HKMN09a], Chordal

Deletion [Mar09], and Planar Deletion [MS07a]. Thus, among these prob-
lems, except for Vertex Cover (H = {P2}), Cluster Vertex Deletion

(H = {P3}), and Bounded-Degree-1 Vertex Deletion (H = {P3, K3}), all
other problems have NP-complete Disjoint Π-Vertex Deletion problems.

Since the number of sets of graphs is uncountable, but the set of algorithms can
be enumerated and is therefore countable, it follows that there exist Π-Vertex

Deletion problems that are not in NP, that is, that the property Π cannot
be tested in polynomial time. As Lewis and Yannakakis [LY80], we add the
stipulation that Π can be tested in polynomial time, hence the corresponding
Disjoint Π-Vertex Deletion problem is in NP, and our hardness results to
come thus will show that it is NP-complete.

6.3.1 The Polynomial-Time Solvable Cases

This section covers all cases of Disjoint Π-Vertex Deletion that can be
solved in polynomial time. These correspond to each graph property Π whose set
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of forbidden induced subgraphs H contains a P2 (a single edge) or a P3 (a path
on three vertices). Recall that we restricted our attention to hereditary graph
properties that are determined by the components, that is, all graphs in H are
connected.

We shortly describe the “structure” of the corresponding graph properties.
If H contains a P2, then this is the only forbidden induced subgraph, that is, H =
{P2}, since any other connected graph contains a P2 (recall thatH can be assumed
to be a set of minimal forbidden induced subgraphs, cf. Section 2.1). Hence, Π
is the set of all graphs with no edges, that is, it is the graph property “being
edgeless”. If H contains no P2 but a P3, then H can additionally contain exact
one clique, since any other connected graph on at least four vertices contains a P3

as induced subgraph. If H contains only a P3, then Π is the set of all cluster
graphs, that is, graphs whose connected components form cliques. If H contains
a P3 and a clique Kt, then the corresponding graph property Π is the set of all
graphs whose connected components form cliques of size at most t− 1.

In the following, we name these graph properties according to the following
definition.

Definition 6.1. Let Πs, for s ≥ 1, be the graph property that consists of all
graphs whose connected components are cliques of at most s vertices. Further-
more, let Π∞ be the graph property that consists of all graphs whose connected
components of G are cliques (of arbitrary size).

For instance, Π1, Π2, and Π∞ are the properties “being edgeless”, “being a
graph of maximum degree one”, and “being a cluster graph”, respectively. As
described above, the corresponding sets of minimal forbidden induced subgraphs
consist of: P2 (Π1), P3 and K3 (Π2), and P3 (Π∞). In general, the set of forbidden
induced subgraphs of Πs for s ≥ 2 contains P3 and Ks+1. Summarizing, for
each property Πs, s ≥ 1, and Π∞, the corresponding set of forbidden induced
subgraphs contains a star with at most two leaves (in other words, a P2 or a P3),
and these are the only properties whose sets of forbidden induced subgraphs
contain a star with at most two leaves.

Theorem 6.2. Disjoint Π-Vertex Deletion can be solved in polynomial
time if Π = Πs, for some s ≥ 1, or if Π = Π∞.

For property Π1, the disjoint solution X ′ must contain every endpoint of
each edge that has one endpoint in the given solution X and the other endpoint
in V \X. Hence, the input is a yes-instance if and only if X forms an independent
set and |NG(X)| < |X|. This condition can be tested in linear time by scanning
through all edges incident to each vertex in X. Recall that in this theses n and m
are the number of vertex and edges in the graph, respectively.

Lemma 6.2. Disjoint Π1-Vertex Deletion can be solved in O(n+m) time,
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(a) Disjoint Π∞-Vertex Deletion
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(b) The assignment problem

Figure 6.4: (a) Data reduction in the disjoint compression routine. The gray
vertices in the input instance are deleted by the data reduction rules. The black
vertices correspond to a minimum solution X ′

2 (determined by a solution for the
assignment problem, see below). Each circled group of vertices corresponds to
an edge in the assignment problem (b). If a circled group of vertices is in X or
if no vertex in this group has a neighbor in X, then the corresponding vertex is
black, otherwise, it is white. The bold edges show the maximum matching that
corresponds to the minimum solution X ′

2.

The proof of the next lemma exhibits the main technique, which we will adapt
for the proof of Lemma 6.4, that shows the polynomial-time solvability for the
remaining properties Πs for s ≥ 2.

Lemma 6.3. Disjoint Π∞-Vertex Deletion can be solved in O(m
√

n · log n)
time.

Proof. Recall that the set of minimal forbidden induced subgraphs corresponding
to Π∞ only contains one element, namely a P3. We describe an algorithm that
solves Disjoint Π∞-Vertex Deletion. In some sense, it is a generalized ver-
sion of the algorithm for the disjoint compression task for Bounded-Degree-1

Vertex Deletion (see Section 4.5) as it also uses matching techniques. How-
ever, in the case of CVD Compression, the resulting matching instance is
more complicated and cannot be solved in linear time. An example for a Dis-

joint Π∞-Vertex Deletion instance is shown in Figure 6.4a. The algorithm
begins by computing all vertices that necessarily have to be in X ′; if there exists
an induced P3 in G such that exactly one vertex v of that P3 is in R := V \X
(thus, the remaining two vertices of the P3 are in X), then we call v a necessary
vertex. Obviously, all necessary vertices have to be in X ′. Thus, a first data
reduction rule computes the set of necessary vertices, adds them to an initially
empty set X ′

1, and deletes the necessary vertices from the graph G and from the
set R. After that, a second data reduction rule deletes connected components
that are cliques from G, from R, and from X; the soundness of this rule is ob-
vious. In the following, let (G, X) be the remaining instance after deleting all
necessary vertices and isolated cliques. The set X ′

1 contains all necessary vertices,
thus it remains to compute an optimal solution X ′

2 for (G, X); X ′ := X ′
1 ∪X ′

2 is
then a minimum-size solution for our input instance.
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The reduced instance (G, k) is much simplified: In each clique of G[R], we can
divide the vertices into equivalence classes according to their neighborhood in X;
each class then contains either vertices adjacent to all vertices of a particular
clique in G[X], or the vertices adjacent to no vertex in X (see Figure 6.4a),
otherwise, there would be a necessary vertex and the first data reduction rule
above would apply. This classification is useful because of the following:

Claim. If there exists a solution for Disjoint Π∞-Vertex Deletion, then in
the cluster graph resulting by this solution, each clique in G[R] consists of vertices
of at most one equivalence class.

Proof of Claim. Clearly, inside a clique, it is never useful to delete only some,
but not all vertices of an equivalence class, since if that led to a solution, we
could always re-add the deleted vertices without introducing new induced P3’s.
Further, assume that for a clique C in G[R] the vertices of two equivalence classes
are present. Let u ∈ C and v ∈ C be a vertex from each equivalence class,
respectively. Since u and v are in different equivalence classes, they must have
a different neighborhood with respect to the cliques in G[X]. Assume without
loss of generality that v is adjacent to all vertices of a clique C ′ in G[X]. Since u
is in an other equivalence class than v, u is not adjacent to any vertex of C ′.
Let w ∈ C ′. The path uvw forms an induced P3, contradicting our assumption
and showing the claim.

Due to this claim, the remaining task for solving Disjoint Π∞-Vertex

Deletion is to assign each clique in G[R] to one of its equivalence classes (cor-
responding to the preservation of this class, and the deletion of all vertices from
the other classes within the clique) or to do nothing (corresponding to the com-
plete deletion of the clique). However, we cannot do this independently for each
clique; we must not choose two classes from different cliques in G[R] such that
these two classes are adjacent to the same clique in G[X] since that would create
an induced P3. This assignment problem can be modeled as a weighted bipartite
matching problem in an auxiliary graph H , where each edge corresponds to a
possible choice. The graph H is constructed as follows (see Figure 6.4b):

1. Add a vertex for every clique in G[R] (white vertices).

2. Add a vertex for every clique in G[X] (black vertices in X).

3. For a clique CX in G[X] and a clique CR in G[R], add an edge between the
vertex for CX and the vertex for CR if there is an equivalence class in CR

containing a vertex adjacent to a vertex in CX . This edge corresponds to
choosing this class for CR and one assigns the number of vertices in this
class as its weight.

4. Add a vertex for each class in a clique CR that is not adjacent to the
cliques in G[X] (black vertices outside X), and connect it to the vertex
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representing CR. Again, this edge corresponds to choosing this class for CR

and is weighted with the number of vertices in this class.

Since we only added edges between black and white vertices, H is bipartite. The
task is now to find a maximum-weight bipartite matching, that is, a set of edges of
maximum weight where no two edges have an endpoint in common. To solve this
matching instance, we can use an algorithm for integer-weighted matching [GT89]
with a maximum weight of n (since a class can contain at most n vertices), yielding
a running time of O(m

√
n log n). The set X ′

2 can be directly constructed from
a maximum matching; it contains all vertices in equivalence classes in G[R] that
correspond to edges not chosen by the matching in H (see Figure 6.4). If we apply
the data reduction rules in their given order, we can execute them in O(m) time.
Obviously, the input instance is a yes-instance if and only if |X ′

1| + |X ′
2| < |X|.

Thus, we can solve Disjoint Π∞-Vertex Deletion in O(m
√

n log n) time.

With some tricks based on problem kernelization, which will not be explained
here, the running time can be further improved to O(2kk6 log k+nm) [HKMN09a].
This iterative compression approach combined with matching techniques also
works for the vertex-weighted version of Cluster Vertex Deletion, yielding
an algorithm with a running time of O(2kk9 + nm) [HKMN09a].

It remains to show the polynomial-time solvability for the remaining proper-
ties Πs. The technique is similar.

Note that Disjoint Π2-Vertex Deletion is equivalent to the disjoint com-
pression task of Bounded-Degree-1 Vertex Deletion, which can be solved
in linear time (Theorem 4.5 in Section 4.5).

Lemma 6.4. For each s ≥ 2, Disjoint Πs-Vertex Deletion can be solved
in O(m

√
n log n) time.

Proof. Let (G, X) be the input instance for Disjoint Πs-Vertex Deletion.
Recall that the set of minimal forbidden induced subgraphs corresponding to Πs

is a P3 and a clique of s+ 1 vertices; hence, every connected component of G−X
is a clique of at most s vertices.

We describe an algorithm that finds a minimum-size vertex set X ′ such that X∩
X ′ = ∅ and such that G − X ′ ∈ Πs, or returns “no-instance”. This algo-
rithm is similar to the one for Disjoint Π∞-Vertex Deletion in the proof of
Lemma 6.3, but additionally takes into account the forbidden clique of s + 1 ver-
tices.

The algorithm starts by computing all vertices that necessarily have to be
in X ′: if there exists a forbidden induced subgraph F in G such that exactly one
vertex v of F is in R := V \X (thus, all remaining vertices of F are in X), then we
call v a necessary vertex. Obviously, all necessary vertices have to be in X ′. Thus,
a first data reduction rule computes the set of necessary vertices, adds them to
an initially empty set X ′

1, and deletes the necessary vertices from G. This can
be easily accomplished by first finding and deleting all necessary vertices due to
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(a) Disjoint Π4-Vertex Deletion

instance
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R

1
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1
1

1
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(b) The assignment problem

Figure 6.5: (a) Instance (G, X), preprocessed as described in the proof of
Lemma 6.4, for s = 4. The black vertices are in a minimum solution X ′

2. Each
group of encircled vertices corresponds to an edge in the assignment problem (b).
The edges in the assignment problem are weighted with the number of vertices
that do not have to be taken into X ′

2 if the corresponding edge is chosen to be in
the matching. The bold edges show the maximum matching that corresponds to
the minimum solution X ′

2.

the forbidden P3 (as in the proof of Lemma 6.3), and then finding and deleting
all necessary vertices due to the forbidden clique of s + 1 vertices (clearly, the
neighborhood of every s-vertex clique in G[X] is a set of necessary vertices due to
the forbidden clique). Then, consider the connected components C in the graph
reduced by the first rule. For each C that is a clique, a second data reduction rule
adds |V (C)| − s arbitrary vertices from V (C) ∩R to X ′

1 if |V (C)| > s (there are
always sufficiently many vertices to choose from, since G[X] only contains cliques
of size at most s), and deletes C from the graph. This reduction rule is correct,
because for a connected component that is a clique of more than s vertices it does
not matter which vertices are deleted, as there is no connection to the rest of the
graph.

In the following, let (G, X) be the remaining instance after exhaustively apply-
ing the two data reduction rules. As in the proof of Lemma 6.3, a minimum-size
set X ′

2, X ′
2 ∩X = ∅, containing a vertex of every induced path on three vertices

and every clique of s+1 vertices, can be obtained with matching techniques. The
main difference is that if a clique in G[R] is present in the cluster graph G−X ′,
then it is not necessarily the case that all vertices of that clique are present due
to the size constraint s. This size constraint, however, can be encoded in the edge
weights of the corresponding assignment problem. The construction of H is the
same as in the proof of Lemma 6.3 except for the weight of an edge between the
vertex for a clique CX in G[X]and the vertex for a clique CR in G−X (assuming
that there is an equivalence class in CR that contains a vertex adjacent to CX):
the weight of the edge is set to min {s − |V (CX)|, t}, where t is the number of
vertices in the corresponding equivalence class in CR. If the edge is in a max-
imum matching of H , and if t ≤ s − |V (CX)|, then the argument is as in the
proof of Lemma 6.3 and no vertex of the corresponding class in CR is in X ′

2;
however, if t > s − |V (CX)|, then this still means that the corresponding class
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of CR is chosen, but since together with the vertices in CX there are more than s
vertices, one has to add all but s − |V (CX)| vertices of this class to X ′

2. Con-
sider Figure 6.5 for an example of such an instance (G, X) and the corresponding
assignment problem.

The data reduction rules can be performed in O(m) time, and the matching
algorithm needs O(m

√
n log n) time (see proof of Lemma 6.3).

6.3.2 NP-Hardness Framework and Simple Proofs

Lewis and Yannakakis [LY80] showed that Π-Vertex Deletion for any non-
trivial hereditary property Π is NP-complete. Due to the similarity of Π-Vertex

Deletion to Disjoint Π-Vertex Deletion, in some simple cases we can
adapt the framework from [LY80].4 This section is mainly devoted to this frame-
work and how it can be modified to partially address the complexity of Disjoint

Π-Vertex Deletion.
There are cases, however, where our adaption fails; this happens when there

is a star with at least three leaves among the family H of minimal forbidden
induced subgraphs corresponding to Π. For this case, we have to devise other
NP-hardness proofs (if there is a star with at most two leaves, then the problem
is polynomial-time solvable). Summarizing, we have to distinguish the following
three cases (recall that each graph in H is connected, because Π is determined
by the components, cf. Section 2.1):

1. H does not contain a star (NP-hard, this section, Theorem 6.3), and

2. H contains a star with at least three leaves (NP-hard, Section 6.3.3, Theo-
rem 6.4), and

3. H contains a star with at most two leaves (that is, a P2 or a P3; polynomial-
time solvable, Section 6.3.1, Theorem 6.2).

The main result of this section covers all cases that can be proven by adapting
the framework of Yannakakis.

Theorem 6.3. Let Π be a non-trivial hereditary property that is determined by the
components and let H be the corresponding set of all forbidden induced subgraphs.
If H contains no star, then Disjoint Π-Vertex Deletion is NP-hard.

The Framework of Yannakakis

In the following, we briefly describe the reduction by Yannakakis [LY80], showing
that any vertex deletion problem for a non-trivial hereditary graph property is

4As made explicit in Lewis and Yannakakis’ paper [LY80], the parts of it we are referring to
in our work have been contributed by Yannakakis. That is why we refer to it in the following
as “the framework of Yannakakis”.
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Figure 6.6: Connected graph H with cut-vertex c and some vertex d in a largest
connected component J of H−c. Moreover, the graphs H ′ = H−V (J) and J ′ =
H [V (J) ∪ {c}] are illustrated.

NP-hard. Since the hereditary graph properties considered in this paper are as-
sumed to be determined by the components, we present a variant that is restricted
to such properties, that is, the forbidden induced subgraphs are connected.

Preliminaries. Let H be the set of minimal forbidden induced subgraphs that
correspond to the non-trivial hereditary property Π that is determined by its
components. In the following, we call a vertex subset X such that G−X ∈ Π a
H-obstruction set in G (since it obstructs every forbidden induced subgraph inH).
An important concept for the framework is the notion of α-sequences [LY80].

Definition 6.2 (α-sequence). For a connected graph H ∈ H, if H is 1-connected,
then take a cut-vertex c; otherwise, then let c be an arbitrary vertex (in this
case, H−c has just one connected component). Sorting the connected components
of H − c decreasingly with respect to their sizes gives a sequence α = (n1, . . . , ni),
where n1 ≥ . . . ≥ ni. The sequence depends on the choice of c. The α-sequence
of H, α(H), is a sequence which is lexicographically smallest among all such
sequences α.

Let H ∈ H be a graph with the lexicographically smallest α-sequence among
all graphs in H. Note that every proper induced subgraph of H has a lexicograph-
ically smaller α-sequence than H . Since Π is satisfied by all edge-less graphs (Π
is determined by the components, thus it contains all edge-less graphs), the con-
nected graph H must contain at least two vertices, thus a largest component J
of H − c contains at least one vertex. Let d be an arbitrary vertex in J , and
let H ′ be the graph resulting by removing all vertices in J from H , and let J ′ be
the subgraph of H induced by V (J) ∪ {c}. See Figure 6.6 for an example.

Reduction. The reduction by Yannakakis [LY80] from the NP-complete Ver-

tex Cover problem works as follows. Let G be an instance of Vertex Cover.
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Figure 6.7: Example for a reduction from Vertex Cover. Left: Vertex

Cover instance with a vertex cover A (black vertices). Right: Corresponding
Π-Vertex Deletion instance G′ constructed by the framework of Yannakakis,
together with a solution X (black vertices) corresponding to the vertex cover A.
The gray area marks a connected component in G′−X corresponding to case (2)
in the correctness proof with cut-vertex v.

For every vertex v in G create a copy of H ′ and identify c and v. Replace every
edge {u, v} in G by a copy of J ′, identifying c with u and d with v. Let G′ be the
resulting graph. See Figure 6.7 for an example of the reduction.

Correctness. The graph G has a size-k vertex cover if and only if G′ has a
size-k vertex set that obstructs the set of forbidden induced subgraphs H in G′:

(⇒) If A is a vertex cover of G, then X ′ := A also obstructs all graphs in H:
Every connected component of G′ −X ′ is either

1. a connected component of a copy of H ′ − c or

2. a copy of H ′ together with several copies of J ′, each with c or d deleted.

Let C be a connected component of G′−X ′. In case (1), α(H ′−c) is lexicograph-
ically smaller than α(H) since H ′ − c is a subgraph of H . In case (2), the copy
of H ′ and the copies of J ′ intersect exactly in one vertex v of V (G). Hence, v is a
cut-vertex and the components of C− v can be divided into a copy of H ′− c and
several copies of J with one vertex deleted. Since the latter type of components
has less than |V (J)| vertices, the cut-vertex v gives an α-sequence for C which
is lexicographically smaller than the α-sequence of H (see also Figure 6.7). As
a consequence, the connected components in G′ −X ′ have a smaller α-sequence
than H , and because H is a forbidden induced subgraph with lexicographically
smallest α-sequence, these connected components do not contain forbidden in-
duced subgraphs.

(⇐) If X ′ is a solution for Π-Vertex Deletion, then one can determine
a vertex cover A for G as follows: for each w ∈ X ′, if w is in a copy of H ′
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(possibly w ∈ V (G)), then add vertex c of that copy of H ′ to A, and if w is
in a copy of J ′ (where w 6∈ V (G)), then add vertex c of that copy of J ′ to A.
Obviously, |A| ≤ |X ′|. Suppose that there exists an edge {u, v} in G−A. Then,
by construction of A, X ′ neither contains any vertex from the two copies of H ′

corresponding to the vertices u and v nor from the copy of J ′ that replaced the
edge {u, v} in the construction of G′. Hence G′ − X ′ contains a copy of H , a
contradiction. Therefore, A is a vertex cover for G.

Limitations. In some cases, a very similar reduction principle can be applied
for Disjoint Π-Vertex Deletion. The main difficulty in the case of Disjoint

Π-Vertex Deletion compared to Π-Vertex Deletion is that one has to
construct an old solution X such that X does not prevent the “equivalence argu-
ment” of the reduction. In other words, one has to construct an H-obstruction
set X in G′ with the restriction that X does not contain any vertex from V (G).
Then, in principle, we can use the same arguments as above. However, for some
cases this approach fails; for instance, if J ′ is a clique and some graph of H is
contained in G, then this forbidden induced subgraph, which also exists in G′,
can only be obstructed by vertices from V (G). For example, this happens when Π
is the property “being cycle-free” (Feedback Vertex Set): H contains all cy-
cles, and the graph H with the smallest α-sequence is the K3. Then, cycles in G
exist also in G′ and can only be obstructed by vertices from V (G). One can deal
with this situation by reducing from K3-free graphs, and using the graph with
the smallest α-sequence among all K3-free graphs in H, as shown in the proof of
Lemma 6.7. The same type of problem, however, also occurs if H is a star. In
this case, each connected component of H − c is an isolated vertex. Thus, the
vertex d has to be one of these vertices, and G and therefore G′ might contain
a forbidden induced subgraph with lexicographically higher α-sequence than H .
This induced subgraph cannot be obstructed by a set X that is not allowed to
contain any vertex from V (G). In this case, the framework of Yannakakis seems
not to be suitable and we use different arguments (Section 6.3.3).

Proofs Based on the Reduction Framework of Yannakakis

First, we introduce a new variant of Disjoint Π-Vertex Deletion, where the
size of the new solution is given as a parameter, and show how it can be reduced
to Disjoint Π-Vertex Deletion. In all proofs that follow, we show the NP-
hardness of that variant, because all hardness proofs need a size gadget that is
employed in the reduction from the variant to Disjoint Π-Vertex Deletion.

Size Disjoint Π-Vertex Deletion

Input: An undirected graph G = (V, E), a parameter k, and a vertex
subset X ⊆ V such that G[X] ∈ Π, G − X ∈ Π, and X is inclusion-
minimal under this property.
Question: Is there a vertex subset X ′ ⊆ V with |X ′| ≤ k such that X∩
X ′ = ∅ and G−X ′ ∈ Π?
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Lemma 6.5. Size Disjoint Π-Vertex Deletion can be reduced to Disjoint

Π-Vertex Deletion in polynomial time.

Proof. Let (G, X, k) be an instance of Size Disjoint Π-Vertex Deletion. We
construct an instance (Ĝ, X̂) of Disjoint Π-Vertex Deletion as follows (re-
call that Disjoint Π-Vertex Deletion asks for a solution X̂ ′ such that |X̂ ′| <
|X̂|). First, suppose that k = |X|−1. Then, obviously, (G, X, k) is a yes-instance
for Size Disjoint Π-Vertex Deletion if and only if (Ĝ, X̂) := (G, X) is a
yes-instance for Disjoint Π-Vertex Deletion. It remains to deal with the
cases k < |X| − 1 and k > |X| − 1, where we employ a padding trick using a size
gadget. The basic idea is to enforce that, in the constructed graph G′ containing
the size gadget, a certain number of vertices of the new solution has to be in the
size gadget, such that there are exactly k vertices left to obstruct all forbidden
induced subgraphs in G.

Size gadget for k < |X| − 1: In this case, informally speaking, we have
to force that only k vertices out of the |X| − 1 available vertices can be used to
obstruct all forbidden induced subgraphs. Let H , c, J , J ′, and d be defined as
in the reduction scheme (see Figure 6.6). We create a new graph Ĝ by using a
copy of G and adding a padding gadget C constructed as follows. Add a new
vertex w and |X| − k copies of H , identify the vertex d of each newly added copy
of H with w, and let X̂ := X ∪{w}. The gadget C is obviously connected and w
is a cut-vertex in C. The vertex w obstructs all forbidden induced subgraphs
in C, because deleting w (and, thus, d) from each copy of H in C leaves a graph
with lexicographically smaller α-sequence (witnessed by c in each copy of H).
Hence, X̂ is a minimal H-obstruction set for Ĝ.

An H-obstruction set X̂ ′ for Ĝ with X̂ ′ ∩ X̂ = ∅ must contain at least one
vertex in each copy of H in C, thus X̂ ′ must contain at least |X| − k vertices
of C; putting into X̂ ′ the vertex c of each copy of H in C obstructs every for-
bidden induced subgraph in H : every connected component of C − X̂ ′ either is
a connected component of a copy of H − c or consists of |X| − k copies of J that
pairwise overlap in the vertex w. In the latter case, w is a cut-vertex witnessing
that each remaining connected component has size smaller than J , yielding a
lexicographically smaller α-sequence. This shows that X̂ ′, in order to obstruct
all forbidden induced subgraphs in C, needs to contain at least |X| − k vertices
of C. Recall that one demands that |X̂ ′| < |X̂|. Since X̂ = X ∪ {w}, there
remain at most |X̂| − |X|+ k − 1 = k vertices to obstruct all forbidden induced
subgraphs in G = Ĝ − V (C). Hence, (G, X, k) is a yes-instance for Size Dis-

joint Π-Vertex Deletion if and only if (Ĝ, X̂) is a yes-instance for Disjoint

Π-Vertex Deletion.
Size gadget for k > |X|−1: In this case, we construct Ĝ in the same manner

using a gadget C with k− |X|+ 2 copies of H overlapping in vertex w and let X̂
be the union of X and the vertex c of each copy of H . Then, |X̂| = k + 2. A new
solution X̂ ′ of size at most |X̂|−1 = k +1 with X̂ ′∩ X̂ = ∅ for Ĝ can obstruct all
forbidden induced subgraphs in C with the vertex w, and there are k vertices left
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to obstruct all forbidden induced subgraphs in G = Ĝ− V (C). Hence, (G, X, k)
is a yes-instance for Size Disjoint Π-Vertex Deletion if and only if (Ĝ, X̂)
is a yes-instance for Disjoint Π-Vertex Deletion.

Obviously, in both cases the size gadget C can be constructed in polynomial
time.

Recall that, for the following two proofs, we assume that the setH of forbidden
induced subgraphs corresponding to Π contains no star. We have to distinguish
between the cases that

1. all forbidden induced subgraphs in H contain a K3 (see Lemma 6.6), and
that

2. not all forbidden induced subgraphs in H contain a K3 (see Lemma 6.7).

Lemma 6.6. If the set H of forbidden induced subgraphs corresponding to Π only
consists of graphs that contain a K3, then Disjoint Π-Vertex Deletion is
NP-hard.

Proof. The proof is by reduction from the NP-complete Vertex Cover problem
on K3-free graphs [GJ79] to Size Disjoint Π-Vertex Deletion. Let (G, k) be
an instance of Vertex Cover, where G is K3-free. First, construct a graph G′

using the reduction scheme by Yannakakis. Greedily compute a minimal H-
obstruction set X for G′ such that X ∩ V (G) = ∅. Such a set X always exists,
since G is K3-free and, therefore, does not contain any forbidden induced sub-
graph. By these arguments and the reduction scheme, G has a size-k vertex cover
if and only if (G′, X, k) is a yes-instance for Size Disjoint Π-Vertex Dele-

tion. The NP-hardness of Disjoint Π-Vertex Deletion then follows from
Lemma 6.5.

In the following, assume that not all forbidden induced subgraphs contain
a K3.

Lemma 6.7. If the set H of forbidden induced subgraphs corresponding to Π
contains no stars, but other graphs that do not contain a K3, then Disjoint

Π-Vertex Deletion is NP-hard.

Proof. The reduction from the NP-complete Vertex Cover on K3-free graphs
is very similar to the one for Lemma 6.6. The difference is that G might now
contain a forbidden subgraph in H, and we have to show that we can greedily
compute a minimal H-obstruction set X for G′ such that X∩V (G) = ∅ (as in the
proof of Lemma 6.6). To this end, we first set the encoding forbidden subgraph H
used in the reduction scheme by Yannakakis equal to a K3-free subgraph in H
which has the lexicographically smallest α-sequence among all K3-free graphs
in H. Second, by setting H in this way, a largest connected component in H − c
contains at least one edge, due to the fact that H is not a star. Moreover, since H
does not contain K3, at most one endpoint of this edge is adjacent to c. Then,
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we select an endpoint of this edge that is not adjacent to c as the vertex d used in
the construction of G′. Now, we can observe that in the resulting G′ the vertices
in V (G) induce an independent set. Therefore, removing all vertices V (G′)\V (G)
gives an H-obstruction set for G′ and we can easily compute an inclusion-minimal
solution X for G′ with X ∩V (G) = ∅. Since the graphs G and H are K3-free and
so is G′, forbidden induced subgraphs with a smaller α-sequence than H , that
contain a K3, do not have to be considered, and the correctness of the reduction
for this case follows from the same arguments as in the proof of Lemma 6.6.

6.3.3 Refined Reduction Strategies

Here, we present NP-hardness proofs for the cases where we have a star with at
least three leaves as a forbidden subgraph. The main result of this section is as
follows.

Theorem 6.4. Let Π be a non-trivial hereditary graph property that is determined
by the components and let H be the corresponding set of all minimal forbidden
induced subgraphs. If H contains a star with at least three leaves, then Disjoint

Π-Vertex Deletion is NP-hard.

Note that a star has a smaller α-sequence than any other forbidden induced
subgraph that is not a star, and there is only one star in H, since the graphs
in H are inclusion-minimal. Therefore, if H contains a star, then the graph with
smallest α-sequence is necessarily the star in H. Let H be the star in H.

The proof of Theorem 6.4 is based on the following case distinctions.

1. H is a star with at least four leaves (Lemma 6.8).

2. H is a star with three leaves.

(a) H contains a P4 (Lemma 6.9).

(b) H does not contain a P4 (Lemma 6.10).

Lemma 6.8. If the set H of forbidden induced subgraphs corresponding to prop-
erty Π contains a star H with at least four leaves, then Disjoint Π-Vertex

Deletion is NP-hard.

Proof. The proof is by reduction from the NP-complete Vertex Cover on
graphs of maximum degree three [GJ79] to Size Disjoint Π-Vertex Dele-

tion. Let (G, k) be a corresponding input instance of Vertex Cover. Let l ≥ 4
be the number of leaves of H . An example of the following construction is given
in Figure 6.8. Starting with an empty graph G′ and an empty solution set X, for
each vertex v in G, create a copy Hv of a star with l − 1 leaves (vertex gadget),
identify its center vertex with v, and add any degG(v) of Hv’s leaves to X. For
each edge {u, v} in G, create a copy H{u,v} of H (edge gadget), add H{u,v}’s center
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Figure 6.8: Example for the reduction in the proof of Lemma 6.8 if H is a star
with four leaves. Left: Vertex Cover instance with a vertex cover C (black
vertices). Right: Corresponding Size Disjoint Π-Vertex Deletion instance
with the given solution X (gray vertices) and a solution X ′ corresponding to the
vertex cover C (black vertices). For illustration, the gadgets Hu, Hv, and H{u,v}
are labeled.

vertex to X, select two arbitrary leaves u′, v′ of H{u,v} and insert the edges {u, u′}
and {v, v′}.

Obviously, the graph G′ − X only contains connected components that are
either isomorphic to a star with l−1 leaves or isolated vertices. An isolated vertex
as well as a star with l−1 leaves both have lexicographically smaller α-sequences
than H . Hence, since the star H with at least four leaves has a lexicographically
smallest α-sequence among all graphs in H, G′−X ∈ Π. Moreover, X is minimal,
because G− (X \{v}) does contain a star with l leaves for any v ∈ X. It remains
to show that there is a size-k vertex cover for G if and only if there is a vertex
set X ′, X ′ ∩ X = ∅, of size k′ := k + |E(G)|, obstructing all forbidden induced
subgraphs in G′. In other words, (G, k) is a yes-instance for Vertex Cover if
and only if (G′, X, k′) is a yes-instance for Size Disjoint Π-Vertex Deletion,
which shows that Size Disjoint Π-Vertex Deletion is NP-hard. The NP-
hardness of Disjoint Π-Vertex Deletion then follows from Lemma 6.5.

(⇒) Let C be a size-k vertex cover for G. The set X ′ is constructed as
follows. Beginning with X ′ := C, for each copy H{u,v} with the two leaves u′, v′

(see construction), if u ∈ C and v 6∈ C, then add v′ to X ′, if u 6∈ C and v ∈ C,
then add u′ to X ′, and if u ∈ C and v ∈ C, then add either u′ or v′ to X ′.
Clearly, |X ′| = k + |E(G)|, since X ′ contains a vertex for each edge in G and k
vertices from the size-k vertex cover C (also see Figure 6.8). The connected
components in G′ −X ′ are either isolated vertices or stars with l − 1 leaves: the
leaves of the components Hv are isolated vertices in G′−X ′ if v ∈ X ′, and if v 6∈
X ′, then its neighbors on the adjacent edge-gadgets are in X ′ by construction
of X ′. Hence, the vertex-gadget Hv, a star with l − 1 leaves, forms a connected
component in G′−X ′. Concerning an edge-gadget H{u,v}, we observe that exactly
one of the two vertices u′, v′ is in X ′. Without loss of generality assume that v′ ∈
X ′ and u′ 6∈ X ′. Then, by the construction of X ′, u ∈ X ′. Thus, H{u,v} − v′,
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a star with l − 1 leaves, is a connected component in G′ − X ′. Since H is the
forbidden subgraph with the lexicographically smallest α-sequence, X ′ obstructs
all forbidden induced subgraphs in G′.

(⇐) Let X ′ be a size-(k + |E(G)|) vertex set that obstructs every forbidden
induced subgraph in G′. We may assume that X ′ does not contain any degree-
one vertex of G′ (since a degree-one vertex in X ′ of a vertex gadget could be
simply replaced by its neighbor, and a degree-one vertex in X ′ of an edge gad-
get H{u,v} could be simply replaced by either u′ or v′). Observe that for each
edge-gadget H{u,v} at least one of u′, v′ must be in X ′, since H{u,v} is a forbid-
den induced subgraph. Hence, X ′ contains at least |E(G)| vertices of the edge
gadgets. Let {u, v} be an edge in G. We distinguish two cases:

1. If only one of u′, v′ of H{u,v} is in X ′, then u or v is in X ′: assume without
loss of generality that u′ ∈ X ′ and v′ 6∈ X ′. Then, v′ together with the
vertices of Hv induce a star with l leaves (which is forbidden) in G′, and
since we assumed that the leaves of Hv are not in X ′, v ∈ X ′.

2. If both u′ and v′ are in X ′, and u, v 6∈ X ′, then we can simply remove u′

from X ′ and add u instead. After that, X ′ still obstructs all forbidden
induced subgraphs, and case (1) applies.

Hence, for each edge {u, v} in G at least one of its endpoints is in X ′. In other
words, X ′ ∩ V (G) is a vertex cover for G. Since X ′ contains at least |E(G)|
vertices of the edge gadgets, X ′ ∩ V (G) has size at most k.

Next, we show the NP-hardness of the case that the forbidden subgraph with
the lexicographically smallest α-sequence is a star with three leaves. In this case, a
reduction from Vertex Cover seems less promising, since the Vertex Cover

instance we reduce from contains vertices of degree three and therefore copies of
the forbidden induced star with three leaves, which would have to be obstructed
by the solution X in the reduction. This makes is difficult to translate a solution
for Size Disjoint Π-Vertex Deletion back to a vertex cover in the Vertex

Cover instance.
We reduce from 3-CNF-SAT. Our proofs rely heavily on the simple structure of

a star. First, we consider the case that the path on four vertices is also forbidden.

Lemma 6.9. If the set H of forbidden induced subgraphs corresponding to prop-
erty Π contains a star H with three leaves and H also contains the path on four
vertices, then Disjoint Π-Vertex Deletion is NP-hard.

Proof. The proof is by reduction from 3-CNF-SAT to Size Disjoint Π-Vertex

Deletion. We assume without loss of generality that each variable appears in
each clause at most once. Let F = c1∧· · ·∧cq be a 3-CNF formula over a variable
set Y = {y1, . . . , yp}. We denote the kth literal in clause cj by lkj , for 1 ≤ k ≤ 3.
An example of the following construction is given in Figure 6.9. Starting with
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Figure 6.9: Example for the reduction in the proof of Lemma 6.9 for the 3-CNF-
SAT formula (¬y1 ∨ y2 ∨ y3) ∧ (y1 ∨ ¬y2 ∨ ¬y3). For illustration, one minimality
gadget is labeled with A and one connection gadget is labeled with B. The vertices
of the connection gadget B are named according to the definitions of ak, uk, vk,
and wk in the proof of Lemma 6.9 for k = 1. The vertices in the given solution X
are gray, the vertices in the disjoint solution X ′, corresponding to the satisfying
truth assignment y1 = true, y2 = true, y3 = false, are black.

an empty graph G and X := ∅, construct an instance (G, X) for Disjoint Π-

Vertex Deletion as follows. For each variable yi, introduce a cycle Yi of 4q
vertices (variable gadget), add every second vertex on Yi to X, and label all the
other vertices on the cycle alternately with “+” and “−”. For each clause cj, add
a star Cj with three leaves (clause gadget) and add its center vertex to X. Each of
the three leaves of Cj corresponds to a literal in cj , and each leaf is connected to a
variable gadget as follows. Suppose that lkj is a literal yi or ¬yi, and let ak be the
leaf of Cj corresponding to lkj . Add a star with three leaves (connection gadget),
identify one leaf with ai, identify another leaf with an unused vertex 5 on Yi with
label “+” if lkj is positive and with an unused vertex on Yi with label “−” if lkj
is negative, and add the remaining leaf to X. Finally, for each remaining unused
vertex v with label “+” or “−” in G, add a star with three leaves (minimality
gadget), add two of its leaves to X, and add an edge connecting the center of the
star with v. This completes the construction.

Obviously, G−X only contains paths on three vertices as connected compo-
nents (cf. Figure 6.9), that is, G−X ∈ Π. Moreover, X is minimal, that is, for
any v ∈ X, G− (X \ {v}) does not satisfy Π. Let r be the number of minimality
gadgets. We show that formula F has a satisfying truth assignment if and only if
there exists a size-(r + 3pq + 3q) set X ′, X ′ ∩X = ∅, that obstructs all forbidden
induced subgraphs in G. In other words, F has a satisfying truth assignment if
and only if (G, X, r + 3pq + 3q) is a yes-instance of Size Disjoint Π-Vertex

Deletion. The NP-hardness of Disjoint Π-Vertex Deletion then follows

5This means that no vertex of another connection gadget has been identified with this vertex
on Yi, that is, it is of degree two.
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from Lemma 6.5.

(⇒) Assume that a satisfying truth assignment for F is given. Based on this
truth assignment, we construct the disjoint solution X ′, beginning with X ′ := ∅,
as follows. For each variable yi, 1 ≤ i ≤ p, if yi = true, then add every vertex
on Yi with label “+” to X ′, and if yi = false, then add every vertex on Yi with
label “−” to X ′. Add the center vertex of each minimality gadget to X ′. For
each literal lkj of each clause cj , if lkj = true, then add ak of the corresponding
clause gadget Cj to X ′, and if lkj = false, then add the center of the corresponding
connection gadget (which is adjacent to ak) to X ′. Clearly, |X ′| = r + 3pq + 3q.
The connected components of G − X ′ are either isolated vertices or paths on
at most three vertices (thus, G − X ′ ∈ Π): the set X ′ contains the center of
each minimality gadget, hence the leaves of the minimality gadgets are isolated
vertices in G − X ′. Concerning a variable gadget Yi, observe that every fourth
vertex on the cycle is in X ′, and, if a vertex labeled with “+” or “−” is not in X ′,
then its neighbor outside of Yi (which belongs either to a minimality gadget or
to a connection gadget) is in X ′. Thus, in G − X ′, the remaining vertices of Yi

induce connected components that are paths on three vertices. For a connection
gadget, observe that either the center vertex is in X ′ or two of its leaves (which
are identified with vertices on other gadgets) are in X ′, so there remains either
an isolated vertex or a single edge in G−X ′. Concerning a clause gadget Cj, if
there is a satisfying truth assignment, then at least one literal is true; therefore,
at least one leaf of Cj is in X ′. If a leaf is not in X ′, then its neighbor on
the corresponding connection gadget is in X ′. Hence, the connected component
in G−X ′ that includes the center of Cj is either a path on three vertices, a single
edge, or an isolated vertex (depending on how many literals of cj are true).

(⇐) Let X ′, X ′∩X = ∅, be a size-(r+3pq+3q) vertex set that obstructs every
forbidden induced subgraph in G. We may assume that X ′ does not contain any
degree-one vertex in G (since a degree-one vertex in X ′ could simply be replaced
by its neighbor). Recall that the set of minimal forbidden induced subgraphs
contains the star with three leaves and the path on four vertices. Each minimality
gadget is a star with three leaves, and since we assumed that no degree-one vertex
is in X ′, its center vertex must be in X ′. Hence, X ′ contains exactly r vertices of
the minimality gadgets. Since P4s are forbidden, at least every fourth vertex on
the cycle of each variable gadget has to be in X ′. However, we will see that X ′

contains exactly three vertices for each clause (thus, 3q vertices for all clauses),
and these vertices cannot be vertices on any variable gadget. Therefore, for each
variable gadget Yi, the set X ′ must contain exactly every fourth vertex of Yi (in
order to obtain a total number of 3qp vertices in X ′ for all p variable gadgets).
Thus X ′ either contains all vertices labeled “+” or all vertices labeled “−”. If X ′

contains all vertices labeled “+”, then we set yi := true. If X ′ contains all vertices
labeled “−”, then we set yi := false. It remains to show that the assignment
defined in this way is a satisfying truth assignment for the formula F .

For a clause gadget Cj, and for each leaf ak of Cj corresponding to literal lkj ,
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let uk be the center of the corresponding connection gadget, vk be the degree-
one neighbor of uk, and wk be the neighbor of uk on the variable gadget Yi, for
some 1 ≤ i ≤ p (cf. Figure 6.9). There is a P4 containing the center of Cj,
together with ak, uk, and vk. Since the center of Cj is in X, the set X ′ has
to contain at least three vertices to obstruct the three P4s corresponding to Cj

(one for each leaf). Thus, for all clauses, there are at least 3q vertices in X ′ that
obstruct these P4s. In total, X ′ contains r+3pq+3q vertices. Therefore, there are
exactly 3q vertices in X ′ that obstruct these P4s. Thus, for a clause gadget Cj,
for each leaf ak, either ak ∈ X ′ or uk ∈ X ′. Which case applies depends on which
vertices from Yi are in X ′: if wk 6∈ X ′, then wk together with uk and its two
neighbors on Yi induce a star with three leaves, thus uk ∈ X ′. If wk ∈ X ′, then
either ak ∈ X ′ or uk ∈ X ′. If wk ∈ X ′ and uk ∈ X ′, however, then one can simply
remove uk from X ′ and add ak instead. After that, X ′ still obstructs all forbidden
induced subgraphs. Since X ′ obstructs all forbidden induced subgraphs, at least
one leaf ak of Cj must be in X ′, which implies that wk ∈ X ′. Let Yi be the variable
gadget that contains wk. If wk has label “+”, then yi = true by the definition
of the assignment, and by construction lkj = yi is a positive literal, hence cj is
satisfied. If wk has label “−”, then yi = false, and, by construction, lkj = ¬yi is
a negative literal, hence cj is satisfied. Summarizing, for every clause there is at
least one true literal and thus the constructed truth assignment satisfies F .

Finally, we consider the case that the path on four vertices is not forbidden.

Lemma 6.10. If the set H of minimal forbidden induced subgraphs corresponding
to property Π contains a star H with three leaves and H does not contain the path
on four vertices, then Disjoint Π-Vertex Deletion is NP-hard.

Proof. As for Lemma 6.9, the proof is by reduction from 3-CNF-SAT to Size

Disjoint Π-Vertex Deletion, and we use the same notation for the 3-CNF-
SAT formula as employed there. The proof principle is similar, but the gadgets
differ. In the following, we only describe the particularities of this construction
and omit straightforward details that can directly be adapted from the proof of
Lemma 6.9. An example of the construction is given in Figure 6.10. The basic
structure of a variable gadget is a cycle of 4q vertices (in the following, further
vertices and edges will be added to each such cycle). Add every third vertex on
that cycle to X, and for each such vertex v ∈ X add a new vertex and make it
adjacent to v. Then, label the remaining vertices on the cycle, that is, vertices
on the cycle that are not in X, alternately with “+” and “−”. For each clause cj

introduce a star with three leaves Cj (clause gadget). Each of the three leaves
of Cj corresponds to a literal in cj. As in the proof of Lemma 6.9, we connect the
leaves of Cj with vertices labeled with “+” or “−” on the corresponding variable
gadgets, depending on whether the corresponding literal is positive or negative,
respectively. Herein, for a pair of adjacent labeled vertices, one with label “+”
and one with label “−”, at most one of them is connected to a clause gadget.
The connection gadget is a star with four leaves, one leaf is identified with a leaf
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Figure 6.10: Example for the reduction in the proof of Lemma 6.10 for the 3-
CNF-SAT formula (¬y1 ∨ y2 ∨ y3) ∧ (y1 ∨ ¬y2 ∨ ¬y3). The vertices in the given
solution X are gray, the vertices in the disjoint solution X ′ corresponding to the
satisfying truth assignment y1 = true, y2 = true, y3 = false, are black.

of a clause gadget, one leaf is identified with a vertex labeled “+” or “−” on
a variable gadget, and the remaining two leaves are added to X. After adding
all connection gadgets, for each pair u, v of adjacent labeled vertices, one with
label “+” (say, u) and one with label “−” (say, v), if both u and v have not
been connected to a clause gadget, add a new vertex and make it adjacent to u.
Moreover, for each labeled vertex u on a variable gadget that has been connected
to a clause gadget, add a new vertex, add it to X, and make it adjacent to u.

For the resulting graph G, observe that G−X contains only isolated vertices,
paths on three vertices, and paths on four vertices as connected components.
Only the paths on four vertices have a higher α-sequence than the star with
three leaves, but, by the preconditions of Lemma 6.10, these are not forbidden.
Therefore, X obstructs all forbidden induced subgraphs in G, and thus G−X ∈ Π.
Moreover, X is minimal, since for each v ∈ X, G− (X \{v}) contains a star with
three leaves. We claim that F has a satisfying assignment if and only if there
exists a size-(3q + 3pq) set X ′, X ′ ∩X = ∅, that obstructs all forbidden induced
subgraphs in G. The proof of the claim is very similar to the proof of Lemma 6.9.
For this reason, we omit the details. Note that for each variable gadget (together
with the degree-one vertices that have been added) the only possibilities are that
all vertices labeled “+” or all vertices labeled “−” can be in X ′, and for each
clause, X ′ must contain exactly three vertices, one for each literal. For each
clause gadget in G, at least one leaf must be in X ′, and thus the clause gadgets
are obstructed. This guarantees the satisfiability of the corresponding formula F
if X ′ has size 3q + 3pq.

Clearly, Lemmas 6.8–6.10 yield Theorem 6.4.



110 6 Vertex Deletion Problems and Iterative Compression

6.4 Outlook

We completely settled the complexity of the Disjoint Compression Task in
the case of vertex deletion problems on undirected graphs for a non-trivial hered-
itary property determined by the components. There are important problems
amenable to iterative compression that do not fall into the problem class studied
here. Among these, in particular, we have Directed Feedback Vertex Set

and Almost 2-Sat. Hence, it would be interesting to further generalize our
results to other problem classes, among these also being vertex deletion problems
on directed graphs or bipartite graphs and edge deletion problems. Our work
here has left open the case where a forbidden subgraph may consist of more than
one connected component. Finally, we also did not explore the case when one
demands that the given solution X in Disjoint Π-Vertex Deletion is al-
ready optimal (and not just inclusion-minimal), or close to optimal (for instance,
that the given solution contains only one more vertex compared to an optimal
solution).

The trick of enumerating all two-partitions of the given solution into one
part to keep and one part to exchange, which we employed for the general iter-
ative compression framework for Π-Vertex Deletion in Section 6.2, has been
applied in almost all known applications of iterative compression. Thus, if Dis-

joint Π-Vertex Deletion is NP-hard, then it seems difficult to reach the
“O(2k)-barrier” for an iterative compression based algorithm for the correspond-
ing Π-Vertex Deletion problem. To overcome this problem, a more elaborated
enumeration of only “relevant” two-partitions would be necessary. A first exam-
ple of such an approach has been given for Vertex Cover, yielding an iterative
compression based algorithm with running time O(1.443k ·mn

√
n) [Pei07]. This

approach relies also on the fact that Vertex Cover can be solved in polyno-
mial time in bipartite graphs (see Chapter 1). However, unfortunately, all other
vertex deletion problems for hereditary graph properties that are determined by
the components, restricted to bipartite graphs, are NP-complete [Yan81a], and
as a consequence it seems rather difficult to generalize this approach.

An exception of the general trick to enumerate all two-partitions of the given
solution is a recent new version of the proof that Vertex Bipartization is fixed-
parameter tractable, where the trick is to enumerate three-partitions of the given
solution [LSS09]. Like for the other proofs [RSV04, Hüf09], the exponential part
of the running time is 3k, because with a three-partition of the given solution, the
remaining task can be solved in polynomial time with maximum flow techniques.
For the moment, this is the only example of an iterative compression approach
with “three-partitions”, but if this turns out to work for other problems as well,
then an analogous study of the complexity of the corresponding compression task
would be interesting.



Chapter 7
Graph Packing

In this chapter, we consider the problem of packing at least k vertex-disjoint
copies of a fixed graph H into a given graph. This problem, called H-Packing,
is a generalization of Maximum Matching, which can be regarded as the task of
packing a maximum number of vertex-disjoint edges. The graph packing problem
is fixed-parameter tractable with respect to the maximum number of copies as
the parameter. We show a problem kernel of O(k|V (H)|−1) vertices. Based on
the kernelization technique, we also give a new version of a problem kernel for
Hitting Set.

The problem kernel for H-Packing is the main result of this chapter and
is presented in Section 7.2. Then, we show in Section 7.3 how the kernelization
technique can be applied for Hitting Set.

7.1 Introduction and Known Results

The H-Packing problem, sometimes also called H-Matching, is defined as
follows.

H-Packing

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does G contain k vertex-disjoint copies of H?

A solution to H-Packing is a packing of k vertex-disjoint copies of H ; we call
such a solution an H-packing.

Applications. Packing problems have various applications in computational
biology [ABWB+09]; for instance, the so-called Full Sibling Reconstruc-

tion problem is a packing problem [ABWB+09]. Packing problems have many
applications ranging from information theory to the design of efficient statistical
experiments [Yus07]. Triangle Packing, that is, K3-Packing, has applica-
tions in genome rearrangement problems [ABWB+09, CR02].

111
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Polynomial-Time Solvable Cases. If H is a single edge, then the H-Packing

problem is equivalent to Maximum Matching, and therefore polynomial-time
solvable. H-Packing is linear-time solvable on graphs of bounded treewidth;
this can be shown based on a monadic second-order logic (MSO) formulation of
H-Packing [Yus07] (see Section 8.2.3 for an example of an MSO formulation).
Furthermore, Triangle Packing is polynomial-time solvable on split graphs,
cographs [GRC+98], and on graphs of maximum degree three [CR02].

Hardness and Approximation. If H is a connected graph with at least
three vertices, then H-Packing becomes NP-complete [KH78] and also APX-
complete [Kan94]. There exists a simple polynomial-time approximation algo-
rithm that greedily finds an inclusion-maximal set of copies of H in G, yielding
an approximation factor of |V (H)| (cf. [Yus07]). For every fixed t ≥ 3, Kt-

Packing can be approximated in polynomial time within a factor of t/2 + ǫ, for
any ǫ > 0 [HS89]. H-Packing remains NP-complete on planar graphs [BJL+90],
but there exists a polynomial-time approximation scheme (PTAS) [Bak94].

There exist numerous results if H is a triangle. Triangle Packing is NP-
complete on chordal, line, total graphs [GRC+98], and planar graphs of maximum
degree four [CR02]. Concerning approximation, in general Triangle Packing

is APX-hard [CR02]. There exists a factor-1.2 polynomial-time approximation on
graphs of maximum degree four [MW08]. On general graphs, it can be approx-
imated in polynomial time within a factor of 3/2 + ǫ for any ǫ > 0 [HS89].
However, it cannot be approximated in polynomial time with a ratio better
than 95/94 [CC06] (assuming P 6= NP), or with a ratio better than 76/75 (as-
suming RP 6= NP) [ABWB+09].

The above is only a very brief description of the main results; for a more de-
tailed exposition concerning H-Packing we refer to the survey by Yuster [Yus07].

There are numerous related problems, for instance, packing of graphs from
a given family H (each copy must be isomorphic to some H ∈ H, packing on
directed graphs, factor problems (every vertex must be part of some copy of H),
edge-disjoint packing, and many more (see [Yus07]).

Parameterized Complexity. H-Packing can be solved in 2|V (H)|k · poly(n)
time with a randomized algorithm [Kou08] and in 22|V (H)|k·poly(n) time [CKL+09]
with a deterministic algorithm, which has later been improved to 2(2|V (H)|−1)k ·
poly(n) [FLLW09]. The deterministic algorithms also work for a weighted variant
of the problem within the same running time bounds. Hence, H-Packing is
fixed-parameter tractable with respect to the parameter k.

If H is a triangle, then there exists a problem kernel of 108k3−73k2−18k ver-
tices [FHR+04]. If H is a path on three vertices, then there exists a problem kernel
with 15k vertices [PS06], which has been improved to 7k vertices [WNFC08]; the
best-known parameterized algorithm runs in 2.4483k ·poly(n) time [FR09]. If H is
a star with a constant number of leaves, then H-Packing admits an O(k2)-vertex
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problem kernel [PS06]. On a connected cubic graph with n > 16 a P3-packing
consists of at least 117/152 n vertices [KMZ08]. This directly gives a linear-vertex
problem kernel for P3-Packing on connected cubic graphs.

An interesting question in parameterized complexity is the existence of lower
bounds for kernel sizes. Up to now, we are only aware of lower bounds on the con-
stant factor of a linear kernel (that is, of size ck for some constant c) for Vertex

Cover, Independent Set, and Dominating Set on planar graphs [CFKX07].
Moreover, it is known that several problems do not admit a polynomial-size ker-
nel [BDFH09, FS08, DLS09] (the existence of polynomial-size kernels for these
problems would imply the collapse of the polynomial hierarchy to the third level).
However, to the best of our knowledge, there is no lower bound example of a prob-
lem that does admit a polynomial-size kernel, but no linear-size kernel. Fellows
et al. [FHR+04] conjectured that Kr-Packing, that is, packing cliques on r
vertices, might be a candidate for a problem whose kernel cannot be smaller
than O(kr) vertices. However, our result for H-Packing directly shows that
an O(kr−1)-vertex kernel is possible. Our technique differs from the technique
used by Fellows et al. [FHR+04] in how we analyze an initially computed greedy
packing of triangles based on which the size bound of the whole kernel is derived.
The drawback of their method is, as they state, that it is not obvious how to
generalize it to H-Packing. Our approach combines ideas from an improved
kernelization of Hitting Set [Abu09] and from problem kernels for generalized
matching and set packing problems [FKN+07] to achieve this. The O(k3)-vertex
kernel by Fellows et al. [FHR+04] is based on crown decompositions; while we
also apply the idea behind crown decompositions, we will see that it is actually
not necessary to compute the decomposition to derive the kernel. This does not
improve on the worst-case running time of the kernelization, but might be in-
teresting for practical purposes and would probably also work similarly for other
applications of the crown decomposition technique.

7.2 Problem Kernelization for H-Packing

In this section, we improve a bound of 108k3 − 73k2 − 18k vertices for a prob-
lem kernel for Triangle Packing [FHR+04] to a bound of 45k2 vertices (Sec-
tion 7.2.1). Moreover, our approach can be generalized to a problem kernel
of O(k|V (H)|−1) vertices for H-Packing, where H is a fixed connected graph
(Section 7.2.2).

7.2.1 Quadratic-Vertex Problem Kernel for Triangle Pack-

ing

In this section, we give a problem kernel with 45k2 vertices for Triangle Pack-

ing. The problem kernel with O(k3) vertices by Fellows et al. [FHR+04] starts
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with a greedy packing P of triangles, which contains less than 3k vertices (oth-
erwise, we already have a packing of k triangles). Then, based on the size of P,
the number of vertices in V \ V (P) is bounded, which implies that the total
number of vertices in the graph is bounded, yielding a problem kernel. In this
sense, P is a witness for the number of vertices in the graph. The limitation of
this approach is that there is too much structure of the graph “outside” of P; we
only know that G − V (P) is a triangle-free graph. To deal with this problem,
we use a different notion of witness, which contains more triangles than P, but
which is still small enough in order to obtain a better bound on the number of
vertices in the problem kernel. In our case, the vertices outside of the witness
form an independent set, whose size is much easier to bound. Our kernelization
is based on the same reduction rules as the kernel by Fellows et al. [FHR+04].
However, our approach applies them differently, and, most importantly, it uses a
different analysis. One of the main advantages of our approach is that it is easier
to generalize to H-Packing for arbitrary connected graphs H .

Our approach works with the set of all triangles in G. The set of all triangles in
a graph can be computed in O(m

√
m) time [AYZ97]. First, we apply the following

simple data reduction rule, which is obviously correct and can be exhaustively
applied in O(n + m) time.

Reduction Rule 7.1. Remove all vertices and edges that are not contained in
any triangle in G.

In the following, assume that G is reduced with respect to Reduction Rule 7.1.
The general strategy of our kernelization algorithm is as follows. First, we com-
pute in polynomial time a set of not necessarily disjoint triangles T , and we show
that if there are sufficiently many vertices in V (T ), then the input instance is
a yes-instance, and a corresponding size-k packing can be computed in polyno-
mial time. If not, then, with the size bound on V (T ), one can bound the size
of V \ V (T ) by applying a data reduction rule based on matching techniques. In
this sense, the set T is the basis of our kernelization and is the witness for the
size of the kernel.

The witness T is defined as follows.

Definition 7.1. A witness T is a maximal set of triangles in G that pairwisely
intersect in at most one vertex.

We will later show that I := V \ V (T ) forms an independent set.

Lemma 7.1. A witness T can be computed in O(m
√

m) time.

Proof. Compute the set T ∗ of all triangles in G in O(m
√

m) time [AYZ97]. The
witness can be computed by an iterative algorithm that starts with an empty
set T , and then repeats the following until T ∗ = ∅.

Select an arbitrary triangle T ∈ T ∗ and test whether T intersects with each
triangle in T in at most one vertex. If so, then add T to T and remove it from T ∗;
otherwise, just remove T from T ∗.
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u
G

Figure 7.1: In this example, we assume that k = 2 and illustrate that a size-
(k − 1) packing of triangles in G − u implies a size-k packing of triangles in G.
A packing of k − 1 = 1 triangle in G − u (bold edges) contains three vertices;
hence it can contain vertices of at most three other triangles in G that contain u.
Therefore, at least one triangle in G that contains u is left (dashed edges), which
can be added to the packing, obtaining a packing of two triangles for G.

To be able to efficiently test whether T intersects with each triangle in T in
at most one vertex, maintain a copy of G in which all edges that are a part of a
triangle in T are marked. Thus, T intersects with each triangle in T in at most
one vertex if and only if E(T ) contains no marked edge. This can be tested in
constant time for each T ∈ T ∗ (assuming that an edge is stored in the graph
data structure with a flag that indicates whether it is marked or not and that a
triangle is represented by its edges; a simple adjacency list data structure can be
easily adapted accordingly).

Altogether, we have O(m
√

m) triangles, and the algorithm described above
needs only constant time per triangle.

In the following, ComputeWitness denotes an algorithm computing a wit-
ness. After computing the witness T , the following data reduction rule due to
Fellows et al. [FHR+04] is applied.

Reduction Rule 7.2 ([FHR+04]). If there is a vertex u ∈ V (T ) such that there
exist at least 3k−2 triangles in T that pairwise intersect exactly in u, then delete u
from G and set k := k − 1.

To see the correctness of this rule, one has to show that (G, k) is a yes-instance
if and only if (G− u, k − 1) is a yes-instance. Let P be a packing of k triangles
in G. As a consequence, since u can be in at most one triangle in P , there exists
a packing of at least k− 1 triangles in G−u. To see the other direction, let P be
a packing of k−1 triangles in G−u. The packing P contains 3k−3 vertices, that
is, |V (P )| = 3k − 3. Hence, in G the packing P can overlap with at most 3k − 3
triangles of the at least 3k− 2 triangles that pairwise intersect exactly in u. As a
consequence, there is at least one triangle left that can be added to P , obtaining
a packing of k triangles in G (see Figure 7.1 for an example). Hence, Reduction
Rule 7.2 is correct.

Note that Fellows et al. [FHR+04] start with a vertex-disjoint packing of
triangles as “witness” instead of a packing of triangles that pairwise overlap in
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at most one vertex, which we use as the witness T . Fellows et al. [FHR+04] then
apply Reduction Rule 7.2 on triangles that contain exactly one vertex of their
“witness”. They find these triangles by computing a maximal matching in the
graph resulting by deleting the “witness”. In contrast, we use Reduction Rule 7.2
only for reducing vertices that are part of the witness; the vertices “outside” of
the witness need not to be considered by Reduction Rule 7.2 with our approach.
We have to show that Reduction Rule 7.2 can be efficiently implemented using
our approach as well.

Lemma 7.2. One application of Reduction Rule 7.2 can be performed in
O(m

√
m) time.

Proof. There are at most O(m
√

m) triangles in the witness T . By simply main-
taining a counter for each vertex in V (T ), one can count the number of triangles
each vertex is part of by iterating over all triangles in T in O(m

√
m) time. If a

counter of a vertex reaches at least 3k− 2, then the corresponding vertex can be
deleted as described in Reduction Rule 7.2.

If Reduction Rule 7.2 applies, then the kernelization algorithm restarts with
exhaustively applying Reduction Rule 7.1 and calling ComputeWitness. This
is repeated until Reduction Rule 7.2 does not apply or until k = 0. In total,
Reduction Rule 7.2 is called at most k times, and each time Reduction Rule 7.1
and ComputeWitness are called. Therefore, the time for the exhaustive appli-
cation of Reduction Rule 7.2 is O(k(m

√
m + n)). If k = 0 after the exhaustive

application of the reduction rules, then G is a yes-instance, thus the kernelization
algorithm returns “yes”. In the following, we can therefore assume that Reduc-
tion Rule 7.1 and Reduction Rule 7.2 do not apply and that k > 0, that is,
that (G, k) is reduced with respect to these two reduction rules. The next lemma
states some important properties of a reduced instance.

Lemma 7.3. Let (G, k) be an instance of Triangle Packing with correspond-
ing witness T such that Reduction Rule 7.1 and Reduction Rule 7.2 do not apply.
Then, the following holds:

1. The set I := V \ V (T ) forms an independent set in G and

2. each triangle that contains a vertex from I shares an edge with a triangle
from T .

Proof. (1.) Suppose that I is not an independent set in G. Let e be an edge
in G[I]. Due to Reduction Rule 7.1, the edge e must be contained in a triangle T
in G such that T 6∈ T . The triangle T intersects each triangle in T in at most
one vertex, thus T is added to T by ComputeWitness, contradicting T 6∈ T .
(2.) If a triangle T 6∈ T contains a vertex from I but shares no edge with a
triangle from T , then again T intersects each triangle from T in at most one
vertex, contradicting T 6∈ T .
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The structure of a reduced graph G is illustrated in Figure 7.3. Note that
the graph G[V (T )] might contain edges that are not part of any triangle in T ;
however, by Lemma 7.3, these edges are not part of any triangle that contains a
vertex from I. Hence, there are only O(|T |) edges in G[V (T )] that are part of
triangles that contain vertices from I. This fact is crucial to obtain a quadratic
bound on the number of vertices for our problem kernel. To this end, we need to
bound the number of vertices in V (T ) and the number of triangles in T .

Lemma 7.4. Let (G, k) be an instance of Triangle Packing with correspond-
ing witness T such that Reduction Rule 7.1 and Reduction Rule 7.2 do not apply.
If |V (T )| > 18k2 or if |T | > 9k2, then G contains k vertex-disjoint triangles.

Proof. Assume that there do not exist k vertex-disjoint triangles in T . Let P ⊆ T
be a maximum-size set of vertex-disjoint triangles. Thus, |P| ≤ k − 1, and for
each triangle T ∈ T \ P we know that V (T ) ∩ V (P) 6= ∅. By the definition
of witness (Definition 7.1), the triangles in T pairwise intersect in a most one
vertex. For each triangle T ∈ P, due to Reduction Rule 7.2, each vertex in T is
contained in at most 3k − 3 triangles, thus for each vertex v ∈ V (T ) we have at
most 6k−6+1 ≤ 6k vertices contained in triangles that contain v. Thus, in total
we have at most 3|P| · 6k ≤ 18k2 vertices and at most 3|P| · 3k ≤ 9k2 triangles
in T . Therefore, if |V (T )| > 18k2 or |T | > 9k2, then G contains k vertex-disjoint
triangles.

If |V (T )| > 18k2 or |T | > 9k2, then these k vertex-disjoint triangles can be
found by a greedy algorithm that selects an arbitrary triangle, deletes all other
intersecting triangles, and proceeds recursively with the remaining instance until
it has found k triangles.

Thus, our kernelization algorithm outputs “yes-instance” if one of the condi-
tions of Lemma 7.4 applies. If this is not the case, then it remains to upper-bound
the size of I. The basic observations to achieve this are that the maximum num-
ber of triangles in a triangle packing that contain vertices from I depends on the
number of edges in E(T ) (by Lemma 7.3 each triangle that contains a vertex
from I has to contain an edge from E(T )), and that some vertices from I are
superfluous; see Figure 7.2 for an example. In this example, the vertex labeled
“a” is superfluous, because one can replace any triangle packing by another trian-
gle packing of the same size that does not contain “a”. This replacement works
because one can pair each of the vertices “b” and “c” with a particular edge
in E(T ), respectively. In other words, we can find a matching between vertices
in I and edges in E(T ), and all unmatched vertices are superfluous and can be
removed from the graph. Since the number of edges in T is bounded, the number
of non-superfluous vertices in I is bounded as well. In the following, we show
that this approach is correct.

To this end, we define an auxiliary bipartite graph GT as follows. The vertex
set consists of I as one partite set and J := {ve | e ∈ E(T )} as the other, and GT
contains an edge {u, ve} if {u} ∪ e induces a triangle in G. Note that by part (2)
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TT

cbacba II

Figure 7.2: Left: Graph with witness T and a packing of two triangles (bold
edges). Right: Packing of two triangles that does not contain the vertex labeled
“a” in I.

I I ′ I1

J1T
va vb vc vd ve vf vg

v1 v2 v3 v4 v5 v6 v7

gc d f

eba

v1 v2 v3 v4 v5 v7v6

Figure 7.3: Left: Graph with witness T . The edge set E(T ) of the witness is
drawn bold. The dashed edge is not contained in any triangle that contains a
vertex from I nor in any triangle in the witness. Right: Corresponding auxiliary
graph. Note that degree-0 vertices (corresponding to unlabeled edges of G[V (T )])
are not drawn, because they are not part of any triangle that contains a vertex
from I. The bold edges are in a maximum matching. For the definition of the
vertex sets see the proof of Lemma 7.5.

of Lemma 7.3 every triangle containing a vertex in I is “represented” by an edge
in GT . See Figure 7.3 for an example. Since T contains O(m

√
m) triangles, GT

can be constructed in O(m
√

m) time. With the help of this auxiliary graph, we
can state a data reduction rule to upper-bound the size of I.

Reduction Rule 7.3. Compute a maximum matching in GT . Remove all un-
matched vertices in I from G.

Lemma 7.5. Reduction Rule 7.3 is correct, that is, G has a size-k packing of
triangles if and only if the graph resulting by removing all unmatched vertices in I
from G has a size-k packing of triangles.

Proof. Let M be the computed maximum matching in GT and let I ′ be all un-
matched vertices in I (see Figure 7.3). Since M is maximum, the graph GT
contains no M-augmenting path. We have to show that G contains k vertex-
disjoint triangles if and only if G− I ′ contains k vertex-disjoint triangles.

(⇐) This direction is trivial, since a set of k vertex-disjoint triangles in G− I ′

is also contained in G.



7.2 Problem Kernelization for H-Packing 119

(⇒) Let P be a set of k vertex-disjoint triangles in G. If no triangle in P
contains a vertex of I ′, then P is a set of k vertex-disjoint triangles in G − I ′.
Therefore, suppose that there is a triangle in P that contains a vertex of I ′. We
show in the following that we can always modify P such that there is no triangle
containing a vertex of I ′.

Let I1 ⊆ I \ I ′ be the set of vertices in I \ I ′ to which there exists an M-
alternating path from some vertex in I ′ (see Figure 7.3). Each vertex u ∈ I1 is
an endpoint of an edge in M because there is an M-alternating path from some
vertex w ∈ I ′ to u, and the path begins with an edge that is not contained in M
(since all vertices in I ′ are unmatched). Let M ′ ⊆M be the matching edges that
have an endpoint in I1, and let J1 := J ∩ V (M ′) be the corresponding second
endpoints of edges from M ′ (see Figure 7.3). We claim that every triangle that
contains a vertex from I ′∪I1 contains an edge e corresponding to a vertex ve ∈ J1.
As we will see, this implies that there exists a triangle packing that does not
contain any vertex from I ′.

To show the claim, let T be a triangle in P that contains a vertex u ∈ I ′.
Suppose that T contains an edge e corresponding to a vertex ve in J\J1. Since ve 6∈
J1, we know that ve is not matched by M ; otherwise, there would be an M-
alternating path (u, ve, w) for some vertex w ∈ I \I ′, and this would imply ve ∈ J1

by the definition of J1. Therefore, {u, ve} could be added to M , contradicting
that M is maximum. Similarly, every triangle T in P that contains a vertex u ∈ I1

contains an edge e corresponding to some ve ∈ J1. To see this, assume again
that ve ∈ J \J1. Then, ve must be unmatched, but then the path in GT consisting
of the M-alternating path from some vertex w ∈ I ′ to u and the edge {u, ve} forms
an M-augmenting path, contradicting that M is maximum. This shows the claim.

Since M ′ is a perfect matching between I1 and J1 (that is, every vertex in I1∪J1

is matched and every matching edge has one endpoint from I1 and the other
from J1), we can always replace all triangles in P that contain vertices in I ′ ∪
I1 by the same number of triangles containing only vertices in I1. This shows
that G[V \ I ′] also contains k vertex-disjoint triangles.

Concerning the running time of Reduction Rule 7.3, observe that GT con-
tains O(m) vertices and O(m

√
m) edges. The computation of a maximum match-

ing in this graph can therefore be performed in O(m2) time using the algorithm
by Hopcroft and Karp [HK73] (running time m

√
n for an n-vertex and m-edge

bipartite graph).

Lemma 7.6. After applying Reduction Rule 7.3, at most 27k2 vertices of I re-
main.

Proof. By Lemma 7.4, the witness T computed by ComputeWitness contains
at most 9k2 triangles. Since J := {ve | e ∈ E(T )}, we know that |J | ≤ 27k2. Due
to Reduction Rule 7.3, all remaining vertices of I are matched by a maximum
matching between I and J in GT . Therefore, there remain at most 27k2 vertices
of I.
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Theorem 7.1. Triangle Packing admits a problem kernel of at most 45k2

vertices, which can be constructed in O(k(m
√

m + n) + m2) time.

Proof. By Lemma 7.4, we have at most 18k2 vertices in V (T ) and, by Lemma 7.6,
there remain at most 27k2 vertices of I, thus in total we have at most 45k2 vertices.
The running time is simply the total time for exhaustively applying Reduction
Rule 7.1 and Reduction Rule 7.2, constructing a witness structure, constructing
the auxiliary graph, computing a maximum matching in it, and deleting the
unmatched vertices.

7.2.2 Generalizing to H-Packing

In this section, we generalize the kernelization approach for Triangle Packing

to H-Packing for an arbitrary connected graph H . The main difference to
Triangle Packing is a new reduction rule that bounds the size of the witness
and generalizes Reduction Rule 7.2. Let h denote the number of vertices in H .
Note that h is a constant. We start with a trivial reduction rule analogous to
Reduction Rule 7.1.

Reduction Rule 7.4. Remove all vertices and edges that are not contained in
any copy of H in G.

Lemma 7.7. Reduction Rule 7.4 is correct and can be performed in O(nh · h2)
time.

Proof. The correctness is trivial. An algorithm with the claimed running time
works as follows. Iterate over the at most

(

n
h

)

many copies of H in the input graph
and mark all vertices and edges in the graph G that are contained in some copy
in O(h2) time. After that, the unmarked vertices and edges in G are not contained
in any copy of H and can be removed. The total running time is O(nh · h2).

In the following, we assume that G is reduced with respect to Reduction
Rule 7.4. Let H be the set of all copies of H in G. Due to Reduction Rule 7.4,
every vertex in G is contained in at least one copy of H in H. The set H can be
computed in O(nh · h2) time by simply trying all

(

n
h

)

vertex subsets and testing
in O(h2) time whether the chosen subset is a copy of H . The kernelization
algorithm follows the ideas of the problem kernel for Triangle Packing in
Section 7.2.1. As for Triangle Packing, we define a witness; here, the witness
is a set of copies of H that pairwise overlap in at most h− 2 vertices. As we will
see, as for Triangle Packing, the vertices that are not part of the witness form
an independent set. See Figure 7.4 for an illustration. The basic outline of the
kernelization algorithm is the same as for Triangle Packing, that is, that we
first have to bound the size of the witness by some appropriate reduction rule, and
then, based on that size bound, to bound the number of vertices in I by removing
superfluous vertices from I. The most involved part of the kernelization algorithm
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W

. . .I

Figure 7.4: Example for h = 4 of the general structure of a graph with a witnessW
(gray cycles). The witness is a maximal packing of copies of H that pairwise
overlap in at most two vertices. The remaining copies of H , which contain a
vertex from I := V \ V (W), overlap with some copy of H in W in three vertices.

is the reduction rule that will bound the size of the witness. For an intuitive
idea of the following witness definition and the description of the kernelization
algorithm, assume that there are copies of H that pairwise intersect in the vertex
set T . Let C be the set of these copies of H . For Triangle Packing, we
had |T | = 1, and due to the definition of the witness, we knew that the triangles
pairwise intersect exactly in T , and we could safely assume that one of these
triangles is always part of an optimal triangle packing if C is big enough and
therefore delete T from G (Reduction Rule 7.2). However, for general H , this
idea does not work anymore, since in general |T | > 1, and then we cannot simply
decide to delete T , because we cannot determine which vertex of T is part of a
maximum-cardinality H-packing. Still, if there are too many graphs (the exact
bound depends on the size of T ) in C, then we can find a subset C′ ( C such
that there always exists an optimal H-packing that does not include any copy
of H from C′. These copies do not have to be considered for finding an optimal
solution. Therefore, all vertices that are only contained in such “unnecessary”
copies of H can be removed from the graph. A witness does not contain these
“unnecessary” copies of H ; as a consequence, a witness is defined with respect to
a subset H′ of H.

Definition 7.2. Let H be the set of all copies of H in G. A witness with respect
to a set H′ ⊆ H for H-Packing is a maximal subset W ⊆ H′ such that the
copies of H in W pairwise intersect in at most h− 2 vertices.

An example of a witness is given in Figure 7.4 for the case h = 4.
The algorithm ReducedWitness, given in Figure 7.5, computes a witnessW

with respect to H\R, where R is a set of “unnecessary” copies of H in H, that is,
if there exists a size-k H-packing, then there is a size-k H-packing that does not
use any element of R. The identification of unnecessary copies of H is derived
from a combination of ideas for data reduction rules for Hitting Set [Abu09]
and generalized matching and set cover problems [FKN+07]. The algorithm uses
an iterative approach, starting with empty sets R andW. In line 3 of Figure 7.5,
it computes a witness W with respect to H \ R. In lines 5–11, the algorithm



122 7 Graph Packing

Algorithm: ReducedWitness (H)
Input: A set H of copies of H in G.
Output: A set R of unnecessary copies of H and a witness W with respect to H \R.

1 R← ∅; W ← ∅
2 repeat
3 Greedily add elements from H \ (W ∪R) to W such that W is a witness.
4 C′ ← ∅
5 for i← 0 to h− 3 do
6 for each H ′ ∈ W do
7 for each T ( V (H ′), |T | = h− 2− i do
8 C ← {H ′′ ∈ W | V (H ′′) ) T}
9 if |C| > ∑i+1

t=0(hk)t then

10 choose any set C′ ( C of size |C| −∑i+1
t=0(hk)t.

11 W ←W \ C′; R← R∪ C′
12 until C′ = ∅
13 return W, R

Figure 7.5: Pseudo-code of the algorithm to compute the witness W.

identifies unnecessary copies and adds them to R; the correctness of this part
will be shown with Lemma 7.8. After having identified and removed unnecessary
copies of H from W, the set W might not be a witness with respect to H \ R;
therefore, the algorithm repeats until no more unnecessary copies of H can be
found. Then, the resulting set W is a witness with respect to H \ R, since it is
updated in line 3 before ReducedWitness returns.

Let W be the witness that is returned by ReducedWitness(H). The fol-
lowing lemma shows that there exists a maximum H-packing in G that does not
contain any copy of H that is removed from W and added to R in line 11 of
ReducedWitness. After executing ReducedWitness, the set R contains all
removed copies of H .

Lemma 7.8. If there exists an H-packing P of size k in G, then there exists
an H-packing P ′ of size k in G that does not contain any element of R.

Proof. If R∩P = ∅, then P ′ := P is an H-packing of size k that does not contain
any copy of H from R. Hence, assume that R ∩ P 6= ∅. We show that we can
replace each copy of H in R∩P by another copy of H not contained in R such
that the resulting packing has size k, which proves the lemma.

We show the claim by induction on i (line 5 in Figure 7.5). Intuitively, i
determines the size of the vertex set T computed in line 7. For i = 0, T con-
tains h − 2 vertices, thus all copies of H whose vertex sets are supersets of T
intersect exactly in T , because the copies of H pairwisely overlap in at most h−2
vertices (Definition 7.2). As shown below, the number of these copies can be
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. . .

(a) Case |T | = h−2 = 2. The copies
of H in T that contain T pairwisely
intersect exactly in T .

(b) Case |T | = h − 3 =
1. The copies of H in T
that contain T pairwisely in-
tersect in T and at most
one additional vertex out-
side of T .

Figure 7.6: Illustration of the vertex set T (black vertices) and copies of H
of the witness T (computed in line 3 of ReducedWitness) that contain T ,
assuming h = 4.

bounded easily. See Figure 7.6a for an illustration of the case i = 0. For i > 0,
the set T contains less than h− 2 vertices, and the copies of H whose vertex sets
are supersets of T might also intersect outside of T , but then we can bound their
number based on the induction hypothesis. See Figure 7.6b for an illustration of
the case i = 1. Now, we show the induction in detail.

Let i = 0 and let T be a size-(h − 2) vertex subset such that |C| > 1 + hk
(line 9), and let C′ ⊆ C be as in line 10. Clearly, |C \ C′| = 1 + hk. Since the
copies of H in C pairwise intersect (due to the construction of C in line 8), at
most one of them can be in P. Let H1 be that copy and assume that H1 ∈ C′.
The remaining k−1 copies of H in P \{H1} can intersect with at most h · (k−1)
copies of H in C \ C′, since the copies of H in C pairwise intersect exactly in T
(becauseW is a maximal set of copies of H that pairwise intersect in at most h−2
vertices and |T | = h−2). As a consequence, there is at least one H2 ∈ C \C′ such
that V (H2) ∩ V (P) = V (H2) ∩ V (H1) = T . We remove H1 from P and add H2

to it. As a consequence, P contains no copy of H from C′.
For i > 0, let T be a size-(h− 2− i) vertex subset such that |C| > ∑i+1

t=0(hk)t

(line 9), and let C′ ⊆ C be as in line 10. Again, we may assume that there exists
an H1 ∈ P ∩ C′. We count the number of copies of H in C \ C′ that can intersect
with P \ {H1}. Let W := V (P \ {H1}). Obviously, |W | ≤ h · (k− 1) < hk. Each
vertex v ∈ W can “hit” at most

∑i
t=0(hk)t copies of H in C \ C′, since by the

induction hypothesis, there are at most
∑i

t=0(hk)t copies of H whose vertex sets

are supersets of T ∪ {v}. Therefore, less than hk
∑i

t=0(hk)t =
∑i+1

t=1(hk)t copies
of H in C \ C′ intersect with P \ {H1}, and thus there is at least one left in order
to replace H1 (recall that |C \ C′| = ∑i+1

t=0(hk)t).

Thus, eventually we obtain a set P ′ of k vertex-disjoint copies of H such
that P ′ ∩R = ∅.
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Lemma 7.9. Algorithm ReducedWitness in Figure 7.5 runs in O(n3h · hh+2)
time.

Proof. Since |H| ≤
(

n
h

)

there are O(nh) copies of H to consider. We first analyze
the inner loop between lines 2–12. Analogously to Triangle Packing, line 3
can be executed in O(nh·h) time by an iterative approach that adds an element H ′

from H\ (W ∪R) to W if H ′ intersects with each element in W in at most h− 2
vertices (the factor h is needed in order to check for two copies of H in how
many elements they intersect). The for-loop in line 5 is executed exactly h − 2
times. In each iteration of this loop, we iterate over all graphs in W, which are
at most O(nh) many. For each graph H ′ in W, the algorithm tries subsets T
of V (H ′) (line 7), which takes O(hh) time. Then, constructing the set C for
each subset T takes O(nh · h) time (line 8). Testing the condition in line 9 can
be done in O(nh) time, and the remaining tasks of choosing a subset C′ of C in
line 10, removing C′ from W, and adding C′ to R take O(nh) time, since there
are at most O(nh) copies of H to consider (and assuming that adding/removing
an element to/from a set takes constant time). Summarizing, the algorithm
needs O(nh · h + h(nh · hh · nh · h)) = O(n2h · hh+2) time for each iteration of
the repeat-until-loop, and this loop is executed at most O(nh) times, because W
contains O(nh) graphs, and in each loop iteration except the last one, at least one
graph is removed from W. The total running time is therefore O(n3h · hh+2).

With the help of ReducedWitness we can state the following reduction rule.
Recall that H is the set of all copies of H in G. Run ReducedWitness(H) to
get a witness W and the set R. All vertices that are only contained in copies
of H in R are superfluous and can be removed:

Reduction Rule 7.5. Replace G by G[V (H \R)].

Lemma 7.10. Reduction Rule 7.5 is correct, that is, G has a size-k H-packing
if and only if G[V (H \R)] has a size-k H-packing.

Proof. Obviously, a size-k H-packing in G[V (H \ R)] is also a size-k H-packing
in G. If a size-k H-packing in G, which must be a subset of H, contains copies
of H in R, then we can replace them by other copies not in R due to Lemma 7.8
and obtain a packing that does not contain any copy of H from R. This packing
is a size-k H-packing in G[V (H \R)].

In the following, we assume that the graph G is reduced with respect to
Reduction Rule 7.4 and Reduction Rule 7.5, that H is the set of all copies of H
in G, and that the setW of copies of H that pairwisely intersect in at most h−2
vertices is a witness with respect to H. It remains to show how to bound the
size of the witness W with respect to k; moreover, we have to bound the number
of vertices outside of the witness. As mentioned before (see also Figure 7.4), the
vertices outside of the witness form an independent set:
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Lemma 7.11. (1) The set I := V \ V (W) forms an independent set in G and
(2) each copy of H in H \W contains a vertex in I and h − 1 vertices of some
copy of H in W.

Proof. To proof works similar to the proof of Lemma 7.3. (1) If G[I] contains an
edge, which has to be part of some copy of H due to Reduction Rule 7.4, then
at most h− 2 vertices of that copy intersect with each H ∈ W, contradicting the
fact thatW is maximal. (2) If a copy of H in H\W shares at most h−2 vertices
with each copy of H inW, then we again have a contradiction to the fact thatW
is maximal.

It follows directly from Lemma 7.11 that each copy of H contains at most one
vertex of I. Now, analogously to Triangle Packing, we bound the number of
vertices in V (W) and the number of copies of H in W.

Lemma 7.12. If |V (W)| > 2h(hk)h−1 or if |W| > 2(hk)h−1, then G contains k
vertex-disjoint copies of H.

Proof. We use the same proof strategy as in the proof of Lemma 7.4. Assume
that G does not contain a size-k H-packing. Let P be an H-packing of maximum
size. Since |P| ≤ k − 1, there are at most h · (k − 1) vertices in V (P). Each of
these vertices is contained in at most

h−2
∑

t=0

(hk)t

copies of H , since for i = h − 3 each set T in line 7 of ReducedWitness

(Figure 7.5) contains one vertex, and the number of copies of H containing T
directly follows from the condition in line 9. We estimate the number of such
copies of H as

h−2
∑

t=0

(hk)t ≤ 2(hk)h−2.

This can be seen by assuming h ≥ 3 and k ≥ 2 (geometric series). These
assumptions are correct, since for h ≤ 2 H-Packing is polynomial-time solvable;
moreover, k = 1 implies P = ∅ (recall the assumption that G does not contain a
size-k H-packing). As a consequence, the graph cannot contain any copy of H ,
thus |W| = 0.

In summary, there are at most h · (k − 1) vertices in V (P), and each of them
is contained in at most 2(hk)h−2 copies of H , hence we obtain |W| ≤ 2(hk)h−1

and |V (W)| ≤ 2h(hk)h−1.

It remains to bound the size of I := V \V (W). To this end, as for Triangle

Packing, we define a bipartite auxiliary graph GW as follows. The vertex set
consists of I as one partite set and a set J as the other, where J contains a
vertex vX for each set X ∈ {V (H) ∩ V (W) | H ∈ (H \W)} (that is, we have a
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vertex for each possible intersection of the copies of H in H \W with the vertex
set V (W)). For each H ∈ (H \ W) there is an edge between the vertex in the
set V (H)∩I and the vertex vX with X := V (H)∩V (W). Note that for each H ′ ∈
W there are at most h sets X ( V (H ′) in {V (H) ∩ V (W) | H ∈ (H \W)}, and
hence the size bound of W from Lemma 7.12 together with Lemma 7.11 part (2)
yields |J | < 2h(hk)h−1. The size of the independent set I then can be bounded
exactly as for Triangle Packing with the following reduction rule; the proof of
correctness is almost the same as the proof of Lemma 7.5 (replacing GT with GW
and “triangle” with “copy of H”).

Reduction Rule 7.6. Compute a maximum matching in GW. Remove all un-
matched vertices in I from G.

The number of vertices in I = V \V (W) then can be bounded by the size of J ,
that is, there are at most 2h(hk)h−1 vertices of I remaining. Together with the at
most 2h(hk)h−1 vertices in V (W) (Lemma 7.12), in total there remain O(kh−1)
vertices.

Next, we show the running time. Reduction Rule 7.4 can be applied in O(nh)
time (Lemma 7.7). Algorithm ReducedWitness takes O(n3h) time (Lemma 7.9).
Constructing the auxiliary graph GW takes O(nh) time by iterating over all copies
of H inH\W. The graph GW contains O(nh−1) vertices and O(nh) edges (one for

each H ∈ (H\W), thus a maximum matching in GW can be found in O(nh·
√

nh−1)
time [HK73]. Hence, the total running time of the kernelization algorithm is dom-
inated by the running time O(n3h · hh+2) of ReducedWitness. Recall that h
denotes the number of vertices in H . We arrive at the following result.

Theorem 7.2. H-Packing admits a problem kernel of O(k|V (H)|−1) vertices,
which can be constructed in O(n3|V (H)| · |V (H)||V (H)|+2) time.

7.3 A New Problem Kernelization for Hitting

Set

In this section, we adapt the kernelization algorithm for H-Packing given in
Section 7.2 to obtain a kernelization algorithm for h-Hitting Set; the resulting
problem kernel has some properties that make it possible to use the kernelization
algorithm for many problems that can be reduced to h-Hitting Set.

h-Hitting Set

Input: A ground set V , a family H of subsets of V of size at most h,
and an integer k ≥ 0.
Question: Does there exist a subset S ⊆ V of size at most k such that
each subset in H contains at least one element from S?

The sets in H are also called hyperedges. In the following, we call the elements
in V vertices. Let V = V (H). The best-known problem kernel for h-Hitting
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Set has O(kh−1) vertices [Abu09]. This problem kernel can be used to obtain
problem kernels for various graph problems that can be reduced to 3-Hitting

Set [AF06, Abu09, DGH+09, HKMN09a]. The idea is to reduce the problem
instance to 3-Hitting Set, to kernelize the 3-Hitting Set instance, and trans-
late the resulting kernel back to the original problem. For general h-Hitting

Set, the problem kernelization algorithm by Abu-Khzam [Abu09] replaces some
hyperedges by smaller ones. Likewise, other problem kernels for h-Hitting Set

replace some hyperedges by smaller ones [AF06, FG06, NR03]. This is a problem
if one wants to kernelize a graph problem by reducing it to h-Hitting Set, ker-
nelizing the resulting h-Hitting Set instance, and translating the h-Hitting

Set kernel back to the original problem. In general, the resulting kernel for the
original problem must be a valid input instance for the original problem, which
cannot be guaranteed if the smaller hyperedges have no corresponding structure
in the original problem.

Kratsch [Kra09] has adapted an O(kh)-vertex problem kernel for h-Hitting

Set by Flum and Grohe [FG06] such that it avoids replacing hyperedges by
smaller ones; instead, it just removes some hyperedges that do not need to be
considered. Kratsch [Kra09] uses this h-Hitting Set kernel to show that every
problem in the classes MIN F+Π1 and MAX SNP (classes of constant-factor
approximable problems) admits a polynomial-size problem kernel. Next, we show
that with the technique for the H-Packing kernel in Section 7.2 one can obtain
an O(kh−1)-vertex problem kernel such that no hyperedges are replaced by smaller
ones. As an example problem to apply this kernel, we consider the following vertex
deletion problem for hereditary graph properties (see also Chapter 6). Let H be
a fixed set of graphs.

H-Free Vertex Deletion

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at most k such
that G − S does not contain a (not necessarily induced) copy of some
graph H ∈ H?

The H-Free Vertex Deletion problem is fixed-parameter tractable with re-
spect to the parameter k [Cai96]. Obviously, it can be directly reduced to h-

Hitting Set: simply enumerate all copies of H in G for all H ∈ H and use the
vertex set of each copy as an hyperedge of the corresponding h-Hitting Set in-
stance. One can use the kernelization algorithm for h-Hitting Set by Kratsch to
obtain a O(kh)-vertex problem kernel for H-Free Vertex Deletion, where h
is the largest number of vertices of a graph in H.

In this section, we show that the technique used in Section 7.2 gives a problem
kernel for h-Hitting Set of O(kh−1) vertices that can be used to kernelize
vertex-deletion problems for hereditary graph properties, in particular, H-Free

Vertex Deletion. The resulting kernelization works very similarly to the h-

Hitting Set kernel by Abu-Khzam [Abu09]. The main difference is that it
avoids introducing smaller hyperedges.
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Definition 7.3. We call a problem kernel (H′, k′) for a h-Hitting Set in-
stance (H, k) hyperedge-preserving, if H′ ⊆ H.

Translating a vertex deletion problem such as H-Free Vertex Deletion

to h-Hitting Set, finding a hyperedge-preserving kernel, and removing from the
original graph all vertices that are not contained in hyperedges of the h-Hitting

Set kernel, directly yields a problem kernel for the corresponding vertex deletion
problem. Note that the h-Hitting Set kernel by Kratsch [Kra09] is hyperedge-
preserving, and this is the main property he needs for his kernelization results for
problems in MIN F+Π1 and MAX SNP.

In the following, we describe how to use the problem kernel from Section 7.2
to obtain a hyperedge-preserving problem kernel for h-Hitting Set. The de-
scription of the kernelization algorithm in Section 7.2 can be changed accordingly
by replacing “copy of H” by “hyperedge”. Note that the hyperedges must not
necessarily have the same size. For an intuitive idea of the kernelization method,
let C be a set of hyperedges that pairwise intersect in a vertex set T . If we further
assume that the hyperedges in C pairwise intersect exactly in T , then it clearly
holds that if |C| > k + 1, then at least one vertex in T must be contained in a
solution of size at most k in order to “hit” all hyperedges. However, unless the
hyperedges have maximum size three, we do not know which vertex from T will
be contained in a solution of size at most k (because |T | ≥ 2), but we can remove
“unnecessary” hyperedges: if we remove all but k + 1 hyperedges, then in the
resulting reduced instance, a solution S of size at most k still contains a vertex
from T ; therefore, in the original instance, the removed hyperedges are still cov-
ered by S (and, of course, a solution for the original instance is also a solution
for the reduced instance). We generalize this idea with the same algorithm as in
Section 7.2.2 in order to derive a witness. In the following, we only sketch the
proof modifications, showing that the approach in Section 7.2.2 also works for h-

Hitting Set. In this new context, R is the set of all “unnecessary” hyperedges.
In other words, R is the set of all removed hyperedges, that is, the union of all
sets C′ that are computed in the course of the execution of ReducedWitness.

Lemma 7.13 (Replacement for Lemma 7.8). There exists a hitting set S of size k
of H if and only if there exists a hitting set S ′ of size k of H \R.

Proof. All line numbers refer to the algorithm ReducedWitness in Figure 7.5.
For i = 0, let X be a size-(h − 2) vertex subset such that |C| > 1 + hk (line 9),
and let C′ be as in line 10. Since 1 + hk ≥ k + 1 for h ≥ 1, and since the
hyperedges in C pairwise intersect exactly in T , at least one vertex in T is in any
optimal solution S. Otherwise, S would have to contain more than k vertices
in order to contain at least one vertex of each hyperedge in C. The same holds
for C \ C′, since |C \ C′| > k + 1. Thus, even if we remove the hyperedges in C′,
we have S ∩ T 6= ∅.

Analogous arguments can be applied for i > 0: let T be a size-(h − 2 − i)
vertex subset such that |C| > ∑i+1

t=0(hk)t (line 9) and let C′ ⊆ C be as in line 10.
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Assume that an optimal solution S does not contain any vertex in T . Each
vertex in v ∈ S can “hit” at most

∑i
t=0(hk)t + 1 hyperedges in C \ C′, since

by the induction hypothesis there are at most
∑i

t=0(hk)t hyperedges that are
supersets of T ∪ {v}, and there might exist the hyperedge T ∪ {v}. Therefore,
since k ≤ (

∑i+1
t=0(hk)t)/h for i > 0 and since h > 2, at most

k · (
i

∑

t=0

(hk)t + 1) =

∑i+1
t=0(hk)t

h
+ k <

i+1
∑

t=0

(hk)t

hyperedges of C \ C′ contain a vertex of S, a contradiction to the assumption
that S is a solution. Therefore, S ∩ T 6= ∅.

Recall that R is the set of all removed hyperedges, that is, the union of all
sets C′ that are computed in the course of the execution of ReducedWitness.
Let S be a hitting set for H. Obviously, S is also a hitting set for H \R. Let S ′

be a hitting set for H \ R. Due to the above arguments, each hyperedge in R
contains a vertex in S ′, and hence S ′ is also a hitting set for H.

Analogously to Reduction Rule 7.5, we can remove the hyperedges in R and
work with the remaining instance. Let H be the remaining set of hyperedges and
let W be a witness with respect to H.

Lemma 7.14 (Replacement of Lemma 7.11). (1) The vertices I := V (H)\V (W)
form an independent set, that is, there are no hyperedges in H that contain two
elements from I; (2) each hyperedge in H \W contains a vertex in I and h − 1
vertices of some hyperedge in W.

The proof of this replacement lemma is completely analogous to the proof of
Lemma 7.11. Then, the size of the witness can be bounded as follows.

Lemma 7.15 (Replacement of Lemma 7.12). If |V (W)| > 2h(hk)h−1 or if |W| >
2(hk)h−1, then (H, k) is a no-instance.

Proof. Assume that S is a solution for the h-Hitting Set instance (H, k).
Since |S| ≤ k and each vertex v ∈ S is contained in at most 2(hk)h−2 hyper-
edges (see proof of Lemma 7.12), H can contain at most k · 2(hk)h−2 < 2(hk)h−1

hyperedges and therefore |V (H)| ≤ 2h(hk)h−1.

It remains to bound the size of I. The method is completely analogous to the
method used for H-Packing. However, we need to show that this method is ac-
tually also correct for h-Hitting Set. We construct the graph GW as described
in Section 7.2.2 (replacing “copy of H” by “hyperedge”) and apply Reduction
Rule 7.6, that is, we remove all unmatched vertices in I and all hyperedges in H
that contain unmatched vertices. Let H′ be the resulting h-Hitting Set in-
stance.

Lemma 7.16. The instance (H, k) is a yes-instance if and only if (H′, k) is a
yes-instance.
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Proof. (⇒) Let S be a size-k hitting set for H. Then, obviously, S \I ′ is a hitting
set for H′ of size at most k.

(⇐) Let M be the computed maximum matching in GW and let I ′ be all
unmatched vertices in I. Since M is maximum, GW contains no M-augmenting
path. The following definitions are as in the proof of Lemma 7.5. Let I1 ⊆ I \ I ′

be the set of vertices in I \ I ′ to which there exists an M-alternating path from
some vertex in I ′. Each vertex u ∈ I1 is an endpoint of an edge in M , because
an M-alternating path from some vertex in I ′ to u begins with an unmatched
vertex. Let M ′ ⊆ M be the matching edges that have an endpoint in I1, and
let J1 := J ∩ V (M ′) be the corresponding other endpoints of M ′. Each edge
in GW corresponds to a hyperedge in H \W. Thus, for each edge {v, vX} in M ′,
where v ∈ I and vX ∈ V (GW) \ I, either u or some vertex in the size-(h − 1)
subset X ( V (GW) corresponding to vX must be in a hitting set. Given any
hitting set S ′ for H′, we can replace each vertex v in S ′ ∩ I1 by some vertex
in vX ∈ J1, where {v, vX} ∈ M ′, yielding a set S ′′ of size |S ′|. The set S ′′ is
a hitting set for H′: the set S ′′ contains at least one vertex from each vertex
set X corresponding to vX ∈ J1. All hyperedges that contain a vertex from I1

correspond to edges between I1 and J1 (due to the definition of I1 and J1). Hence,
all hyperedges corresponding to edges between I1 and J1 contain a vertex from S ′′.
All hyperedges in H \ H′ correspond to edges between I ′ and J1; therefore, all
hyperedges in H \H′ contain a vertex in S ′′. This shows that S ′′ is a hitting set
for H.

Using this lemma, the size of I can be bounded by 2h(hk)h−1. The running
time of the whole kernelization algorithm is again dominated by the running time
of ReducedWitness, which is O(|H|3 + hh+2) (using an analogous analysis as
in the proof of Lemma 7.9). Therefore, we obtain the following.

Theorem 7.3. h-Hitting Set admits a hyperedge-preserving problem kernel
of O(kh−1) vertices, which can be constructed in O(|H|3 · hh+2) time.

From this theorem, a problem kernel for H-Free Vertex Deletion imme-
diately follows.

Corollary 7.1. H-Free Vertex Deletion admits an O(kh−1)-vertex problem
kernel, which can be constructed in O(n3h · hh+2) time, where h is the number of
vertices of a largest graph H ∈ H.

7.4 Outlook

Our approach for general H-Packing probably would also work for Set Pack-

ing. However, this would only give a better kernel with respect to the number of
elements, not with respect to the number of sets. Therefore, it would not improve
the known kernelization results [FKN+07] (where the kernel size is expressed with
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respect to the number of sets rather than with respect to the elements). Abu-
Khzam has given such a kernel with an improved number of elements compared
to [FKN+07] for 3-Set Packing [AK09]. One of the key ingredients for obtain-
ing a problem kernel with O(k|V (H)|−1) vertices instead of O(k|V (H)|) vertices for
H-Packing is the matching technique to bound the number of vertices in the
remaining independent set. It would be interesting to know whether it is pos-
sible to bound the size of structures different from independent sets by similar
techniques In this way, a witness with less vertices and edges could be possible,
which could make a better kernel size (compared to the results in this chapter)
possible.

One of the next steps in research could be to develop parameterized (ker-
nelization) algorithms that are especially tailored for packing-like problems in
computational biology [ABWB+09]. Such algorithms could also be implemented
and tested on real-world instances; in particular, using the color-coding technique,
which has already shown its practical potential (cf. [Hüf07]) and which can also
be combined with other techniques like divide and conquer [CKL+09], could be
a good first approach for algorithm engineering on packing problems.
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Chapter 8
Induced Matching

A well-studied generalization of the classical Maximum Matching problem is
Distance-d Matching: given an undirected graph and an integer k, the task is
to find at least k edges that have pairwise distance at least d. Clearly, for d = 1,
this problem is exactly Maximum Matching and therefore polynomial-time
solvable. For d > 1, the problem is NP-complete [SV82]. In this chapter, we
concentrate on Distance-d Matching for d = 2, which is also known as In-

duced Matching. While there exists a considerable number of results in the
context of classical complexity theory, there are only very few results concerning
the parameterized complexity of Induced Matching. In general, the problem
is W[1]-hard. In this chapter, we settle the parameterized complexity of Induced

Matching on several classes of graphs where it remains NP-complete, including
planar graphs, graphs of bounded degree, bipartite graphs, graphs with girth at
least six, line graphs, and graphs of bounded treewidth.

8.1 Introduction and Known Results

An induced matching M of a graph G = (V, E) is an edge-subset M ⊆ E such
that M is a matching and no two edges of M are joined by an edge of G, that
is, the edges in M have distance at least two. In other words, the set of edges of
the subgraph induced by V (M) is precisely the set M . The decision version of
Induced Matching is defined as follows.

Induced Matching

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does G have an induced matching of at least k edges?

Induced Matching, also called Strong Matching, was introduced as a
variant of the maximum matching problem with a distance constraint by Stock-
meyer and Vazirani [SV82] as the “risk-free” marriage problem.1 Note that In-

1Decide whether there exist at least k pairs such that each married person is compatible
with no married person except the one he or she is married to.

133
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rs

c

b

a

RTS, data CTS, ACK

N(r) \ {s}N(s) \ {r}

Figure 8.1: Example of a graph that models a wireless communication network
with two simultaneous transmissions, which are denoted by the bold edges with
arrows. The corresponding edges form an induced matching in the graph. Note
that this is not an induced matching of maximum size; a larger induced matching
is formed by the edges a, b, and c.

duced Matching is equivalent to 1-Regular Induced Subgraph (see Chap-
ter 5).

Applications. Induced Matching has natural applications in (wireless) com-
munication networks. In the following, we briefly outline an application occur-
ring in wireless networks that are based on the widely used IEEE 802.11 stan-
dard [IEE07]. One difficulty in a wireless network is that the communication
nodes (e.g., laptops, mobile phones, wireless access points) share the same com-
munication medium (e.g., a certain channel that is determined by the frequency
of the underlying carrier signal). A network node cannot send and receive at the
same time on the same medium, and it can only receive a signal from another
node if that node is the only node within range that is sending. We can model
a wireless communication network using an undirected graph, where the vertices
are the communication nodes, and two vertices are adjacent if the corresponding
nodes are within radio range. In such a network, the communication between
the nodes has to be controlled in order to avoid interference. A media access
(MAC) protocol, which is implemented in each node, provides such kind of con-
trol. A very popular MAC protocol is the IEEE 802.11 standard [IEE07]. It uses
an RTS/CTS control scheme (see also the example in Figure 8.1): if a node s
(sender) wants to send data to an adjacent node r (receiver), then s broadcasts a
request-to-send (RTS) message addressed to r (but which is received by all neigh-
bors of s). After that, if r is not aware of any other ongoing communication, then
it sends a clear-to-send (CTS) message addressed to s. After hearing the CTS, s
starts sending the message containing the data. If r receives that data success-
fully, it responses with an acknowledgement (ACK) message, terminating the
transmission. If s does not hear an ACK after sending the data, it retries to send
the data a prespecified amount of times. Note that some vertex in N(r) \ N(s)
could receive data from other nodes in the network while s is sending. However,
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in order to receive data, such a vertex would have to follow the protocol and
send a CTS message, which would reach r and interfere the transmission from s
to r. Hence, while r and s are communicating, the nodes in N({r, s}) (which
are aware of the transmission between r and s due to the RTS and/or CTS mes-
sages) do not send an RTS nor respond to other RTS requests from other nodes
in the network. As a direct consequence the simultaneous transmissions in the
network correspond to an induced matching in the network graph. The network
capacity, which is the maximum possible number of simultaneous transmission in
the network, is therefore exactly the size of a maximum induced matching in the
corresponding graph.

There are several papers studying the IEEE 802.11 standard with respect
to Induced Matching, also including experimental results [BBK+04, SMS06,
SSM06]. Finding a large induced matching is an important task when solving
packet routing and packet scheduling problems under the above model [KMPS04,
SMS06, KMPS07]. Here, the task is to route packets through the network with
the constraint that the simultaneous transmissions must always form an induced
matching.

Wireless networks often have a small treewidth, which can be exploited for
practical algorithms [Kos99]. Induced Matching has been studied in the con-
text of the IEEE 802.11 standard for planar graphs [BBK+04]. This, in particular,
motivates our studies of planar graphs and graphs of bounded treewidth.

Other applications of Induced Matching exist for secure communication
channels, VLSI and network flow problems [GL00], and a single frequency allo-
cation problem in communication networks that are similar to the above IEEE
802.11 wireless networks [Rei04]. There exist also applications for Distance-d
Matching where the assumption is that two nodes must be within distance at
least d in order to avoid interference [SMS06, SSM06].

Hardness and Approximation. The studies of Induced Matching were
initiated by Stockmeyer and Vazirani [SV82] by showing it to be NP-complete
on general graphs. Concerning special graph classes, it is known that it is NP-
complete on planar graphs of maximum degree four [KS03], bipartite graphs of
maximum degree three, C4-free bipartite graphs [Loz02], r-regular graphs for r ≥
5, line graphs, chair-free and claw-free graphs, Hamiltonian graphs [KR03], and
unit disk graphs [BBK+04].2

Regarding polynomial-time approximability, in general graphs the problem
cannot be approximated to within a factor of n1/2−ǫ for any ǫ > 0 unless P =
NP [OFGZ08]. It is known that Induced Matching is APX-complete on
r-regular graphs, for all r ≥ 3, and bipartite graphs with maximum degree
three [DMZ05]. Moreover, for r-regular graphs it is NP-hard to approximate

Induced Matching to within a factor of r/2O(
√

ln r) [CC04]. There exists an

2For the graph classes that are not directly used in this thesis, see the book by Brandstädt
et al. [BLS99] for the corresponding definitions.
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approximation algorithm for the problem on r-regular graphs (r ≥ 3) with asymp-
totic performance ratio r − 1 [DMZ05]; this has subsequently been improved
to 0.75r + 0.15 [GL05]. Moreover, there exists a polynomial-time approximation
scheme (PTAS) for planar graphs of maximum degree three [DMZ05] and disk
graphs [BBK+04].

Polynomial-Time Solvable Cases. Induced Matching is known to be
linear-time solvable for trees [Zit99], and polynomial-time solvable for chordal
graphs [Cam89], weakly chordal graphs [CST03], circular arc graphs [GL93],
trapezoid graphs, interval-dimension graphs, and comparability graphs [GL00],
LAT-free graphs [Cha03], interval-filament graphs, polygon-circle graphs, AT-free
graphs [Cam04], (P5,Dm)-free graphs [KR03, LR03], (Pk,K1,n)-free graphs [LR03],
(bull, chair)-free graphs, line graphs of Hamiltonian graphs [KR03], and graphs
where the maximum matching and the maximum induced matching have the
same size [KR03]. For graphs in which the maximum matching and maximum
induced matching have the same size, Cameron and Walker [CW05] provide a
simple characterization of these graphs, which also leads to a simpler recognition
algorithm for such graphs.

Parameterized Complexity. In contrast to the above results, little is known
about the parameterized complexity of Induced Matching. First of all, since
Induced Matching is equivalent to 1-Regular Induced Subgraph (Chap-
ter 5), it is W[1]-hard with respect to the parameter k denoting the size of the in-
duced matching (Theorem 5.4). Therefore, it is of interest to study the parameter-
ized complexity of the problem in those restricted graph classes where it remains
NP-complete. Faudree et al. [FGST89] showed that bipartite graphs of maxi-
mum degree d without an induced matching of size k + 1 have at most kd2 edges.
This immediately gives a problem kernel of at most kd2 edges in bipartite graphs
with maximum degree d, showing that Induced Matching is fixed-parameter
tractable on such graphs with respect to the parameter k for any constant d.
Apart from that, to the best of our knowledge, our results presented in Section 8.2
first settled the parameterized complexity of the NP-complete Induced Match-

ing on planar graphs, graphs of bounded degree, bipartite graphs, graphs with
girth at least six, line graphs, and graphs of bounded treewidth. Meanwhile, our
linear kernel for Induced Matching on planar graphs presented in Section 8.2.2
has been improved by Kanj et al. [KPXS09] and Kowalik et al. [KWKE09]. Kanj
et al. [KPXS09] show that Induced Matching on planar graphs admits a prob-
lem kernel of at most 40k vertices and give two fixed-parameter algorithms, one
with running time O(2159

√
k + n), and one with running time O(91k + n), which

is faster than the first algorithm for small values of k. Kowalik et al [KWKE09]
improve these results to a problem kernel of at most 28k vertices and a fixed-
parameter algorithm with running time O(226

√
k + n). Moreover, both Kanj et

al. [KPXS09] and Kowalik et al. [KWKE09] give corresponding results for graphs
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of bounded genus. While our kernelization result on planar graphs is based on a
region decomposition technique, the results by Kanj et al. [KPXS09] and Kowalik
et al. [KWKE09] are based on a study of the combinatorial properties of twinless
graphs (two vertices u, v are twins if N(u) = N(v)). The region decomposition
technique is a quite universal approach that can be used to kernelize problems
on planar graphs (see Section 8.2.2); in this thesis, we concentrate on the main
ideas of how to apply the decomposition technique for Induced Matching and
omit some details.

In the next section, we give our results concerning the fixed-parameter tractabil-
ity of Induced Matching in several graph classes.

8.2 Parameterized Complexity of Induced Match-

ing on Restricted Graph Classes

In this section, we give linear problem kernels for planar graphs and bounded-
degree graphs. For graphs of girth at least six, which also include C4-free bi-
partite graphs, we can show a simple kernel with a cubic number of vertices
(that is, O(k3) vertices). Moreover, we show that Induced Matching is fixed-
parameter tractable for line graphs with respect to the parameter k. Finally, we
give an algorithm for graphs of bounded treewidth using an improved dynamic
programming approach, which runs in O(4ω ·n) time, where ω is the width of the
given tree decomposition. This extends an algorithm for Induced Matching

on trees by Zito [Zit99]. On the negative side, we show that Induced Matching

remains W [1]-hard on bipartite graphs. See Table 8.1 for an overview of these
results, also including the results by Kanj et al. [KPXS09].

In the next section, we give the results for bounded-degree graphs, graphs of
girth at least six, bipartite graphs, and line graphs. These results are simple and
meant to provide some first-time insight into the parameterized complexity of
Induced Matching on graphs in these classes. We then give a linear problem
kernel on planar graphs in Section 8.2.2. Since this result has been improved
by Kanj et al. [KPXS09], we give only a short excerpt of the proof in order
to illustrate the main ideas; the missing details can be found in our journal
version [MS09b]. Finally, we give the dynamic programming algorithm for graphs
of bounded treewidth in Section 8.2.3.

8.2.1 Basic Results

The following results are basic first-time fixed-parameter tractability results for
several graph classes where Induced Matching remains NP-hard.

Bounded-Degree Graphs. We show that Induced Matching admits a lin-
ear problem kernel on graphs of maximum degree d for some constant d.
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Table 8.1: Parameterized complexity results for NP-complete variants of In-

duced Matching. Here, k denotes the size of the induced matching, and ω
denotes the treewidth of the input graph.

graph class par. result reference

general k W [1]-hard Sec. 5.4
bipartite k W [1]-hard Sec. 8.2.1
bounded degree k O(k) kernel Sec. 8.2.1
graphs of girth ≥ 6 k O(k3) kernel Sec. 8.2.1
line graphs k O(2.4483k · k5.5 + k2n2) alg. Sec. 8.2.1

planar k
O(k) kernel Sec. 8.2.2
28k kernel [KWKE09]

O(226
√

k + n) alg. [KWKE09]

bounded genus g k
(49 + 7

√
1 + 48g)k/2 + 10g − 9 kernel [KWKE09]

O(
(7+

√
1+48g)k
2k

)

k2 + n) alg. [KPXS09]

bounded treewidth ω O(4ω · n) alg. Sec. 8.2.3

Proposition 8.1. On graphs of maximum degree d, Induced Matching admits
a problem kernel of O(k ·d2) vertices. The kernel can be constructed in O(n) time
for constant d.

Proof. Let G be a graph with maximum degree d, where d is some constant.
Let M be any maximal induced matching of G found by the following greedy
algorithm. The algorithm repeatedly selects an arbitrary edge e, adds it to the
solution, and deletes N [e]. This process is repeated until no more edges remain.
Since the degree of the graph is bounded by d, selecting an edge and deleting
its closed neighborhood takes constant time only, and the process is repeated at
most ⌊n/2⌋ times, thus the whole greedy algorithm runs in O(n) time.

If |M | ≥ k, then we have found a solution and return “yes-instance”. There-
fore, assume that |M | < k. Define S1 and S2 by S1 := N(V (M)) and S2 :=
N(S1) \ V (M). Note that all neighbors of vertices in S2 are in the set S1 since if
a vertex u ∈ S2 has a neighbor v /∈ S1, then {u, v} could be added to the induced
matching, contradicting its maximality. Clearly, |S1| < 2kd and |S2| < 2kd2.
Since V (G) = V (M) ∪ S1 ∪ S2, it immediately follows that |V (G)| < 2k(1 + d +
d2).

Graphs Without Small Cycles. Induced Matching is NP-hard on C4-free
bipartite graphs [Loz02]. Since the class of C4-free bipartite graphs is properly
contained in the class of graphs with girth at least six (that is, there are no cycles
of length five or smaller), Induced Matching is NP-hard on the latter graph
class as well.

Proposition 8.2. On graphs with girth at least six, Induced Matching admits
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a problem kernel of O(k3) vertices. The kernel can be constructed in O(n + m)
time.

Proof. Let G be a graph with girth at least six. If a vertex has more than one
degree-one neighbor, remove all but one of these neighbors. Repeat this until no
longer possible. If every vertex has degree at most k, then we obtain a kernel
of O(k3) vertices immediately from Proposition 8.1. Therefore, assume that there
exists a vertex u of degree at least k + 1. Let S := {v1, . . . , vk+1} be a set of k + 1
neighbors of u. Since G has no cycles of length three (a shortest cycle has length
at least six), S is independent. At most one vertex of S has degree one. Assume
without loss of generality that the vertices in {v1, . . . , vk} have degree at least
two. For 1 ≤ i < j ≤ k, vi and vj do not have any common neighbors as
otherwise we obtain a cycle of length four. For 1 ≤ i ≤ k, let zi be a neighbor
of vi. Again {z1, . . . , zk} must form an independent set as otherwise we obtain
a cycle of length five. But then {(v1, z1), . . . , (vk, zk)} is an induced matching of
size k. Therefore, we can either find an induced matching of size at least k in
O(n + m) time (removing the degree-one neighbors can be done in linear time,
and computing N(u) and its neighborhood can also be done in linear time) or
obtain a kernel of size O(k3).

Hence, Induced Matching, which is W[1]-hard with respect to the param-
eter k in general graphs, becomes fixed-parameter tractable for graphs without
short cycles. This effect, that is, that sometimes short cycles make a problem
W-hard, has also been observed by Raman and Saurabh [RS08] for various im-
portant problems in parameterized complexity, including Dominating Set and
Independent Set.

Bipartite Graphs. For bipartite graphs we show that Induced Matching

is W[1]-hard. We give a reduction from the W[1]-complete Irredundant Set

problem [DFR00]. A private neighbor of a vertex u ∈ V ′ is a vertex u′ ∈ N [u]
(possibly u′ = u) such that for every vertex v ∈ V ′ \ {u}, u′ 6∈ N [v].

Irredundant Set

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a set V ′ ⊆ V of size at least k where each
vertex u ∈ V ′ has a private neighbor?

Proposition 8.3. In bipartite graphs, Induced Matching is W[1]-hard with
respect to the parameter k.

Proof. We prove the proposition by a parameterized reduction from Irredun-

dant Set. Let (G, k) be an instance of Irredundant Set. Construct a bi-
partite graph G′ as follows. Construct two copies of the vertex set of G and call
these V ′ and V ′′; the copies of a vertex u ∈ V (G) from V ′ and V ′′ are denoted
as u′ and u′′, respectively. Define V (G′) = V ′ ∪ V ′′ and E(G′) = {{u′, u′′} : u ∈
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V (G)} ∪ {{u′, v′′}, {v′, u′′} : {u, v} ∈ E(G)}. We show that the graph G has an
irredundant set of size k if and only if G′ has an induced matching of size k.

(⇒) Suppose S = {w1, . . . , wk} ⊆ V (G) is an irredundant set of size k in G.
For 1 ≤ i ≤ k, let xi be the private neighbor of wi. Then, for all i, {w′

i, x
′′
i }

is an edge in G′. Since the xi’s are private neighbors there is no edge {wj, xi}
in G for all j 6= i and therefore no edge {w′

j, x
′′
i } in G′. As a consequence, the

edges {w′
1, x

′′
1}, . . . , {w′

k, x
′′
k} form an induced matching in G′.

(⇐) If M = {e1, . . . , ek} is an induced matching in G′ of size k, then for
each ei = {u′

i, v
′′
i } there is no edge ej = {u′

j, v
′′
j }, j 6= i, such that u′

j and v′′
i

are adjacent in G′, that is, vi is a private neighbor of ui in G. Therefore, the
vertices u1, . . . , uk form an irredundant set in G. This completes the proof.

Line Graphs. The line graph L(G) of a graph G is defined as follows: the
vertex set of L(G) is the edge set of G; two “vertices” e1 and e2 of L(G) are
connected by an edge if e1 and e2 share an endpoint. More formally, we have

L(G) := (E(G), {{e1, e2} : e1, e2 ∈ E(G) ∧ e1 ∩ e2 6= ∅}).

A graph H is a line graph if there exists a graph G such that H = L(G). It is
well-known (see, e.g., [FFR97]) that if H is a line graph, then it does not contain
any induced K1,3 (also known as claw). Induced Matching is NP-complete on
line graphs (and hence claw-free graphs) [KR03]. Given an undirected graph H ,
it is possible to test in time max{|V (H)|, |E(H)|} (that is, linear time) whether H
is a line graph and if so construct G such that H = L(G) [Rou73].

Lemma 8.1. Let H be a line graph and let H = L(G). Then H has an induced
matching of size at least k if and only if G has at least k vertex-disjoint copies
(not necessarily induced) of a P3, the path on three vertices.

Proof. Let {e1, . . . , ek} be an induced matching of size k in H . From the definition
of a line graph it follows that each edge ei corresponds to a path pi = (xi, yi, zi) in
the graph G. The set

⋃

i=1,...,k{xi, yi, zi} contains exactly 3k vertices. Moreover,
the sets {xi, yi, zi} and {xj , yj, zj} are disjoint for i 6= j: if any two vertices, one
from path pi and the other from pj , are identical, then an endpoint of ei would
be connected to an endpoint of ej , contradicting that ei and ej are part of an
induced matching. This shows that G contains k vertex-disjoint copies of P3.
Conversely, if G has k vertex-disjoint copies of P3, then the edges corresponding
to these paths form an induced matching in H .

The problem of checking whether a given graph G has k copies of P3 can be
solved in O(2.4483k · k5.5 + k2n2) time [FR09].

Proposition 8.4. On line graphs, Induced Matching can be solved in
O(2.4483k ·k5.5 +k2n2) time and is therefore fixed-parameter tractable with respect
to the parameter k.
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8.2.2 A Linear Problem Kernel on Planar Graphs

The linear kernel for Induced Matching on planar graphs is based on a kernel-
ization technique first introduced by Alber et al. [AFN04] to show that Dominat-

ing Set admits a linear kernel on planar graphs. The result for the kernel size has
subsequently been improved by Chen et al. [CFKX07], and they also show lower
bounds on the kernel size for Dominating Set, Vertex Cover, and Indepen-

dent Set on planar graphs. The technique developed by Alber et al. [AFN04]
combined with problem-specific data reduction rules has been adapted for Full-

Degree Spanning Tree [GNW09] and Planar Connected Dominating

Set [LMS09]. Moreover, Fomin and Thilikos [FT04] extend the technique to
graphs of bounded genus. Guo and Niedermeier [GN07b] give a generic kerneliza-
tion framework for NP-hard problems on planar graphs based on that technique.
Bodlaender et al. [BFL+] give a tool to easily determine whether a problem ad-
mits a polynomial or linear kernel on planar graphs. They show that all problems
expressible in Counting Monadic Second Order Logic [Cou90] that fulfill certain
properties, admit a polynomial or linear kernel (depending on the properties) on
graphs of bounded genus (and thus also for planar graphs). However, due to the
generality of this approach, the hidden constants are huge; for a “small” problem
kernel that is tailored for the individual problem at hand, using the framework
by Guo and Niedermeier [GN07b] seems more appropriate.

For our kernel, we basically adapt and extend the technique introduced by
Alber et al. [AFN04]; however, we base our proof on edge subset solutions rather
than vertex subsets as in other applications of that technique, because it seems
more appropriate for the particular case of Induced Matching. As pointed
out earlier, our kernelization result presented in this section has been improved
by Kanj et al. [KPXS09]. They use a completely different approach, not based
on the general kernelization technique. In essence, they show that one can use
a maximal matching in the graph for analyzing the kernel size; basically, if the
graph is reduced with respect to a reduction rule that removes all twins from
a graph, then not too many edges in this maximal matching can be pairwise
adjacent if the graph is planar. Their kernel can be obtained in linear time as well,
thus their approach is clearly the method of choice for deriving a good problem
kernel for Induced Matching on planar graphs. However, their approach is not
as generally applicable as the kernelization technique used for our kernelization
result. For instance, it seems to be difficult to adapt their technique for kernelizing
Distance-d Matching, that is, the problem of finding at least k edges that
have pairwise distance at least d for some constant d. With the technique used
in our proof, showing a kernel for Distance-d Matching is still a technically
demanding task, but it seems to be in closer reach. For this reason, we give a
short description of the linear kernel for Induced Matching on planar graphs
based on the general kernelization technique, concentrating on the central ideas
and omitting many details.
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Data Reduction Rules

In order to show our kernel, we employ the following data reduction rules. These
rules stem from the simple observation that if two vertices have the same neigh-
borhood, one of them can be removed without affecting the size of a maximum
induced matching. Compared to the data reduction rules applied in other proofs
of planar kernels [AFN04, CFKX07, GNW09], these data reduction rules are quite
simple and can be carried out in O(n + m) time on general graphs (and hence in
linear time on planar graphs).

Reduction Rule 8.1. Delete vertices of degree zero.

Reduction Rule 8.2. If a vertex u has two neighbors x, y of degree 1, then
delete x.

Reduction Rule 8.3. If two there are two degree-two vertices x and y such
that N(x) = N(y) = {u, v}, then delete x.

Note that these data reduction rules are parameter-independent. The re-
duction rule used by Kanj et al. [KPXS09], which removes all twins from the
graph (recall that two vertices u, v are twins if N(u) = N(v)), can be considered
as a generalization of our rules, since our rules remove twins with at most two
neighbors.

Lemma 8.2. Reduction Rules 8.1, 8.2, and 8.3 are correct.

Proof. Obviously, none of these rules destroys planarity. The correctness of Re-
duction Rule 8.1 is obvious, since no isolated vertex can be part of an edge.
Concerning Reduction Rule 8.2, observe that only one edge incident to u can be
part of an induced matching. The correctness of Reduction Rule 8.3 can be seen
as follows. Let G be a graph and M an induced matching for G. If one of the
vertices x or y is an endpoint of an edge in M , then either u or v is the other
endpoint of that edge since x and y have no other neighbors. Suppose, without
loss of generality, that {u, x} is a matching edge. Since u and y are adjacent, y
cannot be an endpoint of an edge in M , and since x is adjacent to v, v cannot
be an endpoint of an edge in M . For this reason, we can get a new match-
ing M ′ := (M \ {{u, x}}) ∪ {{u, y}}, which has the same size as M and is still
induced, and it is an induced matching for G′ := G− x. The case where no ver-
tex in {x, y} is an endpoint of an edge in M is obvious. The reverse direction is
trivial, as any induced matching M ′ for G′ is also an induced matching for G.

Lemma 8.3. Reduction Rules 8.1, 8.2, and 8.3 can be exhaustively applied in
linear time on planar graphs as well as on general graphs.

Proof. We first delete all isolated vertices in O(n) time in order to reduce the
graph with respect to Reduction Rule 8.1. Then, we apply Reduction Rule 8.3.
For each vertex u of the graph we check which neighbors of u can be deleted.
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To this end, we determine in O(deg(u)) time all degree-two neighbors of u; then
we group together all such neighbors whose second neighbor is the same. For
each group, we mark all but one vertex for deletion. After having done this
for every vertex we delete the marked vertices. Finally, we apply Reduction
Rule 8.2. For each vertex u we determine in O(deg(u)) time all degree-one neigh-
bors of u, and delete all but one. The running time to exhaustively apply each
rule is O(

∑

u∈V (1 + deg(u))), which is bounded by O(n + m).
It remains to explain why we need to check every vertex for each rule only

once, and why we first apply Reduction Rule 8.3 and then Reduction Rule 8.2. It
is easy to verify that for each rule the following holds: a vertex that is not deleted
during the application of the rule does not become a candidate for deletion with
respect to the rule after the application of that rule on other vertices. Moreover,
we have to justify why we apply Reduction Rule 8.3 before Reduction Rule 8.2. If
Reduction Rule 8.3 cannot be applied anymore, then the application of Reduction
Rule 8.2 cannot cause any situation where Reduction Rule 8.3 could be applied
again. This does not hold if we apply the rules the other way around. The
application of Reduction Rule 8.1 at the beginning is obviously correct.

The following theorem is our main result. Its proof spans the remainder of
this section.

Theorem 8.1. On planar graphs, Induced Matching admits a linear problem
kernel with respect to the parameter solution size k. The kernel can be constructed
in linear time.

Let G = (V, E) be a planar graph reduced with respect to Reduction Rules 8.1,
8.2, and 8.3, for which any induced matching contains at k edges. We show
that then |V | = O(k). This result together with Lemma 8.2 and 8.3 shows
Theorem 8.1.

For the proof, we assume to be given a maximum induced matching M of
size k of G. The general strategy is to show that either |V | = O(k) holds or
that M cannot be of maximum size. The basic observation is that if M is a
maximum induced matching of G = (V, E), then for each vertex v ∈ V there
exists a vertex u ∈ V (M) such that d(u, v) ≤ 2. Otherwise, we could add an
edge to M and obtain a larger induced matching. Then, since every vertex in the
graph is within distance at most two to some vertex in V (M), we know, roughly
speaking, that each edge in M is within distance at most four to at least one
other edge in M . This leads to the idea of regions “in between” matching edges
that are close to each other. We will see that these regions cannot be too large if
the graph is reduced with respect to the above data reduction rules. Moreover,
we show that there cannot be many vertices that are not contained within such
regions.

This idea of a region decomposition was introduced in [AFN04], but the defi-
nition of a region as it appears there is much simpler since the regions are defined
between vertices, and they are smaller. The remaining part of this section is



144 8 Induced Matching

dedicated to the proof of Theorem 8.1. First, we define a “maximal region de-
composition” of a reduced graph that contains only O(|M |) regions. Then, we
outline the proof that each region only contains a constant number of vertices. In
this part lies the most important difference to the kernel by Kanj et al. [KPXS09];
as mentioned before, they use a more general reduction rule that generates a twin-
less graph, and then their proof is based on combinatorial arguments for twinless
graphs. In our proof, we divide the vertices inside a region into layers, which
facilitates the proof of the size bound. It seems plausible that this will also help
in analyzing the size of regions for other problems like Distance-d Matching

with higher distance constraints. Here, we give the full proofs of the most impor-
tant building blocks that are needed for the layer-wise analysis of the region size,
but we only sketch the ideas of how to apply them. Concerning the number of
vertices outside of regions, we only give a few comments on how to bound them.
Recall that this section only aims to give an idea of how to prove the kernel size;
all missing parts can be found in our paper [MS08a].

Maximal Region Decomposition

The basic concepts used for the kernel size proof are defined in the following.

Definition 8.1. Let G be a plane graph and let M be a maximum induced match-
ing of G. For edges e1, e2 ∈ M , a region R(e1, e2) is a closed subset of the plane
such that

1. the boundary of R(e1, e2) is formed by two length-at-most-four paths

• (a1, . . . , a2), a1 6= a2, between a1 ∈ e1 and a2 ∈ e2,

• (b1, . . . , b2), b1 6= b2, between b1 ∈ e1 and b2 ∈ e2, and

by e1 if a1 6= b1 and e2 if a2 6= b2;

2. for each vertex x in the region R(e1, e2), there exists a vertex y ∈ V ({e1, e2})
such that d(x, y) ≤ 2;

3. no vertices inside the region other than the endpoints of e1 and e2 are
from M .

The set of boundary vertices of R is denoted by δR. We write V (R(e1, e2)) to
denote the set of vertices of a region R(e1, e2), that is, all vertices strictly in-
side R(e1, e2) together with the boundary vertices δR. A vertex in V (R(e1, e2)) is
inside R.

Note that the two enclosing paths may be identical; the corresponding region
then consists solely of a simple path of length at most four. Note also that e1

and e2 may be identical. For an example of a region see Figure 8.2a.
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Figure 8.2: (a) Example of region R(e1, e2) between two edges e1, e2 ∈ M . Note
that e1 is not part of R, but only its endpoint a1 = b1. The black vertices are
the boundary vertices, and the gray vertices in the hatched area are the vertices
strictly inside of R. (b) An example of an M-region decomposition: white vertices
lie outside of regions and each region is hatched with a different pattern.

Definition 8.2. Let G be a plane graph and let M be a maximum induced match-
ing of G. An M-region decomposition of G = (V, E) is a set R of regions such
that no vertex in V lies strictly inside more than one region from R. For an
M-region decomposition R, we define V (R) :=

⋃

R∈R V (R). An M-region de-
composition R is maximal if there is no R /∈ R such that R∪{R} is an M-region
decomposition with V (R) ( V (R) ∪ V (R).

For an example of an M-region decomposition, see Figure 8.2b.

Lemma 8.4 ([MS08a]). Given a plane reduced graph G = (V, E) and a maximum
induced matching M of G, there exists an algorithm that constructs a maximal
M-region decomposition with O(|M |) regions.

Bounding the Size of a Region

To upper-bound the size of a region R we make use of the fact that any vertex
strictly inside R has distance at most two from some vertex in the boundary δR.
For this reason, the vertices strictly inside R can be arranged in two layers.
The first layer consists of the neighbors of boundary vertices, and the second of
all the remaining vertices, that is, all vertices at distance at least two from every
boundary vertex. The proof strategy is to show that if any of these layers contains
too many vertices, then there exists an induced matching M ′ with |M ′| > |M |.
An important structure for our proof are areas enclosed by cycles of length four,
called diamonds.

Definition 8.3. Let u and v be two vertices in a plane graph. A diamond D(u, v)3

is a closed area of the plane with two length-2 paths between u and v as boundary.

3In standard graph theory, a diamond denotes a cycle of length four with exactly one chord.
We abuse this term here. Note that diamonds also play an important role in proving linear
problem kernels on planar graphs for other problems [AFN04, GN07b].



146 8 Induced Matching

x
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Figure 8.3: A diamond (left) and an empty diamond (right) in a reduced plane
graph.

A diamond D(u, v) is called empty if every edge e in the diamond is incident to
either u or v.

Figure 8.3 shows an empty and a non-empty diamond. In a reduced plane
graph, empty diamonds have restricted size. We are especially interested in the
maximum number of vertices strictly inside an empty diamond D(u, v) that have
both u and v as neighbors.

Lemma 8.5. Let D(u, v) be an empty diamond in a reduced plane graph. Then,
there exists at most one vertex strictly inside D(u, v) that has both u and v as
neighbors.

Proof. Suppose that there are at least two vertices x and y strictly inside D(u, v),
where both have u and v as neighbors. Since D is empty, x and y can have no
other neighbors than u and v. Thus, there are two vertices of degree two with
the same neighbors, a contradiction to the fact that G is reduced with respect to
Reduction Rule 8.3.

Lemma 8.5 shows that if there are more than three edge-disjoint length-two
paths between two vertices u, v, then there must be an edge e in an area enclosed
by two of these paths such that e is neither incident to u nor v. This fact is used
in the following lemma to show that the number of length-two paths between two
vertices of a reduced plane graph is bounded.

Lemma 8.6. Let u and v be two vertices of a reduced plane graph G such that
there exist two distinct length-two paths (u, x, v) and (u, y, v) between u and v
enclosing an area A of the plane. Let M be a maximum induced matching of G.
If neither x nor y is endpoint of an edge in M and no vertex strictly inside A
is contained in V (M), then there are at most 15 edge-disjoint length-two paths
between u and v.

Proof. The idea of the proof is to show that if there are more than 15 length-two
paths between u and v, then we can exhibit an induced matching M ′ with |M ′| >
|M |, which would then contradict the optimality of M . First, we consider the
case when neither u nor v is contained in V (M). Suppose for the purpose of
contradiction that there are six common neighbors w1, . . . , w6 of u and v that
lie inside A (that is, strictly inside and on the enclosing paths). Without loss of
generality, suppose that these vertices are embedded as in the following figure:
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Consider the diamond D with the boundary induced by the vertices u, v, w2,
and w5. Since w3 and w4 are strictly inside D and are incident to both u and v,
by Lemma 8.5, we know that D is not empty. That is, there exists an edge e in D
which is not incident to u or v. Clearly e is incident to neither w1 nor w6 and the
endpoints of e are at distance at least two from every vertex in V (M). Therefore,
we can add e to M and obtain a larger induced matching, which contradicts the
optimality of M .

Next, consider the case when u and/or v are endpoints of edges in M . Us-
ing the same idea as above, it is easy to see that if there exist 16 length-two
paths between u and v, then there are at least three non-empty diamonds (us-
ing (u, w1, v), (u, w6, v) and (u, w11, v) as “isolating paths”) whose boundaries
share only u and v. We can then replace the at most two edges in M incident
with u and v by three edges, one from each nonempty diamond, and obtain a
larger induced matching.

Lemma 8.6 is needed to upper-bound the number of vertices inside and outside
of regions that are connected to at least two boundary vertices. The next two
lemmas are needed to upper-bound the number of vertices that are connected to
exactly one boundary vertex. First, Lemma 8.7 upper-bounds the number of such
vertices under the condition that they are contained in an area which is enclosed
by a short cycle. Lemma 8.7 is then used in Lemma 8.8 to upper-bound the total
number of such vertices for a given boundary vertex.

Lemma 8.7. Let u be a vertex in a reduced plane graph G and let v, w ∈ N(u)
be two distinct vertices whose distance is at most three in G − u. Let P denote
a shortest path between v and w in G− u and let A denote the area of the plane
enclosed by P and the path (v, u, w). If there are at least nine neighbors of u
strictly inside A, then there is at least one edge strictly inside A.

Proof. Let u contain nine neighbors {z1, . . . , z9} strictly inside A and assume that
there is no edge strictly inside A. By Reduction Rule 8.2, at most one of the zi’s
can have degree one. Without loss of generality, assume that z9 has degree one.
By Reduction Rule 8.3, no two degree-two vertices have the same neighborhood.
Observe that the neighbors of the zi’s must be vertices on P due to planarity,
as otherwise there would be an edge strictly inside of A, a contradiction to our
assumption. First, consider the case when there exists a vertex among the zi’s of
degree at least four. Suppose zj, 1 ≤ j ≤ 8, has at least three neighbors among
the vertices in P . Because the graph is planar, there exists a vertex x ∈ P such
that no zi, i 6= j, is adjacent to x. The remaining vertices have degree two or three
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and each is adjacent to some vertex y 6= x in P . Moreover, there can be at most
one vertex of degree three. Since |V (P )| ≤ 4, it is easy to see that there are at
least two degree-two vertices with the same neighbors, a contradiction. Therefore,
assume that deg(zi) ≤ 3 for all i. Again by planarity, there are at most three
vertices in {z1, . . . , z8} of degree three. The remaining at least five vertices must
be of degree two and each is adjacent to a vertex in P . Since |V (P )| ≤ 4, this
implies that there are two degree-two vertices with the same neighborhood, a
contradiction. This shows that if there exist nine neighbors of u in A, then there
exists an edge strictly inside A.

Lemma 8.8. Let G be a reduced plane graph, let M be a maximum induced
matching of G, let e1, e2 ∈ M be edges that form a region R(e1, e2), and let u be
a boundary vertex of R. Then, u has at most 40 neighbors strictly inside R that
are not adjacent to any other boundary vertex.

Proof. We assume that there are 41 neighbors of u strictly inside R that are not
adjacent to any other boundary vertex and show that then we can find an induced
matching M ′ with |M ′| > |M |, contradicting the maximum cardinality of M .

Suppose that the neighbors v1, . . . , v41 are embedded around u in a clockwise
fashion. By Reduction Rule 8.2, u can have at most one neighbor of degree one.
Without loss of generality assume that deg(v2) = 1. Consider the vertices v1, v11,
and v21. If the pairwise distance of these vertices in G−u is at least four, then any
three edges ea, eb, ec in G−u incident to v1, v11, and v21, respectively, are pairwise
non-adjacent. Since they lie strictly inside R(e1, e2) (u is the only neighbor on
the boundary), we can set M ′ := (M \ {e1, e2})∪{ea, eb, ec}. Similarly, if v21, v31,
and v41 have a pairwise distance of at least four, then we can construct an induced
matching of cardinality greater than |M |.

It remains to show the case that at least two vertices from {v1, v11, v21} have
distance at most three and at least two vertices from {v21, v31, v41} have distance
at most three. Let {w1, w

′
1} ⊆ {v1, v11, v21} and {w2, w

′
2} ⊆ {v21, v31, v41} be these

vertices. Let P1 and P2 denote, respectively, the shortest paths from w1 to w′
1

and from w2 to w′
2 in G−u. Note that P1 and P2 are strictly inside R. Let A1 be

the area enclosed by P1 and the path (w1, u, w′
1) and let A2 be the area enclosed

by P2 and the path (w2, u, w′
2). Note that P1 and P2 can be chosen so that the

subsets of the plane strictly inside A1 and A2 do not intersect. By Lemma 8.7,
there exist edges e1, e2 such that e1 is strictly inside A1 and e2 is strictly inside A2.
If there exists an edge e ∈M incident to u, then (M − e)∪ {e1, e2} is an induced
matching with size strictly larger than that of M , a contradiction. If no edge
of M is incident to u, then M ∪ {e1, e2} is again an induced matching of larger
size.

With Lemma 8.6 and Lemma 8.8, we now have the building blocks to prove
the number of vertices inside a region. Recall that the vertices in a region can
be arranged in two layers, one with all vertices with distance one to a boundary
vertex, and one with distance two. First, the number of vertices in the first layer
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is bounded. Then, to bound the number of vertices with at least two neighbors
on the boundary, one can use Lemma 8.6 together with the Euler formula and the
maximum number of vertices on the boundary (ten vertices). For the remaining
vertices (that is, vertices with exactly one neighbor on the boundary), one can
use Lemma 8.8. The number of vertices in the second layer is then bounded
analogously, based on the bound for the first layer.

Lemma 8.9 ([MS08a]). Each region R(e1, e2) of an M-region decomposition of
a reduced plane graph contains O(1) vertices.

Proposition 8.5. Let G be a reduced plane graph and let M be a maximum
induced matching of G. There exists an M-region decomposition such that the
total number of vertices inside all regions is O(|M |).

Proof. Using Lemma 8.4, there exists a maximal M-region decomposition for G
with at most O(|M |) regions. By Lemma 8.9, each region has a constant number
of vertices. Thus, there are O(|M |) vertices inside regions.

It remains to bound the number of vertices that lie outside regions of a
maximal M-region decomposition. This proof uses similar ideas as the proof
of Proposition 8.5; in particular, it also applies Lemma 8.6 and Lemma 8.7.
Therefore, we omit the details here.

Proposition 8.6 ([MS08a]). Given a maximal M-region decomposition with
O(|M |) regions, the number of vertices that lie outside of regions is O(|M |).

By Propositions 8.5 and 8.6, given a reduced plane graph G and a maximum
induced matching M of G, there exists an M-region decomposition with O(|M |)
regions such that the number of vertices inside and outside of regions is O(|M |).
Therefore, since |M | ≤ k, this shows the O(k) upper bound on the number
of vertices as claimed in Theorem 8.1, that is, Induced Matching admits a
linear problem kernel on planar graphs. Note that the constant hidden in the O-
Notation is rather big; we estimate it to be at least above 1000. The 40k-size
problem kernel by Kanj et al. [KPXS09] is clearly much smaller.

8.2.3 Graphs of Bounded Treewidth

Zito [Zit99] developed a linear-time dynamic programming algorithm to solve
Induced Matching on trees. We extend his work and obtain a linear-time al-
gorithm on graphs of bounded treewidth (see Section 2.3.4). Note that compared
to Zito’s work our dynamic programming approach uses a different encoding to
store the partial solutions in the updating process. Before showing our algorithm,
we briefly outline how one can verify that such a linear-time algorithm for graphs
of bounded treewidth actually does exist. However, unlike our algorithm, this
method does not derive an algorithm with good running times.
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Proposition 8.7. Given an undirected graph with a tree decomposition of width
at most ω ≥ 1, then Induced Matching can be solved in linear time.

Proof. We apply a result by Courcelle [Cou90]. It states that all graph properties
definable in monadic second-order logic (MSO) can be decided in linear time on
graphs of bounded treewidth. There are extensions of MSO allowing us to deal
with optimization problems. We give an MSO formulation of (the optimization
version of) Induced Matching:

max E ′ : ∀e1∀e2

(

E ′e1E
′e2¬

[

∃x∃yV x ∧ V y ∧ Ixe1 ∧ Iye2∧
((x = y) ∨ ∃e′(Ee′ ∧ Ixe′ ∧ Iye′))

])

In the above formula, V and E are unary relation symbols which denote the
vertex and edge sets of the graph; I is a binary relation symbol that denotes
whether a vertex is incident to an edge and E ′ denotes an induced matching.
The formula expresses that for each edge pair in the induced matching (e1, e2)
there must not exist two vertices x ∈ e1 and y ∈ e1 such that x = y or x and y are
adjacent (in other words, the edges e1 and e1 must not overlap nor be connected
by another edge).

Courcelle’s result is of purely theoretical interest as the hidden constants in
the running time analysis are huge. For this reason, it is of independent interest to
develop practical algorithms. It is relatively easy to see that a standard dynamic
programming approach would result in a running time of O(9ω · n), where ω is
the width of the given tree-decomposition. With an improved dynamic program-
ming algorithm, we obtain a running time of O(4ω · n). Our approach also uses
some ideas that were applied for an improved dynamic programming algorithm
for Dominating Set [AN02, ABF+02]. However, the concept of monotonicity
introduced by Alber and Niedermeier [AN02] for Dominating Set is not needed
for Induced Matching, as the necessary condition for an improved analysis of
the dynamic programming update process is fulfilled without the monotonicity
concept. Here we describe only the basic definitions and those parts of the algo-
rithm that are important in showing the improved running time.

The remainder of this section is dedicated to the proof of the following theo-
rem.

Theorem 8.2. Let G = (V, E) be a graph with a given nice tree decomposi-
tion ({Xi | i ∈ I}, T ) of width ω. Then the size of a maximum induced matching
of G can be computed in O(4ω · n) time, where n := |I|.

Proof. For each bag Xi we consider all possible ways of obtaining an induced
matching in the subgraph induced by Xi and all bags below Xi. To do this, we
create a table Ai, i ∈ I for each bag Xi, which stores this information. These
tables are updated in a bottom-up process starting at the leaves of the decom-
position tree. In the following, we say that a vertex v is contained in an induced
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matching M if v is an endpoint of an edge in M . If v is contained in M , then
its partner in M is the vertex u such that {u, v} ∈M . We use different colors to
represent the possible states of a vertex in a bag:

white(0): A vertex labeled 0 is not contained in M .

black(1): A vertex labeled 1 is contained in M and its partner in M has already
been discovered in the current stage of the algorithm.

gray(2): A vertex labeled 2 is contained in M but its partner in M has not been
discovered in the current stage of the algorithm.

For each bag Xi = {xi1 , . . . , xini
}, |Xi| = ni, we construct a table Ai consisting

of 3ni rows and ni + 1 columns. Each row represents a coloring c : Xi → {0, 1, 2}
of the graph G[Xi]; the entry mi(c) in the ni + 1st column represents the num-
ber of vertices in an induced matching in the graph visited up to the current
stage of the algorithm under the assumption that the vertices in the bag Xi

are assigned colors as specified by c. If no induced matching is possible with
the corresponding coloring, then the entry mi(c) stores the value −∞. For
a coloring c = (c1, . . . , cm) ∈ {0, 1, 2}m and a color d ∈ {0, 1, 2} we define
#d(c) := |{1 ≤ t ≤ m : ct = d}|.

Given a bag Xi and a coloring c of the vertices in Xi, we say that c is valid if
the subgraph induced by the vertices labeled 1 and 2 has the following structure:
vertices labeled 2 have degree 0 and those labeled 1 have degree ≤ 1. For valid
colorings we store the value mi as described above; for all other colorings we
set mi to −∞ to mark it as invalid. A coloring is strictly valid if it is valid
and, in addition, vertices labeled 1 induce isolated edges. We next describe the
dynamic programming process. Recall that we assume that we work with a nice
tree decomposition.

Leaf Nodes. For a leaf node Xi compute the table Ai as

mi(c) :=

{

#1(c) + #2(c), if c is strictly valid,

−∞, otherwise.

In the initialization step, the assignment of colors needs to be justified locally and
therefore we require that the colorings are strictly valid. Checking for validity
takes O(n2

i ) time; therefore, this step can be carried out in O(3ni · n2
i ) time.

Introduce Nodes. Let Xi = {xi1 , . . . , xinj
, x} be an introduce node with child

node Xj = {xi1 , . . . , xinj
}. Compute the table Ai as follows. For a coloring c :

Xi → {0, 1, 2} and an index 1 ≤ p ≤ |Xi|, define grayp(c) to be a coloring derived
from c by re-coloring the vertex with index p with color 2. Let Nj(x) be the set
of neighbors of vertex x in Xj, that is, Nj(x) := N(x) ∩Xj .
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Then the mapping mi in Ai is computed as follows (recall that mi represents
the number of vertices in an induced matching in the graph visited up to the
current stage of the algorithm). For a coloring c = (c1, . . . , cnj

) set

mi(c× {0}) :=mj(c). (8.1)

mi(c× {1}) :=



















mj(grayp(c)) + 1, if there is a vertex xjp
∈ Nj(x)

with cp = 1, and for all

xjq
∈ Nj(x) with q 6= p : cq = 0.

−∞, otherwise.

(8.2)

mi(c× {2}) :=

{

mj(c) + 1, if cp = 0 for all xjp
∈ Nj(x).

−∞, otherwise.
(8.3)

Assignment 8.1 is correct, since the coloring c × {0} is valid for Xi if and only
if c is valid for Xj. The value of mi is the same for both colorings. If the
newly introduced vertex x has color 1 (Assignment 8.2), then—since c × {1}
must be valid—there must be a neighbor y with color 1 within the bag Xi; all the
other neighbors of x in Xi must have color 0. This is insured by the assignment
condition. To see the correctness of the computed value mi(c×{1}), note that y
must have color 2 in bag Xj , since the partner of y was not yet known in the
stage when the algorithm was processing bag Xj , and we increase the number
of solution vertices by one since the newly introduced vertex has color 1. The
condition of Assignment 8.3 simply verifies the validity of the coloring c × {2},
and we increase the number of solution vertices by one since the newly introduced
vertex has color 2.

For each row of table Ai, we have to look at the neighborhood of vertex x
within the bag Xi to check whether the corresponding coloring is valid. Therefore,
this step can be carried out in O(3ni · ni) time.

Forget Nodes. Let Xi = {xi1 , . . . , xini
} be a forget node with child node Xj =

{xi1 , . . . , xini
, x}. Compute the table Ai as follows. For each coloring c ∈

{0, 1, 2}ni set
mi(c) := max

d∈{0,1}
{mj(c× {d})}.

The maximum is taken over colors 0 and 1 only, as a coloring c× {2} cannot be
extended to a maximum induced matching. To see this, note that such a coloring
assigns vertex x color 2 and since x is forgotten, by the consistency property of
tree decompositions, it does not appear in any of the bags that the algorithm sees
in the future.

Clearly, this evaluation can be done in O(3ni · ni) time. The crucial part are
the join nodes.

Join Nodes. For a join node Xi with child nodes Xj and Xk compute the
table Ai as follows. We say that two colorings c′ = (c′1, . . . , c

′
ni

) ∈ {0, 1, 2}ni
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and c′′ = (c′′1, . . . , c
′′
ni

) ∈ {0, 1, 2}ni are correct for a coloring c = (c1, . . . , cni
) if

the following conditions hold for every p ∈ {1, . . . , ni}:

1. if cp = 0 then c′p = 0 and c′′p = 0,

2. if cp = 1 then

(a) if xip has a neighbor xiq ∈ Xi with cq = 1 then c′p = c′′p = 1,

(b) else either c′p = 1 and c′′p = 2, or c′p = 2 and c′′p = 1, and

3. if cp = 2 then c′p = 2 and c′′p = 2.

Finally, the mapping mi of Xi is evaluated as follows. For each coloring c ∈
{0, 1, 2}ni set

mi(c) := max{mj(c
′) + mk(c′′)−#1(c)−#2(c) | c′ and c′′ are correct for c}.

In other words, we determine the value of mi(c) by looking up the correspond-
ing coloring in mj and in mk (corresponding to the left and right subtree, re-
spectively), add the corresponding values and subtract the number of vertices
colored 1 or 2 by c, since they would be counted twice otherwise.

Clearly, if the coloring c assigns color 0 to a vertex x ∈ Xi, then so must
colorings c′ and c′′. The same holds if c assigns color 2 to a vertex. However,
if c assigns color 1 to a vertex x, then this coloring can be justified in two ways.
The first case is when x has a neighbor y ∈ Xi that is also colored 1. Then both
colorings c′ and c′′ obviously assign 1 to x (and 1 to y). The second case is when all
neighbors of x in Xi are assigned color 0. Then the assignment c(x) = 1 must be
justified by another vertex in the solution which is in a bag which has already been
processed in a previous stage of the algorithm. This vertex is located either in
the left subtree or in the right subtree (corresponding to mj or mk, respectively),
but not both. Therefore, the color of x can only be justified by assigning color 1
to x by c′ and color 2 to x by c′′, or vice versa.

Note that for a given coloring c ∈ {0, 1, 2}ni, with a := #1(c), there are at
most 2a possible pairs of correct colorings for c. There are 2ni−a

(

ni

a

)

possible
colorings c with a vertices colored 1, thus

|{(c′, c′′) | c ∈ {0, 1, 2}ni, c′ and c′′ are correct for c}| ≤
ni

∑

a=0

2ni−a

(

ni

a

)

· 2a

= 4ni.

Since we have to check the neighbors of x within Xi for each pair of correct
colorings, the total running time for this step is O(4ni · ni). In total, we get a
running time of O(4ω · |I|) for the whole dynamic programming process.
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8.3 Outlook

We determined the parameterized complexity of Induced Matching for planar
graphs, graphs of bounded degree, bipartite graphs, graphs with girth at least six,
line graphs, and graphs of bounded treewidth. The data reduction rules for the
planar case are very simple and the kernelization can be done in linear time. It
seems plausible that the technique used for the kernel on planar graphs (especially
the layer-wise analysis of the size of a region, which is not available in the proof
of the 40k-size problem kernel by Kanj et al. [KPXS09]) can be generalized to
achieve kernelization results for Distance-d Matching.

Another possible future research topic is graph packing with distance prop-
erties; the basic task is packing graphs as in Chapter 7, but with the additional
constraint that the packed graphs must have pairwise distance d for some fixed d.
This problem generalizes Distance-d Matching. It has not been investigated
as intensively as Induced Matching, but few studies already exist for Trian-

gle Packing with distance two [CH06, Cam09]. Quite surprisingly, it turns out
that this packing problem with distance constraint is polynomial-time solvable
in some graph classes, while the packing problem without distance constraint is
NP-complete [CH06]. It would be interesting to see whether that sort of results
(that is, that the distance constraint, unlike for Induced Matching, makes
the problem easier) is also possible in the context of parameterized complexity;
maybe combining techniques for packing problems (see Chapter 7) and ideas from
this chapter could be a good starting point.



Chapter 9
Implementation and Experiments for

Finding Maximum s-Plexes

In this chapter, we propose new practical algorithms to find degree-relaxed vari-
ants of cliques called s-plexes. An s-plex denotes a vertex subset in a graph
inducing a subgraph where every vertex has edges to all but at most s− 1 other
vertices in the s-plex. Cliques are 1-plexes. In analogy to the special case of find-
ing maximum-cardinality cliques, finding maximum-cardinality s-plexes is NP-
hard [BBH09]. Complementing previous work, we develop combinatorial, exact
algorithms, which are strongly based on the close connection between finding
maximum-cardinality s-plexes and the Bounded-Degree-d Vertex Dele-

tion problem (cf. Chapter 4). The experiments with our freely available im-
plementation indicate the competitiveness of our approach, for many real-world
graphs outperforming the previously used methods.

First, we introduce the problem of finding maximum-cardinality s-plexes, de-
scribe its relation to Bounded-Degree-d Vertex Deletion, and list some
known results (Section 9.1). Then, we describe our algorithmic approach in more
detail (Section 9.2) and report about the implementation and algorithmic tricks
(Section 9.3). After that, we report about the experimental results (Section 9.4).
Finally, we give further remarks (Section 9.5) and an outlook (Section 9.6).

9.1 Introduction and Known Results

Finding maximum-cardinality cliques in graphs for a long time has been a ma-
jor challenge for algorithmic graph theory and corresponding algorithm engi-
neering efforts (cf. DIMACS challenge [DIM95]). The corresponding Maximum

Clique problem is NP-hard and neither effective approximation nor parameter-
ized approaches exist that allow for efficient algorithms with provable performance
bounds. Hence, the use of heuristic approaches always has been an important tool
for practical solutions of Maximum Clique. The concept of cliques, however,
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has been criticized for its overly restrictive nature asking for complete subgraphs,
since in many applications one searches for dense subgraphs that do not have
to meet the “perfect” notion of cliques and could be missing some edges. A
more relaxed concept of a dense subgraph has been introduced by Seidman and
Foster [SF78] with the notion of s-plexes. A 1-plex is the same as a clique.

Definition 9.1. For s ≥ 2, an s-plex is a graph G = (V, E) in which each vertex
has degree at least |V | − s.

In other words, in an s-plex each vertex is adjacent to all but at most s − 1
other vertices. Unfortunately, finding maximum-cardinality s-plexes turns out to
be computationally basically as hard as clique detection is [BBH09, KHMN09].
Thus, recently the development of practical (heuristic) algorithms for s-plex de-
tection has received quite some interest [BBH09, MH09, WP07] although being
still in its infancy compared to the algorithm engineering undertaken for clique
finding. In this work, we contribute novel tools for the efficient detection of
maximum-cardinality s-plexes. Other than previous work [BBH09, MH09, WP07]
(where [WP07] deals with s-plex enumeration), our algorithms draw on methods
from parameterized algorithmics.

The Maximum s-Plex problem for an integer s ≥ 1 is defined as follows.

Maximum s-Plex

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at least k such
that G[S] is an s-plex?

Clearly, in our experiments we actually choose to maximize the value of k.
Recent work on clique finding has exploited the close connection (indeed, du-
ality) between Maximum Clique and the Minimum Vertex Cover prob-
lem [ACF+04, AFLS07, CLS+05]. We follow the same spirit here and make use of
the duality between Maximum s-Plex and the Bounded-Degree-d Vertex

Deletion problem. Bounded-Degree-d Vertex Deletion is the problem
considered in Chapter 4; we repeat its definition.

Bounded-Degree-d Vertex Deletion

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at most k such
that G− S has maximum degree d?

Clearly, we are interested in minimizing the value k. The duality between Max-

imum s-Plex and Bounded-Degree-d Vertex Deletion can be expressed
as follows. Recall that a bdd-d-set is a solution set for Bounded-Degree-d
Vertex Deletion.

Lemma 9.1. A graph G = (V, E) contains an s-plex of size k if and only if the
complement graph Ḡ = (V, Ē) contains a bdd-d-set of size |V |−k with d := s−1.
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(a) A maximum 4-plex in a protein-
protein interaction graph.
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(b) Corresponding complement.

Figure 9.1: (a) Maximum-cardinality 4-plex in a fission yeast protein-protein
interaction graph and (b) the corresponding complement, which has bounded de-
gree three. The vertices of the protein-protein interaction graph correspond to
proteins, and an edge {u, v} indicates an experimentally determined interaction
between the proteins corresponding to u and v. The entire graph has 1053 ver-
tices and 2884 edges and was generated using data from the BioGRID database
(http://www.thebiogrid.org).

Proof. (⇒) Let S be an s-plex of size k in G. Every vertex in G[S] has degree
at least |S| − s, that is, each vertex in G[S] is adjacent to all but at most s− 1
other vertices in G[S]. Therefore, each vertex in Ḡ[S] has degree at most s− 1.
Hence, V \ S is a size-(|V | − k) bdd-d-set for Ḡ, where d = s− 1.

(⇐) Let S ′ be a bdd-d-set of size |V | − k for Ḡ. Each vertex in Ḡ − S ′ has
degree at most d = s− 1 and, therefore, G− S ′ is an s-plex of size k.

See Figure 9.1 for an s-plex in a real-world graph from computational biology
(in which dense subgraphs correspond to functional modules, see, e.g., [BBT05])
together with the corresponding complement of bounded degree s − 1. We ex-
ploit this close connection by making use of fixed-parameter tractability results
for Bounded-Degree-d Vertex Deletion (Chapter 4). By the proof of
Lemma 9.1, a minimum-cardinality bdd-d-set can then directly be transformed
into a corresponding maximum-cardinality s-plex.

Known Results. The s-plex concept was introduced by Seidman and Fos-
ter [SF78] in the context of social network analysis, accompanied by some struc-
tural results. Maximum s-Plex is NP-complete, which follows directly from the
duality between Maximum s-Plex and Bounded-Degree-d Vertex Dele-

tion (Lemma 9.1); Bounded-Degree-d Vertex Deletion is NP-complete
due to a general framework by Lewis and Yannakakis [LY80] (cf. Chapter 4). Bal-
asundaram et al. [BBH09] also gave a direct NP-completeness proof by reduction
from Maximum Clique. Concerning parameterized complexity, it is known that

http://www.thebiogrid.org
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Maximum s-Plex is W[1]-hard with respect to the parameter k [KHMN09]. The
s-Plex Editing problem, that is, the problem of obtaining an s-plex graph by
at most k edge deletions and additions, admits a problem kernel of (4s2−2) · k +
4(s− 1)2 vertices for s ≥ 2, which can be constructed in O(n4) time [GKNU09].
Moreover, s-Plex Editing can be solved in O((2s+⌊√s⌋)k+n4) time [GKNU09].

Balasundaram et al. [BBH09] presented a 0/1 integer linear program for Max-

imum s-Plex, generalizing a known formulation for the special case Maximum

Clique. In addition, they carried out a polyhedral study of the problem and
discussed a branch-and-cut implementation as the basis of computational tests.
McClosky and Hicks [MH09] described combinatorial algorithms for Maximum

s-Plex, both of heuristic (without provable guarantees on the solution quality)
and exact nature. Their heuristic algorithms are based on certain upper and
lower bounds for vertex coloring and their exact algorithms are based on adapt-
ing known algorithms for Maximum Clique. Both papers implement their al-
gorithms and do computational experiments with real-world and artificial graph
instances. The two papers [BBH09, MH09] are the main comparison points with
our implementation presented in this chapter. Wu and Pei [WP07] gave an al-
gorithm to enumerate all maximal s-plexes in a graph, also accompanied by
experimental studies.

Related Clique Relaxations. Other relaxations of the clique concept are for
instance s-cores [SF78], s-clubs [BBT05], s-cliques [BBT05], paracliques [CLS+05],
pseudo cliques [II09], and defective cliques [YPTG06]. Komusiewicz [Kom07] gave
a short overview on most of these concepts.

9.2 Algorithmic Approach

Our approach to compute maximum-cardinality s-plexes makes use of the dual-
ity between Maximum s-Plex and Bounded-Degree-d Vertex Deletion

(Lemma 9.1). Therefore, the first step is to compute the complement of the input
graph1. Then, the second step is to solve Bounded-Degree-d Vertex Dele-

tion on that complement graph for d := s− 1. Finally, the minimum bdd-d-set
is translated back into a maximum s-plex in the input graph.

In the following, we assume that the graph G is the input to the Bounded-

Degree-d Vertex Deletion problem. We suppose that the parameter k de-
noting the number of allowed vertex deletions is given (see Section 9.3 for details
of how k is obtained). Our main algorithm to solve Bounded-Degree-d Ver-

tex Deletion uses a bounded search tree and polynomial-time data reduction
rules interleaving with the search tree. In general, the branching strategy of the
search tree algorithm chooses a vertex v of degree at least d+1, and then branches

1Note that we avoid a potentially quadratic blow-up of the edge number (in the complement
graph) by only simulating the complement graph rather than constructing it.
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into the subcases of deleting v and every possibility of deleting all but d neighbors
of v. We refer to this by saying that the strategy “branches on v and N(v)”. A
theoretical analysis of such a bounded search tree is given in Section 4.4.1. In
practice, it is favorable to delete many vertices in each branching step, that is, v
should be a vertex of high degree.

In the next section, we describe the data reduction rules that are applied in
each search tree node (Section 9.2.1) and some heuristic improvements for the
search tree approach (Section 9.2.2).

9.2.1 Data Reduction Rules

The best problem kernel for Bounded-Degree-d Vertex Deletion in terms
of kernel size is the “almost linear” problem kernel of O(k1+ǫ) vertices (for any
constant ǫ > 0) that follows directly from the local optimization theorem (The-
orem 4.2 in Section 4.3). We deviate from the local optimization algorithm in
Section 4.3 and give a heuristic data reduction rule based on Theorem 4.2, because
preliminary experiments showed that a direct implementation of the algorithm
in Section 4.3 has less chance to successfully reduce the graphs we considered
(basically due to the constant in the kernel size and the fact that the parameter k
is not very small in these instances). Before that, we describe some other simple
reduction rules.

The following data reduction rules find vertices that can be safely assumed
to be in an optimal bdd-d-set of size at most k for the graph G. The algorithm
maintains a set S which is used to store the vertices that are already deleted by
the reduction rules. This is necessary to be able to return the complete bdd-d-set
at the end.

High-Degree Rule. If a vertex v of degree more than d + k is found, then
delete v from G, decrease the parameter k by one, and add v to S. This is
exactly Reduction Rule 4.1 in Section 4.2, which is used to obtain an O(k2)-
vertex kernel for Bounded-Degree-d Vertex Deletion. For the correctness
of this rule, see Section 4.2. We mention in passing that the “low-degree rule”,
that is, to delete a vertex v if each vertex in N [v] has degree at most d (Reduction
Rule 4.2 in Section 4.2), is not used, as preliminary experiments showed that this
rule has almost no effect in practice or may even slow down the algorithm.

Degree-One Rule. This data reduction rule deletes vertices that have many
degree-one neighbors.

Reduction Rule 9.1. If a vertex v ∈ V has at least d + 1 degree-one neighbors,
then delete v from G, add v to S, and decrease k by one.

Lemma 9.2. Reduction Rule 9.1 is correct and can be exhaustively applied in
O(n + m) time.
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Proof. First, concerning the correctness, observe that at least v or one of its
degree-one neighbors has to be in an optimal solution. If a degree-one neighbor w
of v is in an optimal bdd-d-set S, but v 6∈ S, then one can simply remove w from S
and add v to it, obtaining a bdd-d-set of the same size. Therefore, it is always
safe to assume that an optimal solution contains v.

It remains to show the running time. First, initialize an empty list for each
vertex v in the graph, which is used to store the degree-one neighbors of v. Then,
iterate over all vertices and collect all degree-one vertices in O(n) time. For each
degree-one vertex w with neighbor v, add w to the list of v. If in this process one
encounters a vertex v whose list contains at least d + 1 vertices, delete v from the
graph. Some neighbors of v might obtain degree one by v’s deletion; such degree-
one vertices are also processed as described. Deleting a vertex v takes O(|N(v)|)
time; thus, the deletion of vertices takes O(n + m) time in total. The entire
process therefore takes O(n + m) time.

BDD-NT-Rule. This rule is a heuristic version of the O(k1+ǫ)-vertex kernel
(for any constant ǫ > 0) that is given by Theorem 4.2 in Section 4.3. The
core of the proof of Section 4.3 is the algorithm FindExtremal. The input
for FindExtremal is a graph G = (V, E) and a bdd-d-set X. For d ≤ 1,
if |V \X| > (d + 1)2 · |X|, then FindExtremal returns in O(n3 ·m) two vertex
subsets A′ ⊆ X and B′ ⊆ V \ X. The sets A′ and B′ have the property that
for vertices in A′ it can already be decided to put them into the solution set
and vertices in B′ can be ignored for finding a solution, and B′ is not empty
(thus, we have a guarantee that a reduction rule based on FindExtremal will
successfully reduce the graph). Thus, assuming that X is given, one can simply
test whether the condition |V \ X| > (d + 1)2 · |X| is fulfilled, and if so, apply
FindExtremal. The resulting set A′ can be safely assumed to be in a minimum-
cardinality bdd-d-set of G, and we can add A′ to the solution set S and delete A′

from G, decreasing the parameter by |A′|. The vertices in B′ do not have to be
considered and can be deleted from the graph. The same principle also works
for d ≥ 2: if |V \ X| = ω(|X|1+ǫ), then FindExtremal returns in O(n3 · m)
time two vertex subsets A′ ⊆ X and B′ ⊆ V \ X with the properties that for
vertices in A′ it can already be decided to put them into the solution set and
vertices in B′ can be ignored for finding a solution, and B′ is not empty, and the
same reduction as in the case d ≤ 1 can be applied. However, for the graphs we
consider in this chapter, the constant hidden in the O-notation of the kernel size
bound turns out to be too big. The larger constant compared to the case d ≤ 1 is
due to the fact that FindExtremal it based on stars with d + 1 + ⌈|X|ǫ⌉ leaves
for d ≥ 2 instead of d + 1 leaves as in the case d ≤ 1. However, without giving
the details here, FindExtremal can compute two sets A′ and B′ such that A′

can be safely assumed to be in a bdd-d-set of G and the vertices of B′ can be
ignored for finding a solution also if one uses stars with d + 1 leaves for d ≥ 2.
The drawback of using d + 1 stars for d ≥ 2 is that then the returned set B′
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Algorithm: BddReduction (G,X, k)
Input: A graph G = (V,E), a bdd-d-set X for G, and an integer k ≥ 0.
Output: A reduced instance (G, k), a modified bdd-d-set X for G, a set S of reduced
vertices.

1 S ← ∅
2 repeat
3 while ∃v ∈ V : deg(v) > d + k ⊲ High-degree rule

4 G← G− v; X ← X \ {v}; S ← S ∪ {v}; k ← k − 1.
5 while ∃v ∈ V : v has at least d + 1 deg-1 neighbors ⊲ Degree-1 rule

6 G← G− v; X ← X \ {v}; S ← S ∪ {v}; k ← k − 1.
7 if |N(X)| > (d + 1) · |X| then
8 call BDD-NT-rule to obtain vertex sets C and D
9 G← G− (C ∪D); X ← X \ C; S ← S ∪ C; k ← k − |C|

10 until none of the rules applies.
11 return G, k, X, S

Figure 9.2: Pseudo-code of the basic algorithm to exhaustively apply the data
reduction rules.

might be empty (and thus we have no provably effective reduction rule anymore).
By preliminary experiments, we found out that in practice it is very likely that
FindExtremal terminates outputting two non-empty sets A′ and B′ with the
above-mentioned properties if |N(X)| > (d+1) · |X|, using stars with d+1 leaves
for any constant d. This is the approach we are using in practice, although it
is possible to construct instances where this adapted heuristic version would not
reduce the graph.

For the interleaving with the search tree, we initially compute a (d + 2)-
approximate solution X, and then start branching, always keeping X up-to-date,
that is, if a vertex is deleted from the graph in the course of the branching pro-
cess, then also delete it from X. Then, in each search tree node simply test
whether |N(X)| > (d + 1) · |X|, and, if so, then apply the modified FindEx-

tremal as described above to compute A′ and B′ and use these sets to reduce
the graph.

We apply the given data reduction rules exhaustively in each search tree node
in the given order. The reason for this order is that the high-degree rule turns
out to be the most effective in terms of number of deleted vertices and, at the
same time, it can be implemented to run very efficiently. The other two rules
are less effective in general, and the BDD-NT-rule is rather expensive in terms of
running time, so it is the last rule that is considered.

Figure 9.2 presents the pseudocode of the implemented exhaustive data re-
duction based on the three stated data reduction rules. The code in lines 2–10
applies the high-degree rule (lines 3–4), the degree-one rule (lines 5-6), and the
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BDD-NT-rule (lines 7–9), until none of the rules can be applied anymore. Note
that the rules not only have to delete vertices from the graph G, but also from
the bdd-d-set X in order to preserve the invariant that X is a bdd-d-set for G.

9.2.2 Heuristic Improvements

In the following, we describe some heuristics to speed up the search tree algorithm.
While branching, the search tree algorithm maintains a bdd-d-set X which is

based on a (d + 2)-approximate solution.2 This vertex set X is an upper bound
of the size of an minimum-cardinality bdd-d-set. When a vertex is deleted in the
course of the branching, the bdd-d-set X is updated accordingly. First, we give
a heuristic, called “guided branching”, which tries to select vertices to branch on
such that X becomes small very quickly in the course of the branching process.

After describing the “guided branching” heuristic, we give two heuristics used
to computed lower bounds on the size of a minimum bdd-d-set.

Guided branching. As outline before, the guided branching heuristics aims
to “guide” the search tree algorithm to select vertices to branch on such that a
bdd-d-set X becomes small very quickly in the course of the branching process.
There are two reasons why X should be small:

1. The set X is an upper bound on the size of a minimum-cardinality bdd-d-set
and can be used to speed up the search, e.g., by setting k := |X| if |X| < k
in some search tree node.

2. The BDD-NT-rule is based on X; the BDD-NT-rule can only be effec-
tive if X is small compared to N(X) (we only apply the BDD-NT-rule
if |N(X)| > (d + 1) · |X|, see also Figure 9.2).

That is why it is beneficial when the branching strategy tends to branch on
vertices in X (thereby deleting more vertices in X) such that after few branching
steps X gets small enough. However, in order to faster decrease the size of X, it
can be useful to branch on v and only a subset of N(v) (which, of course, only
works if the subset contains more than d vertices). To this end, for a vertex v
of maximum degree we branch on v and N(v) ∩ X if |N(v) ∩ X|/|N(v)| > 0.9
(the value 0.9 has shown good results in preliminary experiments); otherwise, we
simply branch on v and N(v). The condition guarantees that we only branch
on v and N(v)∩X if N(v)∩X contains at least 90% of the vertices in N(v). The
reason for this condition is to prevent that the algorithm branches on N(v) ∩X
if it is too small; in this case, the benefit of reducing only X does not outweigh
the less effective branching when branching on v and a subset of its neighbors
compared with branching on v and all its neighbors.

2This (d+2)-approximate solution can be found by greedily computing a maximal collection
of vertex-disjoint copies of stars with (d + 1) leaves.
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Edge-Count Test. The edge-count test checks whether the given Bounded-

Degree-d Vertex Deletion instance is a no-instance. The test counts how
many edges can be deleted from the graph G = (V, E) by at most k vertex
deletions based on the vertex degree distribution of the graph. If the number
of such edges is too small, then the graph cannot be turned into a graph with
maximum degree d by at most k vertex deletions. The number of edges m′ that
can be removed by k vertex deletions is computed as follows: sort the vertices
of G by non-decreasing degree and sum up the degrees of the first k vertices in
that order. Then, test whether

m−m′ >
dn

2
.

If so, then (G, k) is a no-instance, since the minimum number of edges that remain
in the graph after at most k vertex deletions is greater than the maximum number
of edges that are allowed in an n-vertex graph of maximum degree d. Due to its
simplicity, this test can be implemented to run very efficiently.

Lower Bound Heuristic. In order to derive a lower bound on the size of a
bdd-d-set, we greedily compute a packing of vertex-disjoint stars with d+1 leaves.
Since an optimal bdd-d-set has to contain at least one vertex of each star, the
number of stars is a lower bound. This lower bound is used in the search tree
algorithm to rule out branches that cannot yield an optimal solution.

9.2.3 The Search Tree Algorithm

In Figure 9.3, we give the pseudo-code of the basic search tree algorithm to
compute a minimum bdd-d-set of size at most k for a graph including the data
reduction rules and the heuristic improvements. In line 1 the algorithm applies
the data reduction rules by calling algorithm BddReduction in Figure 9.2. In
lines 2–5 we perform several tests whether the instance resulting by the applica-
tion of the data reduction rules is a no-instance. In line 5 we test whether the
instance has already bounded degree d. Then, in line 6 the algorithm selects a
vertex to branch on. The branching is then performed in lines 9–11. To see the
correctness of the branching, observe that the algorithm selects a vertex v and a
subset N ′ ⊆ N(v) of its neighbors, where |N ′| > d. The algorithm branches into
the case of deleting v from G and into all cases of deleting all but d vertices in N ′.
This generalizes the branching strategy we analyzed theoretically in Section 4.4.1,
where the set N ′ has always size d + 1 and the algorithm branches into the case
of deleting v and into d + 1 cases of deleting a vertex in N ′. Then, in lines 12–14
the algorithm either returns that the input instance is a no-instance or returns
the best solution that it has found.
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Algorithm: BddSolve (G,X, k)
Input: A graph G = (V,E), a bdd-d-set X for G, and an integer k ≥ 0.
Output: A minimum-size bdd-d-set S for G with |S| ≤ k, or “no-instance”.

1 (G, k), X, S ← BddReduction(G, X, k)
2 if k < 0 then return “no-instance”
3 l ← greedily computed lower bound on the size of a minimum bdd-d-set.
4 if k < l or edge-count test tells “no-instance” then return “no-instance”
5 if maximum degree of G is d then return S
6 Among all vertices of maximum degree, choose a vertex v.
7 if |N(v) ∩X| > d and |N(v) ∩X|/|N(v)| > 0.9 then
8 for all size (|N(v) ∩X| − d)-subsets C ⊆ N(v) ∩X do
9 call BddSolve (G− C, X \ C, k − |C|) ⊲ Branch on N(v) ∩X

10 call BddSolve (G− v, X \ {v}, k − 1) ⊲ . . . and v.

11 else branch analogously to lines 9–10 on N(v) and v.
12 if all recursive calls of BddSolve returned “no-instance” then
13 return “no-instance”
14 else return S ∪S ′, where S ′ is a smallest set returned by the BddSolve calls.

Figure 9.3: Pseudo-code of the basic algorithm to compute a minimum bdd-d-
set. The bdd-X-set is a simple greedy solution computed by adding a vertex of
highest degree to X until the graph has bounded degree d.

9.3 Implementation and Algorithmic Tricks

Our implementation is written in the functional programming language Objective
Caml3. A reason for this choice was that we could make use of a purely functional
graph data structure. This data structure makes the implementation of a search-
tree based algorithm much easier, since we do not have to care about undoing
changes to the data structure that were applied in other search tree branches.
Moreover, it is a stated (and usually achieved) goal of the Objective Caml devel-
opers that Objective Caml code runs at most twice as slow as code generated by
a decent C compiler. This speed difference is not a major factor for our considera-
tions, since we are interested in the relative performance of algorithms. Moreover,
since we are dealing with exponential-time algorithms, algorithmic improvements
usually lead to time savings that cannot be bounded by any constant factor, so
this effect seems small in comparison. Our implementation is open source and it
is freely available.4

Concerning the initial (d + 2)-approximate solution X needed for the guided
branching, it turns out that a greedy solution, computed by simply taking a
vertex of highest degree into the solution until the remaining graph has bounded

3See http://caml.inria.fr/
4http://theinf1.informatik.uni-jena.de/splex/

http://caml.inria.fr/
http://theinf1.informatik.uni-jena.de/splex/
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degree d, very often is smaller than a (d + 2)-approximate solution, although this
method does not provably guarantee an approximation factor of d + 2. Such a
greedy solution is computed at the beginning of the computation (before invoking
the search tree algorithm), and its size is taken as the initial value of k. Note
that our implementation contains many algorithmic tweaks that are not covered
by the basic description in Figure 9.3. For instance, the effect of the guided
branching can be improved by recomputing X from time to time in the course
of the branching process. Moreover, it improves performance significantly if one
updates the value of k if a branch has found a solution that is smaller than the
initial k. For d = 1 (that is, s = 2), we implemented the improved branching
described in Section 4.4.2 instead of the branching shown in Figure 9.3.

In the following, we comment about some particularities of our search tree
implementation. One of the most important issues was the computation of the
complement graph, which has to be performed before executing the BddSolve

algorithm (Figure 9.3). For sparse graphs, the complement graph is dense and in
practice the amount of time and memory to compute it exceeds often the time
and memory needed for finding a maximum s-plex. Therefore, we implemented
a wrapper that simulates a complement graph, rather than actually computing
it. This wrapper, of course, is theoretically slower than the original graph data
structure, since the data structure calls have to be translated by the wrapper.
However, in practice, this method turns out to be almost always much more
efficient than computing the complement graph directly.

For the graphs we considered, it turned out that applying the data reduction
rules (see Figure 9.2) in every search tree node yields the best results. In par-
ticular, the degree-one rule and the high-degree rule are mostly very effective.
To be able to apply these rules more quickly, it seems to be reasonable to im-
plement a data structure that provides fast access to vertices with a particular
degree. However, this results in an increase of memory usage, and since the data
structure has to be updated very frequently, many operations take more time.
For instance, the deletion of a vertex, which is one of the most frequently called
routines, needs about twice the time in our experiments. Moreover, we noticed
an increased garbage collection overhead. Summarizing, such a data structure
slowed down the algorithm; surprisingly, for the degree-one and the high-degree
rule a simple sweep over all vertices gave a faster implementation.

Note that we did not implement the iterative compression approach for d = 1
(see Theorem 4.5 in Section 4.5) because preliminary experiments just trying
all 2k subsets of a given solution showed that this approach is not yet competitive
with a search tree approach in practice. Even enumerating subsets that can
yield a solution (excluding subsets that induce a graph of maximum degree > d)
is not fast enough on the instances we tested. For this reason, we refrained
from implementing the compression routine and the whole iterative compression
algorithm.
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9.4 Experimental Results

All experiments were run on AMD Athlon 64 3700+ machines with 2.2 GHz, 1 M
L2 cache, and 3 GB main memory with Debian GNU/Linux 4.0 operating system
and the Objective Caml 3.09.2 compiler. The experiments of Balasundaram et
al. [BBH09] were performed on Dell Precision PWS690 machines with a 2.66 GHz
Xeon Processor, 3 GB main memory, implemented using ILOG CPLEX 10.0. The
processor speeds are comparable, so we compare the running times directly with-
out applying a correction factor. The experiments of McClosky and Hicks [MH09]
were run on a 2.2 GHz Dual-Core AMD Opteron processor with 3 GB main mem-
ory. Note that for both papers [BBH09, MH09] the corresponding source code is
not publicly available.

Balasundaram et al. [BBH09] performed experiments with two main groups
of graphs. One group can be characterized as social networks, which are de-
rived from real-world data. The second group of graphs contains various graphs
using the Sanchis generator [SJ96] and clique instances from the second DI-
MACS challenge [DIM95]. They also performed experiments on two biological
networks. Balasundaram et al. [BBH09] used an integer linear programming for-
mulation combined with branch & cut methods. One of their exact algorithms,
called BC(MIS), generates cuts based on a greedily computed independent set.
They combine this approach with an algorithm that iterates over all vertices
and searches an s-plex only in the vicinity of each iterated vertex, combined
with a low-degree reduction rule (which corresponds to the high-degree rule in
the complement Bounded-Degree-d Vertex Deletion instance). This vari-
ant is called Iterative Peel-Branch-and-Cut (IPBC) algorithm. In the follow-
ing, we compare our approach with the BC(MIS) and IPBC algorithms and also
with the exact algorithm “OsterPlex” by McClosky and Hicks [MH09], which is
an adapted version of an algorithm for finding maximum-cardinality cliques by
Österg̊ard [Öst02]. The experiments of McClosky and Hicks [MH09] cover almost
all social networks that were analyzed by Balasundaram et al. [BBH09] and the
instances from the DIMACS challenge.

9.4.1 Social Networks

This group contains Erdős collaboration networks [GIC07] (ERDŐS graphs), col-
laboration networks in computational geometry [BM06] (GEOM graphs), and
text-mining networks based on Reuters news [BM06] (DAYS graphs). Maximum-
cardinality s-plexes are particularly interesting in such graphs; in social network
analysis, high density subgraphs play an important role, since they represent,
e.g., a group of persons that work closely together. Cliques are too sensible with
respect to missing edges, and, even if a group is very closely connected, there
might be two persons who did not collaborate, but still can be considered very
active members of the group, because they collaborate with nearly every other
group member. Other than “high-density subgraph”, the s-plex concept is a
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clique relaxation with well-defined structural properties [SF78, BBH09].

ERDŐS graphs. Each vertex in an Erdős graph represents a scientist, and two
vertices are adjacent if the corresponding scientists have published together. The
graphs, obtained from [GIC07], are named “ERDOS-x-y”, where x represents the
last two digits of the year for which the network was constructed, and y the max-
imum distance from each vertex to Paul Erdős in the graph. As Balasundaram
et al. [BBH09] and McClosky and Hicks [MH09], we consider x ∈ {97, 98, 99}
and y ∈ {1, 2}.

GEOM graphs. Each vertex represents an author in computational geometry.
For each pair of authors the number of joint publications is available. Given a
threshold t, two authors are adjacent if they have more than t joint publications.
The graphs are constructed from data from Beebe’s bibliography page [Bee02]
obtained from a computational geometry database [Jon02]. The graphs are ob-
tained from [BM06] and named “GEOM-t”, where t ∈ {0, 1, 2} is the threshold.

DAYS graphs. The graphs are based on news released by Reuter during
66 days beginning with the terrorist attacks in New York on September 11, 2001.
Each vertex is a selected word that appeared in the news. For each pair of words,
the number of sentences where both words appear is available. Given a thresh-
old t, two words are connected by an edge if there exist more than t sentences in
which both appear. The graphs, obtained from [BM06], are named “DAYS-t”,
where t ∈ {3, 4, 5}.

These three types of graphs have in common that they are very sparse and
show a power-law degree distribution. See Table 9.1 for an overview on the
number of vertices, edges, graph density, and maximum-cardinality s-plex sizes
(for 1 ≤ s ≤ 5) for the ERDŐS, GEOM, and DAYS graphs.

We compared both the IPBC algorithm [BBH09] and the OsterPlex algo-
rithm [MH09] with our methods. We discovered experimentally that the guided
branching has a strong effect on the running time for the social network in-
stances, while the BDD-NT-rule and the edge-count rule had only minuscule
effects. Therefore, we performed experiments with and without guided branch-
ing. The resulting running times for the ERDŐS, GEOM, and DAYS graphs are
given in Table 9.2, Table 9.3, and Table 9.4, respectively. For the ERDŐS graphs,
our method with guided branching outperforms the approaches by Balasundaram
et al. [BBH09] and McClosky and Hicks [MH09] by one or two orders of mag-
nitude. Guided branching is especially very effective for higher values of s. An
explanation for this is that since the graphs are very sparse, their complements,
on which we solve Bounded-Degree-d Vertex Deletion, are very dense.
For this reason, the high-degree rule (Figure 9.2) applies extremely well, and the
vertices that are chosen to branch on have mostly a high degree, which makes
branching very effective. The guided branching accelerates the search process:
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Table 9.1: Number of vertices, edges, edge density, and maximum s-plex sizes
for 1 ≤ s ≤ 5 for the social networks.

graph |V | |E| density s = 1 s = 2 s = 3 s = 4 s = 5

ERDOS-97-1 472 1314 0.01182 7 8 9 11 12
ERDOS-98-1 485 1381 0.01177 7 8 9 11 12
ERDOS-99-1 492 1417 0.01173 7 8 9 11 12
ERDOS-97-2 5488 8972 0.00060 7 8 9 11 12
ERDOS-98-2 5822 9505 0.00056 7 8 9 11 12
ERDOS-99-2 6100 9939 0.00053 8 8 9 11 12
GEOM-0 7343 11898 0.00044 22 22 22 22 22
GEOM-1 7343 3939 0.00015 10 10 11 12 13
GEOM-2 7343 1976 0.00007 8 8 10 11 11
DAYS-3 13332 5616 0.00006 8 10 11 13 13
DAYS-4 13332 3251 0.00004 7 8 9 11 11
DAYS-5 13332 2179 0.00003 7 7 8 10 11
H. Pylori 1570 1399 0.00114 3 5 6 7 8
S. Cerevisiae 2112 2203 0.00099 6 6 7 7 8
S. Pombe 1053 2884 0.00521 8 9 10 11 13

the bdd-d-set X is relatively big (on a dense graph, many vertices have to be put
into a bdd-d-set), thus just branching on v and N(v)∩X instead on v and N(v)
(Figure 9.3) still results in a good branching, because N(v) ∩ X is not signif-
icantly smaller than N(v). Thus, we still have a good branching while having
the benefit from the guided branching that our greedy solution X becomes small
very quickly. To our surprise, the BDD-NT-rule (almost) does not apply at all.
The reason is that X (see “guided branching” in Section 9.2.2) is rather big, and
we apply the high-degree rule first (see Figure 9.2), which reduces the graph so
effectively that the condition for applying the BDD-rule is (almost) never met.
When switching off the high-degree rule, almost all reduction is then performed
by the BDD-rule.

For the GEOM graphs, we observe similar speedups of up to two orders of
magnitude (see Table 9.3). Interestingly, for some instances our approach does
not branch at all; it immediately finds a solution using the data reduction rules.
Since the data reduction rules are very effective and few branchings take place,
the effect of the guided branching is not as pronounced as for the ERDŐS graphs.

For the DAYS graph, we observe a speedup of up to three orders of magnitude
(see Table 9.4) compared to the IPBC algorithm [BBH09]. Note that McClosky
and Hicks [MH09] did not include the DAYS graphs in their experiments.

Since the preceding experiments indicate that the running time of our ap-
proach does not increase too much with increasing s (recall that s = d + 1), we
performed experiments on two of the real-world graphs (of medium difficulty)
for 1 ≤ s ≤ 25. The results are shown in Figure 9.4a. For most values of s, the
instances can be solved within some seconds, only very few take several minutes,
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Table 9.2: Running times and numbers of search tree nodes for ERDŐS graphs
compared with the running times of the IPBC [BBH09] and OsterPlex [MH09]
algorithm. Note that our and the OsterPlex experiments were aborted after one
hour. Also note that OsterPlex was not tested for s = 5.

s graph IPBC OsterPlex
search tree algorithm

no guided branching guided branching

seconds seconds seconds nodes seconds nodes

2

ERDOS-97-1 1.5 0 0.22 91 0.11 483
ERDOS-97-2 392.9 1253 8.88 141 4.74 1456
ERDOS-98-1 1.7 0 0.28 78 0.13 600
ERDOS-98-2 464.3 1514 8.03 116 6.19 2137
ERDOS-99-1 1.8 0 0.34 99 0.16 696
ERDOS-99-2 526.5 1757 9.66 127 7.32 2379

3

ERDOS-97-1 1.8 19 0.41 4422 0.4 4409
ERDOS-97-2 394.1 ≥3600 10.64 30165 10.68 38876
ERDOS-98-1 1.8 20 0.6 5998 0.61 5998
ERDOS-98-2 457.1 ≥3600 21.15 55389 21 63510
ERDOS-99-1 1.8 21 0.91 8116 0.89 8256
ERDOS-99-2 520.0 ≥3600 28.18 69522 28.14 94886

4

ERDOS-97-1 2.2 1897 0.58 8949 0.56 8949
ERDOS-97-2 424.0 ≥3600 6.33 25032 6.32 25032
ERDOS-98-1 2.8 1675 0.6 8840 0.58 8840
ERDOS-98-2 614.7 ≥3600 8.63 33360 8.64 33360
ERDOS-99-1 1.8 1783 0.9 12793 0.92 12793
ERDOS-99-2 526.3 ≥3600 16.39 72695 16.36 72256

5

ERDOS-97-1 5.7 – 16.32 177845 2.83 42459
ERDOS-97-2 1042.8 – 1462.86 4948746 25.4 172281
ERDOS-98-1 7.9 – 37.76 347168 2.78 42169
ERDOS-98-2 1664.6 – ≥3600 8172145 38.27 245845
ERDOS-99-1 9.9 – 91.72 697284 4.98 68172
ERDOS-99-2 653.5 – ≥3600 7148308 112.44 635655

and exactly one takes almost one hour. We also observe in Figure 9.4b that the
size of a maximum s-plex increases almost linearly with the value of s. We con-
clude that our approach seems to be able to find maximum s-plexes for a wide
range of the parameter s for these types of graph.

9.4.2 Biological Networks

Balasundaram et al. [BBH09] performed experiments on two biological networks,
namely protein-protein interaction networks of H. Pylori and S. Cerevisiae. In
these graphs, vertices represent proteins and edges indicate that the pair of pro-
teins forming the endpoints are known to interact. In such protein-protein inter-
action networks, s-plexes correspond to functional modules (see, e.g, [BBT05]).
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Table 9.3: Running times and numbers of search tree nodes for GEOM graphs.

s graph IPBC OsterPlex
search tree algorithm

no guided branching guided branching

seconds seconds seconds nodes seconds nodes

2
GEOM-0 2384.4 397 10.44 0 10.47 0
GEOM-1 753.2 1118 5.53 14 5.67 108
GEOM-2 530.6 1145 3.82 13 3.77 115

3
GEOM-0 2387.1 ≥3600 10.44 0 10.39 0
GEOM-1 747.7 ≥3600 6.42 7472 5.65 885
GEOM-2 524.3 ≥3600 3.8 1 3.82 1

4
GEOM-0 2383.7 ≥3600 10.44 0 10.4 0
GEOM-1 743.7 ≥3600 5.84 5021 5.8 4871
GEOM-2 522.2 ≥3600 3.77 1 3.7 1

5
GEOM-0 2298.1 – 10.47 0 10.53 0
GEOM-1 691.6 – 7.01 21952 6.94 21952
GEOM-2 472.6 – 7.78 58445 7.88 58445

We add one additional network to the set of instances, namely the protein-protein
interaction network of S. Pombe (fission yeast). We used this network in our ini-
tial example in this chapter (Figure 9.1). The graph of S. Pombe was generated
using data from the BioGRID database (http://www.thebiogrid.org). See Ta-
ble 9.1 for the number of vertices and edges, density, and maximum s-plex sizes
for 1 ≤ s ≤ 5 for these biological networks. For the biological instances, we
observe a very different behavior of our approach depending on the network (Ta-
ble 9.5). For S. Cerevisiae and S. Pombe our algorithm performs very good for
all considered values of s. For S. Cerevisiae, it is about two orders of magnitude
faster than the IPBC algorithm by Balasundaram et al. [BBH09]. However, for
H. Pylori the running time of our approach increases very quickly with increas-
ing s and is much slower than the IPBC algorithm. An explanation for that
behavior is that the high-degree rule cannot reduce the graph sufficiently; there-
fore, the parameter k is still rather large when the algorithm starts branching
and therefore the search space explodes. It would be interesting to see why IPBC
performs so extremely well on this instance compared to our approach; this could
help to combine the “best of both worlds” into one algorithm.

9.4.3 Sanchis and DIMACS Graphs

The second group of graphs considered by Balasundaram et al. [BBH09] con-
tains various graphs using the Sanchis generator [SJ96] and clique instances
from the second DIMACS challenge [DIM95]. The Sanchis generator [SJ96]
produces graphs with known maximum clique size with a specified number of
vertices n and edges m, and a construction parameter r. As Balasundaram et
al. [BBH09], we fixed the maximum clique size at ⌈n/5⌉, and the construction pa-

http://www.thebiogrid.org
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Table 9.4: Running time and number of search tree nodes for DAYS graphs.

s graph IPBC
search tree algorithm

no guided branching guided branching

seconds seconds nodes seconds nodes

2
DAYS-3 3367.8 22.01 10 22.12 256
DAYS-4 2635.7 16.28 12 16.46 180
DAYS-5 2462.9 0.11 16 0.1 179

3
DAYS-3 3395.4 63.5 119666 22.84 4396
DAYS-4 3395.4 16.47 2282 16.44 2282
DAYS-5 2445.5 0.27 2302 0.27 2302

4
DAYS-3 3489.8 21.79 1 21.98 1
DAYS-4 3642.3 16.29 1 16.41 1
DAYS-5 2426.3 92.89 550125 0.19 37

5
DAYS-3 15336.9 79.06 423511 79.2 423511
DAYS-4 6201.4 28.93 149970 28.66 149970
DAYS-5 2820.8 ≥3600 6092198 2.38 21423

rameter to ⌊0.75(n/c− 1)⌋. The number of edges is determined by the density d,
that is, we compute the number of edges as m := ⌊dn(n− 1)/2⌋. We performed
experiments for n ∈ {100, 200} and d ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Balasundaram et al. [BBH09] used Sanchis graphs to study how the efficiency
of their methods depends on the number of graph vertices, the density of the
graph, and on the value s defining s-plexes. Their methods perform best on sparse
graphs, and become less effective on dense graphs. Likewise, small graphs can be
solved quickly, while larger graphs become more difficult to solve. Balasundaram
et al. [BBH09] performed experiments with the BC(MIS) algorithm for s ∈ {1, 2}.
They observed that the case s = 2 is generally more difficult to solve than s = 1.

We observe the same general behavior as for the BC(MIS) algorithm, that is,
dense Sanchis graphs are harder to solve than sparse ones, and graphs with many
vertices are harder to solve than graphs with few vertices. We can observe that,
especially on sparse instances, our approach is slightly slower than the BC(MIS)
algorithm (see Figure 9.5a). However, the available data seems to indicate that
the running time of our approach increases not as quickly with increasing density
as the BC(MIS) algorithm does. The described effects are more pronounced
for higher values of n, the number of vertices. For instance, for n = 200 our
approach is about one order of magnitude slower than BC(MIS) for low density
(e.g., d = 0.4), but becomes faster than BC(MIS) around d = 0.7. We studied
also how the running time depends on n for fixed density (see Figure 9.5b).
Our approach is generally slower than BC(MIS) for increasing n, and the speed
difference is higher for lower density values. The most significant difference to
the social networks is that the Sanchis graphs are more dense, and therefore the
complement graph is more sparse and the high-degree rule does not apply so
often, which makes our approach less efficient. Interestingly, the BDD-NT-Rule
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Figure 9.4: (a) Running times of our approach and (b) sizes of the resulting
maximal s-plexes for 1 ≤ d ≤ 25 on ERDOS-98-1 and GEOM-1 graphs. Missing
data points are due to the exceeded running time limit of 60 minutes.

is applied more often in Sanchis graphs compared to the social networks. Note
that in general guided branching shows no effect in Sanchis graphs.

Finally, we briefly report about our findings concerning instances from the
DIMACS challenge. We compare with the BC(MIS) algorithm [BBH09] and the
OsterPlex algorithm [MH09]. The results, which cover all instances that are used
by Balasundaram et al. [BBH09], are shown in Table 9.6. Summarizing, out of
the 32 considered instances we could solve 25 instances for s = 1 and 17 instances
for s = 2, while BC(MIS) could solve 20 instances for s = 1 and 16 instances
for s = 2 within a running time limit of three hours. Compared to the OsterPlex
algorithm, we could solve within one hour all but five instances for s = 2, which
OsterPlex can solve within that time. Summarizing, BC(MIS) is comparable
with our approach, and OsterPlex is at least as good as our approach for these
instances. In general, “hard” instances cannot be solved efficiently by either of
the three compared algorithms and “easy” instances are solved quickly by all
the three algorithms, but there are a few exceptions where one method seems to
outperform the others. In this respect, it would be interesting to study whether
the OsterPlex and the BC(MIS) algorithms could be efficiently combined with
ours.

9.5 Further Remarks

Effectiveness of the Data Reduction Rules. The three data reduction rules
(Figure 9.2) behave very differently in our experiments. The simple high-degree
rule is the most effective and time-efficient data reduction rule, although in the-
ory it does not yield the best-possible problem kernel available. We recommend
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Table 9.5: Running time and number of search tree nodes for the biological
networks.

s graph IPBC
search tree algorithm

no guided branching guided branching

seconds seconds nodes seconds nodes

1
H. Pylori 11.5 5.22 357 4.62 405
S. Cerevisiae 44.1 0.29 0 0.29 0
S. Pombe - 0.56 45 1.07 178

2
H. Pylori 12.6 11.24 289 4.48 5118
S. Cerevisiae 46.4 0.29 1 0.29 1
S. Pombe - 1.00 28 1.06 1489

3
H. Pylori 37.8 43.59 233060 42.62 219782
S. Cerevisiae 26.6 0.29 1 0.29 1
S. Pombe - 13.87 50127 4.27 24641

4
H. Pylori 29.3 ≥3600 ≥7494976 1580.7 7249448
S. Cerevisiae 45.0 0.31 23 0.31 23
S. Pombe - 20.55 126160 21.03 126160

5
H. Pylori 133.1 ≥3600 ≥14364619 ≥3600 ≥17201945
S. Cerevisiae 41.8 249.23 1224879 1.83 6532
S. Pombe - 0.82 1 0.84 1

to apply it in every search tree node, especially in dense Bounded-Degree-d
Vertex Deletion instances. The degree-one rule is less often applied, but still
it is quite effective on some instances. Concerning the BDD-NT-rule, it is also
applied less often than the high-degree rule. We repeated some of the above ex-
periments with the high-degree rule and the degree-one rule disabled. Then, the
applications of the BDD-NT-rule increase dramatically. However, we observed
that the running time with and without BDD-NT-rule is approximately the same
for most of the instances. We observed two reasons for this behavior: one reason
is the running time of the BDD-NT-rule; in the present version, it seems to be
still too slow to be used to effectively speed up the search tree algorithm. A
bottleneck in the BDD-NT-rule is the computation of a maximum flow (cf. Sec-
tion 4.3), which we implemented using a simple augmenting path computation;
however, this method turned out to be still faster than using an existing (experi-
mental) maximum flow library for Objective Caml. A more sophisticated routine
to compute maximum flows could significantly speed up the search process. The
second reason is that the greedy solution X is rather big in almost all the tested
instances. In many cases, the condition |N(X)| > (d + 1)|X| (cf. Figure 9.2) is
satisfied only in search tree nodes that are very close to the leaves of the search
tree. The input instance for such search tree nodes often contains only a few ver-
tices, and the instance is solved very efficiently within a few branching steps. The
benefit of reducing such small instances before branching has no big influence,
compared to the application of, e.g., the high-degree rule on the input graph even
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Figure 9.5: Running times of our approach (search tree algorithm) compared with
the running times of the BC(MIS) approach by Balasundaram et al. [BBH09].

before starting to branch.
Since data reduction rules are in some sense universal (that is, they can be

always applied before solving an instance with virtually any method), it makes
sense to combine the data reduction rules presented in this chapter with the
BC(MIS) and the OsterPlex algorithm. We think that this is an interesting topic
for future research.

Related Experimental Work. In order to obtain algorithms for Maximum

s-Plex that are faster than the ones compared in this chapter, it might be
necessary to add further restrictions such as the one of “isolation” [II09, KHMN09,
HKMN09b]; this concept restricts the number of edges between a dense subgraph
(e.g., clique or s-plex) and vertices outside of the dense subgraph. Moreover, in
practice it is also of interest to find not only one maximum s-plex, but to list
several alternative “large” s-plexes. This leads to the task of s-plex enumeration,
that is, to enumerate all maximal s-plexes in a given graph. In order to speed
up the enumeration, it can be combined with isolation concepts. We performed
experiments for five different variants of such isolation concepts for the task of
enumerating cliques. We showed that such isolation concepts can help to speed up
the enumeration significantly and to filter out cliques with particularly interesting
properties. See Komusiewicz et al. [KHMN09] for more details.

9.6 Outlook

In some analogy to previous work on maximum-cardinality clique finding [ACF+04,
AFLS07, CLS+05], we demonstrated that a fixed-parameter approach provides
competitive algorithms for finding maximum-cardinality s-plexes. Clearly, due
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to the NP-hardness of the problem, there are limitations concerning the range of
practical feasibility. On the one hand, we believe that there is still some room
for further tuning our algorithms and implementations (which in future work also
should be compared with other approaches in an experimental study that is based
on the same platform); on the other hand, we think that at some point more re-
strictions such as the one of “isolation” (see [II09, KHMN09, HKMN09b]) have
to be imposed in order to gain practical algorithms. Our focus was on finding
s-plexes of maximum size; studies concerning efficient approximation algorithms
are left open.

It is conceivable that the algorithm presented in this chapter can be converted
into an enumeration algorithm if one does not use the BDD-NT-Rule and the
Degree-One Rule. Since the whole search space has to be traversed, it seems also
clear that the guided branching heuristic would not show effect. Hence, isolation
concepts might be necessary in order to derive efficient enumeration algorithms,
also because for s ≥ 2 the search space for Maximum s-Plex is larger than
the search space for Maximum Clique (for which the isolation concepts were
originally designed).
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Table 9.6: Table showing the running times of our algorithm and the correspond-
ing s-plex sizes of DIMACS instances. A “B” superscript means that Balasun-
daram et al. [BBH09] solved the corresponding instance to optimality within three
hours, but our algorithm did not terminate within that time. A “b” means that
we solved the corresponding instance to optimality within three hours, but the
algorithm of Balasundaram et al. [BBH09] did not terminate within that time.
Similarly, an “M” means that McClosky and Hicks [MH09] solved the correspond-
ing instance to optimality within one hour, but our algorithm did not terminate
within that time. If our algorithm did not terminate within the running time
limit, then we state the lower bound x and upper bound y of the maximum
s-plex size that could be computed in the given time as an interval [x, y].

graph |V | density 1-plex size seconds 2-plex size seconds

c-fat200-1 200 0.077 12 0.21 12 1.00
c-fat200-2 200 0.163 24 0.43 24 3.42
c-fat200-5 200 0.426 58 1.20 58 20.35
c-fat500-1 500 0.036 14 3.94 14 11.01
c-fat500-2 500 0.073 26 7.43 26 48.31
c-fat500-5 500 0.186 64 18.31 64 331.65
c-fat500-10 500 0.374 126 37.68 126 1483.22
hamming6-2 64 0.905 32 0.00 32 1.27
hamming6-4 64 0.349 4 0.05 6 0.26
hamming8-2 256 0.969 128 0.04 [128,192]BM > 10800
hamming8-4 256 0.639 16 275.60 [16,171]BM > 10800
hamming10-2 1024 0.990 512 0.8 [512,768]M > 10800
hamming10-4 1024 0.829 [30,512] > 10800 [36,683] > 10800
johnson8-2-4 28 0.556 4 0.00 5 0.02
johnson8-4-4 70 0.768 14 0.47 14 30.13
MANN a9 45 0.927 16 0.00 26 0.12
MANN a27 45 0.927 126 2.98 236 4053.34
MANN a45 1035 0.996 345b 583.66 [662,697] > 10800
keller4 171 0.649 11 23.51 15M 3677.89
brock200 1 200 0.745 21b 885.30 [24,134] > 10800
brock200 2 200 0.496 12 25.61 13b 558.95
brock200 4 200 0.658 17 226.10 20b 8246.32
brock400 2 400 0.749 [23,200] > 10800 [26,267] > 10800
brock400 4 400 0.749 [24,200] > 10800 [26,267] > 10800
brock800 2 800 0.651 [19,400] > 10800 [21,534] > 10800
brock800 4 800 0.650 [19,400] > 10800 [22,534] > 10800
p hat300-1 300 0.244 8 30.75 10b 498.61
p hat300-2 300 0.489 25b 266.94 [30,200] > 10800
p hat300-3 300 0.744 36b 9410.00 [39,200] > 10800
p hat700-1 700 0.249 11b 1624.02 [11,467]M > 10800
p hat700-2 700 0.498 [40,350] > 10800 [47,467] > 10800
p hat700-3 700 0.748 [58,350] > 10800 [69,467] > 10800



Chapter 10
Outlook

This thesis studies various covering/vertex deletion and generalized matching
problems. We recapitulate the findings presented in Chapters 4–9, the main
chapters of this work, and then outline some possible future research directions.

The main finding in Chapter 4 is a generalization of the classical Nemhauser-
Trotter theorem for Vertex Cover to the problem of obtaining a graph of
bounded degree by a minimum number of vertex deletions. This result also
yields a problem kernel of O(k1+ǫ) vertices for any constant ǫ > 0. The central
idea behind this quite technical and involved proof is to use a constant-factor
approximate solution as starting point and then to employ an iterated search
approach based on maximum flow techniques. Furthermore, Chapter 4 includes
a simple kernelization result, fixed-parameter algorithms, and a hardness result.

In Chapter 5 we showed a problem kernel for the problem of making a graph
regular by a minimum number of vertex deletions. The basic technique is a rather
involved gadget construction that is used to replace big regular parts of the graph
by smaller ones.

Chapter 6 analyzes the computational complexity of the task of finding a
disjoint solution for a large class of vertex deletion problems. This task is cen-
trally occurring in most known applications of iterative compression. The main
technique to obtain the polynomial-time solvable results is reduction to a match-
ing problem, and the technique for showing NP-hardness is based on a modified
version of a known hardness framework for vertex deletion problems and further
hardness proofs for particular cases where the framework fails.

In Chapter 7 we considered the problem of packing a fixed graph into a given
graph, and give problem kernelization results. These are based on a special kind
of packing with allowed overlaps together with matching techniques.

In Chapter 8 we considered the problem of packing edges with pairwise dis-
tance at least two into a graph. The main results were obtained with region
decomposition and dynamic programming techniques.

Finally, Chapter 9 reports about implementation and experiments for find-
ing a particular kind of dense graph in a given graph. The algorithm is based

177
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on a transformation to the Bounded-Degree-d Vertex Deletion problem
considered in Chapter 4.

The main techniques for fixed-parameter algorithms used in this paper were
bounded search trees, problem kernelization, and iterative compression [HNW08].
While we used bounded search trees and problem kernelization to obtain practi-
cal algorithms for Bounded-Degree-d Vertex Deletion, we observed that
the theoretically fastest iterative compression approach for Bounded-Degree-1

Vertex Deletion does not yield fast algorithms in practice on the considered
test instances. In contrast, iterative compression combined with data reduction
yields fast practical algorithms for many feedback set problems [BHTW09, Hüf07,
Hüf09, HBN09, HNW08], for which no other fast parameterized algorithms (e.g.,
based on bounded search trees) are available. One of the reasons that iterative
compression was not the fastest method in our case it the size of the parame-
ter. In most of the instances which we could solve very quickly, the parameter is
rather big, often only slightly smaller than the number of vertices in the graph.
In the case of the iterative compression technique, this slows down the algorithm
drastically. Another observation is that the problem kernel size, which is cur-
rently the focus in research on problem kernelization, is not necessarily a decisive
measure for its practical success. As we have seen in this thesis, a faster problem
kernelization with worse size bound can be much more efficient. Moreover, it
can speed up a kernelization significantly if one first applies a fast problem ker-
nelization with worse size bounds, and afterwards a slower problem kernelization
with better size bounds, which then runs faster compared to its direct application
on the input instance (“cascading effect”). We therefore advocate that research
should also strive for fast problem kernelizations, maybe even for problem kernels
that do not match the currently best-known size bound.

In the conclusions of each chapter, we already pointed out some future research
directions for each particular problem and will not repeat them here. Rather, we
outline two more general topics that might be interesting for future research.

Kernelization Duality. There are quite a few parameterized problems for
which one can observe some kind of duality with respect to problem kernelization
between covering and matching problems. For instance, the technique for our
O(k)-vertex problem kernel for Bounded-Degree-1 Vertex Deletion can
be used almost directly for the problem of packing at least k vertex-disjoint copies
of a non-induced P3 (cf. Section 4.3). The point is that the forbidden substructure
for Bounded-Degree-1 Vertex Deletion is exactly the structure one aims
to pack in the packing problem. Other examples are

• the problem of deleting at most k vertices in order to make a graph triangle-
free [Abu09] and the problem of packing k vertex-disjoint triangles into a
graph [FHR+04],

• the problem of deleting at most k edges in order to make a graph triangle-
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free [BKM09] and the problem of packing k edge-disjoint triangles into a
graph [MPS04], and

• Hitting Set [Abu09] and Set Packing [AK09] / H-Packing

(cf. Chapter 7).

While the kernelization algorithms for each pair of problems are very similar,
each pair of problems behaves quite differently with respect to parameterized al-
gorithms. The best-known parameterized algorithms for the covering problems
often use bounded search tree approaches or also iterative compression [GMN09],
while the dominating technique for the matching/packing problems is color-
coding [AYZ95], sometimes additionally combined with divide-and-conquer strate-
gies [CKL+09]. The results stated above indicate that the investigation of such
“kernelization dualities” might be a worthwhile research topic. For instance,
concrete problem pairs to start with could be

• Undirected Feedback Vertex Set with an O(k2)-vertex problem ker-
nel [Tho09] and Disjoint Cycle Packing with an O(k2 log2 k)-vertex
problem kernel [BTY09], and

• the problem of deleting at most k vertices from a graph such that it contains
no induced path of constant length s and the problem of packing an induced
path of length s into a given graph (cf. [HR97, MT05]).

Furthermore, can similar dual kernelization relations be observed for problems
that are neither covering nor matching problems?

Hybrid (Parameterized) Algorithms. Although there already is some ex-
perience for algorithm engineering with a focus on parameterized algorithms (see,
e.g., [ACF+04, BHTW09, CLS+05, FWY09, HBN09, Hüf07, Hüf09]), this field
is still in its infancy and has probably a lot of potential. Most of the algorithm
engineering efforts so far seem to be focusing on one particular (natural) param-
eter of the considered problem. We propose that future algorithm engineering
projects should also consider hybrid approaches, that is, that the algorithm ana-
lyzes the input instance before starting to solve it and tries to choose a parameter
and corresponding solving method that seems to be most appropriate. For in-
stance, for graph problems a very simple example of such an approach could be
the following. First, use a heuristic to compute a tree decomposition of the input
graph; if the width of this tree decomposition is small, then try to use a dynamic
programming approach. Otherwise, proceed with other (structural) parameters
and parameterized algorithms. For instance, such (structural) parameters could
be

• maximum vertex degree,

• solution size,
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• density,

• girth (“small cycles make problems hard” [RS08]), and many more.

In this process, also “non-obvious” parameters should be taken into account.
For example, the “dual parameters” that have been used for Maximum Clique

([ACF+04]) or Maximum s-Plex (Chapter 9) could be considered “non-obvious”.
Moreover, also non-parameterized approaches like integer linear programming
should be added to the pool of possible techniques. Obviously, such an “all-
embracing” approach would be far more complex than existing projects, and the
work probably cannot be done by one single research group. Therefore, the de-
velopment of publicly available software libraries (such as heuristic and exact al-
gorithms for computing tree decompositions, see http://www.treewidth.com/)
and data collections is particularly important for the advance of (parameterized)
algorithm engineering in the future.

http://www.treewidth.com/
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D. Fermı́n Argüello, Bryan L. Lewis, Richard B. Rothenberg, Pe-
ter D. McElroy, and the Network Analysis Project Team. Transmis-
sion network analysis in tuberculosis contact investigations. Journal
of Infectious Diseases, 196:1517–1527, 2007. Cited on p. 26.

[CTW09] Zhi-Zhong Chen, Ruka Tanahashi, and Lusheng Wang. An im-
proved randomized approximation algorithm for maximum triangle
packing. Discrete Applied Mathematics, 157(7):1640–1646, 2009.
Cited on p. 23.

[CW05] Kathie Cameron and Tracy Walker. The graphs with maximum
induced matching and maximum matching the same size. Discrete
Mathematics, 299(1–3):49–55, 2005. Cited on p. 136.

[CWC+96] Yong-Qing Cheng, Victor Wu, Robert T. Collins, Allen R. Han-
son, and Edward M. Riseman. Maximum-weight bipartite match-
ing technique and its application in image feature matching. In
Proceedings of the ’96 SPIE Conference on Visual Communication
and Image Processing, volume 2727 of Society of Photo-Optical In-
strumentation Engineers (SPIE) Conference Series, pages 453–462,
1996. Cited on p. 2.

[DF95] Rodney G. Downey and Michael R. Fellows. Fixed-parameter
tractability and completeness II: On completeness for W[1]. Theo-
retical Computer Science, 141(1&2):109–131, 1995. Cited on p. 79.

[DF98] Rodney G. Downey and Michael R. Fellows. Threshold dominating
sets and an improved characterization of W [2]. Theoretical Com-
puter Science, 209(1-2):123–140, 1998. Cited on pp. 17 and 59.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized Com-
plexity. Springer, 1999. Cited on pp. 4, 9, 10, 16, 30, and 60.

[DFL+07] Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston,
Frances A. Rosamond, and Kim Stevens. An O(2O(k)n3) FPT al-
gorithm for the undirected feedback vertex set problem. Theory of
Computing Systems, 41(3):479–492, 2007. Cited on pp. 14, 20, 84,
89, 90, and 91.

[DFR00] Rodney G. Downey, Michael R. Fellows, and Venkatesh Raman.
The complexity of irredundant sets parameterized by size. Discrete
Applied Mathematics, 100(3):155–167, 2000. Cited on p. 139.



190 Bibliography

[DGH+09] Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke
Truß. Fixed-parameter tractability results for feedback set problems
in tournaments. Journal of Discrete Algorithms, 8(1):76–86, 2009.
Cited on pp. 22, 84, and 127.

[Die05] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in
Mathematics. Springer, 3rd edition, 2005. Cited on p. 9.

[DIM95] DIMACS. Maximum clique, graph coloring, and satisfiability. Sec-
ond DIMACS implementation challenge. http://dimacs.rutgers.
edu/Challenges/, 1995. Accessed November 2008. Cited on pp. 1,
65, 155, 166, and 170.

[Din06] Yefim Dinitz. Dinitz’ algorithm: The original version and Even’s
version. In Theoretical Computer Science, Essays in Memory of
Shimon Even, volume 3895 of Lecture Notes in Computer Science,
pages 218–240. Springer, 2006. Cited on p. 42.

[DLL+06] Frank K. H. A. Dehne, Michael A. Langston, Xuemei Luo, Sylvain
Pitre, Peter Shaw, and Yun Zhang. The cluster editing problem:
Implementations and experiments. In Proceedings of the 2nd Inter-
national Workshop on Parameterized and Exact Computation (IW-
PEC ’06), volume 4169 of Lecture Notes in Computer Science, pages
13–24. Springer, 2006. Cited on pp. 12 and 13.

[DLS09] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompress-
ibility through colors and IDs. In Proceedings of the 36th Inter-
national Colloquium on Automata, Languages, and Programming
(ICALP ’09), volume 5555 of Lecture Notes in Computer Science,
pages 378–389. Springer, 2009. Cited on p. 113.

[DMZ05] William Duckworth, David Manlove, and Michele Zito. On the ap-
proximability of the maximum induced matching problem. Journal
of Discrete Algorithms, 3(1):79–91, 2005. Cited on pp. 135 and 136.

[DS05] Irit Dinur and Shmuel Safra. On the hardness of approximating
Minimum Vertex Cover. Annals of Mathematics, 162(1):439–485,
2005. Cited on pp. 4, 19, and 27.

[DT06] Josep Dı́az and Dimitrios M. Thilikos. Fast FPT-algorithms for
cleaning grids. In Proceedings of the 23rd International Sympo-
sium on Theoretical Aspects of Computer Science (STACS ’06),
volume 3884 of Lecture Notes in Computer Science, pages 361–371.
Springer, 2006. Cited on p. 66.

http://dimacs.rutgers.edu/Challenges/
http://dimacs.rutgers.edu/Challenges/


Bibliography 191

[ECFLR05] Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston,
and Frances A. Rosamond. FPT is P-time extremal structure I.
In Proceedings of the 1st Algorithms and Complexity in Durham
(ACiD ’05) Workshop, volume 4 of Texts in Algorithmics, pages
1–41. College Publications, 2005. Cited on p. 32.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of
Mathematics, 17:449–467, 1965. Cited on p. 3.

[Fer05] Henning Fernau. Parameterized Algorithmics: A Graph-Theoretic
Approach. Habilitationsschrift, Wilhelm-Schickard-Institut für In-
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Tuza. Induced matchings in bipartite graphs. Discrete Mathematics,
78(1-2):83–87, 1989. Cited on p. 136.



192 Bibliography

[FHR+04] Michael R. Fellows, Pinar Heggernes, Frances A. Rosamond, Chris-
tian Sloper, and Jan Arne Telle. Finding k disjoint triangles in an
arbitrary graph. In Proceedings of the 30th International Workshop
on Graph-Theoretic Conecpts in Computer Science (WG ’04), vol-
ume 3353 of Lecture Notes in Computer Science, pages 235–244.
Springer, 2004. Cited on pp. 112, 113, 114, 115, 116, and 178.

[FKH04] Ariel Felner, Richard E. Korf, and Sarit Hanan. Additive pat-
tern database heuristics. Journal of Artificial Intelligence Research,
21:1–39, 2004. Cited on p. 85.

[FKN+07] Michael R. Fellows, Christian Knauer, Naomi Nishimura, Prabhakar
Ragde, Frances A. Rosamond, Ulrike Stege, Dimitrios M. Thilikos,
and Sue Whitesides. Faster fixed-parameter tractable algorithms
for matching and packing problems. Algorithmica, 52(2):167–176,
2007. Cited on pp. 113, 121, 130, and 131.

[FLG00] Gary W. Flake, Steve Lawrence, and C. Lee Giles. Efficient iden-
tification of web communities. In Proceedings of the sixth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’00), pages 150–160. ACM Press, 2000. Cited
on p. 2.

[FLLW09] Qilong Feng, Yang Liu, Songjian Lu, and Jianxin Wang. Improved
deterministic algorithms for weighted matching and packing prob-
lems. In Proceedings of the 5th Annual Conference on Theory and
Applications of Models of Computation (TAMC ’08), volume 5532 of
Lecture Notes in Computer Science, pages 211–220. Springer, 2009.
Cited on pp. 22 and 112.

[FLRS07] Michael R. Fellows, Michael A. Langston, Frances A. Rosamond,
and Peter Shaw. Efficient parameterized preprocessing for Cluster
Editing. In Proceedings of the 16th International Symposium on
Fundamentals of Computation Theory (FCT ’07), volume 4639 of
Lecture Notes in Computer Science, pages 312–321. Springer, 2007.
Cited on p. 12.

[FR09] Henning Fernau and Daniel Raible. A parameterized perspective on
packing paths of length two. Journal of Combinatorial Optimiza-
tion, 18(4):319–341, 2009. Cited on pp. 112 and 140.

[FS08] Lance Fortnow and Rahul Santhanam. Infeasibility of instance com-
pression and succinct PCPs for NP. In Proceedings of the 40th An-
nual ACM Symposium on Theory of Computing (STOC ’08), pages
133–142. ACM Press, 2008. Cited on p. 113.



Bibliography 193

[FT04] Fedor V. Fomin and Dimitrios M. Thilikos. Fast parameterized
algorithms for graphs on surfaces: Linear kernel and exponential
speed-up. In Proceedings of the 31st International Colloquium on
Automata, Languages, and Programming (ICALP ’04), volume 3142
of Lecture Notes in Computer Science, pages 581–592. Springer,
2004. Cited on p. 141.

[Fuj98] Toshihiro Fujito. A unified approximation algorithm for node-
deletion problems. Discrete Applied Mathematics, 86(2-3):213–231,
1998. Cited on pp. 19 and 27.

[Fuj99] Toshihiro Fujito. Approximating node-deletion problems for ma-
troidal properties. Journal of Algorithms, 31(1):211–227, 1999.
Cited on p. 19.

[FWY09] Rudolf Fleischer, Xi Wu, and Liwei Yuan. Experimental study of
FPT algorithms for the directed feedback vertex set problem. In
Proceedings of the 17th Annual European Symposium on Algorithms
(ESA ’09), volume 5757 of Lecture Notes in Computer Science,
pages 611–622. Springer, 2009. Cited on pp. 22 and 179.

[GGH+06] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Se-
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