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Zusammenfassung
In dieser Arbeit werden verschiedene Aspekte effizienter (in polynomieller Zeit
ausführbarer) Vorverarbeitung für NP-schwere Probleme untersucht. Besonde-
rer Schwerpunkt liegt dabei auf praktisch relevanten Eigenschaften der Vor-
verarbeitung. Zur Untersuchung dieser Eigenschaften dient die parametrisierte
Komplexitätstheorie, da sie die nötigen Werkzeuge zur Analyse von Vorverarbei-
tungsalgorithmen bereitstellt. In der parametrisierten Komplexitätstheorie wird
die Komplexität eines Problems nicht nur in der Größe der Eingabe, sondern auch
im „Parameter“, einer natürlichen Zahl, die eine Eigenschaft der Eingabe reprä-
sentiert, gemessen. Dadurch lässt sich die Güte einer Vorverarbeitung, die eine
zur Eingabe äquivalente, jedoch kleinere Instanz produziert beschreiben, indem
die Ausgabe des Vorverarbeitungsalgorithmus durch eine Funktion im Parameter
nach oben beschränkt wird. Hierbei gilt üblicherweise das Motto „je kleiner desto
besser“. Ein solcher Algorithmus wird auch als Kernelisierung bezeichnet, und
die Ausgabe einer Kernelisierung ist ein Problemkern.
Die folgenden Aspekte effizienter Vorverarbeitung werden in der Arbeit diskutiert.

Nichtstandardparameter. In der Vergangenheit war es üblich die Größe der
geforderten Lösung als Parameter zu wählen, um das vorliegende Problem zu
untersuchen. Allerdings ist es meist sinnvoll, andere Parameter zu betrachten.
Im Kontext von Graphproblemen bieten sich hier Eigenschaften des gegebenen
Graphen an. Prominente Beispiele sind die Baumweite, die Größe einer kleinsten
Knotenüberdeckungsmenge oder die Kantenlöschungsdistanz zu Bäumen (die
Anzahl Kanten, die mindestens aus dem Graphen entfernt werden müssen, damit
dieser ein Baum wird). Letzteres ist eine untere Schranke für die Kantenlöschungs-
distanz zu Raupen („Caterpillar trees“). Diese Distanz zu berechnen ist das Ziel
des NP-vollständigen Problems Two-Layer Planarization, das im Bereich des
Zeichnens von Graphen interessant ist.
Two-Layer Planarization wird bezüglich des Parameters „Kantenlöschungsdi-
stanz f zu Bäumen“ betrachtet, wobei ein Problemkern der Größe O( f ), der
in „fast linearer Zeit“ berechnet werden kann, gezeigt wird. Weiterhin lässt
sich das Problem mit einem Algorithmus, der auf den Problemkern aufbaut, in
O(3.8 f · f 2 + f · |G|) Schritten lösen. Dieser Algorithmus wird mit bisherigen
Lösungsalgorithmen, die für den Standardparameter entwickelt wurden [182],
verglichen.

Effiziente Vorverarbeitung. Im Rahmen exakter Algorithmen für NP-schwere
Probleme ist „effizient“ üblicherweise synonym zu „in Polynomzeit berechenbar“.
Allerdings erfordern es manche praktische Anwendungen, dass ein Datensatz in



Linearzeit verarbeitet wird. Daher ist es interessant, welchen Grad der Eingabever-
einfachung man in linearer Zeit erreichen kann. Daher soll die Aufmerksamkeit
auf Vorverarbeitungen gelenkt werden, die in Linearzeit berechenbar sind. Sol-
che Vorverarbeitungen sind besonders in Verbindung mit Approximationen, die
in Linearzeit berechnet werden können interessant, lassen sich allerdings auch
mit anderen Algorithmen kombinieren. Insbesondere lassen sich „schnelle“ Ker-
nelisierungen mit „effektiven“ kombinieren, sodass sich kleine Problemkerne
schneller berechnen lassen.
Eine Kernelisierung für das Dominating Set Problem auf planaren Graphen bezüg-
lich des Parameters „Größe γ einer kleinsten dominierenden Menge1 im Eingabe-
graphen“ wird entworfen (das Dominating Set Problem fragt, ob der Eingabegraph
eine dominierende Menge einer gegebenen Größe enthält). Der entsprechende
Problemkern basiert auf Datenreduktionsregeln von Alber et al. [8], lässt sich
allerdings in Linearzeit berechnen und hat überdies noch lineare Größe in γ.

Vorverarbeitung über Kernelisierung hinaus. Besonders in der parametri-
sierten Komplexitätstheorie wird der Begriff „Vorverarbeitung“ meist mit „Kerne-
lisierung“ gleichgesetzt. Am Beispiel des bekannten Rural Postman Problems
wird gezeigt, dass dies nicht immer der Fall sein muss. Häufig lassen sich heu-
ristische Vorverarbeitungen oder Vereinfachungen der Eingabe die nicht deren
Größe betreffen finden, die die Eingabe deutlich vereinfachen können. Rural
Postman lässt sich interpretieren als WeightedMultigraph Eulerian Extension,
in dem es gilt, eine gegebene Zahl von Kanten in den gegebenen (gerichteten
und kantengewichteten) Multigraphen einzufügen, sodass der resultierende Mul-
tigraph Eulersch ist. Eine Algorithmus wird entwickelt, der auf Dynamischem
Programmieren basiert, und Instanzen mit n Knoten in O((2n)k · n4) Schritten
lösen kann (wobei k die kleinste Größe einer Eulerschen Erweiterung der Eingabe
bezeichnet, die ein gegebenes Maximalgewicht nicht überschreitet). Durch eine
intuitive Vorverarbeitung erlaubt die Berechnung einer Lösung in O(4k ·n3) Schrit-
ten. Diese Vorverarbeitung stellt bemerkenswerterweise keine Kernelisierung
dar; In der Tat lässt sich zeigen, dass es bezüglich dieses Parameters keinen
Problemkern polynomieller Größe gibt, sofern es nicht zu einem (weitgehend für
unwahrscheinlich gehaltenen) Kollaps der Polynomialzeithierarchie kommt.

Zwischen Turing- und klassischer Kernelisierung. Die meisten der in der
Vergangenheit gezeigten unteren Schranken für die Größe von Problemkernen
basieren auf „Kompositionsalgorithmen“ [26, 95]. Gibt es für ein Problem einen

1Eine dominierende Menge ist eine Knotenmenge deren vereinigte (geschlossene) Nachbarschaft
alle Knoten des Graphen enthält.



solchen Kompositionsalgorithmus, so sind Problemkerne polynomieller Größe
wahrscheinlich nicht in Polynomzeit berechenbar. In einem solchen Falle ist
es sinnvoll den Kernelisierungsbegriff zu erweitern. Verallgemeinerungen auf
die das kompositionsbasierte Werkzeug nicht anwendbar ist, die aber dennoch
stark genug sind um praktische Relevanz zu haben sind die sogenannten „Turing-
Kernelisierungen“, die die Möglichkeit haben, mehrere größenbeschränkte Instan-
zen zu erzeugen (gegenüber einer einzigen Instanz bei klassischer Kernelisierung).
Hier wird eine spezielle Form der Turing-Kernelisierung betrachtet, die sich durch
exzellente Parallelisierbarkeit auszeichnet, eine Eigenschaft, die in der Praxis sehr
interessant ist.
Verschiedene Möglichkeiten, Turing-Kernelisierungen in gewissen Aspekten auf
Kosten anderer Aspekte zu verbessern, werden aufgezeigt. Zum Beispiel lässt sich
die beschriebene Parallelisierbarkeit „eintauschen“, um die Zahl der erzeugten
Instanzen zu verringern. Am Beispiel des Problems Clique (das nach einem voll-
ständig verbundenen Teilgraphen einer gegebenen Größe fragt) wird demonstriert,
wie sich die Größe der einzelnen erzeugten Instanzen durch Erzeugen zusätzlicher
Instanzen reduzieren lässt.



Abstract

This work considers multiple aspects of efficient (that is, polynomial-time exe-
cutable) preprocessing for NP-hard problems with emphasis on practically rel-
evant properties. A theoretical framework for the development and analysis of
preprocessing algorithms is supplied by parameterized complexity theory. Herein,
the complexity of a problem is measured not only in the size of the input, but also
in some other aspect measurable by a natural number. This aspect is called the
“parameter”. Then, a kernelization is a polynomial-time algorithm that, given an
instance, computes an equivalent, smaller instance (the problem kernel) whose
size can be bounded by a function of the parameter. This allows measuring the
performance of a preprocessing (that is, the size of the output instance). Here,
the usual motto is “the smaller the output instance, the better the preprocessing
algorithm”. In particular, we consider the following aspects of preprocessing.

Non-standard parameters. In the past, the most frequently considered param-
eter was the size of the sought solution. However, it often makes sense to select
a different parameter. Especially in the context of graph problems, the structure
of the given graph is a rich source of parameters. Prominent examples are the
treewidth, the size of a smallest vertex cover, or the feedback edge set number
(the smallest number of edges whose removal destroys all cycles in the graph).
The latter is a lower-bound for the biplanarization number, that is, the minimum
number of edges whose removal turns the graph into a forest of so-called “cater-
pillar trees”. To check whether a graph has a certain biplanarization number
requires solving the NP-complete Two-Layer Planarization problem, which has
applications in graph drawing.
We consider the parameter “feedback edge set number f ” for Two-Layer Pla-
narization and show that a problem kernel of size O( f ) can be computed in
“almost linear time”. We also develop an algorithm that solves the problem
in O(3.8 f · f 2 + f |G|) time and compare its implementation to an implementation
of a previous algorithm by Suderman [182] for Two-Layer Planarization.

Efficient preprocessing. In the context of parameterized complexity, “efficient”
is usually equivalent to “computable in polynomial time”. Some high-throughput
real-wold applications, however, may have stricter requirements regarding the
running time of the preprocessing algorithms. In this case, a linear-time prepro-
cessing algorithm would be more practical. Thus, we want to shift focus to the
running times of kernelization procedures. This is especially interesting when
combining kernelizations with approximation algorithms or other kernelizations.



This way, a “fast” kernelization can be combined with an “effective” kernelization
to speed up computation of a small problem kernel.
Here, we consider the Dominating Set problem on planar graphs with respect to
the parameter “size γ of a minimum dominating set2 in the input graph”. The
Dominating Set problem asks whether there is a dominating set of a given size
in the input graph. Based on previous work by Alber et al. [8], we develop a
kernelization that runs in linear time and outputs a problem kernel of size O(γ).

Preprocessing beyond kernelization. In parameterized complexity, the term
“preprocessing” is often considered a synonym of “kernelization”. However,
heuristic data reduction or other simplification can speed up the computation of an
optimal solution. We use the well-known Rural Postman problem, which has nu-
merous applications in routing, to show how preprocessing that does not constitute
a kernelization helps simplify instances so they can be solved provably faster.
We interpret Rural Postman as WeightedMultigraph Eulerian Extension, which
is the problem of turning a given arc-weighted directed multigraph Eulerian by
adding a given number of arcs. We develop a dynamic-programming based algo-
rithm that solves WeightedMultigraph Eulerian Extension in O((2n)k · n4) time,
where k denotes the smallest number of arcs to add to the input multigraph such
that the result is Eulerian and the total weight of additional arcs does not exceed
a given bound. We provide an intuitive preprocessing algorithm that allows
computing an optimal solution in O(4k · n3) time. This preprocessing does not
constitute a kernelization with respect to k. Moreover, we even show that, unless
an unexpected collapse of the polynomial hierarchy occurs, no polynomial-time
preprocessing can construct a polynomial-size problem kernel for Weighted
Multigraph Eulerian Extension.

Between Turing and classical kernelization. Most of the lower bounds for
the size of problem kernels are based of composition algorithms [26, 95]. If
a parameterized problem is unlikely to admit a polynomial-size kernel, then a
relaxation of the requirements for kernelizations may be helpful to formulate a
preprocessing for the problem at hand. An example for such a relaxation is the
“Turing kernelization”, which allows creating multiple instances instead of just
one. It can be argued that this type of kernelization is still practically relevant. In
this thesis, we consider a form of Turing kernelization that lies between Turing
and classical kernelization. This “Truthtable kernelization” is excellently suited
for massive parallelism, which today’s computation environments clearly support.

2A dominating set in a graph is set of vertices whose united (closed) neighborhood contains all
vertices of the graph.



We present several ways of “trading off” properties of Truthtable kernelizations.
For example, the number of created instances may be reduced by giving up the
described parallelizability. Furthermore, we use the Clique problem (which asks
whether the input graph has a clique of given size) as an example to show how the
size of each created instance can be reduced at the cost of creating more instances.



Preface

This thesis summarizes large parts of my work of the past years, in which I was
supported by the Deutsche Forschungsgesellschaft (DFG) under the project name
“Datenreduktion und Problemkerne” (DARE, project numbers GU 1023-1/1 and
NI 369-11/2).
The thesis is structured into six chapters, representing parts of my work in the field
of parameterized complexity theory. Chapter 1 contains an introduction to and mo-
tivation of preprocessing, as well as preliminary explanations of graph-theoretic
and (parameterized) complexity-theoretic notation used throughout the thesis.
Chapter 2 contains work I did in collaboration with my coauthor Johannes
Uhlmann on the Two-Layer Planarization problem [191] which aims at making
a given graph drawable in two layers without edge crossings by deleting edges.
As we shared a room in our offices at the Friedrich-Schiller-Universität Jena, he
approached me with the suggestion to look at this problem. Based on earlier work
he did with Nadja Betzler and Jiong Guo, there was a stub manuscript containing
some data reduction rules. In joint work, Johannes and I developed missing data
reduction rules, I came up with a uniform way of presenting our preprocessing
using “tokens”. We proved correctness of the whole procedure and developed
a branching strategy to solve Two-Layer Planarization. The paper then was
accepted to publication at the 7th Annual Conference on Theory and Applications
of Models of Computation (TAMC 2010), yielding an invitation to a special issue
of the journal Theoretical Computer Science. Recently, I picked the paper up
again and worked on the question whether the branching algorithm presented by
Suderman [182] could be adapted to our parameterization. I succeeded to some
extend, providing a branching algorithm whose asymptotic running time almost
matches that of Suderman’s algorithm. I implemented the algorithm and tested
it against published results by Mutzel [156] and Suderman and Whitesides [183].
This work, however, was not published so far.
Chapter 3 considers the Planar Dominating Set problem, which asks for a set
of vertices that dominate all other vertices in a planar graph. It contains a
linear-time variant of the known linear-size kernel for the parameter “solution
size”. Rolf Niedermeier introduced the idea of emphasizing the running time
of kernelization algorithms, since they are inherently combinable, achieving
fast running times and small problem kernel sizes as a result. Much of the
work was done when Frank Kammer visited our group at TU Berlin. There
have been countless debates, suggestions, bugfixes and reworks involving all
authors of the resulting paper: René van Bevern, Sepp Hartung, Frank Kammer,



Rolf Niedermeier, and myself. The final result [19] was presented at the 6th
International Symposium on Parameterized and Exact Computation (IPEC 2011).
At the same conference, Torben Hagerup presented a similar theorem, providing
a different kernelization approach [109]. Whereas we improved the running time
of a previous algorithm [8], he designed a completely new algorithm. Although
he stated that his approach was much simpler than ours, we thought that, in light
of the application of the kernelization of Alber et al. [8] to other combinatorial
problems on planar graphs [194], our approach is more versatile and it is merely
our proof of correctness that is highly complex, not the algorithm that we give.
Chapter 4 discusses the Eulerian Extension problem, which was brought to my
attention by Jiong Guo, who attended one of Wiebke Höhn’s talks about work she
did at TU Berlin [119] regarding Eulerian extension problems. Most work was
done while Frederic Dorn visited our group at the Friedrich-Schiller-Universität
Jena. In particular, my coauthors (Frederic Dorn, Hannes Moser and Rolf Nieder-
meier) and I found that a version of the problem called WeightedMultigraph Eu-
lerian Extension was basically equal to Rural Postman, a fundamental problem
in arc routing that is closely related to the well known Chinese Postman problem.
I worked out the details of polynomial-time solvable special cases and, together
with Hannes Moser, developed the idea of using the Black/GrayWeightedMulti-
graph Eulerian Extension problem to solve Weighted Multigraph Eulerian
Extension. I presented the resulting paper at the 36th International Workshop
on Graph Theoretic Concepts in Computer Science (WG 2010) [65]. A revised
version of the long version is currently in production at the SIAM Journal on
Discrete Mathematics.
In Jena, the student Manuel Sorge approached our group to supervise his diploma
thesis. He accepted to work on the question whether Weighted Multigraph
Eulerian Extension was fixed-parameter tractable with respect to the parameter
“number of connected components in the input graph” that we identified as a
major challenge (based on statements of Orloff [164] and Frederickson [97]) in
this context. The results yielded two papers that were presented at the the 22nd
International Workshop on Combinatorial Algorithms (IWOCA 2011) [175] and
the 37th International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG 2011) [176]. A long version combining them appeared in the Journal
of Discrete Algorithms [178]. Of the results in this work, Chapter 4 contains a
sketch of the incompressibility proof for WeightedMultigraph Eulerian Exten-
sion with respect to the parameters “sum of imbalances”, “number of connected
components” and “number of arcs in a solution”.
Since recently, we have Georg Hieronimus, a student of the TU Berlin, implement
our algorithms [65, 178] and we have initiated a cooperation with the Berliner
Stadtreinigung, who organizes the local snow plowing service for Berlin.



The presence of our research in the field of arc routing led to Ángel Corberán and
Gilbert Laporte inviting us to write a chapter on the complexity of arc routing
problems, which is to be published by SIAM [20].
Chapter 5 contains yet unpublished work of Rolf Niedermeier and me, describing
new directions of kernelization with an emphasis on variants of Turing kernel-
ization, which is a form of preprocessing that allows more than one instance to
be created. The idea to examine variants of the rather young concept of Turing
kernelization originated from the observation that no known Turing kernel makes
use of the power this concept provides. Limiting this power can, on the other
hand, lead to more general observations regarding this kind of preprocessing.
Since Turing kernelization does not seem significantly less practical than classical
(many one) kernelization, we deemed researching the possibilities of this kind of
preprocessing interesting. Pointed to the notion of truthtable reducibility by Rolf
Niedermeier, I formulated the parallel concept of truthtable kernelization and
showed an analogon to Beigel’s theorem for truthtable and Turing reductions [15].
I started searching for a problem to which this meta-theorem was applicable, but
had no success yet. I came up with the parameter “subgraph cutset number” and
constructed truthtable kernels for Clique with respect to this parameter whose
size and number of queries can be traded for one another continuously.
Chapter 6 concludes this thesis with a resumé of ideas and results presented in this
work. This chapter also contains a compilation of open problems and a preview
on possible future research topics and concepts.



Acknowledgments
My interest in theoretical computer science was first piqued by a course about
discrete mathematics that I attended at the Friedrich-Schiller-Universität Jena.
For giving that course in the way he did, I want to thank Jörg Vogel.
I am deeply indebted to my supervisor Rolf Niedermeier, who also supervised my
diploma thesis. He guided me safely through my scientific life to this very day.
It is amazing how innovative a man of his experience can be and he somehow
manages to always ask the right questions.
I want to thank my colleagues and former colleagues Nadja Betzler, René van
Bevern, Robert Bredereck, Jiehua Chen, Michael Dom, Jiong Guo (now at the
Cluster of Excellence Multimodal Computing and Interaction, Saarbrücken),
Sepp Hartung, Falk Hüffner, Christian Komusiewicz, Hannes Moser (now with
Geomagic GmbH, Leipzig), André Nichterlein, Manuel Sorge, Ondřej Suchý
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Chapter 1

Introduction & Preliminaries

1.1 Introduction
Preprocessing, or rather precomputation, can be characterized as the precautionary
measure of spending time once to save time (indefinitely) many times later. It is
an ancient tool to speed up mathematical computations. While in many ancient
civilizations, farmers would, for example, use multiplication tables to compute
the size of an acre, tables of logarithms, square roots, and triangular functions
survived until the dawn of electronic computation. Probably one of the most
impressive examples of ancient precomputation are the Babylonian lists found at
Senkerah on the Euphrates in 1854 [163]. These 4000-year old lists contained the
squares of natural numbers up to 59. The Babylonians used these lists to multiply
supported by the formula

x · y =
(x + y)2 − x2 − y2

2
.

While it is arguable whether this is indeed an efficient way to multiply, it un-
doubtedly is evidence for preprocessing being considered a powerful tool in
mathematics and algorithmics for as long as mathematics has been cultivated by
humanity.
In modern days, as algorithmic theory and mathematical analysis thereof de-
veloped, preprocessing mainly lived as the idea to store precomputed solutions
to subtasks that would be done repeatedly in the main algorithm to solve some
problem. Naturally, the effectiveness of the preprocessing grows with the number
of times a subtask is repeated. The following examples form only the tip of the
iceberg of practical applications of efficient preprocessing; more can be found in
the numerous survey articles [23, 105, 145].

• A cardplayer sorting his hand performs a preprocessing in order to find
desired cards more quickly. In data structures, storing an array A of integers
in sorted order allows for queries of the form “does A contain x?” to be
answered in logarithmic time, instead of linear time in the size of A.
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• In asymmetric cryptography, more specifically, in Garner’s algorithm [170,
154], precomputing certain remainders allows the use of the Chinese re-
mainder theorem to speed up deciphering an encoded message.

• For the Deutsche Bahn A.G., Weihe [196, 197] considered the Path Cover
problem which, given a graph G, a set P of paths in G and an integer k,
asks whether there is a vertex set V ′ of size at most k such that each path
in P contains a vertex of V ′? Weihe [196, 197] developed a data reduction
that shrunk the massive train networks to some rather small components
that could easily be solved by brute force.

• In Machine Learning, preprocessing plays an important role as it is used
for data cleaning, noise reduction, dimension shrinking, and accounting for
time-sequence information [111, 98].

• Modern industry-strength integer linear programming solvers highly de-
pend on preprocessing to reduce redundancies and simplify constraints [1].
The ILOG CPLEX solver, for instance, knows two kinds of preprocessing:
primal reductions are independent of the objective function and dual reduc-
tions are independent of the right-hand side of the constraining inequalities.
An impressive example of the power of preprocessing in solving integer
linear programs was presented by Bixby [22].

Polynomial-time preprocessing is very versatile in that it fits well into many
approaches of solving problems. In parameterized algorithmics, polynomial-time
preprocessing is used to obtain “kernels” (see Section 1.2.4) that speed up exact
algorithms for NP-hard problems. Many such kernels can also be combined with
approximation algorithms instead. Harnik and Naor [113] use “compression”,
which is very much alike kernelization, to store instances efficiently for later
processing and to compute one-way functions from sampleable distributions,
which are useful in cryptography.
Considering the power that preprocessing exhibits, it is natural to try and harness
this power to speed up solutions for computational problems that are notoriously
hard, but still occur often in practice (we are of course referring to NP-hard
problems). However, a concise theory of preprocessing using mathematical anal-
ysis eluded these problems until the dawn of parameterized complexity. This is
because, in classical complexity theory, the complexity of a problem is measured
as the number of computation steps for an input of size n. If now some efficient
(that is, polynomial-time computable) preprocessing algorithm could simplify,
that is, shorten an input provably, then repeated application of this preprocessing
algorithm would solve the problem in polynomial-time. However, since NP-hard
problems are unlikely to be solvable in polynomial time, the existence of such
preprocessing algorithms is also unlikely. Therefore, this thesis works within the
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framework of parameterized complexity, where the complexity of a problem is
measured not only in the length of the instances but rather an additional aspect,
called the “parameter”, of the instance. This aspect could be anything measur-
able by a natural number. Clearly, the choice of parameter can be good or bad
depending on the application of the problem. For instance, consider the following
problem: A set of scientific experiments have been conducted but some outcomes
contradict each other. Then, we would have to choose a set of experiments to
repeat or ignore in order to develop a conflict-free theory. Then, Occam’s razor
suggests that ignoring the smallest set of experiments leads to the most promising
conflict-free theory. The (graph-theoretic formulation of the) problem of finding
such a set is called Vertex Cover. Now, we may assume that the experiments
have been conducted cautiously, giving us hope that the number of experiments
we have to ignore is small. Hence, this number would constitute a good param-
eter. In fact, it turns out that Vertex Cover can be solved in polynomial time
if the number of ignored experiments is at most logarithmic in the number of
experiments that were carried out [47].
In this thesis we mostly consider NP-complete graph problems such as the Vertex
Cover problem described earlier. We repeat it here in its graph-theoretic formu-
lation, which also gives us the opportunity of familiarizing the reader with our
presentation of problems. We introduce problems as a description of the input and
a question that characterizes the task. Usually, we then give a small simplified
example of what a possible input and solution of the problem looks like.3

Vertex Cover
Input: An undirected graph G and an integer k.
Question: Is there a vertex set V ′ ⊆ V(G) such that |V ′| ≤ k and

removing all vertices in V ′ from G results in an edgeless graph?

Input: Solution:

3Keep in mind that, formally, it is not necessary to compute a solution for the decision problem
since we just have to decide whether the given instance is a yes- or no-instance.
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If appropriate (for example, for less important problems), we may omit or
marginally simplify (by omitting weights, for example) the illustrating figure to
maintain a clean layout. For parameterized problems, we augment the definition
by giving the parameter for the problem.
Graph problems are incredibly versatile, that is, they can be used to model a
wide range of problems occurring in real world. Furthermore, polynomial-time
algorithms are known for a large bundle of common tasks regarding graphs. This
comes in handy when developing efficient preprocessing algorithms. Finally,
graphs have a large number of measurable properties that are candidates for
parameterization and can be compared, effectively giving rise to a “map” of
parameteres that can be “navigated” in order to find a suitable parameterization
for a given problem.

1.1.1 Outline
In this thesis, we consider different aspects of preprocessing. After agreeing on
notational basics in Section 1.2, we present exemplary work on four directions
of research in the context of polynomial-time preprocessing: Kernelization for
non-standard parameters, preprocessing beyond kernelization, running time in
kernelization, and extensions of the kernelization concept.

Kernelization for Non-Standard Parameters. Graph problems are mostly
stated as “given a graph and some integer k, does something of size k exist?”.
In the early days of parameterized complexity, it was considered standard to
choose the “solution size”, meaning the integer k, as parameter for a problem. As
sketched in Section 1.1, this seems natural for minimization problems as Vertex
Cover since very large solution sets are often useless in the practical application.
However, the following arguments show that it can be preferable to consider
parameters that capture the “complexity” of the input graph. These parameters
are called structural parameters.
• The solution size is not always small, especially for maximization problems.

This is maybe best exhibited by Maximum Satisfyability which, given a
boolean formula in conjunctive normal form, asks for an assignment of
the variables that satisfies at least a given number of clauses. Here, the
standard parameter “number of clauses to satisfy” is large for non-trivial
instances [146]. This is because an assignment satisfying at least half of
the clauses always exists.

• Choosing the solution size as parameter completely ignores the structure of
the input graph. However, this is usually a great way of limiting the set of
inputs that can be expected to be seen in practice. For example, consider
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problems on graphs representing road maps. They can be expected to be
close to planar graphs and, thus, a distance measure to planarity would be a
promising parameterization. In this way, it can be argued that the structure
of the graph provides the most promising parameters.

• Considering structural parameters opens up a whole space of parameters
that can be navigated using the “stronger” relation. For example, if the prob-
lem at hand proves to be hard for a certain parameter, we may, instead of
giving up, consider another parameter that is “weaker” than the first. Here,
“is weaker” means “can be lower-bounded by”.4 Practical examples include
the Two-Layer Planarization problem (see Chapter 2), where the feedback
edge set of the input is a lower bound for the solution size, and 2-Union
Independent Set that is W[1]-hard for the standard parameter [129] but
allows polynomial kernels for several “weaker”, structural parameters [21].

In Chapter 2, we demonstrate how non-standard structural parameters can help
design practically relevant preprocessing. The Two-Layer Planarization problem,
which originates in the field of graph drawing, serves as an example for this
demonstration.

Running Time in Kernelization. A popular concept in parameterized com-
plexity is the “race” for better results [3, 134]. Notably, there are two kinds of
races in the community. For the most important problems and their most popular
parameters, there is the race for the fastest algorithm solving the problem and the
race for the smallest kernel. However, an important aspect of preprocessing seems
to have gotten lost: the running time of the preprocessing algorithm. Especially
in light of “chaining” preprocessing algorithms, that is, first running the fast
kernelization, then running the slower, more powerful kernelization, practical
algorithms can benefit greatly from improving the running times of known pre-
processing algorithms. In Chapter 3, we emphasize the importance of this aspect
and develop a linear-time variant of the celebrated linear-size kernelization for
Planar Dominating Set [8].

Preprocessing Beyond Kernelization. With the recent rise of parameterized
complexity and especially kernelization, efficient preprocessing developed into
a synonym for kernelization. However, polynomial-time preprocessing helps
solve problems also beyond kernelization. We demonstrate this in Chapter 4
by developing a dynamic programming algorithm for the Eulerian Extension
problem that profits enormously from preprocessing. Notably, this preprocessing
does not constitute a kernelization. In fact, we briefly sketch a proof showing

4Parts of this relation for a selected range of structural parameters can be found in Section 1.2.4.
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that a polynomial-size kernel with respect to the parameter we are considering is
unlikely to exist.

Between Turing and Classical Kernelization. With the development of lower-
bound techniques for kernelization [26, 29, 58, 95, 116, 136, 155] came the need
for less strict concepts of preprocessing. Although multiple attempts have been
made to overcome this “kernelization hardness” [17, 85, 88, 127, 128, 143], the
most widely accepted concept of preprocessing with performance guarantees
for problems “without polynomial kernels” is the Turing kernelization [88, 143].
Turing kernelization generalizes classical kernelization by allowing the creation
of multiple instances, such that answers to each of these instances allow solving
the original instance in polynomial time. However, this relatively general concept
may not be best-suited in some practical situations. To date, no known Turing
kernelization makes use of the full strength of the concept. Therefore, it is
interesting to develop a slightly less general concept that still catches all previous
results and allows global statements and theorems that do not hold for the currently
used concept of Turing kernelization. We focus on a kernelization variant between
classical and Turing kernelization and explore some of these concepts in Chapter 5,
proving some general statements for these kernelization variants.

1.2 Preliminaries
In this section, we introduce basic notation used throughout this thesis. First, we
negotiate graph-theoretic concepts, then briefly introduce computational com-
plexity, NP-hardness, and parameterized complexity theory, including the central
concept of this thesis: kernelization.

1.2.1 Graph Theory
Undirected Graphs. An undirected graph (or just plain “graph”) is a finite
construct of objects, called “vertices” (usually drawn as circles or dots) and
connections between vertices, called “edges” (usually drawn as lines between
vertices). Each edge is represented by an unordered pair of vertices. In this sense,
a graph is an ordered pair containing the sets V (vertices) and E ⊆ {{u, v} : u, v ∈
V}. We write

(
V
2

)
as a shorthand for the set of all unordered pairs of vertices.

Throughout this thesis, we use n := |V | and m := |E|.
In the following, let G be a graph. We denote the set of all vertices of G by V(G)
and the set of all edges of G by E(G). We abbreviate |V | + |E| to |G|. A graph G′

that can be obtained by deleting vertices and edges from G is called a subgraph
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of G. For every vertex set V ′ ⊆ V(G) and vertex v ∈ V(G), we denote the subgraph
of G that is induced by V ′ by G[V ′] := (V ′, E(G) ∩ {{u, v} : u, v ∈ V ′}. To allow
easy parsing of set exclusions, we use the operators “−” for vertex sets V ′ and
vertices v, and “ .−” for edge sets E′ and edges e as follows.

V ′ − v := V ′ \ {v} E′ .− e := E′ \ {e}

G − V ′ := G[V(G) \ V ′] G .
− E′ := (V(G), E(G) \ E′)

G − v := G − {v} G .
− e := G .

− {e}.

Let V(E′) :=
⋃

e∈E′ e denote the set of endpoints of edges in E′. The complement
of G is G := (V(G),

(
V
2

)
\ E(G)). Two vertices u, v are called adjacent (in G)

if {u, v} ∈ E(G). We say that u and v are incident to {u, v} and vice versa. We
denote the open neighborhood of a vertex v ∈ V(G) in G with NG(v) := {u ∈
V(G) : {u, v} ∈ E(G)} and the degree of v in G with degG(v) := |NG(v)|. The
closed neighborhood NG[v] is NG(v) ∪ {v}. Accordingly, for a vertex set S ⊆ V
we set NG(S ) :=

⋃
v∈S NG(v) and NG[S ] := NG(S ) ∪ S . We denote the degree of

a graph G by ∆(G) := maxv∈G degG(v). The smallest d such that all subgraphs
of G have a vertex with degree at most d is called the degeneracy of G.
A (simple) path from u to w in G is a sequence P := (u = v1, v2, . . . , v` = w) ∈ V`

of vertices with {vi, vi+1} ∈ E(G) for i ∈ {1, . . . , ` − 1} and vi , v j for i , j,
where ` − 1 is the length of the path. We define V(P) := {v1, v2, . . . , v`}. To
emphasize that P starts in u and ends in w, we sometimes call P a u-w-path. A
path with u = w is called a cycle. Two vertices v and w are said to be connected
in G if there is a v-w path in G. We use distG(v,w) to denote the length of a
shortest path between v and w in G, also called distance. A subgraph G′ of G
whose vertices are pairwise connected is called a connected component of G.
Each edge b of G such that G−b has more connected components than G is called
a bridge of G. A set U ⊆ V(G) separates a vertex v from a set U′ ⊆ V(G) if the
connected component of G − U containing v does not contain any vertex in U′.
A central concept in this thesis is graph modification, that is, changing a graph
into some other graph by deleting vertices, deleting or adding edges or other
operations, like subdivision. Here, subdividing an edge {u, v} means to delete the
edge {u, v} and introduce a new vertex w and new edges {u,w} and {v,w}. The
reverse of this operation is called bypassing w and is only defined if {u, v} < E(G).
For an edge {u, v} ∈ E(G), the operation that deletes u and adds all edges in {{v,w} :
{u,w} ∈ E(G)} to the graph is called contraction of {u, v}. Note that, whenever
some operation deletes a vertex u of a graph G, then it is implicit that all edges
incident to u in G are also deleted. A graph that results from G by applying a series
of edge contractions, edge deletions, and vertex deletions is called a minor of G.
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If used without subscript, all sets and operators are defined with respect to a
graph G that is clear from context.5

Directed Graphs. A directed graph (or digraph) is much like an undirected
graph in that it contains vertices and connections between vertices. However,
as indicated by the name, the connections are directed, that is, they are ordered
pairs of vertices. To better distinguish between directed and undirected graphs,
directed connections are called arcs, not edges, and are drawn as arrows instead
of lines with the head of the arrow pointing to the second vertex of the pair. This
vertex is called the head of the arc, while the first vertex is called the tail of
the arc. In a directed graph G = (V, A), a vertex v does not have neighbors but
predecessors preG(v) := {u : (u, v) ∈ A} and successors succG(v) = {w : (v,w) ∈
A}. Then, the indegree of v is indegG(v) := | preG(v)| and the outdegree of v
is outdegG(v) := | succG(v)|. If indegG(v) > outdegG(v) = 0, then we call v a sink
of G. Likewise, if outdegG(v) > indegG(v) = 0, then we call v a source of G. The
complement of G = (V, A) is G := (V,V × V \ A). In a digraph G, a vertex u is
strongly connected to a vertex v if there is a path from u to v in G, that is, the
transitive closure of A contains (u, v). The vertex u is weakly connected to v if u
and v are connected in the underlying undirected graph, that is, the undirected
graph obtained from ignoring the directions of the arcs of G. In analogy to
undirected graphs, G has weakly connected components and strongly connected
components. Most further concepts of undirected graphs are defined analogously
on directed graphs.

Multigraphs. Allowing the edge set of a graph to be a multiset (that is, to
contain an edge more than once) yields the concept of multigraphs, and, in
analogy to the previous paragraph, directed multigraphs. Note that, in this setting,
also the neighborhood or predecessors and successors, respectively, are multisets.
Observe that there is no complement graph of a multigraph.

1.2.2 Graph Classes

Some properties of graphs are so important that they warrant special names for
graphs fulfilling these properties (refer to Brandstädt et al. [32], de Ridder [162]
for more details about graph classes). In this thesis, the following classes are most
important.

5Also note that, for compatibility with Alber et al. [8], we write NG instead of NG in Chapter 3.
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A clique is an undirected, complete graph, that is, each two vertices are adjacent.
A clique with n vertices is denoted by Kn.

A bipartite graph is a graph whose vertices can be partitioned into two sets such
that no edge is a subset of either set of the partition.

A biclique is a bipartite, complete graph, that is, each vertex is adjacent to all
vertices that are not in the same set of the partition. A biclique whose
partition has sets of sizes n1 and n2, respectively, is called a Kn1,n2 .

A tree is a connected graph that does not contain cycles or, equivalently, a
connected graph whose vertex set is strictly larger than its edge set. A
degree-one vertex in a tree is called a leaf.

A caterpillar is a tree such that no vertex is adjacent to more than two non-leaves.
A forest is the disjoint union of trees.
A planar graph is a graph that can be “embedded” in a plane (that is, it can be

drawn in a finite two-dimensional space with vertices as dots and edges as
lines connecting these dots) such that no two edges cross or, equivalently, a
graph that does not contain a K5 or a K3,3 as minor.

1.2.3 Computational Complexity
Instances and Problems. In order to examine the computational complexity of
a problem, we first have to define what a computational problem is. To this end,
consider a finite alphabet Σ (usually, Σ = {0, 1}) and define Σ0 := {λ}, (where λ is
said to be the empty word) and Σm := Σm−1 × Σ for all m ∈ N+. Then, we call Σm

the set of all words of length m. The set of all words is then Σ∗ :=
⋃

m∈N Σm. Now,
an instance is an element of Σ∗. In large parts of this thesis, we will avoid this
level of detail and just write “given a graph” when the input is a representation of
a graph as a bitstring.
In this thesis, we mostly consider “decision problems” [10, 165]. A decision
problem Q is a set of instances that fulfill some property. For example, the
Even problem is the set of all bitstrings representing even non-negative integers.
Equivalently, one can formulate the Even problem as “Given a number x, is x an
even non-negative integer?”. Instances of decision problems are often pairs of a
graph G and some integer k. For example, the Vertex Cover problem is the set
of all pairs (G, k), such that all edges of the graph G can be covered by at most k
vertices or, equivalently, “Given a graph G and a number k, can we cover all edges
of G by at most k vertices?”. An instance I of a problem Q is called yes-instance
if I ∈ Q and no-instance, otherwise.

Vertex Deletion Problems. Many practical problems can be reformulated as
vertex-deletion problems in graphs [99, 142, 202]. For example, the discussed
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Vertex Cover problem can be stated as “given a graph G and an integer k, is
it possible to make G edgeless by deleting at most k vertices?”. Here, “being
edgeless” is just one possible property of graphs. In general, with G denoting a
class of graphs, we can state the G-Vertex Deletion problem as follows.

G-Vertex Deletion
Input: An undirected graph G and an integer k.
Question: Can we delete at most k vertices of G such that the result-

ing graph is in G?

Many graph classes G can be characterized using forbidden subgraphs, that is, a
class F such that for all graphs G, it holds that

G ∈ G⇔ ∀
subgraph H of G

H < F.

For example, caterpillar forests can be characterized as graphs that do not contain
a cycle or a 2-claw (three paths of length two that all share one common vertex,
see Figure 2.2 on page 28). Analogously, some graph classes can be characterized
using forbidden induced subgraphs. For example, the class of cluster graphs
(disjoint unions of cliques) can be characterized as graphs that do not contain a
path of length two as induced subgraph.

Running Times and Complexity Classes. We say that a decision problem Q
can be solved in some time T (n) if there is an algorithm that, given any instance x,
determines whether x ∈ Q using at most T (|x|) computation steps.6 It is common
to refer to the length |x| of the instance by n. Classical complexity theory defines
a zoo of interesting classes of decision problems [4, 10, 165], only two of which
are of interest to us here. The first class P of all problems that can be solved in
“polynomial time”, that is in nc time for some c ∈ N. The second class, called NP,
is the class of all “polynomial-time verifiable” problems. Here, a problem Q is
polynomial-time verifiable if there is a polynomial-time algorithm, that, given
an instance x and a so-called “certificate”, which is basically a proof for x ∈ Q,
decides whether x ∈ Q or not. More specifically, a problem Q is in NP if there
is some function p (assigning certificates to instances) whose output size is poly-
nomially bounded in its input size such that for each instance x of Q, the decision
problem {(x, p(x)) : x ∈ Q} is in P.

6Naturally, the number of steps needed depends on the employed machine model; in the scope of
this thesis, we use the deterministic RAM (practically all modern computers are RAMs).
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We assume the reader to be familiar with the Landau notation (“big-O notation”)
which is used to discard constant factors in functions and abbreviate

poly(n) :=
⋃
i∈N

O(ni).

Optimization vs. Decision. Note that there is the notion of “optimization prob-
lems” that actually produce optimal solutions instead of just determining whether
a solution respecting a given condition exists. However, usually, an optimal
solution can be constructed by slightly modifying the solution algorithm for the
decision variant of a problem or by a limited (often linear in the input size) number
of calls to the algorithm that solves the decision variant. For example, let G be
a graph whose edges can be optimally covered by τ vertices and let consider an
algorithm that decides (G, k) ∈ Vertex Cover in T (k, n) time. Then, by running
the algorithm for increasing values of k, we can determine τ. Knowing τ, we can,
for each vertex v ∈ V(G), determine whether G − v has a vertex cover of size τ− 1
and if so, include v in a solution. The whole procedure then takes

T ′(τ, n) ≤
τ∑

k=0

T (k, n)︸      ︷︷      ︸
determine τ

+

τ∑
k=0

n · T (τ − k, n)︸                ︷︷                ︸
find vertices in the solution

= (n + 1) ·
τ∑

k=0

T (k, n)

time. Assuming that T (k, n) is exponential in k but not in n, we conclude T ′(τ, n) ∈
O(nτ · T (τ, n)). If T (k, n) is even single exponential7 in k, then geometric progres-
sion gives the promised linear relation T ′(τ, n) ∈ O(n · T (τ, n)).

P vs. NP. The question of whether P = NP is both amazing and popular [94,
148] since many problems faced by people in many sciences and businesses
are easily seen to be in NP but no algorithm solving them “fast”, that is, in
polynomial-time, is known.
Deciding whether or not P = NP is one of the seven famous “Millennium Prize
Problems”, stated by the Clay Mathematics Institute, a solution of each of which
is promised to be rewarded with a US$1, 000, 000 prize [2]. The persistent
inability to decide whether P = NP gave rise to the concept of polynomial-time
reduction [10, 165]. We say that a problem A can be (polynomial-time) reduced
to a problem B if there is some algorithm running in polynomial time and, given
an instance x of A produces an instance y of B such that x ∈ A if and only
if y ∈ B. This allowed the concept of so-called “hard problems” for the class NP:
A problem Q is said to be NP-hard if all problems in NP can be reduced to it. Over

7The function T (k, n) is single exponential in k if T (k, n) = ck · poly(n) for some c ∈ N.
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the last decades, thousands of problems have been shown to be NP-hard [100]
(mostly by using the transitivity of reducibility that allows showing NP-hardness
of a problem Q by reducing any NP-hard problem to Q). Since it is widely
believed [101], we will work under the hypothesis P , NP in this thesis.

Coping with NP-hardness. Many real-world problems have been shown to be
NP-hard and, thus, do not admit polynomial-time algorithms. Since we can use
algorithms that solve optimization problems to solve decision problems, this also
implies that there are no polynomial-time algorithms to minimization or maxi-
mization problems corresponding to NP-hard decision problems. Since we cannot
simply refuse to solve these problems, ways of coping with this computational
hardness have developed. One possibility is to accept a “fuzzy” solution, that is, a
feasible solution that is not necessarily optimal, but can be shown to be reasonably
close to an optimal solution. Many problems have been shown to admit such
“approximation” algorithms of various degrees of fuzziness [11, 199, 192]. A
more recent approach to coping with NP-hard problems exploits the fact that
the instances produced by reductions are pathological for most applications,
that is, aspects that make the considered problem hard, are often unlikely to be
seen in practice. Thus, it might be possible to design an algorithm that is fast
for instances that are practically relevant, but takes exponential time for other
instances. A theoretic approach incorporating this thought is “parameterized
complexity” [66, 89, 160]. Another theoretic approach in this direction is the (rel-
atively new) technique of “smoothed analysis” [179, 180], that diverges from the
concept of worst-case analysis, which “is often the source of discrepancy between
the theoretical evaluation of an algorithm and its practical performance” [180].
Here, the performance of algorithms is measured as expected running time when
input instances are exposed to a slight random perturbation, thus eliminating the
influence of pathological worst-case instances.

1.2.4 Parameterized Complexity
Our results are in the context of parameterized complexity, which is a two-
dimensional framework for studying computational complexity [66, 89, 160].
One dimension is the input size, and the other one is the parameter (usually a
positive integer). In this context, a parameterized problem is a subset of Σ∗ ×N. If
not explicitly stated, we assume that the parameter for a parameterized problem Q
is called k. A problem is called fixed-parameter tractable (fpt) with respect to a
parameter k if it can be solved in O∗(g(k)) time, where g is a computable function
only depending on k. An algorithm for the problem that achieves this running
time is called fixed-parameter algorithm.
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Definition 1.1. Let g, g′ : N → N be computable functions. A parameterized
problem Q1 is parameterized reducible to a parameterized problem Q2 if there
is an algorithm that, given an instance (x, k) of Q1, produces an instance (x′, k′)
of Q2 in O∗(g(k)) time such that

1. (x, k) ∈ Q1 ⇔ (x′, k′) ∈ Q2 and
2. k′ ≤ g′(k).

If Q1 is parameterized reducible to Q2 and vice versa, then Q1 and Q2 are
parameterized equivalent.

To improve readability, we abbreviate “Q parameterized by k” to “k-Q” where
appropriate.8 For example, Vertex Cover parameterized by the treewidth of
the input is denoted by tw-Vertex Cover. Furthermore, to avoid having to drag
“unparameterized versions” of parameterized problems along, we say that a pa-
rameterized problem k-Q is in NP or NP-hard if the problem {x#1k : (x, k) ∈ k-Q},
where 1k denotes a unary encoding of k [26] is in NP or NP-hard, respectively.
Much like the NP-completeness theory in classical complexity, there is a class of
problems that is conjectured to not allow for fixed-parameter algorithms. In fact,
there is a fully-grown hierarchy of classes of problems. For our purposes, it is
sufficient to define the “first level” in this hierarchy, which is called W[1]. Like
in classical complexity, this class can be defined with a problem which we call
“complete” for W[1] and the concept of parameterized reduction defined above. A
canonical candidate for the complete problem for W[1] is the following.

k-Clique
Input: An undirected graph G and an integer k.
Question: Does G contain a clique on k vertices as subgraph?
Parameter: k

We call a parameterized problem Q W[1]-hard if k-Clique is parameterized
reducible to Q. Parameterized problems that are W[1]-hard are conjectured to
not admit fixed-parameter algorithms [66, 89, 160]. Thus, the range of parameter
values for which the problem can be solved in polynomial time is much smaller.
There are several strategies of developing fixed-parameter algorithms, some of
which we use in this thesis and should therefore be discussed here. Note that this
is only a small extract of the versatile toolbox of parameterized algorithmics.

Bounded Search-Trees. Recall the notion of vertex deletion problems, where
a given graph is to be transformed to a graph of a given graph class G by

8In this context, “k” is to be considered as a string containing the name of the variable that serves
as parameter, not the variable itself. Hence, the problem k-Q is still called k-Q even if an instance
with k = 2 is considered.
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deleting some of its vertices. If, for some G, the forbidden subgraph charac-
terization is finite, then a strategy for deciding whether an instance (G, k) is
in G-Vertex Deletion is the following:

Step 1: Find a forbidden subgraph H in the input graph G. If no such subgraph
exists, then return that (G, k) ∈ G-Vertex Deletion.

Step 2: If k = 0, then return that (G, k) < G-Vertex Deletion.

Step 3: For each vertex v of H, return the result of recursively asking whether (G−
v, k − 1) is in G-Vertex Deletion.

Each recursive call of this algorithm can be interpreted as a vertex in a tree-
structure that completely describes the process of running this algorithm. We call
this structure search-tree and, correspondingly, the strategy is called branching
strategy.
Notably, if we can find such subgraphs in polynomial time, this yields a fixed-
parameter algorithm for the parameterized version k-G-Vertex Deletion running
in O∗((max{|V(H)| : H ∈ F)k) time [37]. It is often possible to achieve better run-
ning times by exploiting observations concerning the set of forbidden subgraphs.
In this case, a number of “branching rules” can be used.

Definition 1.2. Let ` ∈ N and let Q be a parameterized problem. Then, a
branching rule R is a polynomial-time algorithm that, given an input instance (x, k)
of Q computes a set of ` instances (xi, ki) with 0 ≤ i < ` of Q. We say that R is
correct if

1. (x, k) ∈ Q⇔ ∃0≤i<`(xi, ki) ∈ Q and
2. ∀0≤i<` ki < k.

Fixpoints of R (that is, instances on which R performs no operations) are called
reduced with respect to R. The procedure of repeatedly applying a branching
rule R is called exhaustive application of R. The vector (k−k0, k−k1, . . . , k−k`−1) ∈
N+ is called the branching vector of R. We consider all branching vectors with `
components ordered by the canonical componentwise “≤” operator.

For ease of presentation, we allow branching rules to output “partial solutions”
instead of new instances if it is clear how an instance results from applying a
partial solution to the input instance. Note that the condition that ki < k for
all 0 ≤ i < ` is needed to ensure that the search-tree is finite. However, it is
reasonable to drop this condition if we can ensure that the number of times this
branch is chosen on a computation path to a leaf of the search tree can be bounded
by a function in k.
For example, a simple forbidden subgraph characterization for edgeless graphs
is {K1,1} giving rise to the following branching rule for Vertex Cover.
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Branching Rule 1.1. Let {u, v} be a K1,1 subgraph of the input graph G. Then,
create the partial solutions {u} and {v}.

Clearly, Branching Rule 1.1 has a branching vector of (1, 1). It is easy to see that
this corresponds to a search-tree of size O(2k).

Dynamic Programming. When considering branching algorithms in general,
it is often observed that many recursive questions near the leaves of the search-tree
are repeated. For example, if a computation path in the search-tree first tries to
delete some vertex v and in the next step tries deleting another vertex u, the follow-
ing recursion produces the same result as if u was deleted first and then v in the
next step since (G−v)−u) = (G−u)−v. It is reasonable to try and safe time by stor-
ing the result of certain recursive calls, essentially “pruning the search tree” [91].
Dynamic programming often comes in the form of computing the entries of a table
with the help of other table entries. Finally the solution to the input instance can
be read from the final table-entry. The presentation of a dynamic programming
algorithm usually consists of stating the semantics of a table entry and then stating
the formula for computing an entry from previously computed entries. This
way, proving that the formula matches the stated semantics is usually sufficient
to prove correctness of the algorithm. To emphasize the versatility of dynamic
programming, we give two discriminative examples.

• The CoinChange problem is, given a set D of n types of coin denominations,
an amount a of money and an integer k, determine whether making change
for the amount a is possible with at most k coins. A standard way of solving
this problem is to compute a one-dimensional table T such that T [x] con-
tains the minimum number of coins needed to make change for x (semantics
of T ). To compute T [x] for increasing values of x, first initialize T [d] = 1
for each d ∈ D. Then, compute T [x] := 1 + min{T [x − d] : d ∈ D ∧ d ≤ x}
for all x ≤ a in increasing order. Then, the initial question is equal
to “T [a] ≤ k?” and the algorithm runs in O(a · n) time.

• A breakthrough result for the NP-hard Traveling Salesman problem was
given by Held and Karp [115]. Traveling Salesman can be stated as follows.

Traveling Salesman
Input: A clique C on n vertices, an edge-weight function ω :(

V(C)
2

)
→ N, and an integer k.

Question: Is there a cycle of length n in C such that the total
sum of edge weights used in the cycle is at most k?
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Prior to the dynamic programming algorithm of Held and Karp [115], only
the trivial O(n!)-time algorithm was known.

In terms of semantics, a table entry T [S , u] contains the smallest weight of
a path from a dedicated vertex v to u containing exactly the vertices in S . To
compute the entries, first initialize T [{u, v}, u] := ω({u, v}) for each u ∈ V(C)
and then use the formula T [S , u] := min{T [S \{u}, x]+ω({x, u}) : x ∈ S \{u}}
for increasing sizes of S and each u ∈ S . The answer to the initial ques-
tion is then equivalent to “T [V(C), v] ≤ k?” and the algorithm runs in
O(2n · n2) time.

Kernelization. A core tool in the development of fixed-parameter algorithms
and a central topic in this thesis is polynomial-time preprocessing by data re-
duction [23, 105, 145]. Here, the goal is to transform a given instance (x, k) of a
parameterized problem Q into an equivalent instance (x′, k′) of Q such that the
size of x′, measured in k, is small. The process of simplifying an input like this is
called kernelization.

Definition 1.3. Let Q be a parameterized problem and let g, g′ : N → N be
computable functions. An algorithm that, given an instance (x, k) of Q, computes
an instance (x′, k′) of Q in polynomial time such that

1. (x, k) ∈ Q⇔ (x′, k′) ∈ Q,
2. |x′| ≤ g(k), and
3. k′ ≤ g′(k)

is called a kernelization for Q. The result produced by the algorithm is called a
(problem) kernel for Q. We call g(k) the size (in bits) of the problem kernel.

There are multiple definitions of kernelization in the literature. Maybe the largest
dispute is about whether or not to require k′ ≤ k instead of k ≤ g′(k), as, in the
spirit of parameterized complexity, a blowup of the parameter actually makes
the instance harder to solve. On the other hand, it is reasonable to accept a
moderate blowup of the parameter in order to remove large parts of the input.
Chen et al. [48] call a kernelization with k′ ≤ k strong and show that the two
definitions do not coincide unless P = NP. In the scope of this thesis, however,
the difference does not matter. When writing “Q admits a problem kernel of
size O(k2)”, we mean that a kernelization with g(k) ∈ O(k2) exists for Q.
Although Definition 1.3 formally allows the size of a problem kernel to be
exponential in the parameter, polynomial-size problem kernels are considered way
more interesting and practical. In particular, every (decidable) fixed-parameter
tractable problem admits a problem kernel and vice versa [39]. This is due to the
fact that, if f (k) < n, then O∗( f (k)) is polynomial in n and, hence, either n ≤ f (k)
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or we can solve the instance in polynomial time (that is, construct a constant-size
instance that is equivalent to the input instance), yielding a problem kernel of
size f (k). Thus, it is much more interesting to develop a polynomial-size problem
kernel than just any problem kernel.
It is customary to present a kernelization by giving a set of polynomial-time
applicable “(data) reduction rules”. Reduction rules are basically branching rules
(see Definition 1.2) that create just one instance. However, since the concept is of
central importance, we will briefly state the modified version of Definition 1.2.

Definition 1.4. A (data) reduction rule R is a polynomial-time algorithm that,
given an input instance (x, k) of a parameterized problem Q computes an in-
stance (x′, k′) of Q. We say that R is correct if

1. (x, k) ∈ Q⇔ (x′, k′) ∈ Q and
2. k′ ≤ k.

Fixpoints of R are called reduced with respect to R.

Note that the requirements 1 and 3 of Definition 1.3 are ensured by correct
reduction rules. For example, the following data reduction rules by Buss [35]
are enough to provide a problem kernel of size O(k2) for Vertex Cover with
parameter k:

Reduction Rule 1.1. Let v be a vertex.
1. If deg(v) > k, then delete v and decrease k by one.
2. If deg(v) = 0, then delete v.

Reduction Rule 1.2. Let deg(v) ≤ k for all vertices v. If the input contains more
than k2 edges, then return a constant-size no-instance of Vertex Cover, e.g.,
(K2, 0).

Since for all vertices v, each vertex cover contains v or N(v), a vertex cover of
size k contains all vertices v with |N(v)| > k. Thus, Reduction Rule 1.1 is correct.
Since for all vertex covers C, all edges are incident to vertices in C, a size-k
vertex cover in a graph with maximum degree k cannot cover more than k2 edges.
Thus, Reduction Rule 1.2 is correct. To see that these rules yield a problem
kernel for k-Vertex Cover, consider an instance ((G, k), k) that is reduced with
respect to them. Clearly, by reducedness with respect to Reduction Rule 1.1
we conclude that the degree of each vertex v in G is 1 ≤ deg(v) ≤ k. Hence,
G contains at most k2 edges since, otherwise, Reduction Rule 1.2 would apply
to G, contradicting its reducedness.
Since the notions of branching and data reduction rules are so close, kernelization
integrates well with branching algorithms. Consider for example Branching
Rule 1.1. Using the fact that solving Vertex Cover on graphs of maximum degree
two is trivial, we can derive the following data reduction rule.
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Reduction Rule 1.3. Let (G, k) denote an input instance such that ∆(G) = 2.
If (G, k) ∈ Vertex Cover, then return a constant-size yes-instance of Vertex
Cover, e.g., (K2, 1). Otherwise, return a constant-size no-instance of Vertex
Cover, e.g., (K2, 0).

This allows us to restrict application of Branching Rule 1.1 to vertices with at
least three neighbors.

Branching Rule 1.2. Let v be a vertex in the input graph such that deg(v) ≥ 3.
Then, create the partial solutions {v} and N(v).

Clearly, Branching Rule 1.2 has a branching vector of at least (1, 3). It can be
shown [87, 91] that this corresponds to a search-tree of size O(1.47k). Since
all instances of Vertex Cover that are reduced with respect to both Reduction
Rule 1.3 and Branching Rule 1.2 have constant size, we conclude that these two
rules are enough to solve Vertex Cover in O∗(1.47k) time.

Kernelization Lower Bounds. The question whether all fixed-parameter tractable
problems have polynomial-size problem kernels was only recently answered neg-
atively [26, 95] (under the assumption that the polynomial hierarchy does not
collapse). The central technique behind this result is called OR-composition.
Loosely speaking, a polynomial-size problem kernel for an NP-hard problem k-Q
is unlikely if multiple instances xi of k-Q can be assembled into one instance
of k-Q that is equivalent to the OR of the xi instances and whose parameter value
is small. This is reasonable, since if such an OR-composition exists and k-Q has
a small (polynomial-size) kernel, then the OR of any number of instances of an
NP-hard problem could be represented in small space. A more easily applicable
version of this technique, that also allows representing the OR of instances of a
different NP-hard problem, was given by Bodlaender et al. [29].

Definition 1.5 ([29]). An equivalence relation R on instances of a problem L is
called polynomial if

1. equivalence of two instances can be checked in time polynomial in their
sizes and

2. the elements of any finite set S of instances of L are partitioned into at
most poly(max{|x| : x ∈ S }) equivalence classes.

Definition 1.6 ([29]). Let L be an NP-hard problem, let Q be a parameterized
problem, and let R be a polynomial equivalence relation on instances of L. A
polynomial-time algorithm that, given t instances xi, 0 ≤ i < t, of L that are
equivalent under R computes an instance (x, k) of Q such that

1. (x, k) ∈ Q⇔ ∃0≤i<t xi ∈ L and
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2. k ∈ poly
(
max{|xi| : 0 ≤ i < t} + log t

)
is called cross composition of L into Q. If such a composition exists for some Q
and L, then Q is called compositional.

Informally speaking, a cross composition gets a number of instances of an NP-
hard problem that can be assumed to be equal under some polynomial equivalence
relation. After polynomial processing time, it outputs an instance of Q that is a
yes-instance if any of the input instances is a yes-instance (and vice versa).
For example, consider the Clique problem with respect to the parameter “max-
imum degree ∆ of the input graph”, which is fixed-parameter tractable [117]. A
simple cross composition of Clique into ∆-Clique is the following: First, define
a polynomial equivalence relation R that relates two instance if and only if they
have the same parameter value and ask for the same clique size k. Then, just
output the disjoint union of all input instances. Clearly, for all k, a k-clique can
be found in one of the instances if and only if it can be found in the disjoint union.
Since the maximum degree of the output instance is not larger than the size of
any input instance, the condition 1.6(2) is satisfied (we do not even require the
additional log t summand in this example).
Bodlaender et al. [29] showed that the existence of a cross composition into a
parameterized problem Q excludes polynomial-size problem kernels for Q, unless
an unexpected complexity-theoretic collapse occurs.

Theorem 1.1 ([29]). Let Q be a parameterized problem and let L be an NP-
hard problem such that there is a cross-composition of L into Q and Q admits a
polynomial-size problem kernel. Then, NP ⊆ coNP/ poly.

In this thesis, we accept NP ⊆ coNP/ poly as an unlikely event without further
explanation of its complexity-theoretic implications (A brief discussion can be
found in Appendix A).
In the recent past, many parameterized problems have been shown to not admit
a polynomial-size kernel unless NP ⊆ coNP/ poly. As mentioned by Dom
et al. [61], lower bounds shown by this framework also imply the inability to
“compress” instances to polynomial size [113]. Herein, a compression algorithm
is very similar to a polynomial-size kernelization with respect to the parameter c +

log |x|, where c is the size of a smallest certificate for the input instance x (see
Section 1.2.3).
This year, Drucker [68] showed that Theorem 1.1 also holds for AND-compositions,
which are defined analogously to OR-compositions, with the difference that the
output instance is a yes-instance if and only if all input instances are yes-instances.
Especially for the parameter treewidth, polynomial-size problem kernels can be
excluded using AND-composition. As an example, consider the Vertex Cover
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problem with parameter “treewidth of the input graph” (tw-Vertex Cover). It
is known [21] that the infamous NP-complete 3SAT problem9 can be reduced
to Vertex Cover, producing instances (G, k) such that G does not have a vertex
cover of size k − 1. Let us denote Vertex Cover restricted to instances produced
by said reduction as Satisfying Vertex Cover. A simple AND-composition
for tw-Satisfying Vertex Cover is the following: Given t instances (Gi, ki)
for 1 ≤ i ≤ t, compute the disjoint union of all input graphs Gi and ask for
a vertex cover of size

∑
1≤i≤t ki. Thus, tw-Satisfying Vertex Cover and, since it is

a generalization, also tw-Vertex Cover, does not admit a polynomial-size kernel
unless NP ⊆ coNP/ poly. Likewise, other problems on graphs including the
Treewidth problem itself can be shown to be unlikely to admit a polynomial-size
problem kernel with respect to the treewidth of the input graph [30, 145]. This
especially motivates considering kernelization with respect to structural param-
eters that are “weaker” than (or, equivalently, lower-bounded by) the treewidth
of the input graph.
Note that hardness of (polynomial-size) kernelization can also be derived by
reduction. Here, the reduction concept is a special kind of parameterized reduction
(see Definition 1.1) that additionally requires the reduction to run in polynomial
time and the parameter of the output instance to be polynomially bounded in the
parameter of the input instance (in terms of Definition 1.1, g′(k) ∈ poly(k)). This
reduction is called polynomial-time polynomial-parameter reduction [28]. Recall
our example for ∆-Clique and note that it also implies that Clique does not admit a
polynomial-size kernel with respect to the parameter “chromatic number χ of the
input”10 since χ ≤ ∆ + 1 for all graphs. Then, the following is a polynomial-time
polynomial-parameter reduction of χ-Clique to Vertex Cover with parameter
“vertex-clique cover number ψ of the input graph”11: Given an instance ((G, k), χ)
of χ-Clique, output ((G, |V(G)| − k), ψ), where G is the complement of the input
graph G and, since color classes of colorings of G and cliques in G are equivalent,
ψ = χ. Since a k-clique in G is a k-independent set in G, its complement is a
vertex cover of size |V(G)| − k for G. Hence, the construction is a polynomial-
parameter reduction and, hence, implies that ψ-Vertex Cover does not admit a
polynomial-size problem kernel.

9Given a boolean formula in conjunctive normal form with at most three literals per clause, decide
whether a satisfying assignment of variables to true or false.

10The chromatic number of a graph is the minimum number of colors needed to color each vertex
such that no two adjacent vertices have the same color.

11The vertex clique cover number of the input graph is the smallest number of cliques in the input
such that each vertex in the input is in one of the cliques.
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Figure 1.1: Diagram showing the ≤poly-relations between important graph pa-
rameters. An edge between two parameters means that the upper parameter can
be lower-bounded by a polynomial in the lower parameter. For example, the
maximum degree ∆ of a graph G can be lower bounded by a (linear) function in
the degeneracy d of G, that is, d ≤poly ∆. In this sense, the lower the position of a
parameter, the “stronger” the parameter. Refer to Diestel [60] for definitions of
these parameters. Here, “distance to” refers to the vertex-deletion distance, that
is, the minimum number of vertices that has to be removed to obtain a graph of
the specific class.



22 CHAPTER 1. Introduction & Preliminaries

Parameter Hierarchy. In order to choose a good parameter for a problem,
it is important to be aware of relations between parameters. If, for example,
the problem we are considering has been show to be W[1]-hard with respect
to the pathwidth pw(G) of the input graph G, then it is also W[1]-hard with
respect to the treewidth tw(G) of G, as pw(G) ≥ tw(G) for all graphs G. To draw
such a conclusion, it is enough to upper bound tw(G) by any function in pw(G).
Likewise, if a problem is known to be fixed-parameter tractable with respect to
the pathwidth, then it might be interesting to consider the parameter “treewidth of
the input graph”, or even “degeneracy of the input graph”.
In this thesis, we want to focus on preprocessing in general, and polynomial-
size kernelizations in particular and, hence, we are particularly interested in
polynomial bounds. Thus, considering parameters as functions mapping inputs to
integers, we define the relation ≤poly such that

∀
f1, f2:Σ∗→N

f1 ≤poly f2 ⇔ f1 ∈ poly( f2).

Throughout the thesis, we will usually write “ f1 is a stronger parameter than f2”
instead of f1 ≤poly f2. The relation ≤poly gives rise to a natural hierarchy of
parameters. This hierarchy, restricted to some common graph parameters, is
partially depicted in Figure 1.1. The diagram is an extension of the diagram
presented by Jansen [122]. Note that the size of a maximum clique is among the
strongest parameters shown.
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Non-standard Parameters

In this chapter, we present an example of a kernelization for a non-standard
parameter. In fact, the parameter can be considered “stronger” than the standard
parameter, in the sense that it lower-bounds the standard parameter, but can be
arbitrarily smaller in practical instances. More precisely, we consider the Two-
Layer Planarization problem with respect to the parameter “size f of a minimum
feedback edge set of the input”. Roughly speaking, Two-Layer Planarization
asks for a smallest set of edges to remove from a given graph such that the
remainder is a forest of special trees (caterpillars). We present a kernelization
yielding a problem kernel of size O( f ). To date, we know of little other problems
for which polynomial problem kernels with respect to structural parameters are
known:

1. Treewidth with respect to the parameter “size of a smallest vertex cover
of the input graph” and “size of a smallest feedback vertex set of the input
graph” [30],

2. Graph Coloring with respect to the parameter “size of a smallest vertex
cover of the input graph” and “vertex-deletion distance to cographs12 or
C-split graphs 13” [123].

3. Odd Cycle Transversal with respect to the parameter “vertex-deletion
distance to bipartite graphs of constant treewidth” [124].

4. Vertex Cover with respect to the parameter “size of a smallest feedback
vertex set of the input graph” [125], and

5. Target Set Selection with respect to the parameter “size of a minimum
feedback edge set of the input graph” [159].

We supplement the kernelization with two branching algorithms that solve Two-
Layer Planarization. The asymptotic running time of one of them is comparable
to the running time of the state-of-the-art algorithm with respect to the standard
parameter. Our choice of parameter is motivated as follows.

12A cograph is a graph that can be colored with χ colors if and only if there is no Kχ+1.
13A C-split graph is a graph whose every connected component is a split graph, that is, each

component can be partitioned into an independent set and a clique.
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f is stronger than the standard parameter. The size k of a solution of an
instance of Two-Layer Planarization is at least the feedback edge set num-
ber of the input. In this sense, we improve on previous results [69, 182] by
providing fixed-parameter algorithms and kernelizations with about the same
worst-case bounds for a parameter that we expect to be significantly smaller for a
wide range of input instances. For large values of k and small values of f , our
3.8 f poly(n)-time search tree algorithm may in fact outperform the state of the art
3.652k poly(n)-time algorithm by Suderman [182].

f is a good measure for sparseness. Dujmović et al. [69] pointed out that
“instances of Two-Layer Planarization for dense graphs are of little interest from
a practical point of view” since the resulting drawings are unreadable anyway.
They argue that this indicates small solution sizes in practice. However, even
for trees, the sparsest connected graphs, the solution size can be arbitrarily large.
Thus, a parameter that is directly linked to the sparseness, as the treewidth, the
feedback vertex set number or the feedback edge set number, supports exploiting
the above observation even better. Measuring the distance from trees by the
feedback edge set number can be seen as a parameterization by “distance from
triviality” [106]. In this sense, our results generalize the linear-time algorithm for
trees by Shahrokhi et al. [174].

f can be precomputed. The feedback edge set number f is a parameter that
can easily be computed in advance and, hence, allows for a meta-algorithm that
chooses an algorithm for a given input by computing an estimation on the running
time prior to running the algorithm for the problem itself. Since the parameter k
(“number of edge deletions”) is NP-hard to compute, such an algorithm could
not efficiently determine the running time of an algorithm parameterized by k in
advance.

f is an upper bound for the treewidth. One of the most prominent structural
parameters in parameterized algorithmics for graph problems is the treewidth
of the input graph. However, for a large set of problems, the treewidth of the
input might be too strong a parameter to allow polynomial-size kernels (see Sec-
tion 1.2.4). Thus, parameters that are lower bounded by the treewidth, like the
vertex cover number, the feedback vertex set number, and, last but not least, the
feedback edge set number, have recently been considered [83, 84, 125, 137, 159].
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Figure 2.1: A connected graph that is biplanar and, hence, a caterpillar tree. White
vertices are leaves, gray vertices are non-leaves. Note that no vertex has more
than two non-leaf neighbors.

2.1 Introduction to Two-Layer Planarization

To formally define Two-Layer Planarization, consider an arrangement of the
vertices of a graph G on two parallel lines called layers. Then, this drawing
is called biplanar if no edge runs between two vertices of the same layer and,
when drawn as straight lines between the layers, no two edges of G cross. Note
that, equivalently, the edges can be drawn in an arbitrary fashion (not just as
straight lines) as long as they never cross one of the two parallel lines). We say
that the graph G is biplanar if it admits a biplanar drawing. Then, Two-Layer
Planarization can be defined as follows.

Two-Layer Planarization
Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Is there an edge set E′ ⊆ E such that |E′| ≤ k and G .

− E′

is biplanar?

Input: Solution:

It has been shown that biplanar graphs are exactly the graphs that consist of
disjoint caterpillar trees (or caterpillars for short) [112]. A caterpillar is a tree such
that each of its vertices is adjacent to at most two non-leaf vertices, see Figure 2.1.
This allows us to equivalently define Two-Layer Planarization as follows.



26 CHAPTER 2. Non-standard Parameters

Two-Layer Planarization
Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Is there an edge set E′ ⊆ E such that |E′| ≤ k and G .

− E′

is a forest of caterpillars?

Two-Layer Planarization is motivated mainly by its application in graph drawing,
where it is an integral part of the “Sugiyama approach” [184, 156] to multilayered
graph drawing [69, 86, 133]. Here, the basic strategy is to assign all vertices to
different layers, solve Two-Layer Planarization to get an optimal layout of the
first two layers and repeatedly solve 1-Layer Planarization to layout subsequent
layers. In 1-Layer Planarization, the arrangement of vertices on one of the layers
is already given and the task is to remove as little edges as possible such that the
remaining vertices can be arranged on the second layer without edge crossings.
Apart from graph drawing, solving Two-Layer Planarization is important in
DNA mapping [195] and global routing for row-based VLSI layout [139].

2.1.1 Previous and Related Work

Two-Layer Planarization is NP-hard even in the case that the input graph is
bipartite and in one partition each vertex has degree at most two [71]. Note
that Eades and Whitesides [71] called the problem Maximum Biplanar Subgraph.
Shahrokhi et al. [174, Section 6] presented a dynamic programming based linear-
time algorithm solving the problem on trees. Concerning the parameter k (number
of edge deletions), Dujmović et al. [69] showed that Two-Layer Planarization
can be solved in O(6k · k + |G|) time by devising a search tree algorithm and
several polynomial-time data reduction rules leading to a problem kernel com-
prising O(k) vertices and edges. Later, Fernau [86] presented a refined search tree
for Two-Layer Planarization leading to a running time of O(5.19276k · k2 + |G|).
Finally, based on a different branching analysis, Suderman [182] developed
an O(3.562k · k + |G|)-time algorithm, which he tested extensively on different
types of sparse graphs.
Dujmovic et al. [70] considered a multilayered problem version, where the task is
to transform the input graph into a graph that can be drawn in h layers without
edge crossings. They developed a path decomposition based algorithm that runs
in g(h, k) · |V | time (where the function g is not explicitly specified).
Two-Layer Planarization is a special case of the problem of transforming a
binary matrix into a matrix with so-called “consecutive-ones property”14 by a

14A binary matrix is said to have the consecutive-ones property if its columns can be permuted
such that, in each row, all ones occur consecutive.
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minimum number of column removals. More specifically, Two-Layer Planariza-
tion coincides with this problem for matrices without identical columns that have
a maximum of two 1s in each column [185, 63]. Dom et al. [63] showed ap-
proximability and fixed-parameter tractability results for these related submatrix
problems.
Finally, observe that caterpillars are exactly the graphs with pathwidth at most
one [167]. Thus, Two-Layer Planarization is the problem of transforming a
given graph into a graph with pathwidth at most one by deleting edges. Under
the name Pathwidth One Vertex Deletion, Cygan et al. [56] considered the
vertex-deletion variant of Two-Layer Planarization, developing a quadratic-size
problem kernel for the parameter “number of allowed vertex deletions”.

2.1.2 New Results

We investigate the parameterized complexity of Two-Layer Planarization with
respect to the structural parameter “feedback edge set number” f , that is, the
minimum number of edges whose removal results in an acyclic graph. Note
that the feedback edge set number of a connected n-vertex and m-edge graph G
is f (G) = m − n + 1 and a minimum feedback edge set can be determined by
the computation of a spanning tree in O(n + m) time via depth-first search. We
develop efficient preprocessing rules for Two-Layer Planarization that lead to a
problem kernel with O( f ) vertices and edges.
We present a new search tree algorithm leading to a total running time of O(6 f ·

f 2 + ( f + 1) · |G|) for solving Two-Layer Planarization. Improving on this
running time, we develop a search-tree algorithm running in O(3.8 f f 2 + f ·
|G|) time. We implemented and tested this algorithm, augmented by several
heuristic improvements, for the instances used by Suderman [182] to test his
algorithm and some sparser graphs.

2.2 Preliminaries
For a graph G, let I(G) (isolated vertices) and L(G) (leaves) denote the set of
vertices in G with degree zero and one, respectively. For a vertex v in G, let L(v) :=
L(G) ∩ N(v). We define the non-leaf degree d̂egG (v) := |NG(v) \ L(G)| for every
vertex v ∈ V(G) (see [69]).
A tree is a caterpillar tree (or caterpillar for short) if each of its vertices has non-
leaf degree at most two. Equivalently, a caterpillar is a tree that does not contain
a 2-claw [71] (see Figure 2.2). Thus, unions of caterpillars have the following
forbidden-subgraph characterization: A graph is a forest of caterpillars if and only
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v

Figure 2.2: A 2-claw with center vertex v. Caterpillars can be characterized as
graphs containing neither cycles nor 2-claws.

if it is acyclic and does not contain a 2-claw as subgraph. Note that for a caterpillar
tree, the non-leaf degree of a vertex is at most 2. A leaf v ∈ L(G) is called critical
if its only neighboring vertex has non-leaf degree two. The definition of critical
vertices is motivated by the observation that being a caterpillar is invariant with
respect to adding neighbors to non-critical vertices. In contrast, adding a neighbor
to a critical vertex creates a 2-claw.
Informally speaking, G∗ denotes the subgraph of G that contains all edges that
are contained in a cycle or that connect cycles. Formally, G∗ can be defined as
follows.

Definition 2.1. Let G0 := G and recursively define Gi+1 := Gi − (L(Gi) ∪ I(Gi)).
Finally, let G∗ denote the graph Gi with minimum i such that Gi = Gi+1. We will
call G∗ the cyclic core of G.

Note that G∗ is the empty graph if and only if G is acyclic (a forest). Moreover,
for G being a forest of caterpillar trees, G1 is a forest of paths. Furthermore, note
that G − V(G∗) is acyclic (a forest).

Definition 2.2. For a vertex v ∈ V(G∗) let T v denote the tree of G .
− E(G∗) that

is rooted at v. The tree T v is called the pendant tree of v and v is called its
connection point.

Furthermore, for a vertex x in a rooted tree T let Tx denote the subtree of T rooted
at x.
The following special (pendant) trees are of particular interest. A path p =

({v,w}, {w, x}) is called a P2 with connection point v if deg(v) ≥ 2, deg(w) = 2,
and deg(x) = 1, see Figure 2.3a for an example. Vertex w is called the middle
point and we refer to it as m(p) and vertex x is called the leaf of p denoted
by l(p). For a vertex v let P2(v) denote the set of all P2s that have v as their
connection point. A Y-graph with connection point v is a subgraph consisting of
the adjacent vertices v and w and two P2s with connection point w. Optionally,
w may additionally be adjacent to a leaf (see Figure 2.3b). Herein, w is called the
center point of the Y-graph. We refer to w by c(Y). Let Y(v) denote the set of all
Y-graphs that have v as their connection point.
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v

w

x
(a) A P2 pendant

v

w

(b) A Y-graph

Figure 2.3: Terminology. (a) shows a P2 pendant with connection point v. (b)
shows a Y-graph with connection point v and center point w. Here, the gray
leaf may or may not be present in the Y-graph (formally, there are two different
Y-graphs, one with and one without the gray leaf).

2.3 A Kernel for Two-Layer Planarization
In this section, we present a kernelization for Two-Layer Planarization param-
eterized by f , denoting the size of a minimum feedback edge set of the input
graph. We present a number of polynomial-time executable data reduction rules
and show that a graph that is reduced with respect to these rules cannot contain
more than O( f ) vertices and edges. The kernelization consists of two phases. In
the first phase, which we call “tree reduction”, roughly speaking, the goal is to
reduce the “acyclic part” of the input graph. In the second phase, the goal is to
reduce the long non-branching paths in the remaining “cyclic core” G∗, shrinking
its size to a linear function in f . We call the second phase “path reduction”.

2.3.1 Tree Reduction
Subsequently, we present data reduction rules for repeatedly replacing a pendant
tree T u for some u ∈ V(G∗) with a smaller tree, until its size is a constant value.
For the explanation of the basic idea, consider a 2-claw C in T u that has “maximal
depth”, that is, the sum of distances of the vertices of C to u is maximal. Clearly,
all vertices that are “below” C but not contained in C are irrelevant because they
are not contained in any 2-claw in T u. Moreover, since there is no 2-claw with
larger depth than C, all 2-claws that intersect C share one of the “highest” edges
with C. Hence, it is optimal to destroy C by deleting one of its “highest” edges.
Distinguishing all relevant cases, this observation leads to the following five data
reduction rules (see Figure 2.4 for an illustration).

Tree Reduction Rule 2.1. Let v be a vertex with |L(v)| ≥ 2, Then, delete all but
one leaf in L(v).
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x y

(a) Tree Reduction Rule 2.3
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w

v

w

v

(b) Tree Reduction Rule 2.4

x

w

v

x

(c) Tree Reduction Rule 2.5

Figure 2.4: (a): An example of the application of Tree Reduction Rule 2.3. Note
that we must delete one of the edges {v, x}, {v, y}, and {v, z} in order to destroy the
2-claw centered at v. By symmetry, there is an optimal solution that contains the
edge {v, z}. After deleting {v, z}, the dotted vertices form an isolated caterpillar
and are therefore deleted. (b): An example for the application of Tree Reduction
Rule 2.4. Note that the edge {w, x} is not contained in any 2-claw and, hence, x can
be deleted. (c): An example for the application of Tree Reduction Rule 2.5. Since
the deletion of the edge {x, v} destroys the same 2-claws as the deletion of any
other edge in the tree rooted at x, there is an optimal solution that contains {x, v}.

Tree Reduction Rule 2.2. Let v be a vertex with |Y(v)| ≥ 1 and |Y(v)| + |L(v)| +
|P2(v)| ≥ 2. Then, for an arbitrarily chosen Y-graph Y ∈ Y(v), delete all vertices
of Y except for v and decrease k by one.

Tree Reduction Rule 2.3. Let v be a vertex with |P2(v)| ≥ 3 and let P2(v) =

{p1, p2, . . . , pq}. Then, delete the vertices l(pi) and m(pi) for 3 ≤ i ≤ q and
decrease k by q − 2.

Tree Reduction Rule 2.4. Let v be a vertex with d̂egG (v) = 2 and let p be a P2
with P2(v) = {p}. Then, delete the vertex l(p).

Tree Reduction Rule 2.5. Let v be a vertex with degG(v) = 2 and let Y be a
Y-graph such that Y(v) = {Y}. Then, delete all vertices of Y (including v) and
decrease k by one.

The last data reduction rule for the tree reduction phase is obvious.

Tree Reduction Rule 2.6. Let C be a connected component of G that is a cater-
pillar. Then, delete all vertices of C.

Lemma 2.1. Tree Reduction Rules 2.1–2.6 are correct. An instance reduced with
respect to Tree Reduction Rules 2.1–2.6 can be computed in O(|G|) time.
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Proof. First, we prove the correctness of the tree reduction rules except Tree
Reduction Rules 2.1 and 2.6 (Tree Reduction Rule 2.1 is known to be correct [69],
Tree Reduction Rule 2.6 is obvious), then the claimed running time.
Tree Reduction Rule 2.2 is correct. First, note that we can assume that, if a
solution contains any edge from Y , then it contains the edge e := {v, c(Y)} (since
its deletion destroys also all the 2-claws that can be destroyed by any other edge
in Y). We show that an optimal solution that contains e exists. Let S be an
optimal solution with e < S . Clearly, this solution must contain all edges incident
to v except for the edge {v, c(Y)}. Since L(v) , ∅ or P2(v) , ∅ or |Y(v)| ≥ 2,
solution S must contain an edge e′ that is incident to a leaf, to the middle point of
a P2, or to the center point of a Y-graph other than Y . Thus, S \ {e′} ∪ {e} clearly
is a solution of same size containing e.
Tree Reduction Rule 2.3 is correct. To destroy all the 2-claws in the subgraph in-
duced by the vertices of the P2s in P2(v) we must delete q − 2 edges. Since,
for a p ∈ P2(v), it is at least as good to delete edge {v,m(p)} as to delete
edge {m(p), l(p)}, by symmetry one can choose the edges {v,m(pi)}, 3 ≤ i ≤ l.
Tree Reduction Rule 2.4 is correct. Let G′ denote the instance that is reduced
with respect to Tree Reduction Rule 2.4. Since d̂egG′ (v) = 1, we know that for
every solution S ′ for G′, the vertex m(p) is non-critical in G′ .− S ′. Consequently,
all solutions for G′ are also solutions for G.
Tree Reduction Rule 2.5 is correct. Let x denote the single vertex in N(v) − c(Y).
Note that the Y-graph Y together with x forms a graph containing a single 2-claw.
Clearly, this 2-claw is best destroyed by deleting the edge {x, v} since this also
destroys all the 2-claws that can be destroyed by deleting any other edge in Y .
To apply the tree reduction rules efficiently, we proceed as follows. First, in a
depth-first traversal of the graph, we determine the vertices in G∗. Moreover, for
every vertex, we remember its parent in the spanning tree corresponding to the
depth-first traversal. Then, we consider the vertices in a postorder. Doing so, for
every vertex, we maintain three lists, L(v),P2(v), andY(v). If we consider a leaf x,
we add x to L(p), where p is the parent of x. If we consider an inner vertex x, then
we can assume that all children have already been considered because we traverse
the instance bottom-up. Thus, the lists L(x), P2(x), and Y(x) have already been
determined and we have all information at hand to decide whether one of the tree
reduction rules can be applied to x. After applying the tree reduction rules to x,
we have the following situation. If we decide that the edge from x to its parent
is deleted (Tree Reduction Rules 2.4 and 2.5), then x does not have any effect
on its parent. Otherwise, if neither Tree Reduction Rule 2.4 nor Tree Reduction
Rule 2.5 applies to x, then we have to consider the following cases. If x is a leaf,
we add x to the list L of its parent. Otherwise, if x has a single child that is a leaf,
we add x to the list P2 of the parent of x. Note that one of these cases must apply
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to x. Thus, for a vertex v, all changes can be made in O(d(v)) time, where d(v)
denotes the number of neighbors of v in V \ V(G∗). Hence, the presented tree
reduction rules can be exhaustively applied in O(|G|) + O(

∑
v∈V d(v)) = O(|G|)

time. �

The structure of an instance reduced with respect to these reduction rules is
described by the following lemma, which concludes the presentation of the “tree
reduction”.

Lemma 2.2. In an instance that is reduced with respect to the tree reduction
rules, for each vertex v ∈ V(G∗), its pendant tree T v is either a singleton or
isomorphic to one of the trees shown in Figure 2.5.

Proof. To prove the lemma, we consider the height of the pendant tree T v.
If T v has height one, then all children of v are leaves and since the instance is
reduced with respect to Tree Reduction Rule 2.1, v has exactly one child. That
is, T v is isomorphic to the tree shown in Figure 2.5a.
If T v has height two, then, since the instance is reduced with respect to Tree Reduc-
tion Rule 2.1, every non-leaf child of v has degree two and v has at most one leaf
child. Moreover, v has at most two non-leaf children since otherwise |P2(v)| ≥ 3
and we could apply Tree Reduction Rule 2.3. Moreover, since |L(v)| ≤ 1, the
pendant tree T v is isomorphic to one of the trees shown in Figure 2.5b and
Figure 2.5c.
To prove the remaining case, we need the following observation. Let v′ ∈ V(T v)−v
be a vertex such that the height of T v

v′ (the subtree of T v rooted at v′) is two. Since
the height of T v is neither one nor two, v′ exists. We show that v′ is the center of a
Y-graph with connection point v. Since the height of T v

v′ is two, it is isomorphic to
either d) or e). First, note that if v′ had more than two non-leaf children, then, with
the same argument as in the second case above, we could apply Tree Reduction
Rule 2.3. Moreover, if v′ had exactly one non-leaf child, then d̂egG (v′) = 1
and we could apply Tree Reduction Rule 2.4. Thus, v′ has exactly two non-leaf
children and at most one leaf child.
If T v has height three, then let W denote the set of children of v such that the
tree T v

w has height two for every w ∈ W. By the above observation, we know
that for every w ∈ W the tree T v

w together with v forms a Y-graph. Thus, |W | = 1,
since otherwise we could apply Tree Reduction Rule 2.2. Moreover, we know
that v cannot have other children, since otherwise we could apply Tree Reduction
Rule 2.2. Hence, T v is a Y-graph.
Finally, we show by contradiction that the height of T v is at most three. Assume
that the height of tree T v is at least four and let w be some vertex in T v such
that T v

w has height three. With the same argument as in the previous case, we
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v

(a) single leaf

v

(b) P2 with optional
leaf

v

(c) two P2s with op-
tional leaf

v

(d) Y-graph with op-
tional leaf

Figure 2.5: In a reduced instance, the pendant tree T v of a vertex v ∈ V(G∗) is
isomorphic to one of the trees shown in (a) to (d). Note that the tree shown in (d)
is exactly the Y-graph as defined in Figure 2.3b.

can assume that T v
w is a Y-graph and w has exactly one child. Then, however, the

degree of w is two and we can apply Tree Reduction Rule 2.5. �

2.3.2 Path Replacement

The tree reduction rules presented in Section 2.3.1 are not sufficient to yield
a problem kernel for our parameterization. For example, if the input graph G
is a simple cycle, then none of the above data reduction rules applies. Recall
the notions of G∗ (Definition 2.1) and pendant trees. The purpose of the data
reduction rules presented in this subsection is to reduce non-branching paths of G∗

(hence, they are called “path reduction rules”). The first two reduction rules take
care of paths containing Y-graphs as pendant trees. Then, we introduce the notion
of “tokens” which allows us to handle the remaining cases in a unified manner.
In the following, we assume the input to be reduced with respect to all tree
reduction rules (see previous subsection). Consider vertices u,w ∈ V(G∗) that
may be identical. We denote a path Pu,w = (u = v0, v1, . . . , v`, v`+1 = w) between u
and w as degree-2 path if degG∗(vi) = 2 for all 1 ≤ i ≤ l. Its length is ` + 2. We
refer to the vertices vi, 1 ≤ i ≤ l, as inner path vertices. Furthermore, denote the
edges {vi−1, vi} by ei for all 1 ≤ i ≤ ` + 1. Throughout this subsection, let P be
some degree-2 path in the given graph G and let vi be some inner path vertex of P.
In this context, let TP := G[

⋃l
i=1 V(T vi ) ∪ {u,w}] and for 1 ≤ i ≤ j ≤ l, let Ti, j

denote the subtree of TP containing all vertices reachable from vi in TP
.
−{ei, e j+1}.

Note that Ti,i = T vi .
The first two path reduction rules handle all Y-graphs that have a vertex on a
degree-2 path as their connection point. For their presentation, we need two
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additional tools. First, observe that for any Y-graph Y with connection point v,
deleting the edge of Y that is incident to v is at least as good as deleting any
combination of edges of Y . This allows us to assume optimal solutions to contain
either this edge or all other edges incident to v. Furthermore, since pendant trees
do not overlap, we can assume this for all vertices v.

Observation 2.1. There is an optimal solution S for G such that for each Y-
graph Y with connection point v, it holds that S ∩ E(Y) ⊆ {{v, c(Y)}}.

Second, observe that we can assume certain vertices to be non-critical in the target
caterpillar-forest corresponding to an optimal solution.

Lemma 2.3. Let v be a degree-2 vertex in G∗ such that T v is neither a singleton
nor a Y-graph. Then, there is an optimal solution S for G such that v is non-critical
in G .

− S .

Proof. Let S denote an optimal solution for G such that v is critical in G .
− S .

We show that there is a solution S ′ with |S ′| = |S | such that v is non-critical
in G .

− S ′. Since v is critical in G .
− S , by definition, v is a leaf in G .

− S and
adjacent to a vertex x with non-leaf degree two in G .

− S . Since T v is not a
Y-graph, Lemma 2.2 implies that every vertex in V(T v) (except for v) has non-leaf
degree at most one in G and, hence, also in G .

− S . This implies that x < V(T v).
Let F := E(G) ∩ {{v, z} : z ∈ V(T v)}. Since v is a leaf adjacent to x in G .

− S , we
have F ⊆ S and since T v is not a singleton, we know that |F| ≥ 1. Observe that
deleting {v, x} from G .

−S renders v isolated. Thus, subsequently undoing the edge
deletions in F does not create a cycle or 2-claw. Hence, S ′ := (S \ F) ∪ {{v, x}}
is also a solution for G. Finally, note that G .

− S ′ contains T v as a connected
component. Since T v is not a Y-graph, v is non-critical in G .

− S ′. �

In the proof of Lemma 2.3, the only pendent tree affected by the modifications in
S is T v, which, by assumption, is not a Y-graph. Hence, we can apply Lemma 2.3
and Observation 2.1 independently. We use such an optimal solution to prove the
correctness of the next reduction rule.
The first path reduction rule describes Y-graphs Y with connection point vi for
which it is optimal to delete the edge {vi, c(Y)} (see also Figure 2.6).

Path Reduction Rule 2.1. Let P denote a degree-2 path and let both vi and vi+1
be inner path vertices of P such that Y := T vi is a Y-graph. If

1. T vi+1 is neither a singleton nor a Y-graph, or
2. vi+2 is an inner path vertex, degG(vi+1) = 2, and T vi+2 is either a singleton

or a Y-graph,
then delete {vi, c(Y)} and decrease k by one.
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(a) application of Case 1 of Path Reduction
Rule 2.1

(b) application of Case 2 of Path Reduction
Rule 2.2

Figure 2.6: Path Reduction Rules 2.1 and 2.2. Gray subgraphs are deleted by the
reduction rules.

Lemma 2.4. Path Reduction Rule 2.1 is correct.

Proof. For the correctness, we show that if Path Reduction Rule 2.1 applies to vi,
then there is an optimal solution for G that contains {vi, c(Y)} and, hence, it is safe
to remove edge {vi, c(Y)}. In the following, let eY := {vi, c(Y)} and let S denote an
optimal solution for G as described by Observation 2.1 and Lemma 2.3. That is,
S is an optimal solution such that

1. for each Y-graph Y ′ with connection point v′, S ∩ E(Y ′) ⊆ {{v′, c(Y ′)}}, and

2. if T vi+1 is neither a singleton nor a Y-graph, then vi+1 is non-critical in G .
−S .

As discussed above, such a solution exists.
If S contains eY , then we are done, hence, in the following, we assume that eY < S .
Then, by Property 1, S does not contain any edge of Y , implying ei, ei+1 ∈ S .
If vi+1 is non-critical in G .

− S , then S \ {ei+1} ∪ {eY } is an optimal solution for G
containing eY . To show that vi+1 is non-critical in G .

−S , assume that vi+1 is critical
in G .

− S . In Case 1 of Path Reduction Rule 2.1, this contradicts Property 2. In
Case 2 of Path Reduction Rule 2.1, degG(vi+1) = 2 and T vi+2 is either a singleton
or a Y-graph. Since ei+1 ∈ S , the fact that vi+1 is critical in G .

− S implies
that vi+2 is adjacent to vi+1 in G .

− S and d̂egG .−S (vi+2) ≥ 2. If T vi+2 is a Y-graph,
then, since S does not contain {vi+1, vi+2}, Property 1 implies that S contains the
edge {vi+2, c(T vi+2 )}. Hence, vi+2 has at most two neighbors in G .

− S , regardless of
whether T vi+2 is a Y-graph or a singleton. However, since one of these neighbors
is vi+1 (a leaf), vi+2 has non-leaf degree at most one in G .

− S , a contradiction
to vi+1 being critical in G .

− S . �

The second data reduction rule handles almost all remaining cases where a Y-graph
occurs as the pendant tree of some inner path vertex vi of P by “bypassing” vi in P.
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Path Reduction Rule 2.2. Let P denote a degree-2 path and let both vi and vi+1
be inner path vertices of P such that Y := T vi is a Y-graph. If

1. T vi+1 is a Y-graph, or
2. vi−1 and vi+1 have degree two, or
3. vi+2 is an inner path vertex, deg(vi+1) = 2, and T vi+2 is neither a singleton

nor a Y-graph,
then remove all vertices of Y from G, insert the edge e = {vi−1, vi+1}, and de-
crease k by one.

Lemma 2.5. Path Reduction Rule 2.2 is correct.

Proof. Let G′ denote the graph that results from applying Path Reduction Rule 2.2
to some vi in G and let eY := {vi, c(Y)}. Let Ĝ denote the result of contracting ei+1
in G .
−eY and observe that Ĝ is identical to G′ with the exception of one connected

component (containing all vertices of Y but vi) which is a caterpillar. Conse-
quently, Ĝ and G′ are equivalent in the sense that a solution for one is also a
solution for the other (considering that ei in Ĝ plays the role of e in G′). In the
following, we show that G has a solution S of size at most k if and only if G′ has
a solution S ′ of size at most k − 1.
“⇒:” By Observation 2.1, either eY or both ei and ei+1 are in S . If eY ∈ S , then,
since contracting an edge does not create 2-claws or cycles, S ′ := S \ {eY } is a
solution of size at most k − 1 for Ĝ and, thus, for G′. Otherwise, ei, ei+1 ∈ S .
However, by construction, G′ .− e is a subgraph of G .

− {ei, ei+1} and thus, S ′ :=
(S \ {ei, ei+1}) ∪ {e} is a solution for G′ of size at most k − 1.
“⇐:” If a solution S ′ for G′ of size at most k − 1 contains e, then the equivalent
solution Ŝ for Ĝ contains ei, and clearly, S := Ŝ ∪ {ei+1} is a solution of size at
most k for G. Thus, in the following, we assume that there is no solution for G′

of size at most k − 1 that contains e (in particular, e < S ′ and, thus, vi−1 and vi+1
are neighbors in G′ .− S ′).
Observe that the subdivision of an edge e′ of a caterpillar can only create a
2-claw if e′ is incident to a critical vertex. Hence, if vi−1 and vi+1 are both non-
critical in G′ .− S ′, then we can subdivide e without affecting the solution and
thus, S := S ′ ∪ {eY } is a solution of size at most k for G. Hence, in the following,
we assume that vi−1 or vi+1 is critical in G′ .− S ′. Since vi−1 and vi+1 are adjacent
in G′ .− S ′, this implies that one of them has degree at least three in G′ .− S ′ while
the other is a leaf in G′ .− S ′. In the following, we consider the three cases of Path
Reduction Rule 2.2 separately.
Case 1: The first condition of Path Reduction Rule 2.2 applies.
Then, Y ′ := T vi+1 is a Y-graph. Let eY ′ := {vi+1, c(Y ′)}. By Observation 2.1, we
can assume that S ′ contains either eY ′ or both e and ei+2 (if S ′ contains eY ′ and e
but not ei+2, then we can exchange eY ′ for ei+2 in S ′). However, by the assumption
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that e < S ′, it follows that ei+2 < S ′ and eY ′ ∈ S ′, implying degG′ .−S ′(vi+1) = 2.
Thus, neither vi+1, nor vi−1 is critical in G′ .− S ′, a contradiction.
Case 2: The second condition of Path Reduction Rule 2.2 applies.
Then, degG(vi−1) = degG(vi+1) = 2, implying that neither vi−1 nor vi+1 has degree
at least three in G′ .− S ′, contradicting the assumption that vi−1 or vi+1 is critical.
Case 3: The third condition of Path Reduction Rule 2.2 applies.
By Lemma 2.3 we can assume that vi+2 is non-critical in G′ .− S ′. Clearly, vi−1
is non-critical in G′ .− S ′ since degG(vi+1) = 2. Hence, vi+1 is critical in G′ .− S ′

and, thus, S ′ ∪ {e} isolates vi+1. Since vi+2 is non-critical in G′ .− S ′, it follows
that (S ′ ∪ {e}) .

− ei+2 is a solution of size at most k for G′ containing e, a contra-
diction. �

The two path reduction rules presented so far eliminate Y-graphs in all long degree-
2 paths. In the following, consider P to be Y-graph-free, that is, P does not contain
an inner path vertex whose pendant tree is a Y-graph. Consider a graph that is
reduced with respect to Path Reduction Rules 2.1 and 2.2. All degree-2 paths P′

that are not Y-graph-free contain at most two inner path vertices, whose pendant
trees are a singleton and a Y-graph, respectively. Thus, it is clear that |V(TP′ )| ≤ 10.
In the following, we focus on Y-graph-free degree-2 paths. In this case, we can
show that we do not need to consider deleting edges in pendant trees, thus allowing
us to restrict our attention to deleting edges on the degree-2 path.

Lemma 2.6. Let G be reduced with respect to the tree reduction rules. Then,
there is an optimal solution S for G that does not contain edges of the pendant
tree T v of any v ∈ V(G∗) unless T v is a Y-graph.

Proof. Let S denote an optimal solution for G that contains an edge e of some T v.
Without loss of generality, e is incident to v. Since S is optimal, there is a 2-
claw Z in G .

− (S .
− e). If Z is centered at v, then there are exactly two non-leaf

neighbors u, u′ of v in G .
− S . By Lemma 2.2, u or u′ is not in T v. Without loss

of generality, u is not in T v. Then, however, S .
− {e, {u, v}} is an optimal solution

for G avoiding T v.
If Z is not centered at v, then let w ∈ NG(v) denote the center of Z. Since T v is not
a Y-graph, w is not in T v. Since S is a solution for G, we know that NG .−S (v) = {w}.
Hence, S \ {e, {v,w}} is an optimal solution for G. �

Corollary 2.1. Let P be a Y-graph-free degree-2 path. Then, there is an optimal
solution for G that does not contain any edge of E(TP) \ E(P).

In order to handle the remaining degree-2 paths (recall the definition on page 33)
in a unified manner, we introduce the notion of “tokens” as sets of consecutive
edges on the degree-2 paths. Consider a vertex v on a degree-2 path P that is
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the center of a 2-claw. Then, Corollary 2.1 tells us that this 2-claw must be
destroyed by deleting an edge of P. We model this fact by letting v generate a
token containing all edges that may be deleted in order to destroy this 2-claw.
The introduction of this notion is split into three parts. First, we define tokens,
second, we point out how they are generated, and third, we specify what it means
to destroy a token.
In the following, a vertex v in P is called crossable if degG(v) = 2. A token K
of P is a set of at most four consecutive edges of P. Let vi be a vertex in P.
If i ≤ `− 1, then the upper token Kup (vi) of vi is {ei+1, ei+2} if vi+1 is crossable and
it is {ei+1}, otherwise. Equivalently, if i ≥ 2, then the lower token Klow (vi) of vi

is {ei−1, ei} if vi−1 is crossable and it is {ei} otherwise. In this sense, we say that
tokens can only “span” over crossable vertices. For the vertices u, v1, v`, and w,
we need the following auxiliary tokens: Klow (u) := {�low}, Kup (w) := {�up},
Klow (v1) := {�low, e1}, and Kup (v`) := {e`+1, �

up}.
Each inner path vertex vi of P for which P2(vi) , ∅ generates tokens in the
following way: If |P2(vi)| = 1 (in this case T vi is isomorphic to one of the
trees shown in Figure 2.5b), then vi generates one token Kup (vi) ∪ Klow (vi).
If |P2(vi)| = 2 (in this case T vi is isomorphic to one of the trees shown in
Figure 2.5c), then vi generates two tokens, Kup (vi) and Klow (vi). We define K(vi)
as the set of tokens generated by vi and K(P) as the set of all tokens generated by
inner path vertices of P. See Figure 2.7 for an illustration. We can observe that
only vertices that are centers of 2-claws generate tokens. Moreover, all 2-claws
centered at inner path vertices are represented in the tokens ofK(P), implying that
all 2-claws on P can be destroyed by removing an edge of each token in K(P).

Observation 2.2. For each K ∈ K(P), there is a 2-claw C centered at the vertex
that generates K such that E(C)∩ E(P) = K Furthermore, for each 2-claw C that
is centered at an inner path vertex of P, there is a token K ∈ K(P) such that K is
a subset of all edges that are in both C and P.

A non-auxiliary token (token that does not contain �up or �low) K ∈ K(P) is
destroyed by an edge set E′ if K ∩ E′ , ∅. Observe that if K contains �up or �low,
then it contains e1 or e`+1, respectively. We say that a token containing e1 and �low

is destroyed by E′ if either K ∩ E′ , ∅ or E′ contains all edges incident to v0
except for e1. An auxiliary token containing e`+1 is destroyed analogously. Infor-
mally speaking, a token represents the need to delete an edge. By Corollary 2.1 it
suffices to consider edges in P. Thus, the task is to destroy all tokens by deleting
only few edges.
The following path reduction rules are designed to shrink degree-2 paths and rely
heavily on the notion of tokens. The first data reduction rule reduces degree-2
paths that do not contain any tokens.
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e1 e2 e3 e4 e5 e6 e7

(a) Illustration of token-separators. The tokens are
{e2, e3, e4}, {e3, e4}, {e5, e6}, and {e5, e6, e7, �

up},
the separators are v1 and v4.

(b) An example of a chained degree-2 path.

Figure 2.7: Illustration of the tokens generated by degree-2 paths. Horizontal
bars depict tokens, dashed lines represent auxiliary tokens. Bars are bent if they
contain �low or �up.

Path Reduction Rule 2.3. If there is a degree-2 path P with |V(TP)| > 7
and K(P) = ∅, then contract T2,`−1 to a single vertex.

Lemma 2.7. Path Reduction Rule 2.3 is correct.

Proof. Let G denote the input graph and G′ the graph that results from applying
Path Reduction Rule 2.3 to a degree-2 path P in G. We show that for each
solution S for G there is also a solution for G′ of the same size, and vice versa.
By Observation 2.2,K(P) = ∅ implies that there is no 2-claw centered at an inner
path vertex of P. However, no other 2-claw can intersect T2,`−1 and, thus, the set
of edges that are in 2-claws in G and in G′ are equal, implying that G .

−S contains
2-claws if and only if G′ .− S does.
Observe that T2,`−1 is a tree and edge contraction cannot create cycles. Hence,
if S does not contain any edge from T2,`−1, then S also breaks all cycles of G′.
Otherwise, there is an edge e in S and in T2,`−1 and we can exchange e for e0 in S ,
thereby obtaining a solution S ′ for G′.
Finally, observe that |V(TP)| > 7 and K(P) , ∅ implies |V(T2,`−1)| > 1. �

Next, we focus on degree-2 paths generating tokens. Note that the end vertices u
and w of P could be centers of 2-claws containing inner path vertices of P. To
account for this possibility, we define K ′(P) := K(P) ∪ {Kup (u) ,Klow (w)}. Note
also that tokens are basically edge sets, which may overlap. This behavior is
exploited in the following reduction rules requiring a more formal definition. We
call an inner path vertex vi of P a token separator if there is no token in K ′(P)
containing both ei and ei+1. If P does not have a token-separator, then P is called
chained (see Figure 2.7b).
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Figure 2.8: The graph that results from applying Path Reduction Rule 2.4 to the
graph shown in Figure 2.7a.

In the following, we present a reduction rule that works on degree-2 paths P
containing a token separator v. In particular, this reduction rule splits P at v,
duplicating T v. This operation leaves all tokens intact, indicating the correctness
of the reduction rule (see Figure 2.8 for an illustration).

Path Reduction Rule 2.4. Let P be a degree-2 path with K(P) , ∅ and P is not
chained. Let vi be a token separator of P. Then, replace its pendant tree T vi by
two copies of T vi , connect one to vi−1 (by inserting an edge between its connection
point and vi−1), and connect the other to vi+1.

Lemma 2.8. Path Reduction Rule 2.4 is correct.

Proof. Let G′ denote the graph that results from applying Path Reduction Rule 2.4
to P. In the following, we show for all k that (G, k) is a yes-instance if and only
if (G′, k) is a yes-instance.
“⇒”: By Corollary 2.1, we know that there is a solution S of size at most k for G
that does not delete edges in T vi . For the sake of contradiction, assume that S is
not a solution for G′. Since all cycles in G′ are cycles in G, there is a 2-claw C
in G′ .− S that is not in G .

− S . If C contains both copies of vi, then there is a cycle
in G that consists entirely of edges of C. Since S is a solution for G, it is clear
that S breaks this cycle, contradicting C being a 2-claw in G′ .− S . If C contains
only one of the copies of vi, then we can delete the other copy from G′ .

− S
without destroying C. The resulting graph is a subgraph of G .

− S that contains C,
contradicting S being a solution for G.
“⇐”: Let S denote a solution for G′ containing at most k edges. If S contains any
edge e of the copy of T vi connected to vi−1 (see Path Reduction Rule 2.4), then it
is easy to see that (S .

− e)∪ {ei} is also a solution for G′ that does not contain such
an edge. Analogously, we can assume that S does not contain an edge of the copy
of T vi connected to vi+1. In the following, we show that S is also a solution for G.
For the sake of contradiction, assume that G .

− S is not a forest of caterpillars.
First, assume that there is a 2-claw C in G .

− S . Note that both ei and ei+1 are
contained in C, since otherwise, C is entirely contained in G′ implying that C is
also a 2-claw in G′ .− S .
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Case 1: The center of C is vi. Then, |P2(vi)| ≥ 1 and, thus,K(vi) , ∅. Since vi is a
token separator, |K(vi)| = 2 and, thus, |P2(vi)| = 2. However, since both ei and ei+1
are in C, we know that C only uses one of the two P2s in P2(vi). Since S does
not contain any edge of any copy of T vi , we know that there is another 2-claw C′

in G .
− S that contains both P2s of P2(vi) and only one of ei and ei+1. As observed

above, C′ is entirely contained in G′ .− S , contradicting S being a solution for G′.
Case 2: The center of C is not vi. Then, since ei and ei+1 are in C, we know
that C is centered either at vi−1 or vi+1. Without loss of generality, let vi+1 be the
center of C. If vi is crossable in P, then vi+1 generates a token that spans over
vi, contradicting vi being a token-separator of P. Hence, vi is not crossable and,
consequently, its degree in G is at least three, implying that T vi is not a singleton.
Thus, there is also a 2-claw C′ in G that uses an edge of T vi instead of ei. Since C′

is entirely contained in G′, the solution S contains an edge of C′ and by the
assumption that S does not contain an edge of any copy of T vi , we know that S
contains an edge of C′ that is also in C, contradicting the existence of C in G .

− S .
Second, assume that there is a cycle in G .

−S . Then, it contains vi, since otherwise,
it is also a cycle in G′ .− S . By definition, P is a subpath of this cycle. However,
since K(P) , ∅, Observation 2.2 implies that there is a 2-claw C in G that is
centered at a vertex of P. By the argument above, S contains an edge e′ of C. If e′

is not in P, then for one of the endpoints of P, the solution S contains all but one
of the edges incident to it (this is represented by the �up and �low symbols). Other-
wise, e′ is in P. Both cases contradict the existence of a cycle with subpath P. �

Having dealt with degree-2 paths that contain token separators or no tokens at all,
only chained degree-2 paths remain untouched. In the following, we show that,
if P is such a chained degree-2 path, then P can be reduced. To this end, we first
observe that each edge deletion can only destroy two tokens. This easily follows
from the fact that being crossable and generating tokens is mutually exclusive.

Observation 2.3. Let P be a degree-2 path. Then, each edge of P is contained in
at most two tokens.

Next, we use this observation to “contract” P such that the outermost tokens
remain the same (see Figure 2.9). To this end, recall that Ti, j is the subtree of TP

containing all vertices reachable from vi in TP − {ei, e j+1}. Furthermore, find an
example of a chained degree-2 path in Figure 2.7b.

Path Reduction Rule 2.5. Let P be a chained degree-2 path with |K(P)| ≥
3. Let MP := {i ∈ N : K(vi) , ∅}, let p := min MP and q := max MP.
If |K(P)| is even, then delete Tp+1,q−1, insert the edge e := {vp, vq}, and reduce k
by (|K(P)| − 2)/2; otherwise delete Tp+1,q, insert the edge e := {vp, vq+1}, and
reduce k by (|K(P)| − 1)/2.
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e

Figure 2.9: An application of Path Reduction Rule 2.5 with |K(P)| = 7. In the
example, Mp = {1, 3, 4, 5, 6, 7, 8} and, hence, p = 1, q = 8, and e = {v1, v9}.

Lemma 2.9. Path Reduction Rule 2.5 is correct.

Proof. First, consider the case that |K(P)| is even. Let G′ denote the graph that
results from applying Path Reduction Rule 2.5 to P, let k′ := k − (|K(P)| − 2)/2,
and let ET := {ep+1, ep+2, . . . , eq}. Since neither vp nor vq is crossable, we know
that |K(P)| − 2 out of all tokens of P are subsets of ET . We show that (G, k) is a
yes-instance if and only if (G′, k′) is a yes-instance.
“⇒”: Let S be a solution of size at most k for G, let S T := S ∩ ET , and let S ′ :=
S \ ET . Since S destroys all tokens in K(P) and, by Observation 2.3, each edge
in S can destroy at most two tokens of K(P), we know that |S T | ≥ (|K(P)| − 2)/2.
If S ′ is a solution for G′, then we are done; otherwise, G′ .− S ′ contains a cycle
or a 2-claw. Assume that G′ .− S ′ contains a cycle. Then, since G .

− S is acyclic,
this cycle contains all edges of ET . If |S T | > (|K(P)| − 2)/2, then, by definition,
|S ′| < k′ and, hence, S ′ ∪ {e} is a solution of size at most k′ for G′ (note that
G′ .− e is a subgraph of G). If |S T | = (|K(P)| − 2)/2, then S T cannot destroy all
tokens in K(P). Hence, there are some edges in S ′ that destroy K(vp) or K(vq).
It is easy to see that at least one of these edges is on the cycle in G′ .− S ′, which is
a contradiction.
In the following, we assume that G′ .

− S ′ is acyclic but contains a 2-claw C.
Observe that C contains e, since otherwise, C is also in G .

−S . If C is not centered
at an inner path vertex of P, then, since vp and vq both generate tokens (and
therefore, have degree at least three in G), Corollary 2.1 implies that S ′ contains
an edge of C. Hence, C is centered at vp or vq. Without loss of generality, assume
that C is centered at vp. Let ei denote an edge in S ∩ K(vp) (which, by Observa-
tion 2.2, exists). Since ei < S ′, we know that ei ∈ S T ∩ K(vp). Then, however, S T

destroys at least |K(P)| − 1 tokens ofK(P). Since |K(P)| is even, |S T | ≥ |K(P)|/2
and, thus, |S ′| < k′. As a consequence, S ′ ∪ {e} is a solution for G′ containing at
most k′ edges.
“⇐”: Let S ′ be a solution of size at most k′ for G′ and recall that, by Observa-
tion 2.2, destroying all tokens in K(P) destroys all 2-claws centered at inner path
vertices. If e < S ′, then it suffices to show that we can extend S ′ to a solution S
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for G by adding k − k′ = (|K(P)| − 2)/2 edges of ET that destroy |K(P)| − 2
tokens. Since P is chained, this is possible. If e ∈ S ′, then we extend S ′ .− e to a
solution S for G by adding |K(P)|/2 edges of ET that destroy all tokens in K(P).
Again, this is possible because P is chained.

Next, consider the case that |K(P)| is odd. Let G′ denote the graph that results
from applying Path Reduction Rule 2.5 to P, let k′ := k − (|K(P)| − 1)/2, and
let ET := {ep+1, ep+2, . . . , eq+1}. Furthermore, observe that at least |K(P)| − 2 of
the tokens of P are subsets of ET . We show that (G, k) is a yes-instace if and only
if (G′, k′) is a yes-instance.
“⇒”: Let S denote a solution of size at most k for G, let S T := S ∩ ET , and
let S ′ := S \ ET . By the same arguments as in the case that |K(P)| is even, it fol-
lows that |S T | ≥ (|K(P)| −2)/2 and that G′ .−S ′ is acyclic, but contains a 2-claw C
that contains e. Clearly, by definition of p and q, if C is not centered at vp, then
the center of C is not in P. Then, however, S T destroys |K(P)| + 1 tokens and,
by Observation 2.3, S T contains at least (|K(P)| + 1)/2 edges, implying |S ′| < k′.
Hence, S ′ ∪ {e} is a solution of size at most k′ for G′. In the following, we assume
that C is centered at vp and consider the token K(vq) that is destroyed by S .
Case 1: (Klow

(
vq

)
∪ {eq+1}) ∩ S , ∅. Since Klow

(
vq

)
∪ {eq+1} ⊆ ET , this

means that S T destroys all tokens in K(P). By Observation 2.3, |S T | ≥ |K(P)|/2.
Since K(P) is odd, |S T | ≥ (|K(P)| + 1)/2 and, thus, S ′ ∪ {e} is a solution for G′

containing at most k′ edges.
Case 2: (Klow

(
vq

)
∪ {eq+1}) ∩ S = ∅. Since vq+1 is not a token-separator, vq+1 is

either the end-vertex of P or a degree-two vertex. Then, however, S contains all
edges incident to vq+1 except for eq. Since S \ ET also contains all these edges,
it is clear that S ′ contains them and, thus, C is destroyed by S ′, a contradiction
to the assumption above.
“⇐”: Let S ′ denote a solution of size at most k′ for G′. If e < S ′, then it suffices to
show that we can extend S ′ to a solution S for G by adding k−k′ = (|K(P)|−1)/2
edges of ET that destroy |K(P)| − 1 tokens. Since P is chained, this is possible.
If e ∈ S ′, then we can analogously extend (S ′ .−e)∪{eq+1} to a solution S for G. �

With the presented tree- and path reduction rules, we can now upper-bound
the size of the graph that remains after all reduction rules have been applied
exhaustively by a function of the size of a minimum feedback edge set. To this
end, we first show that the number of vertices and edges in each degree-2 path
and its pendant trees is small.

Lemma 2.10. Let G be reduced with respect to all path reduction rules and let V3
denote the set of vertices with degree at least 3 in G∗. If two vertices u,w ∈ V3 are
connected in G by a degree-2 path P, then |V(TP) \ {u,w}| ≤ 10 and |E(TP)| ≤ 11.
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Proof. Let P denote the degree-2 path between u and w.
Case 1: There is some vertex vi in P such that its pendant tree T vi is a Y-graph.
Then, since G is reduced with respect to Path Reduction Rules 2.1 and 2.2, P
contains at most two inner path vertices, one of which has degree 2. All in all,
|V(TP) \ {u,w}| ≤ 8 and |E(TP)| ≤ 9.
Case 2: K(P) = ∅. Since G is reduced with respect to Path Reduction Rule 2.3,
we know that |V(TP) \ {u,w}| ≤ 5 and, hence, |E(TP)| ≤ 6.
Case 3: K(P) , ∅. Since G is reduced with respect to Path Reduction Rule 2.4,
P is chained. But G is also reduced with respect to Path Reduction Rule 2.5, and,
thus, P contains at most six inner path vertices. At most two of these inner path
vertices generate tokens, all others are crossable (and therefore, have degree two).
Let vp and vq denote these two vertices in P. Then, their pendant trees T vp and T vq

are P2s. Thus, TP \ {u,w} contains at most 10 vertices and at most 11 edges. �

With the help of Lemma 2.10, we can now upper-bound the total number of
vertices and edges in graphs that are reduced with respect to all presented data
reduction rules.

Theorem 2.1. Two-Layer Planarization admits a problem kernel containing at
most 44( f − 1) vertices and at most 45( f − 1) edges, with f > 0 being the size
of a minimum feedback edge set of G. The problem kernel can be constructed
in O(( f + 1) · |G|) time.

Proof. Assume that the input G is reduced with respect to all presented data
reduction rules. For the analysis of the kernel size, we need the following notation.
Let V3 denote the set of vertices with degree at least 3 in G∗ and let G∗3 := (V3, E3)
denote the multigraph on V3 that contains an edge for every maximal degree-2
path in G. More specifically, E3 contains an edge {u,w} for every edge {u,w} ∈ E
with u,w ∈ V3, and, in addition, E3 contains an edge {u,w} for every maximal
degree-2 path of length at least three between two (not necessarily different)
vertices u,w ∈ V3. Thus, G∗3 may contain loops. Furthermore, let F with |F| = f
be a minimum feedback edge set of G and let F3 be a minimum feedback edge
set of G∗3 (we require that a feedback edge set of G∗3 contains all loops and all but
at most one edge between any two vertices). Clearly, |F3| ≤ f and G∗3

.
− F3 is a

forest and, thus, |E3| ≤ |V3|+ f − 1. Since the minimum degree15 of a vertex in G∗3
is 3, we know that

∑
v∈V3

degG∗3
(v) ≥ 3|V3|, and since the sum on the left hand

side equals 2|E3|, we know that 2(|V3| + f − 1) ≥ 3|V3|, implying |V3| ≤ 2( f − 1)
and |E3| ≤ 3( f − 1).
With the size of G∗3 bounded, we can use Lemma 2.10 to bound the size of G.
Each edge in G∗3 corresponds to a degree-2 path in G∗. Each vertex in V3 may

15A loop at vertex v contributes 2 to the degree of v.
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additionally be incident to a pendant tree (see Figure 2.5). Thus, we can bound
the number of vertices in G by |V(G)| ≤ |E3| · 10 + |V3| · 6 + |V3| ≤ 44( f − 1) and
the number of edges in G by |E(G)| ≤ 45( f − 1).
It remains to show the running time of the kernelization. In the following, we
prove that the path reduction rules can be applied to G in O(( f + 1) · |G|) time.
Recall that, in the proof of Lemma 2.1, L(v), P2(v) and Y(v) are constructed in
linear time for all vertices of G. Since both Path Reduction Rule 2.1 and 2.2
reduce the number of edges, they can only apply |E| times in total. Each such
application can be performed in constant time. It is easy to see that no degree-2
path is subject to more than one of the Path Reduction Rules 2.3–2.5. In the worst
case, the application of such a path reduction rule requires reapplying the tree
reduction rules, which may take O(|G|) time. Since |E(G∗3)| ≤ O( f ), we can bound
the running time by O(( f + 1) · |G|). �

2.4 Search Tree Algorithms
In this section, we provide two algorithms solving the Two-Layer Planarization
problem in O(6 f · f 2 + ( f + 1) · |G|) time and O(3.8 f · f + ( f + 1) · |G|) time,
respectively. Both algorithms employ a search-tree traversal, branching on dif-
ferent structures. The first algorithm is an adaptation of the search-tree algorithm
of Dujmović et al. [69], the second is an adaptation of the search-tree algorithm
of Suderman [182]. In both algorithms, each time the search-tree branches, the
feedback edge set shrinks in each branch, allowing us to bound the depth of the
search-tree in f . While the second algorithm has a better asymptotic running time,
the first algorithm is much simpler and easier to implement.
In the algorithms, we use the notion of branching rules (see Section 1.2.4).
Furthermore, we denote the non-bridge degree of a vertex v in G, that is, the
number non-bridges incident to v in G, by deg©G (v).

2.4.1 Straightforward Branching Algorithm

The algorithm runs in three phases. First, we apply a search-tree enumerating
partial solutions by branching on a certain type of 2-claw. Second, we branch
on small cycles in the remaining graph. In the third phase, we branch on the
tokens (see Section 2.3.2, page 38) that remain in the graph. The input graph G
considered in each phase is assumed not to be subject to any previous phase,
that is, G does not contain a structure that is branched on in a previous phase.
Furthermore, the input graph of each phase is assumed to be reduced with respect
to the data reduction rules presented in the previous section. We show that the
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total number of edge deletions done by branching in all three phases does not
exceed the feedback edge set number of the input graph G. In the following, we
present the three phases of our algorithm.

First Phase. In this paragraph, we describe the phase of the algorithm that
branches on short cycles and 2-claws that do not contain bridges (that is, edges
whose deletion disconnects G). Note that the bridges of G can be marked in linear
time. Now, a vertex v with deg©G (v) ≥ 3 is contained in a cycle of length at most
four or a 2-claw that does not contain bridges (see Lemma 2 in [69]). We use this
fact in the following branching rule.

Branching Rule 2.1. Let v ∈ V(G) with deg©G (v) ≥ 3.
1. If v is contained in a cycle of length at most four, then, for each edge e on

this cycle, create the partial solution {e}.
2. If v is contained in a 2-claw that does not contain bridges, then, for each

edge e in this 2-claw, create the partial solution {e}.

Clearly, Branching Rule 2.1 is correct and its branching number is at most 6. Since
no partial solution contains a bridge, the minimum feedback edge set number
decreases by one in each branch of the search tree. Note that, if G is reduced with
respect to Branching Rule 2.1, then all cycles in G are vertex disjoint.

Observation 2.4. If G is not subject to Phase 1, then all cycles in G are vertex-
disjoint.

Second Phase. With the first branching done, the next step is to eliminate all
small cycles in the remaining graph. In this context, “small” means at most four
vertices. We do this to assure that there is a remaining cycle that contains a token.
Since all cycles in G are vertex-disjoint, we can find a cycle C of length at most
four in G in O(|G|) time. Then, we can branch on the at most four possibilities to
destroy C by edge deletion.

Branching Rule 2.2. Let G be reduced with respect to Branching Rule 2.1 and
let C be a cycle of length at most four in G. Then, for each edge e in C, create the
partial solution {e}.

Since C is a cycle, no partial solution contains a bridge. Thus, the minimum
feedback edge set number decreases by one in each branch. Since the target graph
is a forest, we also know that one of the edges of C must be deleted, implying
correctness of Branching Rule 2.2. As stated above, Branching Rule 2.2 can be
applied in linear time.
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Since, in this phase, G is reduced with respect to to Branching Rule 2.1, it is
basically a tree of cycles and singletons. If G contains a cycle, then arbitrarily
rooting this tree enables us to consider a cycle of G that has maximum distance
from this root. Clearly, this cycle contains a vertex u such that Pu,u is a degree-2
path (see Section 2.3.2, page 33 for the definition of degree-2 paths). If G is
also not subject to Phase 2, then Pu,u contains at least five inner path vertices.
However, since G is reduced with respect to Path Reduction Rules 2.1 and 2.2,
we know that Pu,u cannot contain a vertex whose pendant tree is a Y-graph.
Furthermore, since G is reduced with respect to Path Reduction Rule 2.3, we
also know that K(Pu,u) , ∅ (see Section 2.3.2, page 38 for the definition of
tokens). Finally, if K(Pu,u) contained only two tokens and both contained �up

or �low, then both tokens together can only contain six edges of Pu,u. However,
since |E(Pu,u)| ≥ 6, the two tokens do not overlap, implying that there is a
token-separator in Pu,u, which contradicts G being reduced with respect to Path
Reduction Rule 2.4. Hence, there is a token in K(Pu,u) that does not contain �up

or �low.

Observation 2.5. Let G be reduced with respect to Branching Rules 2.1 and 2.2
and G contains a cycle. Then, there is a cycle of G that contains a vertex
generating a non-auxiliary token.

Third Phase. In the final part of the algorithm, we branch on the tokens in
the remaining cycles. Recall that, if the input graph is acyclic, then Lemma 2.2
implies that its size is constant. Hence, we assume G to contain a cycle. Then,
by Observation 2.5, some vertex of G generates a token K that we can use for
branching.

Branching Rule 2.3. Let G be reduced with respect to Branching Rules 2.1
and 2.2 and G contains a cycle. Let v be a vertex generating a non-auxiliary
token K. Then, for each edge e ∈ K, create the partial solution {e}.

Since the tokens of each vertex can be computed in O(1) time, we can apply
Branching Rule 2.3 in linear time. By definition, |K| ≤ 4 and, thus, Branching
Rule 2.3 has branching number at most four. Since K is non-auxiliary, all of
the edges of K are edges of Pu,u and, hence, they are edges of a cycle, implying
correctness of Branching Rule 2.3.
If we cannot find any further cycles in G, then G is a forest. However, since G is
reduced with respect to the data reduction rules, we know that in this case, G has
constant size (by Lemma 2.2) and, thus, can be solved in constant time.

Running Time. The algorithm presented in the previous paragraphs consists
of three branching rules. Branching Rule 2.1 has the highest branching number,



48 CHAPTER 2. Non-standard Parameters

hence, in the worst case, only Branching Rule 2.1 applies. Hence, the size of the
search tree is O(6 f ). Since each branching rule can be executed once in linear
time and the kernelization, which is to be applied in each branching step, runs
in O(( f +1)·|G|) time, we conclude that the algorithm runs in O(6 f ·( f +1)·|G|) time.

Theorem 2.2. Two-Layer Planarization can be solved in O(6 f · ( f + 1) · |G|)
time.

By initially applying the kernelization (see Section 2.3), we can bound the total
running time by O(6 f · f 2 + ( f + 1) · |G|).

Corollary 2.2. Two-Layer Planarization can be solved in O(6 f · f 2 + ( f +1) · |G|)
time.

2.4.2 Improved Branching Algorithm

In this section, we present a non-trivial adaptation of the algorithm of Suder-
man [182], which runs in O(3.8k · |G|) time.16 Suderman [182] defined five
branching structures and developed a branching rule for each of them (see Fig-
ure 2.11, page 52). However, the branching vectors of these rules are with respect
to the solution size k and not with respect to the feedback edge set number f . We
use the same structures for our branching, but, in order to maintain the branching
vectors, we ensure that the feedback edge set number decreases by the size of
the corresponding partial solution in each branch. To this end, we find specific
locations of branching structures in the input graph that allow this kind of branch-
ing. However, the price we pay for this advantage is that it becomes possible that
none of the branching rules apply to the input graph. To deal with such graphs,
we augment the process with a reduction rule that applies to graphs reduced with
respect to the branching rules, thereby solving the given instance.
In the following, we first describe our modified versions of Suderman’s branching
rules and prove that they have the desired branching vectors. Applying these
branching rules exhaustively leaves graphs with very specific properties. We
exploit these properties in a data reduction rule that shrinks all graphs to which no
other rules (branching or data reduction) apply. By repeated application, this rule
either produces a graph that allows application of other rules or reduces the graph
to constant size. Throughout the section, G denotes the input graph, G∗ denotes
its cyclic core (see Definition 2.1), and G© denotes the result of removing all
bridges from G.

16Note that Suderman [182] provided a refined algorithm running in O(3.562k · |G|) time that we
could not adapt for our parameterization.
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(a) Graph G; bold edges are
A-bridges

(b) Graph G∗; bold edges are
B-bridges

(c) Graph G©

Figure 2.10: Illustration of the graph G∗ that results from G by repeatedly remov-
ing degree-one vertices, and the graph G© that results from G by removing all
bridges. Bold edges in Figure 2.10a are A-bridges, bold edges in Figure 2.10b are
B-bridges.

2.4.2.1 Adapting Previous Branching Rules

The first branching rule of Suderman [182] branches on cycles of length at most
three and, thus, already decreases the feedback edge set number in each branch.

Branching Rule 2.4. Let u, v,w be vertices in G forming a cycle. Then, create
the partial solutions {{u, v}},{{v,w}}, and {{w, u}}.

In the following, we prepare the presentation of our core branching rules. To
this end, we develop a strategy to apply the branching rules of Suderman [182]
while avoiding to branch on bridges of G. This is necessary since, by definition,
deleting an edge e decreases the feedback edge set number by one if and only if e
is not a bridge. Here, two obstacles arise when trying to maintain the branching
vectors of the branching rules of Suderman [182]: First, there may be a bridge
of G in a partial solution. Second, a partial solution may contain two edges but
deleting one of them makes the other a bridge, implying that the feedback edge
set number decreases by one instead of two.
By carefully selecting a branching structure, we can avoid bridges of G. To this
end, we differentiate between two kinds of bridges in G. The first kind are edges
in G .

− E(G∗), that is, edges of pendant trees. We call them type A bridges or
simply A-bridges. The second kind are the bridges in G∗. We will call them type
B bridges (B-bridges). Figure 2.10 gives an intuition on the definition of both
kinds of bridges.
Lemma 2.6 states that there are optimal solutions that do not delete A-bridges
unless they belong to Y-graphs, implying that not all A-bridges pose a problem
to the branching rules. In fact, partial solutions that contain such an edge can be
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ignored. As it turns out, some of these remaining A-bridges are not as problematic
as others. Consider a Y-graph T v with v ∈ V(G∗). If v is incident to exactly two
non-bridges and no B-bridge,17 then we can assume an optimal solution to delete
either the A-bridge or both non-bridges. This allows us to discard branches that
delete both the A-bridge and any of the two non-bridges.

Lemma 2.11. Let Y be a pendant Y-graph with connection point v and center w
such that v is incident to exactly two non-bridges e1 and e2 and no B-bridge in G.
Then, there is an optimal solution S for G .

− {e1, e2} such that either S ∪ {{v,w}}
or S ∪ {e1, e2} is an optimal solution for G.

Proof. Let G′ = G .
− {e1, e2} and let H := G[NG[v] ∪ V(Y)]. Note that H

contains a 2-claw centered at w. Consider an optimal solution S ∗ for G and
let S H := S ∗∩E(H). Clearly, S ′ := S ∗ \S H is a solution for G′. Since H contains
a 2-claw, we know that |S H | > 0. If |S H | = 1, then S H does not contain e1 or e2
since in both cases H − S H contains a 2-claw. Clearly, deleting {v,w} is at least
as good as deleting any other edge of Y and, thus, we can assume S H = {v,w},
and the claim of the lemma follows. If |S H | = 2 then, since G′ = G .

− {e1, e2}, we
know that S ′ ∪ {e1, e2} is a solution for G and we know that |S ∗| = |S ′| + 2. Thus,
by optimality of S ∗, we conclude that S ′ ∪ {e1, e2} is optimal for G. �

In the following, we call an A-bridge {v,w} relevant if there is a Y-graph with con-
nection point v and center w that does not satisfy the conditions of Lemma 2.11,
that is, v is incident to B-bridges or more than two non-bridges.
Compared to the branching rules of Suderman [182], we have to select branching
structures more carefully. In the following, we describe how to find branching
structures in G such that applying a created partial solution decreases f (G) by the
size of the partial solution. To this end, let v ∈ V(G©). We define edges incident
to v that can be included in partial solutions.

Definition 2.3. Let v ∈ V(G©). We call v branchable if there are three non-
leaves v1, v2, v3 ∈ NG(v) such that
(1) For each 1 ≤ i ≤ 3, {v, vi} is not a relevant A-bridge.
(2) For each 1 ≤ i ≤ 3, there is no B-bridge incident to vi.
We call v1, v2, and v3 branching partners of v.

By finding a vertex with degree at least three in the graph that remains after
deleting all relevant A-bridges and all B-bridges from G, a branchable vertex and
its branching partners can be found in linear time. If all three branching partners
of v are in G©, then we require some additional properties of branching partners

17Note that, by Lemma 2.2, there is no other A-bridge incident to v in G.
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to prove the desired branching vectors. Fortunately, it is not hard to establish
these properties for given branching partners of v.

Lemma 2.12. Let v ∈ V(G©) be branchable and v has three branching partners
in G©. Then, there are three branching partners v1, v2, v3 ∈ V(G©) of v such that
(1) degG(v1) = 2⇒ degG(v2) = 2 and degG(v2) = 2⇒ degG(v3) = 2.
(2) if degG(v1) = 2, then deleting {v, v1} does not make {v, v2} a bridge, and
(3) if degG(v1) > degG(v2) = 2, then deleting {v, v2} does not make {v, v3} a

bridge.

Proof sketch. Given branching partners v1, v2, and v3 for v, we show how to
reorder and reassign them to abide by Lemma 2.12.
First, to establish (1), we can simply sort v1, v2, and v3 by their degree in G.
Second, to establish (2), we can just swap v2 and v3 if necessary. Finally, to
establish (3), note that if deleting {v, v2} makes {v, v3} a bridge, then, deleting
both {v, v2} and {v, v3} does not make {v, v1} a bridge. Since v1 ∈ V(G©), there is
some v4 ∈ NG© (v) such that {v, v4} is not a bridge in G. This allows us to replace v2
by v4, while degG(v1) > 2 ensures that both (1) and (2) remain intact. �

In the following, we assume that v is branchable and its branching partners v1,
v2, and v3 fulfill all properties of Definition 2.3 and Lemma 2.12. To complete
the branching structure, it remains to select appropriate edges incident to v1, v2,
and v3. To this end, we define sets E1, E2, and E3 of edges incident to v1, v2,
and v3, respectively.

Definition 2.4. For 1 ≤ i ≤ 3, let ei = {v, vi} and let Ei denote a set of at most
two edges of G such that

(i) all edges in Ei are incident to vi but not to v,
(ii) if |Ei| = 1, then degG(vi) = 2,

(iii) if degG©(vi) ≥ 3, then there is an edge {vi, u} ∈ Ei such that u is connected
to v via a path in G that avoids vi, and

(iv) if there is a bridge of G in Ei, then degG© (vi) = 2.

Algorithm 2.1 computes Ei for given v and vi in linear time. The bottleneck is
finding a suitable non-bridge that respects Definition 2.4(iii) in line 6 that can be
implemented by a graph traversal. We can now state the modified versions of the
branching rules of Suderman [182].

Branching Rule 2.5 (based on “CLAW0” [182] shown in Figure 2.11a). Let |E1| =

1. Then, create the partial solutions E1, E2, E3, and {e1, e2}. Discard all partial
solutions containing non-relevant A-bridges.
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Algorithm 2.1: Given v and vi, compute Ei in O(|G|) time.

1 Ni ← non-bridges incident to vi except for {v, vi};
2 if degG© (vi) = 2 then
3 Ei ← Ni;
4 if there is a bridge a incident to vi then add a to Ei;

5 else if degG© (vi) ≥ 3 then
6 Ei ← a non-bridge in Ni that respects Definition 2.4(iii);
7 add a non-bridge in Ni \ Ei to Ei;

v

v1 v2 v3

(a) CLAW0

v

v1 v2 v3

(b) CLAW1

v

v1 v2 v3

(c) CLAW2

v

v1 v2 v3

(d) CLAW3

Figure 2.11: Schematic view on four of the first five branching rules of Sud-
erman [182] (his rule called “3CYC” is omitted since it is equal to Branching
Rule 2.4). Gray ellipses indicate the edges deleted in each branch (each ellipse cor-
responds to a different branch). The branching vectors are (1, 1, 1, 2), (1, 1, 1, 2, 2),
(1, 1, 1, 2, 2), and (1, 1, 1, 2, 2, 2).

Branching Rule 2.6 (based on “CLAW1” [182] shown in Figure 2.11b). Let |E1| >
|E2| = 1. Then, create the partial solutions E2, E3, {e1}, and {e2, e3}. If E1 does
not contain an A-bridge, then additionally create the partial solution E1. Discard
all partial solutions containing non-relevant A-bridges.

Branching Rule 2.7 (based on “CLAW2” [182] shown in Figure 2.11c). Let |E2| >
|E3| = 1. Then, create the partial solutions E3, {e1}, and {e2}. For each 1 ≤ i ≤ 2,
if Ei does not contain an A-bridge, then additionally create the partial solution Ei.
Discard all partial solutions containing non-relevant A-bridges.

Branching Rule 2.8 (based on “CLAW3” [182] shown in Figure 2.11d). Let |E3| >
1. Then, create the partial solutions {e1}, {e2}, and {e3}. For each 1 ≤ i ≤ 3, if Ei

does not contain an A-bridge, then additionally create the partial solution Ei.
Discard all partial solutions containing non-relevant A-bridges.

The correctness proof of Branching Rules 2.5–2.8 is based on the correctness of
the original rules [182].
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Lemma 2.13. Branching rules 2.5–2.8 are correct, that is, for each of these
branching rules, one of the created partial solutions can be extended to an
optimal solution for G.

Proof. For the sake of contradiction, assume that none of the created partial
solutions can be extended to an optimal solution for G. Hence, by correctness of
the branching rules of Suderman [182], there is some 1 ≤ i ≤ 3 such that Ei is not
created and Ei can be extended to an optimal solution S ∗ for G. Since Ei is not
created, Ei contains an A-bridge b which, by Lemma 2.6, can be assumed to be
relevant. Hence, Definition 2.4(iv) implies degG© (vi) = 2 and, thus, Lemma 2.11
is applicable. Then, however, we can replace b with ei in S ∗, implying that the
partial solution {ei}, which is created in all branching rules in question, can be
extended to an optimal solution for G. �

We can show that the worst-case branching vector (1, 1, 1, 2, 2, 2) (see Figure 2.11)
is matched by our branching rules. First, we consider the case that a branching
partner of v is not in G© and show a worst-case branching vector of (1, 1, 2, 2)
in this case. Then, we prove that in case all branching partners are in G©, the
feedback edge set number decreases by the number of edges deleted. Thus, our
branching vectors equal those shown by Suderman [182].

Lemma 2.14. If one of the branching partners of v is not in G©, then the branch-
ing number of Branching Rules 2.5–2.8 is at most 2.733.

Proof. Let V ′ := {v1, v2, v3} \ V(G©). By Definition 2.3, no {v, vi} is a relevant
A-bridge or a B-bridge Hence, by the statement of the branching rules, all par-
tial solutions containing edges incident to vertices in V ′ are discarded. Thus,
if |V ′| ≥ 2, then the worst-case branching vector of the branching rules is (1, 1),
corresponding to a branching number of two. Hence, assume |V ′| = 1. Con-
sider |Ei| for all vi < V ′ and note that Ei does not contain a bridge of G because,
by Definition 2.3, branching partners of v are not incident to B-bridges and the
branching rules do not create Ei if it contains A-bridges. By Definition 2.4(iii),
deleting Ei decreases the feedback edge set number by |Ei|.
In the following, let V ′ = {vx} and recall that Ex and any partial solution contain-
ing ex contain non-relevant A-bridges and are, therefore, discarded. Consider the
branching rules separately:
Case 1: Branching Rule 2.5 applies to v. Then, by symmetry, we may rela-
bel v1, v2, v3 such that vx = v2. This implies a branching vector of (1, 1) corre-
sponding to a branching number of two.
Case 2: Branching Rule 2.6 applies to v. Then, either vx = v1, implying a branch-
ing vector of (1, 1, 2) or vx ∈ {v2, v3}, implying a branching vector of (1, 1, 2). In
both cases, the branching number is 2.415.
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Case 3: Branching Rule 2.7 applies to v. Then, either vx ∈ {v1, v2}, implying a
branching vector of (1, 1, 2) or vx = v3, implying a branching vector of (1, 1, 2, 2).
In both cases, the branching number does not exceed 2.733.
Case 4: Branching Rule 2.7 applies to v. Then, the branching vector is (1, 1, 2, 2),
corresponding to a branching number of 2.733. �

Lemma 2.15. Let v1, v2, v3 ∈ V(G©) and let S be a partial solution created by
one of Branching Rules 2.5–2.8. Then, removing the edges in S decreases the
feedback edge set number of G by |S |.

Proof. First, consider the case that |S | = 1, that is, S = {e}. If e is incident to v,
then, since v1, v2, v3 ∈ V(G©), e is not a bridge. If e is not incident to v, then,
e ∈ Ei for some 1 ≤ i ≤ 3. Since partial solutions Ei are only created if they do
not contain A-bridges and, by Definition 2.3, e is not a B-bridge, e is not a bridge.
In both cases, removing e decreases the feedback edge set number by one.
In the following, we assume |S | = 2, that is S = {e1, e2}. First, let S consist
of edges incident to v. Since v1, v2, v3 ∈ V(G©), neither e1 nor e2 are bridges.
Towards a contradiction, assume that deleting an edge of S makes the other a
bridge. Note that either S = {e1, e2} in Branching Rule 2.5 or S = {e2, e3} in
Branching Rule 2.6. The first case contradicts Lemma 2.12(2), the second case
contradicts Lemma 2.12(3).
In the following, we assume that the edges of S are not incident to v, that is,
S = Ei for some 1 ≤ i ≤ 3. Then, by Definition 2.3, Ei does not contain B-bridges
and by the statements of the branching rules, Ei does not contain A-bridges. Thus,
Ei consists of two non-bridges. Hence, degG©(vi) ≥ 3 and, by Definition 2.4(iii),
there is an edge e = {vi, u} in Ei such that there is a path from u to v that avoids vi.
Let Ei = {e, e′}. Clearly, deleting e′ does not make e a bridge, since, otherwise, all
paths from u to v would contain e′ and, therefore, also vi, contradicting the choice
of e. Hence, deleting Ei decreases the feedback edge set number by two. �

2.4.2.2 Reducing the Remaining Graph

In the following, we consider graphs that are reduced with respect to our branching
rules, that is, graphs to which none of the presented branching rules are applicable.
This is mostly due to branching partners not being incident to B-bridges (see
Definition 2.3). Thus, we present a way to deal with B-bridges. To this end,
consider the tree that results from G by contracting each connected component
of G© to a single vertex. We call this tree the “component tree” TC of G. By
considering a leaf in TC , we can limit the possibilities for branching structures
to contain B-bridges. Note that TC can be computed in linear time.
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In the following, we consider graphs G that are reduced with respect to the
presented data reduction and branching rules. Consider a leaf L in the component
tree TC of G and let u denote the only vertex in L that is incident to a B-bridge
in G. We can observe the following properties of G.

Observation 2.6. Let G be reduced with respect to all presented branching and
reduction rules. Let L be a leaf in TC and let u ∈ L with NG(u) * L. Then,
(a) G[L] does not contain B-bridges;
(b) |NG© (u)| = 2 because, otherwise, we could apply a branching rule to u;
(c) each vertex x ∈ L \ NG©[u] has at most two non-leaf neighbors in G since,

otherwise, we could apply a branching rule to x;
(d) the two vertices in NG©(u) have the same degree in G©, since by (c) and (b)

all degree-2 paths starting in one of them must end in the other.

Observation 2.6 fixes the structure of G[L] which we can exploit with the follow-
ing data reduction rule. In the following, we call a vertex dirty if its pendant tree
is not a leaf, a singleton or a Y-graph.

Reduction Rule 2.1. Let G be reduced with respect to all presented data re-
duction and branching rules and let L be a leaf in the component tree of G
such that the vertex u is the only vertex in L that is incident to a B-bridge in G.
Let {v,w} = NG© (u) such that w being dirty implies v being dirty. If degG© (v) = 2
and w is dirty, then delete an edge of G©[L] with maximum distance to u. Other-
wise, delete {u, v}. In both cases, decrement k by one.

Lemma 2.16. Reduction Rule 2.1 is correct and can be applied in linear time.

Proof. First, consider the case that degG© (v) = 2 and w is dirty. Then, by choice
of v, also v is dirty. Hence, by Observation 2.6(c), G©[L] is a degree-2 path
from u to u. There are no dirty vertices in L \ {u, v,w}, since otherwise, we could
apply a branching rule to this vertex. Hence, by reducedness with respect to Path
Reduction Rule 2.4, the 2-claws centered in v and w in G overlap in an edge with
maximum distance to u. Deleting an edge from G[L] that does not have maximum
distance to u does not destroy both 2-claws centered at v and w. Clearly, if any
optimal solution contains two edges of G[L], then replacing these two edges with
an edge with maximum distance to u and the B-bridge incident to u yields an
optimal solution for G.
In the following, we assume that deg G©(v) > 2 or w is not dirty. We prove that
there is an optimal solution S for G that contains {u, v}. We will use the following
arguments in the proof.
(1) If there is an optimal solution for G containing {u, v}, then we are done.

Hence, we assume that no optimal solution contains {u, v}. Then, however,
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for all solutions S , all 2-claws in G .
− ((S \ E(G[L])) ∪ {{u, v}}) have their

center in L, that is, “shuffling” edge deletions in G[L] does not create a 2-claw
whose center is not in L, as long as {u, v} is deleted.

(2) Let S ∗ be an optimal solution for G and assume that, for some pendant Y-
graph Y of a vertex z in G∗−v, S ∗ contains {z, c(Y)}. Then, there is an optimal
solution for G containing {u, v} if and only if there is an optimal solution
for G .

− {z, c(Y)} containing {u, v}. Thus, in the following, we assume that
no optimal solution contains an edge of a pendant Y-graph except for the
pendant Y-graph of v.

(3) If there is a vertex z with a pendant Y-graph in L, then, by (2), all optimal so-
lutions contain degG(z)− 1 edges incident to z. However, deleting degG(z)− 2
of these makes the last one a bridge. Hence, the feedback edge set number
decreases by only degG(z) − 2. Thus, the feedback edge set number of G[L]
plus the number of pendant Y-graphs in G[L] is a lower bound for the size
of a solution for G[L].

(4) The vertex u is not dirty, since otherwise, by Observation 2.6(b) the non-leaf
degree of u in G[L] is at least three, implying that we could apply a branching
rule to u.

Let fL denote the feedback edge set number in G[L] and let Z ⊆ E denote the set of
all relevant A-bridges in G[L]. Then, by Observation 2.6(c and d), fL = degG∗ (v)−
1. By (3), an optimal solution for G[L] contains at least |Z| + degG∗(v) − 1 edges.
We construct a solution S for G[L] that contains {u, v} and matches this lower
bound and show that S can be extended to an optimal solution for G.
If fL > 2, then, by Observation 2.6(c), degG© (v) > 3, implying that we could apply
a branching rule to v in G. Hence, in the following, we assume that 1 ≤ fL ≤ 2.
If fL = 1, let S := Z ∪ {{u, v}} and note that, by definition, w is not dirty. If fL = 2,
let S := Z ∪ {{u, v}, {w, z}} for some z ∈ NG©(w) − u and note that w is not dirty,
since otherwise, we could apply a branching rule to w in G .

− {u,w}. Since in both
cases degG© .−S (w) < 3 and Z ⊂ S , we conclude that w has at most two non-leaf
neighbors in G .

− S .
We show that S is a solution for G[NG[L]]. If this is not the case, then there is
a 2-claw centered at some x ∈ L in G[N[L]] .

− S . Clearly, x ∈ NG[L][u], since,
otherwise, we could have applied a reduction rule to x in G. By (4), x , u.
Since Z ⊂ S , we conclude x ∈ {v,w}. Since w has at most two non-leaf neighbors
in G .

− S , we conclude x , w and, hence, x = v. However, since {u, v} is not
in G[L] .

− S , we could apply a reduction rule to v in G, contradicting reducedness
of G. Since |S | = |Z| + fL, by (3), S is an optimal solution for G[N[L]]. Let S ∗

denote an optimal solution for G and let b denote the B-bridge incident to u.
If |S ∗ ∩ E(G[N[L]])| > |S |, then S ∪ {b} can be extended to an optimal solution
for G. Otherwise, G .

− (S ∪ (S ∗ \ E(G[N[L]])) contains a 2-claw, which, by (1)
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and S being an optimal solution for G[N[L]], is centered at u and contains b.
However, by (4), the 2-claw contains {u,w} and {u, v}, contradicting {u, v} ∈ S .
To prove that Reduction Rule 2.1 can be applied in linear time, recall that all
leaves of the component tree of G can be found in linear time and then solved
individually. Clearly, for each leaf L, we can check the conditions in O(1) time
and apply the deletion in O(|L|) time, implying linear time overall. �

Since Reduction Rule 2.1 can be applied whenever none of the other reduction or
branching rules can be applied, applying all presented rules exhaustively solves
the input instance. The worst-case branching vector corresponds to Branching
Rule 2.8 and is (1, 1, 1, 2, 2, 2). This implies a search tree with 3.8 f nodes. As
noted earlier, computing the sets E1, E2, and E3 takes linear time per vertex. By
running the kernel presented in Section 2.3 in the beginning, we can limit the time
spent in each search-tree node by O( f 2). This, however, implies an additional
time of O( f · |G|).

Theorem 2.3. Two-Layer Planarization can be solved in O(3.8 f · f 2+ f ·|G|) time,
where f denotes the feedback edge set number of the input graph.

2.5 Heuristic Speedups and Experimental Results
In this section, we describe the setting of our experiments. In particular, we
describe heuristic improvements of the algorithm that we implemented, explain
how our test-instances were generated, and give details of the machine, operating
system, programming language, and compiler settings we used in our tests.

2.5.1 Heuristic Speedups
In the following, we describe heuristic tricks that we used in our implementation
to speed up the computation of the size of an optimal solution.

Extending the Sets Ei. Observe that the correctness proofs of Suderman [182]
for the branching rules we employ are not limited to |Ei| ≤ 2. They work just as
well if Ei contains all edges incident to vi except {v, vi}. Hence, we extended the
sets Ei accordingly. Note that, since the new sets E′i are supersets of the sets Ei,
the branching vectors of Branching Rules 2.5-2.8 improve.

Analyzing and Sorting Branching Vectors. In each search-tree node, we are
challenged with finding a “good” branching structure to continue our search for
an optimal solution. A branching structure is good if the smallest branching
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number of any applicable branching rule is small. Our strategy is to find all
reasonable branching structures, sort them by their branching number, and branch
using the best possible branching rule. Here, “reasonable” means that, we find
at most one application of Branching Rule 2.4 since each such application has
branching number three. We use C-code of Chuang-Chieh Lin [51] to compute
the branching number of a branching vector. As soon as an application of a
branching rule with branching number one is found, we cancel the search for
other branching structures and use this one.

Additional Reduction. Lemma 2.6 tells us that, in graphs reduced with respect
to the tree reduction rules, we do not need to consider partial solutions containing
non-relevant A-bridges. Thus, if we find a branching structure such that all but
one of its edges are non-relevant A-bridges, then the branching rule degenerates
to a reduction rule.

Reduction Rule 2.2. Let {u, v} be an edge of the cyclic core G∗ of G such that
the pendant of u contains two P2s and the pendant of v is not a singleton. Then,
delete {u, v} and decrease k by one.

The correctness of Reduction Rule 2.2 follows from the discussion above. In
fact, with the heuristic improvement of the previous paragraph, our algorithm
implicitly applies Reduction Rule 2.2. However, explicit application of Reduction
Rule 2.2 saves some overhead since we avoid calling the subroutines for the
branching rules.

Computing each Component Separately. In each search-tree node, we use a
linear-time algorithm of Tarjan [186] to find and mark all bridges in the current
graph G. This algorithm is also capable of detecting whether G is disconnected.
If G contains multiple connected components, then an optimal solution is split
among them, allowing us to return the sum of the sizes of optimal solutions for
each component. This way, the number of leaves of the search-subtree rooted
at the current search-tree node is the sum of the leaves in the search-trees of the
connected components of G, instead of the product.

Branch & Bound with f as Lower Bound. We keep track of an optimal
solution found by our algorithm so far. If any branch cannot contain a better
solution, then we cancel the branching and return failure back to the parent of
the search-tree. Lower-bound techniques are used to determine whether a better
solution is possible in this branch. We tested different algorithms and found that
the best overall performance was delivered by simply using the feedback edge set
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number f as a lower bound. On the one hand, this is not a good bound, since f
can be far from the solution size k. On the other hand, f can be computed very
quickly (indeed, the previously mentioned scan for bridges we perform in each
search-tree node already provides this).

Permanent Edges. If a partial solution contains a single edge e then, after
searching the search-subtree corresponding to the deletion of this edge, we can
mark it “permanent”. This means that all optimal solutions for the current graph G
that contain e have been considered, so e can be excluded from further branching,
thereby improving the branching vectors.

2.5.2 Experiments
In this section, we discuss an implementation of our algorithm presented in
Section 2.4.2. The program solves the optimization variant of Two-Layer Pla-
narization, which asks for the minimum number of edge deletions to make the
input graph biplanar. The program contains implementations of all branching
and data reduction rules presented in Section 2.3 and Section 2.4.2. It comprises
about 3100 lines of code written in the C++ programming language.
For comparability of results, we followed the example of Suderman and White-
sides [183] and included the size of the search tree in the results, since this value
is a measure of speed that depends only on the algorithm, not the hardware.

Machines and Settings. The tests were run on an Intel(R) Xeon(R) E5-1620
CPU at 3.6GHz without taking advantage of the multiprocessor capabilities. The
systems were running Debian Linux with the following software versions.

GNU/Linux 3.2.0
GNU libc 2.13

gcc 4.7.1

The program was compiled with CFLAGS=-march=native -msahf -O3.

Instance Generation. We studied two test-case scenarios. First, we reproduced
the generated instances used by Mutzel [156], Suderman and Whitesides [183],
and Suderman [182] (where detailed descriptions on reproducing the instances
can be found). This test set comprises 1700 “dense” bipartite graphs (V1 ] V2, E)
with |V1| = |V2| = 20 and |E| between 20 and 100 and 900 “sparse” bipartite
graphs with |V1| = |V2| between 20 and 100 and |E| = 2|V1|. As shown in Table 2.1,
feedback edge set numbers are at most 60 for dense graphs and 32 for sparse
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graphs. Note that solution sizes are actually not much larger than the feedback
edge set numbers for these instances.
The second set of instances comprises 1500 large, sparse graphs that were gen-
erated by for each n ∈ {100i : 1 ≤ i ≤ 10} and each p ∈ {3%, 6%, 9%, 12%, 15%},
constructing a tree on n vertices and adding p · n edges uniformly at random. If
some insertion failed because the edge was already present, we repeated the inser-
tion with new random values so that the graphs are guaranteed to contain n−1+p·n
edges.
It turned out in the experiment that, for p ≤ 9%, all instances were solved in a
matter of milliseconds with search-tree sizes below 10. Thus, these cases are not
included in the table of results (Table 2.3). The way we created the instances
implies that the feedback edge set number for each instance is fix. Solution sizes
range between 20 and 225. Typically, the ratio of solution size to feedback edge
set number is between 1.4 and 1.7.

Results. The results obtained by the branching algorithm of Suderman [182]
and the ILP formulation of Jünger and Mutzel [130] are compared to the results
of our implementation in Table 2.1. First, consider the set of “dense” graphs
(first 17 rows). It is noteworthy that these graphs do not fit well in the picture
we painted in the intoduction. More precisely, their feedback edge set number f
differs from the solution size k by at most 2. This, however, cannot explain
the dramatic differences in search-tree sizes between the two algorithms. In the
following, we try to give an explanation of why our algorithm compares so poorly
to Suderman’s.

1. Looking at the search-tree sizes for the algorithm of Suderman, it quickly
becomes apparent that they differ only marginally for all k between 14 and
61 leading to the conjecture that the search-tree sizes are influenced by
some other, hidden factor.

2. It is easy to suspect that Suderman’s algorithm may achieve smaller search-
trees since it branches on bridges, thereby disconnecting the graph, allowing
both parts to be processed individually. However, our algorithm avoids
bridges completely, considering only those partial solutions that Suderman’s
algorithm would also have to consider later.

3. Since k and f are so close in these instances, constants in the kernelization-
bound may have an influence on the effectiveness of the preprocessing.
This becomes less likely when recalling that Suderman [182] showed a
comparison of his branching algorithm to the previously known Dujmović
et al. [69], which already incorporated the kernelization but could not solve
any instances with at least 60 edges.
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4. Suderman employs a very tight lower bound to cancel branches that cannot
yield a better solution than what was already computed. Our lower bound,
however, is simply the feedback edge set number of the current graph. If
this was indeed the cause of the observed difference in search-tree sizes,
then we could just replace our crude lower bound with Suderman’s.

5. Finally, Suderman describes a sophisticated divide-and-conquer technique
based on “p-components”. While a mathematical analysis of this technique
is open, Suderman described it as very effective and should be incorporable
in our algorithm as well.

Note that our running times still rival those of Suderman’s algorithm, which is to
be expected considering that the results for the older algorithm were obtained in
2005 on a 1GHz Pentium III computer [182].
On the “sparse” instances, we expected our algorithm to perform better than on
the set of dense graphs. In fact, we were able to solve a good portion of the larger
instances that could not be solved in the past. On the one hand, this may again be
due to our hardware advantage. On the other hand, we observe a larger divergence
between the parameters f and k.
A closer inspection of the running times of our implementation revealed that
Table 2.1 does not reflect the behavior of our algorithm very well. In particular,
some small spikes in running time and search-tree size bring down the average
performance of the algorithm. Therefore, we give a more detailed test in Table 2.2
and draw the (cumulative) distribution of running times on the set of dense graphs
in Figure 2.12. Notice the striking difference between average and median running
times and search-tree sizes that differ by a factor of up to 4, 500. Also note that,
after about one second, more than 90% of all “dense” instances were solved
(see Figure 2.12). The set of sparse graphs even contained instances of up to
60 vertices that were completely solved by the kernelization (search-tree size 1).
Table 2.2 and Figure 2.12 raise hope that our algorithm will perform well on a
wide range of inputs.
The performance of our algorithm on the second batch of instances is shown in
Table 2.3. For graphs with up to 1000 vertices and |E|/|V | ≤ 1.12, our algorithm
always finishes within half a second. However, for |E|/|V | = 1.15, we could
not even solve all instances containing 600 vertices. Again, the median running
times paint a brighter picture. Half of all input instances with 1000 vertices and
|E|/|V | = 1.15 were solved after about 2 minutes.
While we have to admit that the tested instances are very sparse, we also note that
Suderman [182] performed tests on instances with |E|/|V | = 0.6. Furthermore,
our algorithm is designed to run on sparse graphs. It seems unreasonable to try
and run it on dense graphs. Instead, we consider it an interesting open question
whether Two-Layer Planarization is fixed-parameter tractable and maybe even
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admits a polynomial-size problem kernel with respect to a density measure that is
small when the input graph is dense. Candidates may be the clique cover number,
the distance to cluster graphs (see Section 1.2.4, page 21) or the cliquewidth [53]
of the input. Note that this is of theoretical interest only, since, as mentioned
before, practical instances can be expected to be sparse.
Last but not least, we want to get a glimpse of the efficiency of our implementation
of the kernelization presented in Section 2.3. To this end, we plotted the time per
search-tree node versus the size of the input graph in Figure 2.13. Although the
time per search-tree node is also influenced by our elaborate method of selecting
the best possible branching vector first, we estimate that the application of the
reduction rules dominates the running time. Although no clear trend can be made
out in Figure 2.13, times between 100µs and 200µs per search-tree node can be
observed for all input sizes, suggesting a rather slowly growing function.

2.6 Conclusion
We presented a linear-size problem kernel and two search tree algorithms for
Two-Layer Planarization parameterized by the “feedback edge set number”, a
structural parameter that is upper-bounded by the size of an optimal solution. The
results represent a proof of concept for considering non-standard parameters, not
only for parameterized algorithms but also for polynomial-time preprocessing.
This is especially true since our asymptotic bounds with respect to f are equal
(for kernelization) or very close (for the search-tree algorithm) to the best known
bounds with respect to the standard parameter “solution size”.
We implemented and tested the kernelization procedure in conjunction with
our search-tree algorithm. We concluded that the previous algorithm by Sud-
erman [182] is, on average, superior to our implementation on “dense” graphs.
However, our algorithm is designed to perform well on sparse graphs, which
we could demonstrate. Unfortunately, we could not pit our algorithm against
Sudermans [182] on the treelike testgraphs. Our implementation could profit from
Suderman’s “p-component” technique which is worth looking into before running
further comparisons. We interpreted the slow increase in running time per search-
tree node (Figure 2.13 as an indicator for the efficiency of our kernelization imple-
mentation. It remains to back this up with a more thorough theoretical analysis.
Another interesting line of research is opened by replacing edge deletion as the
allowed graph modification operation by the so-called “node duplication” opera-
tion18, yields the Node Duplication based Crossing Elimination problem [43, 44,
45, 189], which has applications in the design of molecular quantum-dot cellular

18For a vertex v, duplicating v means to delete v and introduce u, u′ with N(u) ] N(u′) = N(v).
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automata [43] and in visualization of gene ontologies in bioinformatics [189]. It
is interesting whether our kernelization and search-tree algorithm can be adapted
to work for this problem as well.
In light of the linear-time algorithm for edge-weighted Two-Layer Planarization
on trees presented by Shahrokhi et al. [174], it is interesting to investigate whether
our kernelization approach also holds for the edge-weighted case.
Providing efficient fixed-parameter algorithms (in particular polynomial-size
problem kernels) for parameters upper-bounded by the feedback edge set number
is a natural next step to extend the range of solvable instances of Two-Layer
Planarization. The feedback vertex set number would be a canonical candidate.
Additionally, it may be promising to investigate the parameter k′ = (k − f ) that
represents an “above guarantee” parameter for the problem. Finally, extending
our results to the multilayered problem versions [70] is an interesting endeavor.
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ILP 3.562k search tree [182] 3.8 f search tree
|Vi | |E| k f Time Time Steps % Time Steps %
20 20 1 0 0 0 2 100 0 1 100
20 25 2 1 0 0 2 100 0 1 100
20 30 3 2 0 0 5 100 0 2 100
20 35 6 4 1 0 14 100 0 4 100
20 40 8 6 6 0 76 100 0 26 100
20 45 11 9 26 0 85 100 0 157 100
20 50 14 13 100 4 4, 694 100 0 897 100
20 55 18 17 81 1 946 100 0 2, 417 100
20 60 23 22 56 5 6, 232 100 1 18, 596 100
20 65 27 27 54 3 3, 645 97 8 305, 501 99
20 70 32 31 26 7 8, 263 99 14 489, 962 98
20 75 37 36 22 2 2, 249 100 4 147, 080 99
20 80 41 41 12 2 2, 060 99 1 27, 630 99
20 85 46 46 20 5 5, 366 100 2 82, 563 99
20 90 51 51 8 6 6, 503 99 2 89, 623 99
20 95 56 55 4 8 8, 276 99 3 126, 372 97
20 100 61 60 4 4 5, 243 98 1 37, 733 96
20 40 7 6 6 0 95 100 0 24 100
30 60 11 10 49 0 356 100 0 231 100
40 80 16 13 150 3 3, 002 100 0 1, 546 100
50 100 19 16 14 11, 876 99 1 21, 754 99
60 120 24 19 64 48, 240 96 2 37, 182 99
70 140 28 23 129 91, 339 88 6 112, 015 99
80 160 31 26 22 339, 282 90
90 180 35 29 44 661, 619 91

100 200 38 32 74 1, 097, 335 81

Table 2.1: Results of the first batch of tests. The numbers in each row are averaged
over the instances that were solved successfully. The column labeled “Steps”
contains the numbers of search-tree nodes visited by the respective algorithm.
Times are in seconds. The ILP was canceled after 300s of processing, the search-
tree algorithms were canceled after 600s of processing. The column labeled “%”
gives the percentage of instances solved in under 600 seconds. The figures in
columns 5–8 have been measured in 2005 [182].
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running time (s) search-tree size
|Vi | |E| f % max med avg min max med avg
20 20 0 100 0.04 0.01 0.01 1 5 1 1
20 25 1 100 0.02 0.01 0.01 1 5 1 1
20 30 2 100 0.01 0.01 0.01 1 7 1 2
20 35 3 100 0.01 0.01 0.01 1 22 2 4
20 40 6 100 0.01 0.01 0.01 1 110 18 26
20 45 10 100 0.04 0.01 0.01 8 935 80 157
20 50 14 100 0.22 0.02 0.04 15 6, 753 253 897
20 55 18 100 1.69 0.01 0.08 17 64, 137 102 2, 417
20 60 22 100 8.27 0.01 0.55 20 283, 476 128 18, 596
20 65 27 99 0.02 8.35 23 > 9M 117 305, 501
20 70 31 98 0.02 14.21 32 > 21M 107 489, 962
20 75 36 99 0.02 4.25 35 > 8M 85 147, 080
20 79 41 99 0.01 0.73 33 > 1M 88 27, 630
20 84 46 99 0.02 2.28 43 > 3M 139 82, 563
20 89 51 99 0.02 2.30 44 > 5M 77 89, 623
20 94 55 97 0.02 3.20 46 > 5M 84 126, 372
20 99 60 96 0.02 1.07 56 > 1M 109 37, 733
20 40 6 100 0.02 0.01 0.01 1 231 13 24
30 60 9 100 0.16 0.01 0.02 1 3, 099 73 231
40 80 13 100 1.92 0.02 0.07 4 53, 860 212 1, 546
50 100 16 99 0.04 0.91 1 > 1M 403 21, 754
60 120 19 99 0.22 1.90 1 > 1M 3, 852 37, 187
70 140 23 99 0.61 6.22 32 > 1M 11, 098 112, 015
80 160 26 90 1.90 21.65 158 > 5M 37, 172 339, 282
90 180 29 91 3.66 43.76 8 > 6M 60, 600 661, 619

100 200 32 81 26.16 73.52 132 > 8M 323, 228 1, 097, 335

Table 2.2: Detailed results for running times and search-tree sizes of our O∗(3.8 f )-
time algorithm ( f denoting the feedback edge set number) run on the first batch
of tests. The minimum running times never exceeded 10ms and were therefore
dropped from the table. Since maxima are not very meaningfull if the timelimit of
600s was hit, maximum running times are omitted and for maximum search-tree
sizes, we just give a lower bound. Herein, > 6M means that a canceled process
had explored over 6 million search-tree nodes at the point of termination. Note
that averages also loose meaning in this case, but medians do not.
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Chapter 3

Kernelization and Efficiency

A popular idea to simplify an input graph is replacing large parts of the input that
have limited “interaction” with the rest of the graph by smaller parts, that mimic
this interaction (that is, to the rest of the graph, it does not matter whether the
large or the small part interacts with it). This concept has been formalized and
examined extensively [18, 27, 92, 93, 104, 105, 121, 132]. A groundbreaking first
result in this line of research was the linear-size problem kernel for Dominating
Set on planar graphs [8]. This result can be seen as a catalyst for the rapid growth
of results on problem kernels. In this chapter, again Dominating Set on planar
graphs serves as a starting example, now for studying the issue of linear-time
kernelizability as a natural goal within polynomial-time data reduction. To date,
kernelization races were mainly about the size of the produced problem kernel.
For example, the NP-hard Feedback Vertex Set problem (given an undirected
graph and a positive integer k, find at most k vertices whose deletion destroys all
cycles in G), was shown to admit an O(k11)-vertex problem kernel [33], which
was later improved to an O(k3)-vertex problem kernel [24] and finally to an
O(k2)-vertex problem kernel [188] (with unspecified polynomial running time). A
similar story can be told for the arc-deletion variant Feedback Arc Set restricted
to tournaments (that is, oriented cliques). Dom et al. [62] observed that a simple
“high-degree” preprocessing yields a problem kernel containing O(k2) vertices.
Then, Bessy et al. [16] improved this bound to a linear number of vertices using
so-called transitive modules. Notably, modular decompositions have proven use-
ful in developing kernelization algorithms for graph modification problems [103]
and can be computed in linear time [108, 152]. In the case of Feedback Arc Set
in Tournaments, however, additional time-consuming rules are required [16].
In some sense, the race for better and better bounds on the problem kernel size (by
developing polynomial-time data reduction rules) goes in parallel to the race for
better factors in polynomial-time approximation algorithms. From the viewpoint
of practical relevance, however, the omission of running time considerations
beyond mere “polynomial time” is a significant deficiency in these (theoretically
well justified) races. In many practical settings even quadratic running times
may be unacceptable [79, 171, 187]. Hence, it is a natural goal to see what
solution quality, let it be approximation factor or problem kernel size, can be
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achieved when requiring linear-time computability. For instance, returning to
(the minimization version of) Feedback Vertex Set, there is a polynomial-time
factor-2 approximation algorithm [12] and a linear-time factor-4 approximation
algorithm [13]. Thus, it is natural to analyze the trade-off between output quality
and running time. This is at least as interesting for kernelization algorithms as
it is for approximation algorithms, since kernelizations can be combined with
other algorithms. For example, combining a linear-time cubic-size kernelization
with a cubic-time linear-size kernelization allows computation of a linear-time
problem kernel in “almost linear” time (for small parameter values). Combining a
linear-time kernelization with an approximation algorithm can improve the quality
of the solution, since a smaller part of the solution needs to be approximated. This
leads to the central question “what problem kernel sizes can be achieved in linear
time?”. Unfortunately, so far this question has been widely neglected in designing
kernelization algorithms and only recently received elevated attention [19, 109,
110, 168].

In this chapter, we show that a linear-size problem kernel for Dominating Set on
planar graphs can be computed in linear time, whereas previous kernelization
algorithms needed cubic time [8, 46]. Since this turns out to be a demanding
task, we refrain from analyzing the constant factor for the problem kernel size.19

We affirmatively answer a question posed independently by Jiong Guo and Saket
Saurabh at the Workshop on Kernelization 2010 (WorKer’10) held in Novem-
ber 2010 in Leiden, Netherlands; that is, a linear-time linear-size kernel for
Dominating Set in planar graphs is possible.

Synchronously with our initial publication of large parts of this chapter, another
linear-time kernelization for Dominating Set on planar graphs was shown by
Hagerup [109]. While the new reduction rules presented by Hagerup [109] may
lead to a less complex analysis, our approach of recycling the old reduction rules
of Alber et al. [8] may have the advantage of greater versatility: our approach
can likely be applied to a variety of NP-hard problems on planar graphs (see
[104]) and bears the possibility of improving the kernel-size similarly as the work
of Chen et al. [46] and Wang et al. [194].

Emphasizing and tuning of running times of preprocessing algorithms becomes
increasingly popular. For example, van Bevern [18] presented a linear-time kernel-
ization for the famous Hitting Set problem with constant-size sets. Linear-time
kernelizations have also been shown for the Edge Dominating Set problem with
respect to the solution size k [201, 110].

19A standard analysis leads to large constants—however, a refined analysis may improve them
significantly.
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3.1 Introduction to Dominating Set on Planar Graphs

Planar graph problems have played an important role in the development of sev-
eral lines of research in parameterized complexity analysis. For example, the
topic of subexponential time fixed-parameter algorithms was first studied for
Dominating Set on planar graphs [7, 64].

Intuitively, Dominating Set is the problem of finding a small “dominating set” in
a graph. Herein, a dominating set is a set of vertices such that all other vertices
have a neighbor in the dominating set. More formally, we define the following.

k-Dominating Set
Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Is there a vertex set V ′ ⊆ V with |V ′| ≤ k and N[V ′] = V?
Parameter: k

Input: Solution:

It is interesting to note that, for our considerations, knowledge of the parameter
value k, that is, the maximum allowed size of a dominating set, will not be
explicitly used in our algorithms. Instead, we formulate our results with respect to
the “domination number γ(G) of the input graph G”, that is, the smallest number γ
such that (G, γ) ∈ Dominating Set.

In this chapter, we consider Dominating Set restricted to planar input graphs. For
this variant, there was at first a 335k-vertex problem kernel [8], which was later
refined into a 67k-vertex problem kernel [46], both computable in cubic time.20

Chen et al. [46] focused on “engineering” data reduction rules in order to obtain
a small provable kernel size. Here, we aim at engineering the usage of known
(and “established”) data reduction rules to improve the time complexity, instead
of aiming for new data reduction rules.

20Experimental work showed that the corresponding data reduction rules are useful on several
real-world data sets [9].
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Our Contributions

Revisiting previous data reduction rules for Dominating Set on planar graphs [8],
we shift the focus to the execution time of data reduction, improving it from cubic
to linear time. To this end, we “rework” the known rules and their mathematical
analysis and carefully analyze their interaction. Our central observation is that one
can significantly gain efficiency by a non-exhaustive application of data reduction
rules. More specifically, implementing the known data reduction rules [8] in the
natural and straightforward way would “unavoidably” lead to quadratic running
time: The reason for this is that one has to inspect a quadratic number of vertex
pairs that all may define a so-called (potential) region of a planar embedding of
the input graph. In fact, Alber et al. [8] proved that their reduction rules can be
implemented to run in cubic time. Thus, one of our major technical contributions
is to restrict the region decomposition concept (introduced by Alber et al. [8])
so that the inspection and, thus, the data reduction can be done much faster. In
this way, we achieve an O(k)-vertex problem kernel for Dominating Set on planar
graphs in linear time. Our main theorem is the following.

Theorem 3.1. Dominating Set on planar graphs admits a problem kernel of
size O(γ(G)). This kernel can be computed in linear time.

Notably, our kernel size analysis is not as fine-grained as the previous ones [8, 46],
meaning that we did not analyze the constant factor for the upper bound on
the number of problem kernel vertices. However, since multiple kernelization
algorithms can be run on top of each other (this makes them quite different from
approximation algorithms), using our algorithm as spear-head in combination
with Chen et al.’s algorithm [46], we can achieve a problem kernel with 67k ver-
tices in O(n + k3) time. This makes the quest for a sharper kernel size analysis
somewhat moot.

Organization of the Chapter

In Section 3.2, we recall the basic ideas of Alber et al. [8] and compare their
results to ours. In Section 3.3, we present our data reduction rules and show their
correctness and running time. We go on to show how these rules are to be executed
in order to achieve the claimed kernelization in Section 3.4. We conclude the
chapter in Section 3.5 with a short resume and some open questions in the context
of linear-time problem kernelization. To help navigate the results, Figure 3.1
gives an overview over the dependency graph of the lemmas and propositions
used in this chapter.
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Lemma 3.8

Lemma 3.9Lemma 3.10

Lemma 3.12 Lemma 3.13

Lemma 3.14

Lemma 3.15

Lemma 3.11

Lemma 3.16

Lemma 3.17

Lemma 3.18

Proposition 3.1
“regions small”

Lemma 3.19

Lemma 3.20

Lemma 3.21

Proposition 3.2
“non-regions small”Lemma 3.6

Lemma 3.2 Lemma 3.3 Lemma 3.4

Lemma 3.5
“Alg. 3.2 time”

Lemma 3.1
“Rule 3.1 time”

Theorem 3.1

Figure 3.1: The structure of statements used to prove Theorem 3.1, the main
theorem of this chapter. Statements with a gray background are for bounding the
size of the kernel while statements with a black border help bound the running
time of the kernelization. As seen in this picture, we show the running time in the
earlier sections and prove the kernel size later.

Notation

In our algorithms, graphs are represented as adjacency lists. We use the joint
neighborhood NG(v,w) of two vertices to denote (NG(v) ∪ NG(w)) \ {v,w} and
the closed joint neighborhood NG[v,w] := NG[v] ∪ NG[w]. A set U ⊆ V(G)
separates a vertex v from a set U′ ⊆ V(G) if every path from v to a vertex in U′

contains a vertex of U.
A K5 is a clique with five vertices. A K3,3 is a graph with vertex set V ]V ′, where
each vertex in V is adjacent to every vertex in V ′ and |V | = |V ′| = 3. A graph G′ is
a minor of G if G can be transformed into G′ by edge deletions, vertex deletions,
and edge contractions. By the famous Wagner-Kuratowski theorem, a graph G is
planar if and only if neither the K5 nor the K3,3 is a minor of G. A planar graph
can be embedded into the two-dimensional plane. A planar graph with a fixed
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embedding is called a plane graph.
Note that planar graphs are sparse in the sense that the number m of edges is linear
in the number n of vertices, more precisely m ≤ 3n − 6 by Euler’s polyhedron
formula that has been shown many times in the literature [77]. and planarity is
inherited by subgraphs (that is, deleting vertices or edges does not destroy the
property of being planar).

3.2 Comparison to Previous Kernelizations
To obtain a linear-size problem kernel for Dominating Set on planar graphs, we
employ a framework developed by Alber et al. [8]. They showed that a planar
graph G with domination number γ(G) can be decomposed into O(γ(G)) so-called
“regions”. By applying data reduction rules, they ensure that each of these regions
has constant size and that only O(γ(G)) vertices are not contained in any region.
We follow a similar approach, modifying their data reduction rules to run in linear
time.
The notion of “regions” is central in this chapter. We give a short intuition of its
definition. Given an embedding of a planar graph G, a region R can be pictured
as an area of this embedding that is enclosed by two paths p1 and p2 of length at
most three. R can therefore contain vertices, as illustrated in Figure 3.2. Each
region contains two vertices v and w such that N[v,w] contains all vertices of R
and a boundary (consisting of p1 and p2) that separates R from the rest of the
plane. Furthermore, a region decomposition of an embedding of G is a collection
of regions in this embedding such that no two regions overlap (two regions may
touch each other at their boundary, sharing vertices of the two boundary paths).
More formally, we define the following.

Definition 3.1. Let G be a plane graph. A region R(v,w) between two vertices v
and w (v , w)is a closed bounded subset of the plane such that:

1. the boundary of R(v,w) is formed by two v-w-paths21, each of which has
length at most three and

2. all vertices in R(v,w) are also in N[v,w].

For ease of presentation, we denote by R(v,w) also the set of vertices in a re-
gion R(v,w) and by ∂R(v,w) the set of vertices on the boundary paths of a
region R(v,w) including v and w. The vertices in R(v,w) \ ∂R(v,w) are the inner
vertices of R(v,w).
Alber et al. [8] showed that each dominating set D of a planar graph G yields a
so-called maximal D-region decomposition with O(|D|) regions.

21This includes degenerated cases where the two paths have common vertices besides v and w.
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v w

Figure 3.2: Illustration of a region R(v,w). The boundary ∂R(v,w) (consisting of
two v-w-paths) is drawn with bold edges. The vertices in R(v,w) are drawn black.

Definition 3.2. For a plane graph G and D ⊆ V(G), a D-region decomposition
of G is a set R of regions between pairs of vertices in D such that

1. ∀v,w ∈ D and R(v,w) ∈ R, it holds that D ∩ R(v,w) = {v,w} and
2. for two distinct regions R1,R2 ∈ R, it holds that (R1 ∩ R2) ⊆ (∂R1 ∩ ∂R2),

that is, each vertex that is in both R1 and R2 is also part of the boundary
of R1 and the boundary of R2.

For a D-region decomposition R, we denote the set of vertices that are contained
in regions of R by V(R) :=

⋃
R∈R R. A D-region decomposition R is maximal if

there is no region R < R such that R′ := R ∪ {R} is a D-region decomposition
with V(R) ( V(R′).

Using data reduction, Alber et al. [8] shrink to constant size all regions that may
potentially be part of a D-region decomposition for a minimum dominating set D
of the input graph G. Since |D| = γ(G), such a region decomposition comprises
O(γ(G)) regions. Together with an O(γ(G))-bound on the number of vertices that
are not in regions, this shows the linear size of the kernel. This data reduction can
be performed in O(n3) time [8].
Our goal is to modify the data reduction rules of Alber et al. [8] so that they can
be applied in linear time instead of cubic time. Unfortunately, we have to make
some sacrifices regarding the effectiveness of the data reduction rules, which we
explain in Section 3.3.

3.3 Data Reduction Rules
In this section, we first describe two data reduction rules and show that they are
correct, that is, they maintain planarity and do not change the domination number
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v

∈ NG
1 (v)

∈ NG
2 (v)

∈ NG
3 (v)

Figure 3.3: Illustration of the sets NG
1 (v) (“exits”), NG

2 (v) (“guards”), and NG
3 (v)

(“prisoners”).

of the input graph. Then, we show how to execute them in linear time. Whenever
we introduce new vertices into a graph, we call them dummy vertices. Moreover,
we assume that our data reduction rules can check in O(1) time whether a vertex
is a dummy vertex. This can be achieved by marking dummy vertices accordingly.
Note that these marks are to be removed from the final output graph in order to
obtain a proper Dominating Set instance (where unmarked graphs are required
as input).

3.3.1 Private Neighborhood Rule

Following Alber et al. [8], we partition the neighborhood of a vertex v of a graph G
into three subsets (see Figure 3.3): “exits” are neighbors of v who have another
neighbor outside the neighborhood of v. “Guards” are neighbors of exits of v. All
remaining neighbors of v are called “prisoners”. More formally, we define the
following.

“exits” NG
1 (v) := {u ∈ NG(v) : NG(u) \ NG[v] , ∅},

“guards” NG
2 (v) := {u ∈ NG(v) \ NG

1 (v) : NG(u) ∩ NG
1 (v) , ∅},

“prisoners” NG
3 (v) := NG(v) \ (NG

1 (v) ∪ NG
2 (v)).

For simplicity, we use NG
1,2(v) as shorthand for NG

1 (v) ∪ NG
2 (v) and, likewise,

NG
1,3(v) and NG

2,3(v) for NG
1 (v) ∪ NG

3 (v) and NG
2 (v) ∪ NG

3 (v), respectively.
Now, we can formulate our variant of Rule 1 of Alber et al. [8] for planar graphs.
The conditions on the neighborhood-sizes ensure that the reduction rule is not
applicable if NG

3 (v) consists of a single degree-one vertex.
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Reduction Rule 3.1. Let v ∈ V(G) and let |NG
3 (v)| > 1 or |NG(NG

3 (v))| > 1. Then,
remove NG

3 (v) from G and attach a new degree-one dummy vertex v′ to v.

The decisive distinction between our reduction rule and the original one of Alber
et al. [8] is that we do not delete NG

2 (v). This helps us exclude cascades of Reduc-
tion Rule 3.1. The conditions on the neighborhood-sizes ensure that the reduction
rule is not applicable if NG

3 (v) consists of a single degree-one vertex.
Intuitively, a prisoner or guard of v cannot dominate more than v and since all
prisoners have to be dominated, v can be assumed to be in an optimal solution.
Formally, the correctness of Reduction Rule 3.1 follows from the correctness
of Reduction Rule 1 used by Alber et al. [8], as we only delete a subset of the
vertices that Alber et al. show to be safely removable.
Before we show the running-time of Reduction Rule 3.1, observe that, whenever
it is applied to a vertex v satisfying the conditions of Reduction Rule 3.1, v gains a
degree-one-neighbor. Thus, we can observe that v is neither a guard nor a prisoner
for (almost) any vertex

Observation 3.1. Let v be a vertex whose neighborhood contains a degree-one-
vertex w. Then, for all u ∈ NG(v) \ {w}, it holds that v < NG

2,3(u) and, therefore,
NG[v] ∩ NG

3 (u) = ∅.

By removing only a subset of the removable vertices, we can show that, for an
exhaustive application of Reduction Rule 3.1, it is sufficient to apply Reduction
Rule 3.1 once for every vertex. In this way, we can prove Lemma 3.1.

Lemma 3.1. For planar graphs, Reduction Rule 3.1 can be applied exhaustively
in O(n) time.

Proof. Let G be a planar graph, and let v ∈ V(G) be a vertex that does not
satisfy the conditions of Reduction Rule 3.1, that is, neither |NG

3 (v)| > 1 nor
|NG(NG

3 (v))| > 1. We show that, in the graph G′ that results from applying Re-
duction Rule 3.1 to a vertex u ∈ V(G) \ {v}, the vertex v still does not satisfy the
conditions of Reduction Rule 3.1. This implies that, in order to apply Reduction
Rule 3.1 exhaustively to G, it is sufficient to apply Reduction Rule 3.1 at most
once to each vertex. As shown by Alber et al. [8, Lemma 2], this can be done
in O(n) time for planar graphs.
Towards a contradiction, assume that Reduction Rule 3.1 is applicable to v in G′.
Then, because Reduction Rule 3.1 does not add edges between vertices in V(G),
all prisoners of v in G′ are neighbors of v in G. However, since Reduction Rule 3.1
is not applicable to v in G, it holds that NG′

3 (v)∩NG
1,2(v) , ∅. In the following, we

show that NG′
3 (v) and NG

1,2(v) are disjoint, contradicting the assumption that Reduc-
tion Rule 3.1 is applicable to v in G′. To this end, recall that each vertex in NG

2 (v)
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is adjacent to a vertex in NG
1 (v). Hence, it is sufficient to show that, for each x ∈

NG
1 (v), it holds that NG[x] ∩ NG′

3 (v) = ∅. In the following, we show NG[x] ⊆
NG[u]. This is sufficient since, by Observation 3.1, NG′ [u]∩NG′

3 (v) = ∅, implying

NG[x] ∩ NG′
3 (u) = NG[x] ∩ (NG′

3 (u) ∩ V(G′)) ⊆ NG′ [u] ∩ NG′
3 (u) = ∅.

We distinguish the following cases:
Case 1: x ∈ NG′

2,3(v). Then, Reduction Rule 3.1, when applied to u, deletes
all neighbors of x that are nonadjacent to v. Let y ∈ NG(x) \ NG[v] be one
such neighbor. Since y is deleted by Reduction Rule 3.1, we know that y ∈
NG

3 (u), implying x ∈ NG[u] \ NG
1 (u). Then, however, NG[x] ⊆ NG[u], imply-

ing NG′[x] ⊆ NG′[u]. Hence, u is adjacent to v in G. Because u has a degree-
one dummy neighbor in G′, no vertex in NG′[u] is contained in NG′

3 (v). Since
NG(x) ∩ V(G′) ⊆ NG′ [u], this implies NG[x] ∩ NG′

3 (v) = ∅.
Case 2: x < NG′

2,3(v). Then, it suffices to show that the vertices in NG(x) are not
in NG′

3 (v). If x ∈ NG′
1 (v), then NG(x) ∩ NG′

3 (v) = ∅. Hence, consider the subcase
where x < NG′

1 (v). This implies x < NG′(v) and, thus, x would have been deleted
by Reduction Rule 3.1. Therefore, we have x ∈ NG

3 (u), that is, NG[x] ⊆ NG[u],
implying v ∈ NG(u). Again, because u has a degree-one dummy neighbor in G′,
no vertex in NG′ [u] is contained in NG′

3 (v), implying NG[x] ∩ NG′
3 (v) = ∅. �

In the following, we say that a graph G is reduced with respect to Reduction
Rule 3.1 if Reduction Rule 3.1 is not applicable to G.

3.3.2 Joint Neighborhood Rule

In this section, we present a data reduction rule that shrinks regions to constant
size. This rule is based on Reduction Rule 2 by Alber et al. [8] which removes
certain vertices from the sets N(v,w) for vertices v,w ∈ V . However, we cannot
compute N(v,w) for all vertex pairs v,w ∈ V in linear time. We circumvent this
problem by showing that it is sufficient to only remove vertices from efficiently-
computable subsets N0(v,w) ⊆ N(v,w) for a linear number of vertex pairs. More
specifically, N0(v,w) contains vertices on short low-degree v-w-paths:

Definition 3.3. A vertex v with deg(v) ≤ 78 is called a low-degree vertex. A v-
w-path consisting only of v, w, and low-degree vertices is called a low-degree
path.

The constant 78 as bound for low-degree vertices is the result of the mathematical
analysis and can almost surely be improved using a more intricate analysis.
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v w

< N0(v,w)

∈ N1(v,w)

∈ N2(v,w)

∈ N3(v,w)

Figure 3.4: An illustration of Definition 3.4.

Note that all low-degree paths of constant length c starting at some vertex v can
be found in O(deg(v)) time by starting a breadth-first search at v, only descending
on low-degree vertices and stopping at depth c.

Observation 3.2. For a vertex v, all constant-length low-degree paths starting
at v can be listed in O(deg(v)) time.

To present our data reduction rule, we need the following definition of joint neigh-
borhoods. It strongly resembles the definition used by Alber et al. [8, Section
2.2]. The difference here is that our sets NG

i (v,w) for i ∈ {1, 2, 3} are defined
with respect to NG

0 (v,w) instead of NG(v,w). The set NG
0 (v,w) consists of those

vertices in NG(v,w) that are low-degree vertices and lie on a short low-degree
v-w-path. These two properties allow us to compute NG

0 (v,w) efficiently. The
following definition is illustrated in Figure 3.4.

Definition 3.4. Let v,w be vertices in a planar graph G. We define

NG
0 (v,w) := {u ∈ NG(v,w) : u is on a low-degree v-w-path of length

at most four that consists entirely of vertices in NG[v,w]},

NG
0 [v,w] := NG

0 (v,w) ∪ {v,w}

“exits” NG
1 (v,w) := {u ∈ NG

0 (v,w) : NG(u) \ NG
0 [v,w] , ∅},

“guards” NG
2 (v,w) := {u ∈ NG

0 (v,w) \ NG
1 (v,w) : NG(u) ∩ NG

1 (v,w) , ∅},

“prisoners” NG
3 (v,w) := NG

0 (v,w) \ (NG
1 (v,w) ∪ NG

2 (v,w)).
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Again, we write NG
1,2(v,w), NG

1,3(v,w) and NG
2,3(v,w) for NG

1 (v,w) ∪ NG
2 (v,w),

NG
1 (v,w) ∪ NG

3 (v,w) and NG
2 (v,w) ∪ NG

3 (v,w), respectively.

Using Definition 3.4, we present our second data reduction rule in form of Al-
gorithm 3.2, which we then explain. Algorithm 3.2 basically corresponds to
Reduction Rule 2 of Alber et al. [8] with the main difference that we do not
explore the whole neighborhood N(v)∪N(w) of v and w but rather a large enough,
efficiently computable part of it. We also make multiple small adjustments in order
to avoid having to reapply Reduction Rule 3.1 to v or w. For each pair v,w ∈ V
with NG

0 (v,w) , ∅, Algorithm 3.2 removes a subset of NG
0 (v,w) from the graph G

and, if applicable, attaches degree-one dummy vertices to v or w. We first explain
the data reduction between lines 6 and 11 and then explain the purpose of the
EnsurePaths procedure called in lines 4 and 5. The set N3 introduced in line 6
of Algorithm 3.2 is the set of vertices that may possibly be removed. We will
see that N3 can be efficiently computed and updated. Moreover, the choice of N3
ensures the correctness of the data reduction executed by Algorithm 3.2, which can
be seen by comparing it to Reduction Rule 2 of Alber et al.: it is straightforward to
observe that, if the condition in line 7 is satisfied, then the corresponding condition
for Reduction Rule 2 of Alber et al. is also satisfied. Moreover, in this case, we
remove only vertices that Alber et al. showed to be safely removable. Other than
Alber et al. [8], we choose vertices z, z′ in line 8 that already exist in the graph.
For us, this is important to be able to state that only (degree-one) dummy vertices
are ever added by the reduction rules and that no dummy vertex is attached to
other dummy vertices, which will simplify later proofs to some extend.

Lemma 3.2. Let v,w be vertices of a planar graph G′ and let N3 ⊆ NG′
3 (v,w) ∩

NG′ (v)∩NG′ (w) with |N3| ≥ 4. Then, N3 contains vertices z, z′ with {z, z′} < E(G′)
and (NG′ (z) ∩ NG′ (z′)) \ N3 = {v,w}.

Proof. First, observe that a vertex u ∈ V(G′) \ {v,w} cannot have three distinct
neighbors u1, u2, u3 ∈ N3 as this implies a K3,3-minor on the vertex set {u1, u2, u3}]

{u, v,w} in G′, contradicting its planarity. More specifically, this implies that, for
each z, z′ ∈ N3, a vertex in (NG′(z) ∩ NG′(z′)) \ {v,w} does not have a neighbor
other than z, z′ in N3.
Assume towards a contradiction that, for any two vertices z, z′ ∈ N3, it holds
that {z, z′} ∈ E(G′) or there is a vertex yzz′ ∈ (NG′ (z) ∩ NG′ (z′)) \ (N3 ∪ {v,w}). In
order to show that the vertices in N3 ∪ {v} form a K5 minor, which contradicts
the planarity of G′, consider a pair of vertices z, z′ ∈ N3 with {z, z′} < E(G′).
By assumption, there is a vertex yzz′ ∈ (NG′(z) ∩ NG′(z′)) \ (N3 ∪ {v,w}) and,
by the observation above, NG′(yzz′) ∩ N3 = {z, z′}. Thus, contracting one of the
edges {yzz′ , z} and {yzz′ , z} for all such pairs z, z′ ∈ N3, for which a vertex yzz′ exists,
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Algorithm 3.2: Reduce Vertices in Regions.

1 compute NG
0 (v,w) for all v,w ∈ V with NG

0 (v,w) , ∅;
2 G′ ← G;
3 foreach (v,w) such that v and w are non-dummy vertices and NG

0 (v,w) , ∅
do

4 EnsurePaths(G′, v,NG
0 (v,w));

5 EnsurePaths(G′,w,NG
0 (v,w));

6 N3 ← NG′
3 (v,w) ∩ NG

0 (v,w);
7 if |N3| ≥ 4 and no vertex u < {v,w} dominates N3 in G′ then
8 if N3 ⊆ NG′ (v) ∩ NG′ (w) then remove the vertices in N3 \ {z, z′}

from G′, for arbitrary z, z′ ∈ N3 with
(NG′ (z) ∩ NG′ (z′)) \ N3 = {v,w} and {z, z′} < E(G′);

9 else if N3 ⊆ NG′ (v) and N3 * NG′ (w) then remove N3 from G′

and (unless already done before) attach a degree-one dummy
vertex v′ to v;

10 else if N3 * NG′ (v) and N3 ⊆ NG′ (w) then remove N3 from G′

and (unless already done before) attach a degree-one dummy
vertex w′ to w;

11 else if N3 * NG′ (v) and N3 * NG′ (w) then remove N3 from G′

and (unless already done before) attach a degree-one dummy
vertex v′ to v and a new degree-one dummy vertex w′ to w;

12 return G′;

results in a minor of G′ where all vertices in N3 are pairwise adjacent. Because
all vertices in N3 are adjacent to v and since |N3| ≥ 4, the vertices in N3 together
with v form a forbidden K5 minor. �

We now explain the EnsurePaths procedure called in line 4 and line 5 for a vertex
pair (v,w). Observe that the graph G′ considered in the for-loop in line 3 of
Algorithm 3.2 is not necessarily reduced with respect to Reduction Rule 3.1 since
previous iterations of the loop might have deleted vertices. Thus, it might happen
that some vertex u ∈ NG

0 (v,w) is not in NG′
0 (v,w) when the pair (v,w) is considered

in line 3. Such a situation is illustrated in Figure 3.5 and could arise if all of u’s
low-degree v-w-paths are destroyed by data reduction rules executed for some
other vertex pair. As illustrated in Figure 3.5, this could prevent Algorithm 3.2
from removing u or some of its neighbors. In the situation shown, applying
Reduction Rule 3.1 to v would delete u. Hence, in order to ensure that a vertex
in G′ that is in NG

0 (v,w) in on some low-degree v-w-path in G′, it could help to
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Procedure EnsurePaths(G′, x,NG
0 (v,w))

// for x, u ∈ V(G′), let B(x, u) := {u′ ∈ V(G′) \ {x} : distG′−{x}(u, u′) ≤ 2}
1 N ldeg

3 (x)← {u ∈ NG′
3 (x) ∩ NG

0 (v,w) : B(x, u) has only low-degree vertices};
2 if |NG′ (N ldeg

3 (x))| > 1 then remove N ldeg
3 (x) from G′ and (unless x already

has one) attach a new degree-one dummy vertex to x;

v wu

< N0(v,w)

∈ N1(v,w)

∈ N2(v,w)

∈ N3(v,w)

B(v, u)

Figure 3.5: In G′, the vertex u is not on a v-w-path of length at most four.
Therefore, u and its neighbors are not deleted by a call of Algorithm 3.2. However,
u ∈ N3(v). Hence, Reduction Rule 3.1 would delete u. Recall that B(v, u) consists
of all vertices that have distance at most two to u in the graph that results from
deleting v. Since B(v, u) (surrounded by the dashed line) contains only low-degree
vertices, EnsurePaths will delete u as well.

apply Reduction Rule 3.1 to v and to w. However, doing so for each considered
pair (v,w) might be too time-consuming.
For this reason, we employ EnsurePaths. Called for an x ∈ {v,w}, the procedure
first computes a set of low-degree prisoners of x whose low-degree v-w-path has
been destroyed. Then, it removes these vertices if applying Reduction Rule 3.1
would also delete them. The condition that B(x, u) (that is, roughly the vertices at
distance at most two from u in NG′ (x)) contains only low-degree vertices merely
ensures that we can efficiently22 check whether u ∈ NG′

3 (x). This is needed since
spending O(deg(x)) time (as we did in Reduction Rule 3.1) for each region with
anchor x may exceed linear time. Since EnsurePaths deletes only a subset of the
vertices that Reduction Rule 3.1 would delete, EnsurePaths is correct. Moreover,
observe that in Figure 3.5, an application of EnsurePaths to v would delete u.

To execute Algorithm 3.2 one can compute all sets NG
0 (v,w) in linear time using

Algorithm 3.3. Also, to compute N3 in line 6, we have to verify containment in
22In this context, “efficiently” means “in overall linear time”, that is, summing up the time spend in

EnsurePaths over all regions with anchor x in a fix region-decomposition must not exceed O(deg(x)).
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NG′
3 (v,w) for a number of vertices. The following lemma shows that this can be

done efficiently.

Lemma 3.3. Let G be a planar graph containing vertices u,v, and w. Then,
u ∈ NG

3 (v,w) can be checked in O(1) time.

Proof. To check whether some vertex u is in NG
3 (v,w), we have to test u ∈

NG
0 (v,w). This is equivalent to checking whether u is a low-degree vertex and

whether u is on a low-degree v-w-path consisting of vertices in NG[v,w]. Check-
ing whether u is a low-degree vertex is possible in O(1) time. If this is the case,
then, according to Observation 3.2, generate a list L of all low-degree paths of
length at most three starting at u in O(deg(u)) = O(1) time. We have to check
whether two of these paths can be combined to a low-degree v-w-path in NG[v,w].
Obviously, L contains O(1) paths. Now, for the O(1) pairs of paths p, p′ ∈ L,
check i) whether p and p′ only intersect in u, ii) whether the lengths of p and p′

sum up to at most four, iii) whether p connects v to u and p′ connects u to w,
and iv) whether all vertices in p and p′ are in NG[v,w]. Since all vertices except
the endpoints of paths in L are low-degree vertices and since these paths have
O(1) length, these tests can be performed in O(1) time. Obviously, u ∈ NG

0 (v,w),
that is, u is on a low-degree v-w-path in NG[v,w] of length at most four, if and
only if a pair of paths p, p′ passes all these tests.
Having shown how to decide u ∈ NG

0 (v,w) in O(1) time, we can now de-
cide u ∈ NG

3 (v,w). To this end, we first check u ∈ NG
0 (v,w). If so, in O(deg(u)) =

O(1)) time, we enumerate all low-degree paths of length at most two that start
in u and avoid {v,w}. There are O(1) such paths. For each such path, we check in
O(1) time whether all of its vertices are in NG

0 (v,w). This is the case for all paths
if and only if u ∈ NG

3 (v,w). �

Lemma 3.4. The sets NG
0 (v,w) for all vertices v,w ∈ V(G) with NG

0 (v,w) , ∅
can be enumerated in O(n) time.

Proof. To prove the claim, Algorithm 3.3 is employed. The correctness of the
computation is straightforward to verify, it remains to analyze Algorithm 3.3’s
running time. By Observation 3.2, the for-loop in line 2 runs O(deg(v)) times
for each v ∈ V . Hence, it runs at most

∑
v∈V O(deg(v) + 1) = O(n) times. Since

we are dealing with low-degree paths of length O(1), the body of the for-loop
in line 2 takes O(1) time. It follows that the for-loop in line 2 runs in O(n) time
and, furthermore, thatD has O(n) list entries. In line 6, the listD is sorted using
radix sort. The keys to sort are triples. Hence, over the alphabet V , the length of
the keys to sort is three. It follows that the sort in line 6 runs in O(n) time. The
for-loop in line 7 iterates over the O(n) entries inD, where each operation in the
body clearly takes O(1) time. Hence, Algorithm 3.3 runs in O(n) time. �
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Algorithm 3.3: Compute NG
0 (v,w) for all v,w ∈ V(G) with NG

0 (v,w) , ∅.

Input: A planar graph G = (V, E) with vertices numbered V := {1, . . . , n}.
Output: NG

0 (v,w) for all v,w ∈ V with NG
0 (v,w) , ∅.

1 D ← empty list; /* (v,w, u) ∈ D will be equivalent to u ∈ NG
0 (v,w) */

2 for v ∈ V and each low-degree path p of length at most four starting at v
do

3 w← ending vertex of p;
4 if all vertices of p are in NG[v,w] then
5 foreach vertex u ∈ V \ {v,w} of p do append (v,w, u) toD;

6 sortD in lexicographic order using radix sort;
7 foreach (v,w, u) ∈ D in lexicographic order do /* collect NG

0 (v,w) */
8 (v′,w′, u′)← previous element inD;
9 if v , v′ ∨ w , w′ then /* first encounter of the pair (v,w) */

10 new set NG
0 (v,w)← {u};

11 else if u , u′ then add u to NG
0 (v,w); /* avoids duplicates */

12 return NG
0 (v,w) for all v,w ∈ V with NG

0 (v,w) , ∅;

Since we can efficiently check membership of a vertex in NG
3 (v,w) and we can

compute the sets NG
0 (v,w) for all pairs of vertices v and w in linear time (see

Lemma 3.4), we have all the ingredients needed to prove the running time of
Algorithm 3.2.

Lemma 3.5. On planar graphs, Algorithm 3.2 can be executed in O(n) time.

Proof. We have to show that Algorithm 3.2 works in O(n) time. By Lemma 3.4,
line 1 of Algorithm 3.2 can be executed in O(n) time. We assume that line 1
yields a list L of pairs (v,w) with NG

0 (v,w) , ∅. Also, whenever a new degree-
one dummy vertex is attached to a vertex u, we mark u in order to remem-
ber this. We do not add further degree-one vertices to marked vertices. Now,
we prove that for each (v,w) ∈ L, the body of the for-loop in line 3 is exe-
cutable in O(|NG

0 (v,w)|) time. Then, the total running time of Algorithm 3.2
is

∑
(v,w)∈LO(|NG

0 (v,w)|). By Lemma 3.4, this is in O(n) In the following, let G′

denote the current graph, and let (v,w) ∈ L be the current pair in an iteration of
the main for-loop in line 3 of Algorithm 3.2.
In the following, we show that procedure EnsurePaths can be implemented to run
in O(|NG

0 (v,w)|) time. Let B(x, u) be defined as in procedure EnsurePaths. First,
check for each vertex u ∈ NG

0 (v,w) whether u ∈ N ldeg
3 (x) in O(1) time: if B(x, u)

only contains low-degree vertices, then u ∈ NG′
3 (x) is checkable in O(1) time



CHAPTER 3. Kernelization and Efficiency 85

by simply checking whether every vertex within distance two to u in G′ − {x}
is adjacent to x. If so, then u ∈ N ldeg

3 (x). If, in this process, we encounter a
high-degree vertex within distance two to u in G′ − {x}, then clearly B(x, u) does
not only contain low-degree vertices and, thus, u < N ldeg

3 (x). Hence, proce-
dure EnsurePaths can compute N ldeg

3 (x) in O(|NG′
0 (v,w)|) time. Deleting these

vertices can be done in constant time per vertex because their degrees are constant.
Thus, procedure EnsurePaths runs in O(|NG

0 (v,w)|) time.

Next, we show that the remainder of the main for-loop in line 3 of Algorithm 3.2
runs in O(|NG

0 (v,w)|) time. The computation of N3 in line 6 can be done by
testing u ∈ NG′

3 (v,w) for each u ∈ NG
0 (v,w). By Lemma 3.3, this is possible

in O(|NG
0 (v,w)|) time. Testing whether N3 can be dominated by a single vertex

in V(G′) \ {v,w} in line 7 can be done in O(|NG
0 (v,w)|) time with the following

idea. First, compute the set X := NG′[N3] \ {v,w}, that is, N3 and all neighbors
of N3-vertices in G′ (except for v and w). Since N3 ⊆ NG

0 (v,w) and each vertex
in N3 is a low-degree vertex, X can be computed in O(|NG

0 (v,w)|) time. To
test the “if”-condition in line 7, it remains to check whether N3 * NG′[u] for
each u ∈ X since vertices in N3 can only be dominated by some vertex u ∈ X
or {v,w}. Now, by definition, all neighbors of a vertex in NG′

3 (v,w) are in NG′
0 (v,w),

implying X ⊆ NG′
0 (v,w). Hence, each u ∈ X is a low-degree vertex, allowing us

to test N3 * NG′[u] in O(1) time: if |NG′[u]| < |N3|, then, clearly, N3 * NG′[u].
Otherwise, |N3| ≤ |NG′[u]| and, since NG′[u] has constant size, we can check
in O(1) time whether N3 * N[u]. Thus, the condition in line 7 can be checked
in O(|X|) ⊆ O(|NG

0 (v,w)|) time.

We can check whether N3 ⊆ N(v), N3 ⊆ N(w), and N3 ⊆ N(v,w) for given (v,w)
in O(|N3|) time: for each vertex u ∈ N3, simply test v ∈ N(u) and w ∈ N(u), re-
spectively. Since vertices in N3 are low-degree vertices, this test runs in O(1) time
for each u ∈ N3. It follows that all conditions from lines 7 to 11 in Algorithm 3.2
can be tested in O(|N3|) ⊆ O(|NG

0 (v,w)|) time.

To execute line 8, we have to find two vertices z, z′ ∈ N3 with {z, z′} < E(G′)
and (NG′(z) ∩ NG′(z′)) \ N3 ⊆ {v,w}. By Lemma 3.2, such vertices exist. If
|N3| ≤ 78(78−1) + 1, then we can simply find z and z′ by checking for each vertex
pair in N3 whether it satisfies the condition. This takes O(1) time since N3 has con-
stant size and contains only low-degree vertices. Otherwise, |N3| > 78(78− 1) + 1.
Choose an arbitrary vertex u ∈ N3. Observe that u is a low-degree vertex and
it is (except for v and w) only adjacent to low-degree vertices. Then, since
|N3| > 78(78 − 1) + 1, a vertex z′ ∈ N3 exists that is not connected to u by a path
of length at most two that does not contain v and w. That is, choosing z := u, a
vertex z′ ∈ N3 exists such that {z, z′} < E(G′) and NG′(z′) ∩ NG′(z) ⊆ {v,w}. We
can check for each z′ ∈ N3 whether z′ ∈ NG′(z) and NG′(u) ∩ NG′(z′) ⊆ {v,w}.
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Since, z′ is a low-degree vertex, each such check takes O(1) time. Hence, we
find z and z′ in O(|N3|) ⊆ O(|NG

0 (v,w)|) time.
Deletion of an N3-vertex from G′ is doable in O(1) time since only low-degree
vertices are deleted. Hence, also the deletion of N3 runs in O(|NG

0 (v,w)|) time and
the lemma follows. �

This concludes the presentation of our reduction rules. In the next sections, we
prove that careful application of Reduction Rule 3.1 and Algorithm 3.2 allows
proving a linear bound on the number of vertices in the output of our kernelization
algorithm. As long as the total number of applications of these data reductions is
constant, the whole kernelization algorithm runs in linear time.

3.4 Problem Kernel

In this section, we present our kernelization algorithm based on the data reduction
rules shown in the previous section. We prove that, given a planar graph G, the
kernelization algorithm computes a graph G′ with γ(G) = γ(G′) whose size is
linear in γ(G) in three phases. Each phase applies Reduction Rule 3.1 or Algo-
rithm 3.2 to finally output the problem kernel. Note that these applications are
not necessarily exhaustive, but enough to bound the size of G′. The result of each
phase i will be called Gi. We finally show that |V(G3)| ∈ O(γ(G)).
Phase 1: Apply Reduction Rule 3.1 to each vertex of G. Let G1 denote the

resulting graph. By Lemma 3.1, G1 is computable in O(n) time and is
reduced with respect to Reduction Rule 3.1.

Phase 2: Apply to G1 (in order):
1. Algorithm 3.2
2. Reduction Rule 3.1 exhaustively
3. Algorithm 3.2
4. Reduction Rule 3.1 exhaustively

Let G2 denote the result. By Lemmas 3.1 and 3.5, G2 is computable in
O(n) time. Lemma 3.15 shows that most vertices in G2 have constant
degree.

Phase 3: Apply to G2 (in order):
1. Algorithm 3.2
2. Reduction Rule 3.1 exhaustively

Let G3 denote the result. Using the fact that in G2 most vertices have only
O(1) neighbors and that G2 is reduced with respect to Reduction Rule 3.1,
we will show that Phase 3 removes enough parts from G2 to obtain the
problem kernel graph G3.
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Because our kernelization algorithm applies Reduction Rule 3.1 and Algorithm 3.2
a constant number of times and since Lemmas 3.1 and 3.5 state that we can apply
them in linear time, it follows that the kernelization algorithm runs in linear time.
To prove that the size of G3 is linear in γ(G), we show that almost all vertices
in G2 have at most 78 neighbors. Exploiting this together with the fact that G2 is
reduced with respect to Reduction Rule 3.1, we can show that, in Phase 3, Algo-
rithm 3.2 removes enough vertices from G2 to obtain a problem kernel whose size
is linear in γ(G). To this end, let D′ denote the set of vertices in V(G1) ∩ V(G3)
to which dummy vertices have been attached in phases two or three, that is,

D
′ := {v ∈ V(G1) ∩ V(G3) : NG3 (v) \ V(G1) , ∅}.

Our argumentation then evolves around a dominating set D ⊇ D′ of size at
most 2γ(G) for G1. The “extension” D of D′ incorporates this factor-two blowup
because of one case (namely if N3 ⊆ NG′ (v) ∩ NG′ (w) in line 8) of Algorithm 3.2)
in which we cannot tell whether v or w is in an optimal dominating set.
We use a maximal D-region decomposition of G1 with respect to an arbitrary
embedding. Note that we may not be able to efficiently compute D. However,
D and the embedding of G1 are only required for the analysis. Before using a
maximal D-region decomposition of G1 to prove that structure of G1 transfers
to G2 and G3, we show that D exists.

Lemma 3.6. There is a dominating set D ⊇ D′ for G1 with |D| ≤ 2γ(G).

Proof. We first show that dummy vertices are never attached to other dummy
vertices. This implies that dummy vertices, in particular those contained in
V(G1) \ V(G3), always remain degree-one vertices. For the sake of contradiction
assume that G′ and G′′ are two intermediate graphs in the computation of G3 such
that

1. G′ is the the last graph in which no two dummy vertices are adjacent and
2. G′′ is the first graph such that there is a dummy vertex v ∈ V(G′) ∩ V(G′′)

that is adjacent to another dummy vertex u ∈ V(G′′) \ V(G′).
Then, u is attached to v by some data reduction rule. Clearly, since Algorithm 3.2
does not apply to dummy vertices, u is attached to v by Reduction Rule 3.1. Then,
|NG′

3 (v)| > 1 or |NG′(NG′
3 (v))| > 1. Since v is not adjacent to dummy vertices

in G′, it follows in both cases that v has at least two non-dummy neighbors in G′,
contradicting the fact that dummy vertices are attached only to single vertices.
Now we construct the dominating set D. Each vertex v ∈ D′ has a neighbor
in u ∈ V(G3) \ V(G1), which is a degree-one vertex. Since N[u] ⊆ N[v], the
vertex v, and, analogously, all other vertices in D′ can be assumed to be part of
a minimum dominating set of G3. That is, |D′| ∈ O(γ(G3)). Now, let D∗ be a
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minimum dominating set of G1. Obviously, also D := D′ ∪ D∗ dominates G1.
Since our data reduction rules are correct, we have γ(G1) = γ(G3) = γ(G) and,
therefore, |D| ≤ 2γ(G). �

In the rest of the chapter, we will base our reasoning on a fix D-region decom-
position R of G1 with |R| ∈ O(|D|) = O(γ(G)). As shown by Alber et al. [8,
Proposition 1], R exists. Notice that, if a degree-one dummy vertex is attached
to a vertex v, then neither Reduction Rule 3.1 nor Algorithm 3.2 can delete v.
Instead, v is in G3, where it still has a dummy neighbor. Then, v ∈ D′ ⊆ D and
therefore, v is an anchor in theD-region decomposition R. Hence, we can observe
the following.

Observation 3.3. Let R(v,w) ∈ R be a region. Reduction Rule 3.1 and Algo-
rithm 3.2 do not attach dummy vertices to any vertex in R(v,w) \ {v,w}.

Observation 3.3 ensures that, in none of the graphs G1, G2, and G3, the inner
vertices of a region R ∈ R have neighbors that are not in R. In this way, Obser-
vation 3.3, to a certain extent, preserves the region structure of G1 in G2 and G3.
Our proof of the problem kernel size then works as follows: Proposition 3.1 shows
that Phase 3 shrinks the number of vertices inside of regions of R to O(γ(G)) and
Proposition 3.2 shows that Phase 2 shrinks the number of vertices that are not in
any region of R to O(γ(G)). The proof of these main propositions are deferred
to Sections 3.4.2 and 3.4.3, respectively. In the proof of Proposition 3.1, we use
the essential fact that, as a result of Phase 2, inner vertices of regions in R that
are also present in G2 have constant degree in G2. This is stated as Lemma 3.7
and we dedicate Section 3.4.1 to proving it.

Lemma 3.7. Let R(v,w) be a region in R and let u ∈ V(G2) \ {v,w}. If {v,w} ⊆
V(G2), then |NG2 (u) ∩ R(v,w)| ≤ 78.

Proposition 3.1. Let R(v,w) ∈ R. Then, |V(G3) ∩ R(v,w)| ∈ O(1).

Proposition 3.2. |(V(G1) \ V(R)) ∩ V(G2)| ∈ O(γ(G)).

Finally, we bound the number of vertices added by our kernelization algorithm
(dummy vertices). Since, by Lemma 3.6, |D′| ∈ O(γ(G)) and since each vertex is
incident to at most one dummy vertex, it follows that there are at most O(γ(G))
vertices in V(G3) \ V(G1). We conclude that G3 consists of O(γ(G)) vertices,
yielding our central theorem.

Theorem 3.1. Dominating Set on planar graphs admits a problem kernel of
size O(γ(G)). This kernel can be computed in linear time.
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v

w

Figure 3.6: A raw diamond (A,U, P) as defined in Definition 3.5. Gray vertices v
and w are the “anchors” A, black vertices are “umpires” U and white vertices
are “pendants”. Since the far left and right umpires have neighbors outside the
raw-diamond, they are “boundary vertices” UB. All pendants are adjacent to v
and separated from V \ N[v] by U ∪ {v}.

3.4.1 The Degree of Inner Vertices of Regions
(Proof of Lemma 3.7)

This section shows that if a region R(v,w) of the D-region decomposition R of G1
contains a vertex u < {v,w} of high degree, then we can find a diamond-like sub-
structure of R, called a “raw diamond” (see Figure 3.6). We also show that such
raw diamonds are shrunk to constant size by Algorithm 3.2 in Phase 2. We obtain
the result that raw diamonds in G1 have constant size in G2 and, from this, obtain
results on the maximum degree of vertices in R(v,w)—thus proving Lemma 3.7.

Definition 3.5. Let G = (V, E) be a planar graph and let v,w ∈ V be distinct. A
raw diamondD(v,w) in G is a triple (A,U, P) such that U, P ⊆ V, A ∈ V ×V, and

“anchors” A := (v,w),
“umpires” U ⊆ N(v) ∩ N(w), and

“pendants” P ⊆ N(v) \ ({v,w} ∪ U) such that {v} ∪ U separates P and V \ N[v].23

Let V(D(v,w)) denote the set {v,w} ∪ U ∪ P, let UI := {u ∈ U : N(u) ⊆
V(D(v,w))} denote the inner vertices ofD(v,w), and let UB := U \UI denote the
boundary vertices. If deg(u) ≤ 40 for all u ∈ UI , then D(v,w) is a low-degree
diamond. For convenience, we also use A as a set, meaning {v,w} instead of (v,w).

23That is, all paths between a vertex in P and a vertex in V \ N[v] contain a vertex in {v} ∪ U.
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v w
u1u2

u3

u4

Figure 3.7: An example of a region R(v,w) in a planar embedding of a graph.
The vertices u1, . . . , u4 are inner vertices of the region. The gray areas form
low-degree diamondsD(v, u3) andD(v, u4).

Also, we define the empty set of pendants to be separated from any vertex-set by
any vertex-set.

We can observe that deleting non-anchors does not destroy raw-diamonds. This
will come in handy to simplify some proofs.

Observation 3.4. Let D(v,w) = (A,U, P) be a raw diamond in a graph G′

and let G∗ be a vertex-induced subgraph of G′ such that v,w ∈ V(G∗). Then,
(A,U′, P′) with U′ := U ∩ V(G∗) and P′ := P ∩ V(G∗)) is a raw diamond in G∗

and U′B ⊆ UB.

In the following, we explain the role of raw diamonds in shrinking regions using
the example that is illustrated in Figure 3.7.

Example 1. Figure 3.7 shows a region R(v,w) ∈ R of G1. We will see that regions
whose inner vertices have constant degree are shrunk to constant size. Before that,
the degrees of the inner vertices in R(v,w) have to be shrunk. The vertex u1 shown
in Figure 3.7 is an example for an inner vertex. Therefore, all of its neighbors are
again in R(v,w) and, hence, in N[v] ∪ N[w]. It follows that if u1 has large degree,
then one of N(u1)∩N(v) or N(u1)∩N(w) is large. Here, assume that N(u1)∩N(v)
is large. Since N(u1) ∩ N(v) ⊆ R(v,w), we can find a region R(v, u1) in R(v,w)
that contains N(u1)∩N(v) and whose boundary paths have length two, like the one
surrounded by the dashed line in Figure 3.7. Since any inner vertex x ∈ R(v, u1)
is in R(v,w), it holds that x ∈ N[v], as, for planarity reasons, x < N[w]. One can
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thus see that there is a raw diamondD(v, u1) = (A,U, P) with U = N(v) ∩ N(u1)
and P = {u3, u4} implying V(D(v, u1) = V(R(v, u1)).
We will show that Algorithm 3.2 shrinks raw diamonds likeD(v, u1) to constant
size if they only contain low-degree vertices. However, suppose that u2 is not a
low-degree vertex. Since u2 is an inner vertex of R(v, u1) (the area surrounded by
the dashed line), the planarity of G1 implies u2 < N[w]. Moreover, no inner vertex
of R(v, u1) is adjacent to w. Hence, all neighbors of u2 that are not on the boundary
of R(v, u1), are adjacent to v and, therefore, it is sufficient to shrink N(u2) ∩ N(v)
in order to decrease the degree of u2 to a constant. If N(u2) ∩ N(v) is large, then,
since N(u2) ∩ N(v) ⊆ R(v, u1), we can find a region R(v, u2) whose boundary
paths have length two and N(u2) ∩ N(v) ⊆ R(v, u2), which is surrounded by the
dotted line in Figure 3.7. Observe that R(v, u2) can be decomposed into three
sets A′,U′, P′ of a raw diamond D(v, u2) = (A′,U′, P′) with {u3, u4} ⊆ U′ and
the vertices in the gray areas being in P′. Observe that

1. all vertices of R(v, u1) are in N[v],
2. all vertices of R(v, u2) are in N2,3(v), and
3. all vertices of R(v, u3) and R(v, u4) are in N3(v).

Hence, N(u3) ∩ N(v) ⊆ N3(v), implying that |N(u3)| ∈ O(1) since G1 is reduced
with respect to Reduction Rule 3.1. Then, Algorithm 3.2 shrinksD(v, u2) since it
only contains low-degree vertices.
We will show that for all vertices u ∈ V(D(v, u1)), Phase 2 shrinks N(v) ∩ N(u)
to constant size (by shrinking raw diamonds likeD(v, u2)) in the first application
of Algorithm 3.2. Thereafter, Phase 2 shrinksD(v, u1) in the second application
of Algorithm 3.2. We will similarly show that Phase 2 also shrinks N(v) ∩ N(u)
and N(w)∩ N(u) for all other inner vertices u ∈ R(v,w). Concluding the example,
Phase 3 shrinks R(v,w) to constant size.

The following lemma establishes properties of raw diamonds (A,U, P) in a planar
graph G that are used throughout the rest of this chapter.

Lemma 3.8. Let D(v,w) = (A,U, P) be a raw diamond in a planar graph G.
Then, the following statements hold.

1. For each x ∈ V(G) \ {v,w}, it holds that |N(x) ∩ U | ≤ 2.
2. N[P] ⊆ N[v] (and, as a direct consequence, P ⊆ N2,3(v)).
3. There is a raw diamond (A,U, X) with X ⊇ P and N[X] ⊆ A ∪ U ∪ X.

Proof. (1): If there was some x ∈ V(G) \ {v,w} such that N(x) contained dis-
tinct vertices u1, u2, u3 ∈ U, then G would contain a K3,3-minor on the vertex
set {x, v,w} ] {u1, u2, u3}, contradicting the planarity of G.
(2): By Definition 3.5, P is separated from V(G) \ N[v] by some vertex set,
implying N[P] ∩ (V(G) \ N[v]) = N[P] \ N[v] = ∅.
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(3): Consider the subgraph G′ − ({v,w} ∪ U) of G and the set X of all vertices
that are in a connected component of G′ that also contains a vertex of P. Then,
NG[X] ⊆ {v,w} ∪ U ∪ X is apparent and, since P ∩ ({v,w} ∪ U) = ∅, we know
that X ⊇ P. In the following, we show that (A,U, X) is a raw diamond. To this end,
consider a vertex x ∈ X. By definition of X, there is a path p in G′ from some q ∈ P
to x. Since G′ does not contain vertices in {v}∪U, this path would contradict q ∈ P
if x < NG[v]. Since x is a vertex of G′, it follows that X ⊆ NG[v] \ ({v,w} ∪ U).
By definition of G′, it follows that {v,w} ∪ U separates X from V \ N[v]. Now,
if w ∈ N[X], then all paths from w to some vertex in V \ N[v] contain a vertex
in {v} ∪ U, since otherwise, there is a path from some q ∈ P via w to a vertex
in V \ N[v] avoiding {v} ∪ U, which contradicts (A,U, P) being a raw diamond.
Hence, also {v} ∪ U separates X from V \ N[v], implying that (A,U, X) is a raw
diamond. �

Since G1 is reduced with respect to Reduction Rule 3.1, we can show additional
properties of (pendants of) raw diamonds in G1. In particular, pendants have
small degree in G1 and most pendants have a neighboring umpire.

Lemma 3.9. LetD(v,w) = (A,U, P) be a raw diamond in a planar graph G that
is reduced with respect to Reduction Rule 3.1. Then, for each q ∈ P, it holds
that deg(q) ≤ 6.

Proof. By Lemma 3.8(3), there is a raw diamondD′(v,w) = (A,U, X) with X ⊆
V(D′(v,w)) and q ∈ X. By Lemma 3.8(1), |N(q) ∩ U | ≤ 2. Thus, it remains
to show that Y := N(q) ∩ X \ {w} contains at most two vertices. By Lem-
ma 3.8(2), Y ⊆ N2,3(v) and since G is reduced with respect to Reduction Rule 3.1,
Y ⊆ N2(v) follows. Thus, N[Y] ∩ N1(v) ⊆ {w} ∪ U and there is a path from w
(via U) to each vertex in Y avoiding both q and v. Thus, if there were three distinct
vertices y1, y2, y3 ∈ Y , then contracting these paths would reveal a K3,3-minor on
the vertex set {v,w, q} ] {y1, y2, y3} in G. �

Lemma 3.10. LetD(v,w) = (A,U, P) be a raw diamond in a planar graph that is
reduced with respect to Reduction Rule 3.1. Then, there is at most one degree-one
(dummy) vertex x ∈ P such that for all y ∈ P\ {x}, it holds that N(y)∩U∩N1(v) ,
∅.

Proof. By Lemma 3.8, for each q ∈ P we have N[q] ⊆ N[v], and P ⊆ N2(v) ∪
N3(v). Furthermore, since the graph is reduced with respect to Reduction Rule 3.1,
N3(v) is either empty or consists of a single degree-one-vertex. It follows that
each vertex q ∈ P with deg(q) > 1 is in N2(v) and, hence, adjacent to at least one
vertex u ∈ N1(v). That is, there is a vertex u′ ∈ N(u) \ N[v]. Now, u ∈ U follows
since, by Definition 3.5, {v} ∪ U separates q from u′. Hence, u ∈ U ∩ N1(v). �
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The following lemma captures the fact that for each vertex u in a region R(v,w) ∈
R, all neighbors of u are contained in one of two raw diamondsD(v, u) andD(v,w).
As a result, if raw diamonds are shrunk, then the degree of u decreases as well.
When the degree of all inner vertices of R(v,w) becomes sufficiently small,
Phase 3 finds and shrinks regions to O(1) vertices.

Lemma 3.11. Let R(v,w) be a region in a plane graph G. Let u ∈ R(v,w) \ {v,w},
and let a ∈ {v,w}. Then, there is a raw diamond D(a, u) = (A,U, P) with
U := N(a) ∩ N(u) ∩ R(v,w) and boundary size |UB| ≤ 7.

Proof. Since the proof works analogously for a = v and a = w, by exchanging
the roles of v and w, we prove Lemma 3.11 only for a = v. Thus, let A := {v, u}
and U := N(v) ∩ N(u) ∩ R(v,w). Furthermore, we let P ⊆ N(v) \ (A ∪ U) be
maximal under the condition that P is separated from V \N[v] by {v}∪U. Clearly,
by Definition 3.5, (A,U, P) is a raw diamond.
It remains to show that |UB| ≤ 7. Since v < U and |∂R(v,w)| ≤ 6 implies |UB ∩

∂R(v,w)| ≤ 5, it is sufficient to show that |U∗B| ≤ 2, where U∗B := UB \ ∂R(v,w).
To this end, we show that each vertex u1 ∈ U∗B is connected to w by a path p such
that (V(p) \ {u1,w}) ∩ (A ∪ U∗B) = ∅. Hence, if there are three distinct vertices
x1, x2, x3 ∈ U∗B, then, by contracting the corresponding paths to a single edge, it
follows that G contains a K3,3 minor on the vertex set {v,w, u} ] {x1, x2, x3}: this
follows from the fact that x1, x2, x3 ∈ U∗B ⊆ N(v) ∩ N(u) and that each of x1, x2,
and x3 is connected to w by a path avoiding v, u, and U∗B. Since the existence
of this K3,3 minor would contradict G being planar, we conclude that |U∗B| ≤ 2.
Hence, it remains to show that each vertex u1 ∈ U∗B is connected to w by a path p
such that (V(p) \ {u1,w}) ∩ (A ∪ U∗B) = ∅.
Consider a vertex u1 ∈ U∗B. By Definition 3.5 of UB, the vertex u1 has a neigh-
bor u2 such that u2 ∈ N(u1) \ (A ∪ U ∪ P). By choice of P, u2 < P implies that
either u2 < N(v) \ (A∪U) or u2 is connected to a vertex in V \ N[v] by a path that
avoids {v} ∪ U.
First, assume that u2 < N(v)\ (A∪U). Since u1 ∈ U∗B and U∗B ⊆ R(v,w), it follows
that u2 ∈ R(v,w). Moreover, since u2 < A ∪ U, it follows that u2 < N(v) and thus
u2 ∈ N[w]. Hence, there is a path from u1 via u2 to w, where u2 < A ∪ U∗B.
Second, assume that u2 is connected to a vertex t ∈ V \ N[v] by a path p such that
V(p)∩({v}∪U) = ∅. If V(p) ⊆ R(v,w)\(A∪U), then t ∈ N[w] and there is a path
from u1 via t to w that avoids A∪U and, hence, also A∪U∗B. In the following, we
assume that V(p) * R(v,w) \ (A∪U). Since u2 ∈ R(v,w) \ (A∪U), it follows that
there is a maximal-length subpath p′ of p that contains u2 and V(p′) ⊆ R(v,w) \
(A ∪ U). Let x denote the first vertex of p that is not in p′ and let y denote the
predecessor of x in p, that is, the last vertex on p′. Consider the following cases:
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Case 1: x ∈ R(v,w). Then, by maximality of p′, x ∈ A ∪ U. However,
since V(p′)∩({v}∪U) = ∅, this implies x = u. If y ∈ N[v], then y = v or y ∈ N(v)∩
N(u) ∩ R(v,w) = U, contradicting our choice of p. Hence, y ∈ N[w] and append-
ing w to p′ yields a path from u1 to w that avoids A∪U and, therefore, also A∪U∗B.
Case 2: x < R(v,w). Then, since y ∈ R(v,w) ∩ N(x), we know that y ∈ ∂R(v,w).
If y ∈ N[w], then appending w to p′ yields a path from u1 to w that avoids A ∪ U
and also A ∪ U∗B. Otherwise, y ∈ N(v) since y = v contradicts our choice of p.
Consider the boundary path in ∂R(v,w) \ {v} from y to w, which has length at
most two. If this boundary path contains u, then u is adjacent to y and, hence,
y ∈ N(u)∩N(v)∩R(v,w) = U, contradicting our choice of p. Otherwise, p′ and the
boundary path from y to w constitute a path from u1 to w that avoids A ∪ U∗B. �

Lemma 3.11 guarantees the existence of a raw diamond in each region of R. We
will show how to find and shrink these raw diamonds in order to lower the degree
of vertices in regions. Using data reduction, we first ensure that most vertices in
raw diamonds have constant degree. Then, we show that Algorithm 3.2 shrinks
raw diamonds.
The following lemma shows that each raw diamond D(v,w) = (A,U, P) in G1
with U , ∅ and N(P) ⊆ D(v,w) contains low-degree diamonds. Thereafter, we
will see that these low-degree diamonds are shrunk by the first application of
Algorithm 3.2 in Phase 2, effectively turningD(v,w) into a low-degree diamond.
Thus,D(v,w) is shrunk by the second application of Algorithm 3.2 in Phase 2.

Lemma 3.12. LetD(v,w) = (A,U, P) be a raw diamond with N(P) ⊆ V(D(v,w))
in a planar graph that is reduced with respected to Reduction Rule 3.1. For
each u ∈ U, there is a low-degree diamond ({v, u},U′,∅) with |U′B| ≤ 7, where
U′ := N(v) ∩ N(u) ∩ V(D(v,w)).

Proof. First, we show that D(v, u) := ({v, u},U′,∅) is a low-degree diamond.
Clearly,D(v, u) is a raw diamond. It remains to show that the degree of all inner
vertices U′I is at most 40 and that |U′B| ≤ 5. We first prove the degree-bound for
vertices in U′I . To this end, consider a vertex u′ ∈ U′I . Since u′ is an inner vertex
of D(v, u), it follows that N(u′) ⊆ V(D(v, u)) = {v, u} ∪ U′. By Lemma 3.8(1),
|N(u′) ∩ U′| ≤ 2 and, thus, |N(u′)| ≤ 4. Hence,D(v, u) is a low-degree diamond.
Next, we show that |U′B| ≤ 7. Observe that U′ ⊆ U ∪ P ∪ {w}. Since U′ ⊆ N(u)
and since, by Lemma 3.8(1), |N(u) ∩ U | ≤ 2, in order to show |U′B| ≤ 5 it is
sufficient to show that |U′B ∩ P| ≤ 2. Towards a contradiction, we show that for
each vertex q ∈ U′B ∩ P there is a path p from q to w such that (V(p) \ {q,w}) ∩
((U′B ∩ P) ∪ {v, u}) = ∅. This implies |U′B ∩ P| ≤ 2 because if there were at least
three distinct vertices q1, q2, q3 ∈ U′B ∩ P, then contracting the corresponding
paths to an edge would reveal a K3,3-minor on the vertex set {q1, q2, q3} ] {v,w, u},
contradicting the planarity of the graph.
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Let q ∈ U′B ∩ P. Then, q ∈ V(D(v, u)) ∩ V(D(v,w)). Since N[P] ⊆ V(D(v,w)),
the definition of U′B implies that q has a neighbor q′ ∈ V(D(v,w)) \ V(D(v, u)).
In case q′ ∈ U ∪ {w} ⊆ N[w] we have found the desired path from q to w. Hence,
suppose that q′ ∈ P. Because q′ is adjacent to both q and v, it follows that q′ is
not a degree-one-vertex. Since G is reduced with respect to Reduction Rule 3.1,
Lemma 3.10 implies that q′ is adjacent to a vertex u′ ∈ U. Moreover, u′ , u since,
otherwise, the choice of U′ would imply q′ ∈ U′, contradicting q′ < V(D(v, u)).
Hence, we have the desired path from q via q′ and u′ to w. �

We can now show that Algorithm 3.2 shrinks all raw diamonds to low-degree
diamonds. To this end, recall from the beginning of Section 3.4 that D is a
dominating set of G1 that contains all vertices to which dummy vertices are
attached by Reduction Rule 3.1 or Algorithm 3.2. We first show that, in a planar
graph that is reduced with Reduction Rule 3.1, the size of raw diamonds is
determined by their boundary vertices. We then apply this to G1, showing that all
umpires in raw diamonds in G1 have small degree. Therefore all raw diamonds
in G2 are small.

Lemma 3.13. Let G be a planar graph that is reduced with respect to Reduc-
tion Rule 3.1. Let D(v,w) = (A,U, P) be a low-degree diamond in G such
that V(D(v,w)) ∩ D ⊆ {v,w} and N[P] ⊆ V(D(v,w)). Let G∗ be the graph that
is obtained by applying Algorithm 3.2 once to G and let {v,w} ∈ V(G∗). Then,
|U ∩ V(G∗)| ≤ 5|UB| + 3.

Proof. To show |U ∩ V(G∗)| ≤ 5|UB| + 3, we prove |UI ∩ V(G∗)| ≤ 4|UB| + 3.
SinceD(v,w) is a low-degree diamond, each vertex u ∈ UI lies on a low-degree
path (v, u,w) in NG[v,w]. Therefore, UI ⊆ NG

0 (v,w). We show the claim in two
parts.
Part (1): |NG

3 (v,w) ∩ UI ∩ V(G∗)| ≤ 3
Part (2): |NG

1,2(v,w) ∩ UI | ≤ 4|UB|

(1): Obviously, |NG
3 (v,w) ∩ UI ∩ V(G∗)| ≤ 1 holds if at least one of v and w is a

dummy vertex, since dummy vertices have degree one. Hence, in the following,
assume that neither v nor w is a dummy vertex. Moreover, since {v,w} ⊆ V(G∗),
v and w are not deleted by the application of Algorithm 3.2. It follows that Algo-
rithm 3.2 applied to the input graph G considers the pair (v,w) in the for-loop in
line 3. Let G′ denote the current graph at that point in the algorithm. Throughout
this proof we make use of the observation that, for all t ∈ (U ∪ P) ∩ V(G′),

NG′ (t) = NG(t) ∩ V(G′) (3.1)

holds. This is because V(D(v,w))∩D ⊆ {v,w}, that is, neither Reduction Rule 3.1
nor Algorithm 3.2 attaches dummy vertices to t, and since Algorithm 3.2 does
not delete edges without deleting their endpoints.
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Consider the set N3 = NG′
3 (v,w) ∩ NG

0 (v,w), which is the set of candidates for
deletion that is computed in line 6 of Algorithm 3.2. In the following, we show
that

X := NG
3 (v,w) ∩ UI ∩ V(G′) ⊆ N3.

To this end, consider a vertex u ∈ X. Since u ∈ NG
0 (v,w), it is sufficient to show u ∈

NG′
3 (v,w). First, by (3.1), u is a low-degree vertex in G′ and, since {v,w} ∈ G∗,

we know that u ∈ NG′(v) ∩ NG′(w). Hence, u ∈ NG′
0 (v,w). To prove u ∈ N3 it

remains to show u ∈ NG′
3 (v,w), or, equivalently, u < NG′

1,2(v,w).

u < NG′
1 (v,w): By (3.1), all vertices in NG′ (u)\A ⊆ U∪P are low-degree vertices

and since for each of them, there is a low-degree v-w-path of length at most
three via u, it follows that NG′ (u) \ A ⊆ NG′

0 (v,w). Hence, u < NG′
1 (v,w).

u < NG′
2 (v,w): Suppose this is false. Then, there is a neighbor u′ ∈ NG′(u) ∩

NG′
1 (v,w) and, by Definition 3.4, u′ has a neighbor t < NG′

0 [v,w]. However,
u ∈ NG

3 (v,w) implies t ∈ NG
0 (v,w) and, therefore, t is a low-degree vertex

and t ∈ NG(v) ∪ NG(w). Since v,w, t ∈ V(G′), (3.1) implies that t ∈
NG′ (v)∪ NG′ (w). Thus, either (v, t, u′, u,w) or (v, u, u′, t,w) is a low-degree
v-w path in G′, contradicting t < NG′

0 [v,w].

Now, if |N3| > 3, then Lemma 3.8(1) implies that only v and w can dominate
the (at least four) vertices in N3. Thus, N3 can be reduced by Algorithm 3.2,
implying |NG

3 (v,w) ∩ UI ∩ V(G∗)| ≤ 3.

(2): It remains to show |NG
1,2(v,w) ∩ UI | ≤ 4|UB|. To see this, we first prove

NG
1 (v,w) ∩ (UI ∪ P) ⊆ NG(UB). (3.2)

Consider a vertex u ∈ NG
1 (v,w)∩UI . By Definition 3.4 there is some u′ ∈ NG(u)\

NG
0 [v,w]. Since, by Lemma 3.9 each vertex in P has low degree and therefore P∩

N[UI] ⊆ NG
0 (v,w), we conclude u′ < P. Hence, u′ ∈ UB, implying u ∈ N(UB)

and it follows that NG
1 (v,w) ∩ UI ⊆ NG(UB).

To prove (3.2), it remains to show NG
1 (v,w) ∩ P ⊆ NG(UB). To this end, consider

a vertex p ∈ NG
1 (v,w) ∩ P. By Lemma 3.10 there is a vertex u ∈ NG(p) ∩ U.

If u ∈ UB, then p ∈ NG(UB). Otherwise, u ∈ UI and, hence, u is a low-degree
vertex. By Definition 3.4 there is a vertex t ∈ NG(p) \ NG

0 [v,w]. Because
NG(p) ⊆ V(D(v,w)), we conclude t ∈ U ∪ P. If t ∈ U, then t ∈ UB since t <
NG

0 [v,w] and UI ⊆ NG
0 (v,w). It follows that p ∈ NG(UB). If t ∈ P, then t is

a low-degree vertex and (v, t, p, u,w) is a low-degree v-w-path of length four
in NG[v,w], implying t ∈ NG

0 (v,w), contradicting our choice of t. Thus, (3.2)
follows.
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Using (3.2), we can now show |NG
1,2(v,w) ∩ UI | ≤ 4|UB|, concluding the lemma.

To this end, note that

NG
1,2(v,w) ∩ UI

Definition 3.5
⊆ NG[NG

1 (v,w) ∩ (U ∪ P)]
(3.2)
⊆

NG[NG(UB)]. (3.3)

Now, for the sake of contradiction, suppose that, for a vertex u ∈ UB, there is a set
of five distinct vertices X ⊆ NG

1,2(v,w) ∩ UI ∩ NG[NG(u)]. Then, we can choose
at least three vertices x1, x2, x3 ∈ X such that contracting the corresponding paths
reveals a K3,3-minor on the vertex set {v,w, u} ] {x1, x2, x3}. As this contradicts
the planarity of G, we conclude that

|NG
1,2(v,w) ∩ UI |

(3.3)
≤

∑
u∈UB

|NG
1,2(v,w) ∩ UI ∩ NG[NG(u)]| ≤ 4|UB|. �

Approaching our goal of bounding the maximum degree of vertices in regions,
we show that all raw diamonds contained in G1 are destroyed in Phase 2, that is,
by two interleaved applications of Reduction Rule 3.1 and Algorithm 3.2.

Lemma 3.14. Let D(v,w) = (A,U, P) be a raw diamond in G1 with NG1 [P] ⊆
V(D(v,w))) and V(D(v,w)) ∩D ⊆ {v,w}. Furthermore, let {v,w} ⊆ V(G2). Then,
|U ∩ V(G2)| ≤ 5|UB| + 3.

Proof. Let G∗ denote the graph obtained by applying Algorithm 3.2 and then Re-
duction Rule 3.1 to G1. We argue that there is a low-degree diamondD′(v,w) =

(A,U′, P′) in G∗ such that U′ = U ∩V(G∗), U′B ⊆ UB, and P′ = P∩V(G∗). Then,
Lemma 3.14 follows directly from Lemma 3.13, since G2 results from applying
Algorithm 3.2 and additionally Reduction Rule 3.1 to G∗.
First, since our data reduction rules do not delete edges without deleting one of
their endpoints, we infer

NG1 (v) ∩ V(G∗) ⊆ NG∗ (v) and NG1 (w) ∩ V(G∗) ⊆ NG∗ (w). (3.4)

Hence,

U′ = U ∩ V(G∗) ⊆ NG1 (v) ∩ NG1 (w) ∩ V(G∗)
(3.4)
⊆ NG∗ (v) ∩ NG∗ (w), and

P′ = P ∩ V(G∗) ⊆ NG1 (v) ∩ V(G∗) \ (A ∪ U)
(3.4)
⊆ NG∗ (v) \ (A ∪ U′)

Observe that, since V(D(v,w)) ∩D ⊆ {v,w}, it holds that

∀
u∈V(D(v,w))

NG∗ (u) ⊆ NG1 (u). (3.5)
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Since removing the vertices in V(G1) \ V(G∗) from G1 does not create paths
between P′ and V(G∗) \ NG∗(v), (3.5) implies that P′ is separated from V(G∗) \
NG∗ (v) by {v} ∪ U′ in G∗, implying that (A,U′, P′) is a raw diamond in G∗. Also
note that (3.5) implies U′B ⊆ UB.
It remains to show that degG∗(u) ≤ 40 for each u ∈ U′I . By Lemma 3.12 there is
a low-degree diamond D(v, u) = (Ã, Ũ,∅) in G1 with Ũ = NG1 (v) ∩ NG1 (u) ∩
V(D(v,w)) and |ŨB| ≤ 7. Since u ∈ U′I ⊆ UI , we know that NG1 (u) ⊆ V(D(v,w))
and, thus, Ũ = NG1 (v)∩NG1 (u). By Lemma 3.13, |Ũ∩V(G∗)| ≤ 38. Since NG1 (u)\
NG1 (v) ⊆ {v,w}, we conclude that

degG∗ (u)
(3.5)
≤ degG1

(u) ≤ 38 + 2 = 40. �

Finally, for each region R := R(v,w) in the D-region decomposition R of G1
and each vertex u ∈ R \ {v,w} in G2, we are able to upper-bound the number
of neighbors of u in R. If u is an inner vertex of R, then this yields an upper
bound on the degree of u. We will show in Section 3.4.2 that this allows us to
find and shrink regions using Algorithm 3.2 in Phase 3. We state this fact as a
generalization of Lemma 3.7.

Lemma 3.15. Let R := R(v,w) be a region in R, and let u ∈ V(G2) \ {v,w}. Then,
(i) if v ∈ V(G2), then |NG2 (u) ∩ R ∩ NG2 (v)| ≤ 38, and

(ii) if w ∈ V(G2), then |NG2 (u) ∩ R ∩ NG2 (w)| ≤ 38.
That is, if {v,w} ⊆ V(G2), then |NG2 (u) ∩ R| ≤ 78.

Proof. Because (i) and (ii) are symmetrical, we only show (i). If u < R, then
NG2 (u) ∩ R ⊆ ∂R. Hence, |NG2 (u) ∩ R ∩ NG2 (v)| ≤ 6. In the following, assume
that u ∈ R. Then, by Lemma 3.11, there is a raw diamond D(v, u) = (A,U, P)
in G1 such that U = NG1 (u) ∩ NG1 (v) ∩ R and |UB| ≤ 7. Because {v, u} ⊆ V(G2),
Lemma 3.14 together with Observation 3.3 implies |U ∩ V(G2)| ≤ 38. Moreover,
because Algorithm 3.2 does not add edges between already existing vertices,
NG1 (u) ∩ V(G2) ∩ R = NG2 (u) ∩ R.
Now, assume that {v,w} ⊆ V(G2). Since u ∈ R \ {v,w}, it holds that NG2 (u) ∩
R ⊆ NG2 [v,w]. The claim then follows from |NG2 (u) ∩ NG1 (v) ∩ R| ≤ 38 and
|NG2 (u) ∩ NG1 (w) ∩ R| ≤ 38. �

With Lemma 3.15, we know that the degree of each inner vertex of any region is
constant in G2. This enables Algorithm 3.2 to shrink the regions to constant size.

3.4.2 The Size of Regions (Proof of Proposition 3.1)
In this section, we show that the O(γ(G)) regions in the maximal D-region
decomposition R of G1 can be shrunk to constant size in Phase 3. A central
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problem in bounding the size of a region is bounding its core: intuitively, the core
of a region R contains all vertices of R that have long distance to R’s boundary.

Definition 3.6. Let R := R(v,w) ∈ R. The core CR of R is CR := {u ∈ (R\ ∂R)∩
V(G2) : distG1[R](u, y) ≥ 5 for all y ∈ ∂R ∩ V(G2) \ {v,w}}.

In order to show that regions are shrunk to constant size in Phase 3, we first show
that only a constant number of vertices outside of a region’s core remain after
Phase 2.

Lemma 3.16. Let R := R(v,w) ∈ R and, for each u ∈ V(G2), let |NG2 (u) ∩ R| ∈
O(1). Then, |V(G2) ∩ (R \ CR)| ∈ O(1).

Proof. By definition of CR, each vertex x ∈ V(G2)∩(R\CR) satisfies distG2[R](x, y) <
5 for a vertex y ∈ ∂R \ {v,w} ∩ V(G2). Since |∂R \ {v,w} ∩ V(G2)| ≤ 4 and since,
by assumption, each vertex u ∈ V(G2) satisfies |NG2 (u) ∩ R| ∈ O(1), there
are at most O(1) paths of length at most five in R ∩ V(G2) that start in a vertex
in ∂R\{v,w}∩V(G2) and end in a vertex in V(G2)∩(R\CR). Since, by Lemma 3.15,
all vertices on these paths have constant degree, |V(G2) ∩ (R \ CR)| ∈ O(1). �

Another problem that complicates the proof of Proposition 3.1 is the fact that
anchors of regions in R might be deleted by our data reduction. Therefore, we
will first establish that Proposition 3.1 holds in these cases using Lemma 3.18.
In preparation, we prove that the set of vertices that were neighbors of a deleted
anchor of R(v,w) is small in G3.

Lemma 3.17. Let R := R(v,w) ∈ R and x ∈ {v,w} \ V(G3). Let G∗ be the last
graph containing x in the computation of G3. Then, |NG∗ (x) ∩ R ∩ V(G3)| ∈ O(1).

Proof. We show the claim for x = v. If x = w, the proof is completely analogous.
We distinguish whether Algorithm 3.2 or Reduction Rule 3.1 deletes v.
Case 1: Algorithm 3.2 deletes v. Since Algorithm 3.2 only deletes v if v is a
low-degree vertex, it follows that |NG∗ (v) ∩ R ∩ V(G3)| ∈ O(1).
Case 2: v is deleted by applying Reduction Rule 3.1 to a vertex v′ ∈ NG∗(v).
Then, v ∈ NG∗

3 (v′), implying NG∗ [v] ⊆ NG∗ [v′].
First, assume that v′ , w and, furthermore, assume that there is a vertex u ∈
NG∗(v) ∩ (R \ ∂R). Thus, u ∈ NG∗[v′] ∩ R \ ∂R and Observation 3.3 in the be-
ginning of Section 3.4, we conclude that v′ ∈ R. Then, however, the fact that
Reduction Rule 3.1 attaches a dummy vertex to v′ contradicts Observation 3.3.
Therefore, NG∗(v) ∩ (R \ ∂R) = ∅. Hence, we conclude NG∗(v) ∩ R ⊆ ∂R,
implying |NG∗ (v) ∩ R| ∈ O(1).
Second, assume v′ = w, that is, v is deleted by applying Reduction Rule 3.1
to w. Then, NG∗[v] ⊆ NG∗[w]. Furthermore, for each u ∈ V(G∗) \ {v,w}, it
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holds that |NG∗(u) ∩ NG∗(v)| ≤ 2, since otherwise, NG∗[v] ⊆ NG∗[w] implies
the existence of a K3,3 subgraph in G∗. Moreover, the application of Reduction
Rule 3.1 to w implies |NG∗

3 (w) ∩ V(G3) ∩ R| ≤ 1. It remains to bound the number
of vertices u ∈ NG∗(v) ∩ R ∩ V(G3) ∩ NG∗

1,2(w). Since u < NG∗
3 (w), there is a

vertex u′ , u in NG∗[NG∗[u] \ {w}] \ NG∗[w]. Since NG∗[w] ⊇ NG∗[v], it follows
that u′ < NG∗[v] and, therefore, u′ < R. Since u ∈ R is adjacent to u′ or has
a common neighbor with u′, we obtain u ∈ NG∗[∂R]. Since |∂R| ≤ 6 and for
each u ∈ V(G∗) ∩ ∂R \ {v,w}, it holds that |NG∗(u) ∩ NG∗(v)| ≤ 2, we conclude
that |NG∗ (v) ∩ R ∩ V(G3)| ∈ O(1). �

Lemma 3.18. Let R := R(v,w) ∈ R and {v,w} * V(G3). Then, |R ∩ V(G3)| ∈
O(1).

Proof. We show the claim for v < V(G3). If w < V(G3), the proof is completely
analogous. In the computation of G3 from G1, let G∗ be the last graph containing v.
For v < V(G3), Lemma 3.17 implies

|NG∗ (v) ∩ R ∩ V(G3)| ∈ O(1). (3.6)

If also w < V(G3), then |NG∗(w) ∩ R ∩ V(G3)| ∈ O(1), which would already
yield |R ∩ V(G3)| ∈ O(1). Hence, in the following, assume that w ∈ V(G3),
implying w ∈ V(G2) ∩ V(G∗).
Consider a vertex u ∈ V(G3) \ {v,w}. Towards the application of Lemma 3.16, we
show

|NG3 (u) ∩ R| ∈ O(1). (3.7)

If u < V(G2), then Observation 3.3 implies NG3 (u) ∩ R ⊆ {v,w} and, thus,
(3.7) holds. Hence, assume u ∈ V(G2). Note that, if u < R, then NG3 (u) ∩ R ⊆ ∂R,
implying (3.7). Hence, assume u ∈ R. Then, NG3 (u)∩R ⊆ (NG3 (v)∪NG3 (w))∩R.
Since w ∈ V(G2), Lemma 3.15 implies |NG2 (u) ∩ R ∩ NG2 (w)| ∈ O(1). Then,

|NG3 (u) ∩ R| ≤ |NG∗ (v) ∩ V(G3) ∩ R| + |NG3 (u) ∩ NG3 (w) ∩ R|
(3.6)
∈ O(1).

Therefore, Lemma 3.16 applies and yields |R ∩ V(G2) \ CR| ∈ O(1), imply-
ing |V(G3) ∩ (R \ CR)| ∈ O(1).
It remains to show |CR ∩ V(G3)| ∈ O(1). To this end, we prove that each vertex
in CR ∩ V(G3) has a path of length at most two in R ∩ V(G3) to a vertex in

U := NG∗ (v) ∩ R ∩ V(G3).

By Lemma 3.17, |U | ∈ O(1) and, since (3.7) holds for all u ∈ V(G3) \ {v,w},
there are at most O(1) such paths, implying |CR ∩ V(G3)| ∈ O(1). Note that it is
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sufficient to bound the size of CR ∩ V(G3) \ (U ∪ NG3
3 (w)), since |U | ∈ O(1) and,

by reducedness of G3 with respect to Reduction Rule 3.1, |NG3
3 (w)| ≤ 1. To this

end, consider a vertex

u ∈ CR ∩ V(G3) \ (U ∪ NG3
3 (w)) ⊆ CR ∩ V(G3) \ (NG∗ (v) ∪ NG3

3 (w)). (3.8)

We show that there is a path of length at most two in R ∩ V(G3) from u to a
vertex in U. Since, by (3.8), u ∈ R \ NG∗(v), we conclude u ∈ NG3 [w]. However,
by (3.8), u < NG3

3 (w), implying the existence of a vertex u′ ∈ NG3 [u] ∩ NG3 (w)
and a vertex u′′ ∈ NG3 (u′) \ NG3 [w] (possibly, u = u′). Observation 3.3 and u ∈
CR ∩ V(G3) now imply {u′, u′′} ⊆ R ∩ V(G3) and, since u′′ < NG3 [w], we
obtain u′′ ∈ NG∗[v] ∩ V(G3) ⊆ U. Hence, (u, u′, u′′) is a path of length two
in R ∩ V(G3) from u to a vertex in U. �

Lemma 3.18 allows us to focus on regions whose anchors survive the data re-
duction and exist in G3. The strategy to prove Proposition 3.1 is to show that
Algorithm 3.2 shrinks regions in Phase 3. To this end, we have to analyze
Algorithm 3.2 (see page 81).

Proposition 3.1. Let R(v,w) ∈ R. Then, |V(G3) ∩ R(v,w)| ∈ O(1).

Proof. Let R := R(v,w). If {v,w} * V(G3), then |R ∩ V(G2)| ∈ O(1) by Lem-
ma 3.18. Hence, assume that {v,w} ⊆ V(G3), that is, v and w are never deleted
in the computation of G3. Moreover, by choice of the maximal D-region de-
composition R for G1, neither v nor w is a dummy vertex. We now show that
|CR ∩ V(G3)| ∈ O(1), which is sufficient since, by Lemma 3.15 and Lemma 3.16,
|V(G2) ∩ (R \ CR)| ∈ O(1), implying also |V(G3) ∩ (R \ CR)| ∈ O(1).
When applied to G2, Algorithm 3.2 eventually considers the pair (v,w) in an
iteration of the for-loop in line 3. Let G′ be the graph in this iteration after proce-
dure EnsurePaths has been applied in lines 4 and 5. Since G3 is reduced with re-
spect to Reduction Rule 3.1, the set Y := {u ∈ CR∩V(G′) : degG′ (u) = 1} satisfies
|Y∩V(G3)| ≤ 2 because Y ⊆ NG′ (v,w). It remains to bound the number of vertices
in CR ∩ V(G3) \ Y . To this end, we now show that CR ∩ V(G′) \ Y ⊆ N3, where
N3 = NG′

3 (v,w) ∩ NG2
0 (v,w) is the set of deletion candidates computed in line 6.

Note that, since our data reduction rules do not add or delete edges between
existing vertices, NG′

3 (v,w) ⊆ NG2
0 (v,w) and, therefore, NG′

3 (v,w) ⊆ N3. Hence,
to show CR ∩ V(G′) \ Y ⊆ N3, it is sufficient to show

CR ∩ V(G′) \ Y ⊆ NG′
3 (v,w). (3.9)

To this end, let u ∈ CR ∩ V(G′). To prove (3.9), we show that vertices of R with
distance at most two from u are in NG′

0 (v,w). More formally, we show

X ⊆ NG′
0 (v,w) with X := NG′ [NG′ [u] \ {v,w}] \ {v,w}. (3.10)
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Observe that X ⊆ R and, by Observation 3.3, X ⊆ V(G2). Since u ∈ CR, all ver-
tices x ∈ X have distance at least three to the boundary ∂R in G2. More formally,

distG2[R](x, y) ≥ 3 for all y ∈ ∂R ∩ V(G2) \ {v,w}. (3.11)

It follows that X ⊆ (R \ ∂R) ∩ V(G′) and, therefore, X ⊆ NG′(v,w). More-
over, by Lemma 3.15, X contains only low-degree vertices of G2. Since our
data reduction rules do not increase the degree of vertices, X also contains only
low-degree vertices of G′. In the following, let x ∈ X. To prove (3.10), we
show that x ∈ NG′

0 (v,w). Since x ∈ NG′(v,w), without loss of generality, assume
that x ∈ NG′ (v). The case x ∈ NG′ (w) works analogously. We consider the relation
between x and v in three cases.
Case 1: x ∈ NG′

1,2(v). Then, there is a path p′ of length at most two from x to
some x′ < NG′ [v] and p′ avoids v. If w is not on p then, since x′ ∈ R \ NG′ [v], we
know that w is a neighbor of x′. Hence, there is also a path p of length at most
three from x to w. By (3.11), all vertices on p between x and w are in R \ ∂R.
Thus, by Lemma 3.15, p is a low-degree-path, implying that prepending v to p
yields a low-degree v-w-path containing x in G′. Therefore, x ∈ NG′

0 (v,w).
Note that x ∈ NG2

3 (v) would imply degG2
(x) ≤ 1 since G2 is reduced with respect

to Reduction Rule 3.1. Thus, we can observe that x ∈ NG2
0 (v,w) since Case 1 also

applies to G′ = G2. Hence, degG′(x) ≤ 1 and, therefore, x is only adjacent to v
in G′, which by choice of x ∈ X implies x = u, contradicting u < Y .
Case 2: x ∈ NG′

3 (v). If degG′(x) ≤ 1, then x is only adjacent to v, which im-
plies x = u and contradicts u < Y . Hence, degG′(x) > 1. If x ∈ NG′(w), then,
clearly, x ∈ NG′

0 (v,w). Now, consider x < NG′ (w), and let G∗ denote the graph that
is G′ prior to the application of procedure EnsurePaths to v and w. Observe that,
as discussed in the proof of Lemma 3.1, x ∈ NG′

3 (v) implies x ∈ NG∗
3 (v). Since

procedure EnsurePaths does not delete x even though x ∈ NG∗
3 (v) ∩ NG2

0 (v,w) and
degG∗(x) > 1, there is a vertex z ∈ B(v, x) of procedure EnsurePaths that is not a
low-degree vertex in G∗. By Lemma 3.15, all vertices in V(G∗)∩R \ (∂R∪ {v,w})
are low-degree vertices and, therefore, z < R \ (∂R ∪ {v,w}).
Since distances between vertices only increase while computing G∗ from G2,
we infer that distG∗(x,w) ≥ 2. Furthermore, by (3.11), distG∗[R](x, y) ≥ 3 for all
y ∈ ∂R ∩ V(G∗) \ {v,w}. Since z < R \ (∂R ∪ {v,w}), this implies z = w and, thus,
w ∈ B(v, x). Hence, there is a length-two low-degree path p from x to w in G∗.
We now argue that there is a low-degree path p′ from x to w in G′. If p is not a
low-degree path in G′, then procedure EnsurePaths deleted a vertex y of p.
If y was deleted by the application of procedure EnsurePaths to v, then, by def-
inition of B(v, x), we know that y ∈ NG∗ (x)∩ NG∗ (w). Then, however, w ∈ B(v, y),
which is not a low-degree vertex, and procedure EnsurePaths does not delete y.
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If y is deleted by the application of procedure EnsurePaths to w, then y ∈ NG∗
3 (w)

implies that x ∈ NG∗ (w). Thus, x ∈ NG′ (w), contradicting x < NG′ (w).

In all cases, we conclude that x ∈ NG′
0 (v,w). Since x ∈ X was chosen arbitrarily,

(3.10) follows and, as discussed in the beginning of the proof, CR∩V(G′)\Y ⊆ N3.
We finally show that Algorithm 3.2 shrinks N3 to O(1) vertices. First, assume
that N3 can be dominated by a single vertex u′ ∈ V(G′) \ {v,w}. Since u′ is
a neighbor of a vertex in NG′

3 (v,w), u′ is a low-degree vertex and we obtain
|N3| ≤ |NG′[u′]| ∈ O(1). If, in contrast, N3 cannot be dominated by a single
vertex u′ ∈ V(G′) \ {v,w}, then N3 is deleted except for at most two vertices; we
obtain |CR ∩ V(G3) \ Y | ∈ O(1). �

3.4.3 Vertices Outside of Regions (Proof of Proposition 3.2)

In this section, we show that only O(γ(G)) vertices outside of regions in the
maximal D-region decomposition R of G1 remain after Phase 2. In particular,
we show slightly modified versions of Lemma 6, Lemma 7, and Proposition 2 of
Alber et al. [8]. To this end, we exploit the structure that Phase 1 establishes in G1.
First, the following lemma implies that no vertex outside of regions is contained
in NG1

1 (v) for a vertex v ∈ D. It can be shown analogously24 to Lemma 6 of Alber
et al. [8] and, hence, we omit the proof.

Lemma 3.19. Let D be a dominating set of G1 and let v ∈ D and u ∈ NG1
1 (v).

Let R denote a D-region decomposition such that |R| ∈ O(|D|). Then, u ∈ V(R).

Using Lemma 3.19, we can show that vertices that are not in regions of R or in D
are in NG1

2 (v) for some v ∈ D, which we use later to bound the total number of
vertices that are not in regions of R.

Lemma 3.20. Let u ∈ V(G1) \ (D ∪ V(R)) with degG1
(u) > 1. Then, there is a

vertex v ∈ D such that u ∈ NG1
2 (v).

Proof. Consider a vertex u ∈ V(G1) \ (D ∪ V(R)). Since D is a dominating
set of G1, there is some vertex v ∈ NG1 (u) ∩ D. By Lemma 3.19, we know
that u < NG1

1 (v). Furthermore, since G1 is reduced with respect to Reduction
Rule 3.1, either u < NG1

3 (v) or u is a degree-one vertex. Since, by assumption, u is
not a degree-one vertex, the claim follows. �

24Although Alber et al. [8] required reducedness of G1 with respect to their reduction rules, the
two statements we use are also true for our reduction rules. In fact, the proof of Alber et al. [8]
does not require reducedness at all and is, instead, only based on the maximality of the D-region
decomposition.
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With Lemma 3.20, we can, analogously to Alber et al. [8], partition the vertices
in G1 \ V(R) into three categories:

1. vertices in D,
2. degree-one vertices in NG1 (D), and
3. vertices in NG1

2 (v) for some v ∈ D.
Clearly, the number of vertices in the first two categories is O(γ(G)). In the
following, we show that the number of vertices of the third category that survive
Phase 3 of the kernelization (recall the kernelization phases stated on page 86) is
also in O(γ(G)). To do this, we need the following lemma.

Lemma 3.21. Let ({v,w},U,∅) be a raw diamond in G1 such that v ∈ D and U ∩
V(R) = ∅. Then, |U ∩ V(G2)| ∈ O(|UB|).

Proof. Lemma 3.14 is very useful to prove the claim. However, Lemma 3.14
requires that both v and w are in G2. We consider the cases individually:
Case 1: {v,w} ⊆ V(G2). We first show that U ∩ D = ∅. For the sake of
contradiction, suppose that there is a vertex u′ ∈ U ∩ D. Then, by maximality
of R, there is a region R(v, u′) ∈ R (possibly only consisting of a single edge),
contradicting U ∩ V(R) = ∅. Hence, V(R(v,w)) ∩ D ⊆ {v,w} and, thus, Lem-
ma 3.14 implies that |U ∩ V(G2)| ≤ 5|UB| + 3.
Case 2: {v,w} * V(G2). Then, there is a vertex x ∈ {v,w} \ V(G2). First, consider
the case in which x is deleted by Algorithm 3.2. However, since Algorithm 3.2
implements this rule and only deletes low-degree vertices, we can conclude that
there are at most 78 vertices in U ∩ V(G2).
Next, suppose that x is deleted by Reduction Rule 3.1. Then, there is an in-
termediate graph G′ such that there is a vertex v′ ∈ V(G′) with x ∈ NG′

3 (v′)
and U ∩ V(G′) ⊆ NG1 [v′]. If v′ < {v,w}, then by Lemma 3.8(1), it follows
that |U ∩ V(G′)| ≤ 2. Otherwise, v′ ∈ {v,w} and, obviously, v′ , x. If x = v,
then v′ = w and, hence, Reduction Rule 3.1 attaches a dummy vertex to w
and by Observation 3.3, w is not an inner vertex of a region in R. However,
since U∩V(R) = ∅, we can add a region containing the raw-diamond ({v,w},U,∅)
to R, contradicting its maximality.
In the following, let x = w and, thus, v′ = v. Observe that U ∩ NG′

1 (v) =

∅ because w ∈ NG′
3 (v) and each vertex in U is adjacent to w. Furthermore,

since {v,w} ∩ NG′
2 (v) = ∅, it is clear that no vertex of NG′

1 (v) is in ({v,w},U,∅).
Since each vertex in NG′

2 (v) is adjacent to a vertex in NG′
1 (v), it follows that

U ∩ NG′
2 (v) ⊆ UB. Finally, observe that Reduction Rule 3.1 removes the set

U ∩ NG′
3 (v) along with w. Hence, |U ∩ V(G2)| ≤ |UB|. �

In the following, we make use of the previous lemmas to prove Proposition 3.2.

Proposition 3.2. |(V(G1) \ V(R)) ∩ V(G2)| ∈ O(γ(G)).
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Proof. This proof is very similar to the proof of Proposition 2 of Alber et al. [8].
First, let Y := (V(G1) \ V(R))∩ V(G2) and recall the statement of Proposition 3.2:
|Y | ∈ O(γ(G)). We will split Y into three parts and show that each of them contains
at most O(γ(G)) vertices.
Since G1 is reduced with respect to Reduction Rule 3.1, we can upper bound the
size of X :=

⋃
v∈D NG1

3 (v) by O(γ(G)). Furthermore, recall that |D| ≤ 2γ(G).
It remains to upper bound the size of Y \ (X ∪D). Let u ∈ V(G1) \ (V(R)∪X ∪D).
Since u < X ∪D, its degree in G1 is at least two. Thus, by Lemma 3.20 there is
a vertex v ∈ D with u ∈ NG1

2 (v). Alber et al. [8, Proposition 2] showed that all
vertices in NG1

2 (v) \ V(R) can be partitioned into so-called simple regions in G1

of the form R(v, y) such that y ∈ NG1
1 (v) and R(v, y) ⊆ {v, y} ∪ (NG1

2 (v) \ V(R)).
Furthermore, in total, there are at most O(|D|) of these regions for all v ∈ D.24

By definition of simple regions [8, Definition 6], all vertices in R(v, y) are adjacent
to v and y, it follows that with U := R(v, y)\{v, y} the triple ({v, y},U,∅) constitutes
a raw diamond. Moreover, because each region has at most six boundary vertices,
it follows that |UB| ≤ 4. By the argumentation of Alber et al. [8, Proposition 2],
in order to show |Y | ∈ O(|D|) it is sufficient to prove |U ∩ V(G2)| ∈ O(1). This,
however, follows from Lemma 3.21. �

Since we have shown in Section 3.4.2 that all regions of our D-region de-
composition R of G1 have constant size in G3 and, by choice of R, we know
that |R| ∈ O(γ(G)), we have only O(γ(G)) vertices in regions. In this section, we
showed that there are only O(γ(G)) vertices outsize of regions of R in G1 that are
also in G3. Since the number of additional (dummy) vertices of G3 is in O(γ(G)),
we conclude that G3 contains only O(γ(G)) vertices, yielding Theorem 3.1 (see
page 88).

Theorem 3.1. On planar graphs, a linear-size problem kernel for Dominating
Set is computable in linear time.

3.5 Conclusion
Our work is meant to provide a first case study, using the well-known kernelization
of Dominating Set on planar graphs, on how known kernelization algorithms can
be tuned for better time performance by carefully analyzing the interaction and
costs of the underlying data reduction rules. Clearly, on the practical side it is
important to further improve on the upper bound for the kernel size to be achieved
in linear time.
Informally speaking, the analysis of our problem kernel shows that “knowing
when to stop” may be a source of performance gain. This is particularly true for
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kernelization algorithms since faster algorithms with worse kernel bounds can
be combined with slower algorithms yielding better kernel bounds in order to
achieve an overall improvement. However, an empirical study in the spirit of
algorithm engineering remains to be done.
As to future challenges, there are a lot of possibilities in revisiting known kernel-
ization results and re-engineering them in terms of algorithmic efficiency beyond
“polynomial-time” computability. A canonical example is Dominating Set on
claw-free graphs, which was recently shown to have a O(k4)-vertex kernel [118].
Furthermore, a recently shown linear-time kernel for Hitting Set with constant
set size parameterized by the solution size k [18] motivates looking at similar
problems that admit a polynomial-size kernel [177].
In this chapter, we developed a linear-time computable problem kernel of size
O(γ(G)) for Dominating Set on planar graphs. For other problems, it might
be helpful to alleviate the quest from O(n)-time to almost linear-time such as
p(k) + O(n) or p(k) ·n, where p is a polynomial solely depending on a parameter k.
For instance, Chor et al. [49] presented such an “almost linear-time” kernelization
for a variant of the Clique Covering problem, asking whether it is possible to
cover all vertices of a graph with k cliques. It is a challenge for future research
to investigate the complexity classes of fixed-parameter tractable problems that
allow for kernels of any size computable in (almost) linear running time.



Chapter 4

Preprocessing Beyond
Kernelization

In this chapter, we demonstrate how preprocessing can improve theoretical run-
ning time bounds of exact algorithms, even outside the scope of kernelization. A
previous example of a preprocessing-based exact algorithm was sketched for the
Subset Sum problem [173, 200].

Subset Sum
Input: A set S of n integers and an integer k.
Question: Is there a subset I ⊆ S such that

∑
i∈I i = k?

Input:

∑ ?
= 14

1
3

4
7

9

Solution:

∑
= 14

1

4
9

Clearly, Subset Sum can be solved in O(2n · n) time by checking the sum of
all subsets of S . However, the following preprocessing-based algorithm runs
in O(2n/2 · n) time.
Step 1: Let s̃ denote the median of S . Compute the set S 1 of all integers that can

be obtained by summing up integers in S that are smaller than s̃ and let S 2
denote the set of all integers that can be obtained by summing up integers
in S that are larger than s̃. Formally,

S 1 := {` : ∃
I⊆S

∑
i∈I

i = ` ∧ ∀
i∈I

i ≤ s̃}

S 2 := {` : ∃
I⊆S

∑
i∈I

i = ` ∧ ∀
i∈I

i > s̃}
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Step 2: Sort S 1 using merge sort.
Step 3: For each ` ∈ S 2 determine whether k − ` ∈ S 1 using binary search.

Partitioning the solution set I into I1 := {i : i ∈ I ∧ i ≤ s̃} and I2 := I \ I1,
it is clear that S 2 contains ` =

∑
i∈I2

i and S 1 contains k − ` =
∑

i∈I1
i and,

therefore, the solution I is found by the algorithm. Since |S 1|, |S 2| ≤ 2n/2+1

and, thus, log |S 1| ≤ n/2 + 1, each step can be performed in O(2n/2 · n) time.
This approach, however, has two downsides. First, it is inherent to number
problems and therefore not applicable for problems on graphs. Second, the
preprocessing routine itself takes exponential time, excluding it from combination
with polynomial-time algorithms such as approximation or heuristics. An example
of using preprocessing to obtain fixed-parameter tractability without supplying a
kernel was recently given by Becker et al. [14], who combined reduction rules
and branching to show fixed-parameter tractability for a generalization of Vertex
Cover and Feedback Vertex Set called c-Pumpkin Hitting.
Here, we consider the WeightedMultigraph Eulerian Extension problem and
demonstrate a polynomial-time preprocessing enabling us to prove fixed-parameter
tractability. The problem asks for a minimum weight set of arcs to add to a given
directed multigraph to make it Eulerian. We show that Weighted Multigraph
Eulerian Extension is equivalent to the Rural Postman problem, which asks for
a tour in a given directed graph visiting some specific arcs. Rural Postman is
fundamental in arc routing with a long list of real-world applications [76, 67].
We develop a dynamic programming algorithm for the Weighted Multigraph
Eulerian Extension problem (or, equivalently, the Rural Postman problem) run-
ning in O(nk2k · n4) time and show how adding an intuitive polynomial-time
preprocessing improves the running time to O(4k · n3) time. Finally, incorpo-
rating observations granted by the preprocessing routine, we show a running
time of O(4b+2c · n3) with b denoting the “imbalance” and c denoting the number
of connected components of the input multigraph. The preprocessing does not
constitute a problem kernel and we even demonstrate that WeightedMultigraph
Eulerian Extension is unlikely to admit a polynomial-size problem kernel even
with respect to the combined parameter k + c + b.

4.1 Introduction to Eulerian Extension
Edge modification problems in graphs have many applications and are well-
studied in algorithmic graph theory [34, 158]. The corresponding minimization
problems ask to modify as few (potential) edges as possible such that an input
graph is transformed into a graph with a desired property. Most studies in this
context relate to undirected graphs whereas we are aware of only few studies of
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“arc modification” problems on directed graphs. Two examples are the works
on the Transitivity Editing problem that asks whether a digraph can be made
transitive25 by a given amount of arc modifications [198] and the well-known
Feedback Arc Set problem [42, 107, 16].

Here, we study the NP-hard problem of making a digraph Eulerian by arc ad-
ditions. Following previous work [120], we call this “extension” problem. In
the graph modification context, this is also known as “completion” or “addition”
problem.

A digraph is called Eulerian if it contains an oriented cycle visiting every arc
exactly once. An Eulerian extension is a set of arcs to add to a digraph so that it
becomes Eulerian. The corresponding decision problem reads as follows.

Eulerian Extension
Input: A digraph G and an integer k.
Question: Is there an Eulerian extension E for G with |E| ≤ k?

Input: Solution:

Variants of Eulerian Extension include Weighted Eulerian Extension, where
an additional weight function ω : V × V → N is given26 that assigns weights to
non-arcs and the solution is required to have total weight at most ωmax. There
are also unweighted and weighted multigraph variants (where parallel arcs are
allowed in the input and output) referred to as Multigraph Eulerian Extension
and WeightedMultigraph Eulerian Extension, respectively. The main focus of
this chapter lies with the latter of these problems:

25A digraph G is called transitive if the existence of the arcs (u, v) and (v,w) in G implies the
existence of (u,w) in G.

26We assume that 0 ∈ N.
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WeightedMultigraph Eulerian Extension
Input: A directed multigraph M = (V, A), a weight function ω :

V × V → N, and an integer ωmax.
Question: Is there an Eulerian extension E for M with

∑
a∈E

ω(a) ≤ ωmax?

Input: Solution:

The problem has applications in scheduling where it generalizes the three-machine
flowshop problem with “no-wait” constraint that aims at minimizing the number
of interruptions (denoted by F3|nwt|G in standard scheduling notation [102]).
This flowshop problem rose from an application in steel manufacturing [120].
Here, a special case of WeightedMultigraph Eulerian Extension with restricted
weight function is used.
Eulerian extension problems are closely related to the well-known Chinese Post-
man problem (for surveys, refer to Eiselt et al. [75, 76] and the book of Dror [67]),
where the goal is to find a shortest walk that visits all arcs of a given directed
graph, and the more general Rural Postman problem [76, 140] that asks for a
shortest walk covering at least a given set of arcs. These given arcs are called
“required arcs”. Although Rural Postman can be defined for undirected graphs,
we focus on its directed version. For Rural Postman, we allow requiring to visit
some arcs multiple times, that is, we allow the required arcs to form a multiset.

Rural Postman
Input: A digraph G = (V, A), a multiset R of “required” arcs of A, a

weight function ω : A→ N, and an integer ωmax ≥ 0.
Question: Is there a closed walk W in G such that W visits all arcs

in R and the total weight of W is at most ωmax?

Input: Solution:
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Note that, if R = A, then Rural Postman degenerates to the Chinese Postman
problem [36, 72, 75, 153].
Rural Postman has numerous applications that range from vehicle routing prob-
lems like street sweeping, snow plowing, garbage collection, road sanding, or bus
routing to parking meter collection and electrical meter reading [67, 76, 138, 140].
As we will see in Section 4.2, Rural Postman is equivalent to WeightedMulti-
graph Eulerian Extension, implying both problems are suitable to model these
applications. Furthermore, this equivalence implies that the NP-hardness of
WeightedMultigraph Eulerian Extension directly follows from the known NP-
hardness result for Rural Postman [140] (in fact, Rural Postman is one of the
prominent NP-complete problems featured by Garey and Johnson [100]). More-
over, the fact that Rural Postman is solvable in polynomial time if the required
arcs form a weakly connected component [97] directly implies that Weighted
Multigraph Eulerian Extension is solvable in polynomial time if the input is
weakly connected.

Related Problems and Previous Work. The unweighted and undirected Eule-
rian extension problems for graphs and multigraphs were already discussed in
1977 by Boesch et al. [31], who developed a linear-time algorithm for the multi-
graph case and a matching-based algorithm for the graph case. Later, Lesniak
and Oellermann [141] surveyed undirected Eulerian graphs, including charac-
terizations of Eulerian (multi-)graphs and graphs that can be extended to Eule-
rian graphs. Recently, Höhn et al. [120] initiated a study of Eulerian extension
problems applied to sequencing problems in scheduling. They showed that
special cases of Weighted Multigraph Eulerian Extension with weight func-
tion ω : V × V → {0, 1} are NP-complete. In particular, they considered vertex
sets V ⊆ R+

0 × R
+
0 and for each u = (ux, uy) and v = (vx, vy) they set

ω((u, v)) :=

0, if ux ≤ vx and uy ≤ vy

1, otherwise.

Höhn et al. [120] call this problem Two-Dimensional Eulerian Extension.
To the best of our knowledge, WeightedMultigraph Eulerian Extension has not
been considered directly in the literature so far. However, there is an arsenal of
results for the (equivalent) Rural Postman problem, many of which are based on
results for the Traveling Salesman problem (see Section 1.2.4, page 15). Rural
Postman was shown to be NP-hard [140] by reducing the NP-hard Traveling
Salesman problem with unit weights to it. If edge weights may be zero (or arbitrar-
ily small), then it is even NP-hard to approximate Traveling Salesman to within
any constant factor [100], and so is approximating Rural Postman. However,
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certain restrictions of Rural Postman allow for polynomial-time constant-factor
approximations. In particular, Frederickson [97] and Jansen [126] presented algo-
rithms that compute postman tours that are at most 50% longer than optimal tours.
Both algorithms are based on an O(n3)-time factor-3/2 approximation algorithm
of Christofides [50] for Traveling Salesman and, therefore, require that the input
respects the triangle inequality.27

From a parameterized perspective, little is known about Rural Postman. An
implicit result can be obtained by combining a transformation of Rural Postman
to Traveling Salesman by Pearn et al. [166] with the previously mentioned
reduction of Hamiltonian Cycle to Rural Postman. This yields a problem
kernel containing 6|R| vertices for Rural Postman (recall that R denotes the
required arcs in the input instance). Combining the transformation of Rural
Postman to Traveling Salesman with the well-known dynamic programming
algorithm by Held and Karp [115] gives an algorithm solving Rural Postman
in O(8|R| · |R|2 + n3) time. Pondering the NP-hardness proof [140] of Rural
Postman, one quickly notices that it produces very specific instances. Notably,
the number c of connected components in (V,R) is large. Indeed, Orloff [164]
concluded that “the critical factor is the number of disconnected components.”
While Frederickson [96] gave an algorithm that runs in O(n2c+1/c!) time, the
question whether Rural Postman is fixed-parameter tractable with respect to c
was implied repeatedly [97, 164].
Regarding other modification operations, Cai and Yang [38] considered Eulerian
subgraphs of undirected graphs. They presented a color-coding based randomized
algorithm for computing a k-edge Eulerian subgraph of a given graph and stated
that the derandomized algorithm runs in 2O(k) · nm log n time. They also showed
that the problem of finding k vertices to delete to make a given graph Eulerian is
W[1]-hard with respect to k. In recent work, Fomin and Golovach [90] continued
in this line of research, answering open questions about dual parameterizations for
parameterized problems introduced by Cai and Yang [38]. Furthermore, Fomin
and Golovach [90] proved that both, the problem of computing a k-edge Eulerian
subgraph and the problem of computing a k-vertex Eulerian subgraph are unlikely
to admit polynomial-size problem kernels with respect to k. Cygan et al. [55]
showed that the problem of deleting k arcs (edges) in order to obtain an Eulerian
graph is NP-hard and fixed-parameter tractable with respect to k and is unlikely to
admit a problem kernel whose size is polynomial in k. Cechlárová et al. [41, 40]
examined a similar graph modification problem. There, the task is to delete a
minimum number of arcs of a given digraph such that each strongly connected
component of the resulting digraph is Eulerian. Apart from NP-hardness, they

27The input is required to be a complete graph and for each three vertices u, v, and w, the inequal-
ity ω({u, v}) + ω({v,w}) ≥ ω({u,w}) holds.
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weighted, weakly connected unweighted

undir. graph O(n3) (Theorem 4.1) O(m
√

n) (Theorem 4.2)
undir. multigraph O(n3) (Corollary 4.1) O(n + m) (Prop. 4.5)
dir. graph O(m2

+ nm log n) (Prop. 4.2) O(m(n + m)) (Prop. 4.4)
dir. multigraph O(n3 log n) (Prop. 4.3) O(n + m) (Prop. 4.5)

Table 4.1: Polynomial-time solvable Eulerian extension problems. Here, n denotes
the number of vertices in the input, m denotes the number of edges (arcs) in the
input, and m denotes the number of edges (arcs) in the complement of the input
(di)graph. The running times are under the assumption that the complement
of the input is given in advance. If this is not the case, then running times
involving m receive an additional summand O(n2). In general, weighted variants
of Eulerian extension problems are NP-hard if the input (multi-)graph is not
(weakly) connected [120, 140].

showed fixed-parameter tractability and intractability for some application-related
parameters. Under the name Min-DESC, this problem was recently considered
by Crowston et al. [54] who showed that, on tournaments, it is fixed-parameter
tractable with respect to the number of arcs to delete.

Our Results. Our main achievement is to show that Weighted Multigraph
Eulerian Extension is fixed-parameter tractable with respect to the parameter
“minimum number k of extension arcs”. In fact, given a multigraph M on n ver-
tices and a weight function ω, our algorithm finds an Eulerian extension E with
minimum total weight among all Eulerian extensions E′ for M in time O(4k · n3).
Using the above-mentioned equivalence, our algorithm implies fixed-parameter
tractability for Rural Postman with respect to the parameter “number k of non-
required arcs in the solution”, which can be considered an “above guarantee”
parameterization, since all solutions contain all required arcs of an instance. We
briefly sketch a composition algorithm that implies that WeightedMultigraph
Eulerian Extension is unlikely to admit a polynomial-size problem kernel with
respect to the parameter k.
We present a number of polynomial-time solvable variants of Eulerian extension
problems. In particular, we consider inputs that are connected or unweighted
(see Table 4.1). This stands in contrast to Rural Postman, whose unweighted
variant is NP-hard [140]. The results translate to Rural Postman in the following
way. Unweighted inputs correspond to instances of Rural Postman in which all
edges (arcs) are present. (Weakly) connected inputs correspond to instances of



114 CHAPTER 4. Preprocessing Beyond Kernelization

Rural Postman in which the required edges (arcs) form a (weakly) connected
component. Disallowing multisets as inputs corresponds to disallowing using an
edge (arc) more than once in a solution for Rural Postman.
Our polynomial-time algorithms extend known results for special cases of the
WeightedMultigraph Eulerian Extension problem where the weight function
only assigns values zero and one [120] (for these variants, only NP-hardness
was shown so far; we provide a first algorithmic result for this case) and Rural
Postman, for which mainly approximation, heuristic, and some polynomial-time
algorithms for special cases were known [76, 97].

Organization of the Chapter. After fixing some problem-specific notation
and making basic observations, we examine polynomial-time algorithms for
special cases of Eulerian extension problems in Section 4.3. We present our
dynamic programming algorithm for WeightedMultigraph Eulerian Extension
and analyze its running time in Section 4.4. Then, we add a polynomial-time
preprocessing to the algorithm, leading to the main result of this chapter in
Section 4.5. We complement this result in Section 4.6 by proving that Weighted
Multigraph Eulerian Extension is unlikely to admit a polynomial-size problem
kernel. Finally, Section 4.7 concludes with a review on open questions and future
work.

4.2 Problem-Specific Notation, Basic Observations
Let G = (V, A) be a directed graph or multigraph (that is, a graph with parallel
arcs allowed)—we also use the letter M to refer to multigraphs. The set of
connected components of G is denoted by CG. For an arc set E and some arc a,
we abbreviate E ∪ {a} to E + a. Likewise, G + E and G + a denote the results of
adding the arc set E and the arc a, respectively, to G.
An Eulerian cycle in a directed (multi-)graph G is a directed cycle that visits all
arcs of G exactly once (possibly visiting each vertex more than once). If such a
cycle exists, then we call G Eulerian. We call a (multi-)set E ⊆ V ×V an Eulerian
extension for G if (V, A ∪ E) is Eulerian. Furthermore, E is called optimal if there
is no Eulerian extension of less total weight for G, where the total weight of E is∑

a∈E ω(a) for a weight functionω : V×V → N. Note that, in this context, the sum
is over all elements of the multiset E, including identical elements. Hence, if arc a
occurs twice in E, then the weight of a is counted twice in the sum. Likewise, the
cardinality |E| :=

∑
a∈E 1 counts identical elements individually. For sets or multi-

sets A of arcs, we abbreviate ω(A) :=
∑

a∈A ω(a). A walk W in G is a sequence of
arcs of A such that each arc starts in the end vertex of the previous arc. Since each
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arc can occur multiple times in a walk, we also consider walks as multisets of
arcs. If the sequence W starts in the same vertex as it ends, then we call W closed.
The imbalance of a vertex v is

imbal(v) := indeg(v) − outdeg(v).

Specifically, letI+
G (I−G) denote the multiset of vertices v of G for which imbal(v) >

0 (imbal(v) < 0). Herein, each vertex v is contained |imbal(v)| times in the multi-
set. In an undirected graph, we define the imbalance imbal(v) of a vertex v to be
one if the number of its neighbors is odd and zero otherwise. For both directed
and undirected (multi-)graphs G, vertices v of G with imbal(v) = 0 are called
balanced, while all other vertices of G are called imbalanced, with IG := I+

G]I
−
G

denoting the multiset of imbalanced vertices of G. We call |IG |/2 = |I+
G | = |I

−
G |

the imbalance of G. Connected components in CG that do not contain imbalanced
vertices are called balanced. We refer to the set of all balanced components
of G by Cbal

G ⊆ CG. With the concept of vertex balance, we can state a well-
known characterization of Eulerian graphs and multigraphs that helps us prove a
(multi-)graph to be Eulerian.

Lemma 4.1 (Folklore). A (directed) (multi-)graph is Eulerian if and only if all
edges (arcs) are in the same connected component and all vertices are balanced.

Eulerian Extension and Related Problems. In the most general problem that
we study, we have weights and allow the input and output to be multigraphs.
Since multigraphs allow the presence of parallel arcs, we may also add arcs that
are already present in the input. If we restrict the problem to digraphs, that is,
we prohibit parallel arcs in both the input and the resulting digraph, then we
arrive at the Weighted Eulerian Extension problem. Both WeightedMultigraph
Eulerian Extension and Weighted Eulerian Extension are also considered in
their unweighted versions, where all arcs have weight one.
In this chapter, all variants of Eulerian Extension are parameterized by the
minimum cardinality k of all Eulerian extensions with weight at most ωmax. More
formally,

k := min{|E| : E is an Eulerian extension for G and ω(E) ≤ ωmax}. (4.1)

Rural Postman is parameterized by q, the minimum number of “additional” arcs
over all solutions. More formally,

q := min{|W | − |R| : W is a walk in G visiting all arcs in R}. (4.2)

Note that, for Rural Postman, q is a “stronger” parameter than the number of
arcs in W, because q ≤ |W |. This implies that all positive (algorithmic) results for
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Rural Postman parameterized by q also hold for Rural Postman parameterized
by |W |. Since all solutions guarantee to contain R, choosing q can be considered
an above-guarantee parametrization [146, 147, 157] of Rural Postman.

Helpful Observations. We present observations that help us prove our results
and give insights into the structure of the considered problems. First, observe that,
over all vertices of a graph, the imbalance always adds up to zero, that is, for each
“missing” incoming arc, there is also a “missing” outgoing arc.

Observation 4.1. Let G be a directed (multi-)graph. Then
∑

v∈V(G) imbal(v) = 0
and, equivalently, |I+

G | = |I
−
G |.

In undirected graphs and multigraphs, the sum over all imbalances is even. Ob-
servation 4.1 also be applies to connected components. Next, observe that an
undirected Eulerian graph cannot have bridges since a walk visiting all edges
would have to cross the bridge, effectively cutting off its way back to the starting
point.

Observation 4.2. Let G be a directed or undirected Eulerian (multi-)graph. Then
there is no bridge in G.

Next, consider an Eulerian extension E of some directed (multi-)graph G. Clearly,
for each occurrence of a vertex v in I+

G, there is an arc outgoing of v in E.
Moreover, for each balanced connected component of G, there must be at least
one arc in E that leaves this component. Considering that |IG | = 2|I+

G |, we can
make the following observation.

Observation 4.3. Let G be a directed or undirected (multi-)graph that is not
Eulerian and let E be an Eulerian extension of G. Then |IG |/2 + |Cbal

G | ≤ |E|.

In the remainder of this section, we show an important relation between Rural
Postman and WeightedMultigraph Eulerian Extension. An example illustrating
this relation is shown in Figure 4.1.

Proposition 4.1. Rural Postman and WeightedMultigraph Eulerian Extension
are parameterized equivalent.

Proof. The idea to show the claim is to identify the required arcs of the Rural
Postman-instance with the arcs of the input multigraph for WeightedMultigraph
Eulerian Extension. Furthermore, identify non-arcs in the Rural Postman-
instance with non-arcs of weight ∞ in the WeightedMultigraph Eulerian Ex-
tension-instance. Note that parallel arcs carried into the Rural Postman instance
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a a

b b

c c

d de e

Figure 4.1: An illustration of equivalent instances of Rural Postman and
WeightedMultigraph Eulerian Extension, respectively. Left: Instance of Rural
Postman with required arcs drawn in bold. Right, a corresponding instance of
WeightedMultigraph Eulerian Extension, where the dashed arcs are not present
in the graph but have finite weight. Arcs that are not drawn have infinite weight.
An exemplary postman tour visiting all required arcs would be (c, d, b, a, e, c).
The corresponding Eulerian extension is {(b, a), (e, c)}. Note that the weight of
the Eulerian extension equals the weight of the postman tour minus the weight of
the required arcs.

from the WeightedMultigraph Eulerian Extension-instance can be handled by
subdividing them.
First, to establish that Rural Postman is parameterized reducible to Weighted
Multigraph Eulerian Extension, we construct an instance (M, ω′, ω′max) with
parameter k from an instance (G = (V, A),R, ω, ωmax) of Rural Postman with
parameter q by setting M := (V,R), ω′max = ωmax − ω(R), k := q, and

ω′(a) :=

ω(a) if a ∈ A,
∞ otherwise.

Since the weight functions are basically equal, “the weight” of some arc set
may refer to either ω or ω′. Let E denote a solution for (M, ω′, ω′max). Then, by
definition of Eulerian graphs, W := E∪R is a walk of weight at most ω′max +ω′(R)
that visits all arcs in R. Furthermore, if we have a solution W for (G,R, ω, ωmax),
then E := W \ R is an Eulerian extension of weight at most ωmax − ω(R) = ω′max
for M with |E| ≤ q = k.
Second, we show that WeightedMultigraph Eulerian Extension is parameter-
ized reducible to Rural Postman. Given an instance (M = (V, A′), ω′, ω′max) of
Weighted Multigraph Eulerian Extension with parameter k, we construct an
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instance (G,R, ω, ωmax) of Rural Postman with parameter q by setting G :=
(V,V × V), R := A′, ω := ω′, ωmax := ω′max +ω′(R), and q := k. Note that parallel
arcs in M can be handled by subdivision, that is, if the arc (u, v) appears twice
in A′ then we introduce a new vertex w into M and replace one of the arcs (u, v)
with the two arcs (u,w) and (w, v) with ω((u,w)) = 0 and w((w, v)) = w((u, v)).
Analogously to the first part of the proof, a solution E for (M, ω′, ω′max) implies a
solution W = E ∪ R for (G,R, ω, ωmax) and vice versa. �

4.3 Polynomial-Time Solvable Cases

As discussed in the introduction of this thesis, familiarity with polynomial-time
special cases often helps construct parameterized algorithms with data reduction
rules like Reduction Rule 1.3. Therefore, we briefly examine polynomial-time
solvable cases of Eulerian Extension, generalizing previously known cases and
giving exact running times for special cases that were just stated to be “polynomial-
time solvable”. More precisely, we present results for all polynomially solvable
combinations of the properties “connected” and “weighted”. First, we consider
weighted variants of Eulerian extension problems if the input (multi-)graph is
connected (Section 4.3.1). Then, we consider the unweighted variant and allow
disconnected (multi-)graphs (Section 4.3.2).
All running times are given as functions in the number n of vertices in the input,
the number m of edges (arcs) in the input, and the number m of edges (arcs) in
the complement of the input graph. To allow focus on the algorithmic results, we
assume that the complement of the input is given in advance. If this is not the
case, then running times involving m receive an additional summand O(n2). We
refer to Table 4.1 for an overview of the results of this section.

4.3.1 Algorithms for Connected Weighted Variants

Keeping in mind that the disconnected versions of Weighted Eulerian Extension
and Weighted Multigraph Eulerian Extension are NP-hard [120, 140], we
provide polynomial-time algorithms for both problems in case of connected
inputs. When considering directed inputs, “connected” always means “weakly
connected”.
The first result states that Weighted Eulerian Extension on connected, undirected
graphs can be solved in polynomial time. Based on the notion of “T -joins”, this
can be derived from a result by Edmonds and Johnson [73]. For a graph G and
a vertex-set T , a T-join is a set J of edges of G such that each vertex v of G
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is incident to an odd number of edges in J if and only if v ∈ T . Edmonds and
Johnson [73] showed a running time of O(n3) for solving the following problem.

Minimum-weight T -Join
Input: An undirected graph G = (V, E), a set T ⊆ V , a weight

function ω : E → N, and an integer k.
Question: Is there a T -join of weight at most k for G?

Letting T be the set of imbalanced vertices in a connected undirected input
graph G, solving Minimum-weight T -Join corresponds to solving Weighted Eule-
rian Extension.

Theorem 4.1 ([73, 135]). Weighted Eulerian Extension on connected undirected
graphs can be solved in O(n3) time.

In order to apply the result of Edmonds and Johnson [73] to multigraphs, we show
that there is a minimum-weight Eulerian extension in a connected undirected
multigraph that does not use any edge more than once.

Lemma 4.2. Let M = (V, E) be a connected undirected multigraph, let ω :
(

V
2

)
→

N be an edge-weight function and let IM denote the imbalanced vertices of M.
Let G be a clique on the vertex set V. Then, a minimum-weight IM-join in G is
also a minimum-weight Eulerian extension E for M.

Proof. Clearly, each IM-join in G is an Eulerian extension for M. However, to
show that there is no Eulerian extension of less weight, we prove that, for each
minimum-weight Eulerian extension that uses some edge twice, we can find a
minimum-weight Eulerian extension that uses less edges twice. By iterating this
argument, we can find a minimum-weight Eulerian extension that does not use
any edge more than once and, hence, this Eulerian extension also constitutes
a minimum-weight IM-join in G. Note that, since M is connected, E does not
contain cycles.
In the following, assume that E contains a path between vertices u and v and a path
between vertices x and y and the two paths share an edge {a, b}. Now, consider
the following paths in G. The first path p1 consists of the part (u, . . . , a) of the
path between u and v and the reverse of the part (x, . . . , a) of the path between x
and y. The second path p2 consists of the reverse of the part (b, . . . , v) of the path
between u and v and the part (b, . . . , y) of the path between x and y.
Obviously, the union of the sets of edges of p1 and p2 is a proper subset of the
union of the sets of edges of the paths between u and v and x and y, respectively.
Hence, replacing the paths in E accordingly does not increase the weight of E and
decreases the number of edges used more than once. �
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With Lemma 4.2, we can now state a version of Theorem 4.1 for connected
undirected multigraphs.

Corollary 4.1. WeightedMultigraph Eulerian Extension on connected undi-
rected multigraphs can be solved in O(n3) time.

It remains to show polynomial-time solvability for directed graphs and multi-
graphs. First, we present an algorithm for digraphs, which is then modified to
work for directed multigraphs. The algorithm is based on computing network
flows or matchings (refer to Ahuja et al. [5] for flow notations).

Proposition 4.2. Weighted Eulerian Extension on connected digraphs can be
solved in O(m2

+ nm log n) time.

Proof. Consider an instance (G, ω, k, ωmax) of Weighted Eulerian Extension,
where G is a connected digraph, and a function imbal : V(G)→ Z measuring the
imbalance of each vertex (see Section 4.2). Consider the flow network G (the
complement graph of G) with supply determined by the function imbal (negative
supply indicates demand), arc capacity one for each arc, and arc-costs determined
by ω. Let f be an integral flow of value 1/2 ·

∑
v∈V | imbal(v)| in this network.

Then, the set of arcs carrying f corresponds to an Eulerian extension for G and,
thus, the minimum cost of such a flow is also the minimum cost of an Eulerian
extension for G. Such a flow can be computed in O(m2

+ nm log n) time.28 �

Next, we allow parallel arcs in the input and modify the algorithm described in
the proof of Proposition 4.2. For a directed multigraph M let GM be the complete
digraph (containing all possible arcs) on the vertex set of M. Analogously to
the proof of Proposition 4.2, we employ a min-cost flow algorithm on GM with
arc capacities ∞ and weights according to ω and supply determined by the
function imbal. The uncapacitated version of the min-cost flow algorithm (running
in O(n3 log n) time [5]) can be used in this case.

Proposition 4.3. Weighted Multigraph Eulerian Extension on connected di-
rected multigraphs can be solved in O(n3 log n) time.

4.3.2 Algorithms for General Unweighted Variants
In this section, we provide polynomial-time algorithms for Eulerian Extension
on various input (multi-)graphs. First, we state a previously known result for
Eulerian Extension and show how algorithms of Section 4.3.1 help to solve the
problem on connected digraphs. We then present an algorithm for disconnected

28See Exercise 10.17 of Ahuja et al. [5], a solution to which can be found on the web [6].
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digraphs and an algorithm solving Eulerian Extension on directed and undirected
multigraphs.
Eulerian extensions were already considered by Boesch et al. [31], who showed
that, on undirected graphs, Eulerian Extension can be solved in polynomial time,
even for disconnected graphs.

Theorem 4.2 ([31, 141]). Eulerian Extension on undirected graphs can be
solved in O(m

√
n) time.

Next, we extend this result to digraphs. Since Eulerian Extension is a special
case of Weighted Eulerian Extension, we can solve Eulerian Extension for
connected digraphs using the algorithm from the proof of Proposition 4.2 with a
unit-weight version of the min-cost flow algorithm running in O(m(n+m)) time.29

Corollary 4.2. Eulerian Extension on connected directed graphs can be solved
in O(m(n + m)) time.

This algorithm cannot handle multiple components. In the following, we present
a more general algorithm that also allows us to solve the problem on disconnected
digraphs (at the cost of increased running time). The algorithm starts with a
min-cost max-flow in the complement digraph and locally modifies the arcs that
carry flow in order to connect all components of the input digraph. For ease of
presentation we split the following lemma concerning digraphs of diameter two30

from the main correctness proof.

Lemma 4.3. Let f be a min-cost max-flow in a unit-weight unit-capacity di-
graph G. Let F denote the arcs of G that carry flow and let G − F have diameter
two. Then there are no three consecutive arcs in F.

Proof. Assume that F contains three consecutive arcs (u, v), (v,w), and (w, x).
Since G − F has diameter two, there is a vertex v′ in G − F such that (u, v′)
and (v′, x) are in G − F. Hence, replacing (u, v), (v,w), and (w, x) with (u, v′)
and (v′, x) in F yields a max-flow of less cost, contradicting our choice of F.

�

The following algorithm receives a digraph G = (V, A) and a vertex imbalance
function imbal : V → Z and computes a minimum-cost Eulerian extension for G,
if it exists. The algorithm comprises three steps that modify the input digraph G.
In Step i, we denote the current extension set by Fi.

29Combine the solution [6] for Exercise 10.17 of Ahuja et al. [5] with breadth-first search as shortest
path algorithm.

30In a digraph, the distance of u to v is the number of arcs in a shortest path from u to v if such a
path exists, and∞ otherwise. The diameter of a digraph G is the maximum distance between any pair
of vertices in G.
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Step 1: Compute a min-cost max-flow f of value |IG |/2 (recall that IG denotes
the multiset of imbalanced vertices of G) in the complement graph G
with supply determined by the function imbal (negative supply indicates
demand), arc capacities one and arc weights one for each arc. If there is
no such flow, then there is no Eulerian extension for G. Let F1 denote the
set of arcs that carry flow. Note that G + F1 does not contain imbalanced
vertices.

Step 2: Let F2 denote the current extension set after Step 1. In this step, we
modify F2 such that all vertices that are imbalanced in G are in the same
connected component of G + F2. If this is already the case, then continue
with Step 3. Otherwise, find two different connected components C1 and
C2 containing vertices that are imbalanced in G. By Observation 4.2, there
are arcs (u, v) ∈ (C1 ×C1) ∩ F2 and (x, y) ∈ (C2 ×C2) ∩ F2 whose removal
does not disconnect C1 or C2. Replace (u, v) and (x, y) with (u, y) and (x, v)
in F2 and repeat Step 2. If G + F2 is connected, then return F2 as an optimal
Eulerian extension for G.

Step 3: Let F3 denote the current extension set after Step 1. Since G + F2 is
disconnected, G + F2 = G − F2 has diameter two and, by Lemma 4.3,
F3 does not contain paths of length three. Let F1

3 and F2
3 denote the sets of

paths of arcs in F3 with length one and two, respectively. Join connected
components of G+F2 by first “rerouting” paths in F2

3 (which can be done by
replacing their middle vertex with a vertex in another connected component)
if this operation decreases the number of connected components. When
this is no longer possible, “split open” an arbitrary path in G + F3 so that it
additionally contains a vertex in another connected component.

Proposition 4.4. Eulerian Extension on disconnected digraphs can be solved in
O(m(n + m)) time.

Proof. First, we show that the presented algorithm produces an optimal Eulerian
extension for G. Let E denote the set of arcs that are returned by the algorithm
above. After Step 1, G + F1 does not contain imbalanced vertices and for each
arc (u, v) removed from F1 in later steps, a path from u to v is added. Hence,
G + E does not contain imbalanced vertices. Since the algorithm only returns
connected digraphs, G + E is also connected and, thus, Eulerian.
If the digraph is connected before splitting paths in Step 3, then |E| = |F2|. Note
that no smaller Eulerian extension exists since this would imply a lower cost
flow in G, contradicting the fact that the cost of the flow corresponding to F1
is minimum. Otherwise, for each path p of F2

3 , there is a different connected
component C of the input digraph G such that p contains a vertex of C. Hence, at
most |Cbal

G |− |F
2
3 |/2 arcs are added in Step 3, implying |E| = |F|+ (|Cbal

G |− |F
2
3 |/2) =
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|F1
3 | + |F

2
3 |/2 + |Cbal

G |. By definition of F1
3 and F2

3 , 2|F1
3 | + |F

2
3 | = |IG |. Hence,

|E| = |IG |/2+ |Cbal
G | and, by Observation 4.3, there is no smaller Eulerian extension

than E.
It is not hard to see that computing the min-cost max-flow in in Step 1 dominates
the overall running time. This flow can be computed in O(m(n + m)) time [5]. �

Proposition 4.4 stands in contrast with Rural Postman being NP-hard for un-
weighted digraphs [140], which seems to be due to the fact that the input for
Rural Postman may prohibit arcs by excluding them from the input digraph. It
turns out that, if no arc is forbidden, that is, the input digraph is complete, then
Rural Postman is solvable in polynomial time. More precisely, we can solve
Multigraph Eulerian Extension for directed multigraphs M by the following
straightforward greedy strategy much like the algorithm known for undirected
multigraphs [31].
Step 1: For each connected component C of M, arbitrarily select a pair of ver-

tices (xC , yC) ∈ I+
C × I

−
C if C is imbalanced, and (xC , yC) ∈ {(v, v) : v ∈

V(C)} if C is balanced.
Step 2: Choose an arbitrary order (C1,C2, . . . ,C|CM |) of the connected compo-

nents and add the arcs (yC1 , xC2 ), (yC2 , xC3 ), . . . , (yC|CM |
, xC1 ), thus connecting

all connected components in a circular manner.
Step 3: Greedily insert arcs between the remaining imbalanced vertices until all

vertices are balanced.

Proposition 4.5. Multigraph Eulerian Extension on directed and undirected
multigraphs can be solved in O(n + m) time.

Proof. Boesch et al. [31] showed the claim for undirected multigraphs. We extend
this to directed multigraphs. If the input multigraph M is connected, then we
can skip Step 1 and Step 2. Clearly, after Step 2, the multigraph is connected,
and after Step 3 all vertices are balanced. Hence, by Lemma 4.1, the set E of all
inserted arcs is an Eulerian extension for M.
Next, we show that E is also optimal. Let E2 and E3 denote the arcs that are
added in Step 2 and Step 3, respectively, and define X2 and X3 as the multisets
that contain a vertex v as many times as there are arcs in E2 and E3, respectively,
that are incident to v. Clearly, |X2| = 2|E2| = 2|CM | and there are 2|CM | − 2|Cbal

M |

imbalanced vertices in X2. Since the result of Step 3 is balanced, |X3| = |IM | −

(2|CM | − 2|Cbal
M |). Hence,

2|E| = |X2| + |X3| = 2|CM | + |IM | − (2|CM | − 2|Cbal
M |) = |IM | + 2|Cbal

M |

and, by Observation 4.3, there is no smaller Eulerian extension than E.
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For the running time note that, in Step 1, we just have to scan each connected
component, and in Step 2 and Step 3, each arc addition can be done in constant
time. �

4.4 Tractability on Directed Multigraphs
In this section, we describe a dynamic programming algorithm solving Weighted
Multigraph Eulerian Extension in O(nk2k · n4) time, where k denotes the cardi-
nality of the sought Eulerian extension (more thoroughly defined in Section 4.2 on
page 115). More precisely, given a multigraph M, a weight function ω, and some
integer k, our algorithm finds an Eulerian extension E with minimum total weight
over all Eulerian extensions E′ for M with |E′| = k. If k is not known in advance,
then we employ a simple self-reduction that, given an instance (M, ω, ωmax) of
WeightedMultigraph Eulerian Extension, finds an Eulerian extension E for M
with the following properties:

(i) the total weight of E is at most ωmax,
(ii) of all Eulerian extensions satisfying (i), E has minimum cardinality, and

(iii) of all Eulerian extensions satisfying (i) and (ii), E has minimum total weight.
The algorithm is developed in three steps. First, in Section 4.4.1, we transform
the input into an instance of a modified problem called Black/GrayWeighted
Multigraph Eulerian Extension. This problem has the advantage that a corre-
sponding Eulerian extension has a particularly simple structure to be exploited by
a dynamic programming algorithm. Then, in Section 4.4.2, we present such an
algorithm for Black/GrayWeightedMultigraph Eulerian Extension. Finally, in
Section 4.4.3, we put everything together to obtain an algorithm for Weighted
Multigraph Eulerian Extension.

4.4.1 Transformation to a Weaker Variant
We introduce the Black/GrayWeightedMultigraph Eulerian Extension problem
and show how it helps us solve WeightedMultigraph Eulerian Extension. For
this, we picture Eulerian extensions as collections of paths between imbalanced
vertices as stated in the forthcoming observation. This notion is fundamental for
the algorithm for Black/GrayWeightedMultigraph Eulerian Extension that we
present in this section. It is based on the fact that for each balanced vertex u, each
Eulerian extension contains as many arcs outgoing of u as incoming to u.

Observation 4.4. Let M be a directed multigraph and let E be an Eulerian
extension for M. Then E can be decomposed into paths that start at a vertex
in I+

M and end at a vertex in I−M or start and end at the same vertex (cycles).
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Our idea to attack WeightedMultigraph Eulerian Extension is to use dynamic
programming to construct the paths of an optimal Eulerian extension arc by arc.
There are, however, a few obstacles to this approach. Assuming that no path
contains two vertices of the same component proved helpful in overcoming these
obstacles. Since this is not always the case, we modify the input multigraph in
order to use it in the following, somewhat more technical problem, for which this
assumption is valid.

Black/GrayWeightedMultigraph Eulerian Extension
Input: Two directed multigraphs Mblack = (V, Ablack) and Mgray =

(V, Agray) such that each connected component of Mblack is either
balanced or contains exactly two imbalanced vertices (one with
imbalance 1, one with imbalance −1), a weight function ω :
V × V → N, and an integer ωmax.

Question: Is there an Eulerian extension E′ of weight at most ωmax
for M := (V, Ablack ∪ Agray) such that in each component Cblack
of Mblack there is exactly one tail of an arc in E′ and exactly
one head of an arc in E′ (that is, |(V(Cblack) × V) ∩ E′| = |(V ×
V(Cblack)) ∩ E′| = 1)?

Again, we can decompose a black/gray Eulerian extension E′ into paths analo-
gously to Observation 4.4. The advantage of Black/GrayWeightedMultigraph
Eulerian Extension is that, in total, these paths visit each black component exactly
once. The gray arcs (arcs in Agray) are used to model the connectivity constraints
given by the original Weighted Multigraph Eulerian Extension instance. We
first describe how WeightedMultigraph Eulerian Extension can be solved using
an algorithm for Black/Gray Weighted Multigraph Eulerian Extension and
then present such an algorithm for Black/GrayWeightedMultigraph Eulerian
Extension in Section 4.4.2.
To solve WeightedMultigraph Eulerian Extension using Black/GrayWeighted
Multigraph Eulerian Extension we employ a transformation that, given an
instance (M, ω, ωmax) of WeightedMultigraph Eulerian Extension, computes
and an instance (M′, ω′, ω′max) of Black/GrayWeightedMultigraph Eulerian
Extension. In this transformation algorithm, we compute a bijection31 µ ⊆
I−M × I

+
M such that each two vertices related by µ are in the same connected

component of M. We call such a bijection component-respecting. Since Observa-
tion 4.1 holds for each connected component, there is a component-respecting
bijection µ for each instance (M, ω, ωmax) of Weighted Multigraph Eulerian

31We say that µ is bijective if for all submultisets X ⊆ I−M , it holds that |µ ∩ (X × I+
M)| = |X| and

for all submultisets X ⊆ I+
M it holds that |µ ∩ (I−M × X)| = |X|.
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Extension. The transformation receives, additionally to the instance (M, ω, ωmax),
a function # : CM → N indicating for each connected component C of M, the
number of times it is visited by the sought solution. We denote the transformed
instance by tr#(M, ω, ωmax) := (M′, ω′, ωmax). See Figure 4.2for an example. The
following describes the transformation algorithm.
Step 1: Compute a component-respecting bijection µ.
Step 2: Compute a new multigraph M′ by creating #(C) copies of each connected

component C of M. Construct ω′ such that ω′(x′, y′) = ω(x, y) for all
vertices x, y of M and their copies x′, y′ in M′.

Step 3: For each component C of M, assign a copy C′ of C to each pair (v,w) ∈ µ
of imbalanced vertices of C and isolate (v,w) in C′, that is, add all arcs
in (I−C × I

+
C) \ {(v,w)} to C′. All copies that have not been assigned to an

imbalanced pair are balanced completely in the above mentioned way. This
assures that each copy of C contains at most one pair (v′,w′) of vertices
and their imbalance is 1 and −1, respectively. Furthermore, each pair of
imbalanced vertices in µ is represented in exactly one copy.

Step 4: For each component C of M, its copies are pairwisely connected by
adding gray arcs. To this end, select any vertex v of C and add all possible
arcs between all copies of v. Note that only copies of the same component
of M are connected by gray arcs.

In the following, we show that the above transformation is correct. More specifi-
cally, it turns out that one can obtain a solution for an instance of WeightedMulti-
graph Eulerian Extension by transforming the input for all feasible # : CM → N
and solving these transformed instances of Black/GrayWeightedMultigraph
Eulerian Extension. Indeed, we can reduce the number of functions # for
which (M, ω, ωmax) is to be transformed by imposing the following restrictions
on #. Since a solution E for Black/Gray Weighted Multigraph Eulerian Ex-
tension visits each copy exactly once (each copy forms a black component),
summing up #(C) over all connected components C of G must not exceed |E|
(= k) and since each copy is assigned to at most one pair of imbalanced vertices,
each connected component C must have at least |IC |/2 copies. Thus, we need
only consider functions of the form

# : CM → N, with
∑

C∈CM

#(C) ≤ k and ∀C ∈ CM : #(C) ≥ |IC |/2 . (4.3)

To prove the correctness of the described transformation, we show that find-
ing a solution for an instance (M, ω, ωmax) of Weighted Multigraph Eulerian
Extension is equivalent to finding a solution for an instance tr#(M, ω, ωmax) of
Black/GrayWeightedMultigraph Eulerian Extension for any fixed µ.
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(a) (b)
u

x v

y

x′
u′

v′

y′

v′′

y′′

x′′
u′′

(c) (d)

Figure 4.2: The picture shows a directed multigraph with an Eulerian extension
containing eleven (dashed) arcs (a) being transformed to (b) by the transforma-
tion tr# described in Section 4.4.1. White vertices are balanced, black vertices
are imbalanced. In (c) and (d), we take a closer look at the top connected com-
ponent C of the graph depicted in (a) and its transformation. Here, #(C) = 2,
µ(v) = u and µ(y) = x. Note that the pair (y′′, x′′) is isolated in the first copy and
the pair (v′, u′) is isolated in the second copy. Finally, as described in the last step
of the transformation, u′ and u′′ are connected by gray arcs.
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Lemma 4.4. The instance (M, ω, ωmax) is a yes-instance of Weighted Multi-
graph Eulerian Extension if and only if there is a function # : CM → N complying
with (4.3) such that tr#(M, ω, ωmax) is a yes-instance of Black/GrayWeighted
Multigraph Eulerian Extension.

Proof. Throughout this proof, let (M′, ω′, ω′max) = tr#(M, ω, ωmax). Let E ⊆
V(M) × V(M) and E′ ⊆ V(M′) × V(M′) such that (u, v) ∈ E if and only if there
are copies u′, v′ of u, v in M′ with (u′, v′) ∈ E′. Under this condition, M + E is
connected if and only if M′ + E′ is connected since, by construction, vertices u, v
of M are connected if and only if all copies of u and v in M′ are connected and the
connectedness relation is transitive. We go on to prove the claim of the lemma.
“⇐” Suppose that there is a function # such that (M′, ω′, ω′max) admits a solution E′.
Let E be the arc set that results from replacing each arc (u′, v′) ∈ E′ by the
corresponding arc (u, v) between the original vertices in M. By construction, the
imbalance of a vertex v of M equals the sum of imbalances of its copies in M′,
implying that M +E is balanced. Furthermore, since E and E′ fulfill the conditions
of the observation in the first paragraph of this proof, we also know that M + E is
connected. Finally, note that E has the same weight as E′, implying that E is a
solution for (M, ω, ωmax).
“⇒” Let (M, ω, ωmax) be a yes-instance of WeightedMultigraph Eulerian Exten-
sion with solution E. For each connected component C of M, let kC be the number
of arcs in E that are outgoing of a vertex of C, that is, kC := |E ∩ (V(C) × V(M))|.
Since |E| ≤ k, we have

∑
C∈CM

kC ≤ k. Moreover, since E is an Eulerian extension
for M, each kC satisfies kC ≥ |I

+
C | = |IC |/2. Thus, the function #(C) := kC

complies with (4.3). It remains to show that (M′, ω′, ω′max) is a yes-instance of
Black/GrayWeightedMultigraph Eulerian Extension. To this end, we construct
a solution E′ for (M′, ω′, ω′max) as follows. For each path p from u to v in E, we
construct a path p′ in E′ by starting from a copy of u that is imbalanced in M′.
Each time p reaches a vertex x , v, we select a copy of x whose black connected
component is balanced in M′ and has not yet been visited by E′. Finally, we
select a copy of v that is imbalanced in M′ as terminal vertex of p′. Since there
are kC copies of each connected component of M in M′, this selection is always
possible. Since, by construction, the balance of a vertex v in M equals the sum of
balances of its copies in M′, we know that M′ + E′ is balanced. Furthermore, by
the observation in the first paragraph of this proof, M′ + E′ is also connected. �

4.4.2 An Algorithm for the Weaker Variant
Having transformed an instance of WeightedMultigraph Eulerian Extension to
an instance of Black/GrayWeightedMultigraph Eulerian Extension using the
algorithm presented in Section 4.4.1, we can now exploit the simpler structure
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of Black/Gray Weighted Multigraph Eulerian Extension in a dynamic pro-
gramming algorithm. The main idea in this algorithm is to construct an Eulerian
extension arc by arc while maintaining a set of connected components of the input
multigraph that have already been visited.
Let (M, ω, ωmax) be an instance of Black/GrayWeightedMultigraph Eulerian
Extension and let Cblack

M be the set of black connected components of M. For each
subset S ⊆ Cblack

M and each pair of vertices u, v ∈ V(S ), our algorithm computes
an entry [S , u, v] of a three-dimensional dynamic programming table such that

[S , u, v] =
minimum weight ω(E) of an arc set E such that E + (v, u)
is a black/gray Eulerian extension for M[V(S )]. (4.4)

If no black/gray Eulerian extension is possible with S , u, and v, then the en-
try [S , u, v] is assigned “∞”. The set S represents a submultigraph of M and the
two vertices correspond to the endpoints of a (possibly “unfinished”) path of an
Eulerian extension (see Observation 4.4). The dynamic programming starts with
computing the entries for sets S that contain exactly one connected component
and augments each S step by step, finally computing the entries for S = Cblack

M ,
which are used to derive a minimum-weight black/gray Eulerian extension for M
with respect to ω. In the following, we describe the initialization process for the
entries.
For each C ∈ Cblack

M not containing imbalanced vertices and for each u, v ∈ V(C),
set

[{C}, u, v] :=

0, if u = v,
∞, otherwise.

This assignment is correct, that is, it satisfies (4.4) by setting E := ∅ (which has
obviously minimum weight) because adding an arc to a balanced component can
only keep the component balanced if the added arc is a loop. Thus E + (v, u) is a
black/gray Eulerian extension for M[V(C)] since the only connected component
has exactly one incoming arc as well as one outgoing arc in E (in this case, the
incoming and outgoing arc is (v, u)).
For each C ∈ Cblack

M containing two imbalanced vertices x ∈ I−M and y ∈ I+
M , and

each u, v ∈ V(C), set

[{C}, u, v] :=

0, if u = x and v = y,
∞, otherwise.

This assignment satisfies (4.4) since, by definition of black/gray Eulerian ex-
tension, x and y are the only imbalanced vertices of C and both are balanced
adding (y, x) (that is, by using E = ∅). For the same reasons as above, E+ (v, u) is
a black/gray Eulerian extension for M[V(C)].
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Next, we describe the computation of the entries for larger sets S . We assume
that all entries for sets S ′ with |S ′| < |S | have already been computed. For a
given S ⊆ Cblack

M with |S | > 1 and vertices u, v ∈ V(S ), the entry [S , u, v] is
computed as follows. Let C ∈ S denote the black component of M that contains v
and let S ′ := S \ {C}. If C is balanced, then distinguish the following three
subcases:

1. If u = v and there is a gray arc between C and S ′, then set

[S , u, v] := min
u′,v′∈V(S ′)

{[S ′, u′, v′] + ω(v′, u′)}.

2. If u ∈ V(S ′), then set

[S , u, v] := min
w∈V(S ′)

{[S ′, u,w] + ω(w, v)}.

3. Otherwise, set [S , u, v] := ∞.
If C contains two imbalanced vertices x ∈ I−M and y ∈ I+

M , then we distinguish
the following three subcases:

1. If u = x, v = y, and there is a gray arc between C and S ′, then set

[S , u, v] := min
u′,v′∈V(S ′)

{[S ′, u′, v′] + ω(v′, u′)}.

2. If u ∈ V(S ′) and v = y, then set

[S , u, v] := min
w∈V(S ′)

{[S ′, u,w] + ω(w, x)}.

3. Otherwise, set [S , u, v] := ∞.
Finally, the weight ωopt of an optimal black/gray Eulerian extension for (M′, ω)
is computed as follows:

ωopt := min
u,v∈V(Cblack

M )
{[Cblack

M , u, v] + ω(v, u)}.

This follows immediately from (4.4). A corresponding black/gray Eulerian exten-
sion can be computed by storing each solution E in addition to its weight in each
entry of the dynamic programming table.

Lemma 4.5. Black/Gray Weighted Multigraph Eulerian Extension can be
solved in O(2k · n3) time, where k denotes the size of the solution.

Proof. In the above description of the dynamic programming algorithm, we
already established correctness for |S | = 1, that is, the case that S contains a
single black component. In the following, consider |S | > 1. We prove that the
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semantics of [S , u, v] (see (4.4)) is met by the computation. To this end, recall
that C denotes the black component of v in M and S ′ := S \ {C}.
The correctness proofs for the case that C is balanced and the case that C is
imbalanced are very similar. Hence, we merge the correctness arguments for
both cases in each of the three subcases 1–3 of the algorithm above. For ease of
presentation, let E(S , u, v) be an arc set that corresponds to the entry [S , u, v] (that
is, [S , u, v] contains the total weight of E(S , u, v)) as defined in (4.4).
Subcase 1: In Subcase 1, we assume that u and v are in the same connected
component C ∈ S . Being a black/gray Eulerian extension for M[V(S )], E(S , u, v)+
(v, u) contains only one arc incoming to and one arc outgoing of C. Since
both u and v are in C, no arc in E(S , u, v) starts or ends in C. Hence, C is
connected to M[V(S ′)] by gray arcs. If C is balanced, then (4.4) is satisfied
only if u = v, as otherwise inserting (v, u) would make v imbalanced. If C
contains two imbalanced vertices x ∈ I−M and y ∈ I+

M , then (4.4) is satisfied only
if u = x and v = y, as otherwise inserting (v, u) does not balance u and v. Thus,
according to (4.4), we only have to ensure that E(S , u, v) is a black/gray Eulerian
extension for M[V(S ′)]. To this end, we try all possible E(S ′, u′, v′) and add the
arc (v′, u′). The resulting arc set of minimum weight is assigned to E(S , u, v).
Note that entries [S ′, u′, v′] with u′ = v′ do not have to be considered, since the
arc set E(S ′, u′, v′) + (v′, u′) + (v, u) would contain the loop (u′, v′).
Subcase 2: In Subcase 2, we assume that the connected component C is con-
nected to M[V(S ′)] by an arc a ∈ E(S , u, v). By an argument of Subcase 1,
u ∈ V(C) contradicts the existence of black arcs between C and M[V(S ′)]. Hence,
u ∈ V(S ′). Furthermore, there cannot be an arc from C to M[V(S ′)] in E(S , u, v),
since together with the arc (v, u) there would be two arcs that are outgoing of C.
Hence, we just have to guess the arc from M[V(S ′)] to C in E(S , u, v). If C is
balanced, then we try all possible E(S ′, u,w) and add the arc (w, v). The resulting
arc set of minimum weight is assigned to E(S , u, v). If C is imbalanced, that is,
it contains two imbalanced vertices x ∈ I−M and y ∈ I+

M , then we try all possi-
ble E(S ′, u,w) and add the arc (w, x). The resulting arc set of minimum weight is
assigned to E(S , u, v). Observe that this is the only way for E(S , u, v) to balance x
and y, which is necessary to satisfy (4.4).
Subcase 3: In Subcase 3, [S , u, v] does not correspond to an arc set E(S , u, v) such
that E(S , u, v) + (v, u) is a black/gray Eulerian extension for M[V(S )]; therefore,
we set [S , u, v] := ∞. This concludes the correctness proof of the updating process
for [S , u, v].
To finish the proof of Lemma 4.5, we show the running time of the dynamic pro-
gramming. Clearly, if S contains exactly one connected component, then [S , u, v]
can be computed in constant time. Otherwise, since S ⊆ Cblack

M , u, v ∈ V(S ),
and |Cblack

M | ≤ k, there are O(2k · n) entries of the form [S , u, u], each of which can
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be computed in O(n2) time (Subcase 1). Furthermore, there are O(2k · n2) entries
of the form [S , u, v], each of which can be computed in O(n) time (Subcase 2).
We arrive at a total running time of O(2k · n3). �

4.4.3 The Complete Algorithm

An important part of the algorithm for Black/GrayWeightedMultigraph Eule-
rian Extension presented in Section 4.4.2 is to try all feasible functions # (recall
that # assigns each connected component the number of times optimal solution
visits this connected component; see Section 4.4.1). Since there are at most n
connected components in the input, there are at most nk such functions. Recall
that k denotes the cardinality of the sought Eulerian extension (see Section 4.2 on
page 115).

Observation 4.5. There are at most nk possible functions # : CM → N as defined
in (4.3) (on page 126), that is, there are at most nk possible ways to replace each
connected component of M by several copies such that there are at most k copies
in total.

The complete algorithm to solve Weighted Multigraph Eulerian Extension
performs two steps:
Step 1: Compute an arbitrary component-respecting bijection µ : I−M → I

+
M

in O(m2) time.
Step 2: For all nk possible functions # : CM → N \ {0} (see Observation 4.5),

transform the instance and solve the transformed instance of Black/Gray
Weighted Multigraph Eulerian Extension in O(2k · n3) time (see Lem-
ma 4.5).

The correctness of this algorithm follows directly from the correctness of the
transformation algorithm (see Lemma 4.4) and Lemma 4.5. The running time
is O(nk2k · n4).
The presented algorithm depends heavily on the knowledge of the parameter k.
Since we do not know k in advance, we run Step 1 and Step 2 for increasing
values of k. Using geometric progression, we estimate

k∑
i=0

O(ni2i · n3) = O(n3 ·

k∑
i=0

(2n)i) = O(nk2k · n4). (4.5)

Theorem 4.3. Weighted Multigraph Eulerian Extension can be solved in
O(nk2k · n4) time.
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4.5 Adding an Intuitive Preprocessing
In the following, we describe a simple and intuitive preprocessing routine for
WeightedMultigraph Eulerian Extension running in O(n3) time. It will produce
equivalent instances that, due to their simplicity, do not require as much “guess-
work” as more complex instances. Hence, the algorithm presented in Section 4.4
can be adapted to run in O(4k · n3) time, where c denotes the number of connected
components in the input graph that contain arcs (equivalently, the number of
connected components induced by the required arc in the corresponding Rural
Postman instance). To this end, we replace the weight of a vertex pair (u, v) of the
input multigraph M with the weight of the cheapest u-v-path of non-arcs in M.
Having modified the weights between all vertices in this way, we can remove
all isolated vertices from the multigraph. Thus, we avoid considering isolated
vertices as connected components, which dramatically decreases the number of
functions #, we have to consider.

Reduction Rule 4.1. Let (M, ω, ωmax) be an instance of WeightedMultigraph
Eulerian Extension. For each pair (u, v) of vertices of M, let ω∆((u, v)) denote
the length of a shortest path from u to v in M according to ω and let VI denote
the set of isolated vertices in M. Then, return the instance (M − VI , ω∆, ωmax).

Reduction Rule 4.1 can be applied by computing all-pairs shortest paths using the
well-known Floyd-Warshall algorithm running in O(n3) time. Also note that this
operation imposes the triangle inequality on the weight-function ω.

Observation 4.6. Reduction Rule 4.1 is correct and can be applied exhaustively
in O(n3) time. In an instance (M, ω, ωmax) that is reduced with respect to Reduc-
tion Rule 4.1, the weight function ω respects the triangle inequality, that is, for
each three vertices u, v,w ∈ V(M), it holds that

ω(u, v) + ω(v,w) ≥ ω(u,w).

Proof of correctness (sketch). We show that the original instance is a yes-instance
if and only if the new instance is a yes-instance.
“⇒”: Consider an optimal solution E for the old instance. Clearly, no path of
arcs in E starts or ends in an isolated vertex. Hence, replacing each subpath
whose inner vertices are in VI by a direct connection does not increase the
weight of E measured by ω∆. Let E′ denote the result of this replacement.
Since ω∆(u, v) ≤ ω(u, v) for each pair of vertices u, v ∈ V \ VI , E′ is a solution for
the new instance.
“⇐”: To obtain a solution for the old instance from a solution E′ for the new
instance, we can just replace each arc (u, v) ∈ E′ by the path used to com-
pute ω∆(u, v) in M. �
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Input instances (M, ω, ωmax) that are free of isolated vertices and whose weight
function respects the triangle inequality exhibit much less complex extension
paths then the ones considered in Section 4.4. We capture this simplicity in the
following two lemmas.
First, the fact that each connected component of M contains an arc implies that
only functions # (as defined in (4.3)) that include at least one copy per connected
component of M are feasible. Therefore, we can show a better bound on the
number of such functions.

Lemma 4.6. For a multigraph M that does not contain isolated vertices, there are
at most 2k possible ways to replace each connected component of M by several
copies such that there are at most k copies in total, that is, there are at most 2k

possible functions # : CM → N as defined in (4.3).

Proof. Let c := |CM |. Since M does not contain isolated vertices, each connected
component of M contributes at least one copy and it remains to distribute at
most k − c copies to c components. This is equal to choosing at most k − c from c
elements with repetition. There are at most

∑
i≤k−c

(
c+i−1

i

)
≤ 2k possible ways to

do so. �

The running time computed in Section 4.4.3 (Equation 4.5) then changes to

k∑
i=0

O(2i2i · n3) = O(n3 ·

k∑
i=0

4i) = O(4k · n3).

Next, we bound the range of values that are suitable for k.

Lemma 4.7. Let (M, ω, ωmax) be an instance of WeightedMultigraph Eulerian
Extension that is reduced with respect to Reduction Rule 4.1. Then, there is an
optimal Eulerian extension E for M such that |E| ≤ |I+

M | + 2|CM |.

Proof. Consider an optimal Eulerian extension E for M that cannot be shortcut,
that is, for each extension path p of E, replacing a subpath (u, v,w) of p by (u,w)
does not yield an Eulerian extension for M. Since M is reduced with respect to
Reduction Rule 4.1, Observation 4.6 implies that a shortcut Eulerian extension
would not suffer an increased weight and, hence, we could simply shortcut a given
Eulerian extension until any shortcutting does not yield an Eulerian extension.
Thus, E exists. Let χ1 and χ2 denote the number of extension paths in E whose
length is exactly one and at least two, respectively.
First, consider an extension path p of length one in E. Then, both its endpoints are
imbalanced in M. Thus, adding p to M decreases the imbalance of M and, hence,

χ1 ≤ |I
+
M |. (4.6)



CHAPTER 4. Preprocessing Beyond Kernelization 135

Next, consider an extension path p of length at least two in E and let (u, v)
and (v,w) be two consecutive arcs of p. Clearly, replacing the subpath (u, v,w)
by (u,w) in p does not change the balance of a vertex in M +E. However, since E
cannot be shortcut, replacing the subpath disconnects M + E. Thus, each two con-
secutive arcs of p decrease the number of connected component. Hence, denoting
the length of the i’th extension path of length at least two by `i, it holds that

χ2∑
i=1

(`i − 1) ≤ |CM |. (4.7)

Since `i ≥ 2, (4.7) also implies

χ2 ≤ |CM |. (4.8)

Then, we can bound

|E| = χ1 +

χ2∑
i=1

`i = χ1 + χ2 +

χ2∑
i=1

(`i − 1)
(4.7)
≤ χ1 + χ2 + |CM |

(4.6),(4.8)
≤ |I+

M | + 2|CM |.

�

Plugging Lemma 4.6 and Lemma 4.7 into the algorithm summed up in Sec-
tion 4.4.3, we arrive at the main theorem.

Theorem 4.4. WeightedMultigraph Eulerian Extension on multigraphs M can
be solved in O(4k · n3) ⊆ O(4b+2c · n3) time, where b = |I+

M | denotes the sum of
positive balances in M, c = |CM | denotes the number of connected component
in M, and k denotes the cardinality of the sought solution.

As a consequence of the characterization provided in Proposition 4.1, we can
analogously solve Rural Postman parameterized by k, denoting the number of
non-required arcs in the sought solution.

Corollary 4.3. Rural Postman can be solved in O(4k · n3) time.

Finally, note that a solution for the original instance can be reconstructed from a
solution for the preprocessed instance. To this end, simply replace each arc by
the shortest path between its endpoints in the original instance.

4.6 Lower bounds for Kernelization
As we have seen in Section 4.5, preprocessing supports the development of
faster algorithms for Weighted Multigraph Eulerian Extension by imposing



136 CHAPTER 4. Preprocessing Beyond Kernelization

restrictions on the input that can be exploited in both design and analysis. In
this section, we complement this result by demonstrating that, under reasonable
complexity-theoretic assumptions, Weighted Multigraph Eulerian Extension
does not admit a polynomial-size kernel with respect to any combination of
• the number of connected components c of the input,
• the imbalance b of the input, and
• the smallest size k of a minimum-weight Eulerian extension for the input.

It is sufficient to show the claim for k since both b and c are “stronger” parame-
ters [134], that is, b ≤ k and c ≤ k hold for any input multigraph. In the following,
we sketch a proof showing that WeightedMultigraph Eulerian Extension does
not admit a polynomial-size problem kernel unless NP ⊆ coNP/ poly. To this
end, recall the notion of cross compositions (Section 1.2.4 on page 18).
In the following, we first sketch that a problem called Switch Set Cover does
not admit a polynomial-size problem kernel and then sketch a polynomial-time
polynomial-parameter reduction (see Theorem 1.2.4, page 20) of Switch Set
Cover to WeightedMultigraph Eulerian Extension. In fact, all instances pro-
duced by this reduction are also instances of Two-Dimensional Eulerian Exten-
sion (see Section 4.1, page 111), implying that not even this restricted version
of WeightedMultigraph Eulerian Extension admits a polynomial-size problem
kernel with respect to the parameter k. Intuitively, in Switch Set Cover, we have
multiple opportunities to choose one of a number of sets called positions. Each
such opportunity is called switch and the goal is to hit all elements with the chosen
positions. Note that, for each switch, exactly one position must be chosen.

Switch Set Cover
Input: A set C (of colors) and lists S i (switches) of subsets of C

(positions).
Question: Can we choose a position for each switch such that each

color in C is contained in at least one of the chosen positions?

Input: c1 c2 c3 c4C :

c1 c2 c3 c4

c1 c4 c1 c2 c4

c2 c3 c1 c1 c2 c4S 1

S 2

S 3

Solution:

c3 c4

c1 c2

c1 c2 c4S 1

S 2

S 3
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Switch Set Cover is NP-complete since it contains the well-known Set Cover
problem as the special case that all switches are equal (for details, refer to [178]).
We consider Switch Set Cover parameterized by the combined parameter “num-
ber c of colors” plus “number s of switches”, that is c + s = |C| + |S |, where S
denotes the set of lists S i in the input. Then, a rather involved cross composition
(see Definition 1.6 on page 18) for Switch Set Cover with respect to c + s and a
polynomial-parameter polynomial-time reduction shows that Two-Dimensional
Eulerian Extension does not admit a polynomial-size problem kernel with respect
to k unless NP ⊆ coNP/ poly. In the following, we sketch this cross composition.
To this end, assume that t instances of Switch Set Cover are given, each on the
same color set C with and each with the same number s of switches. We denote
the switches of instance Ii, 1 ≤ i ≤ t, by S i

β, 1 ≤ β ≤ s.
Step 1: For each 1 ≤ α ≤ log t and 1 ≤ β ≤ s introduce two new colors 0αβ and 1αβ

and, to each switch S i
β of an instance Ii, add 0αβ or 1αβ if the α’th bit32 of i

is 0 or 1, respectively.
Step 2: For each 1 ≤ β ≤ s, merge S i

β for all 1 ≤ i ≤ t into one switch S ∗β.
Step 3: For each 1 ≤ α ≤ log t, create a new switch S ′α containing the two

positions {0αβ : 1 ≤ β ≤ s} and {1αβ : 1 ≤ β ≤ s}.
The resulting instance of Switch Set Cover contains c + 2s log t colors and
s + log t switches. It can be shown to be a yes-instance if and only if one of the
instances Ii is a yes-instance (see [178]). Hence, the presented algorithm consti-
tutes a cross composition [29] of Switch Set Cover, implying that the existence
of a polynomial-size problem kernel for SSC with respect to the parameter c + s
is unlikely.
The next step is to provide a polynomial-time polynomial-parameter reduction
from Switch Set Cover to Two-Dimensional Eulerian Extension. Intuitively
speaking, each color ci of the input instance can be modeled as a cycle of arcs
and each switch can be seen as a two-dimensional box. Now, since in Two-
Dimensional Eulerian Extension only arcs going from (x1, y1) to (x2, y2) with x1 ≤

x2 and y1 ≤ y2 can be inserted, the boxes can be placed in a diagonal such that no
arc between two boxes can be inserted. Finally, vertices of the cycles representing
the colors are placed into each box according to the position in each switch. Like
the boxes, positions can be placed in a diagonal inside a box such that no arc
can be inserted between them. To argue that the parameter k of the constructed
instance is polynomially bounded in c + s, assume that each position contains
at most c colors. By forcing a solution to contain at most one path per box, we
ensure k ∈ O(c · s). This leads to the following theorem.

Theorem 4.5. Two-Dimensional Eulerian Extension (and thus, WeightedMulti-

32The α’th bit of a number i is bi/2αc mod 2.
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graph Eulerian Extension) does not admit a polynomial-size problem kernel with
respect to the parameter “number k of extension arcs” unless co NP ⊆ NP/poly.

4.7 Conclusion
We focused on Eulerian extension problems (and, due to parameterized equiva-
lence, the Rural Postman problem), leaving the “editing version”, where adding
and deleting arcs is allowed, yet unstudied. We showed how, although Weighted
Multigraph Eulerian Extension resists kernelization, preprocessing helps to
show fixed-parameter tractability of this vital arc routing problem [67].
Eulerian extension problems still offer a rich field of challenges for future research
in terms of multivariate algorithmics [82, 161]. More specifically, we concen-
trated on the parameterized complexity with respect to the parameter “number of
extension arcs”, but there are many natural structural parameters that make sense.
For instance, it would be particularly interesting to determine the parameterized
complexity with respect to the parameter “number of weakly connected compo-
nents” in a WeightedMultigraph Eulerian Extension instance. In this context,
Orloff [164] observed that “the determining factor in the complexity of the prob-
lem seems to be the number c of connected components in the required edge set”;
Frederickson [96, 97] noted “the existence of an exact recursive algorithm that
is exponential only in the number of disconnected components.” However, this
statement refers to an nO(c)-time algorithm, leaving open whether the problem is
fixed-parameter tractable with respect to the parameter c. It is not even apparent
whether the problem is in W[1].
The lower bound result for WeightedMultigraph Eulerian Extension with re-
spect to the parameter c that we presented in Section 4.6 motivates opening up two
new lines of research. First, weaker parameters or parameter combinations might
allow the development of polynomial-size problem kernels for WeightedMulti-
graph Eulerian Extension. A second way around the shown lower bounds could
be to consider a more general concept of kernelization, as presented in Chapter 5.
Since the real-world applications of Rural Postman center around street networks,
it may be worth considering the problem on planar graphs or graphs at small
distance to planar graphs (for example, bounded genus). Here, “protrusion-
based” kernelization methods [27, 132] or the subexponential-time framework of
Demaine et al. [59] may be applicable.
For further future work, we also consider the study of the currently unexplored
undirected and non-multigraph versions of WeightedMultigraph Eulerian Ex-
tension interesting. We conjecture that similar algorithmic approaches may allow
for similar results.



Chapter 5

Between Turing and Classical
Kernelization

As we have demonstrated in the previous chapters, preprocessing in general, and
kernelization in particular, is a very important tool in designing fast algorithms
for NP-hard problems. However, as we have also seen, polynomial-size prob-
lem kernels are unlikely to exist for some parameterized problems (for example,
tw-Vertex Cover or k-WeightedMultigraph Eulerian Extension). In the recent
past, methods have been developed to deal with this “incompressibility”. We
discuss some of these methods and consider a promising way to handle hardness
of kernelization: the so-called “Turing kernel” and variants thereof. We hope
that considering “weaker” variants of Turing kernelization helps in proving meta
results for this very young concept. We will argue that, although Turing kernel-
ization and its variants are somewhat underused, their practical relevance rivals
that of classical kernelization. This warrants further considerations in the future.
Thus, our work can be seen as a stepping stone in this direction.

5.1 Introduction
Almost as old as the theorem that each fixed-parameter tractable problem has a
problem kernel [39] is the question whether all fixed-parameter tractable problems
have polynomial-size problem kernels. This question was long standing and has
only recently been answered [26, 95], if one is willing to assume NP * coNP/
poly. Since NP ⊆ co NP/poly implies a collapse of the polynomial hierarchy to its
third level [26, 95], this is a weaker conjecture than P , NP (which implies a total
collapse of the polynomial hierarchy). Still, even a collapse to the third level is
widely unexpected. As in classical complexity theory, lower-bound results are not
a reason to despair but rather a motivator to develop ways around these barriers.
In the case of polynomial-time preprocessing, there are two immediate ways
around lower bounds: we can either try to find weaker parameters or extend the
boundaries of classical kernelization. As the former was discussed in Chapter 2,
we will consider the latter here.
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More permissive kernelization concepts. In the recent past, kernelization
lower bounds motivated formalization of some forms of preprocessing that are
more permissive than classical kernelization. In the following, we give examples
for the most prominent ones.

Partial kernelization. Although producing an instance whose size is bounded
polynomially in the parameter, it makes sense to consider some other mea-
sure of difficulty. For instance, Betzler et al. [17] developed polynomial-
time algorithms that shrink one dimension of some two-dimensional prob-
lems. They present a polynomial-time algorithm that, given an instance of
the Kemeny Score problem, produces an equivalent instance whose number
of candidates is bounded polynomially in the considered parameter.

Turing kernelization. Also called “cheat kernel” [25], this form of kernelization
allows the output of multiple instances instead of just one [88, 143]. In
this sense, it is very similar to the notion of “Turing reductions” [57,
169, 190] (or “Cook reductions” [52]). Lokshtanov [143] defines Turing
kernelizations as polynomial-time algorithms that have access to an oracle
which accepts only inputs whose size is polynomial in the parameter.

α-fidelity kernelization. A way of dealing with hard problems is to give up the
search for optimal solutions and accept approximate solutions. If the task
of computing a polynomial-size problem kernel is hard, then one may be
willing to accept an approximate problem kernel. More formally, for the
parameterized decision version k-Q of a minimization problem and a func-
tion g : N → N, Fellows et al. [85] define an α-fidelity kernelization as a
polynomial-time algorithm that, given an instance ((x, t), k) of k-Q outputs
an instance ((x′, t′), k′) of k-Q such that

1. (x, t) ∈ Q⇒ (x′, t′) ∈ Q,
2. (x′, t′) ∈ Q⇒ (x, α · t) ∈ Q,
3. |x′| ≤ g(k), and
4. k′ ≤ k.

Herein g is the size of the α-fidelity kernel.

Weak kernelization. A popular technique for developing fixed-parameter algo-
rithms is “brute force on the problem kernel”, that is, first computing a
polynomial-size problem kernel and then running a brute-force algorithm
on the problem kernel. To allow this, much less strict definitions of “prob-
lem kernel” suffice. Jiang and Zhu [127] give such a definition. They call
a polynomial-time algorithm that bounds the “search space” (the space of
possible solutions) of a given instance weak kernel [127, 128] and give an
example for the Sorting withMinimum Unsigned Reversals problem.
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In this chapter, we focus on Turing kernelizations for the following reasons.
First, most problems we consider are NP-complete and so, algorithms that solve
these problems typically have exponential running time. Hence, for most param-
eterized problems k-Q, it is faster to solve poly(n) instances of size g(k) than
solving just one instance of size n. An extreme example is the heuristic reduction
rule employed by almost all implementation of branching algorithms on graphs:
If the graph is disconnected, run the algorithm on each connected component
separately and combine the solutions. This can be seen as Turing kernelization
with respect to the parameter “size nc of a largest connected component”. For an
exemplary O(2n · n)-time algorithm, this Turing kernel improves the running time
to O(2nc · n2).
Second, altough Turing kernelization does not offer parallel processing of its
queries, the variant we will consider behaves well in this regard. Hence, with
enough machines, the disadvantage of having to compute multiple instances
instead of just one disappears completely. Keeping an eye on modern devel-
opments in computer hardware as well as so-called “cloud-computing” and
“crowd-computing” possibilities, the availability of massively parallel compu-
tation facilities does not seem far-fetched.
Third, Turing kernelizations may even be preferable to classical kernelization:
since Turing kernelizations are more permissive in the number of created instances,
it may be possible to achieve smaller instance-sizes than produced by classical
kernelizations. For example, a Turing kernelization that computes O(n) instances
of size O(k) may well be preferable to a classical kernelization that computes
one instance of size O(k2). In the spirit of efficient kernelization (see Chapter 3),
this train of thought carries over to the running time of the kernelization. Both
arguments are reinforced by the prior discussion about parallel processing.

Previous work on Turing kernelization. In the following, we define Turing
kernelization and give examples from the literature. To formally define Turing
kernelization, we need the notion of “oracles”. For a set X, consider a machine
that can answer x ∈ X for any x in constant time. We call this machine oracle
for X.

Definition 5.1. Let k-Q be a parameterized problem and let g, g′ : N → N be
computable. An algorithm that, for each instance (x, k), decides (x, k) ∈ k-Q in
polynomial time using an oracle for {(x′, k′) : |x′| ≤ g(k) ∧ k′ ≤ g′(k) ∧ (x′, k′) ∈
k-Q} is called a Turing kernelization for k-Q. The sequence of queries posed to
the oracle is called Turing kernel. We call g(k) the size of the Turing kernel.

Turing kernelizations defy the lower-bound framework for classical kerneliza-
tion [26, 95]. Dell and van Melkebeek [58] recently presented a slightly different
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approach to showing kernelization hardness, which incorporates so-called “oracle
communication protocols”. This framework is a good candidate for a lower bound
framework for Turing kernelizations; however, no result in this direction is known
to date. Instead, Hermelin et al. [117] established a hierarchy of kernelization hard-
ness, much like the W-hierarchy in parameterized complexity. They conjecture
that k-Connected Vertex Cover and (k log n)-Clique, where n refers to the num-
ber of vertices in the input instance, do not admit polynomial-size Turing kernels.
So far, only few polynomial-size Turing kernelizations for parameterized prob-
lems that do not admit polynomial-size classical kernels are known.

1. The k-Leaf Out-Branching and k-Leaf Out-Tree problems ask for a con-
nected subdigraph T of an input digraph G such that the underlying undi-
rected graph of T is a (spanning) tree and there is a dedicated “root” in T
from which all arcs of T are ordered away and T has at least k sinks. Fernau
et al. [88] showed that these problems admit polynomial-size Turing kernels
with respect to k by proving that their “rooted variants” (when a specific
vertex of G is chosen as root) admit polynomial-size problem kernels, while
the unrooted problems were shown to be compositional and, therefore, do
not admit polynomial-size problem kernels (see Section 1.2.4).

2. Given a graph G, the s-Club problem asks for a subgraph G′ of G that
contains exactly a given number k of vertices and has diameter at most s.
Schäfer et al. [172] showed that s-Club does not admit a polynomial-size
problem kernel with respect to the parameter k. However, they developed a
Turing kernel posing n queries each containing O(k3) vertices (correspond-
ing to an n-query O(k6)-size Turing kernel).

3. A rather pathological, but easy to see example is the ∆-Clique problem, that
is, Clique parameterized by the maximum degree ∆ of the input graph G.
As discussed by Hermelin et al. [117], an algorithm that, given an in-
stance (G, k) of Clique poses the query (G[N[v]], k) for each vertex v in G
and returns “yes” if and only if one of the queries returns “yes” constitutes
an n-query

(
∆+1

2

)
-size Turing kernel.

It is common to these examples that the full power of the Turing kernelization
concept is not used. Instead, the input instance is simply mapped to a set of
queries whose answer then determines whether the input was a yes-instance or
not. Turing kernelizations, however, are allowed to compute different instances,
based on oracle answers to previous queries. It is reasonable to ask whether
this unused power can be harnessed to allow stating better bounds in size or
running time of Turing kernels. As we will see, this is indeed the case for Turing
kernels with poly(k) queries. Motivated by this result, we initiate the search for
a problem that allows for a polynomial-size Turing kernel with poly(k) queries
but no polynomial-size classical kernel. We show that, even if such a problem
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exists, we cannot use composition-based lower bounds to prove that it does not
admit a polynomial-size classical kernelization.
Further investigation into the possibilities of trading properties of Turing kernel-
ization, we exemplary show that a reasonable parameterization of Clique allows
improving the size of the posed queries at a cost of quadratically increased number
of queries.

5.2 Preliminaries
Let Q be a problem. The characteristic function χQ of Q maps yes-instances
of Q to true and no-instances of Q to false. For an integer m ∈ N+, the m-ary
characteristic function χm

Q of Q maps all vectors of instances (I0, I1, . . . , Im−1) of Q
to (χQ(I0), χQ(I1), . . . , χQ(Im−1)). If clear from context, we may simply write χQ

instead of χm
Q. Recall that we use k-Q as an abbreviation for “Q parameterized

by k”, where k is to be understood as a letter representing a variable, not a variable
representing a value (see page 13).
Let m ∈ N and let f : {false, true}m → {false, true} be an m-ary boolean func-
tion and let ϕ be a boolean formula on m variables x0, x1, . . . , xm−1. A vector
in {false, true}m represents an assignment of variables of ϕ to true or false in the
natural way. We say that ϕ represents f if, for all z ∈ {false, true}m, the formula ϕ
evaluates to f (z) under the assignment z. In this spirit, we may write ϕ(z) instead
of f (z). Furthermore, the size |ϕ| of ϕ is the length of a shortest bit-representation
of ϕ.
We say a kernelization algorithm that poses m queries, each of size s, is an
m-query s-size kernelization. For a vector v, the term vi refers to its i’th element.
In this section, we use the concept of nondeterminism (see for example [10, 165]).
Intuitively, a nondeterministic algorithm is an algorithm that may perform a
“nondeterministic guess” step. In this step, a new boolean variable x is introduced
and the computation branches into two independent paths that start in the same
state, except for the new variable x which is false in one path and true in the other.
Each of these paths can, at any point, again perform a “nondeterministic guess”.
The running time of such an algorithm is the maximum of the running times of
the individual paths.

5.3 Introducing Truthtable Kernelization
Recall the definitions of Turing and classical kernelization and observe that
both concepts strongly resemble similar concepts in recursion theory. In fact,
the classical kernelization is a polynomial-time many-one (or Karp) reduction
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of a parameterized problem k-Q to itself, such that all instances created by
the reduction are bounded by a function in the parameter. Likewise, a Turing
kernelization is a Turing reduction of a parameterized problem k-Q to itself, such
that the size of each query is bounded by a function in the parameter. It is natural
to consider other reduction concepts that have been developed in recursion theory.
One of these concepts is the truthtable reduction, that allows creation of a set of
instances (queries) and a boolean formula with these queries as variables such
that the input instance is a yes-instance if and only if if the formula evaluates to
true under the assignment implied by the answers to the posed queries. Formally,
we define the following.

Definition 5.2. Let k-Q be a parameterized problem and let g, g′ : N → N be
computable functions. A polynomial-time algorithm that, given an instance (x, k)
of k-Q, produces

1. a vector of m instances Ix := (xi, ki), 0 ≤ i < m of k-Q and
2. a boolean formula evalx on m variables

such that
(i) (x, k) ∈ k-Q⇔ evalx(χk-Q(Ix)) = true,

(ii) ∀(x′,k′)∈I |x| ≤ g(k), and
(iii) ∀(x′,k′)∈I k′ ≤ g′(k)
is called a truthtable kernelization for k-Q. The pair (Ix, evalx) is called a
truthtable kernel for k-Q. We call g(k) the size of the truthtable kernel and
evalx the evaluation formula. The function g′′(x, k) = |evalx| is called the size
of the evaluation formula and the truthtable kernelization is called g′′(x, k)-
evaluable.

Observe that all Turing kernelizations mentioned in Section 5.1 can be stated
as polynomial-size truthtable kernelizations with O(n) queries and disjunction
evaluation formula (which we call TTDis

O(n)).
In this chapter, we consider certain restrictions of Turing and truthtable kerneliza-
tions. Most of these restrictions limit the size of the evaluation formula. Other
kinds of restrictions that we apply to truthtable kernelization are the structure
of evalx and the number and size of queries posed by the algorithm.

Definition 5.3. The set of parameterized problems k-Q that admit a poly(k)-
size. . .

. . . classical (many-one) kernel is denoted by DF.33

. . . m-query Turing kernel is denoted by Tum.

. . . m-query truthtable kernel is denoted by TTm.

33This nomenclature is rooted in the historical backround of “classical” kernelization, which was
introduced by Downey and Fellows [66].
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. . . m-query truthtable kernel such that for all instances (x, k) of k-Q, the evalua-
tion formula evalx has type X is denoted by TTX

m (for example, TTCNF
m for

CNF-formulas, TTCon
m for conjunctions, and TTDis

m for disjunctions).
. . . m-query truthtable kernel such that the size of the evaluation formula is

bounded by a function g(n, k) is denoted by TTg(n,k)
m (for example, TTO(n)

m
and TTpoly(k)

m ).

In contrast to Turing kernelizations, the queries posed by a truthtable kernelization
do not depend on answers to previous queries. Thus, all queries can be computed
in a first phase and, in a second phase, all queries can be worked on in parallel.
With today’s crowdsourcing and cloudsourcing possibilities, the growing trend to
include more cores in a CPU, and the massive parallelism offered by program-
ming GPUs, parallel algorithms are desirable to get results more quickly. This
makes truthtable kernelizations more intersting than Turing kernelizations, even
for problems whose solution algorithms do not benefit from parallel execution
possibilities.
In this chapter, we make initial observations and state first theorems on relations
between different kinds of kernelizations defined in Definition 5.3. In particular,
we prove in Section 5.3.1 that poly(k)-size poly(k)-evaluable truthtable kernel-
izations with m queries can be turned into poly(k)-size Turing kernels posing
only log m queries and vice versa. This means that trading parallelism for queries
is possible for the class of problems admitting poly(k)-size poly(k)-evaluable
truthtable kernelizations. We initiate the search for such problems that, addition-
ally, do not admit polynomial-size classical kernelizations. We show that the
truthtable kernelizations admitted by these problems have properties that set them
aside from all known truthtable kernelizations. More importantly, we show in
Section 5.3.2 that we cannot use compositions to tell TTpoly(k)

poly(k) and DF apart.
Finally, in Section 5.3.3, we show that trading the number of queries for their
size is also possible for truthtable kernelizations. In particular, we exemplary
consider Clique parameterized by the maximum c of the vertex-connectivities34

of each induced subgraph of the input graph G. We show that c-Clique admits a
non-trivial truthtable kernelization with |V(G)|2/ f (c) queries, each of size f (c) for
a function f : N→ N with ∀x f (x) ≥ 2x. Using a balanced cut instead of just any
cut allows us to reduce the number of queries at the cost of increased query sizes.

5.3.1 Trading Parallelism for Query Number
Assume we have developed a poly(k)-size poly(k)-evaluable truthtable kerneliza-
tion but we are in the unfortunate situation that we do not have access to parallel

34The vertex-connectivity of a graph is the minimum number of vertices to delete to disconnect it.
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computation facilities. Instead of serializing our truthtable kernelization, we
might as well exploit the additional power that Turing kernelizations offer to save
some of the queries. Thus, a framework for transforming truthtable kernelizations
into Turing kernelizations might be handy in such situations.
In a second scenario, suppose we have designed a polynomial-size Turing ker-
nelization posing only few queries, but we have a large array of CPUs at our
disposal. A way of turning this Turing kernelization into a polynomial-size
truthtable kernelization might be desirable, even if it poses exponentially more
queries.
The following theorem shows that, under certain restrictions to the number of
queries, both conversions are possible. It uses the concept of “mind changes”
introduced by Beigel [15] for truthtable reductions.

Theorem 5.1. Let k-Q be an NP-complete parameterized problem and let m be
polynomial in k. Then, k-Q ∈ TTpoly(k)

m ⇔ k-Q ∈ Tulog m.

Proof (Largely following ideas of Beigel [15], Theorem 4.1). We show both di-
rections separately, pointing out differences to [15] where appropriate.
“⇐”: Let k-Q ∈ Tulog m. A poly(k)-size m-query truthtable kernel for k-Q can
simply construct all possible sequences of instances that the Turing kernelization
can construct. Since the Turing kernel cannot construct more than log m instances
of k-Q with each computation, such a truthtable kernel constructs at most 2log m =

m instances. Each computation of the Turing kernel corresponds to a vector
of log m bits representing the answers to the log m queries (q1, q2, . . .). Let the
decision of a computation corresponding to the vector y ∈ {0, 1}log m be cy ∈ {0, 1}.
Then, we build a size-m CNF formula for the truthtable kernel as follows: For
each y ∈ {0, 1}log m with cy = 0, add a clause that, for each 1 ≤ i ≤ log m,
contains qi if yi = 0 and ¬qi if yi = 1. The constructed instance then consists
of m clauses, each of size at most log m. Since m ∈ poly(k), this implies k-Q ∈
TTpoly(k)

m .
“⇒”: Let k-Q ∈ TTpoly(k)

m . Similar to the proof of Beigel [15] for reductions
between NP-problems, we employ the “mind-change” technique to show this
result. The idea is to “track the development” of the evaluation formula evalx with
growing number of answered queries, assuming an answer of “No” to unanswered
queries. That is, in the beginning, all queries are assumed to not be in k-Q. Then,
step by step, the correct answers to the queries “become known” to evalx, causing
it to change the value it evaluates to, it “changes its mind”. Now, if we knew
the number of mind changes and the value of evalx(0, 0, . . .), then we would also
know the value of evalx(χm

k-Q(Ix)). As it turns out, the number of mind changes
can be computed with at most log m queries into a language T ∈ NP. Therefore,
a Turing kernel can compute this number in polynomial time and return the final
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value of the evaluation function. Informally, T is the set of pairs (x, t) such that
evalx makes at least t mind changes on input x. Then, the maximum number t
such that (x, t) ∈ T can be computed by binary search, requiring at most log m
queries.
In the following, let (Ix, evalx) denote a poly(k)-size m-query truthtable kernel
for k-Q such that |evalx| ∈ poly(k) for each input (x, k). Furthermore, let Ii ∈ Ix,
0 ≤ i < m denote the i’th instance computed by the truthtable kernelization on in-
put (x, k). For vectors v,w ∈ {0, 1}m, we define v ≺ w⇔ (∀i vi ≤ wi∧∃ j v j < w j).
The set of possible mind changes of (Ix, evalx) is

T =

{
(x, t) : ∃

v0,...,vt∈{0,1}m

∀
0≤i<m

(vt
i = 1⇒ Ii ∈ k-Q)∧ (5.1)

∀
0< j≤t

(v j−1 ≺ v j)∧ (5.2)

∀
0< j≤t

(evalx(v j−1) , evalx(v j))
}
. (5.3)

Herein, the value v j
i corresponds to the knowledge about the i’th query in step j

of the process of “gradually gaining knowledge” described at the beginning. To
ensure that we gain knowledge in each step, (5.2) forces each v j to contain more 1s
then v j−1. With (5.3), we ensure that the evaluation formula changes its mind
in each step. Finally, (5.1) ensures that, in the last step, each query is correctly
represented in v j

i . Note that, for the following reason, it suffices to require the
implication shown in (5.1): If for some i, vt

i = 0 and Ii ∈ k-Q, then v j
i = 0 for

all j. Then, consider an additional step represented by vt+1 with vt+1
i = 1. If this

step causes a mind change in evalx, then (x, t + 1) ∈ T and, thus, evalx makes
at least t mind changes. If this step does not cause a mind change, then evalx

makes t mind changes independent from the answer to the i’th query. We conclude
that (x, t) ∈ T if and only if evalx makes at least t mind changes in the process of
“gradually gaining knowledge” that we described in the beginning.
For Beigel [15], it was enough to show that T ∈ NP, which can be seen by consid-
ering the certificate v0, . . . , vt. However, here, we have to prove that (x, t) ∈ T can
be decided by log m queries of size poly(k) into the language k-Q. To this end, we
reduce T to SAT and note that the images of the reduction have size polynomial
in k. Given an instance (x, t) of T , we build a SAT-instance in four steps. The
formula contains the m · (t + 1) variables v j

i with 0 ≤ i < m and 0 ≤ j ≤ t. It is
the conjunction of the following terms.

First, we model (5.1). For each 0 ≤ i < m, create the term (vt
i ⇒ Ii ∈ k-Q), where

Ii ∈ k-Q is replaced by the SAT-formula given by the (many-one) reduction
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of k-Q to SAT (recall that k-Q ∈ NP). Since the queries of the truthtable
kernel have size poly(k), we conclude that |Ii| ∈ poly(k). Since (vt

i ⇒ (Ii ∈

k-Q)) can be modeled as (¬vt
i∨(Ii ∈ k-Q)), all these terms have size poly(k).

Since m ∈ poly(k), the number of these terms is also in poly(k).

Second, we model (5.2). For each 0 < j ≤ t, create ∧
0≤i<m

(v j−1
i ⇒ v j

i )

 ∧
 ∨

0≤i<m

¬(v j−1
i ⇐ v j

i )

 .
This term models (v j−1 ≺ v j) for all 0 < j ≤ t. By analogous arguments as
above, neither the size nor the number of these terms exceeds poly(k).

Third, we model (5.3). For each 0 < j ≤ t, create the term ¬(evalx(v j−1) ⇔
evalx(v j)). Since the evaluation formula evalx has size poly(k) and there
are at most t + 1 ≤ k + 1 such terms, the number and size of these terms
is in poly(k).

Finally, the complete SAT-instance consists of a conjunction of the created terms
and, by the above arguments, the created SAT-instance has size poly(k).

Since k-Q is NP-hard, there is a polynomial-time many-one reduction of SAT
to k-Q. Thus, there is a polynomial-time many-one reduction of T to k-Q and the
images of the reduction have size poly(k).
For an input (x, k), a poly(k)-size Turing kernelization for k-Q computes tmax :=
maxt{(x, t) ∈ T } using binary search on T posing poly(k)-size images of the
many-one reduction of T to k-Q. Finally, the Turing kernelization returns the
XOR of evalx(0, 0, . . . , 0) and the least significant bit of tmax. Since tmax ≤ m, at
most log m queries are posed by the Turing kernelization. �

A special case of Theorem 5.1 is the following.

Corollary 5.1. Let k-Q be an NP-complete parameterized problem. Then, k-Q ∈
TTpoly(k)

poly(k) ⇔ k-Q ∈ TuO(log k).

Corollary 5.1 is useful for problems in TTpoly(k)
poly(k) that do not admit polynomial-size

classical kernelizations. Thus, an interesting open question posed implicitly by
Theorem 5.1 is

“Is there a parameterized problem that admits a polynomial-size
truthtable kernel with polynomial-size evaluation formula but resists
polynomial-size classical kernelization?”
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Our search for a problem in TTpoly(k)
poly(k) \DF was rather unsuccessful so far. We can,

however, show some properties of such a problem, provided one exists. More
precisely, we show that, if the problem is NP-complete, then no poly(k)-size
poly(k)-evaluable truthtable kernelization has a monotone—like the evaluation
formulae of all truthtable kernelizations known to us—or antimonotone evaluation
formula.

Proposition 5.1. Let k-Q be an NP-complete parameterized problem that ad-
mits a poly(k)-size poly(k)-evaluable truthtable kernel (Ix, evalx) for k-Q such
that |evalx| ∈ poly(k) and evalx is monotone for each input (x, k). Then, k-Q ∈ DF.

Proof. We construct a many-one kernel from the truthtable kernel by replac-
ing evalx with a single query into k-Q. First, make sure that each variable in evalx

occurs exactly once by replacing a second occurance by a new variable with an
equal query corresponding to it. Then, for each variable yi, let “(xi, ki) ∈ k-Q?”
denote the corresponding query.
Then, let φx be the quantified boolean formula resulting from replacing each
occurrence of yi in evalx with ∃zi ρi

x, where ρi
x denotes a boolean formula on

the variable-vector zi such that ρi
x is satisfiable if and only if (xi, ki) ∈ k-Q.

Since k-Q ∈ NP, such a formula exists and can be computed in polynomial
time. Let ρx denote the unquantified version (that is, the boolean formula that
results from removing all quantifiers) of φx. Due to the monotonicity of evalx, we
conclude that

φx ≡ ∃
z0,z1,...

ρx.

Since k-Q is NP-hard, there is a polynomial-time many-one reduction R of SAT
to k-Q. Finally, the algorithm outputs R(ρx).
It remains to show that the constructed algorithm is a polynomial-size classical
kernelization for k-Q. First, since the size of each query is in poly(k), and the
reduction we used to obtain ρi

x for all i is polynomial-time computable, we know
that |ρi

x| ∈ poly(k). Then, by |evalx| ∈ poly(k), we conclude that |ρx| ∈ poly(k)
and, therefore, |R(ρx)| ∈ poly(k).
Second, since ρi

x is satisfiable if and only if χk-Q((xi, ki)) = true, we know that ρx

is satisfiable if and only if evalx(χk-Q(Ix)) = true. Therefore, R(ρx) ∈ k-Q if and
only if evalx(χk-Q(Ix))) = true. �

Proposition 5.2. Let k-Q be an NP-complete parameterized problem that admits
a poly(n)-size poly(n)-query truthtable kernel (Ix, evalx) for k-Q such that evalx

is antimonotone for each input (x, k). Then, NP = coNP.

Proof. Since each evalx is antimonotone, there are monotone formulae ψx such
that evalx ≡ ¬ψx for all instances (x, k) of k-Q. Analogous to the proof of
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Proposition 5.1, we can replace ψ by a single query into SAT and, hence, we
can replace evalx by a single query into TAUT, the set of all boolean formulae
that are tautologies. Since the size of all queries and the number of queries is
bounded polynomially in |x|, we have constructed a polynomial-time many-one
reduction of k-Q to TAUT, implying k-Q ∈ coNP and, since K-Q is NP-complete,
NP = coNP follows. �

Proposition 5.1 and Proposition 5.2 impose restriction on the evaluation formulae
of truthtable kernelizations for problems in TTpoly(k)

poly(k) \DF. Moreover, to prove that

a problem k-Q is in TTpoly(k)
poly(k) \ DF, we have to exclude polynomial-size classical

kernelizations. As we will see in the next section, however, polynomial-size
classical kernels for k-Q cannot be excluded using the established composition-
based lower bound machinery, rendering the search for k-Q rather difficult.

5.3.2 Coarse Lower-Bound Tools
The question for lower bounds for truthtable or Turing kernelizations is, as this
kind of preprocessing is rather new, largely open. Hermelin et al. [117] pre-
sented a reduction-based hardness-hierarchy approach that allows lower bounds
for Turing kernelizations under the assumption that (k log n)-Clique does not
admit a polynomial-size Turing kernel. A promising candidate for a lower-bound
framework that is based on a stronger conjecture may be the recently presented
lower bounds machinery for oracle communication protocols by Dell and van
Melkebeek [58]. In this section, we show that the available lower bound frame-
work for classical kernelizations [26, 95, 58] is enough to exclude poly(k)-size
poly(k)-evaluable truthtable kernelizations. Unfortunately, a downside of this is
that these techniques are unfit to show that a problem in TTpoly(k)

poly(k) does not admit
a polynomial-size classical (many-one) kernelization.
In the following, we briefly state the concept of a co-nondeterministic kernel-
ization (sometimes called “coNP kernel”). We will use it to show that certain
problems do not admit poly(k)-size poly(k)-evaluable truthtable kernelizations.
Intuitively, a co-nondeterministic kernel produces a number of small instances all
of which must be yes-instances if the input was a yes-instance and vice versa.

Definition 5.4. Let k-Q be a parameterized problem and let g : N → N be a
function. Consider a nondeterministic polynomial-time algorithm A that, given
an instance (x, k) of k-Q, produces an instance (xi, ki) on each nondeterministic
computation path such that

1. |xi| ≤ g(k) and ki ≤ k for all i and
2. (x, k) ∈ k-Q⇔ ∀i (xi, ki) ∈ k-Q.

Then, we call A a co-nondeterministic kernelization of size g(k) for k-Q.
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Co-nondeterminism for kernelization lower bounds was recently considered by
Kratsch [136] who, slightly differing from our setup, allows the composition
algorithm to be co-nondeterministic and considers deterministic kernelization. As
observed before [193], the composition-based framework [26, 95, 58] also works
if both the kernelization and the composition algorithm are co-nondeterministic.

Lemma 5.1. Let k-Q be an NP-complete parameterized problem that is composi-
tional. Furthermore, let k-Q admit a poly(k)-size co-nondeterministic kerneliza-
tion. Then, NP ⊆ coNP/ poly.

The proof is exactly the same as the proof of Lemma 3.2 of Kratsch [136] with
the difference that the co-nondeterminism is used in the kernelization instead of
the composition. Therefore, we omit the proof here.
Lemma 5.1 directly implies that, assuming NP * coNP/ poly, there is no conjunc-
tive truthtable kernelization with monotone evaluation formula for compositional
problems. In the following, we show that, under the above assumption, no
NP-hard parameterized problem in TTpoly(k)

poly(k) is compositional.

Theorem 5.2. Let k-Q be an NP-complete parameterized problem in TTpoly(k)
poly(k).

Then, k-Q admits a poly(k)-size co-nondeterministic kernelization.

Proof. Let (Ix, evalx) be a poly(k)-size truthtable kernelization for k-Q such that
|evalx| ∈ poly(k) for all instances (x, k) of k-Q. Given (x, k) and (Ix, evalx), we
construct a poly(k)-size co-nondeterministic kernelization for k-Q in poly(|x| +
k) time.
First, assume that each variable of evalx occurs exactly once in evalx (if a variable
occurs twice, we can just pose the same query twice, thus posing poly(k) addi-
tional queries). For each query (xi, ki) ∈ Ix, let yi denote the variable representing
the answer to the question “(xi, ki) ∈ k-Q?”. Furthermore, let ψi denote a poly(ki)-
size SAT-instance on the variable-vector zi such that ψi ∈ SAT⇔ (xi, ki) ∈ k-Q.
Since k-Q ∈ NP, such an instance is computable in poly(|xi|) time. Let φx de-
note the quantified boolean formula that results from replacing each yi by ∃zi ψi

in evalx. Observe that the size of φx is in poly(k) since |evalx| ∈ poly(k) and
|ψi| ∈ poly(k) (since ψi is the result of a polynomial-time many-one reduction
applied to a poly(k)-size query in Ix).
Let ρx denote the unquantified version of φx, that is, the result of removing all
quantifiers from φx. Then, since the variable-sets of each two of the created
SAT-instances are disjoint, there are disjoint sets A, B ⊆ N with A = {a0, a1, . . .}
and B = {b0, b1, . . .} such that

φx ≡ ∀
za0 ,za1 ,...

∃
zb0 ,zb1 ,...

ρx, (5.4)
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that is, the prenex normal form of φx has only one quantifier alternation.
Then, a nondeterministic algorithm can branch into a different computation path
for each assignment of all za with a ∈ A. Let βp

x : {za : a ∈ A} → {false, true} de-
note such an assignment on computation path p. On p, the formula φx degenerates
to

φ
p
x ≡ ∃

zb0 ,zb1 ,...
ρ

p
x , (5.5)

where ρp
x is the boolean formula that results from ρx by replacing all occurrences

of an element z`a of za with a ∈ A by the truth value assigned to it by βp
x (that

is, βp
x (za)`). Observe that ρp

x ∈ SAT ⇔ φ
p
x evaluates to true. Since k-Q is NP-

complete, there is a polynomial-time reduction R of SAT to k-Q. Then, on each
computation path p, the algorithm outputs R(ρp

x ).
In the following, we show that the algorithm we constructed is a co-nondeterministic
kernelization for k-Q. Since |φx| ∈ poly(k), it follows that |R(ρp

x )| ∈ poly(k) and,
thus, Definition 5.4(1) holds. For Definition 5.4(2), note that, by correctness of
the reduction of k-Q to SAT, evalx(χk-Q(Ix)) = true if and only if φx evaluates to
true. Thus,

∀
p

R(ρp
x ) ∈ k-Q ⇔

(
∀
p
φ

p
x

)
⇔

(
∀

za0 ,za1 ,...
φ

p
x

)
(5.4),(5.5)
⇔ φx

⇔ evalx(χk-Q(Ix)) = true
⇔ (x, k) ∈ k-Q. �

On the one hand, Lemma 5.1 and Theorem 5.2 let us use the existing lower
bound framework for co-nondeterminisically compositional problems to show
lower bounds for polynomial-size truthtable kernelizations with polynomial-size
evaluation formulae. On the other hand, we cannot use compositions to exclude
classical kernelizations for problems admitting such truthtable kernelizations.
Therefore, to distinguish truthtable kernelizations with polynomial-size evaluation
formulae from classical kernelizations, we need a more fine-grained tool than
composition.

5.3.3 Trading Queries for Size: An Example using Clique
In this section, we consider another possible tradeoff for truthtable kernelizations.
In particular, we show that some truthtable kernels allow a continuous tradeoff
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Function CliqueTT(G, k)
Input: An instance (G, k) of Clique.
Output: A set of queries (G′, k) into Clique such that each G′ contains at

most f (c) vertices and G contains a k-clique if and only if
some G′ does.

1 if |V(G)| > f (c) then
2 X ← a minimum-cardinality vertex cut of G;
3 V1 ← the vertex set of a smallest component of G − X;
4 V2 ← V(G) \ V1;
5 return CliqueTT(G[V1 ] X], k) ∪ CliqueTT(G[V2], k);

6 else return {G};

between the number and the size of the queries. To this end, we consider Clique
with respect to the parameter “maximum c of the vertex connectivities35 of all
subgraphs of G” (see Definition 5.5).
We first develop a truthtable kernelization posing at most n2 queries, each con-
taining at most 2c vertices and modify this kernelization to incorporate a tradeoff

between the number of posed queries and their size. The modified truthtable
kernelization poses n2/ f (c) queries, each of size f (c) for each computable func-
tion f : N → N with f (c) ≥ 2c. In the rest of this section, we will implicitly
assume that f is computable. Finally, we consider a balanced version of our
parameter. This allows us to lower the quadratic bound on the number of queries
to quasilinear at the cost of increasing the kernel size.
Formally, our parameter is defined as follows.

Definition 5.5. A cutset (or vertex cut) X for G is a set of vertices such that G−X
is disconnected.36 The smallest number c such that for each V ′ ⊆ V there is a
cutset X′ ⊆ V ′ with |X′| ≤ c for G[V ′] is called the subgraph-cutset-number.

Since each graph can be disconnected by deleting a smallest neighborhood, c is a
stronger parameter than the “degeneracy37 d of the input G”. In turn, since the
maximum degree of a subgraph of G cannot exceed the maximum degree of G,
d is stronger than the maximum degree ∆ of G (see Figure 1.1 on page 21; recall
that ∆-Clique admits a linear-size truthtable kernelization [117]).

35The vertex connectivity (or vertex cut size) of a graph G is the smallest number of vertices whose
deletion disconnects G.

36Following the literature [131], a graph with just one vertex is considered disconnected.
37The degeneracy (or coloring number) of a graph G is the smallest d such that all subgraphs of G

contain a vertex of degree at most d [60].
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The truthtable kernelization for c-Clique is presented as function CliqueTT.
Intuitively, it finds a minimum-size cutset of a given graph and asks for a clique
in the two subgraphs of the instance that are separated by this cutset. To be sure
that a clique in the input is in at least one of the two subgraphs, we add the cutset
to both of them. The implicit evaluation formula is simply a disjunction over
all created instances. In line 2, a minimum vertex cut is computed. Even [80]
describes how such a vertex cut can be computed for a graph with n vertices
and m edges using n applications of a unit capacity maximum flow algorithm,
each of which runs in O(

√
nm) time. The following lemma is central to proving

the correctness of function CliqueTT. It also shows that function CliqueTT can
be used to enumerate all maximal cliques in the input.

Proposition 5.3. Let K be a clique in a graph G and let IG denote the instances
computed by function CliqueTT on input (G, k). Then, there is some (G′, k′) ∈ IG

such that K is a subgraph of G′.

Proof. We show the claim for one recursive step of function CliqueTT. The
lemma then follows by induction. Let X denote the vertex cut then is computed
in line 2 of function CliqueTT. If V(G) ≤ 2 f (c), then function CliqueTT re-
turns (G, k) and the claim of the lemma follows. Otherwise, let V1 be the vertex
set of a smallest component of G′ := G − X and let V2 := V(G) \ V1. Since X is a
vertex cut, G does not contain an edge between any vertex in V1 and any vertex
in V2 \ X. Hence, K is a subgraph of either G[V1 ] X] or G[V2]. �

The following technical lemma is needed to prove the bound on the number of
queries posed by function CliqueTT.

Lemma 5.2. Let c, n, γ ∈ N+ with γ ≤ c and let f : N → N be a function
with f (c) ≥ 2c. For the recurrence R(n) = R(n−x)+R(x+γ) subject to ∀i≤ f (c)R(i) =

1 and n − x ≥ x + γ, it holds that R(n) ≤ n2/ f (c).

Proof. We prove the claim by induction over n. For n = f (c), the statement
clearly holds. Let n > f (c) and assume that the statement holds for all i < n. We
use the facts that

(i) R(i) = 1 for i ≤ f (c),
(ii) R(i) ≤ i2/ f (c) for i < n, and

(iii) n − x ≥ x + γ

to prove each of the following cases.

Case 1: n − x ≤ f (c) and x + γ ≤ f (c). Then, R(n)
(i)
= 2

n> f (c)
≤ n2/ f (c).

Case 2: n − x ≤ f (c) < x + γ. This contradicts (iii).
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Case 3: n − x > f (c) ≥ x + γ. Then,

R(n)
(i)
= R(n − x) + 1

(ii)
≤

(n − x)2

f (c)
+ 1 ≤

n2 − 2x(n − x − f (c))
f (c)

n−x> f (c)
≤

n2

f (c)
.

Case 4: n − x > f (c) and x + γ > f (c). Then, x > f (c) − γ ≥ γ and

R(n)
(ii)
≤

(n − x)2

f (c)
+

(x + γ)2

f (c)
(iii)
≤

n2

f (c)
+
−2x2 + γ2

f (c)

x≥γ
≤

n2

f (c)
. �

Theorem 5.3. Let f : N → N be a function such that ∀x f (x) ≥ 2x. Then,
Clique parameterized by the subgraph-cutset-number c of the input graph admits
an n2/ f (c)-query truthtable kernel containing at most f (c) vertices. The kernel
can be computed with O(n2/ f (c)) minimum vertex cut computations.

Proof. We show that, given an instance (G, k) of Clique, function CliqueTT
computes a set of instances IG that, together with the evaluation formula that
is a disjunction over its |IG | variables, this constitutes the claimed truthtable
kernelization.
First, we show that function CliqueTT constructs at most n2/ f (c) queries, each
containing at most f (c) vertices. If n ≤ f (c), then G is already a kernel and the
claimed size holds. Otherwise, n > f (c). Let X, V1, and V2 be the sets computed
by function CliqueTT in lines 2, 3, and 4. Since V(G) = V1 ] V2 ] X, line 3
implies that |V1| ≤ (n − |X|)/2. Since X is a cutset for G, we conclude |X| ≤ c.
Then, the number of created instances is

R(n) = R(n − |V1|) + R(|V1| + |X|) subject to ∀
i≤ f (c)

R(i) = 1.

By choice of V1 in line 3, |V1| ≤ |V2|. Since |V1| + |V2| + |X| = n, we further
conclude that |V1| + |X| ≤ n − |V1|. Now, Lemma 5.2 implies R(n) ≤ n2/ f (c).
Furthermore, since line 6 is the only line returning instances, the number of
vertices in each instance is bounded by f (c).
It remains to show that (IG, evalG) is indeed a truthtable kernel, that is, G contains
a k-clique if and only if IG contains a pair (G′, k) ∈ Clique. The “⇐”-direction
is implied by the fact that all graphs of instances in IG are induced subgraphs
of G. The “⇒”-direction is a direct consequence of Proposition 5.3. �

Note that Theorem 5.3 implies a parameterized algorithm solving c-Clique in
O((2 f (c) · n + TC(n,m)) · n2/ f (c)) time for any function f : N→ N with f (c) ≥ 2c
and TC(n,m) ∈ O(n1.5 ·m) denoting the time needed to compute a minimum vertex
cut in a graph with n vertices and m edges [80].
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By Proposition 5.3, function CliqueTT can be used to enumerate all maximal
cliques in G. Thus, our truthtable kernelization with respect to c extends previous
work by Eppstein et al. [78], who showed an algorithm that enumerates all
maximal cliques in O(3d/3 · dn) time, where d denotes the degeneracy of the input
graph.

Corollary 5.2. Let G be a graph with subset-cutset number c. Then, all maximal
cliques of G can be enumerated in O((4c · c2 +

√
nm) · n2/c) time.

In ongoing work [151], we improved the presented truthtable kernelization to
pose only n − f (c) queries, each containing at most f (c) + 1 vertices. Then, the
running time of the implied enumeration algorithm for Clique becomes O((2c ·

c2 +
√

nm) · (n − c)). Furthermore, it turns out that c ≤ d ≤ 2c for all graphs,
which is tight: On the one hand, Eppstein et al. [78] constructed graphs whose
degeneracy d equals our parameter c; on the other hand, there are arbitrarily large
connected graphs with d = 2c [151]. Since 3d/3 > 20.5d, algorithms based on
the truthtable kernelization presented in this section might outperform the one
presented by Eppstein et al. [78] on some graphs. Thus, a comparison of the
algorithms in an application setting may be an interesting candidate for future
work.

Reducing the number of queries using balance. In the following, we show
that the number of posed queries can be reduced to quasilinear in n. However,
this comes at the cost of having to pick a slightly weaker parameter than the
subset-cutset size c. Using a regular cutset to split the input graph may yield a
highly unbalanced distribution of vertices. Therefore, it is hard to circumvent the
quadratic bound on the number of queries in our strategy. Hence, we consider a
vertex cut X separating V1 from V2 such that |V1| is within a factor α of |V2|.

Definition 5.6. Let X be a cutset of a graph G and let α ∈ N+. If there are vertex
sets V1 and V2 such that

(i) V1 ] V2 ] X = V(G),
(ii) there are no edges between V1 and V2 in G, and

(iii) |V1| ≤ |V2| ≤ α|V1|,
then we call X α-balanced. The maximum over the minimum sizes of α-balanced
cutsets of all subgraphs of G is called the α-balanced subgraph cutset number ĉα.
A δ-vertex separator of G is a vertex set X such that each connected component
of G − X contains at most δ · n vertices.

Note that, for all α, an α-balanced vertex cut is always larger than the minimum
vertex cut. Thus,

∀
α

c ≤ ĉα ≤ ĉα+1.
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As it turns out, finding an α-balanced vertex cut is NP-hard [149]. Hence, to
compute an α-balanced subgraph cutset in polynomial time, we employ an ap-
proximation of a δ-vertex separator by Feige et al. [81]. The following lemma
shows that the two notions of balanced separators are equivalent.

Lemma 5.3. Let X ⊆ V(G). Then, X is a δ-vertex separator of G for some δ < 1
if and only if X is an α-balanced cutset of G for some α.

Proof. We show both directions separately.
“⇒”: Let X be a δ-vertex separator of G. Then we can partition the connected
components of G − X in two cells C1 and C2 with n1 := |V(C1)| and n2 := |V(C2)|
such that n1 ≤ n2 ≤ δ · n + n1. Since n1 + n2 = n, we derive n1 ≥ n · (1 − δ)/2,
implying that X is an α-balanced cutset of G for

α :=
n2

n1
≤
δ · n + n1

n1
=
δ · n
n1

+ 1 ≤
δ · n

1−δ
2 · n

+ 1 =
1 + δ

1 − δ

“⇐”: Let X be an α-balanced subgraph cutset of G. Then, V(G) \ X = V1 ] V2
such that there are no edges between vertices in V1 and vertices in V2 in G − X
and, with n1 := n1 and n2 := n2, we have n1 ≤ n2 ≤ α · n1. Since n1 + n2 = n, we
derive n2 ≤ n · α/(α + 1), implying that X is also a δ-vertex separator with

δ :=
n2

n
≤

α

α + 1
. �

With Lemma 5.3, we can use the algorithm of Feige et al. [81] to compute an
α-balanced cutset for G whose size is within a factor of log n of the optimal
α-balanced cutset for G. By Theorem 5.3, Clique is solvable in polynomial
time if the subgraph-cutset number c of G is smaller than log n. Thus, we
can find an α-balanced cutset of size ĉα · log n ≤ ĉα · c ≤ ĉ2

α in polynomial
time. Then, replacing c by ĉ2

α and the cutset X by an α-balanced cutset X′ in
function CliqueTT yields a truthtable kernel whose queries have size f (ĉ2

α). To
show that the number of queries is quasilinear in n, we prove a stricter version of
Lemma 5.2 using Definition 5.6(iii).

Lemma 5.4. Let c, n, x, γ, α ∈ N+ such that (a) γ ≤ c, (b) n − x ≤ αx + γ, and
(c) n ≥ 22α+1. Let fα : N→ N be a strictly increasing function with

∀
z

fα(z) ≥ 2z and ∀
z> fα(c)

fα

 z · log α+2
α+1

log z

 ≥ z. (5.6)

For the recurrence R(n) = R(n− x)+R(x+γ) subject to ∀i≤ fα(c)R(i) = 1 and n− x ≥
x + γ, it holds that R(n) ≤ n log n/ fα(c).
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Proof. First, let f −1 denote the inverse of f and note that, since f is strictly
increasing, so is f −1. We prove the claim by induction over n. For n = fα(c), the
statement clearly holds. Let n > fα(c) and assume that the statement holds for
all i < n. We use the facts that

(i) R(i) = 1 for i ≤ fα(c),
(ii) R(i) ≤ i log i/ fα(c) for i < n, and

(iii) n − x ≥ x + γ
to prove each of the following cases.

Case 1: n − x ≤ fα(c) and x + c ≤ fα(c). Then, R(n)
(i)
= 2

n> fα(c)
≤ n log n/ fα(c).

Case 2: n − x ≤ fα(c) < x + γ. This contradicts (iii).
Case 3: n − x > fα(c) ≥ x + γ. Then, n − x > 2c ≥ 2γ. Furthermore,

2(α + 1)(n − x(log n + 1))
(b)
≤ 2(α + 1)n − 2(n − γ)(log n + 1)
= − 2n(log n − α) + 2γ(log n + 1)

n≥2γ
≤ − n(log n − (2α + 1))

(c)
≤ 0. (5.7)

Then, we conclude

R(n)
(i)
= R(n − x) + 1

(ii)
≤

(n − x) log (n − x)
fα(c)

+ 1

n−x> fα(c)
≤

(n − x)(log n + 1)
fα(c)

≤
n log n
fα(c)

+
n − x(log n + 1)

fα(c)
(5.7)
≤

n log n
fα(c)

Case 4: n − x > fα(c) and x + γ > fα(c). Then, x ≥ fα(c) − γ + 1 ≥ γ + 1.
Furthermore, since f −1

α is strictly increasing,

n log α+2
α+1

log n

(5.6)
≥ f −1

α (n)
n> fα(c)
> f −1

α ( fα(c)) = c (5.8)

Then, we conclude

R(n)
(ii)
≤

(n − x) log (n − x)
fα(c)

+
(x + γ) log (x + γ)

fα(c)

=
n log n
fα(c)

+
−n log n

n−x + x log x+γ
n−x + γ log (x + γ)

fα(c)
(iii)
≤

n log n
fα(c)

+
−n log n

n−x + γ log(x + γ)
fα(c)

(a),(iii)
≤

n log n
fα(c)

+
−n log α+2

α+1 + c log n

fα(c)
(5.8)
≤

n log n
fα(c)

�
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Note that, for all α ∈ N+, there is a function fα(z) ∈ O(z2) respecting (5.6)
since (z/ log z)2 grows asymptotically faster than z. Furthermore, since α is con-
stant, instances with n < 22α+1 have constant size and can be solved in polynomial
time.
Plugging Lemma 5.4 into Theorem 5.3, then yields the desired decrease in the
number of queries from quadratic in n to quasilinear in n. As a downside, however,
we have to accept an increase in kernel size due to the hardness of the computation
of balanced separators and the fact that balanced separators are larger than vertex
cuts.

Corollary 5.3. Let α ∈ N+ and let f : N→ N be a function such that (5.6) holds.
Then, Clique parameterized by the α-balanced subgraph-cutset number ĉα of the
input graph admits a truthtable kernelization that poses at most (n log n)/ f (ĉ2

α)
queries, each containing at most f (ĉ2

α) vertices.

5.4 Conclusion
We considered truthtable kernelization, a new type of kernelization based on
Turing kernelization. On the one hand, truthtable kernelizations are “stronger”,
that is, harder to obtain than Turing kernelizations, but exhibit excellent paralleliz-
ability, which is an essential advantage as today’s computational infrastructure
provides massive parallelism capabilities. Furthermore, all published Turing
kernelizations that we are aware of are, in fact, truthtable kernelizations, indi-
cating that Turing kernelization might be an unnecessarily permissive tool for
the considered problems. On the other hand, truthtable kernelization is “weaker”
than classical (many-one) kernelization, that is, it allows preprocessing with
performance guarantee for problems that do not admit polynomial-size classical
kernelizations [88, 117, 172].
We showed that certain polynomial-size Turing kernelizations can be constructed
from polynomial-size truthtable kernelizations with polynomial-size evaluation
formula and vice versa. This result can be used to “trade in” parallel execution
capabilities to decrease the number of queries posed by the kernelization.
We consider it an interesting open question whether TTpoly(k)

poly(k) = DF. If this
is true, then we can use the power of truthtable kernelizations to show the
existence of polynomial-size classical kernelizations. If TTpoly(k)

poly(k) , DF, then
(co-nondeterministic) composition algorithms exclude more than just polynomial-
size classical kernelizations. In this case, it would be desirable to have a more
fine-grained tool to show lower bounds for preprocessing since polynomial-size
polynomial-query truthtable kernels might be a practical approach to solving
some parameterized problems that do not admit classical kernelizations. Either
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way, an answer to the question whether TTpoly(k)
poly(k) = DF entails a good amount of

exciting research.
Many other open questions remain in the context of truthtable and Turing ker-
nelizations. For example, is there a problem that requires the power provided
by Turing kernelizations, that is, is there a problem admitting a polynomial-size
Turing kernel but no polynomial-size truthtable kernel? What parameterized
problems that are known to not admit polynomial-size classical kernels (under
the hypothesis that NP * coNP/ poly) have polynomial-size truthtable kernels?
Can we circumvent the polynomial lower bounds established by the framework
of Dell and van Melkebeek [58] or Hermelin and Wu [116] using truthtable or
Turing kernelization? For example, is there an O(k)-size truthtable kernel for
k-Vertex Cover? Even if no polynomial lower bound is known, can we improve
the sizes of known classical kernelizations by allowing more than one instance
to be computed? In the spirit of efficient preprocessing, is it possible to “trade”
queries or query sizes for faster kernelizations? An n-query truthtable kernel
that can be computed in O(n2) time might be more useful than a classical kernel
that takes Ω(n3) time to compute. Another interesting “trade” may be possible
between queries and query size. Here, a linear-size n-query truthtable kernel
might be theoretically and practically more relevant than a classical kernel of
size O(k3).



Chapter 6

Conclusion and Future Work

In this thesis, we analyzed NP-hard combinatorial (graph-) problems in the context
of parameterized complexity. In particular, we shed light on important aspects
of polynomial-time preprocessing that, to the best of our knowledge, have been
largely neglected in the development and theoretical analysis of fixed-parameter
algorithms.

6.1 The Thesis in a Nutshell

The aspects of preprocessing that we discussed were: structural (non-standard)
parameters, efficient (linear-time) data reduction, preprocessing beyond kernel-
ization, and truthtable kernelizations. Notably, these aspects can be combined
freely, multiplying their respective effects. In the following, we will give a quick
recapitulation of the respective chapters.

Non-standard parameters. The choice of parameter(s) is one of the most
important choices when developing parameterized algorithms for combinatorial
problems. There are several techniques for obtaining interesting and promising
parameters (“deconstructing intractability”, “distance from triviality”, “above
guarantee parameterization”, . . . ) [160, 161], often yielding interesting parameters
that are stronger than the “standard parameter” (solution size). Therefore, fixed-
parameter algorithms for these parameters may outperform algorithms designed
for the standard parameter.
The above holds true for solving a problem as well as preprocessing it. However,
there are little kernelization results for structural parameters to date [30, 114, 123,
124, 125, 159]. We contributed to this list by developing a linear-size problem
kernel for the Two-Layer Planarization problem parameterized by the feedback
edge set number f of the input. As our parameter is provably smaller than the
solution size, the algorithm constitutes an improvement over previous preprocess-
ing algorithms. We complemented the problem kernel with an algorithm running
in O(3.8 f · f 2 + f (n + m)) time.
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There is a seemingly endless supply of problems for which non-standard pa-
rameter make sense but have yet to be considered, especially regarding efficient
preprocessing. Another opportunity for future work is the charting of the pa-
rameter landscape to discover more correllations between parameters. This is
not limited to graph problems but is also interesting for problems on strings or
numbers, which offer a wide array of parameters as well.

Efficiency in Preprocessing. Most results in parameterized algorithmics con-
cern the running time of a parameterized algorithm solving the problem at hand or
the size of a problem kernel that can be obtained in polynomial time. Some prac-
tical applications, however, are so time-critical that anything slower than (almost)
linear time is not acceptable. These applications might settle for an approximate
solution, which could greatly benefit from a linear-time kernelization.
Fast preprocessing is also attractive for the design of exact algorithms, since
kernelizations can be run consecutively. As an example, we gave a linear-time
algorithm that computes a problem kernel of size O(γ) for Dominating Set on
planar graphs, where γ denotes the domination number of the input. Since the
instance can be expected to be smaller after the preprocessing, further kernel-
ization algorithms [46] can be run on that instance. In this way, the best known
(measured in the size of the produced kernel) kernelization algorithms are sped
up by prepending a linear-time kernelization.
In this context, “fast” is not necessarily equivalent to linear or quasilinear time.
An algorithm running in O(k|G|) time can, under the hypothesis that the parameter
is small in the input instance, also be considered efficient. In this sense, the ker-
nelization developed in Section 2.3 is fast, since it is computable in O( f |G|) time,
where f is the feedback edge set number of the input.
Depending on the available hardware, “fast” can also mean that an algorithm
scales well, that is, allows massive parallel execution. The possibility of easy
work distribution and load balancing is one of the reasons why branching algo-
rithms are so popular [150]. Seeing that today’s computational infrastructure
emphasizes parallel execution more than ever (“cloud computing”, “crowd com-
puting”, GPU and multicore CPU programming), it is important to design easily
parallelizable algorithms. As there are little results concerning parallel execution
of kernelization algorithms, this opens an interesting field of study.
It is worth mentioning that fast preprocessing algorithms are not only interesting
for NP-hard problems but also polynomial-time solvable problems, as our intro-
ductory example (see Section 1.1) involving a sorted array that can be queried for
containment of some item in O(log n) time demonstrates.
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Preprocessing Beyond Kernelization. Not admitting a polynomial-size prob-
lem kernel is often described as “incompressibility” or “limit of preprocessing”.
Is is, however, important to keep in mind that preprocessing is more than just ker-
nelization and, for practical implementations, exponential-size problem kernels,
preprocessing designed for another parameter, or even heuristic data reduction
rules are important to simplify an input instance. In this sense, every bit of
preprocessing counts.
We showed that a preprocessing algorithm that just alters the weights of arcs in an
instance of k-WeightedMultigraph Eulerian Extension is capable of speeding
up a dynamic programming algorithm that solves the problem. The running time
was improved from O(nk2k · n4) to O(4k · n3). The preprocessing also allowed us
state an upper bound on the parameter k in in terms of the parameters “number of
connected components” and “number of imbalanced vertices” (see Theorem 4.4
on page 135).
In this context, we may reiterate our argument above, stating that modern compu-
tation is largely about parallel execution. For example, heuristic preprocessing
algorithms that “split” the input instance into smaller parts can be considered a
preprocessing. Although this “reduction” is unlikely to yield a kernelization by
itself, it often allows parallel processing of the created components.

Between Turing and classical kernelization. Using composition algorithms,
many parameterized problems have been shown to not admit polynomial-size
kernelizations (as we have done for (c + s)-Switch Set Cover in Section 4.6,
implying compositionality for k-Weighted Multigraph Eulerian Extension).
For these problems, a more general definition of kernelization that captures the
strategy of creating multiple small instances instead of just one, may be helpful.
The concept of “Turing kernelization” is very young and there are only a handful
published Turing kernelizations. As it turns out, however, none of these results
make use of the full power of Turing kernelization.
We derived the concept of “truthtable kernelization” from the concept of truthtable
reductions in recursion theory. A truthtable kernel is tailored to support massive
parallel execution which, as discussed above, is especially important in the modern
age of parallel computation. We showed the some properties of truthtable kernels
can be traded to better fit the application scenario.

6.2 What the Future Holds
Operating in a theoretic science, we have to frequently question the significance
of our work. In this sense, it is important to keep in touch with the real world and
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ponder the impact of our work on it—what can we, as Mike Fellows put it, “sell
to the engineers”? This practical orientation often inspires great out-of-the-box
thinking. The creation of parameterized complexity as a way around NP-hardness
and the development of Turing kernelization as a way around incompressibility
are just two examples of this. Thus it is important not to loose sight of the
practical applications our results will be applied to. This is especially true for
preprocessing, since kernelization and preprocessing theory is arguably the export
hit of parameterized complexity for practical computing.
The list of aspects of preprocessing discussed in this thesis is, by no means,
exhaustive. Even restricted to kernelization algorithms, there are numerous
further concepts to explore:

1. Data reduction rules for graph problems on instances (G, k) with k ∈ N
can make use of the value of k. The well-known “Buss kernel” [35] for
k-Vertex Cover is probably the most prominent example. Now, if we
wanted to compute the vertex cover number τ of an input graph G, the
canonical way is to run an algorithm that answers “(G, k) ∈ Vertex Cover?”
for increasing values of k. Each time, the kernelization may produce a
different result and thus, we have to rerun it. In contrast, if our kernelization
would be independent of k (except maybe for a trivial “If |G| < O(k), then
return a trivial no-instance.”) then we would not have to rerun it. Such a
kernelization is said to be “parameter independent”. This aspect of ker-
nelization seems to be important for practical implementations, justifying
further examination.

2. Applying a kernelization procedure is usually not considered hurtful or
destructive. While this is true for combinations with exact algorithms,
preprocessing may have a negative impact on approximation. First, A
kernelization with respect to a structural parameter may increase the value
of an optimal solution arbitrarily, as long as the output instance is small
(measured in the parameter). Hence, running an approximation algorithm
on the output of a kernelization may yield a much worse solution than
running it on the input instance. Second, if the parameter is the sought
solution size, then a kernelization might map a no-instance to another
no-instance whose solution value is arbitrarily large, even though the new
parameter value is bounded in the old parameter value [144]. Although
kernelizations for many problems parameterized by the sought solution size
can be turned into approximation preserving kernelizations [144], further
considerations in this direction may be warrented.

3. In Chapter 5, we briefly mentioned the concept of α-fidelity kerneliza-
tion [85]. This concept captures the idea that if we only want to compute
an approximation, then we may allow making suboptimal decisions in the
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kernelization, as long as their consequences are within the limits of the
approximation ratio we are aiming at. This concept of “lossy” kernelization
may also be interesting in the context of running time considerations: A
linear-time 2-fidelity kernelization may be more interesting than a cubic
time classical kernelization.

4. We call a set of reduction rules confluent if the order of their applica-
tion does not influence the final result. This notion was studied by Ehrig
et al. [74]. They “believe that to analyze whether a set of data reduc-
tion rules is confluent is a well-motivated and natural theoretical question
of practical relevance with the potential for numerous opportunities for
(interdisciplinary) future research between so far unrelated research com-
munities”. In this sense, considering the confluence of data reduction rules
seems an interesting future research topic.

In the future, we hope to see multivariate (Turing/truthtable) kernelizations used
up to their full potential. Problems of central importance that escaped classical
kernelization so far are canonical candidates for this approach. What about,
for example, Dominating Set? Parameterized by the vertex-deletion distance
to clique, Dominating Set straightforwardly reduces to Red/Blue Dominating
Set parameterized by the number of blue vertices, which is fixed-parameter
tractable [61], but does it admit a polynomial-size (truthtable) kernel? What about
the parameter “vertex cover number τ” or a combination of the two parameters?
There are correct data reduction rules for Dominating Set (in fact, the rules
presented in Chapter 3 are correct for general graphs) that just do not yield a
kernel for the standard parameter. In this sense, instead of thinking of Dominating
Set as a very hard problem, we advertise thinking of the domination number as a
very strong (small) parameter.
Backed up by the recent mushrooming of kernelization results (upper and lower
bounds), we conjecture that we have only seen the tip of the preprocessing iceberg.
Practically relevant research is unlikely to get around the aspects of preprocessing
that we discussed in this thesis. Therefore, our work hopefully helps designing
algorithms that sell!
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Appendix A

Plausibility
of NP ⊆ coNP/ poly

Our (and practically all known) kernelization lower bounds (see Section 4.6)
are based on the assumption that NP * coNP/ poly. As shown by Fortnow
and Santhanam [95], NP ⊆ coNP/ poly implies a collapse of the polynomial
hierarchy PH to its third level.

One might ask “Why is a collapse of the polynomial hierarchy unlikely?”,
so we are going to delve into this question, trying to visualize implications
of NP ⊆ coNP/ poly. We like to think of the polynomial hierarchy in terms of
complete problems. To this end, we call a boolean formula ϕ quantified if all
variables occurring in ϕ are quantified by a ∀ or ∃ quantifier with their usual mean-
ing. Such a formula evaluates to true or false and can be seen as the following
two-player game [165]. Player “∃” and player “∀” get the unquantified boolean
formula. Then, the variables are considered in order of their quantification in
the quantified boolean formula and, depending on the type of quantification,
the respective player may choose a value for this variable. For example, if the
quantified boolean formula starts with “∃x ∀y”, then player “∃” may choose the
value of x and then player “∀” may choose a value for y. Then, the quantified
boolean formula evaluates to true if and only if player “∃” has a strategy that
always wins, no matter what player “∀” does. We call such a strategy solution
for the quantified boolean formula.
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True Quantified Boolean Formula
Input: A quantified boolean formula ϕ.
Question: Does ϕ evaluate to true?

Input:

∀
x1
∃

x2,x3
∀
x4

(x1∨¬x2∨¬x4)∧(x2∨x3∨¬x4)∧(¬x1∨¬x3∨x4)

Solution:
yes, “∃” chooses
x2 := x1
x3 := ¬x1

Note that permuting the quantifiers can create different instances. Therefore, it
is meaningful to define α-True Quantified Boolean Formula, the set of all yes-
instances of True Quantified Boolean Formula for which the formula ϕ contains
exactly α quantifier alternations38. Likewise, we define ∃-α-True Quantified
Boolean Formula as the set of all yes-instances of α-True Quantified Boolean
Formula whose formula ϕ starts with “∃”. Now, we can define the polynomial
hierarchy as follows [10, 165].

Definition A.1. Let α ∈ N. The problem ΣP
α is the set of all problems that can be

many-one reduced to ∃-α-True Quantified Boolean Formula in polynomial time.
Likewise, the problem ΠP

α is the set of all problems that can be many-one reduced
to ∀-α-True Quantified Boolean Formula in polynomial time. Finally, the class
of all problems in the polynomial hierarchy is PH =

⋃
i ΣP

i =
⋃

i ΠP
i .

Notably, since the satisfyability problem for boolean formulae, SAT, is NP-
complete and the tautology problem TAUT is coNP-complete, we can observe NP =

ΣP
1 and coNP = ΠP

1 [181, 165].
Now, in a world where the polynomial hierarchy collapses to its third level, it
holds that PH = ΣP

3 = ΠP
3 . Thus, ∃-3-True Quantified Boolean Formula is

complete for PH, implying that, given a quantified boolean formula ϕ with any
number of quantifier alternations, we can transform ϕ into a formula with only
three quantifier alternations in polynomial time. This does not seem much less
likely than being able to eliminate all quantifiers in this way. This, however, is
equal to P = NP, which contradicts the working hypothesis of this thesis.

38A quantifier alternation is a change in quantification type, that is, a transition from ∃ to ∀ or vice
versa. Here, the end of the quantifier list counts as an alternation. In our notation of writing multiple
variables below one quantifier, ϕ contains exactly α quantifiers.
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In our hypothetical world in which PH = ΣP
3 , we have another problem. The

problem True Quantified Boolean Formula stated above is complete for the com-
plexity class PSPACE (the class of all problems solvable using only polynomial
space). If now PH = PSPACE, then all problems solvable in polynomial space
are expressible as a quantified boolean formula with at most three quantifier alter-
nations, which seems unlikely to us. If PH , PSPACE, then, although there is a
polynomial-time many-one reduction R of α-True Quantified Boolean Formula
to 3-True Quantified Boolean Formula for any fixed α, we cannot produce this
reduction in polynomial time, since otherwise, we could reduce True Quantified
Boolean Formula to 3-True Quantified Boolean Formula by producing R and
running R on the instance.
For these reasons, NP ⊆ coNP/ poly seem unlikely and, thus, compositionality is
likely to imply non-existence of polynomial-size kernels [26, 95].
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