
Diplomarbeit

On the Algorithmic

Tractability of

Single Nucleotide

Polymorphism (SNP)

Analysis and Related Problems

Sebastian Wernicke

23. September 2003

Gutachter:
PD Dr. Rolf Niedermeier

Prof. Dr. Franz Oberwinkler

Betreuer:
PD Dr. Rolf Niedermeier

Dr. Jochen Alber Dr. Jens Gramm Dipl.-Inform. Jiong Guo

Nachwuchsgruppe Theoretische Informatik / Parametrisierte Algorithmen
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur mit den angegebe-
nen Hilfsmitteln angefertigt habe. Alle Stellen, die im Wortlaut oder dem Sinne nach anderen
Werken entnommen sind, wurden durch Quellenangaben als Entlehnung kenntlich gemacht.

Tübingen, den 23. September 2003 Sebastian Wernicke

iii

Contents

1 Introduction 1

1.1 The Human Genome and SNPs . 1

1.2 Overview of this Work . 2

2 Biological Background and Motivation 5

2.1 Basic Genetic Terminology . 5

2.2 An Introduction to SNPs . 7

2.3 Importance and Prospects of SNP Mapping 9

2.3.1 SNPs in the Study of Population History 9

2.3.2 SNPs and Pharmacogenetics . 11

3 Computer Science Preliminaries and Notation 15

3.1 Notation for Matrices and Graphs . 15

3.2 Crash Course in Computational Complexity Theory 16

3.2.1 Machine-Independent Analysis . 16

3.2.2 Running Time—Keeping Score . 18

3.2.3 Complexity Classes . 22

3.3 Fixed-Parameter Tractability (FPT) . 24

3.3.1 An Efficient Algorithm for Vertex Cover 24

3.3.2 Formal Definition and Aspects of FPT 27

4 Submatrix Removal Problems 31

4.1 Definitions and Terminology . 31

4.2 A Reduction to d-Hitting Set . 35

4.2.1 Finding Forbidden Submatrices . 35

4.2.2 Approximability and Fixed-Parameter Tractability Results 37

4.3 Hardness Results . 39

4.3.1 Overview of Results—Four Theorems 39

4.3.2 Proofs for Theorems 4.13 and 4.14 . 40

v

vi CONTENTS

4.3.3 Proof of Theorem 4.11 . 47

4.3.4 Proof of Theorem 4.12 . 49

4.4 Discussion and Future Extensions . 53

5 Perfect Phylogeny Problems 55

5.1 Phylogenetic Trees . 55

5.1.1 Introduction and Motivation . 55

5.1.2 Formal Definition . 56

5.2 Perfect Phylogeny Problems . 58

5.3 Relation to Forbidden Submatrix Problems 60

5.4 Minimum Species Removal . 62

5.5 Minimum Character Removal . 66

6 Graph Bipartization 69

6.1 Introduction and Known Results . 69

6.2 Reducing Edge Bipartization to Vertex Bipartization 72

6.3 A Branch&Bound Approach . 75

6.3.1 Initial Heuristics . 76

6.3.2 Data Reduction Rules . 79

6.4 Implementation and Comparison of the Algorithms 89

6.4.1 Using the Program . 89

6.4.2 Some Implementation Details . 90

6.4.3 Tests and Test Results . 92

7 Using Graph Bipartization in SNP Analysis 99

7.1 Introduction and Overview of Results . 99

7.2 SNP Haplotype Assembly . 100

7.3 Inferring Haplotypes from Genotypes . 103

7.3.1 Minimum Genotype Removal . 109

7.3.2 Minimum Site Removal . 112

7.4 Testing Branch&Bound on SNP Data . 115

8 Conclusion 119

8.1 Summary of Results and Future Extensions 119

8.2 Acknowledgments . 121

List of Figures 124

Bibliography 125

Chapter 1

Introduction

1.1 The Human Genome and SNPs

Throughout its life, an individual’s hereditary potentials and limits are determined by its
very own genes. Consequently, a lot of effort has been put into the Human Genome Project.
As of April 2003, 95.8% of the human genome has been sequenced in a very high quality (see
[NCBI03] for up-to-date information) and a goal has been set asking for a complete sequence
due the end of this year as more and more chromosomes become fully mapped (see, e.g.,
[Heil03]). However—quoting from [WeHu02]— this achievement is merely the foundation
for far deeper research as

“. . . we are ending the era of determining the sequence of the genetic code and
entering the beginning of the age of deciphering the biology of life underlying that
code.”

Hearing that a 95.8 percentile portion of the human genome has been sequenced, one is
immediately bound to ask as to which human’s genome we are actually referring to—after
all, every human has a unique genetic markup. At the beginning of the sequencing process
by the Human Genome Project, geneticists thought they would indeed have to make a choice
as to who would be chosen to provide a reference sequence of the four nucleotides A, C, G,
and T of his DNA.1 One individual would surely constitute a “blueprint” of the human
species, the study of genetic variation among our species would however gain little insight
from this [Chak01].

The sequence we have obtained by the Human Genome Project fortunately was not obtained
through making that kind of choice: Genetic variation among humans can—in almost every
case—be traced back to variations that occur within a single nucleotide. Such a site where
there are two different nucleotides to be found in two different DNAs, is commonly referred
to as a Single Nucleotide Polymorphism (SNP, pronounced “snip”) [HGSC01]. A simple
definition is given by [Ston01]:

“. . .DNA is a linear combination of four nucleotides; compare two sequences,
position by position, and wherever you come across different nucleotides at the
same position, that’s a SNP.”

1A thorough introduction to genetic terminology including SNPs is given in Chapter 2

1

2 CHAPTER 1. INTRODUCTION

During the Human Genome Project, 1.4 million sites of genetic variations have been mapped
[SNP01] along a reference sequence composed of hundreds of different genomes. The reason
why it was possible to combine such a multitude of different individuals’ genomes into a
coherent map of the human genome lies in the fact that DNA is mostly conserved around
SNPs . The importance of SNPs is outlined e.g. in [Ston01] who refers to them as the “bread
and butter of DNA sequence variation” for they are witnesses of unique past mutations in
our genetic markup. Therefore, SNPs can give valuable hints about common evolutionary
ancestors. But there is an even more severe economic influence: As genes are widely held
responsible for the likeliness for the acquisition of certain diseases and the responsiveness
to various medical treatments, SNPs can either be made directly responsible for such a
variation or they may at least aid in the identification of the corresponding gene.2

In this work, we shall deal with topics from the field of theoretical bioinformatics that are
connected to SNPs. Recent research [LBILS01, EHK03] has shown that all the useful appli-
cations and prospects of SNP data come at a price: Many computational problems arising
during the acquisition and application of SNP data have been proven to be computationally
“hard”, meaning that they are widely believed to be impossible to solve in reasonable time .3

However, there are techniques such as fixed-parameter tractability and data-reduction (both
to be introduced in more detail throughout this work) that allow even “hard” problems to
be solved efficiently in practical applications. This work explores the possible use of these
techniques for computationally hard problems connected to SNP analysis.

1.2 Overview of this Work

The main part of this work (Chapters 2 to 7) can be divided into three parts:

• Part 1 (Chapters 2 and 3): Introducing the Terminology
This work brings together two areas of science—biology and informatics—that have
only recently been connected in the emerging (and vastly growing) research field of
bioinformatics. In order to achieve a common basis for Parts 2 and 3 of this work,
Part 1 intends to introduce the computer scientist to the relevant biological background
and terminology (Chapter 2), and to familiarize the biologist with the relevant topics
from theoretical computer science (Chapter 3).

Chapter 2 first introduces some terminology from the field of genetics, thereby defining
SNPs. We then motivate the analysis of SNPs by two applications: The analysis
of evolutionary development and the field of pharmacogenetics. Especially the field
of pharmacogenetics is capable of having an enormous impact on medicine and the
pharmaceutical industry in the near future by using SNP data to predict the efficacy
of medication.

Chapter 3 gives a brief introduction to the field of computational complexity. We will
see and motivate how algorithms are analyzed in theoretical computer science. This
will lead to the definition of “complexity classes”, introducing the class NP which
includes computationally hard problems. Some of the hard problems in the class NP
can be solved efficiently using the tool of fixed-parameter tractability, introduced at
the end of this chapter.

2Section 2.3 gives a detailed introduction to the prospects of SNP mapping and analysis.
3Chapter 3 introduces the topic of computational hardness in more detail.

1.2. OVERVIEW OF THIS WORK 3

• Part 2 (Chapters 4 and 5): Applying SNP Data (Perfect Phylogenies)
An important application of SNP data is in the analysis of the evolutionary history of
species development (phylogenetic analysis). As will be made plausible in Chapter 5,
using SNP data is—in many ways—superior to previous approaches of phylogenetic
analysis. In order to analyze the development of species using SNP data, an under-
lying model of evolution must be specified. A popular model is the so-called perfect
phylogeny, but the construction of this phylogeny is a computationally hard problem
when there are inconsistencies (such as read-errors or an imperfect fit to the model of
perfect phylogeny) in the underlying data.

Chapter 4 analyzes the problem of “forbidden submatrix removal” which is closely
connected to constructing perfect phylogenies—we will see in Chapter 5 that its com-
putational complexity is directly related to that of constructing a perfect phylogeny
from data which is partially erroneous. In this chapter, we analyze the algorithmic
tractability of “forbidden submatrix removal”, characterizing cases where this problem
is NP-complete (being fixed-parameter tractable in general).

Chapter 5 introduces the concept, motivation, and some known results for phylogenetic
analysis. We then apply the results from Chapter 4 to perfect phylogeny problems,
i.e., the problem of dealing with data-inconsistencies with respect to the underlying
evolutionary model of perfect phylogeny. It will be shown that these problems are all
fixed-parameter tractable and can be efficiently solved using existing algorithms.

• Part 3 (Chapters 6 and 7): Obtaining SNP Data
Basically, obtaining SNP data requires sequencing two DNA strands and comparing
them to each other. The problems lie in the details: Firstly, current techniques only
allow sequences of at most 500 base pairs in length to be sequenced as a whole, and
secondly, it is—in terms of cost and labor—often only possible to detect the presence
of SNP sites rather than being able to tell which of the two DNAs contained which
base. Part 3 of this work analyzes the computational complexity of these two problems
by relating them to a graph-theoretic problem4 called Graph Bipartization.

Chapter 6 introduces the computationally hard problem of Graph Bipartization,
stating some known results and showing the relative hardness of the two Graph
Bipartization-problem variants Edge Bipartization and Vertex Bipartization
(the latter one of which is proven to be at least as hard as the former one). Following
this introduction, we develop and test practical algorithms for Graph Bipartization.
These algorithms—although they require a long time even for medium-sized general
graphs—prove to be efficient for the Graph Bipartization problems that arise during
the acquisition of SNPs, even if these graphs contain a few hundred vertices.

Chapter 7 introduces a formal definition of the computational problems of SNP analysis
and proves their close relationship to Graph Bipartization. The last section of this
chapter shows that the algorithms developed in Chapter 6 can be used to efficiently
solve the presented problems by solving their corresponding Graph Bipartization
problem.

This work is concluded by Chapter 8, presenting a summary of results and suggestions for
future research related to this work.

4Graphs are introduced in Chapter 3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Biological Background and
Motivation

In this chapter, we establish some basic terminology from the field of genetics used through-
out this work1. Afterwards, we introduce SNPs and current techniques used to detect and
map them. The last section of this chapter provides an introduction to pharmacogenetics—
the area that sparked economic and scientific interest in SNPs.

2.1 Basic Genetic Terminology

All living organisms encode their genetic information in the form of deoxyribonucleic acid
(DNA, for short). DNA is a double-helix polymer where each strand is a long chain of
polymerized monomer nucleotides.2 Basically, these are four different nucleotides; to a
deoxyribose sugar bonded with a phosphate, one of four possible bases is attached to form a
nucleotide; these possible bases include the two purines (adenine and guanine) and the two
pyrimidines (cytosine and thymine).3 For abbreviation, the nucleotides in a strand of DNA
are denoted by the first letter of their respective base (adenine by A, guanine by G, cytosine
by C, and thymine by T). The nucleotides are joined to form a single strand of DNA by
covalently4 bonding a phosphate of one nucleotide with the sugar of the next, a strand starts
with a sugar (this end is called the 3’-end) and ends with a phosphate (called 5’-end).5 Two
single strands of DNA are held together by hydrogen bonds between the bases of opposing
nucleotides in the double-strand. These bonds specifically bind adenine with thymine and
cytosine with guanine. The structure of DNA is shown in Figure 2.1. Although being

1For a more thorough introduction on genetics, see, e.g., [GMS00], [GGL02] or the chapters on genetics
in biochemistry books such as [VoVo95] or [BJS02].

2In general, polymer designates the class of very large molecules (macromolecules) that are multiples of
simpler chemical units called monomers.

3Actually, DNA has a lot less homogenous buildup than this because the nucleotides can be further
modified by an organism at their deoxyribose sugar. For example, bacteria use such a modification to be
able to distinguish their own DNA from foreign DNA coming, e.g., from a phage (bacterial virus). However,
such modifications will not have to concern us in this work because even in the presence of them, the basic
principles of DNA replication and translation hold.

4A covalent bond is the interatomic linkage that results from two atoms forming a common electron
orbital.

5The terms 3’ and 5’ are due to the enumeration of the carbon atoms in the deoxyribose sugar.

5

6 CHAPTER 2. BIOLOGICAL BACKGROUND AND MOTIVATION

P P

D D D

P P P P

D D D D

P P P P

D D D D

P P

D
5’ end3’ end

P

D

P

D

P

D

P

D

P

D

P

D

P

D

P

D

P

D

P

D

P

D D

P
5’ end

3’ end

T

A
C

G G

C
G

C

A

T

A

T
A

T T

A
T

A

G

C
G

C

G

C

3’—ACCGATATCGGA—5’
5’—TGGCTATAGCCT—3’

Figure 2.1: Chemical structure of DNA (above) and its abbreviated notation (below). The
letters within the molecular structure above stand for phosphate (P), deoxyribose (D), ade-
nine (A), guanine (G), cytosine (C), and thymine (T). The dashed vertical lines indicate
hydrogen bonds.

just two strands of bases attached to a phosphate-sugar backbone, DNA can be extremely
long by molecular measures.6 In order for the DNA to fit into a single cell7 whilst still
being accessible for replication and transcription into RNA to make proteins, human DNA
is organized into very dense complexes of proteins and DNA, called chromosomes. Humans
have 22 pairs of autosomes8 and one pair of sex chromosomes (with females carrying two
“X” chromosomes and men one “X” and one “Y” chromosome) within—almost—each cell.

The complete DNA sequence of an organism is called its genome, its genetic constitution
as a whole is called genotype9. Genetic areas of interest in a genome are called loci10. A
gene is a unit of DNA that encodes hereditary information, i.e., the sequence of all proteins
expressed by an organism, on a locus of an individual’s chromosome.11 Any one of two
or more genes that may occur alternatively at a given locus on a chromosome is called an
allele. A combination of alleles that is likely to be inherited as a whole and may be found on
one chromosome is called a haplotype. The sequence of DNA within a gene determines the
synthesis of proteins, experiments indicating that each gene is responsible for the synthesis
of one protein. Each one of the 20 proteinogenic amino acids12 is encoded by one or more
triplets of bases. Mutations, disruptions altering the genetic information (and therefore in
most cases the corresponding protein as well), may be due to deleting, inserting, replacing,
or rearranging nucleotides in a gene; they are responsible for the unique individual genetic
markup of organisms. As already mentioned above, a human cell contains two copies of
every chromosome (excluding the gender-specific chromosomes X and Y), where one copy
is inherited from each parent. Since each parent has its unique genetic markup, equivalent

6E.g., the diploid DNA of a human being has a total length of approximately 1.8m [VoVo95].
7With a few exceptions, every cell in a living organism contains its whole hereditary information.
8Autosomes are those chromosomes that control the inheritance of all characteristics except sex-linked

ones
9The genotype of an organism is the basis for its phenotype, where phenotype denotes the two or more

distinct forms of a characteristic within a population.
10Loci is the plural form of “locus”.
11Note that the majority of DNA is presumed not to contain any genetic information [VoVo95].
12Proteins are basically chains of polymerized amino acids.

2.2. AN INTRODUCTION TO SNPS 7

3’—ACAAAACTGAGCACTATTGGATCTACGACTGT —5’

SNP map

First DNA strand

Second DNA strand

3’—ACTATACTCAGCACTCTAGCATCTACGACTCT —5’

SNP sites

Figure 2.2: Mapping SNPs by comparison of two individuals’ DNA sequence. Note that as
mentioned in the text, a single nucleotide variation must occur in at least 1% of a population’s
individuals in order to be called “polymorphism” instead of “substitution”.

genes in the two chromosomes may differ. Identical alleles on both chromosomes are referred
to as being homozygous, different alleles are denoted heterozygous.

2.2 An Introduction to SNPs

A polymorphism is a region of the genome that varies between different individuals.13 Con-
sequently, a single nucleotide polymorphism (SNP, pronounced “Snip”) is a genetic variation
caused by the change of one single nucleotide (see Figure 2.2). These variations occur quite
frequently among humans—on average, a SNP may be found approximately every 1.91 · 103

bases (“1.91 kilobases”), implying that over 90% of sequences longer than 20 kilobases will
contain a SNP [Chak01]. SNPs are not evenly distributed across chromosomes, most genes
contain just one or two SNPs. Currently, 93% of all genes are known to contain at least
one SNP [SNP01]. Depending on whether they are found within genes or not, SNPs are
either labeled cSNPs (coding SNPs) or ncSNPs (non-coding) SNPs. Generally, ncSNPs ap-
pear more frequently than cSNPs [Mu02]. Recall from the last section that more than one
triplet of bases may encode a certain amino acid. Often, triplets that encode the same
amino acid differ in a single nucleotide from each other. If a cSNP does not introduce an
amino acid change in the encoded protein, it is named sSNP (synonymous SNP), and nsSNP
(non-synonymous SNP) otherwise.14 In the human genome, the ratio of sSNPs to snSNPs
is approximately one to one [Carg99].

Before outlining some prospects and the scientific as well as economic impact of SNP analysis,
we will now give a brief overview as to how SNPs are identified. In his survey on the usage
of SNPs as a tool in human genetics, Gray [GCS00] names four methods for SNP detection:

13More precisely, a polymorphism has been defined as “the least common allele occurring in 1% or greater
of a population” [Mare97], thereby distinguishing a polymorphism from a substitution that may occur in
less than 1% of a population’s individuals.

14For example, there is an nsSNP in the gene for the HLA-H protein, where a crucial disulfide bond is
disrupted by changing the 282nd amino acid from cysteine to tyrosine, causing a metabolic disorder known
as hereditary hemochromatosis [PSS97].

8 CHAPTER 2. BIOLOGICAL BACKGROUND AND MOTIVATION

• Identification of single strand conformation polymorphisms (SSCPs): In this technique,
DNA fragments of a locus containing the presumed SNP are amplified (e.g., multiplied
into many identical fragments) using PCR amplification.15 These fragments are then
put on a polyacrylamide gel to which a current of diluting liquid is applied. Due to
different folding of DNA fragments with different sequences, the speed of fragments
will differ if they contain SNPs. The presence of SNPs may afterwards be confirmed
by sequencing the respective patterns. This method is widely deprecated because of
its low throughput and sometimes poor detection rate of about 70%.

• Heteroduplex Analysis: During PCR amplification of an individual that is heterozy-
gous for a SNP, a heteroduplex16 may be formed between two strands that are com-
plementary to each other with exception of the SNP site. These heteroduplexes can
then be detected either as a gel band (analogously to SSCP detection) or using high-
performance liquid chromatography (HPLC). This SNP detection method combines
reasonable throughput rates of 10 minutes per sample with a high detection rate be-
tween 95% and 100%.

• Direct DNA sequencing: This is the currently favored high-throughput method for
detecting SNPs. According to [Carg99], almost a million base pairs can be analyzed
in 48 hours with detection rates for heterozygotes ranging between 95% (using cheap
“dye-terminator sequencing”) and 100% (using a more expensive and laborious method
known as “dye-primer sequencing”). Dye-terminator sequencing has been used by the
SNP Consortium [Hold02] which published over 1.4 million SNPs in human DNA
[SNP01]. Comparing equal loci in different versions of high-quality DNA sequences
has recently led to an increase of in silico detection of SNPs.

• Variant detector arrays (VDAs): In this technique, glass chips with arrays of oligonu-
cleotides are used to bind specific sequences derived in PCR amplification. VDA has
a quality comparable to dye-terminator sequencing and is especially useful in rapidly
scanning large amounts of DNA sequence.17

It should also be stressed that for SNP detection, an appropriate set of alleles from which
SNPs are to be inferred needs to be chosen, as the different alleles occur with quite different
frequencies in different populations (such as human ethnic groups).

In Chapter 7, we will be concerned with the algorithmic tractability of two problems that
arise during the identification of SNPs: First, the sequencing of chromosomes in order to
obtain haplotypes has to deal with some errors in the reading and assembling process of the
DNA sequences (this will be discussed in more detail in Chapter 7). Second, haplotypes
are—due to prohibitively high cost and labor—seldomly identified by sequencing single
chromosomes. Rather, genotype information (both copies of a chromosome) is obtained,
from which haplotypes can be inferred under certain assumptions. We will see in Chapter 7
that both problems are closely related (in a certain way even equivalent) to a problem called
“graph bipartization” for which we will develop efficient algorithms in Chapter 6.

15The polymerase chain reaction (PCR, for short) can quickly and accurately make numerous identical
copies of a specific DNA fragment. A PCR machine is capable of producing billions of copies of a DNA
fragment in just a few hours. PCR is a widely used technique in diagnosing genetic diseases, detecting low
levels of viral infection and for genetic fingerprinting in forensic medicine.

16A heteroduplex may either be a piece of DNA in which the two strands are different, or it is the product
of annealing a piece of mRNA and the corresponding DNA strand.

17SNP identification through arrays is a rapidly growing market responsible for the recent development
of biotechnology companies such as Affymetrix, Applied Biosystems, Marligen Biosciences, and Orchid
Biosciences, among many others.

2.3. IMPORTANCE AND PROSPECTS OF SNP MAPPING 9

2.3 Importance and Prospects of SNP Mapping

SNPs are mainly useful for two areas of research: the study of population history (e.g.,
see [BBNE03]) and—an area of great economical significance—pharmacogenetics (e.g., see
[Rose00]). In this section, we will introduce both applications. The algorithmic tractability
of some problems in the study of population history using SNPs is dealt with in Chapter 5.

2.3.1 SNPs in the Study of Population History

SNPs often are a basis for various studies of population history (e.g., see [Tish96], [Tish00],
and [Mu02]). Historically, such studies employed gene trees of non-recombining loci inherited
from one parent such as mitochondrial DNA or the Y chromosome [Avis94]. A disadvantage
of this approach is that such loci are subject to a lot of stochastic parameters, which in
turn caused the requirement of vast amounts of loci to be analyzed to gain confidence over
the results. The preference for SNPs as genetic markers arose from this problem, as SNPs
provide a broad range of unlinked nuclear genetic markers and are thus able to capture “a
genome-wide picture of population history” [Niel00]. Furthermore, SNPs are advantageous
over previous methods such as using microsatellites18 for population history studies because
they show a very favorable mutation pattern and greatly simplify the task of unbiased
sampling of genetic variation [BBNE03]:

• Mutation pattern: Microsatellites have a mutation rate of ∼10−4 per generation as
opposed to the rate of 10−8 displayed by SNPs. This makes multiple mutations for a
single SNP unlikely, therefore only two alleles exist of most SNPs. Such a property
greatly facilitates populational analysis—e.g., we will make use of it in the algorithmic
inference of haplotypes from genotypes in Chapter 7. Furthermore, mutations in SNPs
are more evenly distributed than in microsatellites, where the mutation rate is often
hard to estimate [BBNE03].

• Unbiased Sampling: Due to their uniform mutation rates, SNPs may be selected at
random in populational studies, avoiding previous bias that arose due to the fact that
often, only loci with well known mutation rates would be chosen for analysis. Fur-
thermore, [BBNE03] suggests that cross-species analysis of SNPs can provide greater
insight into the natural occurring rate of genome-wide variation than biased loci such
as microsatellites.

SNPs have been of great interest in populational studies due to the phenomenon that often
there is a collection of SNP sites where the individual SNPs are not independent of each
other; rather, a phenomenon called linkage disequilibrium is observed.19 This phenomenon
refers to the fact that often, haplotype combinations of alleles at different loci are correlated
in their appearance frequency, forming a so-called linkage disequilibrium block (LD block)
[DRSHL01]. The size of LD blocks is often debated and ranges from size suggestions of a few
kilobases (in empirical research [Dunn00] and computer simulation experiments [Krug99])
to more than a hundred thousand kilobases [Abec01]. Independent of the discussed size, the
presence of linkage disequilibrium is believed to reflect the fact that haplotypes descended

18Microsatellites are stretches of DNA consisting of tandem repeats of a small, simple sequence of nu-
cleotides, e.g., GCTGCTGCT. . .GCT. Often in literature, microsatellites are also referred to simple tandem
repeats (STRs).

19For the human genome, linkage disequilibrium was studied, e.g., in [Reic01].

10 CHAPTER 2. BIOLOGICAL BACKGROUND AND MOTIVATION

“populational bottleneck”

population narrows
e.g., by selection process

States of first, fifth and seventh SNP site correlate due to
the respective common ancestral haplotype

SNP maps for the individuals of a large initial population:
states of different SNP sites show no correlation

population redevelops
from bottleneck haplotypes

Figure 2.3: Development of linkage disequilibria in SNP sites: An initial, genetically diverse
population is drastically reduced in its number of individuals (e.g., by selection processes
in a unique environment). This causes a “populational bottleneck” where only a very few
different haplotypes remain within a population. Redevelopment of a population based on
this non-diverse genetic material causes linkage disequilibrium in the alleles, which decays
over time due to mutations and recombination.

from common ancestral chromosomes; linkage disequilibrium may therefore also be an in-
dicator for populational bottlenecks20[Mu02]. The phenomenon of linkage disequilibrium
relating to SNPs is illustrated in Figure 2.3.

Linkage disequilibrium of individuals’ genes within a population “decays” with population
history due to recombination [HaCl97]. It is believed that linkage disequilibrium around
common alleles is a lot less frequent than around rare alleles, which are generally younger
and thus less decayed by recombination [Watt77]. Using these assumptions, Reich et al.
[Reic01] have shown that they can relate some linkage disequilibria to events such as the
last glacial maximum 30 000-15 000 years ago, migration patterns in ancient Europe, or
the dispersal of anatomically modern humans in Africa. The article mentions that for some

20A populational bottleneck is a period in population history where there are very few individuals in
the population. These individuals then gave rise to the haplotypes found in a population today—conserved
genetic patterns in the haplotypes can therefore be backwardly related to the respective ancestral individuals
that lived during the bottleneck.

2.3. IMPORTANCE AND PROSPECTS OF SNP MAPPING 11

populations not as large as Europeans ([Reic01] mentions Yorubans as an example), the
resolution of their linkage disequilibrium blocks is too coarse, but nevertheless—referring to
studies such as [Tish96], [Tish00], or [Mate01]—“ [. . .] simultaneous assessment [of linkage
disequilibria] at multiple regions of the genome provides an approach for studying history
with potentially greater sensitivity to certain aspects of history than traditional methods
[. . .]” [Reic01]

Additionally to being able to gain deep biological insights into species development and
population history, the study of linkage disequilibria and the search for common ancestors
of species might also have high economical and health political impact. One example for this
is the recent study of the malaria parasite Plasmodium Falciparum in [Mu02], this parasite
has been of intense interest since it infects hundreds of millions of people each year, being
responsible for almost 3 million annual deaths [Brem01].21 An effective vaccine against
malaria, for example, must trigger an immune response that is equivalent or superior to
the one gained by contact with natural antigens. By finding some common SNP regions in
different Plasmodium Falciparum populations, it is the hope of current research to build an
accurate map of the ancestral relationship of various Plasmodium Falciparum strains. Such a
map of ancestral relationships could help in identifying common antigens for immunizations
[Gard98].

It was conjectured in [RLHA98] that the human malaria parasite experienced a populational
bottleneck about 5000 years ago, further sparking the hope that it would be possible to find
some common drug targets among malaria parasites. Although an extensive study of SNPs
on the Plasmodium Falciparum genome carried out by Mu et al. [Mu02] have shown that
this is probably not the case and Plasmodium Falciparum is rather a “quite ancient and
diverse” population (with the most recent common ancestor being a few hundred thousand
years old), it is still hoped that some more recent common ancestors of different strains can
be found in order to obtain an assay of promising drug targets and vaccines:

“For the first time, a wealth of information is available [. . .] that comprise the
life cycle of the malaria parasite, providing abundant opportunities for the study
of [the . . .] complex interactions that result in disease.” [Gard98]

Although the genetic sequence and the insights gained by SNPs alone are no cure for malaria
and other widespread diseases, they seem to be a promising start.

The study of populational history based on traits of individuals (which—among others—may
be the presence of highly correlated SNP sites) and its algorithmic tractability is studied in
Chapter 5 of this work, where a special model of analysis called perfect phylogeny will be
employed. As will be seen in Chapter 5, SNPs provide very good data for this model due to
their very low mutation rate.

2.3.2 SNPs and Pharmacogenetics

The understanding of SNPs is believed to be a key to the research area known as pharmaco-
genetics. Using SNPs in pharmacogenetics is of immense economical interest to pharmaceu-
tical companies. It has led to the founding and funding (hundreds of millions of US dollars)
of the SNP Consortium [Hold02], a joint effort of major pharmaceutical companies such as
Bayer, Bristol-Myers Squibb, Glaxo Wellcome, Aventis, Novartis, Pfizer, Roche, SmithKline

212001-2010 has been named the “Malaria Rollback Decade” by the WHO [WHO03] to emphasize efforts
being made in limiting the widespread of malaria.

12 CHAPTER 2. BIOLOGICAL BACKGROUND AND MOTIVATION

Beecham, and Zeneca. Interdisciplinary connections of the SNP Consortium include IBM
and Motorola.

The problem with a lot of drug therapies is the possibility of adverse drug reactions by
patients: Research by Lazarou, Pomeranz, and Corey [LPC98] suggests that, in 1994, such
reactions were responsible for millions of hospitalizations and almost a hundred thousand
deaths. This value is not likely to have improved lately and is hindering the introduction of
new medications that are effective in most patients but pose unbearable risks: For example,
the quite effective anticonvulsant drug Lamictal c© by Glaxo Wellcome is only reluctantly
prescribed because of a potentially fatal skin rash that arises as a side effect in five percent
of all patients taking the drug [Maso99]. The problem of the different effects drugs exert
on patients has long been known and studied, already over a hundred years ago Sir William
Osler22 reflected:

“If it were not for the great variability among individuals, medicine might as well
be a science and not an art.” (as cited by [Rose00])

Pharmacogenetics is an area of research that studies how genetic variation influences a
patients responsiveness and responses to drugs (a good introduction to pharmacogenetics
is, e.g., [Rose00]), thereby trying to give physicians the possibility of using objective data
about a patient’s likeliness to react to prescribed drugs in a predictive way. The basic idea in
pharmacogenetics is to build a profile of an individual’s genetic variations in order to predict
effectiveness and side-effects of drugs. As was discussed above—since genetic variation is
mainly due to SNPs—a hope of pharmacogenetics relies on building an accurate map of
SNP haplotypes.

Roughly speaking, the hope is to identify linkage disequilibrium loci around certain genes
that are susceptible for causing a certain adverse reaction to drugs. The same technique has
already been applied in the study of individuals’ susceptibility to certain complex genetic
diseases such as Alzheimer’s disease: In an analysis of polymorphisms on the ApoE gene
locus on chromosome 19, Martin et al. [Mart00] reported the detection of those SNPs
in linkage equilibrium that are associated with Alzheimer’s disease. A number of other
studies successfully related the susceptibility for complex genetic diseases such as migraine
with aura, psoriasis, and insulin-independent diabetes mellitus to certain SNPs in linkage
disequilibrium [Rose00]. Now, just as linkage disequilibria can be related to the susceptibility
for diseases, they can also be related to certain drug reactions. Two good examples for this
are, e.g., patient’s reactions to nortriptyline and beta-2-agonists:

• Nortriptyline is a medication against depression which is converted to an inactive
compound within the body by drug metabolizing enzymes called the cytochrome P450
enzymes. Specifically, an enzyme labeled CYP2D6 is a key in inactivating nortryptiline
and removing the inactivated substance from the body—except in some people that
have variations in their CYP2D6 encoding gene. These variations may lead to two
undesired effects [DeVa94]: People referred to as “ultra metabolizers” have a variation
that causes the synthesis of too much CYP2D6 in their body, thus inactivating so
much nortriptyline that these people are likely to receive insufficient antidepressant
effects from nortriptyline. A more dangerous variation is found in people referred to
as “poor metabolizers” who do not synthesize sufficient amounts of CYP2D6—these

22Osler, Sir William, Baronet (*1849, †1919). Canadian physician and professor of medicine who played a
key role in the transformation of the curriculum of medical education in the late 19th and early 20th century.

2.3. IMPORTANCE AND PROSPECTS OF SNP MAPPING 13

SNP genotype profile of

patients in clinical trial

medicine effective? ineffectiveeffective

effective vs. ineffective

SNP genotype profile of

predictors for efficacy

SNP profile for prediction
“effective”

SNP profile for prediction
“ineffective”

Figure 2.4: Profiling SNPs in pharmacogenetics: If there is a section of the SNP genotype
profile that proves to be different in patients where a drug is effective as opposed to patients
where a drug shows no efficacy or undesired side-effects, this region can be used to predict the
effectiveness and potential risks due to side effects in a patient before a drug is prescribed.

are likely to experience toxic side effects due to accumulation of nortriptyline in their
body. Genetic testing for variation in the gene for the CYP2D6 enzyme could avoid
both scenarios.

• Beta-2-antagonists such as albuterol are important to the treatment of asthma. In-
teracting with the beta-2-adrenergic receptors in the lung, they cause the freeing of
airways by inducing muscle relaxation in the lung muscles. A SNP in the gene encoding
the beta-2-adrenergic receptor causes the carriers of one SNP variant to express fewer
of these receptors, therefore receiving little relief of asthma symptoms upon a standard
dose of albuterol [Ligg97]. Testing for presence of the specified SNP in patients can
allow to clearly identify those 45% in the North American population23 who can only
poorly control their asthma by beta-2-antagonists.

It is clear that the prospects of being able to predict the efficacy of a drug whilst minimizing
the risk of side-effects is of great interest to the pharmaceutical industry, which could then—
as Roses proposes in [Rose00]—create efficacy profiles for patients (see Figure 2.4) already in
phase II24 clinical trials of medication. Abbreviated SNP profiles25 could be used to record

23This figure should be similar for Europeans.
24Clinical trials are divided into five steps: Preclinical Research includes controlled experiments using a

new substance in animals and test tubes and may take several years. Phase I trials are first tests of the
investigated drug on humans. Doses are gradually increased to ensure safety. Phase II trials will gather
information about the actual efficacy of a drug. Phase III trials studies a drugs effects with respect to
gender, age, race, etc. A successful phase III trial leads to the admission of a drug to the public market.
Occasionally, phase IV trials are conducted that are—in principle—phase III trials on an even broader
variety of patients.

14 CHAPTER 2. BIOLOGICAL BACKGROUND AND MOTIVATION

adverse reactions in patients and thus be able to predetect even the most rare adverse events.

Furthermore, the development of new, more effective drugs can be facilitated: The parallel
developments of drugs targeting specific symptoms is facilitated because patients who do not
respond to a certain medication can be profiled in early clinical trial stages. Additionally,
the development of medications which are highly effective in only a comparably small part
of a population (e.g., a medication with 30% response rate) become profitable as they may
be specifically prescribed to patients to whom the respective substance will be effective.

Pharmacogenetics relying on SNP linkage analysis seems to be a promising start to replacing
trial-and-error prescriptions with specifically targeted medical therapies.

25Abbreviated SNP profiles contain only the SNP information of a patient that is relevant for a drug
efficacy prediction. The introduction of abbreviated profiles plays an important role in the discussion about
the fear of “individual DNA profiling” because they cannot be backwardly related to a patient.

Chapter 3

Computer Science Preliminaries
and Notation

The first section of this chapter introduces the notation used throughout this work, followed
by a brief introduction to those ideas in computational complexity that are important to this
work. Especially, the last section focuses on fixed-parameter tractability, laying a foundation
for the computational complexity analysis in the following chapters.

3.1 Notation for Matrices and Graphs

Matrices. By an n ×m matrix A we are referring to a rectangular arrangement of n ·m
elements into n rows and m columns. By aij we designate the element in A that may be
found at the jth position of the ith row. We will use the terms A and (aij) synonymously.

Graphs. A graph consists of vertices and edges, where a vertex is an object with a name
and other properties (such as a color) and an edge is the connection of two vertices. We
will denote a graph G with n vertices and m edges by (V,E) where V = {v1, . . . , vn}
and E = {e1, . . . , em} ⊆ V ×V . In this work, only simple, undirected graphs are considered,
meaning

• a vertex cannot be connected to itself by an edge,

• no two vertices may be connected by more than one edge, and

• an edge leading from a vertex u to a vertex w also leads from w to u.

By the term subgraph G′ = (V ′, E′) we are referring to a graph with V ′ ⊆ V and E′ =
E ∩ (V ′×V ′). Given a set V ′, G′ = (V ′, E′) with E′ = E ∩ (V ′×V ′) is called the subgraph
induced by V ′ in G.

A vertex v is said to have degree d—denoted by degree(v) = d—if there are exactly d edges
in G that are adjacent to v.

A path p of length ℓ in a graph G = (V,E) is a sequence of ℓ+1 distinct vertices v1v2 . . . vℓ+1

in G such that for each 1 ≤ i ≤ ℓ, vi and vi+1 are connected by an edge. A cycle of
length ℓ in G is a sequence of ℓ vertices v1v2 . . . vℓv1 in G such that v1 . . . vℓ is a path in G

15

16 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

and {vℓ, v1} ∈ E. We call G = (V,E) a tree if it contains no cycles; a tree containing a
specially designated node1—called the root of the tree—is called rooted. Nodes of degree 1 in
a rooted tree are called leafs. A graph G = (V,E) is called connected if any two vertices u, v ∈
V are connected by a path in G. A subgraph of G that is maximally connected with respect
to its number of vertices is called a connected component.

A graph G = (V,E) is called bipartite if we can divide the set V of vertices into two
disjoint subsets V1 and V2 such that E contains neither edges between vertices in V1 nor
edges between vertices in V2. The graph G is called planar if it can be embedded into an
(Euclidian) plane without any intersecting edges.

In this work—especially in Chapter 6—we will be using the following set of operations on
graphs:

• Subgraph removal. Let V ′ ⊆ V be a subgraph of G = (V,E). By G \ V ′ we will
denote the subgraph that is induced in G by V \ V ′.

• Vertex deletion. Let u be a vertex in a graph G = (V,E). By G \ {u}, we denote
the graph that is induced in G by V \ {u}.

• Edge deletion. Let e be an edge in a graph G = (V,E). By G \ {e}, we denote the
graph G = (V,E′) with E′ = E \ {e}.

A vertex separator in a graph G = (V,E) is a set V ⊆ V of vertices in G such that G \ V is
not connected. If |V| = k, we call V a vertex separator of order k. The definition of an edge
separator E ⊆ E of order k is analogous.

3.2 Crash Course in Computational Complexity Theory

Generally speaking, “an algorithm is a procedure to accomplish a specific task. It is the
idea behind any computer program” [Skie98]. The first goal for any algorithm is to be
effective, i.e. providing correct solutions to a given problem, however, an effective algorithm
is of little use if it is not efficient, i.e., requires more resources (especially time) to solve a
problem than can be provided. Computational complexity theory deals with the amount
of resources—the two most important of which are time and memory2—required to solve
a certain computational problem by an algorithm. A brief introduction to analyzing the
time complexity of algorithms is given in [Skie98], a very thorough treatment of complexity
theory may be found, e.g., in [Papa94]. This section will introduce some basic terminology
from computational complexity theory that will be used throughout this work.

3.2.1 Machine-Independent Analysis

Imagine that we are given an algorithm called A (in any programming language) that solves
a certain problem P when given an input I, called an instance of P. We would now like to
analyze the performance—especially concerning speed—of this algorithm. The most obvious
way of this would be to run A on a lot of instances of P and measure the time it takes for A

1In order to distinguish tree from graphs more easily throughout this work, we will use the term “vertex”
for general graphs and the synonymous “node” for vertices in trees.

2Since only the notion of time complexity is important for this work, we shall omit space complexity in
the following introduction.

3.2. CRASH COURSE IN COMPUTATIONAL COMPLEXITY THEORY 17

to complete its task each time. However, with this approach, we quickly run into a multitude
of problems, the most crucial of which are that the absolute time measured is influenced
by the actual machines computer architecture3, absolute time values are only useful for one
particular type of machine, we can seldomly test the algorithm on all conceivable instances,
and a purely practical analysis provides no indication about an algorithm’s maximal (worst-
case) running time.

Complexity theory tries to avoid these problems arising from a direct machine analysis by
analyzing computational problems in a more formal and mathematical way. This analysis
is machine-independent whilst still trying to incorporate the fundamental workings of a
modern computer. Traditionally, complexity theory relies on the Turing Machine as its
model of computation which is, however, a quite abstract model of computation lacking
any close relationship to modern computers.4 For this work, we do not require the many
special features offered by Turing Machines and shall therefore rely on another model of
computation that is sufficiently precise for our analysis, far more intuitive and more closely
related to a “real” computer than a Turing Machine.5 This model is the RAM model of
computation, which Skiena [Skie98] describes quite vividly as a computer

“where each ‘simple’ operation (+,-,*,=,IF,call) takes exactly 1 time step [and]
loops and subroutines are not considered simple operations. Instead, they are
the composition of many single-step operations. . . . Each memory access takes
exactly one time step, and we have as much memory as we need.”

Using this model, the computational time of an algorithm is given by simply counting the
number of time steps it takes the RAM machine to execute it on a given problem instance.
The advantage of the RAM model lies in the fact that it captures the essential behavior of
a modern computer without introducing any fickle parameters such as memory bandwidth,
actual processor speed, and memory access time, just to name a few. The next subsection
demonstrates the usage of this model in the analysis of an algorithm’s time complexity.
This, however, requires a last step of formalization: Besides the machine model, the term
“problem” needs to be specified.6

Computational problems may be stated in many ways, the most important of which—at least
in the context of this work—are decision problems (the output can be just either “Yes” or
“No”) and optimization problems (the output is a solution which is minimal/maximal in
some respect). Most of computational complexity theory solely deals with decision problems
because almost any “reasonable” way of stating a problem can be transformed into a decision
problem.7 Although a whole branch of theoretical informatics—computability—has evolved
concerning the existence of decision problems that are undecidable (i.e., not algorithmically

3A modern computer’s performance is, e.g., influenced by its processor, memory bandwidth, techniques
such as pipelining and caching, the operating system, the programming language and its compiler, etc. Due
to these many factors it is sometimes even difficult to obtain consistent results on a single, defined machine.

4There are many reasons why Turing Machines are nevertheless used in computational complexity theory:
For example, requirements such as memory and time are very easy to define for a Turing Machine and can
be analyzed with great accuracy. Furthermore, Turing Machines can simulate other machine models—one
Turing Machine can, in theory, even simulate an infinite number of Turing Machines. The simulation of
an algorithm on the RAM model (which will be introduced shortly) by a Turing Machine requires only
polynomially more time than its execution on directly on the RAM (the term “polynomially more time” will
also be defined more precisely later on in this chapter).

5A quite thorough analysis of different machine models can be found in Chapter 2 of [Papa94].
6An algorithm is by definition already given in a formal fashion.
7E.g., instead of asking “What are all prime numbers between 0 and 280581?” we can solve the decision

problems “Is 1 a prime?” (“No”), “Is 2 a prime?” (“Yes”), . . . , “Is 280580 a prime?” (“No”) separately.

18 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

solvable) by computers, we can assume for this work that we are always given decidable
decision problems.

Analyzing decision problems is closely related to the fact that in complexity theory, a pro-
blem is generally formulated as a language L and asking (i.e., deciding by an algorithm)
whether a given instance I is part of that language. Both the language L and the instance I
are a subset of Σ∗ for an alphabet Σ, where Σ is a finite set of symbols and Σ∗ is the set of
all words that may be generated by concatenation of symbols from Σ, including the empty
word ǫ which contains no symbols at all.8 Expressing a given problem as a language is—in
most practical cases—quite straightforward.9 For this work, the computational complexity
for solving a problem can be seen as equivalent to the complexity of answering the cor-
responding decidability question. It should be noted that stating a problem in form of a
language presents this particular problem in a very abstract form. Neither an algorithm for
solving the problem is given nor any obvious hint about the time complexity of solving this
problem. In order to deal with this, we will introduce the model of complexity classes and
reductions later on in this chapter.

For the sake of simplifying the discussion in this work, we will refrain from stating problems
in the form of a language. Instead, we will simply assume that the given problems may be
stated in the form of a language. Furthermore, instead of asking whether an instance I is
in L, we shall directly deal the object x that I represents (such as a word, number, graph,
etc.)10. We then call x an instance of the problem P = “I ∈ L?”.

3.2.2 Running Time—Keeping Score

We discussed at the beginning of the last subsection that, given an algorithm for a problem P,
knowing how this algorithm performs on certain instances x of P is of little use. Rather,
in order to understand the quality of an algorithm, it is vital to know how it performs on
any conceivable instance x of P and express this performance in an intuitive way. This
is done by introducing three new ideas: Analyzing how the running time of algorithms
scales with the problem size, distinguishing between worst, best and average-case complexity
(emphasizing on worst-case complexity), and analyzing the scaling of the algorithm in its
asymptotic behavior.

The first idea is based on the intuitive observation that an algorithm should generally take
longer time to run as the presented instance becomes larger. For instance, a graph problem
on a general11 graph consisting of ten vertices should be easier to solve than the same
problem for a general graph with a thousand vertices. Therefore, if x is an instance of a
problem P, the running time t of an algorithm is expressed as a mathematical function f

8For example, if Σ = {0, 1}, Σ∗ = {ǫ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . . }.
9E.g., the problem of deciding whether a given number is a prime number would have to be expressed

as Lprime = {p ∈ {0, 1}∗ | p is the binary representation of a prime number} (with Σ = {0, 1}) and then
asking “given I ∈ Σ∗, is I ∈ Lprime?”.

10We shall assume for this work that such a representation, i.e, the encoding of x as I is always a valid
one, meaning we do not need to worry about any cases where I does not encode a valid object x.

11By “general” we mean that the given graph has no special properties that greatly simplify the solution
of the respective problem.

3.2. CRASH COURSE IN COMPUTATIONAL COMPLEXITY THEORY 19

xx′

f(x)

c · g(x)

xx′

f(x)

c · g(x)

xx′

f(x)

c2 · g(x)

c1 · g(x)

f(x) = O(g(x)) f(x) = Ω(g(x)) f(x) = Θ(g(x))

Figure 3.1: A function f(x) and its bounds in O-notation: From left to right, g(x) is an
upper, lower and tight bound on f(x). Note how the respective bounding property of g only
needs to be true for all x > x′.

of n := |x|, the size of x:12

talgorithm(x) = f(|x|) = f(n)

Given a fixed size n for the input instance x and an algorithm A that runs with x as an
input, we distinguish between the best-case, average-case, and worst-case running time:

tbest(A, n) = min
x : |x|=n

tA(x), tavg(A, n) =

∑

x : |x|=n

tA(x)

|{x | |x| = n}|
, and tworst(A, n) = max

x : |x|=n
tA(x).

Most of the time, only the worst-case complexity of an algorithm is interesting since average-
case and—especially—best-case complexity provide no information whatsoever about the
running time that A might have when presented with any instance x. E.g., for average-
time complexity the problem here lies in the definition of “average”: There may be some
problems which are rather easy to solve on many instances, but this is of no use if we
should—consciously or not—be dealing just with hard instances during the application of the
algorithm.13 Albeit open to criticism about being too pessimistic, the worst-case complexity
of an algorithm seems to be the most useful measure for its performance.

The computational RAM model introduced in the last subsection provided a way to measure
the running time of a given algorithm A exact to a single time unit. This degree of accuracy
is not useful as for such exact counts the function f that measures the running time of A will
often get very complicated and unintuitive to analyze.14 Moreover, as we are interested in
the performance of an algorithm on a real-world machine and not on the hypothetical RAM,
measuring the running time of A down to the last time unit finds no application. Therefore,

12Later on, we will analyze algorithms in more detail using various parameters of the input. For example,
the running time of a graph algorithm may depend on the number of edges as well as on the number of
vertices in the graph. The number of edges in the graph is lower than |V |2, but explicitly using the number
of edges provides a better analysis. In order to simplify the discussion, however, we will for now assume that
there is just a single input size parameter given.

13Moreover, the corresponding mathematical analysis of average-case complexity even for simple algo-
rithms and a clear definition of “average case” is often highly involved and complicated.

14Moreover, there are often trivial steps depending on the notation of the algorithm (such as initialization
of variables) that require just a little constant amount of time and are thus not interesting for a general
performance-analysis.

20 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

computational complexity theory, instead of directly analyzing f , rather analyzes the upper
and lower bounds of f using the O-Notation (pronounced “Big Oh Notation”):

Definition 3.1 (O-Notation):
Given two functions f : R>0 → R>0 and g : R>0 → R>0. We will say that

• f = O(g) if there exist a constant c ∈ R and an x′ ∈ R such that for all x > x′, f(x) ≤
c · g(x) (g is an upper bound for f).

• f = Ω(g) if there exist a constant c ∈ R and an x′ ∈ R such that for all x > x′, f(x) ≥
c · g(x) (g is a lower bound for f).

• f = Θ(g) if there exist two constants c1, c2 ∈ R with c1 ≤ c2 and an x′ ∈ R such that
for all x > x′, c1 · g(x) ≤ f(x) ≤ c2 · g(x) (g is a tight bound for f).

This notation is illustrated by Figure 3.1.15

Analogously to preferring the worst-case complexity over the best- and average-case com-
plexities when analyzing the performance of an algorithm, it is common practice to provide
an upper bound for an algorithm’s running time instead of a lower or tight one.16

To provide an example on how to determine the running time of an algorithm and express it
in O-Notation, we will now analyze an algorithm for a well-known problem in computational
complexity, called Vertex Cover.

Definition 3.2 (Vertex Cover)
Input: A graph G = (V,E) and a parameter k.
Question: Is it possible to choose a set V ′ ⊆ V with |V ′| ≤ k such that every edge in E has
at least one endpoint in V ′?

In Figure 3.2, a graph and one of its vertex covers is given in order to illustrate this definition.
A very trivial algorithm AVCtrivial for this would be to simply try all possible solutions of
size k and see whether one of these hypothetical solutions is indeed a vertex cover for the
given graph:

Algorithm: Trivial algorithm AVCtrivial for Vertex Cover
Input: A graph G = (V,E) with V = {v1, . . . , vn}
Output: “Yes” if G has a vertex cover of size k, “No” otherwise

01 for every k-sized subset V ′ of V do
02 if V ′ is a vertex cover for G
03 return “Yes”
04 return “No”

15For a concrete example, consider the function f(x) = x4 + x2 + x − ln x + 1234. If x ≥ 6, we have

f(x) = x4 + x2 + x − ln x + 1234 < x4 + x2 + x − ln x + 64 < 5 · x4 =: 5 · g(x),

f(x) = x4 + x2 + x − ln x + 1234 > x4 > 1 · x3 =: 1 · g(x), and

1 · g(x) := 1 · x4 < f(x) = x4 + x2 − ln x + 1234 < 5 · x4 = 5 · g(x)

and therefore f(x) = O(x4), f(x) = Ω(x3), and f(x) = Θ(x4).
16This is mainly due to the fact that tight bounds on the running time of algorithms are often neither

intuitive nor easy to grasp mathematically.

3.2. CRASH COURSE IN COMPUTATIONAL COMPLEXITY THEORY 21

A Vertex Cover for GA graph G = (V,E)
(black vertices)

Figure 3.2: A graph G = (V,E) and a vertex cover of size 17 (black vertices) for G. Note
how for each edge in G, at least one of its endpoints is in the given vertex cover. The shown
vertex cover for G is optimal in the sense that there is no vertex cover for G with fewer than
17 vertices (this was verified using a computer program).

We will now analyze the running time of AVCtrivial in terms of the number of vertices (|V |)
and the number of edges (|E|) in G.17 Let us start with lines 03 and 04: Since both
terminate AVCtrivial, they are executed at most once, and thus do not play a role in the
asymptotic running time of AVCtrivial. Line 02 can be executed by calling the following
subroutine: Iterate over all edges of G, and check for every edge whether at least one of its
endpoints is in V ′. If we have been clever enough and marked those vertices that are in V ′

during the execution of line 01, executing this line only requires O(|E|) running time. For the
seemingly most difficult line to analyze, line 01, we make use of the machine-independency
of our analysis by using an algorithm for generating subsets from the extensive available
literature on algorithms (e.g., [CLRS01], [Knut97]).18 In [Knut03], we can find an algorithm
that generates all k-sized subsets V ′ of V in

O(

(
|V |

k

)

) = O

(
|V |!

k!(|V | − k)!

)

= O






1

k!
|V | · (|V | − 1) · · · (|V | − k + 1)
︸ ︷︷ ︸

k factors




 = O(|V |k)

time on a RAM-like machine. For finding the total running time of AVCtrivial, it is now
sufficient to observe that line 01 causes line 02 to be executed once for each of the at most

(
|V |
k

)

subsets generated. Taking into account the time requirements of line 02, the total running

17A quick glance at the algorithm demonstrates the advantage of all the conventions we have introduced
above. E.g., if we were not to use the O-Notation for the worst-case bound we are about to determine, we
would explicitly have to look at the exact number of steps a RAM needs to generate a subset in line 01, to
store G, to determine whether V ′ is a vertex cover of G, and so on.

18Note that the RAM models in literature do not necessarily need to be defined precisely the way we
have. E.g., in the RAM model used in [Knut97], some computing steps take more than one unit of time.
However, this is not important for the performance of an algorithm in O-notation: Assume, for example,
that each simple computational operation would consume four time units instead of one on a machine RAM′

as opposed to our RAM model. If there is an algorithm that, e.g., requires O(n3) time on the RAM, it
would require O((4n)3) = O(64n3) = O(n3) time on the RAM′.

22 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

time for AVCtrivial is therefore bounded by

O(|V |k · |E|).

This upper bound is quite unsatisfactory for practical applications, for it implies an enormous
worst-case running time even for small graphs and small k.19 Note that from the discussion
so far, it is not clear wether this is due to a poorly designed algorithm we have come up with
or it is a result of some “inherent complexity” of Vertex Cover. The next subsection and
the following section will demonstrate that actually both is true, that is, Vertex Cover
is believed to be “hard to solve” (we will define this more precisely in the next subsection)
but there are ways of “taming” this inherent complexity, as will be shown in Section 3.3.

3.2.3 Complexity Classes

In the previous subsection, we have given an algorithm to solve Vertex Cover that was
quite impractical for large input graphs. However, it was not clear whether this problem is
hard to solve in general or if we just haven’t come up with a good algorithm. We would
now like to know wether there is a better algorithm for Vertex Cover than the one
presented, or—even better—know the fastest possible algorithm for Vertex Cover (i.e.,
the minimum time complexity of Vertex Cover). The first request is comparably easy to
come by, we just have to look for an algorithm with a better worst-case running time than
the one presented. The latter however is a lot harder to deal with, because in finding a lower
bound for the time complexity of Vertex Cover it is necessary to consider every thinkable
algorithm for Vertex Cover—even algorithms that have not yet been found.20 However,
there is another way to approach the problem of complexity bounds using reductions and
complexity classes.

Reductions will allow us to divide problems into different “classes of difficulty”. The idea
behind this is the following: Although not knowing how hard an individual problem might
be, we can relate problems to each other so that we know they are both “equally hard” to
solve, meaning if there is a fast algorithm for one problem, there must be one for the other
problem, too. A collection of such related problems is called a complexity class (a more
formal definition will follow shortly). Problems are grouped together in complexity classes
by finding a computationally “cheap”21 transformation between instances of one problem
and the other. Then, loosely speaking, if we know that if one of the two problems turns out
to be easy to solve, we also know that the second problem is easy to solve, because we can
apply the algorithm for the easy problem to transformed instances of the other one. In a
more formal fashion:

Definition 3.3 (Polynomial Time Reduction):
Given two languages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2. We call L1 ⊆ Σ∗

1 polynomial-time reducible
to L2 ⊆ Σ∗

2 (designated L1 ≤poly L2) if there is a function R from Σ∗
1 to Σ∗

2 that can be
computed in polynomial time on any x ∈ Σ∗

1 and

x ∈ L1 ⇔ R(x) ∈ L2.

19For example, finding out if a graph with 75 vertices and 200 edges has a vertex cover of size 10 would
require c · 1021 steps on our RAM where c is some constant ≥ 1 omitted on the O-notation.

20Except for a few very rare cases of problems (such as sorting), the question of lower complexity bounds
therefore generally remains unanswered.

21In our context, this will imply a polynomial running time with respect to the original instance’s size.

3.2. CRASH COURSE IN COMPUTATIONAL COMPLEXITY THEORY 23

In complexity theory, there are a lot of more specialized reductions, some of which we will
get to know in Section 3.3, that are more “delicate” in the sense that they impose stricter
requirements on R than just being computable in polynomial time. However, we shall work
just with polynomial time reductions for the rest of this section.

The concept of polynomial time reduction may be used to build a hierarchy of computational
problems. This hierarchy consists of classes C. In each class, we can find those problems that
are solvable using the resources allowed by the respective class. Furthermore, we introduce
the concept of completeness to identify those problems in a class that are computationally
as hard to solve as any other problem in that class. In this way, if a problem that is complete
for a class should prove to be “easy” to solve, we know the same to be true for all other
problems that are in C.

Definition 3.4 (Complexity Class Hardness and Completeness):
Let C be a complexity class. A language L is called C-hard if all languages in C can be
reduced in polynomial time to L. We call L C-complete, if L is C-hard and in C.

There is a vast number of complexity classes known today (see, for example, [Aaro03]), each
of them grouping together problems with various properties. Two of the first classes that
were developed and are of much interest for this work are P and NP.

Definition 3.5 (P and NP):
The complexity class P is the class of computational problems that can be solved in polyno-
mial time on a deterministic Turing Machine.
The complexity class NP is the class of computational problems that can be solved in poly-
nomial time on a nondeterministic Turing Machine.

Although our definition uses the term “polynomial” to describe all problems in NP, it
is widely believed that all NP-complete problems are only solvable in exponential time.
The reason for this is the computational model underlying the definition: A nondetermin-
istic Turing Machine is a very unrealistic model of computation, being able to—vaguely
speaking—correctly “guess” the solution to a problem and then only needing to verify its
correctness (the process of checking must then be done in polynomial time). However, all
computers known today are deterministic, and therefore they have to “emulate” the guessing
steps of the nondeterministic Turing Machine in order to find a solution to an NP-complete
problem. This emulation is done by simply checking all possibilities for a possible solution
which takes—in worst-case complexity—an exponential amount of time.

It must be stressed that no proof whatsoever has been given that problems in NP are at
best solvable in exponential time. All we have stated is a plausibility argument: There are
thousands of problems known to be NP-complete (even the rather outdated list of [GaJo79]
lists hundreds of NP-complete problems), finding a polynomial time algorithm for just one
NP-complete problem would show that all NP-complete problems are polynomially solvable,
but this has not happened in spite of over 25 years of research so far. There are therefore
two important things to be remembered throughout this work:

• When saying that a problem is harder than another one, we are always referring to
relative complexity bounds, i.e., we are saying that if a “harder” problem should turn
out to be efficiently solvable, so will the easier problem (but not vice-versa).

24 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

• Sometimes we will use an argument such as “. . . —since this would imply that P = NP”
in our proofs, which is based on the unlikeliness of P = NP. It would, however, be
more correct—albeit unusual—to write “Unless P = NP, the following holds true:
. . . ”.

The Vertex Cover problem posed at the beginning of the previous subsection has been
proven to be NP-complete in [GaJo79], where it is shown that Vertex Cover is even NP-
complete for planar graphs where each vertex has a degree of at most 322. A long time, an
NP-completeness proof for a problem was taken as a synonym for “unsolvable already for
moderate input sizes” (coining the term “intractable”). However, this is not true in general,
as the next section demonstrates.

3.3 Fixed-Parameter Tractability (FPT)

We have seen in the previous section how algorithms can be analyzed machine-independently
by observing how they scale with the size of their respective input. This size we named n. We
have also seen the class NP, reasoning that problems complete for this class most probably
have a worst-case running time that is exponential, i.e., an NP-complete problem can only
be solved in

Ω(an)

time for some a > 1. Since this usually implies unreasonably high running times for large n,
problems that are NP-hard are also referred to as being intractable. We have also stated
in the last section—citing from [GaJo79]—that the problem Vertex Cover (see Defini-
tion 3.2) is NP-complete. The NP-completeness of Vertex Cover implies that it is most
probably only solvable in O(an) time where n is the size of the input instance and a is some
constant. However, this definition provides us with two loopholes:

• We have made no statement about the size of a. A small a could lead to algorithms
that are fast enough even for a fairly large n.

• We have made no good use of the fact that—besides the size of the input graph—any
instance of Vertex Cover contains a parameter k that might be restricted to a small
value. What if we could restrict the exponential complexity of Vertex Cover to the
parameter k which is given along with the input graph according to Definition 3.2 ?

It might seem at first that observing these two “loopholes” is just splitting hairs in an
imprecise definition, but in this section, we shall use exactly them to develop a more efficient
algorithm for Vertex Cover than the trivial O(|V |k · |E|) algorithm used as an example
for complexity analysis in the last section. After that, a short introduction to parameterized
complexity theory is given.

3.3.1 An Efficient Algorithm for Vertex Cover

At the end of this section, we will have improved the O(|V |k · |E|) algorithm for Vertex
Cover given in the previous section to an O(2k · |E|) algorithm. The strategy for this will
be quite straightforward.

22Recall the definitions of ”planar” and “degree” from Section 3.1.

3.3. FIXED-PARAMETER TRACTABILITY (FPT) 25

Recall Definition 3.2. If a given graph G has a vertex cover of size k, then we can choose k
vertices in G such that every edge in G includes at least one vertex from the cover. This
means, if we were to search for a vertex cover V ′ for G we can simply pick any edge e =
{va, vb} in G, and then, knowing that either va or vb must be in the vertex cover, consider
two distinct cases for V ′: Either V ′ contains va or V ′ contains vb. For each of these cases,
we would then look at the uncovered edges, pick one, and again consider the two cases for
putting a vertex of that edge into V ′ (the common term for this is to branch into those two
cases). This recursive algorithm leads to a tree-like structure searching for vertex covers of
size k for G—depicted in Figure 3.3—that is commonly referred to as a search tree. Note
that for each level down the search tree, we have one vertex less left to form a vertex cover
for G. If we cannot find a vertex cover for G in the kth level of the search tree, then, as we
have tried all possibilities of a vertex cover for G, G has no vertex cover of size k.

The described algorithm can be rewritten in a more formal fashion:

Algorithm: search tree algorithm Atree for Vertex Cover
Input: A graph G = (V,E) with V = {v1, . . . , vn} and a parameter k
Output: “Yes” if G has a vertex cover of size k, “No” otherwise

01 if G contains no edges then
02 return “Yes”
03 if G contains edges and k = 0 then
04 return “No”
05 pick an edge e = {va, vb} from G

06 V ′
a ← V \ {va}

07 E′
a ← E \ {e ∈ E | va is an endpoint of e}

08 if Atree with G′
a := (V ′

a, E
′
a) and k − 1 as inputs returns “Yes” then

09 return “Yes”
10 V ′

b ← V \ {vb}
11 E′

b ← E \ {e ∈ E | vb is an endpoint of e}
12 if Atree with G′

b := (V ′
b , E

′
b) and k − 1 as inputs returns “Yes” then

13 return “Yes”
14 return “No”

This algorithm is illustrated in Figure 3.3. So what is the running time of this algorithm?
Without the recursion (i.e., calling Atree as a subprocedure), Atree would require O(|E|)
time to generate G′

a and G′
b, since each edge must be looked at to see if it is adjacent to va

or vb, respectively (we shall assume that deleting a vertex from G takes constant time). The
algorithm Atree calls Atree (with a different input, especially, k is decreased by one) at most
two times. Each of those calls again calls Atree at most two times, and so on, until the
algorithm is called with k = 0. This means, in a worst-case analysis, Atree is called

2
︸︷︷︸

initial k

· 2
︸︷︷︸

k−1

· 2
︸︷︷︸

k−2

· · · 2
︸︷︷︸

k−k+1

· 1
︸︷︷︸

k−k=0

= 2k

times. Each call itself takes—as mentioned above—O(|E|) time which means in total, Atree

requires at most
O(2k|E|)

time to solve a given instance (G, k) of Vertex Cover, a fairly large improvement compared
to the trivial algorithm proposed in the last section, and moreover, the exponential part in
the running time of Atree is independent of the size of G. This makes Vertex Cover a

26 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

.

initial k

k − 1

k − 2

k − 3

a

b

cd

e
f

g

hi

j

i h

a e dc

h g a b ae j f

Figure 3.3: The search tree for finding a vertex cover of size k for a given graph: Given
the graph G and a parameter k > 3, the above figure demonstrates how a search tree
algorithm would try to find a vertex cover of size k for G. In each node of the search tree,
an edge e = {u, v} that is not yet covered is chosen from G (designated by coloring the
adjacent vertices of e grey) and the algorithm branches into two cases: Either, u is in the
vertex cover or v. The respective vertex from G is chosen into the vertex cover (and can
then, along with its adjacent edges which are now covered, be removed from G), k decreased,
and the algorithm proceeds if no vertex cover for G has been found yet and we have not yet
chosen k vertices into the cover.

fixed-parameter tractable problem, because, as long as k is constant, the time required to
solve Vertex Cover on (G, k) using Atree is polynomial (for Vertex Cover, even linear)
with respect to the size of the input graph G.

Note that Atree is not the optimal fixed-parameter algorithm for Vertex Cover known to-
day. In [CKJ01] and [NiRo03b], O(1.29k)-algorithms for solving Vertex Cover are given.
This is done by optimizing the search tree: Instead of branching into two subcases and
decreasing k by one each time the algorithm is called recursively, the algorithm may branch
into more complex cases, allowing it to decrease k by more than 1 in some branches of
the tree. Using the mathematical tool of recursion analysis, it can be analyzed how these
complex cases decrease the base of the exponent in the algorithm. It should furthermore
be noted that the algorithm uses the technique of problem kernel reduction23 on Vertex

23Kernel reductions are based on the idea that using the parameter k, we can already decide for some
parts of the input instance how they will add to the solution of the problem. A problem kernel reduction
causes the input instance to be smaller than f(k) for some f whilst being computable in polynomial time.

3.3. FIXED-PARAMETER TRACTABILITY (FPT) 27

Cover: Loosely speaking, for some vertices in a given graph G, one can, given the pa-
rameter k, determine that they necessarily have to be in a vertex cover of size k—should
one exist—for G and, before recursing, already choose these vertices into the vertex cover,
decreasing k. A third technique called interleaving first introduced in [NiRo00] also applies
problem kernel reduction during the recursion to decrease k even more in various branches
of the search tree.

Unfortunately, the concept of fixed-parameter tractability is believed to be only applicable
to a portion of NP-complete problems, which we will point out in the next subsection, after
introducing some formalisms of fixed-parameter tractability.

3.3.2 Formal Definition and Aspects of FPT

It is obvious that restricting the exponential complexity of an NP-complete problem to a
parameter k can only be done for those problems where k is given.24 We call such a problem
where a parameter k is given a parameterized problem.

Definition 3.6 (Parameterized Problem):
A parameterized problem is a language L ⊆ Σ∗ × N. For every (x, k) ∈ L, we call k the
parameter.

As we have already mentioned several times, we want to “restrict the complexity” of a
problem P in order for the “hard part of P” to be only dependent on k. In the context
of parameterized complexity this means that we want to have an algorithm for a problem
whose running time grows no more than polynomially25 with the input size |x|.

Definition 3.7 (Fixed-Parameter Tractability):
A parameterized problem L is called fixed-parameter tractable if there exists an algorithm
that solves the decision problem P = “(x, k) ∈ L?′′ in

f(k) · |x|O(1)

time where f(k) is an arbitrary function solely dependent on k.

When introducing the complexity class NP, a polynomial time reduction was used for reduc-
ing problems to each other in order to show their relative hardness to each other. Recall that
we were not able to make any absolute statement about the time resources that (determin-
istic) algorithms require for solving NP-complete problems; instead we just showed that if
one NP-complete problem is solvable in polynomial time, so are all NP-complete problems.
Analogously, we are now seeking for a reduction that allows for relative complexity state-
ments such as “if problem L1 is fixed-parameter tractable, so is problem L2”. We would
therefore like to find a reduction from an instance (x, k) of one parameterized problem to
another parameterized problem that preserves some properties concerning the parameter;

It can be shown that for every fixed-parameter tractable problem, there exists a kernel reduction [DoFe99].
24It should be noted that the applications of parameterized complexity are not restricted in any way to NP

or any other complexity class. However, since this work will solely deal with fixed-parameter tractability in
the context of NP-complete problems, we will sometimes restrict our discussion to such problems for reasons
of simplification.

25Although higher degree polynomials such as |x|1000 would cause an impractically high running time, the
term “polynomial” is often used synonymously with “efficient” because empirically, almost every polynomi-
ally solvable problem has shown to be solvable in O(n3) time or faster.

28 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

i.e., if the reduction is to make statements about the fixed-parameter tractability depending
on the fixed-parameter tractability of the problem we perform the reduction from, it is clear
that besides being computable in polynomial time with respect to the input size, this re-
duction must also keep the parameter of the instance yielded by the reduction independent
from the size of x.

Definition 3.8 (Parameterized Reduction):
A parameterized problem L1 ⊆ Σ∗

1 × N is said to be fixed-parameter reducible to another
parameterized problem L2 ⊆ Σ∗

2 × N if there exist computable functions ψ : N → N, k 7→ k′

and Φ : Σ∗
1 × N→ Σ∗

2, (x, k) 7→ x′ such that

1. for some function f , Φ is computable in time f(k) · |x|O(1), and

2. (x, k) ∈ L1 ⇔ (x′, k′) ∈ L2.

If L1 is fixed-parameter reducible to L2, we write L1 ≤Ψ L2.

Using this reduction, Downey and Fellows developed a theory of computational complexity
classes for classifying parameterized problems in [DoFe99], thereby introducing the classes

FPT and W[1], W[2], . . . , W[P]

where

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P]

and P is some polynomial. Analogous to the “P=NP” problem, there is no proof whether
these inclusions are strict or there is an i ≥ 1 for which FPT=W[i]. For the purposes of
this work, it will be sufficient to know that it is widely believed that FPT6=W[1] and that
problems in the W-classes—as opposed to those in FPT—are not fixed-parameter tractable
(e.g., [ADF95] and [CaJu01] provide some strong indications to this). Again, as in the case
with NP-complete problems, the fixed-parameter intractability of W[1]-complete problems
has not been proven but is extremely likely to be true due to some consequences that would
arise if this were not the case.

The above definition of a parameterized reduction—which closely follows the one given in
[DoFe99]—may not be useful for practical applications. The reason for this is that k′ may
be impractically large compared to k, and Φ may have high demands in computational time.
For example, the definition would technically allow for

k′ = 101010k

and f(k) · |x|O(1) = kkk
k

· |x|O(1).

This might still be interesting from a theorist’s point of view as it does not contradict
the fact that even using these values for k′ and the computational time of Φ means that
if L1 is fixed-parameter tractable, so is L2. But bearing in mind that we introduced the
whole concept of fixed-parameter tractability with the goal of developing efficient algorithms
for hard problems, the definition of a parameterized reduction clearly needs refinement.
We would rather desire a reduction that tells us that if L1 is fixed-parameter tractable
and can therefore be dealt with by an efficient algorithm, the same holds true for L2.
Using “computable in polynomial time” synonymous for “efficient” (as was already explained
above), we arrive at the following definition:

3.3. FIXED-PARAMETER TRACTABILITY (FPT) 29

Definition 3.9 (Parameter-Preserving Reduction):
Let L1 and L2 be parameterized problems. We call L1 parameter-preserving reducible to L2

if there is a parameterized reduction from L1 to L2 that

1. is computable in time kO(1) · |x|O(1) and

2. preserves the parameter k, that is k = k′.

If L1 is parameter-preserving reducible to L2, we write L1 ≤id L2.

Definition 3.10 (Parameter-Equivalence):
Let L1 and L2 be parameterized problems. We will call L1 and L2 parameter-equivalent
if L1 ≤id L2 and L2 ≤id L1.

Parameter-equivalence between problems expresses a strong linkage that easily allows the
transfer of approximation and exact (fixed-parameter) results from one problem to its
parameter-equivalents. We will use this definition to show some close links between two
problems called Row Deletion and d-Hitting Set in the next chapter.

Concluding this chapter, it should be noted that parameterized complexity is an ongoing
field of research with still many open problems to explore—“it will need many people to join
this fixed-parameter track.” [Nied02]

30 CHAPTER 3. COMPUTER SCIENCE PRELIMINARIES AND NOTATION

Chapter 4

Submatrix Removal Problems

Motivated by the problems analyzed in the next chapter, this chapter analyzes the compu-
tational complexity of the following problem called Row Deletion(B): Given a matrix A,
avoid any permutation of a small matrix B (called the “forbidden submatrix”) to occur
in A by removing the smallest possible number of rows from A. This problem will play
an important role in the next chapter, where it will be shown that the construction of a
so-called perfect phylogeny (a model of evolutionary development) can only be constructed
for a set of species if a matrix representing the species’ characters avoids the induction of
the matrix “Σ”1.

In this chapter, we demonstrate a very close linkage between Row Deletion(B) and a
problem called d-Hitting Set (to be defined in Section 4.1). Section 4.2 shows that all
occurrences of a given forbidden submatrix in a larger matrix can be found in polynomial
time, leading to a direct reduction from Row Deletion(B) to d-Hitting Set where d is
determined solely by B. Section 4.3 analyzes the converse reduction from d-Hitting Set to
Row Deletion(B) in order to determine a lower computational complexity bound for Row
Deletion(B), characterizing a set of forbidden submatrices for which Row Deletion(B)
is NP-complete (see overview of results in Subsection 4.3.1). Some ideas for extending the
framework of Section 4.3 conclude this chapter in Section 4.4.

4.1 Definitions and Terminology

The problems in this chapter will consider finite matrices with entries from a finite al-
phabet A. W.l.o.g., we consider all matrices in this chapter to contain entries from the
alphabet A = {0, . . . , ℓ−1}.2 We shall call such a matrix ℓ-ary. A matrix A will be referred
to as a permutation of a matrix A′ when A and A′ are have the same size and A can be
transformed into A′ by a (finite) series of row- and column-swappings. This allows for the
following definition:

Definition 4.1 (Induction of B, B-Freeness):
Let A be an n ×m matrix and B be an r × s matrix with 1 ≤ r ≤ n and 1 ≤ s ≤ m. We

1The naming for Σ :=
�

1 1
1 0
0 1

�
is explained in more detail in the next chapter.

2We assume ℓ > 1, since the problem would otherwise be trivial.

31

32 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

will say that A induces B if A contains r rows and s columns such that the corresponding
submatrix of A is a permutation of B. We refer to A as being B-free if A does not induce B.

With this terminology a formal definition of the general Submatrix Occurrence problem
is obtained.

Definition 4.2 (Submatrix Occurrence Problem)
Input: An n×m matrix A and an r × s matrix B (1 ≤ r ≤ n and 1 ≤ s ≤ m).
Question: Does A induce B?

Removing data from a matrix A in order to avoid the induction of B may be done in three
ways: By deleting rows, columns, or both from A. Removing rows from a matrix A so that
it becomes B-free leads to the definition of the following problem:3

Definition 4.3 (Row Deletion(B) Problem)
Input: An matrix A and a parameter k.
Question: Is it possible to delete at most k rows in A such that the resulting matrix does
not induce B?

This chapter will not explicitly analyze reductions and parameterized relationships for the
analogously definable Column Deletion(B) problem since all results that we obtain for
Row Deletion(B) are easily transferred to Column Deletion(B) due to reasons of
symmetry.

Allowing for both row and column deletion in a matrix A to avoid a forbidden submatrix B is
also not considered due to the application in Chapter 5 for which the results from this chapter
are developed: In Chapter 5, it will be shown that being able to construct a tree depicting
the evolutionary relationship of species depends on avoiding the forbidden submatrix “Σ”
(for more details, see Definition 5.5) mentioned on page 31 in a matrix A that represents
some biological properties of the species. Removing rows from A will correspond to removing
species, removing columns will correspond to removing characteristics. In order to be able
to construct such a tree, allowing both row- and column-deletion (“Row and Column
Deletion(B)”) seems to be too powerful if the results are supposed to have a biological
meaning. For example, consider the matrices

A :=











1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 0











and A′ :=










1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1










where A′ is obtained from A by deleting the first row and last column. Note that A′ does
not induce Σ whilst A does so many times. If we were trying to delete just rows from A

in order to make this matrix Σ-free, we would see that at least seven rows (e.g., all those
that contain a 1 in the last column) are necessary to achieve this. Analogously, for Column

3A variant to the forbidden submatrix problems presented and analyzed in this chapter is discussed in
detail in [KRW95]. In [KRW95], the problem is to avoid a fixed permutation of the forbidden submatrix B

to be induced in a larger matrix A by permuting the rows of A. This problem is proven to be NP-complete
in general.

4.1. DEFINITIONS AND TERMINOLOGY 33

r

s

−→
σ

V W

U
. . .
. . .

...

s′ s′′

r′

r′′

B
permutation

σ ∈ A, σ 6∈ V

Bσ

V W

Uσ

“encoding part”

“non-encoding part”

Figure 4.1: General scheme for the σ-decomposition of a matrix B over the alphabet A.

Deletion(B), we would require the deletion of at least five columns from A. As we can see
from this example, allowing freely for the deletion of rows and columns in a matrix might
produce very “cheap” solutions (in terms of the total number of rows and columns deleted)
and thus force the data to fit the evolutionary model proposed although it originally does
not comply with this model at all. If—to compensate for this “data force-fitting” effect—
we were to explicitly restrict the number of deletable rows and columns individually, the
problem probably becomes harder: Consider, for example, the forbidden submatrix B := (1)
over a binary alphabet. Row Deletion(B) and Column Deletion(B) are easily solvable
in polynomial time—simply remove all rows (or columns, respectively) that contain a 1.
However, allowing for both column- and row-deletion where each the number of deletable
rows and columns is restricted individually is already NP-complete (this problem, known as
Constraint Bipartite Vertex Cover, is treated, e.g., in [FeNi01]).

The main results of this chapter are obtained by showing a close linkage between Row
Deletion(B) and the d-Hitting Set problem

Definition 4.4 (d-Hitting Set Problem):
Input: A collection C of subsets of size d of a finite set S and an integer k.
Question: Is there a subset S ′ ⊆ S with |S ′| ≤ k that contains at least one element from
each subset in C?

Already for d = 2, d-Hitting Set is NP-complete [DoFe99]. It is obvious that for a given d,
d-Hitting Set can be solved by a search algorithm where the search tree has size O(dk). In
[NiRo00], techniques using successive problem kernel reductions when traversing the search
tree (called “interleaving”) are introduced. These may be applied to obtain an algorithm
with O(dk + n) running time for d-Hitting Set, which is thus fixed-parameter tractable.
The best algorithm for the general d-Hitting Set problem known has a worst-time com-
plexity of O((d − 1 + O(d−1))k + n) [NiRo03a]; for 2-Hitting Set and 3-Hitting Set,
there exist even better algorithms that will be introduced later in this work.

The proofs presented in Section 4.3 will all rely on a special decomposition of the forbidden
submatrix B, which we will call a σ-decomposition, illustrated in Figure 4.1 and formally
stated in the following definition:

Definition 4.5 (σ-decomposition)
Given an ℓ-ary r× s matrix B = (bij) over the alphabet A. A permutation Bσ of B is called
a σ-decomposition of B if there exists a σ ∈ A and there exist r′, r′′, s′, s′′ with r′ + r′′ =
r, s′ + s′′ = s such that

34 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

1. r′ > 0 and s′ > 0,

2. ∀ 1 ≤ i ≤ r′, 1 ≤ j ≤ s′ : bij 6= σ (call this upper left submatrix V) and

3. ∀ r′ < i ≤ r, 1 ≤ j ≤ s′ : bij = σ.

The upper right r′×s′′ submatrix (bij)1≤i≤r′,s′<j≤s of Bσ is called W , the lower right r′′×s′′

submatrix (bij)r′<i≤r,s′<j≤s is referred to as U .

The left part (bij)1≤i≤r,1≤j≤s′ of Bσ (the one containing V) is called the encoding part
of Bσ. The right part (bij)1≤i≤r,s′<j≤s of Bσ (the one consisting of W and U) is called the
non-encoding part of Bσ.

Note that for the rest of this chapter, we will often use the names V , W , and U for a σ-
decomposition of B in accordance with this definition.

A σ-decomposition of B can easily be generated in polynomial time by choosing a symbol σ
from the alphabet A and a column c in B. Then, the rows in B are permuted such that all
σ’s in c are moved to the bottom of B. Then, c is swapped with the first column of B. For
example, consider the matrix

B :=

(
2 9 0 7 0 2
2 1 0 5 8 1
2 9 0 7 0 1
0 2 1 1 7 9

)

for which we now generate a σ-decomposition using 7 as σ and the 4th column as c:

(
2 9 0 7 0 2
2 1 0 5 8 1
2 9 0 7 0 1
0 2 1 1 7 9

)
permute rows

=⇒

(
2 1 0 5 8 1
0 2 1 1 7 9
2 9 0 7 0 2
2 9 0 7 0 1

)
swap columns

=⇒

(
5 2 1 0 8 1
1 0 2 1 7 9
7 2 9 0 0 2
7 2 9 0 0 1

)

=: Bσ

In this decomposition of B we have (according to Definition 4.5)

V = (5
1) , W = (2 1 0 8 1

0 2 1 7 9) , and U = (2 9 0 0 2
2 9 0 0 1) .

Note that in the following hardness proofs of Section 4.3, the lower relative hardness bound of
Row Deletion(B) will mainly depend on the height of V . For some of the following proofs,
we are therefore seeking to maximize the height of V—we therefore define the maximal σ-
Decomposition of B:

Definition 4.6 (Maximal σ-Decomposition)
A σ-Decomposition Bσ of B is called maximal if there exists no σ′ ∈ A such that there is
a σ′-Decomposition Bσ′ of B, where V in Bσ′ is higher than in Bσ. We denote a maximal
decomposition by Bσ-max.

As an example, a maximal decomposition of the matrix B =

(
1 0 1 1 0
0 1 0 1 1
1 1 1 1 0
0 1 0 0 1

)

would be

Bσ-max =

(
1 1 0 1 0
1 0 1 0 1
1 1 1 1 0
0 0 1 0 1

)

with σ = 0 where V =
(

1
1
1

)

has height 3.

Finding a maximal decomposition for a given B only requires a little more effort than finding
any decomposition: We simply iterate over all ℓ symbols of the alphabet A of B and record
for each symbol σ how many times σ appears in each column c of B, searching for a σ that
appears least frequently in one column of B. Putting this in an algorithmic form:

4.2. A REDUCTION TO D-HITTING SET 35

Algorithm: Finding a maximal σ-Decomposition
Input: An ℓ-ary r × s matrix B
Output: A maximal σ-Decomposition of B

01 n ← ∞
02 σmax ← 0
02 cmax ← 0
03 for σ ← 0 . . . ℓ− 1 do
04 for each column c in B do
05 if σ appears n′ < n times in c then
06 n ← n′

07 σmax ← σ

08 cmax ← c

09 permute B so that all σmax’s in cmax are at the bottom of cmax

10 swap the first column of B with cmax

Note that there may be more than one σ which allows a maximal decomposition of the
forbidden submatrix. Furthermore, although there may be σ-decompositions for a given
forbidden submatrix B that fulfill the prerequisites of Theorems 4.11 to 4.14 presented in
Section 4.3.1, this might not be true for any of the maximal decompositions of B.

4.2 A Reduction to d-Hitting Set

This section is divided into two parts. The first part gives a polynomial-time algorithm for
finding all inductions of a fixed forbidden submatrix in a larger matrix. This will lead to
approximability and fixed-parameter tractability results presented in Subsection 4.2.2.

4.2.1 Finding Forbidden Submatrices

Before considering which rows to delete from a given input matrix A in order to make A B-
free, we obviously have to actually find those sets of rows that are responsible for the
induction of B in the first place.

An algorithm to achieve this proceeds as follows: In order to find all inductions of B in A, we
first generate all q (at most r!) distinguishable row-permutations ofB. We denote the ith per-
mutation thus obtained by Πi(B). Each Πi(B) contains s column vectors called πi1, . . . , πis.
After having generated the permutations, for each combination of r rows in A, we iterate
over the column vectors in A induced by these rows. If one of these vectors is equal to a πij ,
we mark that πij .

4 If, in one column iteration, all πij have been marked for a particular i,
we know that these r rows induce B. Such an r-sized set of rows can then be added to
the generated output collection C. For the following formal description of the algorithm, we
label the rows in A by 1 through n.

Algorithm: Finding all inductions of B in A
Input: A matrix A from the same alphabet as B
Output: A collection C of r-sized sets of rows in A

4Care must be taken if for some i, j′, and j′′ we have πij′ = πij′′ . In the formal description of the
algorithm, this is achieved by lines 09, 10, and 11 which allow each πij to be marked at most once and break
the iteration over j (line 07) once a certain πij has been marked.

36 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

r0

r1

r2

r3

r4

r5

0 1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 1 1 10 0 0 0

1 1110 0 0 0 0 0

0 0 0 0 0 0 11 0 0

0 1 0 0 11 0 0 0 0

C = {{r0, r1, r3}, {r0, r2, r3},

{r0, r3, r5}, {r0, r4, r5},

{r1, r3, r4}, {r2, r3, r4}}

c1 c2 c3 c4 c5 c6 c7c0 c8 c9

Σ =
(

1 1
1 0
0 1

)

Figure 4.2: Finding all sets of rows that induce a forbidden submatrix: In the binary
matrix on the left, we want to find all rows that induce the forbidden submatrix Σ. The
corresponding output of row sets as generated by the algorithm presented in Section 4.2.1
is shown on the right. The grey underlay shows, as an example, how B is induced by the
rows r0, r3, r5 in columns c1 and c6 and thus leads to the addition of {r0, r3, r5} to C.

where the rows in each set induce B.

01 Generate the column vectors πi1, . . . , πis as described above
02 C ← ∅
03 for every r-sized subset S of {1, . . . , n} do
04 create array V [q][s] filled with “0”s
05 for l ← 1 . . .m do
06 for i ← 1 . . . q do
07 for j ← 1 . . . s do
08 if the rows in S in the l-th column induce πij then
09 if V [i][j] 6= 1 then
10 V [i][j] ← 1
11 break
12 if ∃i : ∀1 ≤ j ≤ s : V [i][j] = 1 then
13 C ← C ∪ {S}

The output of this algorithm is illustrated in Figure 4.2.

The algorithm runs in polynomial time with respect to the input matrix A—given that the
forbidden submatrix B is fixed—as the next theorem shows.

Theorem 4.7 Given an n×m matrix A and a fixed r×s forbidden submatrix B (where 1 ≤
r ≤ n and 1 ≤ s ≤ m). Then we can find all r-sized sets of rows in A that induce B

in O(nrm)—i.e., polynomial—time.

Proof In order for the algorithm presented in this subsection to run in polynomial time,
it is important to stress that B is not part of the input of a Row Deletion(B) problem.
The running time of the above algorithm is O(q · s) = O(r! · s) for the generation of the
column vectors in each of the Πi(B) in line 01. The running time of the inner loop in lines
04 through 11 is bounded by O(s · q+m · q · s) = O(s · r! +m · r! · s), the if-statement in line
12 requires O(q ·s) = O(r! ·s) time steps for execution. Lines 04 through 13 are executed due
to the for-loop in line 03, which adds a multiplying factor of O(nr). Thus, the total running
time is

O
(

(r! · s)
︸ ︷︷ ︸

line 01

+ (nr)
︸︷︷︸

line 03

·((s · r! +m · r! · s)
︸ ︷︷ ︸

lines 04 to 11

+(r! · s)
︸ ︷︷ ︸

line 12

)

.

4.2. A REDUCTION TO D-HITTING SET 37

For a fixed B, r and s are constant, i.e., independent of the size of the input matrix A, and
the running time is therefore

O(nrm)

which is polynomial in the size of the input matrix A. �

It should be noted that the algorithm presented above will of course not always be directly
applied to a given Submatrix Occurrence(B) problem since the factor q—although being
constant for a given B—can get impractically large already if r ≈ 10 (as it is only bounded
by r!). This factor should thus not be omitted. However, this is just a worst-case estimation
that does not make any use of special properties B might have. Such a property might be
that two columns in B are permutations of each other, which leads to a significant reduction
of q. This will not touch the O(nrm) bound given by Theorem 4.7, however, for practical
applications, significantly improve the constant factors neglected in the O-notation. Such
an example will be given in Theorem 5.19 where it will be shown how all inductions of the
matrix Σ in a binary matrix can be found by testing for the presence of two out of the
three column vectors (1 1 0)T , (1 0 1)T , and (0 1 1)T instead for all six distinguishable row
permutations of B. This roughly halves the running time compared to the algorithm of this
section.

4.2.2 Approximability and Fixed-Parameter Tractability Results

By Theorem 4.7, we can find all sets of rows in a matrix A that induce a forbidden sub-
matrix B of size r × s in polynomial time. Thus, according to the definition of the Row
Deletion(B) problem, from each such set at least one row has to be removed from A in
order for A to become B-free. Note how therefore, Row Deletion(B) is closely related to
r-Hitting Set.

Corollary 4.8 Given an n ×m matrix A and an integer k as an input instance of Row
Deletion(B) where B is an r × s matrix (1 ≤ r ≤ n and 1 ≤ s ≤ m). Then, this instance
is parameter-preserving reducible to an instance (C,S, k) of r-Hitting Set.

Proof The idea behind this reduction is the following: We will—in polynomial time with
respect to k and the size of A—find all inductions of B in A. If there is a set of rows in A

that induces B, we delete at least one of the rows from that set in A to avoid this particular
induction. This is the analogy to r-Hitting Set, where we must similarly choose at least
one element from each subset in a given collection.

Thus, given an instance of Row Deletion(B), we can generate an instance of r-Hitting
Set by setting S equal the set of rows in A and using all r-sized sets of rows that induce B
(as generated by the algorithm presented in Section 4.2.1) as C. The parameter, k, is directly
preserved. (An example for the reduction is given after the proof.)

Since the parameter, k, is preserved throughout the reduction, only the equivalence of solu-
tions remains to be shown:

Let S ′ ⊆ S be a solution of size k to the r-Hitting Set problem (C,S, k) generated by the
reduction. Now, delete the rows in A that correspond to the elements in S ′, yielding A′.
Assume that B were still induced in A′ by a set I of rows. Then, the rows in I did induce B
in A, meaning a set containing these rows was put into C. But one row of I must then have
been deleted since S ′ is a valid solution to (C,S, k), a contradiction. Therefore, B cannot
be induced by A′ anymore.

38 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

If, on the other hand, A can be made B-free by deleting k rows, then for each induction
of B in A by some rows, at least one of those rows must have been deleted. This implies,
that, by choosing the elements corresponding to the deleted rows as a solution S ′ ⊆ S to
the generated r-Hitting Set instance, we have chosen at least one element from every set
in C, making S ′ a valid solution of size k. �

Let us illustrate the reduction of the above corollary by the following example. Let the
forbidden submatrix be Σ and

A :=





0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 0 0
0 1 0 0 1 1 0 0 0 0





be the input matrix to Row Deletion(B), consisting of the six rows r0 . . . r5 and ten
columns c0 . . . c9. Since B is of height 3, the algorithm from Section 4.2.1 will generate a
3-Hitting Set instance. Iterating over every possible combination of three rows in A, we
find that B is induced by the rows r0, r1, r3 (in columns c6 and c9), r0, r2, r3 (columns c6
and c8), etc. Thus, the generated 3-Hitting Set instance consists of S = {r0, . . . , r5} and
C = {{r0, r1, r3}, {r0, r2, r3}, . . . }. The complete C was already given in Figure 4.2, where
it is also shown (grey underlays) how, as an example, B is induced by the rows r0, r3, r5 in
columns c1 and c6. Observe that A can be made B-free by deleting, e.g., the first and last
row, which leads to

A′ :=

(
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 0 0

)

.

Choosing r0 and r4 accordingly solves the 3-Hitting Set instance.

It might seem awkward that we have performed a reduction to a known NP-complete problem
without having proven that Row Deletion(B) is NP-complete in the first place. The
dependency between B and the hardness of Row Deletion(B) are further analyzed in
the next section, where some structures for B are given for which Row Deletion(B) is
NP-complete.

With the reduction of Row Deletion(B) to d-Hitting Set from Corollary 4.8, we can
immediately deduce that Row Deletion(B) is fixed-parameter tractable:

Corollary 4.9 Given B, Row Deletion(B) is fixed-parameter tractable.

Proof Corollary 4.8 gave a parameter-preserving (and therefore also parameterized) reduc-
tion from Row Deletion(B) to d-Hitting Set with a fixed d (equivalent to the height r
of the forbidden submatrix B). �

We can also obtain an analogous approximability result:

Corollary 4.10 Row Deletion(B) for a given r× s matrix B may be approximated to a
factor of r in polynomial time.

Proof We first perform the reduction from Row Deletion(B) to the corresponding d-
Hitting Set problem. The corollary directly follows from the facts that k is preserved in
the reduction and that d-Hitting Set can be approximated to a factor of d by subsequently
choosing all elements from a set in C until we have a valid solution.5 �

5The approximation factor is due to the observation that for every set from C, we must choose at least
one element due to the definition of d-Hitting Set.

4.3. HARDNESS RESULTS 39

So far, we have shown that a given Row Deletion(B) problem is not harder than its corre-
sponding d-Hitting Set problem. However, no lower complexity bound6 for the hardness
of Row Deletion(B) has been given. In Chapter 3, we have introduced the “parameter-
preserving” reduction for finding close relationships concerning the fixed-parameter complex-
ity of problems. Such a reduction will be used in the following discussion to exploit some
relationships between Row Deletion(B) and d-Hitting Set depending on the structure
of B.

4.3 Hardness Results

The main results of this section concerning the hardness of Row Deletion(B) depending
on the structure of B are summarized in Subsection 4.3.1. The proofs for Theorems 4.11
to 4.14 are provided in the subsequent Subsections 4.3.2, 4.3.3, and 4.3.4.

4.3.1 Overview of Results—Four Theorems

The main results of this section are as follows:

Theorem 4.11 (Proof on page 47)
Let B be a forbidden submatrix of size r×s with a σ-decomposition Bσ where the submatrix V
(of height r′) of Bσ is not induced in the non-encoding part of Bσ. Then there exists a
parameter-preserving reduction from r′-Hitting Set to Row Deletion(B).

If V is induced in the non-encoding part of Bσ, but we can find one column vector of V
which is induced there at most once the following hardness result for Row Deletion(B):
can be achieved:7

Theorem 4.12 (Proof on page 53)
If the r × s-submatrix B has a σ-decomposition Bσ where the submatrix V of height r′

has a column vector v that is induced at most once in the non-encoding part of Bσ, then
r′-Hitting Set is parameter-preserving reducible to Row Deletion(B).

If neither the prerequisites for Theorems 4.11 nor those for Theorem 4.12 can be fulfilled,
there are two more subcases for which a hardness result can be established:

Theorem 4.13 (Proof on page 43)
Let B be a forbidden r × s-submatrix with a σ-decomposition Bσ where all entries of U are
equal to σ and V contains r′ rows. Then r′-Hitting Set is parameter-preserving reducible
to Row Deletion(B).

Theorem 4.14 (Proof on page 44)
Let B be a forbidden r× s-submatrix with a σ-decomposition Bσ where all entries of W are
equal to σ and V contains r′ rows. Then r′-Hitting Set is parameter-preserving reducible
to Row Deletion(B).

6Recall that Chapter 3, we stressed that in complexity theory, computational bounds are always relative,
meaning they are only statements such as “if problem L1 is easy, L2 is easy as well”.

7Note that Theorem 4.11 and Theorem 4.12 are in some sense orthogonal, since it is possible to construct
a submatrix B which fulfills the prerequisites of Theorem 4.11, but does not those of Theorem 4.12, and
vice versa.

40 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

The NP-completeness of d-Hitting Set for d ≥ 2 leads to the following corollary:

Corollary 4.15 If a forbidden submatrix B has a σ.decomposition that fulfills the prereq-
uisites from any of the Theorems 4.11-4.14 and where V has height 2 or greater, Row
Deletion(B) is NP-complete.

For all other cases, i.e., if B does not fulfill any of the prerequisites8 from Theorems 4.11
to 4.14, no general statement on the problem’s complexity has been established so far (note
the conjecture in Section 4.4).

The proofs for Theorems 4.13 and 4.14 will be presented in the following subsection, followed
by separate subsections for the more involved proofs of Theorem 4.11 and Theorem 4.12 in
Subsections 4.3.3 and 4.3.4, respectively. Following each proof, an example is given to
illustrate its main ideas.

4.3.2 Proofs for Theorems 4.13 and 4.14

The key idea behind all of the following reductions will be to use the matrix V of a given
σ-decomposition of the forbidden submatrix B to encode a given d-Hitting Set instance
into an instance of Row Deletion(B) (i.e., a matrix A) and use σ as a “filling-symbol” to
prevent unwanted inductions of B in A. This idea is illustrated in more detail in the proof
of the following Lemma:

Lemma 4.16 Let B be a forbidden submatrix of size r × s with a σ-decomposition Bσ

where r = r′ (r′′ = 0). Then r-Hitting Set can be parameter-preservingly reduced to Row
Deletion(B).

Proof Let (C,S, k) be an instance of r-Hitting Set, where S = {1, . . . , n}. The idea
behind the reduction is the following: We will create a matrix A of size n × (s · |C|) where
each row corresponds to an element in S. For each set C in C, we will encode a B into a
set of s consecutive columns of A, using the rows that correspond to the elements in C. We
then have to show that there is a “1:1-correspondence” between deleting a row in A and
choosing an element from S. More precisely, we have to show that when we delete a row
in A corresponding to the element z ∈ S, exactly those induced B in A are destroyed that
were encoded due to sets from C that contained z.

The encoding of B is done by the following algorithm:

Algorithm: r-Hitting Set to Row Deletion(B), Lemma 4.16
Input: An instance (C,S, k) of r-Hitting Set
Output: An instance of Row Deletion(B) which is parameter-

equivalent to the given r-Hitting Set instance

01 create an n× s · |C| matrix A = (ai,j) filled with σ’s
02 col ← 0
03 for each set C ∈ C do
04 row ← 1
05 for each i ∈ C do
06 for c ← 1 . . . s do

8An example of such a matrix would be B =
�

1 0 0
0 1 0
0 0 1

�
over the alphabet Σ = {0, 1}.

4.3. HARDNESS RESULTS 41

07 ai,col+c ← brow,c

08 row ← row + 1
09 col ← col + s
10 return (A, k)

Line 07 of the code may be interpreted as follows: For the rowth element zi of the colth
set C ∈ C, the rowth row of B is written into the colth set of s consecutive columns in A

into the zith row (i.e. the row in A that corresponds to i).

For every set C in the collection C, B is induced in the rows of A corresponding to the
elements of C (lines 05 through 07). The other entries of A remain filled with σ’s. This
reduction can be computed in polynomial time with respect to the input, i.e.,

O(|C| · r · s).

Having established that the reduction can be computed in polynomial time whilst preserving
the parameter k, only the equivalence of solutions remains to be shown.

Assume that we have a solution S ′ ⊂ S of size k to a given r-Hitting Set instance. We
then delete the rows in A that correspond to the elements of S ′, obtaining A′. Now, assume
that B is still induced in A′. Then, the r × s′ submatrix V in the decomposition of B is
also induced in A′.

Claim: If V is induced by a set of columns in A′, none of these columns contains less than r
symbols different from σ.
Proof: Having a column in A′ with less than r symbols different from σ inducing a column
of V is a contradiction to the fact that V has height r and does not contain σ.

The claim implies that there is at least one column c in A′ that contains exactly r symbols
different from σ (note that due to the encoding of the algorithm, no column of A′ may
contain more than r symbols different from σ). If this is the case, then there is a set in C
from the r-Hitting Set instance that was encoded into A for which none of the encoding
rows have been deleted. But then S ′ contains no element of this set, a contradiction to the
assumption that S ′ is a solution to the given r-Hitting Set instance.

Now, we prove the reverse direction of the above: Assume that by deleting k rows in A

we can make the resulting matrix A′ B-free. Then, from each set of rows that induces B
in A, at least one row must have been deleted. This implies that from each B which was
encoded into A, at least one row has been deleted. We claim that the set S ′ ⊆ S consisting
of those k elements in S for which the corresponding rows in A have been deleted, solves
the given r-Hitting Set instance. If this were not the case, there would be a set C ∈ C
for which C ∩ S ′ = ∅. For every set in C, the algorithm given above encoded a matrix B

into A. The existence of a C ∈ C for which C ∩S ′ = ∅ then implies, however, that in A′, all
rows of this particular encoding are still present, a contradiction to the assumption that A′

is B-free. �

Let us illustrate the proof of the above lemma by an explicit example (a more general scheme
for the above proof is provided in Figure 4.3). Assume that we are given the forbidden
submatrix B :=

(
1
1

)
over a binary alphabet. A σ-Decomposition of B is Bσ :=

(
1
1

)
with σ =

0. Now, for the example, we will take the following instance of 2-Hitting Set9: S =
{1, 2, 3, 4, 5}, C = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 5}, {3, 4}}, the parameter k is arbitrary as
it is preserved by the reduction. The algorithm given in the above proof will then initialize

92-Hitting Set is more commonly known as Vertex Cover.

42 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

V W

s′ s′′

r = r′

of the forbidden

1
2
3

...

4
5
6

n

.

C = {{1, 3, 6}, . . . , {3, 5, n}, . . . , {1, 3, 5}}

A σ-decomposition

submatrix B

(C,S,k)

An instance of
r-Hitting Set

|S|

...
...

r rows

s

s

s s

s · |C|

Encoding of the r-Hitting Set instance
into a Row Deletion(B) instance

Figure 4.3: Reduction from r-Hitting Set to Row Deletion(B) used in the proof of
Lemma 4.16: Given a r-Hitting Set instance and a decomposition of B where V has the
same height as B. Then, the algorithm from the proof of Lemma 4.16 gives a parameter-
preserving reduction from r-Hitting Set to Row Deletion(B) (output of this algorithm
is the right matrix). All entries of the output matrix not containing any part of V or W are
equal to σ.

a |S|× s · |C| (i.e., 5×1 ·6) matrix A, fill it with zeros, and then iteratively (lines 04 through
09) encode each set of C:

A =

(
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)

encode {1, 2}
=⇒ A =

(
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)

=⇒

encode {1, 3}
=⇒ A =

(
1 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

)

encode {1, 4}
=⇒ A =

(
1 1 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

)

=⇒

encode {2, 3}
=⇒ A =

(
1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0

)

=⇒ . . . =⇒ A =

(
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0

)

An optimal solution of size 3 to the encoded instance of 2-Hitting Set is, e.g., S ′ = {2, 3, 4}.
Deleting the corresponding rows in A leaves us with

A′ = (1 1 1 0 0 0
0 0 0 0 1 0) .

Note that each column in A′ contains less than two 1’s and can therefore not participate in an
induction of B—this is exactly the argument employed in the above proof. It also illustrates
the purpose of the σ-Decomposition: In our example, 0 was chosen as σ and thus is not
part of V in the σ-Decomposition of B. The advantage of V having the same height as B
and not containing σ’s is that, during the encoding of the given r-Hitting Set instance,
it is easy to avoid unwanted inductions of V in A and therefore ensure that destroying all
induced V in A will also destroy all induced B.10 The main reason for the subsequent proofs

10For instance in the above example, we simply had to ensure that from every column containing two 1’s,
at least one 1 is deleted.

4.3. HARDNESS RESULTS 43

V W

s′ s′′

r′

of the forbidden

. . .

A σ-decomposition

submatrix B

(C,S,k)

An instance of
r′-Hitting Set |S|

...s

s

s · |C|

Encoding of the r′-Hitting Set instance
into a Row Deletion(B) problem

ss

σr′′ + k

Encoding of the

r′-Hitting Set
instance using
the algorithm
from Lemma 4.16

σr′′

r

. . .

Figure 4.4: Reduction from r′-Hitting Set to Row Deletion(B) used in the proof of
Theorem 4.13: Given an r′-Hitting Set instance and a decomposition of B where V is of
height r′ and the bottom r′′ rows contain just σ’s as their entries. Then the algorithm from
the proof of Theorem 4.13 gives a parameter-preserving reduction from r′-Hitting Set to
Row Deletion(B) (output of this algorithm is the right matrix). All entries of the output
matrix that are not explicitly determined by V or W in the figure are equal to σ.

in this and the following subsection becoming quite involved is to ensure that no unwanted
inductions of B occur in the output matrix A. For the proof of Theorem 4.13, however,
Lemma 4.16 is easily extended:

Proof of Theorem 4.13 Let (C,S, k) be an instance of r′-Hitting Set, where S =
{1, . . . , n}. First, encode the given r′-Hitting Set instance into a matrix A′ using the algo-
rithm from Lemma 4.16 and the first r′ rows of Bσ as the forbidden submatrix. Then, r′′+k
rows11 containing just σ-entries are added to the bottom of A′, yielding A.

In close analogy to the proof of Lemma 4.16, a solution S ′ ⊂ S to the r′-Hitting Set-
problem gives a solution to Row Deletion(B) on A: Deleting those rows in A that corre-
spond to the elements in S ′ inhibits all inductions of V in A. Proving the reverse direction,
we need to delete at least one row from every encoded V in A in order to make A B-free
(note that this cannot be done by deleting the bottom rows as there are too many with
respect to k). �

An overview for the encoding employed in the above proof is given in Figure 4.4. A σ-
decomposition of a matrix that would fulfill the conditions of Theorem 4.13 is, e.g.,

(
1 1 1
1 0 0
1 1 0
0 0 0
0 0 0

)

with σ = 0, and U =
(

0 0
0 0

)
. Due to the close analogy to Lemma 4.16, we shall not give an

explicit example for the encoding.

11Recall from Definition 4.5 that r′′ is the height of the submatrix U in the σ-Decomposition of B

44 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

The proof of Theorem 4.14 requires a more involving extension of the ideas presented in
Lemma 4.16.

Proof of Theorem 4.14 The construction of the input matrix A to Row Deletion(B) is
best explained as follows: Imagine A to be composed of four submatrices (see also Figure 4.5
for an illustration); the upper left submatrix is generated by the algorithm from Lemma 4.16
to encode a given instance of r′-Hitting Set using V as the forbidden submatrix. The
lower right matrix contains U in some form (to which we will come later on in this proof).
The other two submatrices contain just σ’s as entries. Note that then each V induced in
the upper left submatrix of A induces B with any induced U in the lower right submatrix
of A. If we ensure that the induction of B in A cannot be prevented by deleting rows from
the encoded U and that V is not induced in the lower right submatrix of A, an argument
similar to the one used to prove Lemma 4.16 can then be employed to prove this lemma.

Now, let (C,S, k) be an instance of r′-Hitting Set with S = {1, . . . , n}. The given r′-
Hitting Set instance is first encoded into a matrix A′′ using the algorithm from Lemma 4.16
and V as the forbidden submatrix. Then, s′′ · (k + 1) columns containing just σ-entries are
added to the right of A′′, yielding A′. To A′, r′′ · (k + 1) rows containing just σ-entries are
added to its bottom; we thus obtain A.

As already explained above, we now need to write some U ’s into A in order to induce B
in A. For these U we will require that the following two be fulfilled:

a) V is not induced in the resulting matrix by the entries of the written U ’s (this is to
ensure that B is not induced in the right part of A).

b) No induced B can be destroyed by deleting at most k of the lower r′′ · (k + 1) rows
of A (this will ensure the equivalence of solutions later on in the proof).

In order to fulfill these two conditions, two cases are distinguished:

I. The matrix U does not induce V :

We will write k + 1 U into the lower right submatrix of A in a diagonal pattern.
Writing U more than k times secures condition b) stated above, the pattern will
ensure that a) is fulfilled.

Writing U into A is done by applying the following algorithm to A (using the lower
right submatrix U = (ui,j) of Bσ):

Algorithm: Encoding U , Theorem 4.14, case I
Input: The values of |C| and k of an instance

(C,S, k) of r′-Hitting Set, the
matrices A = (ai,j) and U = (ui,j)

Output: Matrix A modified accordingly

01 for h ← 0 . . . k
02 for i ← 1 . . . r′′

03 for j ← 1 . . . s′′

04 a|S|+h·r′′+i,|C|·s′+h·s′′+j ← ui,j

This algorithm encodes U k + 1 times into A (see Figure 4.5), each in a different set
of rows. Any induced B in A can therefore only be destroyed by deleting rows that

4.3. HARDNESS RESULTS 45

V

s′ s′′

r′

of the forbidden

. . .

A σ-decomposition

submatrix B

(C,S,k)

An instance of
r′-Hitting Set |S|

...
s

s′ · |C|

Encoding of the r′-Hitting Set instance
into a Row Deletion(B) problem

s′

σ(k + 1)r′′

Encoding of the r′-Hitting Set instance
using the algorithm from Lemma 4.16

σ

r′′

r

. . .

σ U s′ s′

(k + 1) · s′′

σ

Case I: U is V -free

Case II: U induces V

U
U

Uσ

σ

s′′

(k + 1) · s′′

U
U

U

σ

Figure 4.5: Reduction from r′-Hitting Set to Row Deletion(B) used in the proof of
Theorem 4.14: Given a r′-Hitting Set instance and a decomposition of B where W con-
tains just σ’s. Then the algorithms from the proof of Theorem 4.14 (with Cases I and II)
give a parameter-preserving reduction from r′-Hitting Set to Row Deletion(B).

induce the respective V . Therefore, if we have a solution for Row Deletion(B) on A
of size at most k, at least one row from each encoded matrix V must have been deleted,
which is also a solution to the original r′-Hitting Set problem (see Lemma 4.16 for
a more detailed explanation of this argument). Now, if there is a solution of size k to
the r′-Hitting Set problem, deleting the corresponding rows in A will also destroy
all inductions of V in A. Since V is not induced by any U (note that multiple U
cannot induce V because of the way they are encoded), A is V -free after the deletion
and therefore also B-free.

II. The matrix U induces V :

The strategy for enclosing the U into A in this case is the following: We will fill the
lower right submatrix in C of A with s′′ columns containing just U (see Figure 4.5).
Note that then, although both V and U are induced in the lower right submatrix
of A, B is not induced there because this submatrix contains only s′′ columns with
entries other than σ’s and for s (the width of B), s > s′′ holds. The final argument in
the proof of this case is that if V is not induced in the upper left submatrix of A, U
cannot be induced there either (since U induces V) and therefore, A would then be B-
free.

Writing U into A is done by applying the following algorithm to A (using the lower
right submatrix U = (ui,j) of Bσ):

Algorithm: Encoding U , Theorem 4.14, case II
Input: The values of |C| and k of an instance

(C,S, k) of r′-Hitting Set, the

46 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

matrices A = (ai,j) and U = (ui,j)
Output: Matrix A modified accordingly

01 for h ← 0 . . . k
02 for i ← 1 . . . r′′

03 for j ← 1 . . . s′′

04 a|S|+h·r′′+i,|C|·s′+j ← ui,j

This algorithm encodes U k+1 times into the lower right submatrix ALR := (aij) of A
where i = |S| . . . |S|+ (k + 1) · r′′ and j = |C| · s′, . . . , |C| · s′ + (k + 1) · s′′. Figure 4.5
provides an illustration for this. Although V is induced in the Us written into ALR, B
is not induced there because s > s′′. Therefore, A is B-free if the upper left submatrix
of A (designated A′′ at the beginning of this proof) induces neither V nor U .

The rest of our argument is similar to the proof of Lemma 4.16: Since U induces V , A′′

fulfills this condition if it does not induce V . Therefore, if we have a solution for Row
Deletion(B) onA of size at most k, at least one row from each encoded matrix V must
have been deleted, which is also a solution to the original r′-Hitting Set problem.
If, on the other hand, there is a solution of size k to the r′-Hitting Set problem,
deleting the corresponding rows in A will also destroy all induced B in A by destroying
all V in A′′.

Summarizing the two cases, we have proven the theorem. �

The general scheme for the above proof is illustrated in Figure 4.5; we shall now furthermore
illustrate it with the following example:

Let there be two forbidden submatrices BI and BII with

BI :=

(
1 0
1 0
0 1
0 2

)

and BII :=

(
1 0
1 0
0 1
0 1

)

.

For σ = 0, matrix BI meets case I of the above proof with V =
(

1
1

)
, U =

(
1
2

)
and BII

meets case II with V =
(

1
1

)
, U =

(
1
1

)
. Using the above matrices, we encode the instance

C = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 5}, {3, 4}}, S = {1, 2, 3, 4, 5}, and k = 3 of 2-Hitting
Set. We perform two parameter-preserving reductions from this instance to two instance AI

and AII of Row Deletion(BI) and Row Deletion(BII), respectively. Both AI and AII

will be of size (|S|+(k+1) · r′′)× (s′ · |C|+(k+1) · s′′) (i.e., 13× 10). The upper right 5× 6
submatrices of AI and AII are generated by the algorithm from Lemma 4.16 using V as the
forbidden submatrix (note that V are the same for BI and BII) and equal to

(
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0

)

.

For a more detailed explanation as to how we derive this matrix, the reader is deferred to the
corresponding example of Lemma 4.16. Filling the lower left and upper right submatrices
of AI and AII with σ’s and encoding the respective U , we arrive at

AI :=











1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 2











and AII :=











1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0











.

4.3. HARDNESS RESULTS 47

Note that after deleting at most 3 out of the bottom 8 rows, the respective forbidden
submatrices are still induced. A solution of size 3 to the encoded instance of 2-Hitting
Set is, e.g., S ′ = {2, 3, 4}. Deleting the corresponding rows in each AI and AII leaves us
with

A′
I :=








1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 2








and A′
II :=








1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0







,

where the respective BI and BII are no longer induced.

4.3.3 Proof of Theorem 4.11

Proof of Theorem 4.11 This reduction from r′-Hitting Set to an instance (A, k) of
Row Deletion(B) is very similar to the one used in the proof of Theorem 4.14, except
that we additionally have to encode W appropriately into A to ensure that B is indeed
induced in conjunction with the encoded V and U . Let (C,S, k) be a given instance of
r′-Hitting Set, where S = {1, . . . , n}.

Firstly, the given r′-Hitting Set instance is encoded into a matrix A′ using the algorithm
from Lemma 4.16 and V as the forbidden submatrix. Then, the given instance of r′-Hitting
Set is encoded into a second matrix A′′, this time using W as the forbidden submatrix. A
third matrix A′′′ is generated by writing matrices U = (ui,j) from the decomposition of B
in a diagonal fashion into it (in a similar way as was done in the first case in the proof of
Theorem 4.14). This is done by applying the following algorithm to a (|C| · r′′) × (|C| · s′′)
matrix A′′′ = (a′′′i,j) filled with σ’s:

Algorithm: Encoding U into A′′′ according to Theorem 4.12
Input: An instance (C,S, k) of r′-Hitting Set,

the matrices A′′′ = (a′′′i,j) and U = (ui,j)
Output: Matrix A′′′ modified accordingly

01 for h ← 0 . . . |C|
02 for i ← 1 . . . r′′

03 for j ← 1 . . . s′′

04 a′′′h·r′′+i,h·s′′+j ← ui,j

The final matrix A we use for the reduction is then composed by fitting together four
submatrices: The upper left submatrix is A′, the upper right A′′, the lower left contains
just σ and the lower right is A′′′. Figure 4.6 illustrates the resulting matrix A.

The parameter k is preserved by the reduction, which can be carried out in polynomial time
with respect to the input size (since the four components of A can each be constructed in
polynomial time). The equivalence of solutions remains to be shown:

Note that deleting a row corresponding to an element in S will always destroy more encoded
submatrices than deleting any other row. Assume that by deleting at most k rows in A,
we can make A B-free. Then there exists such a solution where only rows corresponding to
elements in S have been deleted. From every induced V in the upper part of A, at least one
row must have been deleted. This directly implies that by choosing those elements from S
corresponding to the deleted rows as the elements of S ′, we have chosen at least one element

48 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

V

s′ s′′

r′

of the forbidden

. . .

A σ-decomposition

submatrix B

(C,S,k)

An instance of
r′-Hitting Set |S|

...
s

s′ · |C|

Encoding of the r′-Hitting Set instance
into a Row Deletion(B) problem

s′

σr′′ · |C|

Encoding of the r′-Hitting Set instance
using the algorithm from Lemma 4.16

r′′

r

. . .

σ U
s′ s′

σ

σ

. . .
... . . .

W

s′′ s′′ s′′

s′′ · |C|

and V as the forbidden submatrix

Encoding of the r′-Hitting Set instance
using the algorithm from Lemma 4.16

and W as the forbidden submatrix

Figure 4.6: Reduction from r′-Hitting Set to Row Deletion(B) used in the proof of
Theorem 4.11: Given a r′-Hitting Set instance and a σ-decomposition Bσ of B where the
part of Bσ containing U and W does not induce V . Then Case I of the two constructions
used in the proof of Theorem 4.14 gives a parameter-preserving reduction from r-Hitting
Set to Row Deletion(B).

from every encoded set from the r′-Hitting Set instance. Thus, S ′ is a valid solution of
size at most k to the given r′-Hitting Set instance.

Now, assume that we have a solution S ′ ⊂ S of size k for the given r′-Hitting Set and
delete the corresponding12 rows in A, obtaining Adel . Then, from each V encoded into the
upper left part (designated A′ in the construction) of A, at least one row has been deleted.
Every column in A′ contains less than r′ σ’s after the deletion. Since V does not contain
the symbol σ, this also implies that V is not induced in A′ after the deletion. Therefore,
if V were still to be induced in Adel, this would mean that V was already induced in the
right part (designated A′′ and A′′′ in the construction) of A. Let us call this part Aright.

The induction of V in Aright is, however, impossible for the following reason: Recall that V
was not induced in the non-encoding part of Bσ. If V is to be induced in Aright, this implies
that s′ ≥ 2, because if s′ = 1, then V is induced in a single column of Aright and therefore
also induced in B.

Furthermore, the induction would have to include at least two columns in Aright that were
generated by the encoding of two different sets of C. If these two columns are indeed part
of an induced V in Aright, they must induce at least r′ row vectors with symbols different
from σ in both columns. Now observe the row vectors induced by two columns c1 and c2
in Aright that were generated by the encoding of two different sets of C:

• Since two sets in C differ in at least one element, in the upper n rows of Aright a symbol

12Recall that in the first n rows of A, the ith row corresponds to the ith element in S

4.3. HARDNESS RESULTS 49

different from σ in the first column can meet a symbol different from σ in the second
column at most r′ − 1 times.

• In the rows below the first n rows of Aright, the U ’s corresponding to the encoding of
the two sets from C have been written into Aright in the diagonal fashion as illustrated
in Figure 4.6. Therefore, a symbol different from σ is always met by a σ in the other
column in any of the lower rows.

Thus, for all rows in Aright, c1 and c2 only induce at most r′− 1 < r′ row vectors with both
symbols different from σ and therefore cannot induce V .

Thus, if we have a solution S ′ ⊂ S of size k for the given r′-Hitting Set and delete the
corresponding rows in A, V is not induced in the resulting matrix anymore and therefore, B
is not induced there anymore; indicating that we have a valid solution of size k to Row
Deletion(B). �

Let us illustrate the above reduction by an example: Take the forbidden submatrix B :=
(1 1

1 0
0 2

)
over a ternary alphabet. Taking σ = 0, we see that this matrix is already a σ-

decomposition according to the prerequisites of Theorem 4.12, since the right column of B
does not induce the left one. As in our previous examples, we shall again create an in-
stance of Row Deletion(B) from the 2-Hitting Set problem S = {1, 2, 3, 4, 5}, C =
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 5}, {3, 4}}, and arbitrary k. Using the construction for the
matrices A′, A′′, and A′′′ (that will later be put together to construct the instance of Row
Deletion(B)) given in the proof, we obtain

A′ =

(
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0

)

, A′′ =

(
1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

)

, and A′′′ =





2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2



 .

Putting these matrices together as
(

A′ A′′

0 A′′′

)
, we finally get

A =









1 1 1 0 0 0 1 1 1 0 0 0
1 0 0 1 1 0 0 0 0 1 1 0
0 1 0 1 0 1 0 0 0 0 0 1
0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 2









.

As mentioned in the previous examples, deleting the second through fourth row of this
matrix should constitute a solution to Row Deletion(B), which is also the case this time
as is easy to check.

4.3.4 Proof of Theorem 4.12

The proof of Theorem 4.12 will mainly be a generalization of the following Lemma 4.17
concerning a general observation for binary forbidden submatrices of size r×2. Lemma 4.17
is then generalized to any r×2 matrix by Lemma 4.18, from which we deduce Theorem 4.12.

Lemma 4.17 Let B be a binary r × 2 matrix. If, for a σ ∈ {0, 1}, B contains a column
with d symbols different from σ, d-Hitting Set is parameter-preserving reducible to Row
Deletion(B).

50 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

Bσ=

1

0

1

1 1

...
...

1

1

...
...

1

1

...
...

...
...

0
0

0
00

0 0

i(11)

i(10)

i(01)

i(00)

V=

1

1

...

1

1

...

i(11)

i(10)

W=

1

1

...

0

0

...

i(11)

i(10)

U=

1

1

...

0

0

...

i(01)

i(00)

r′

r′′

Figure 4.7: Sorted decomposition of a binary matrix B according to the proof of Lemma 4.17.
To the right of B, the decomposition submatrices V , W , and U are shown.

Proof We will assume w.l.o.g. that we are given a maximal13 σ-Decomposition Bσ-max

of B.14 Furthermore, we assume w.l.o.g. that for the maximal decomposition, σ = 0.

Note that since Bσ is only of width 2, the decomposition-matrices V , W , and U are all
column vectors. The following observations can be made for Bσ:

• None of the two columns in B may contain a 0 more than r′ times: Otherwise, we
could choose σ = 1, obtaining a higher V in the corresponding decomposition of B—a
contradiction to our assumption that the given decomposition is maximal.

• The right column may not contain more 1’s than the left column in the decompo-
sition because then the right part of B would be the encoding part in a maximal
σ-decomposition of B.

The second observation leaves us with two cases to consider for the given σ-decomposition of
B: Either, the right column contains less than r′ or exactly r′ 1’s. The first case is already
handled by Theorem 4.14, because if the second column in the decompositions contains less
than r′ 1’s, it cannot induce V since V contains exactly r′ 1’s. Therefore, from now on
we let B be a binary r × 2 matrix where each row contains exactly r′ entries equal to 1.
Furthermore, we assume that B is sorted such that—from top to bottom—the first i(11) row
vectors in B are equal to (1 1), the next i(10) row vectors are equal to (1 0), the next i(01)
row vectors are equal to (0 1), and the bottom i(00) row vectors are equal to (0 0). The
resulting matrix Bσ and the submatrices V , W , and U of such a sorted decomposition are
shown in Figure 4.7.

13Recall Definition 4.6: This means that there is no σ′ 6= σ in A for which we can decompose B such that
the decomposition-submatrix V is higher than the one in the decomposition for σ.

14Considering only one maximal σ-Decomposition can be justified as follows: Let r′1 be the height of V in a
maximal σ-Decomposition of a forbidden submatrix B, and let r′2 be the height of V in any σ-Decomposition
of B. Then, clearly, r′1 ≥ r′2. Thus, by considering a maximal σ-Decomposition, we claim that r′2-Hitting
Set is at most as hard as r′1-Hitting Set. This claim is easy to show: For any given instance (C,S, k) of
r′1-Hitting Set, add r′2 − r′1 “dummy symbols” {di,1, . . . , di,r′

2
−r′

1
} with di,j ∩S = ∅ to every clause Ci ∈ C

in order to obtain C′. Set S′ := S ∪ {di,j | di,j is a dummy symbol}. Then, clearly, (C′,S′, k) is an instance
of r′1-Hitting Set that has a solution of size k if and only if (C,S, k)—as an instance of r′2-Hitting Set—has
one.

4.3. HARDNESS RESULTS 51

. . .
...

|C|

Matrix A′ as generated by the scheme
used in the proof of Theorem 4.11

1

0

. . .

1 1

0

0

. . .
... . . .

1 1 1

|C|

1

11

1

0

1

1

0
0

0

1

11

1

c1 c2 c′1 c′2

. . .
...

|C|

Matrix A′ after performing the merge
operation for columns c′1 and c′2

1

0

. . .

1 1

0

0

. . .
... . . .

1 1 1

|C| − 1

1

11

1

0

1

1

0
0

1

1

c1 c2 c′1

−→

Figure 4.8: An illustration for one step of the merge operation used in the proof of Theo-
rem 4.12

Note that a) this is a maximal decomposition of B, b) i(11) + i(10) = r′, and that c) i(10) =
i(01). Additionally, we can assume that i(11) > 0, because for the case i(11) = 0, this lemma
has already been proven by Case II of Theorem 4.14.

Given an instance (C,S, k) of r′-Hitting Set where S = {1, . . . , n}. Then, the output
matrix A that is a parameter-equivalent instance of Row Deletion(B) is constructed in
two steps:

1. Use the construction employed in the proof of Theorem 4.11 to obtain a matrix A′

from (C,S, k) and B.

2. Perform the following “merge-operation” on A′: While there are two columns in the
right part of A′ that induce B, arbitrarily choose one of these two columns and delete
it (this operation is illustrated in Figure 4.8). Call the resulting matrix A.

Performing the merge-operation is justified as follows: Let two columns c1 and c2 in the left
part of A′ induce B with two columns c′1 and c′2 in the right part of A′, respectively. If c′1
and c′2 induce B, they have to induce the row vector (1 1) exactly i11 times. Note that by
means of construction for A′, this row vector can only be induced in the upper part of A′.
Note that additionally, each column in the upper right part of A′ contains exactly i11 1’s.
Hence, if c′1 and c′2 induce the row vector (1 1) exactly i11 times, their upper n entries must
be identical. But then, observe how c1 also induces B together with c′2 and c2 induces B
together with c′1. Therefore, after the merge-operation, c1 and c2 still induce B with some
column in the right part of A′ (∗).

We now claim that Row Deletion(B) has a solution of size k on A if the original r′-
Hitting Set instance has a solution of size k. To prove this claim, the same arguments as
in the proof of Theorem 4.11 can be employed due to (∗) provided we can show that there
exists always an optimal solution to Row Deletion(B) on A that does not involve the
deletion of any of the bottom r′′ · |C|: In order to see this, note that the following holds true

52 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

after the merge-operation: If a set M := c′a, c
′
b, . . . was merged to a single column cm, note

that cm contains r′ 1’s, some of which are to be found in the top n rows of A. Therefore,
a B induced by cm and some column in the left part of A that can be destroyed by deleting
a 1 from the bottom r′′ · |C| rows of A can also be destroyed by deleting a 1 from cm in the
top n rows of A.

Since k is directly preserved by the reduction, we have proven the lemma. �

Let us illustrate the reduction in the above proof by the following example (the general

scheme is illustrated in Figure 4.8): Let Σ =
(

1 1
1 0
0 1

)

be given the forbidden submatrix .

This is already a maximal σ-Decomposition with V =
(

1
1

)
and σ = 0. For the reduction

from 2-Hitting Set to Row Deletion(B) in this example, we shall use an instance
of 2-Hitting Set where C = {{1, 2}, {1, 3}, {1, 4}, {2, 3},{2, 5},{3, 4}}, S = {1, 2, 3, 4, 5},
and k = 3. Then A′ is generated by the algorithm from Theorem 4.12, yielding

A′ =









1 1 1 0 0 0 1 1 1 0 0 0
1 0 0 1 1 0 0 0 0 1 1 0
0 1 0 1 0 1 0 0 0 0 0 1
0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1









.

After performing the merge-operation (the 7th, 8th and 9th column are merged and the 10th
and 11th column are merged), we have

A =









1 1 1 0 0 0 1 0 0
1 0 0 1 1 0 0 1 0
0 1 0 1 0 1 0 0 1
0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1









.

Note how after the merge operation, each one of the six left columns induces the forbidden
submatrix with exactly one of the three rightmost columns and that the three rightmost
columns do not induce Σ by themselves.

We can easily generalize the above Lemma for larger alphabets:

Lemma 4.18 Let B be an ℓ-ary r × 2 matrix over the alphabet A. If, for a σ ∈ A, B
contains a column with d symbols different from σ, d-Hitting Set is parameter-preserving
reducible to Row Deletion(B).

Proof In principle, we use the same reduction as in the proof of Lemma 4.17, again em-
ploying the merge-operation. The merge-operations correctness for an alphabet of size 2 or
greater is justified as follows: In the proof of Lemma 4.17, we considered the i11 rows of B
which induced the row vector (1 1). Now, given a maximal decomposition Bσ of a forbidden
submatrix of size r × 2, let i6σ 6σ be the number of rows in Bσ that do not contain σ. Then,
if after the generation of A′ according to Theorem 4.11, if B is induced by two columns c1
and c2 in the right part of A′, the upper n rows of these columns must induce i6σ 6σ row vectors
that do not contain σ. But then c1 and c2’s top n rows are bound to be identical, because
they contain only i6σ 6σ symbols different from σ and W is not permuted during the encoding
process. Since the top n rows of c1 and c2 are identical if they induce B, we can perform the
merge-operation. The rest of the argument is analogous to the proof of Theorem 4.11. �

4.4. DISCUSSION AND FUTURE EXTENSIONS 53

A closer look at the proof of Lemma 4.18 shows that we can relax the conditions imposed
upon B in that B need not be restricted to a width of 2 as long as V contains a column
vector that is induced at most once in the non-encoding part of B. This directly leads to
Theorem 4.12.

Proof of Theorem 4.12 Recall the reduction from the proof of Lemma 4.18. The key
point was that after the reduction, B was not induced in the right part of A, designated Ar.
According to the prerequisites for this Theorem, the submatrix V of height r′ has a column
vector v that is induced at most once in the non-encoding part of Bσ. Denote the r ×
2 submatrix of Bσ that contains the v induced in the encoding and the one induced in
the non-encoding part of Bσ by Bσ,v. If Bσ,v were the forbidden submatrix, we can—
as in Lemma 4.18—reduce r′-Hitting Set to Row Deletion(Bσ,v). Now, consider the
following reduction to encode an r′-Hitting Set instance into an Row Deletion(B)
instance: We simply use the algorithm from Lemma 4.18 andBσ,v as the forbidden submatrix
but, instead of only writing the entries of Bσ,v into those rows of A determined by the
algorithm, we write the respective parts of the whole matrix Bσ into A. �

The reduction used in the above proof is illustrated by the following example, very similar to

the example used to illustrate Lemma 4.17: Given the forbidden submatrix B =
(

1 2 3 1
1 2 0 0
0 0 3 1

)

.

This is a maximal σ-Decomposition of B with V =
(

1 2
1 2

)
and σ = 0. Note that—as required

by Theorem 4.12—the column vector
(

1
1

)
in V is induced just once in the non-encoding part

of B. Now, using the same instance15 of 2-Hitting Set as in the illustration of Lemma 4.17,
we generate A:

A′ =









1 2 1 2 1 2 0 0 0 0 0 0 3 1 3 1 3 1 0 0 0 0 0 0
1 2 0 0 0 0 1 2 1 2 0 0 0 0 0 0 0 0 3 1 3 1 0 0
0 0 1 2 0 0 1 2 0 0 1 2 0 0 0 0 0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0
0 3 1 0 0
0 3 1









.

Merging the appropriate columns, we obtain from this

A =









1 2 1 2 1 2 0 0 0 0 0 0 3 1 0 0 0 0
1 2 0 0 0 0 1 2 1 2 0 0 0 0 3 1 0 0
0 0 1 2 0 0 1 2 0 0 1 2 0 0 0 0 3 1
0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 1 2 0 0 1 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1









.

Notice how after the merge-operation, B is not induced in the right part of A (the six
rightmost columns) but the inductions of B by columns in the left part of A′ are preserved.

4.4 Discussion and Future Extensions

Theorems 4.11 to 4.14 have shown that for many forbidden submatrices, the following con-
jecture holds true:

Conjecture 4.19 If r′ is the height of the submatrix V in a σ-decomposition of the forbid-
den submatrix B, r′-Hitting Set is parameter-preserving reducible to Row Deletion(B).

15C = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 5}, {3, 4}}, S = {1, 2, 3, 4, 5}, and k = 3.

54 CHAPTER 4. SUBMATRIX REMOVAL PROBLEMS

Although we have proven many special cases of this conjecture (which is more than sufficient
for the discussion in this work), a general proof would provide a very interesting structural
result. Ideas for a proof of the open problem would be an inductive extension of Lemma 4.17
for more than one induction of V in the non-encoding part of a σ-Decomposition of B.
Another idea would be to find a proof for the intuitive statement that if B contains a
submatrix B′ for which Row Deletion(B′) is known to be at least as hard as a certain d-
Hitting Set, then Row Deletion(B) is as hard as d-Hitting Set as well. The problem
in such proofs will most likely be to find a way to write W and U of a given σ-Decomposition
into certain parts of A so that we can always be sure that an induction of V is inhibited
in these parts. During the preparation of this work such a construction has been possible
for many forbidden submatrices using the technique from Lemma 4.17 even if the forbidden
submatrices did not fulfill the necessary prerequisites, so this should be a promising start
for a possible proof of the conjecture.

Note that—in accordance with the above conjecture—Row Deletion(B) need not be NP-
hard for all non-trivial B, as the matrix B = (1

0) over the alphabet Σ = {0, 1} shows. To
see that this problem is solvable in polynomial time, observe that a B-free matrix A has the
property that all its columns consist either solely of 1’s or solely of 0’s, i.e., all rows of A are
identical.16 This implies that the minimum number of rows that need to be deleted in order
to make an n ×m-matrix B-free is equal to n − x, where x denotes the size of the largest
set of identical rows in A, which can be determined in polynomial time.17

Another interesting area of research would be to close the relative hardness gap left by the
results in this chapter: For an r×s forbidden submatrix B with an r′×s′ submatrix V in the
maximal σ-Decomposition, we have shown in Section 4.2.1 that Row Deletion(B) is not
harder to solve than r-Hitting Set from a parameterized point of view. In this section we
have conjectured that it is at least as hard to solve as r′-Hitting Set. But it seems likely
that there are more efficient (especially parameterized) algorithms for r′-Hitting Set than
for r-Hitting Set when r′ < r—e.g., see Theorem 5.17 in the following chapter. It would
be interesting to find out how this “gap” is closed and how this—if possible—can be related
to the structure of B.

16This was pointed out by my advisor Jiong Guo.
17Note, however, that Row Deletion(B) for B =

�
1
1

�
over the alphabet Σ = {0, 1} already is NP-complete

by Theorem 4.11, since B trivially has a 0-decomposition with V = B, and W = U = ∅.

Chapter 5

Perfect Phylogeny Problems

This chapter shows an application of the previous chapter’s analysis of Row Deletion
and Column Deletion problems in an area of biology commonly known as phylogenetics.
We will first introduce the concept of phylogenetic trees, especially focusing on perfect
phylogenies. A phylogenetic tree is a tree that depicts the evolutionary history from an
imaginary “ancestral species” to a given set of species. This requires ordering the species
depending on how closely they are related to each other (i.e., which sets of species have
taken separate evolutionary pathways earlier than others). Ordering in a phylogeny is always
done according to a presumed model—in our case this is perfect phylogeny, introduced in
Section 5.2. We will then find out that the construction of a phylogenetic tree is only
possible when—in a matrix representation of the input data—certain submatrices do not
appear. As it turns out, the problem of avoiding these submatrices by removing species or
some of their information from the data used to construct a perfect phylogeny, are exactly
the Row Deletion and Column Deletion problems analyzed in Chapter 4.

5.1 Phylogenetic Trees

5.1.1 Introduction and Motivation

Since Darwin introduced the theory of evolution, it has always been the desire of biologists
to infer the ancestral relationships of present-day species. Given a collection of species,
a phylogenetic analysis will try to determine their evolutionary relationship. This is done
by constructing a tree that displays the process of evolution as a sequence of branching
events; i.e., a common ancestor is divided into distinct species by a speciation event. A
good general introduction to (computational) phylogeny may be found, e.g., in [DEKM98],
[Fels03], and [SeSt03]. Besides for applications like those mentioned in Section 2.3, the study
of phylogenetics is important to research on—often fundamental—questions in areas such
as conservation genetics, epidemology, ecology, medicine, and even non-biological fields of
research such as linguistics [SeSt03]. Before the availability of molecular data, the infer-
ence of phylogenies was based on physical characteristics expressed by species.1 However,

1As we will soon see, a group of species due to common physical characteristics is called a clade. There
are some views—such as in [KFHW98]—that the resulting trees of a clade-based analysis should be referred
to as a cladogram to distinguish it from an evolutionary tree which, in addition, contains an implicit time
axis of speciation events.

55

56 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

the observation of physical characteristics is often quite misleading: E.g., in 1952, Robert-
son and Reeve [RoRe52] performed a selection experiment to change the wing size in two
Drosophila populations. However, a closer examination revealed that whereas in one pop-
ulation the number of cells per wing increased, the other population developed larger wing
cells, demonstrating a case of homoplasy2. Of course, a close examination of the wings would
have shown that obviously different genetic markups must be responsible for the expression
of a common characteristic, but there are more subtle examples. The main point is that
physical characteristic are often subject to change due to selection processes and therefore,
although some species may show the same characteristics, this does not imply a close ances-
tral relationship. As Page and Holmes stated in [PaHo98]: “homoplasy is a poor indicator
of evolutionary relationships, because similarity does not reflect shared ancestry.”

According to [SeSt03], the field of phylogenetics “was revolutionized by the arrival of molecu-
lar data” which allows a much better distinction of different evolutionary pathways that have
led to the expression of different characteristics: Each such pathway contains a multitude
of “genetic traces” called markers that may serve as an indicator for common or separate
paths of evolution. However, even with genetic data available, there are still problems phy-
logenetics has to deal with. For example, the problem of homoplasy as in the Drosophila
experiment of Robertson and Reeve can also be encountered at a genetic level if proteins for
similar functions have evolved in different species. The most promising markers today for
phylogenetic analysis seem to be SNPs3, as has already been mentioned in Chapter 2. Since
SNPs show very slow rates of mutations and the area around them is often highly conserved,
they are very well suited as a basis for inferring ancestral relationships; most of the time,
only two different bases at a SNP site can be found throughout a population, which is then
a good indicator for speciation events and common ancestral relationships.

This work will only be concerned with computational problems arising from the study of
so-called perfect phylogenies (a more thorough introduction to this model follows in the next
subsection), however, there is a multitude of other approaches such as “maximum likelihood”
or “minimum parsimony”. A more thorough introduction to these and some more distantly
related topics can be found, e.g., in [KFHW98] and [PaHo98], which are not as much focused
on computational biology as the references already recommended above.

5.1.2 Formal Definition

This subsection introduces the predominant phylogenetic model for this chapter, the species-
character model4, which leads us to perfect phylogenies. A good survey article of problems
related to perfect phylogeny is, e.g., [Fern01]. In the species-character model, each species is
described by m different characters. Each character may take one of up to ℓ different states.
Let σ(i, j) ∈ {0, . . . , ℓ− 1} be the state of the jth character for the species si. Each species
is characterized by the states of its m characters, we therefore introduce a character vector
for each species that is a row vector containing all the characters of a certain species.5 For
convenience, the input data may be written as an n×m matrix A = (ai,j) with ai,j = σ(i, j),

2Formally, the term “homoplasy” refers to a correspondence between parts of an organism acquired due
to parallel evolution or convergence.

3An indication for the importance of SNPs is that almost every article on evolutionary relationships in
widely recognized scientific magazines such as Nature or Science obtains its results from the analysis of
SNPs.

4Some literature also refers to this model as the cladistic model, where “clade” is defined as a group of
biological species that includes all descendants of a common ancestor.

5For example, if, for a species si, we have σ(i, 1) = 1, σ(i, 2) = 2, σ(i, 3) = 3, σ(i, 4) = 2, and σ(i, 5) = 1,
its character vector would be (1 2 3 2 1).

5.1. PHYLOGENETIC TREES 57

the character-state matrix. Each row ri in A corresponds to the species si and the column cj
to the jth character of all species. For example, if we have three species s1, s2, and s3 with
respective character vectors (0 9 7 0 1), (9 5 1 4 2), and (3 6 4 8 5), we would write

A =
(

0 9 7 0 1
9 5 1 4 2
3 6 4 8 5

)

.

Note that there are variants of phylogenetic problems where not all entries of A are known
(i.e., some states of some characters are missing). These entries will be represented by a “?”
character.6

The phylogenetic tree we seek to construct from the given species and character data is
called a perfect phylogeny, which is the following tree-graph:

Definition 5.1 (Perfect Phylogeny)
Given a set Sleaf of i species, each of which is described by exactly one of ℓ different states for
each of its m characters. Let Sinternal be a set of “ancestral” species (disjoint with Sleaf) for
which we may assign character states. We then set S := Sleaf ∪Sinternal. A tree T = (V,E)
is called a perfect phylogeny if it fulfills the following properties:

1. T has |Sleaf| leafs. There exists a bijection Φ : S → V between the species in S and
the vertices of T such that every species from Sleaf is mapped to a leaf in T and every
ancestral species is mapped to an internal node.

2. Let Sjλ ⊆ S be the set of species for which the jth character takes state λ. Then,
for every 1 ≤ j ≤ m and 0 ≤ λ < l, the set {Φ−1(s)|s ∈ Sjλ} of vertices forms a
connected component in T (in other words, all species that share a common state for
a certain character induce a subtree in T).

An example for a set of species and a perfect phylogeny for their characteristics is given in
Figure 5.1.

In the introduction to this chapter, we have already mentioned the problem of homoplasy
in phylogenetic analysis. In principle, a perfect phylogeny is a phylogenetic model that does
not allow for homoplasy, leading to the elegant mathematical descriptions that we have seen.
However, as Fernández-Baca observes in his survey [Fern01], “elegance comes at a price”,
and there are only very few examples in biology and linguistics where perfect phylogenies
occur naturally (e.g., see [NRO99] and [BLM03]). However, if we assume that only a very
few species or characters are violating a cladistic model in a given set of data, the analysis
from Section 5.4 onwards in this chapter will provide efficient algorithms and a complexity
analysis for finding and removing a minimal set of violating parts of the data.

Perfect Phylogeny is a special case of the so-called Character Compatibility pro-
blem, introduced in [MeEs85]: For this problem, every character that satisfies condition 2 of
the above definition (“all species that share a common state for a certain character induce
a subtree in T”) is called “true” (following [Esta78]). The Character Compatibility
problem then asks for a maximum number of characters to be true as opposed to Perfect
Phylogeny, where all characters must be true.

6The problems associated with incomplete input data are usually harder than their equivalents with
complete data. E.g., the Undirected Perfect Phylogeny problem that will be introduced shortly is
already NP-complete for binary characters when the state of some characters is unknown [Stee92].

58 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

Induced subtrees in the above perfect phylogeny T :

first character

1

2

3

4 1

2

2 2 3 3

second character third character fourth character

2

2

2

21

1

1

1

1

1

1

1

111 1 1

1

1

1

3

4

1 4 4 4 43

3

3

1 1

1 1 1 3 1

1

1 11 1 1 1

1 1 1 1

1 12

3

2

2

3

3 42

4

444

2

2

2 4332

3

s1 s2 s3s4 s5 s6

Sleaf

Sinternal

Example: species s1, . . . , s6 and their characters:

s1 : s2 : s3 :
s4 : s5 : s6 :

1 12 2 1 3 12 1 1 1 4
1 113 3 4444 332

A perfect phylogeny T = (V,E) for the species s1, . . . , s6:

root of G

internal vertex

species vertex

Figure 5.1: An example of a perfect phylogeny for a set of species: For six species s1
through s6, four characters and their states are given. The tree T = (V,E) then represents
a perfect phylogeny for these species (notice how all species that share a common state for
a certain character induce a subtree in T). The leafs in T each correspond to a species
from the set Sleaf of species, the internal vertices to the set Sinternal of “ancestral” species.
Sometimes in literature, just the root of T is referred to as being the “ancestral species”.

5.2 Perfect Phylogeny Problems

There is quite a multitude of perfect phylogeny problems (see, for example, [BFW92],
[Gusf91], [PSS02a], [PSS02b]). This section introduces these problems, giving an overview of
the most important variants and related results concerning the computational complexity.
As we will see, this complexity is mainly determined by the maximum number of different
states that characters may take.

The most general formulation of perfect phylogeny problems is k-Perfect Phylogeny.
The input for a k-Perfect Phylogeny problem consists of a set S = {s1, . . . , sn} of n
species, each described by m different characters where each character may take one of k
different states. As was already explained on page 57, this instance is often given as a k-
ary n×m matrix A. Seeing k as the classifying parameter, we directly obtain the definition
of the k-Perfect Phylogeny problem:

Definition 5.2 (k-Perfect Phylogeny)
Input: Given a set S of n species, each of which described by exactly one of k different

5.2. PERFECT PHYLOGENY PROBLEMS 59

states for each of its m characters.
Question: Does there exist a perfect phylogeny for the species in S?

Buneman demonstrated in [Bune74] that this problem is equivalent to a graph-theoretic
problem called Triangulating Colored Graphs. A graph is called triangulated if there
is no cycle of four or more vertices in G that does not induce a cycle of size 3 as a subgraph.7

It is obvious that every graph can be triangulated by adding enough edges to it. However,
the Triangulating Colored Graphs problem asks whether a given graph G, where
each vertex is associated with one of k colors, can be triangulated by adding edges such
that the resulting graph has no edges between vertices of equal color. If this is possible, the
resulting graph is called properly colored triangulated. We shall only sketch the idea behind
the reduction from k-Perfect Phylogeny to Triangulating Colored Graphs by
Buneman, more details may be found, e.g., in [Bune74] or [Fern01]. For the proof, the
character-state matrix A is first transformed into a so-called character-state intersection
graph GA. In this graph, each entry aij of A corresponds to a vertex, the color of the
respective vertex represents the one of k states found for the ith species at its jth character
in A. Two vertices are connected by an edge if their represented character states occur
together in a species. A theorem by Gavril [Gavr74] states that a triangulated graph is the
intersection graph of a family of subtrees of a tree, leading to the result that a properly
colored triangulated intersection graph represents a phylogenetic tree.

The equivalence of k-Perfect Phylogeny and Triangulating Colored Graphs later
allowed Bodlaender et al. to show that the k-Perfect Phylogeny problem is NP-complete
if k is not fixed to a constant [BFW92]. If k is constant, for k = 3 k-Perfect Phylo-
geny is solvable in polynomial, i.e., O(nm2) time according to [DrSt92]; for k = 4, [KaWa94]
provides an O(n2m) algorithm. Seeing k as a parameter, k-Perfect Phylogeny is fixed-
parameter tractable and can be solved in O(4knm2) time [KaWa97] (a big improvement over
a previous algorithm stated in [AgFe93]).

Along with the NP-completeness proof for k-Perfect Phylogeny in [BFW92], another
result concerning k-Perfect Phylogeny on graphs with bounded treewidth was shown.
Many hard graph problems become polynomially-time solvable on tree graphs. For some
of these problems, this property can be used to develop efficient algorithms on graphs with
bounded treewidth.8 Roughly speaking, the treewidth of a graph is a measure of how
“treelike” the structure of a graph is. A tree-decomposition of a graph is a rooted tree
representation of the graph, that divides it into some subgraphs, the treewidth then becomes
a measure for the size of these subgraphs. If a problem is finite-state for bounded treewidth,
it means that we can use the tree-decomposition of a graph to efficiently solve a hard problem
on it by computing partial solutions for the children of each node of the tree starting from
the leafs, using the fact that a solution computed for the two children of an inner node
(which is from a finite set of possible solutions, hence the term finite state) can be used to
efficiently arrive at a solution for the inner node itself. However, it was shown in [BFW92]
that k-Perfect Phylogeny is not finite-state for bounded treewidth if k ≥ 4. This result
implies that for k ≥ 3, these dynamic programming strategies are not applicable.

In this work, we will mainly deal with the 2-Perfect Phylogeny problem and therefore
use Definition 5.3 for means of abbreviation:

7e.g., the graph a

d

c
b

is triangulated whereas
a

d

b

c
e is not because the vertices a, b, c and d

induce a cycle of size 4 which by itself contains no cycle of size 3 as a subgraph.
8For a more detailed survey on this topic, see, e.g., [Bodl97] or [Bodl88].

60 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

Definition 5.3 (Perfect Phylogeny)
Input: An instance of 2-Perfect Phylogeny
Question: Does there exist a perfect phylogeny for the species in S?

The Perfect Phylogeny problem9 may be reformulated as follows: For a set of species
with binary character states we wish to construct a phylogenetic tree, such that for each
character, there exists at most one edge that partitions the tree into two subtrees—one of
which has state 1, the other one state 0 for that character in every one of its nodes. Many
times in literature, the following variant of Perfect Phylogeny is discussed.

Definition 5.4 (Directed Perfect Phylogeny)
Input: An instance of 2-Perfect Phylogeny
Question: Does there exist a perfect phylogeny for the species in S such that the root is the
all-zero vector?

The main difference between (Undirected) Perfect Phylogeny and Directed Per-
fect Phylogeny lies in the fact that in Directed Perfect Phylogeny, we allow only
changes from 0 to 1 (i.e., the gaining of characters) throughout evolution. Gusfield demon-
strates in [Gusf91] that the Directed Perfect Phylogeny problem is by far easier than
general k-Perfect Phylogeny to solve, it is in fact linear-time solvable with respect to the
size of the input matrix A (he furthermore gives a proof that this algorithm is time-optimal).
Since a linear time reduction from Directed Perfect Phylogeny to Perfect Phylo-
geny will follow from Theorem 5.7, (2-)Perfect Phylogeny is therefore also linear-time
solvable.

5.3 Relation to Forbidden Submatrix Problems

This section will show that we can easily determine whether a given binary species-character
matrix A implies that the represented species have evolved according to a perfect phylogeny.
This will be done by testing for the induction of a certain submatrix that must not be induced
in a perfect phylogeny. If we determine that the species have not evolved according to a
perfect phylogeny but assume that only a few characters or species in the dataset represented
by A are responsible for this, we might try to delete as few rows or columns from A as possible
(which is equivalent to removing species or characters from the dataset represented by A)
in order to find out which portion of the data fits a perfect phylogeny. This is a submatrix
removal problem, leading us to the application of the results from Chapter 4 in the next
section.

It is easy to determine whether the data represented by a given species-character matrix A
allows for the construction of a perfect phylogeny by testing for the induction of the so-called
Σ-matrix in A.

Definition 5.5 (Σ-Matrix): A binary matrix A is called Σ-matrix10, if it is a permutation

9Sometimes Perfect Phylogeny is called Undirected Perfect Phylogeny in order to distinguish it
from the Directed Perfect Phylogeny problem we shall introduce shortly.

10The name for this matrix originates from [PSS02a]: When a binary n × m character-state matrix A is
interpreted as the adjacency-matrix of a bipartite graph G = {V1, V2, E}, where V1 = {c1, . . . , cn}, V2 =
{s1, . . . , sm} and ci is connected with sj if and only if aij=1, the presence of a Σ matrix leads to the

structure (with the left vertices representing characters and the right vertices states) in the graph

implicated by A, which looks like a mirrored Σ.

5.3. RELATION TO FORBIDDEN SUBMATRIX PROBLEMS 61

of the 3× 2 matrix
(

1 1
1 0
0 1

)

, i.e. it is equal to one of the matrices

(
1 1
1 0
0 1

)

,
(

1 0
1 1
0 1

)

,
(

1 0
0 1
1 1

)

,
(

1 1
0 1
1 0

)

,
(

0 1
1 1
1 0

)

, or
(

0 1
1 0
1 1

)

.

The following theorem has been proven independently by many authors :

Theorem 5.6 [For a proof see, e.g., [Meac83] and [EJM75]] Given a binary character-state
matrix A. There exists a directed perfect phylogeny for the species represented in A if and
only if A is Σ-free. �

Comparing Directed Perfect Phylogeny to Perfect Phylogeny, it is a very strong
assumption that characters as we have labeled them have only been gained throughout
evolution. This assumption is bound to fail often as labeling of the character states as 0
and 1 is arbitrary.11 When given m characters, the general Perfect Phylogeny problem
would allow 2m choices for the character states in the root. Fortunately, if we do not
care about relabeling of the state labels, the following theorem by McMorris (see page 135
of [Morr77] for the proof12) simplifies the choice of a root vector to a task that may be
performed in O(mn) time, i.e., linear time with respect to the size of the binary input
matrix A.

Theorem 5.7 [Morr77] If there is a perfect phylogeny for a binary matrix A, there is a
perfect phylogeny for A where each character in the root takes the state that the majority of
individuals takes for that character. �

We can then simply invert all those characters where the proposed root contains a 1 to obtain
a Directed Perfect Phylogeny instance from a Perfect Phylogeny one. However,
this inversion is only possible if certain conditions are satisfied by the input matrix A as
shall be explored in the next theorem. For this theorem, we will rely on the following
notation: We denote by L(M) an operation on a binary matrix M with two columns. The
operation L(M) inverts the left column. Analogously to this we define the operations R(M)
(inverting the right column) and LR(M) (inverting the whole matrix). We immediately
observe that if MΣ is a Σ-matrix, then L(MΣ), R(MΣ), and LR(MΣ) are not Σ-matrices.
However, the restrictions of the following theorem apply.

Definition 5.8 (Extended Σ-Matrix): A binary matrix A is called extended Σ-matrix,

or EΣM for short, if it is a permutation of the 4× 2 matrix
(1 1

1 0
0 1
0 0

)

.

Theorem 5.9 Let A be a binary matrix with two columns that induce a Σ-matrix. Then A
can be made Σ-free by column inversion if and only if those two columns do not induce an
extended Σ-matrix.

Proof Let S(M) be the set of induced row-vectors in a binary matrix M . Since A induces
a Σ-matrix, there is a submatrix M induced by two columns of A that contains the row-
vectors (1, 1), (1, 0) and (0, 1). If M does not induce the row-vector (0, 0), then

S(L(M)) = {(0, 1), (0, 0), (1, 0)},

11I.e., losing a trait may also be considered as a “gain” of that particular loss in evolutionary history.
12Note that as in most older books concerning perfect phylogenies, the terminology and notation used is

quite different from the one used today and in this work.

62 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

S(R(M)) = {(1, 0), (1, 1), (0, 0)} and

S(LR(M)) = {(0, 0), (0, 1), (1, 0)}.

None of the above S contains all row vectors of a Σ-matrix—this immediately implies
that M can be made Σ-free by any of the three inversion operations. If, however, S(M) =
{(0, 0), (0, 1), (1, 0), (1, 1)}, then

S(L(M)) = {(1, 0), (1, 1), (0, 0), (0, 1)},

S(R(M)) = {(0, 1), (0, 0), (1, 1), (1, 0)} and

S(LR(M)) = {(1, 1), (1, 0), (0, 1), (0, 0)}

meaning that M—and therefore A—cannot be made Σ-free by inversion-operations on its
columns. �

The question for a minimal column inversion does not seem to be very reasonable: If it is
clear whether a trait has been gained or lost during the evolution of the given species, an
inversion of the respective column would not be appropriate with respect to its biological
implications—inversion of the character labels should come at no cost.

Having seen that a matrix cannot be made Σ-free just by column inversion alone if it induces
an EΣM, the next two sections of this chapter will employ results from Chapter 4 to analyze
the computational complexity of removing a minimum number of rows or columns from a
given binary matrix A such that the resulting matrix is EΣM-free.

5.4 Minimum Species Removal

When constructing a perfect phylogeny for a set of species—assuming that these have evolved
according to a perfect phylogeny—there might be a few species in the dataset that prevent
such a construction. These species will therefore cause the induction of EΣMs in the species-
character matrix, and must therefore be removed from the dataset in order to permit the
construction of a perfect phylogeny for the remaining individuals. Since we assume that the
given species actually have evolved in a perfect phylogeny, we require this removal to consist
of as few species as possible.

Definition 5.10 (Minimum Species Removal):
Input: A binary n×m matrix M and an integer k.
Question: Is it possible to delete at most k rows in M so that the resulting matrix is EΣM-
free?

As we can see from Theorem 5.9, the species must not induce any EΣMs in the character-
species matrix A, since species/genotypes are rows in A, Minimum Species Removal is
a Row Deletion problem with the EΣM as its forbidden submatrix. This immediately
leads to the following result:

Theorem 5.11 2-Hitting Set is parameter-preservingly reducible to Minimum Species
Removal.

5.4. MINIMUM SPECIES REMOVAL 63

C = {{a, b}, {a, c}, {a, d}, {b, c}, {b, e}, {c, d}}

a

b

d

ec

G = (V,E)

a

b
c

d
e

1
0
0
0

1 1

1

1

1
1
1 1

1
1
1

0

0
0 0

0
0

0

0
0

0
0

0 0
0

0

0
0
0

1

1
0
0

0
0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

|S|

2 · |S|

|C|

mit S = {a, b, c, d, e}
0

0

0

1

0

0

0

0

0

1

0 0 0 0 00

1

0 0

00 0 0 0 00 0 0

00 0 0 0 00 0 0

00 0 0 0 00 0 0

00 0 0 0 00 0 0

Figure 5.2: Parameterized reduction of 2-Hitting Set (Vertex Cover) to Minimum
Species Removal. An instance of 2-Hitting Set is given as collection C of two-element
subsets of S, for illustration purposes, the equivalent Vertex Cover-graph G with an
optimal solution is also shown. The matrix on the right is an equivalent instance of Minimum
Species Removal to the given 2-Hitting Set instance.

Proof Follows directly from Theorem 4.12: Choosing 0 as σ,

(
1 1
1 0
0 1
0 0

)

is a maximal σ-

decomposition for the EΣM where V :=
(

1
1

)
is induced only once in the non-encoding

part (right column) of the decomposition. Since V has height 2, this theorem follows from
Theorem 4.12. �

Figure 5.2 gives an example for a reduction of 2-Hitting Set to Minimum Species Re-
moval. The above theorem also proves that Minimum Species Removal is NP-hard.
Furthermore, Minimum Species Removal is NP-complete and fixed-parameter tractable
by using Theorem 4.7.

Theorem 5.12 Minimum Species Removal can be parameter-preservingly reduced to 4-
Hitting Set.

Proof Follows directly from Theorem 4.7. since the EΣM has four rows. �

Note that this reduction does not directly yield an efficient algorithm for solving Minimum
Species Removal—a trivial search tree for 4-Hitting Set has size O(4k), which grows
quite rapidly. A much better algorithm is given in [NiRo03a] which implies a search tree
size of O(3.30k). However, Minimum Species Removal can be solved even faster already
by a trivial algorithm, as the next theorem—Theorem 5.17—will show. For the proof of this
theorem, we will first introduce two useful lemmata and some new notations.

In order to better analyze the size of a search tree, one can use the mathematical tool of
recurrence analysis. A detailed introduction to the analysis of recurrences can be found,

64 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

e.g., in [GKP94] and [GrKu90]. For our purposes, the following is crucial: Note that in
the search tree, each time we traverse an edge, k is decreased by one. For some problems,
however, it is possible to decrease k by more than one. This leads to the general notion of
a branching vector, sometimes also referred to as a branching tuple:

Definition 5.13 (Branching Vector)
If every node of a search tree T branches into one of s different subcases, and for each subcase,
we reduce the parameter by a respective di > 0, we call b := (d1, . . . , ds) the branching vector
for T .

The following result from recurrence analysis states that we can use the branching vector to
determine the size τ(b) of the corresponding search tree:

Lemma 5.14 [Titc76] If a search tree has a branching vector b := (d1, . . . , ds), its total size
is τ(b) = O(|α|k), where α is the solution of zd−zd−d1−· · ·−zd−ds = 0 (where d = max

i
di)

with the largest absolute value (largest root, for short). In our context, this root is real. �

For example, the trivial search tree for solving Vertex Cover in Section 3.3 branches
into two subcases at each node, each time reducing the parameter by one. Therefore, we
have s = 2 and d1 = d2 = d = 1. The value of α is therefore the largest root of z1−z0−z0 =
0⇒ z − 2 = 0, which is obviously 2. So, according to the above lemma, the search tree for
our trivial Vertex Cover algorithm has size O(2k), in accordance with the observations
from Section 3.3. A second lemma by Kullmann (Lemma 8.5 of [Kull99]) allows us to make
a statement about the relative size of two trees by comparing their branching vectors.

Lemma 5.15 [Kull99] Let there be given two branching vectors b1 = (d1, . . . , ds) and b2 =
(d′1, . . . , d

′
s). If min(d1, d2) > min(d′1, d

′
2), d1 + d2 ≤ d′1 + d′2, and for every i > 2, we

have di = d′i, then τ(b) < τ(b′). This also holds true for any two positions that differ in
two branching vectors if all other positions are equal. Furthermore, τ(b) remains constant
when b is permuted. �

Corollary 5.16 Given a branching vector b = (d1, . . . , ds). Then, τ(b) < τ(b′) where b′ is

the the branching vector (
s∑

i=1

di − (s− 1), 1, . . . , 1
︸ ︷︷ ︸

s−1

).

Proof Observe that if a ≥ b > 1, we have τ(. . . , a+ 1, . . . , b− 1, . . .) > τ(. . . , a, . . . , b, . . .)
due to Lemma 5.15, because then min(a+1, b− 1) < min(a, b) and (a+1)+ (b− 1) = a+ b.
W.l.o.g., we can assume that d1 = max

i
di because Lemma 5.15 allows us to permute the

branching vector without changing the value of the respective τ .

From this observation we can see by repeated application of Lemma 5.15 that

τ(

s∑

i=1

di − (s− 1), 1, 1, · · · , 1) > τ(

s∑

i=1

di − (s− 1)− 1, 2, 1, · · · , 1) >

> τ(
s∑

i=1

di − (s− 1)− 2, 3, 1, · · · , 1) > · · · > τ(
s∑

i=1

di − (s− 1)− (d2 − 1), d2, 1, · · · , 1) >

5.4. MINIMUM SPECIES REMOVAL 65

> · · · > τ(
s∑

i=1

di − (s− 1)− (d2 − 1)− (d3 − 1), d2, d3, · · · , 1) > · · · >

> τ(

s∑

i=1

di − (s− 1)−
s∑

i=2

(di − 1), d2, d3, · · · , ds) =

= τ(d1 − (s− 1) + (s− 1), d2, d3, · · · , ds) = τ(d1, d2, d3, · · · , ds).

Note that this lemma demonstrates how a tree gets larger the more “unbalanced” it is. �

Using the last corollary and Lemma 5.14, we can now show that the trivial search tree
algorithm for Minimum Species Removal has a search tree of size O(3k).

Theorem 5.17 There exists a fixed-parameter algorithm for Minimum Species Removal
with a search tree of size O(3k).

Proof Let (A, k) be a given instance of Minimum Species Removal. We will construct a
simple algorithm for solving Minimum Species Removal, analogously to the one that was
used to solve Vertex Cover in Section 3.3: Looking for EΣMs in the input matrix A, each
time an induction of an EΣM is encountered in two columns c1 and c2 of A, the algorithm
branches into four cases:

I. Delete all i11 rows in A that induce the row vector (1 1) in c1 and c2, obtaining A′.
Then, proceed with the algorithm on (A′, k − i11).

II. Delete all i10 rows in A that induce the row vector (1 0) in c1 and c2, obtaining A′.
Then, proceed with the algorithm on (A′, k − i10).

III. Delete all i01 rows in A that induce the row vector (0 1) in c1 and c2, obtaining A′.
Then, proceed with the algorithm on (A′, k − i01).

IV. Delete all i00 rows in A that induce the row vector (0 0) in c1 and c2, obtaining A′.
Then, proceed with the algorithm on (A′, k − i00).

The corresponding search tree has size τ(i11, i10, i01, i00). From Corollary 5.16, we know
that

τ(i11, i10, i01, i00) < τ(i11 + i10 + i01 + i00 − 3, 1, 1, 1)

Note that for any two columns c1 and c2 in the input matrix A, any row vector induced by
these two columns is either (1 1), (1 0), (0 1), or (0 0). Therefore, i11 + i10 + i01 + i00 = n

(where n is the height of A) and

τ(i11, i10, i01, i00) < τ(n− 3, 1, 1, 1)

By using Lemma 5.14, we can deduce from this that the size of the trivial search tree is
bounded by O(αk), where α is the largest root of

zn−3 − zn−3−(n−3) − zn−3−1 − zn−3−1 − zn−3−1 = 0 =⇒ zn−3 − 3zn−4 − 1 = 0

The largest real root of this polynomial is smaller than 3 + 1
3n−4 because for z > 3 + 1

3n−4 ,
we have

zn−3 − 3zn−4 − 1 >

(

3 +
1

3n−4

)n−3

− 3

(

3 +
1

3n−4

)n−4

− 1 =

66 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

=

(
3n−3 + 1

3n−4

)n−3

− 3

(
3n−3 + 1

3n−4

)n−4

− 1 =

(
3n−3 + 1

3n−4

)n−4

·

(
3n−3 + 1

3n−4
− 3

)

− 1 =

=

(
3n−3 + 1

3n−4

)n−4

·

(
3n−3 + 1− 3n−3

3n−4

)

− 1 =

(
3n−3 + 1

3n−4

)n−4

·
1

3n−4
− 1 =

=

(
3n−3 + 1

3n−3

)n−4

− 1 =

(

1 +
1

3n−3

)

︸ ︷︷ ︸

>1

n−4

− 1 > 0

Now, assuming k ≤ n− 4,13 we obtain

α < 3 +
1

3n−4
≤ 3 +

1

3k

Using k > 0 =⇒ k
3k+1 < 0.125 (∗) and the well-known inequality 0 < i < 1, n > 0 =⇒

(1 + i)
n ≤ ei·n (∗∗), we obtain from this

α < 3 +
1

3k
= 3 ·

(

1 +
1

3k+1

)

= 3 ·

((

1 +
1

3k+1

)k
) 1

k (∗∗)

≤

≤ 3 ·
(

e
k

3k+1

) 1
k (∗)

< 3 ·
(
e0.125

) 1
k < 3 · 1.14

1
k .

This implies a search tree size of O(
(

3 · 1.14
1
k

)k

) = O(3k · 1.14) = O(3k). �

As we have seen, Minimum Species Removal can be solved using a search tree of size
O(3k)—this narrows the gap between the minimum hardness boundary for Minimum Spe-
cies Removal that has been shown at the beginning of this section14 and the best algorithm
for Minimum Species Removal. However, more research would be needed to determine
whether this gap can be narrowed even further to bring the computational complexity of
Minimum Species Removal even closer to Vertex Cover, which we have proven to be
a lower computational complexity bound for this problem.

5.5 Minimum Character Removal

Instead of looking for the minimum number of species that prevent the construction of a
phylogeny from the given dataset, one might also be interested in the minimum number of
sites responsible for these conflicts (by inducing EΣMs). This problem is formally stated
in Definition 5.18, using n as the number of species and m as the number of considered
characters for each species.

Definition 5.18 (Minimum Character Removal):
Input: A binary n×m matrix A and an integer k.
Question: Is it possible to delete at most k columns in A so that the resulting matrix is
EΣM-free?

13Observe that if k > n− 4, we can use an O(n3) algorithm to try all combinations of three rows that are
not deleted from the input matrix in order to make it Σ-free.

14Recall that this was the Vertex Cover, or 2-Hitting Set problem.

5.5. MINIMUM CHARACTER REMOVAL 67

Using the general framework given in Section 4.2.1, the following algorithm efficiently finds
all pairs of columns in a given n×m input matrix A that induce an EΣM in O(n2m) time,
leading to an instance of 2-Hitting Set. For the algorithm, let ci denote the ith column
of the input matrix A.

Algorithm: Finding all EΣM inducing columns
Input: A binary n×m matrix A
Output: A set C containing all pairs of

columns in A that induce an EΣM

01 C ← ∅
02 for i ← 1 . . . n do
03 for j ← i+ 1 . . . n do
04 v1, v2, v3, v4 ← false
05 for l ← 1 . . .m do
06 if (ali, alj) = (1, 1) then v1 ← true
07 if (ali, alj) = (1, 0) then v2 ← true
08 if (ali, alj) = (0, 1) then v3 ← true
09 if (ali, alj) = (0, 0) then v4 ← true
10 if v1, v2, v3, and v4 are all true then
11 C ← C ∪ {(ci, cj)}
12 return C

As was already mentioned, the constant in the O-notation of the given algorithm is much
smaller than the one implied by the general algorithm given in Section 4.2.1 due to the fact
that in lines 06 to 09, we only check whether all four row vectors induced by an EΣM are
present in a pair of columns in A—an important performance gain for practical applications.

The equivalence of Minimum Character Removal to 2-Hitting Set is directly given
by the results from Chapter 4:

Theorem 5.19 Minimum Character Removal is parameter-equivalent to 2-Hitting
Set.

Proof The results of Chapter 4 that concerned Row Deletion also hold—for reasons
of symmetry—for Column Deletion problems. According to Theorem 4.7, Minimum
Character Removal is parameter-preservingly reducible to 2-Hitting Set. Since the
row vector (1 1) is only induced once in an EΣM, we can deduce from Theorem 4.12 that 2-
Hitting Set is also parameter-preservingly reducible to Minimum Character Removal.
(The latter reduction is illustrated in Figure 5.3.) �

The Vertex Cover problem (equivalent to 2-Hitting Set) which we have introduced in
Chapter 3 and already mentioned in the last section is probably the best analyzed problem
in parameterized complexity theory. Successive improvements of parameterized algorithms
for this problem have led to algorithms with a O(1.29k + km) worst-case running time (see
[NiRo03b] and [CKJ01]). Combining this algorithm with the parameterized reduction from
Minimum Character Removal to 2-Hitting Set given at the beginning of this section
(which runs in O(m2n) time), we obtain corollary 5.20.

Corollary 5.20 Minimum Character Removal can be solved in O(m2n+ 1.29k + km)
running time.

68 CHAPTER 5. PERFECT PHYLOGENY PROBLEMS

1

C = {{a, b}, {a, c}, {a, d}, {b, c}, {b, e}, {c, d}, }

a b c d e

0
1

1

a

b

d

ec

G = (V,E)

0

0

0
0

1

1

1
0
1

0

0
0

0

0
0

0

0
0

0

0
0

0

1
1

1

1

1
0
1

0

0
0

0

0
0

0

0
0

1

0

1
1

0

0
0

0

1
1

0

0
0

0
0
01

1

0
0
0

0

1
1

0

0
0

0
0
0

00

1
1

0
0

0

0
0

0
0
0

0

0
0

0
0
0

0 0 00 0

00000

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Figure 5.3: An instance of 2-Hitting Set and the corresponding Minimum Character
Removal problem. For illustration purposes, the 2-Hitting Set problem is shown with
its corresponding Vertex Cover instance. An optimal solution is marked in the graph
and the binary matrix.

Proof The running time is obtained by adding the running time given in [NiRo03b] for
solving the Vertex Cover problem to the running time required for the reduction from
Minimum Character Removal to Vertex Cover.. �

This directly implies that Minimum Character Removal can be solved efficiently in
practice for a reasonable dataset: If a number of species evolved according to a phylogenetic
model, then the number of characters that contradict this model (i.e., k) should be rela-
tively small. On the downside, the very close relationship between Minimum Character
Removal and 2-Hitting Set implied by Theorem 5.19 combined with the fact that the
known algorithms for Vertex Cover might not be improved much further suggests that
it might not be possible to solve Minimum Character Removal much faster than with
the given O(m2n+ 1.29k + km)-algorithm.

This chapter concludes the first part of this work dealing with forbidden submatrix problems
and their application in the inference of phylogenies. The next two chapters will be concerned
with another set of interesting problems that arise when we try to obtain SNP data from
the genetic information of an organism. Just as the problem of inferring perfect phylogenies
led to the more general problem of submatrix removal, the problems arising in SNP analysis
can be related to a problem called Graph Bipartization.

Chapter 6

Graph Bipartization

The preceding two chapters have analyzed forbidden submatrix problems and their rela-
tionship to Perfect Phylogeny problems. We have already mentioned that among their
many qualities, SNPs seem to be a promising source for data that can be used to construct
perfect phylogenies. This and the following chapter are more directly concerned with SNPs
in that they will deal with computational problems that arise during actually obtaining SNP
data. This chapter introduces the Graph Bipartization problem, which we shall show—in
Chapter 7—to be closely linked to problems arising in the acquisition of SNP data.

Graph Bipartization is the following problem: Given a graph G, remove as few vertices
(or edges) as possible from it so that it becomes bipartite1. Bipartization by either vertex-
or edge-deletion is NP-complete [Yann81]. However, making use of the fact that in our
applications—those presented in Chapter 7—the graphs that we are to bipartize will most
likely be rather small and “almost” bipartite, we develop an exact algorithm for solving
Graph Bipartization on these graphs. An implementation of this algorithm is presented
in Section 6.4. In this section, we also test the algorithm on random graphs, seeing that the
Graph Bipartization problem is already intractable for moderately sized random graphs.
However, as will be shown in Section 7.4 of the next chapter, the developed algorithms
generally allow the bipartization of graphs obtained during SNP analysis even if they contain
a few hundred vertices.

6.1 Introduction and Known Results

Besides its applications in computational biology—some of which are presented in Chap-
ter 7—the task of bipartizing a graph is also important for a range of non-biological problems
such as, e.g., VLSI chip design [CRS94]. The reason for this is that many problems can be
traced back to so called conflict-graphs, where the vertices of a graph represent certain data
and edges represent data-dependencies. The presence of odd cycles (later in this section we
show that a graph is bipartite if and only if it does not contain such cycles) in the conflict-
graph indicates that certain data-dependencies contradict each other. For example—as is
explained in more detail in Chapter 7—the bipartiteness of a graph constructed from a
set of given genotypes determines whether this set of genotypes can be resolved into the
underlying haplotypes. Logically, if data conflicts are presumed to be present in a set of

1“Bipartiteness” is defined in Section 3.1.

69

70 CHAPTER 6. GRAPH BIPARTIZATION

A graph G G bipartized G bipartized by
by deleting six edges deleting three vertices

Figure 6.1: A graph G and its optimal bipartization by edge and vertex deletion. The
bipartiteness of the middle and right graph are illustrated by coloring the vertices black and
grey such that no two equally shaded vertices are connected by an edge. Notice that such
a shading is not possible for the graph on the left, since it contains cycles of odd length
(e.g., 3).

data only due to some flaws (e.g., read or measurement errors), the question for a low-cost
way to bipartize the given graph directly arises. We may define bipartization in two ways,
formulating the Edge Bipartization and the Vertex Bipartization problem.

Definition 6.1 (Edge Bipartization Problem)
Input: Given a graph G = (V,E) and an integer k.
Question: Can G be made bipartite (i.e., free of odd cycles) by deleting at most k edges?

Definition 6.2 (Vertex Bipartization Problem)
Input: Given a graph G = (V,E) and an integer k.
Question: Can G be made bipartite (i.e., free of odd cycles) by deleting at most k vertices?

By Graph Bipartization we will denote a problem that is either Edge Bipartization
or Vertex Bipartization.

An example for both Edge Bipartization and Vertex Bipartization is given in Fig-
ure 6.1. The key graph-theoretic idea behind bipartization of a given graph is that a graph
is bipartite if and only if it does not contain any odd cycles (see, e.g., the bipartized graph
in Figure 6.1): Assume that a given graph G = (V1, V2, E) is bipartite and has an odd cycle.
Since G contains only edges between vertices in V1 and V2, if the cycle has an odd length
and starts at a vertex in V1, it would end in a vertex in V2, which clearly cannot be. Now
assume that a graph has no odd cycles. Then we can simply put an arbitrary vertex of G
into the first partition, all of its neighbors in the second, the neighbors of the neighbors in
the first again and so on. Assume now that there are two vertices u and v in G that are
connected by an edge e and have been put into the same partition (which would inhibit the
partitioning process). Then, there is a path p from u to v of even length in the already
partitioned graph because the already partitioned graph is connected. Since e connects u
and v, p and e form an odd cycle in the graph, a contradiction.

Both Edge Bipartization and Vertex Bipartization have been proven to be NP-
complete (e.g., see [Yann78], [Yann81] and [LeYa80]) for general graphs. For planar graphs,
Edge Bipartization is solvable in polynomial time [Hadl75] whereas Vertex Biparti-
zation on planar graphs is generally NP-complete (it becomes solvable in polynomial time
when the maximum vertex degree does not exceed 3) [CNR89, Karp72]. For any graph, we

6.1. INTRODUCTION AND KNOWN RESULTS 71

can find a set of edges in polynomial time that is larger by a factor of at most O(log |V |) com-
pared to the smallest possible set of edges2 that bipartizes a given graph [GVY96]. However,
it has been demonstrated in [PaYa91] that both Edge Bipartization and Vertex Bi-
partization are MAX-SNP-hard3, meaning that there is no PTAS4 for these two problems
unless P = NP [ALMSS92]. It remains an open question whether Graph Bipartization
problems can be approximated within a constant factor [GVY96].

The fixed-parameter tractability of Edge Bipartization and Vertex Bipartization is an
open question. A conjecture by Khot and Raman [KhRa02] concerning parametric duality5

states that for NP-complete problems that are in FPT, their parametric dual is often not
in FPT. This is however a simply empirical observation that should at most be taken as a
hint.

Vertex Bipartization has a parametric dual called MaxCut.

Definition 6.3 (MaxCut Problem)
Input: A graph G = (V,E) and a parameter k.
Question: Can V be partitioned into two disjoint subsets V1 and V2 such that there are at
least k edges in G from vertices in V1 to vertices in V2?

The fixed-parameter tractability of MaxCut is shown through a reduction to Max2Sat
(e.g., see [PoTu95] for details).

Definition 6.4 (Max2Sat Problem)
Input: A boolean formula F in 2-CNF and a parameter k.6

Question: Are k or more clauses in F satisfiable?

It is obvious that if a graph can be bipartized by deleting at most k edges from it, it has
a maximum cut of size at least |E| − k. An instance of MaxCut is reduced to Max2Sat
by a translation of a given graph G = (V,E) with V = {v1, . . . , vn} and E = {e1, . . . , em}
into a boolean formula F with n literals {ℓ1, . . . , ℓn} and two clauses Cj1 and Cj2 for each
edge ej = {va, vb}, where Cj1 = (ℓa∨ℓb) and Cj2 = (¬ℓa∨¬ℓb). By developing an algorithm
to solve Max2Sat with n clauses in nO(1) · 1.15n time, Gramm, Hirsch, Niedermeier and
Rossmanith [GHNR03] have also provided an nO(1) · 1.26m algorithm for solving MaxCut
on a graph with m edges. In the practical test of the developed branch&bound algorithms
for Vertex Bipartization and Edge Bipartization in (Sections 6.4 and 7.4), we will
use a Max2Sat-solving program developed by Gramm to compare our algorithms against.

In the above definition of Vertex Bipartization and Edge Bipartization, both prob-
lems were given as decision problems. However, in the next chapter, we will be interested in

2The optimization variants of Graph Bipartization problems will be introduced shortly.
3Note that second part of the name for this class is an abbreviation for “Strict NP” and has no connection

with SNPs. It is therefore pronounced “S-N-P” instead of “Snip”. More information on the class MAX-SNP

can be found, e.g., in Chapter 13 of [Papa94].
4PTAS stands for “Polynomial Time Approximation Scheme”. An approximation scheme for a problem P

is a set of approximation algorithms Aǫ, ǫ > 0, where the algorithm Aǫ approximates P to a factor of 1 + ǫ.
If every Aǫ has a running time that is polynomial with respect to the input length, we are referring to a
polynomial time approximation scheme.

5For a parameterized language L1, its parametric dual is L2 := {(x, k) | (x, |x| − k) ∈ L1}. For more
details, see, e.g. [PrSl03].

6A boolean formula is in 2-CNF, if it can be written as (ℓ1 ∨ ℓ2) ∧ (ℓ3 ∨ ℓ4) . . . where the ℓi are either
boolean literals or their negation. A good introduction to boolean formulas and boolean logic may be found,
e.g., in Chapter 4 of [Papa94]

72 CHAPTER 6. GRAPH BIPARTIZATION

finding a minimum number of edges or vertices to bipartize a given graph, i.e., the smallest k
for which Graph Bipartization returns “Yes” on a given graph.

Definition 6.5 (opt-Edge Bipartization Problem)
Input: Given a graph G = (V,E).
Output: The smallest integer k for which (G, k) ∈ Edge Bipartization.

Definition 6.6 (opt-Vertex Bipartization Problem)
Input: Given a graph G = (V,E).
Output: The smallest integer k for which (G, k) ∈ Vertex Bipartization.

By opt-Graph Bipartization we denote a problem that is either opt-Edge Biparti-
zation or opt-Vertex Bipartization. Note that any algorithm solving opt-Graph
Bipartization can be used to solve Graph Bipartization as well (for a given input
graph G, simply calculate the optimal k and output “Yes”, if for a given k′, k′ ≥ k) and
the running time of an algorithm for opt-Graph Bipartization is at most polynomially
worse than the running time for the respective Graph Bipartization problem.7

6.2 A Parameter-Preserving Reduction from Edge Bi-

partization to Vertex Bipartization

Using a parameter-preserving reduction, this section shows that Vertex Bipartization
is at least as hard to solve as Edge Bipartization. It should be noted that this proof
supports the general observation from [Yann81] that vertex-deletion problems in order to
achieve a certain graph-property generally appear to be harder than their edge-deletion
equivalents.

Theorem 6.7 Edge Bipartization is parameter-preserving reducible to Vertex Bipar-
tization.

Proof Let G1 = (V1, E1) be an instance of Edge Bipartization and G2 = (V2, E2) be the
parameter-equivalent instance of Vertex Bipartization we wish to construct. Let V1 =
{v1, . . . , vn} and E1 = {e1, . . . , em}. The new graph G2 will consist of two different types of
vertices:

• Type I: This set contains k + 1 duplicates of every vertex in V1:

VI := {uij | vi ∈ V1, 0 ≤ j ≤ k}

• Type II: This set contains two vertices for every edge in E1:

VII := {wℓ1, wℓ2 | eℓ ∈ E1}

Having defined these sets of vertices, we set V2 := VI ∪ VII. Note that vertices of type I are
all named by a u and those of type II by a w. The edges in E2 also consist of two sets:

7I.e., if there is an algorithm for Vertex Bipartization, we can test for all 0 ≤ k ≤ |V | on a given
graph G whether (G, k) ∈ Vertex Bipartization and output the smallest k for which this is true.

6.2. REDUCING EDGE BIPARTIZATION TO VERTEX BIPARTIZATION 73

Vertex-Types:
: Type I
: Type II

The original graph G1

for construction of G2

The vertices of V2

(k = 3 in this example)

G2 with all edges and
vertices from E2 and V2

Edge-Types:
: Type I
: Type II

Figure 6.2: Construction of a Vertex Bipartization instance from an Edge Biparti-
zation instance. On the top left, we see the original graph that is an input for Vertex
Bipartization. Then, on the top right, the vertices from the set VI and VII (see text for
details) are displayed. The final output graph of the reduction, where also all edges from
the sets EI and EII (again, see text for details) have been added, is shown. Note that al-
though the deletion of one single edge would be sufficient to bipartize G, we set k = 3 in this
example to better illustrate the duplication of the vertices in G1 by the vertices of type I.

• EI: For each edge in the original graph, there is a pair of vertices of type II. Each
such pair is connected by an edge from this set:

EI := { {wℓ1, wℓ2} | eℓ ∈ E1 }

• EII: Note that EI contains an edge for every edge in E1. If two vertices in G1 were
connected by an edge eℓ, then EII will connect the corresponding vertices in VI using
the edge {wℓ1, wℓ2} ∈ EI:

EII := { {uaj , wℓ1}, {ubj , wℓ2} | eℓ = {va, vb} ∈ E1, 0 ≤ j ≤ k}

In analogy to the vertices in V2, we set E2 := EI ∪EII. Figure 6.2 gives an example for the
construction of G2.

The idea behind the reduction is as follows: If two vertices va and vb are directly connected
in G1 by an edge eℓ, they are now connected by a path uajwℓ1wℓ2ubj of length 3 in G2. Note
that this conserves all odd and even cycles, for an even cycle of length 2n is now represented
as an even cycle of length 3 · 2n = 6n and an odd cycle of length 2n+ 1 as an odd cycle of
length 3 · (2n+ 1) = 6n+ 3. Deleting either wℓ1 or wℓ2 from the path directly corresponds
to the deletion of an edge in G1 concerning the destruction of cycles. Note that if VI were to
contain less than k duplicates of every vertex from V1, an algorithm that solves the Vertex
Bipartization problem on G2 might also consider deleting all of the vertices in VI that

74 CHAPTER 6. GRAPH BIPARTIZATION

correspond to a certain vi ∈ V1 in order to destroy an odd cycle—an operation for which
there is no equivalent edge deletion. The k + 1 duplicates therefore “secure” each vertex
from deletion. It remains to be shown that the duplication process conserves all cycles from
G1 in G2:

For any vertex ui ∈ VI, let Si := {uij | 0 ≤ j ≤ k}. Then for any Si, N(Si) shall be
defined as the set of vertices adjacent to all vertices in Si.

8 We now prove that any path
between a vertex w ∈ N(Si) and w′ ∈ N(Si) that contains solely vertices from Si and N(Si)
is of even length (∗). This is not hard to show since such a path p of length l between a
vertex w ∈ N(Si) and w′ ∈ N(Si) that contains solely vertices from Si and N(Si) can be
decomposed into p = ws1x1s2x2 . . . x l

2
−1s l

2
w′ where all x ∈ N(Si) and all s ∈ Si. Thus, l

must be even.

We now show that (G1, k) ∈ Edge Bipartization⇔ (G2, k) ∈ Vertex Bipartization.

“⇒”: Assume that G1 can be bipartized by deleting at most k edges, yielding G′
1. Then,

for each of those edges eℓ, we delete one of the corresponding vertices wℓ• in G2 (see the
Definition of VII). Now, assume that after this deletion process, there is still an odd cycle c
in G2. This cycle c must contain a vertex of type II because by (∗), cycles containing just
vertices of type I are even. Call this vertex wc. The cycle c may be interpreted as a path p
of odd length in G2 from a vertex wc to itself. This path will contain edges of both types I
and II. It follows from (∗) that there is an even number of edges of type II in p. After
having deleted the vertices in G2 that corresponded to edges deleted in G1, there is exactly
one edge of type II in G2 for every edge in G′

1. Thus, if c is odd, the number of edges of type
II in p must also be odd since E2 := EI ∪ EII and the other edge types are present an even
number of times. This however implies that there is an odd cycle in G′

1, a contradiction to
our initial assumption that G′

1 is bipartite.

“⇐”: Assume that we can bipartize G2 by deleting at most k vertices from it, yielding G′
2.

The following can be seen from the construction: If an odd cycle was induced in the original
graph G1, it will be induced in G2 and contain vertices of both types I and II. It is then
impossible to bipartize G2 by deleting vertices of type I, because for each vertex that was
part of the odd cycle in G1, there are now (k + 1) copies present in G2. We may therefore
assume w.l.o.g. that only vertices of type II are removed from G2. Removing a vertex of
type II from G2 will implicitly delete an edge from EI. Each edge in EI corresponds to
exactly one edge in G1. Now, delete all edges in G1 corresponding to the vertices that were
removed in G2, obtaining G′

1. If this does not bipartize G1 (as we intend), this means that
there is still an odd cycle—call this cycle c—present in G′

1. However, then those edges in EI

that correspond to the edges in c are still present in G′
2. The vertices of type II in G′

2

adjacent to those edges can therefore not have been removed from G2. But if, for the odd
cycle c, none of the corresponding edges or vertices have been removed in G′

2, G2 must also
contain that odd cycle and therefore cannot be bipartite—a contradiction.

Performing the construction of G2 requires O(|E1|+(k+1) · |V1|) ≤ O(|E1|+ |E1| · |V1|) time
for adding the vertices and O(|E1|+ (2k + 2) · |V1|) ≤ O(|E1|+ 2|E1||V1|) time for the edge
construction—it can thus be carried out in polynomial time. Note that the parameter k is
directly preserved by the reduction. �

The theorem implies that, from a parameterized point of view, Vertex Bipartization is
at least as hard to solve as Edge Bipartization.

8Note that for any Si, N(Si) ⊆ VII and that if a vertex is adjacent to one vertex in Si, it is adjacent to
all vertices in Si due to the construction.

6.3. A BRANCH&BOUND APPROACH 75

6.3 A Branch&Bound Approach

As was mentioned in Section 6.1, this section will develop algorithms for solving the opti-
mization variant of a given Graph Bipartization problem.

Having shown that Vertex Bipartization and Edge Bipartization are NP-complete,
not approximable within a constant factor, and might not even be fixed-parameter tractable,
we also know that the respective optimization variants opt-Edge Bipartization and opt-
Vertex Bipartization are also hard to solve. In this section, we will develop efficient
algorithms for opt-Graph Bipartization using a technique known as branch&bound based
on the idea that for the applications developed in Chapter 7, the given input graphs should
be relatively small and “almost bipartite.”

Branch&bound works as follows: As was noted in Chapter 3, NP-complete problems can be
solved by a computer that correctly guesses a solution to the problem and then determinis-
tically verifies it. As we do not have access to a machine with such “oracle” capabilities, we
have to try all possible solutions—branch&bound is, in a way, an attempt to perform this
trial and error procedure more “intelligently.”

We shall illustrate the principle of branch&bound using opt-Vertex Bipartization as an
example. For a given opt-Vertex Bipartization instance, trying all possible solutions
means we have to find all possibilities to bipartize G and see which is the minimal number of
vertices necessary to bipartize G. There are 2|V | subgraphs induced by G, as each vertex can
either be deleted or kept in the graph. Bipartizing the graph by deleting vertices is equivalent
to looking for an induced bipartite subgraph in G that contains as many vertices as possible.
Assume that we have enumerated the n vertices of a graph G as v1, . . . , vn. Then we can use
the following algorithm to generate all 2|V | = 2n subgraphs of G by a branching algorithm
similar to the one introduced in Section 3.3: We select a vertex v from G and branch into
two subcases, where in the first subcase v is kept in the graph and in the second case v
is removed from G. For the resulting subgraphs, the algorithm is applied recursively (note
that once we have decided to keep v in the graph, it cannot be removed by the algorithm
on the resulting subgraph). Initially, the algorithm is called with G and n as inputs.

Algorithm: Enumerating subgraphs
Input: A graph G = (V,E) with labeled vertices

V = v1, . . . , vn and a number i
Output: All 2n induced subgraphs of G

01 if i = 0 then
02 output G

03 call this algorithm with G and i− 1 as inputs
04 call this algorithm with G \ {vi} and i− 1 as inputs

Observe that this algorithm can be depicted in a search tree structure as in Section 3.3. In
order to find an optimal solution to opt-Vertex Bipartization on G we have to look for
a leaf in the tree that yields a bipartite graph with as many vertices as possible. So far, the
branch&bound search seems just to be a trial and error approach with exponential running
time. We will not be able to loose the exponential worst-case running time, however, there
are two ways to (hopefully significantly) speed up our search:

• The key to branch&bound is the following idea: If a partial solution cannot do better
than the best solution so far it is not further explored in the search tree. Assume

76 CHAPTER 6. GRAPH BIPARTIZATION

that we have already found a solution to opt-Vertex Bipartization on G that
uses only i < n vertices. If we are at an inner node N in the tree where we have
already deleted i vertices from G, the solutions generated by traversing further into
the tree from N can never be better than the one we have already found. We therefore
do not need to traverse into that subtree and can directly look at another branch in
the tree leaving from N ’s parent node. By always keeping the best solution found
so far in memory, we therefore do not need to traverse the whole tree to see if there
is a better one, but only look into “promising” solutions. In order to further speed
up the search in its initial phase, a heuristic is employed to get a (hopefully good)
initial solution. A heuristic9 is an algorithm that finds a solution to a problem but
does not guarantee optimality.10 Special heuristics for opt-Edge Bipartization and
opt-Vertex Bipartization will be developed later on in this chapter.

• There are possibly certain structures in the graph G for which we can deterministically
predict how they will be solved in an optimal solution to opt-Vertex Bipartization
on G. For example, vertices of degree 1 cannot be part of a cycle and therefore do not
need to be considered for deletion when traversing the search tree. We refer to such
operations as data reduction. We can “pre-solve” such structures before performing
the actual branch&bound procedure, thereby reducing the amount of input data. Data
reduction can also be employed during the search tree traversal.

Using these techniques, we can generally—but without any guarantees—speed up an exhaus-
tive search for an optimal solution to opt-Graph Bipartization on G. This is exactly
what we will later see in the implementation of the algorithms in Sections 6.4 and 7.4:
While the algorithms are generally too slow to bipartize random graphs even of moderate
size and average vertex degree, they are generally capable of solving Graph Bipartization
for graphs from SNP analysis even if these graphs contain a few hundred vertices.11

The development of an efficient branch&bound algorithm for opt-Graph Bipartization
is divided into the following two subsections: The next subsection will present the heuristics
for obtaining the initial bound for the respective opt-Graph Bipartization problem,
followed by the subsection presenting the data reduction rules applied. An implementation
of the developed algorithms in the Java programming language is presented and analyzed
in Section 6.4.

6.3.1 Initial Heuristics

For the opt-Edge Bipartization-heuristic we will use an algorithm developed by Schröder,
May, Vrto, and Sýkora [SMVS97]12. This algorithm is very efficient, easy to implement,
and—according to [SMVS97]—often produces results that are very close to the optimal
solution (although there is no guarantee for the quality of the solution). The algorithm
works as follows on a given graph G: First, the vertices of G are colored randomly red and
blue. Then, as long as there is a vertex v in G that has more neighbors colored equally to it

9The word heuristic originates from the greek word ǫὺρίσκǫιν , meaning “to discover.”
10There are many heuristics—including the ones that we will use—that do not make statements even

about how close the generated solution is to an optimal one.
11The significance of this result will become clear later in this section when discussing Reduction Rule 3:

A complete enumeration of all possible solutions to a Graph Bipartization problem would have to consider
over 2100 < 1030 subgraphs for a graph containing 100 vertices.

12The title of this paper, “Approximation algorithms for the Vertex Bipartization Problem”, is quite
misleading as this paper only deals with heuristics for Edge Bipartization.

6.3. A BRANCH&BOUND APPROACH 77

initial graph G randomly colored G

no further improvement
possible by recoloring

Figure 6.3: Illustration of the recoloring heuristic for Edge Bipartization used to obtain
an upper bound for the branch&bound algorithm. Starting with a randomly colored graph,
if there are vertices in G whose recoloring reduces the number of conflict edges in G, these
vertices are recolored. The detailed algorithm is provided in the text. Note that the recolor-
ing heuristic yields a suboptimal solution (six edges instead of four) to Edge Bipartization
in this example.

than neighbors colored differently to it, the respective v is recolored (hence, this algorithm
is referred to as the recoloring heuristic for Edge Bipartization). We will refer to an edge
that connects two equally colored vertices as a conflict edge. Written in pseudocode, the
algorithm looks like this:

Algorithm: Recoloring heuristic for Edge Bipartization from [SMVS97]
Input: A graph G = (V,E)
Output: An upper bound for Edge Bipartization on G

01 randomly color vertices in G red or blue
02 while there is a vertex v in G with more neighbors

colored equally than differently to it do
03 change the color of v
04 return number of conflict edges in G

The algorithm’s worst-case running time is bounded by O(|V | · |E|) since each execution of
line 03 decreases the total number of conflict edges in the graph by at least one. However,
practical performance of the algorithm (see Section 6.4) has shown to be a lot better than

78 CHAPTER 6. GRAPH BIPARTIZATION

suggested by this bound. The algorithm is illustrated in Figure 6.3.

The heuristic for determining the upper bound of opt-Vertex Bipartizationon G is as
follows: The graph is traversed using depth-first search.13 In the heuristic algorithm, an
initial vertex is chosen arbitrarily. From then on, we are always traversing from a visited
vertex to a not-visited one during the search. The heuristic will color the graph during
traversal; the initial vertex is given the color red, and from then on, each vertex that
is visited from a red vertex is colored blue and vice-versa. During this coloring process,
conflicts may arise if a vertex is given a color that one of its neighbors already has (this
leads to conflict edges between equally colored vertices). In this case, if the newly colored
vertex causes more than one conflict edge, it is deleted from G. If the newly colored vertex
causes one conflict edge ec, the endpoint of ec with the higher degree is removed from G. In
a more formal form:

Algorithm: opt-Vertex Bipartization heuristic
Input: A graph G = (V,E)
Output: An upper bound for opt-Vertex Bipartization on G

01 cost ← 0
02 choose v ∈ V arbitrarily
03 color(v) ← red
04 for each vertex u visited from a colored vertex w

during depth-first search traversal of G do
05 if color(w) = red then
06 color(u) ← blue
07 if color(w) = blue then
08 color(u) ← red
09 if u has more than one neighbor colored equally to it then
10 G ← G \ {u}
11 cost ← cost + 1
12 if u has exactly one neighbor x colored equally to u then
13 z ← vertex from {u, x} with maximal degree
14 G ← G \ {z}
15 cost ← cost + 1
16 return cost

The idea behind this heuristic is the following: The graph is greedily colored as if it were
bipartite. Once this cannot be done anymore, two cases are distinguished: If the newly
colored vertex u is the cause of more than one conflict edge, either it or all equally colored
neighbors need to be removed from G. The locally cheaper solution, i.e., the deletion of u,
is chosen. If the coloring of u causes just one conflict edge with another vertex x in G, the
vertex with the higher degree is deleted because this implicitly removes as many edges—
potential conflict edges—as possible from G. The algorithm is illustrated in Figure 6.4. As
the algorithm executes a depth-first search algorithm exactly once, its running time is O(|E|)
(assuming that marking vertices as “deleted” takes constant time).

13Depth-first search is an algorithm to efficiently traverse all vertices in a connected graph in O(|E|) time
using a recursive procedure. See, e.g., [CLRS01] or [Skie98] for details.

6.3. A BRANCH&BOUND APPROACH 79

initial graph G step 1 step 2 step 3

resolve conflict step 4 step 5 step 6

step 7 resolve conflict

done (graph is bipartite)
maximum cost for

Vertex Bipartization on G is 2

Figure 6.4: Illustration of the heuristic for opt-Vertex Bipartization used prior to
branch&bound. Starting from an initial vertex in a graph G which is colored black, all
vertices in the graph are colored alternatively grey and black during a depth-first search
traversal of G. If conflict edges (drawn in bold) arise, the newly colored vertex or one of its
neighbors is deleted according to the rules given in the text. For the displayed proceeding
of the algorithm, a solution involving the deletion of 2 vertices from G is found (in this case,
this is even an optimal solution).

6.3.2 Data Reduction Rules

The following data reduction rules can be applied to a graph G before and while performing a
branch&bound search for an optimal solution to opt-Vertex Bipartization or opt-Edge
Bipartization. For all reductions, we will use the following notation and agreements: The
reduction rules are always applied to a graph G = (V,E), G is not assumed to be connected,
however, all reduction rules presented apply only to connected components.14 If G induces
a connected bipartite subgraph G′ = (V ′, E′), we denote by V ′

1 and V ′
2 (where V ′

1 ∩ V
′
2 = ∅

and V ′ = V ′
1 ∪ V

′
2) the two subsets into which V ′ can be divided such that E′ contains no

edges between vertices in V ′
1 and vertices in V ′

2 . For simplifying the discussion, we shall refer
to vertices in one of the two subsets (either V ′

1 or V ′
2) as being colored red and those in the

other subset as being colored blue (analogously to the previous section).

In order to simplify the discussion of data reduction for opt-Edge Bipartization, we will
allow edges to be given a weight ω : E → N. This weight has the following meaning: Initially,
each edge in the graph has weight 1, however, if it is observed during data reduction that
a certain structure (e.g., a set of paths) between two vertices u and v can only be removed

14If G is not connected, we should not solve Edge Bipartization or opt-Vertex Bipartization on G

as a whole but on its connected components separately as this is much more efficient (see the discussion of
Reduction Rule 3).

80 CHAPTER 6. GRAPH BIPARTIZATION

from the given graph by deleting at least i edges between u and v, this substructure is
replaced by an edge of weight i—representing the fact that the deletion of this edge in the
new graph actually represents the deletion of i edges in the original graph.

For opt-Vertex Bipartization, we introduce the following modification: As will be shown
in the following reduction rules, it is sometimes possible to predetermine for a vertex v that
there is an optimal solution to opt-Vertex Bipartization on the given graph that does
not include v. In this case we allow v to be marked as “not considered for deletion”, meaning
that during branch&bound, there is no branching considering the deletion of v—rather, v is
always kept in the graph. We denote such a marking of a vertex v by calling v “undeletable”.
Note that a vertex marked as “undeletable” is still considered for removal by reduction rules
that might apply to it.

It is important to note that there are two main types of reduction besides the special case for
opt-Vertex Bipartization just mentioned: The first one involves removing some parts
of a graph because these parts do not play any role in finding an optimal solution. The
second one involves choosing a certain edge e or vertex v for deletion because it is clear that
there must exist an optimal solution containing e or v, respectively. We will emphasize the
difference between “deletion” and “removal” by increasing a variable count—reflecting the
increase in the cost of the solution—each time a deletion is performed.

It is important to recognize that through the application of an individual reduction rule,
other rules may become applicable, therefore, the following reduction rules should be used
iteratively on the input graph until no further modification is possible. In principle, the
order of execution of the individual reduction rules is not important in the sense that the
execution of one rule renders another rule inapplicable. For best performance, however,
Reduction Rules 1 and 2 should be executed first as they are quick and may quickly reduce
the given graph’s size. This should then be followed by Rules 3 and 4. These rules may split
a connected component in the input graph into two or more smaller connected components,
so that the following, computationally more expensive rules can be carried out on each
component separately, which greatly increases their efficiency (see also the discussion of
Reduction Rule 3).

The following rules are all applicable to both Edge Bipartization and Vertex Biparti-
zation unless explicitly stated.

Reduction Rule 1 (Removing Bipartite Components): If G induces a connected bi-
partite component C, remove C.

Correctness The correctness of this algorithm is obvious. However, it is presented here
because some of the later reduction rules as well as the branch&bound procedure itself
might cause a bipartite connected component to be induced in G.

Running time: All bipartite connected components in the input graph can be found using
a depth-first search algorithm that colors the vertices in G while detecting all connected
components. This takes O(|E|) time.

Reduction Rule 2 (Removing Vertices of Low Degree: Remove all vertices of de-
gree 1 from G. For opt-Vertex Bipartization, mark all vertices v of degree 2 as un-
deletable.15

15Odd cycles consisting just of vertices of degree 2 are handled by Reduction Rule 5.

6.3. A BRANCH&BOUND APPROACH 81

v
u

v
u

: bipartite subgraph, still bipartite including v

: non-bipartite subgraph

v

Reduction
Rule 3

Reduction
Rule 4

opt-Edge

v

: bipartite subgraph, not bipartite if v is included

v

Bipartization

Bipartization
opt-Vertex

opt-Edge
Bipartization

Bipartization
opt-Vertex

Figure 6.5: Examples for Reduction Rules 3 and 4. A detailed description is given in the
text.

Correctness and Running Time: The algorithm—clearly executable in O(|V |) time—is cor-
rect for vertices of degree 2 since any odd cycle in G that includes v must also include both
its neighbors. Therefore, for any optimal solution to opt-Vertex Bipartization on G in-
cluding v there is a corresponding optimal solution including one of v’s neighbors. Vertices
of degree 1 can impossibly induce a cycle in G and can therefore be removed.

In the implementation of the branch&bound algorithms, we will also introduce the following
optimization for opt-Edge Bipartization: A vertex v of degree 2 is only colored if both
of its neighbors already have been colored. This is due to the fact that we can then color v
deterministically.16

Reduction Rule 3 (Splitting the Graph I): Let e ∈ E be an edge-separator17 of or-
der 1 in G = (V,E). Then, remove e from G.

Example: See Figure 6.5 for an illustration of this reduction.

Correctness: If e is an edge that connects two otherwise disconnected components in G,
then e may clearly not be member of a cycle in G. Therefore, any union of two optimal

16If both neighbors are colored equally, we color v in the opposite color, otherwise we color v so that the
weight of the edge that connects v with its equally colored neighbor has minimum wight.

17Separators are defined in Section 3.1.

82 CHAPTER 6. GRAPH BIPARTIZATION

solutions an opt-Graph Bipartization problem on G1 and G2 yields an optimal solution
for G = G1 ∪G2 ∪ {e}.

Application of this rule can significantly reduce the running time of the branch&bound algo-
rithm: As we have already seen previously, branch&bound needs (in a worst-case estimation)
to check O(2|V |) different solutions to solve opt-Edge Bipartization or opt-Vertex Bi-
partization on a graph G. However, if there is an edge e in G whose removal splits G into
two nonempty components G1 = (V1, E1) and G2 = (V2, E2) with

V1 ∩ V2 = ∅, V1 ∪ V2 = V,

then, solving opt-Edge Bipartization or opt-Vertex Bipartization for both compo-
nents separately only requires looking at

2|V1| + 2|V2| ≤ 2 · 2max{|V1|,|V2|} ≤ 2|V |

solutions. Note that the gain in computational speed through this rule increases the more
equally sized the two components are.

Running time: In order to find all separating edges that comply with this reduction rule, we
need to iterate over all e = {u, v} ∈ E and then, for every such e, test in O(|E|) time (using
depth-first-search), if there is a path from u to v that does not lead over e. Thus, the total
running time for applying this rule is O(|E|2).

Reduction Rule 4 (Splitting the Graph II): Let v ∈ V be a vertex-separator of order 1
in G = (V,E) whose removal splits G into n connected Components C1, . . . , Cn. Then,

• for opt-Edge Bipartization: If v is already colored, replace G by the n connected
components G1, . . . , Gn where Gi is the subgraph induced in G by the vertices of Ci ∪
{v}. Remove all Gi that are bipartite.18

• for opt-Vertex Bipartization: If, for a certain Ci, the subgraph induced in G by
the vertices of Ci ∪ {v} is bipartite, remove Ci from G. If a Ci itself is bipartite, but
the subgraph induced by the vertices in Ci ∪ {v} is not, delete v, and increase count
by one.

Example: See Figure 6.5 for an illustration of the different cases of this reduction.

Correctness: For opt-Edge Bipartization, the correctness of the reduction rule is clear:
If v is a vertex-separator of order 1 for G, any odd cycle including v does not include vertices
from two different Ci. For opt-Vertex Bipartization, there are two cases to consider:
On the one hand, if a connected component Ci is bipartite and Ci ∪ {v} is bipartite as
well, there are no odd cycles in G that include a vertex from Ci, for that reason Ci may be
removed from G. On the other hand, if a component Ci is itself bipartite, but Ci ∪ {v} is
not, then there exists at least one odd cycle in G consisting of v and some vertices in Ci.
Note however that all such odd cycles that can be destroyed by deleting a vertex from Ci

may also be destroyed by deleting v.

Running time: In order to find all vertex-separators of order 1 in G, we iterate over the
vertices in G, each time testing by depth-first-search whether deletion of v results in at
least two connected components. This takes a total of O(|V ||E|) time. For each of these

18If v is not colored, we branch into two subcases where v is either colored red or blue before applying
this reduction rule.

6.3. A BRANCH&BOUND APPROACH 83

components, we test in the case of opt-Vertex Bipartization whether it is bipartite and
whether v only has edges to vertices of one color for each component. Thus, the algorithm
takes O(|V ||E|) time for opt-Edge Bipartization and O(|V |2|E|) time for opt-Vertex
Bipartization.

Reduction Rule 5 (Making Simple Paths Shorter): Let u and v be two vertices in G
that are connected by a path p = (w1 . . . wl) of length ℓ in G; u and v may additionally be
connected by an edge e ∈ E. If every wi has degree 2, then remove all w from G and

• connect u and v by a new edge {u, v} if ℓ is even and u and v are not already connected
by an edge in E.

• connect each u and v to a new vertex z by two edges {u, z} and {v, z} if ℓ is odd.

For opt-Edge Bipartization, two cases must be distinguished for the adjustment of the
edge-weights:

I. If ℓ is even, {u, v} has a weight equal to the minimum weight edge in p plus—if u
and v were connected by an edge e before the reduction—the weight of e.

II. If ℓ is odd, both {u, z} and {v, z} have a weight equal to the minimum weight edge
in p.

If there is a connected component in G that is a cycle of size 3, delete the lowest weight edge
(or—in the case of opt-Vertex Bipartization—an arbitrary vertex) from the cycle and
remove the rest of the component.

Example: See Figure 6.6 for an example of the cases of this reduction. In the figure, paths
of length 3 (top) and four (bottom) and their respective reduction are shown as examples.

Correctness: Note that by replacing the path p by a shorter one, all odd cycles in G are
preserved.

Correctness for opt-Edge Bipartization: Since the removal of a single edge from p de-
stroys all cycles that include p, there is no optimal solution to opt-Edge Bipartization
on G that includes the removal of two or more edges from p. The adjustment of the edge-
weights assures that we replace p by an edge whose weight is equal to the lowest weight edge
that would destroy p. Adding the weight of the edge e connecting u and v (if such an edge
exists in G) in Case I is justified by the observation that in order to “disconnect” u and v,
we have to delete an edge in p as well as e itself (any odd cycle including p implicitly defines
an odd cycle that contains e instead of p).

Correctness for opt-Vertex Bipartization: Assume that there is at least one cycle in G
that contains the path p between u and v. If there is an optimal solution to opt-Vertex
Bipartization on G that includes the removal of a vertex from p (thus “disconnecting” u
and v), then there must also be one that includes either u or v, because deleting either u
or v from G clearly “disconnects” u and v just as the deletion of any other vertex from p

would. Moreover, cycles that include either u or v but not p are destroyed alongside.

Running time: This reduction rule can be implemented very efficiently in O(|V |) time:
To find all simple paths in the graph, we simply iterate over each vertex u in G. If the
respective u has degree 2, we check which of its neighbors v and w has degree 2. For each
neighbor that has degree 2, we check whether its neighbor (other than u) has degree 2 and so

84 CHAPTER 6. GRAPH BIPARTIZATION

: bipartite subgraph, still bipartite including u and v

Reduction
Rule 5

Reduction
Rule 6

: bipartite subgraph, still bipartite including u

Bipartization
opt-Vertex

u v

u v

u v

u v

vu vu

vu

but not bipartite if v is included

u

z

Figure 6.6: Illustrations for Reduction Rules 5 and 6. Detailed descriptions for the corre-
sponding rules are provided in the text.

on, extending the path until we reach to end-vertices with a degree different from two, then
applying the reduction. If this rule is applied for opt-Edge Bipartization, we additionally
record the lowest weight edge in p while elongating p (this only requires a constant amount
of additional time for each vertex added to p). Each vertex of degree 2 is only looked at
once, any other step can be carried out in constant time. Hence the algorithm takes O(|V |)
time to find all simple paths in the graph.

Reduction Rule 6 (Vertex Separators of Order 2): Let {u, v} ⊆ V be a vertex-
separator of order 2 in G, where C is a connected component induced in G by deletion of u
and v.

• If C ∪ {u, v} is bipartite, replace C in G by a path of even length with edges e and e′

if all paths from u to v using just vertices in C are of even length, else replace C by
an edge e′′. For opt-Edge Bipartization, the weight of e, e′ and e′′ is equal to the
weight of the minimum cut in G′ = C ∪ {u, v} between u and v.19

• For opt-Vertex Bipartization: If G′ = C ∪ {u, v} is not bipartite but C ∪ {u} is,
delete v from G, increasing count by one. Additionally, remove C from G. Proceed
analogously if G′ is not bipartite but C ∪ {v} is.

Example: See Figure 6.6 for an example of the cases of this reduction.

Correctness: If G′ = C∪{u, v} is bipartite, this subgraph contains no odd cycles. Therefore,
if there are odd cycles in G that include vertices from C, these will always include u and v
as well. This already justifies the replacement by paths for opt-Vertex Bipartization,

19The minimum cut between two vertices u and v in a graph is the edge separator of minimum weight
whose deletion puts u and v into two disjoint connected components.

6.3. A BRANCH&BOUND APPROACH 85

as for any optimal solution including the deletion of a vertex w from C there is a corre-
sponding optimal solution including the deletion of v or u instead of w. For opt-Edge
Bipartization, if there is an optimal solution that includes the deletion of edges from G′,
then all paths between u and v must be destroyed by such a deletion. The minimum sum
of edge-weights necessary in order to achieve this is exactly the minimum cut between u

and v. The correctness of the second special case of this reduction rule for opt-Vertex
Bipartization is shown as follows: If G′ is not bipartite, at least one vertex from G′ must
be deleted in order to bipartize G. Since C ∪{u} is bipartite, deleting v leads to an optimal
solution as any odd cycle in G that includes vertices from C can be destroyed by deleting v.
We can remove C afterwards due to Reduction Rule 4, as u is a vertex separator of order 1
in G after the deletion of v.

Running time: Finding all C in G to which this reduction rule may be applied can be
done in O(|V |2 · |E|) time by iterating over all possible pairs u, v ∈ V and then testing if
the removal of u and v yields a bipartite connected component in G. For opt-Vertex
Bipartization, O(|V |2 · |E|) is then also the total running time for this reduction rule, as
finding out whether all paths between u and v are even or odd can be done in constant time
once we have found a bipartite component C in G \ {u, v}—we just have to look if both u

and v are connected to equally colored vertices in C (in which case all paths are of even
length) or to differently colored ones (in which case all paths between u and v via C would
be of odd length). For opt-Edge Bipartization, we have to additionally perform the
edge weight adjustment. The minimum cut between u and v in G′ can be found, e.g., using
the Ford-Fulkerson algorithm first presented in [FoFu62].20 The running time for the Ford-
Fulkerson algorithm is bounded by O(|E| · |V |) in this case21, leading to a worst-case running
time of O(|V |3 · |E|2) for this reduction rule when applied to opt-Edge Bipartization.

Reduction Rule 7 (Simplifying Cycles of Size 3): For opt-Vertex Bipartiza-
tion: Let there be three vertices u, v, and w in G that form a cycle of size 3, where w

has degree 2. Let the degree of v be smaller than that of u. If the degree of v is at most 3,
delete u from G, increasing count by one. (Note that afterwards, v and w can be removed
from G due to Reduction Rule 2.)

Example: Figure 6.7 provides an illustration for this reduction. Note that after the deletion
of u, Reduction Rule 3 can be applied to the resulting graph.

Correctness: Since u, v, and w form an odd cycle c in G, at least one of these three vertices
must be removed from G in order to bipartize G. Consider any odd cycle c′ 6= c in G.
Observe that any c′ that can be destroyed by removing w from G can also be removed by
deleting either u or v from G. Now, if the degree of v is at most 3, any odd cycle other
than c in G that includes v must include u as well. Therefore, there must be an optimal
solution to opt-Vertex Bipartization on G that includes the removal of v.

Running time: This reduction rule can be carried out in O(|V ||E|) time using the following
algorithm:

20The work by Ford and Fulkerson in [FoFu62] explores the important algorithmic area of network flows.
The Ford-Fulkerson algorithm finds a maximum flow F in a graph G between two vertices u and v—the
value of |F | is equal to the minimum cut separating u and v according to the famous max-flow min-cut
theorem.

21If F is a minimum cut for a graph G, the running time of the Ford-Fulkerson algorithm is bounded
by O(|E| · |F |) according to [CLRS01]. Note that the minimum cut between u and v cannot be larger
than max{degree(u), degree(v)} < |V |, leading to the total O(|E| · |V |) worst-case running time.

86 CHAPTER 6. GRAPH BIPARTIZATION

u v

w

v

w

Figure 6.7: An example for Reduction Rule 7. Note that after applying this rule—i.e., after
deleting u and increasing count by one—v and w may be removed from G due to Reduction
Rule 2

Algorithm: opt-Vertex Bipartization, Reduction Rule 5
Input: A graph G = (V,E)
Output: G modified according to Reduction Rule 5

01 for each w ∈ V of degree 2 do
02 v ← neighbor of w with lower degree
03 u ← neighbor of w with higher degree
04 if {u, v} ∈ E then
05 if degree(v) ≤ 3 then
06 G ← G \ {u}
07 count ← count + 1

Reduction Rule 8 (Simplifying Cycles of Size 4): Let there be a cycle c of size 4
in G whose vertices do not induce a cycle of size 3. If c contains exactly two vertices of
degree 2 that are not connected,22 then remove those two vertices and their edges from G.
Add a new vertex z to G and connect the remaining two vertices from c—denote them by u
and v—to z via two edges e′ := {u, z} and e′′ := {v, z}. For opt-Edge Bipartization, the
edge-weights are adjusted in the obvious way: In c, u and v are connected via two distinct
paths. The weight of e′ and e′′ is set to the sum of the lowest weight edge in one path and
the lowest weight edge in the other.

Example: Figure 6.8 illustrates the different cases of this reduction rule.

Correctness: Since only the vertices u and v are connected to G \ c and c is of even length,
any odd cycle in G that contains vertices from c also includes u and v. This justifies the
replacement of c for opt-Vertex Bipartization. For opt-Edge Bipartization, it is
additionally important to note that in order to “disconnect” u and v we must remove an
edge from each of the two distinct paths between u and v via c.

Running time: In order for this reduction to run fast, we need to find a way to detect cycles
of size 4 in G that comply with this reduction rule. This can be accomplished in O(|V |2)
time using the following algorithm:

Algorithm: Finding cycles of size 4 for Reduction Rule 8
Input: A graph G = (V,E)
Output: All cycles of size 4 in G that comply with

the requirements of Reduction Rule 8

01 for each w ∈ V do

22Note that the case where there are two vertices of degree 2 in c that are connected by an edge leads to

the structure

u v

which is already handled by Reduction Rule 5.

6.3. A BRANCH&BOUND APPROACH 87

02 if w has degree 2 then
03 u ← first neighbor of w
04 v ← second neighbor of w
05 for each neighbor z of u do
06 if z has degree 2 an z 6= w then
07 if z has u and v as neighbors then
08 output {w, u, z, v}

For applying the reduction rule, instead of outputting the cycles we perform the actual
reduction (this takes a constant amount of time). The algorithm requires O(|V |) time each
time lines 05 to 08 are called (we iterate over O(|V |) vertices, note that lines 06 to 08 require
only a constant amount of time since the degree of z is bounded by 2). Lines 02 and 03

obviously require a constant amount of time. Lines 02 to 08 are called O(|V |) times by line
01; therefore, the total running time of this algorithm is O(|V |) ·O(|V |) = O(|V |2).

Reduction Rule 9 (Simplifying Grids): For opt-Vertex Bipartization: Let there

be two cycles c1 = uwzz′ and c2 = vxzz′ in G (this leads to the ∞-like structure
u z′ v

w z x

). If z and z′ have degree 3, u and v are not connected, and w and x are not connected by
an edge, remove z, z′, and their adjacent edges from G and add two edges {u, x} and {w, v}
to G.

Example: Figure 6.8 provides an illustration for this reduction rule.

Correctness: Suppose that there is an optimal solution to Vertex Bipartization on G

that includes the deletion of z. Now, the solution can only be optimal if one of the five
other vertices w, u, v, x, or z′ is included as well (note that otherwise, the deletion of z is
redundant as there are still paths between u, w, and v, x). We can now simply show that
independently of which of these five vertices is included in the solution, there is always a
corresponding optimal solution that does not include the deletion of z:

• If the additional vertex is w, delete x instead of z.

• If the additional vertex is u, delete w instead of z.

• If the additional vertex is z′, delete u and w instead of z and z′.

• If the additional vertex is v, delete x instead of z.

• If the additional vertex is x, delete w instead of z.

For each of these “deletion-substitutions,” the following holds true: Any two vertices that
were “disconnected” using the original solution are also disconnected in the new solution.
Therefore, for any optimal solution to Vertex Bipartization that includes either z, z′,
or both, we have shown that there must then exist an equally sized optimal solution to
Vertex Bipartization on G that includes neither the deletion of z nor that of z′.

Running time: In order to be able to efficiently carry out this reduction rule, an efficient
algorithm for identifying the grid-like structure formed by c1 and c2 is needed. The following
algorithm can find all such structures in a graph in O(|V | + |E|) time by iterating over all
vertices in G in O(|V |) time to find a vertex z of degree three. For each neighbor z′ of z

88 CHAPTER 6. GRAPH BIPARTIZATION

Reduction
Rule 8

u v u v

u v

w x

u

w x

v

Reduction
Rule 9

z

z′

z

Figure 6.8: An illustration for Reduction Rules 8 and 9.

that has degree 3 as well, we check in O(|E|) time whether the neighbors of z and z′ can be
grouped into two pairs where the vertices in each pair are connected by an edge.

By Reduction Rule 9, we conclude our presentation of reduction rules. The presented rules
have been chosen mainly because they can be implemented rather efficiently and are expected
to be applicable to a wide range of possible input graphs. Some rules have been given only for
opt-Vertex Bipartization, because the reduction does not allow a correct representation
of the edge-weights: For example, consider the grid in Reduction Rule 9. Deletion of the
newly inserted edge {u, x} after the reduction has the same effect as deleting {u, z′} and
{z, x} in the original graph. The analogue holds true for the inserted edge {w, v}. So far,
the edge-weights for {u, x} and {w, v} seem obvious, however, they are unable to handle the
case where the only optimal solution to opt-Edge Bipartization on the input graph G

involves the deletion of {z, z′}.

There are still some possibilities for future extensions of the algorithm. For example, for
cliques23 in the input graph, it is more efficient to perform the branching on which ver-
tices/edges are not deleted rather than on which are deleted. This is due to the observation
that for a clique of size k, at least k − 2 vertices need to be deleted in order to bipar-

tize that clique; for opt-Edge Bipartization, at most k2

4 of the k2 − k edges can be
kept in the graph, because a bipartite graph with k vertices may not contain more than

max
i≥0

k−i
2 ·

k+i
2 = k2

4 edges. The problem with a reduction rule based on cliques is that we

need to find an efficient way to find large cliques—but finding a maximum clique in a graph
is not only NP-complete but also hard to approximate (similar to Graph Bipartization,
there exists no PTAS24 for clique detection unless P=NP). Moreover, since the graphs in
this work originate from biological sources and edges represent conflicts or flaws in the
original data, we would not expect to see large cliques occurring in the input graph to our
branch&bound algorithm.

Extensions of the above reduction rules to edge- or vertex-separators of a higher order
than 2 do not seem useful and/or possible: Finding large edge- or vertex-separators in a
graph should be possible e.g., using maximum-flow techniques (see Reduction Rule 6), but
the main argument employed above that “an odd cycle in G must contain either all or none
of the separator elements” does not work for higher order separators because there might
be odd cycles in the input graph that contain only a subset of the separator.

23A clique in a graph is a subgraph where every vertex is connected to all other vertices by an edge.
A clique of size k therefore contains k(k − 1) = k2 − k edges.

24Refer to footnote 4 on page 71 for a definition of PTAS.

6.4. IMPLEMENTATION AND COMPARISON OF THE ALGORITHMS 89

6.4 Implementation and Comparison of the Algorithms

It was already emphasized at the beginning of the last section that branch&bound algo-
rithms provide no guarantees that their running time is better than an exhaustive search
of all possible solutions to a given problem. Therefore, in order to determine the efficiency
of the developed Graph Bipartization-algorithms, they were implemented in the Java25

programming language (version 1.4.1) and tested on random graphs as well as graphs corre-
sponding to the SNP-related problems presented in the next chapter. In this section, we first
introduce the usage of the software-package, followed by some implementation details (e.g.,
the data structure for representing the graph). This section is concluded by the results from
testing the implementation on various random graphs, the results concerning SNP-related
problems are presented in Section 7.4. As we will see then, although the algorithms do not
allow us to efficiently solve Graph Bipartization on random graphs in general, they are
efficient for solving the graphs arising during the analysis of SNPs.

6.4.1 Using the Program

The bipartization-software was designed with the experimental testing of the algorithms
in mind. It therefore provides detailed statistics concerning the size of the search tree,
various running-times, and reduction rule usage. Whilst the output files are provided in
a very readable format, the user-interface is only a command-line interface (rather than a
graphical one) in order to simplify automatic batch testing for many graphs and keep the
measurements free from interferences with Java’s rather slow graphical output capabilities.

Input File Format: The format for the input file is straightforward and should easily
be convertible to other graph formats such as that of the LEDA graph-library26. The file
specifying the graph must be written in plain ASCII-text and is build up as follows (text
that must literally appear in the input file is written in a typewriter-font):

01 # Graph name

02 The name of the graph
03 # Number of Vertices

04 The number n of vertices in the graph.
05 # Number of Edges

06 The number m of edges in the graph.
07 # Vertex Names

08 The names for the graph’s vertices, each one in a separate line.
.
.
.

08+n # Edges

09+n For each edge in the graph, a separate line contains the
connected vertices’ names separated by a space character.

.

.

.

09+n+m # EOF

25A good overview of Java is, e.g., [Flan02]. Sun MicrosystemsTM provide a free software-development
kit (SDK) for Java on their webpage [SuMi03].

26LEDA, a library written in the C++-programming language, is widely regarded as one of the “the
best-designed general-purpose graph data structure[s] currently available” [Skie98]. More information about
LEDA can be found in [MeNä99].

90 CHAPTER 6. GRAPH BIPARTIZATION

Note that the vertex names in lines 08 to 08+n−1 may not contain any spaces (such as the
simple space character or a tabstop).

Starting the Program: The program is started by calling

java Bipartize infile outfile [E V R H<int> A]

where infile is the name of the file containing the graph that is to be bipartized, and
outfile specifies the name of the file to which the results from the branch&bound program
will be written to. Additionally, the following flags are recognized:

E makes the program solve opt-Edge Bipartization on the input-graph.

V makes the program solve opt-Vertex Bipartization on the input-graph.

R turns off data reduction during branch & bound (the initial data reduction is still
performed).

H is only valid for opt-Edge Bipartization and must be directly followed by an inte-
ger. This integer specifies the number of runs for the initial (randomized) recoloring
heuristic. Since the heuristic for opt-Vertex Bipartization is deterministic, this
flag has no effect when used together with the H flag.

A terminates the program after the initial heuristic was executed, writing the approxi-
mate solution to the output file.

Note that exactly one of the flags E and V must be specified by the user, all other flags may
be specified at will.

Output: The detailed results of the bipartization as well as statistics concerning, e.g.,
search tree size and usage of reduction rules, are written to the specified logfile.

6.4.2 Some Implementation Details

In this subsection, we introduce the basic implementation-scheme and some details concern-
ing, e.g., the used data structures of the Graph Bipartization-software package. The
implementation consists of 16 classes with a total of about 2600 lines of code; the relations
of the central 11 classes are provided as a UML diagram27 in Figure 6.9 which shows the
basic structure of the implementation.

The most important fact to notice in the implementation is that vertices and edges in the
graph can only be created but never deleted using the methods provided by the Graph
class itself. Methods for deleting vertices and edges from the graph are only provided by
the GraphModifier class, which can be created from a Graph using the Graph.modifier()
method. Once an element from the graph has been deleted by a GraphModifier, it cannot
be restored directly but only through using the GraphModifier.undoStep() method. This
ensures that elements in the graph can only be undeleted in the reverse order that they were

27UML is a standard for showing class-relations for programs written in object-oriented languages such as
Java or C++. The standard is specified by the Object Management Group [OMG03]. A good introduction
to UML is, e.g., [Page99].

6.4. IMPLEMENTATION AND COMPARISON OF THE ALGORITHMS 91

GraphReader
{from default}

+ read()

EdgeHeuristic
{from default}

+ execute()

VertexHeuristic
{from default}

+ execute()

VertexDataReduction
{from default}

EdgeDataReduction
{from default}

+ execute()

EdgeBipartizer
{from default}

+ execute()

VertexBipartizer
{from default}

+ execute()

Vertex
{from default}

+ adjacentEdges()

Edge
{from default}

GraphModifier
{from default}

*

- ePointers

0..1
-u

0..1
-v

uses

uses, creates

uses uses

uses, creates

uses

uses, creates
uses, creates

uses

-modifier
0..1

-modifier
0..1

0..1 -dataReduction 0..1 -dataReduction

creates

uses

+ setNumberOf
HeuristicRuns()

+ setNumberOf
HeuristicRuns()

+ undoStep()+ undoStep()
+ execute()

+ connectedComponents()
+ createEdge()
+ createVertex()
+ edges()
+ isBipartite()
+ modifier()
+ vertices()

{from default}

Graph

uses

0..1 -heuristic

uses

uses

uses uses

uses

uses

0..1
-graph

0..1
-graph

0..1
-graph

0..1
-graph

0..1
-graph

0..1
-graph

-graph
0..1

-heuristic0..1

+ addEdge()
+ addVertex()
+ deleteEdge()
+ deleteVertex()
+ undoStep

+ degree()

+ getColor()
+ unDeleteEdge()

+ deleteEdge()

+ connects()
+ getPointers()
+ getU()
+ getV()
+ getWeight()

Figure 6.9: UML-diagram for the implementation of the branch&bound algorithm. Note
that for each class, only the “relevant” (meaning relevant to understanding the basic program
function) portion of public methods is shown in order to keep the diagram readable.

deleted, i.e., if an element a was deleted earlier than an element b it can only be undeleted
once b has been undeleted. Observe that this deletion-scheme is sufficient for the graph-
modifications performed by a branch&bound algorithm on the graph,28 allowing us to work
with only a single copy of the graph in memory29 and thus avoiding the computational cost
in terms of time and memory required for creating many duplicates of the graph.

The most important benefit of the GraphModifier’s delete-undelete scheme is the speedup of
the deletion and undeletion itself. Making use of the fact that the insertion of vertices and
edges into the graph is only performed during initialization of the branch&bound algorithm,
the implementation trades a computationally more time-expensive graph-creation process
for the gain of computational speed during the branch&bound process itself: After the

28Recall the algorithm presented on page 75.
29Keeping the information necessary for the undelete-operation can be done very efficiently, as we will see

shortly

92 CHAPTER 6. GRAPH BIPARTIZATION

graph has been created, a vertex v can be deleted and undeleted in O(degree(v)) time from
the graph, edges can even be deleted and undeleted in O(1) time. In order to achieve
this, a double-linked list is constructed for the graph elements whose individual elements
can be accessed in constant time via a HashMap.30 Due to the stack-like structure of the
deletion-undeletion scheme, pointers in the double-linked list can be modified in constant
time because we can be sure that before an undelete-operation is performed for a specific list
element, the list has exactly the same buildup it had right after the corresponding deletion.
Since the graph elements are never really deleted but only shut off from being accessed,
storing the undelete-information only requires to store pointers to the deleted elements,
which never occupies more memory than the graph itself.

Some other details to notice in the implementation are the following:

• The VertexBipartizer class provides a method setNumberOfHeuristicRuns() only to
maintain a common interface with the EdgeBipartizer class—since the heuristic for
opt-Vertex Bipartization is deterministic, executing it more than once would be
redundant.

• Each edge can be assigned an array of edge-pointers by the Edge-constructor. This is
important for the opt-Edge Bipartization reduction rules, because these reduction
rules may replace multiple edges with a single new one. This new edge then contains
a reference to the edges it represents by its edge pointer, which greatly simplifies the
output of results. If no edge-pointers are specified during construction, an edge only
has a pointer to itself.

• Since each vertex maintains a double-linked list of its adjacent edges, the class Vertex
provides the delete() and unDelete() methods to manipulate this list when an adjacent
edge or vertex is removed from the graph.

Some possible future improvements to the presented implementation will be discussed to-
wards the end of this section following the presentation of the practical tests’ results.

6.4.3 Tests and Test Results

In this subsection, we present results concerning the performance of the branch&bound
implementation on random graphs. Results concerning the performance on graphs related
to the SNP problems introduced in the next chapter are given in Section 7.4.

Methodology The practical experiments on random graphs can be divided into two parts:
In the first part, random graphs (RGs) were generated and then bipartized. In the second
part, random bipartite graphs (RBGs) were generated, followed by an addition of a fixed
number of de-bipartizing edges or vertices, where de-bipartizing edges connect two red or
two blue vertices and de-bipartizing vertices are connected to both some red and some blue
vertices.

Both the RGs and the RBGs were generated by the following algorithm that is used to
generate random graphs in LEDA [MeNä99]: First, a list of all possible edges in the respec-
tive graph is created. Then, the desired number of edges in the graph is chosen randomly

30See, e.g., [CLRS01] for more details on hash-based data structures

6.4. IMPLEMENTATION AND COMPARISON OF THE ALGORITHMS 93

from this list and inserted into the graph. The de-bipartizing elements were inserted analo-
gously.31 Using these random graphs, the following measurements were made for opt-Edge
Bipartization and opt-Vertex Bipartization:

• The running-time and search tree size when bipartizing a RG with 20 vertices, relative
to the average vertex degree. Each measurement was performed twice, once with and
once without the application of data reduction during branch & bound (initial data
reduction was always performed).

• The running-time and search tree size when bipartizing a RG with an average vertex
degree of 3, relative to the number of vertices. Each measurement was performed twice,
once with and once without the application of data reduction during branch&bound
(initial data reduction was always performed).

• The running-time and search tree size when bipartizing a RBG with 20 vertices, relative
to the average vertex degree and the number of de-bipartizing elements.

• The running-time and search tree size when bipartizing a RBG with an average ver-
tex degree of 3, relative to the number of vertices and the number of de-bipartizing
elements.

Additionally, we evaluate the average usage and performance of the reduction rules and the
performance of the initial heuristics.

Since in a first run of the experiments, the reduction rules based on separators (Rules 3, 4,
and 6) were almost never applicable (although computationally expensive), it seems that
the general structure of random graphs makes separators of small order very improbable
(see the discussion towards at the end of this section). The respective reduction results
were therefore switched off for all measurements in order to facilitate the testing of more
instances.

With the purpose of obtaining a good estimation of the average-case running-time and search
tree size during bipartization, each measurement was performed on 10 different RGs/RBGs
with the same parameters (number of edges, vertices and de-bipartizing elements), leading
to a total of approximately 6 000 bipartized graphs. All results were obtained on a machine
equipped with a 2.4 GHz Intel R© Pentium R© IV Processor and 512 MB physical memory,
running Red HatTM Linux. The software was compiled using the Java SDK 1.4.1 from Sun
MicrosystemsTM [SuMi03].

Results The recoloring heuristic almost always found a solution that is within 20% of an
optimal solution (with the average difference being around 15%) when executed 10 times.
This figure can be decreased further to an average difference of less than 10% by executing
the heuristic approximately 25 times.32 The heuristic for opt-Vertex Bipartization did
not perform as well although satisfactory: It almost always finds a solution that is within
50% of the optimal solution, with the average heuristic solution being about 40% larger
than an optimal one. It should be noted that the opt-Vertex Bipartization heuristic is

31Note that a graph with, e.g., n added de-bipartizing edges may still have a solution to opt-Edge
Bipartization that is smaller than n because it might be bipartized more efficiently by deleting other edges
other than the inserted ones. In the following results, we will say that a graph has n added de-bipartizing
elements if only if the solution to the corresponding opt-Graph Bipartization problem really has size n.

32Cases where the recoloring heuristic might not perform well are discussed in [SMVS97]. Interestingly,
some of these cases are handled by the reduction rules from this chapter.

94 CHAPTER 6. GRAPH BIPARTIZATION

103

104

105

102

103

104

2 2.5 3 4.542 2.5 3.53 4.54 5

av
er

ag
e

ru
n
n
in

g
ti

m
e

[m
s]

average vertex degree

3.5 5

opt-Edge Bipartization opt-Vertex Bipartization

with reduction rules

no reduction rules no reduction rules

with reduction rules

average vertex degree

av
er

ag
e

ru
n
n
in

g
ti

m
e

[m
s]

Figure 6.10: Running time for the implemented Graph Bipartization-algorithms on a
graph with 20 vertices and varying average vertex degree. Note how the overhead due to the
data reduction algorithms causes the total running time to increase up to 3 and 10 times
for opt-Edge Bipartization and opt-Vertex Bipartization, respectively.

0

105

106

2 2.5 3.53 4.54 5

av
g.

si
ze

of
se

ar
ch

-t
re

e
[n

o
d
es

]

average vertex degree

opt-Edge Bipartization opt-Vertex Bipartization

with reduction rules

no reduction rules

107

0

1.7 · 104

2.3 · 104

2 2.5 3.53 4.54 5

with reduction rules

no reduction rules

5 · 104

av
g.

si
ze

of
se

ar
ch

-t
re

e
[n

o
d
es

]

average vertex degree

Figure 6.11: Search tree size for the implemented Graph Bipartization-algorithms on a
graph with 20 vertices and varying average vertex degree. The reduction rules turn out to
be most effective for graphs with an average vertex degree of 3, especially in the case of
opt-Vertex Bipartization.

deterministic and therefore only executed once, a randomized variant that can be executed
multiple times would probably perform as well as the recoloring heuristic.

The running time required for opt-Edge Bipartization and opt-Vertex Bipartization
on a graph with 20 vertices and varying average vertex degree is shown in Figure 6.10, the
corresponding search tree sizes are given in Figure 6.11. Since the search tree sizes correlate
with the running time of the algorithms, only the measured running times of the subsequent
experiments are shown in this work.

Figure 6.12 displays the exponential increase in running time for Graph Bipartization
when the number of total vertices in the RG increases linearly. In Figures 6.13 and 6.14, we
show the measured running times for the experiments on RBGs.

The average reduction rule usage was measured to be as follows:

6.4. IMPLEMENTATION AND COMPARISON OF THE ALGORITHMS 95

10 15 20 25 30 35

103

104

105

106

107

number of vertices

av
er

ag
e

ru
n
n
in

g
ti

m
e

[m
s]

opt-Edge Bipartization

10 15 20 25 30 35

102

103

104

105

106

number of vertices

av
er

ag
e

ru
n
n
in

g
ti

m
e

[m
s] opt-Vertex Bipartization

no reduction rules

with reduction rules

no reduction rules

with reduction rules

Figure 6.12: Running time for the implemented Graph Bipartization-algorithms on a
graph with average vertex degree 3 and a varying total number of vertices.

4 5 6 7 8

500

1000

1500

2000
de-bipartizing edges: 7

6

4
5

3
2
1

ru
n
n
in

g
ti

m
e

[m
s]

opt-Edge Bipartization

4 5 6 7 8

104

2 · 104

3 · 104

4 · 104

de-bipartizing vertices: 7

6

5

4
3 21

ru
n
n
in

g
ti

m
e

[m
s]

opt-Vertex Bipartization

average vertex degree average vertex degree

Figure 6.13: Running time for the implemented Graph Bipartization-algorithms on
graphs with 20 vertices and varying average vertex degree. The respective running times
increase only linearly with the average vertex degree for a fixed number of de-bipartizing
elements.

Rule opt-Edge Bipartization opt-Vertex Bipartization
1 6.1% 25.9%
2 68.1% 33.7%
3 (off) (off)
4 (off) (off)
5 15.2% 8.6%
6 (off) (off)
7 not applicable 10.8%
8 10.7% 5.5%
9 not applicable 5.6%

Discussion The first observation we can make in Figure 6.10 is that although all reduction
rules that were turned on during the measurements were used (with a relative usage of more
than 5%), the running times for both the opt-Edge Bipartization and the opt-Vertex
Bipartization solving program are slower by a factor of almost ten with reduction rules

96 CHAPTER 6. GRAPH BIPARTIZATION

102

103

105

104

106

of de-bipartizing edges: 7
6
5
4
3
2

1

10 14 18 22 26 30 34 38

102

103

6

5

4
3

2

1

10 14 18 22 26 30 34 38

of de-bipartizing vertices: 7

av
er

ag
e

ru
n
n
in

g
ti

m
e

[m
s]

av
er

ag
e

ru
n
n
in

g
ti

m
e

[m
s]

number of vertices number of vertices
(not including de-bipartizing ones)

Figure 6.14: Running time for the implemented Graph Bipartization-algorithms on
graphs with an average vertex degree of 3 relative to the total number of vertices.

turned on. This can be explained by looking at the corresponding tree-size in Figure 6.11:
The reduction rules are only capable of at best halving the total search tree size, but—as
is to be expected from the runtime-analysis in the previous section—they consume more
time than they can make up for by this reduction. Another interesting fact to note in
Figure 6.10 is the exponential increase in running time with a linear increase of the average
vertex degree—at first sight this would not be expected since the algorithms’ and reduction
rules’ running time did not indicate such a behavior in our previous run-time analysis. At a
second glance, however, note that the more “dense” the RGs become in terms of edges, the
average number of deleted edges/vertices required to bipartize the graph increases as well.33

Figure 6.14 shows that—as was to be expected—the average running time for our algorithms
increases exponentially with the total number of vertices in the RBG. Note, however, that
this increase is not as bad as would be expected: In a graph with 5 more vertices than a given
graph, a complete search of all possible solutions to a given Graph Bipartization problem
would approximately take 25 = 32 times as long as for the original graph. The observed
increase however is by only about a factor of 10 (instead of 32) for 5 additional vertices. This
figure does not even consider that, as in the previous experiments, the average size of the
optimal solution increases with the total number of vertices. Once we take account of this
fact by looking at the algorithms’ running times when the number of de-bipartizing elements
is kept constant (Figure 6.14), we see that the observed increase-factor is even lower: For
Vertex Bipartization, it varies from about 1.3 for 5 additional vertices (1 de-bipartizing
vertex) to 2 for 5 additional vertices (7 de-bipartizing vertices).

In Figure 6.13 we can see—as was to be expected— that for a fixed number of de-bipartizing
elements, the algorithms’ running times increase only linearly with the average vertex degree
(i.e., total number of edges).

Overall, the developed algorithms show a rather long running time already for moder-
ately sized RGs and RBGs. In some preliminary tests for opt-Edge Bipartization, the

33E.g., in the experiments for opt-Edge Bipartization on a RG with 20 vertices, an increase in the
average vertex degree by 0.5 increased the size of the average optimal solution by approximately 4 edges.

6.4. IMPLEMENTATION AND COMPARISON OF THE ALGORITHMS 97

Max2Sat software by Gramm mentioned at the beginning of this chapter outperformed
the opt-Edge Bipartization algorithm by a factor of up to 10 on the random graph in-
stances. Bear in mind however, that graphs corresponding to SNP problems may have some
special properties we might not expect in random graphs:34 Intuitively, it seems likely that
the special structures such as separators, long paths, etc. are not present initially in the
RGs and RBGs constructed, but rather emerge close to the leafs of the search tree, when
the analyzed graph is small and many edges/vertices have already been removed from it. In
order to test this hypothesis, a variable was added to the implementation counting how close
to the leaf the reduction rules concerning separators could be applied, it was possible to see
that these reduction rules are—if at all—mostly applicable about 3 to 4 levels up from a leaf
on a RG with 20 vertices and an average vertex degree of 3. The application of reduction
rules (especially those separating the graph into several small subgraphs) is however most
effective close to the root of the search tree.

As we shall see in Section 7.4, the reduction rules developed in this section can—although
being hardly applicable to random graphs—significantly reduce the running time of opt-
Edge Bipartization and opt-Vertex Bipartization on graphs obtained from the SNP
analysis problems of the next chapter, enabling us to bipartize these graphs even when they
contain a few hundred vertices.

34The reasons for this will be discussed later in Section 7.4.

98 CHAPTER 6. GRAPH BIPARTIZATION

Chapter 7

Using Graph Bipartization in
SNP Analysis

In the previous chapter, algorithms for opt-Vertex Bipartization as well as opt-Edge
Bipartization were developed. It was already mentioned then that graph bipartization
has a broad field of applications. This chapter will discuss two recently posed problems
in SNP analysis that will turn out to be closely related to Graph Bipartization. The
first problem—analyzed in Section 7.2—concerns the problem of selecting fragments from a
diploid1 DNA in order to obtain two consistent haplotypes during sequencing. Section 7.3
concerns a more indirect approach to detecting SNPs: Based on the assumption that SNPs
have evolved according to a perfect phylogeny (see Chapter 5), we use a set of genotypes
which are then resolved into the—presumed—underlying haplotypes of the genotype set.
At the end of this chapter, we test the Graph Bipartization algorithms developed in the
last chapter on graphs arising from SNP problems, showing that they are often capable of
efficiently solving these graphs even if they contain a few hundred vertices.

7.1 Introduction and Overview of Results

Modern DNA sequencing techniques are only capable of sequencing DNA fragments of at
most 1 000 bases in length. If the DNA of a diploid organism is sequenced we obtain slightly
different fragments at SNP sites. However, for reassembly of the fragments it is vital to be
able to distinguish fragment differences due to SNP sites in the diploid source sequence from
those that are caused by errors in the sequencing process. In order to separate the two from
each other, we will use a minimality argument (i.e, most fragments are presumed to have
been read correctly) proposed in [RBIL02], leading to the Minimum SNP Removal and
Minimum Fragment Removal problem (Definitions 7.2 and 7.3, respectively). The latter
problem is shown to be parameter equivalent to Vertex Bipartization in Corollary 7.6.
For the former problem we show that this problem is at least as hard as Edge Bipartiza-
tion (Theorem 7.5). For reasons that are discussed at the end of Section 7.2, a reduction
from Minimum Fragment Removal does not appear to be possible, leaving it an open
problem to find an upper hardness bound for Minimum SNP Removal.

1Recall from Chapter 2 a human cell contains two copies of each non-sex chromosome.

99

100 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

Section 7.3 uses a different approach to obtain SNP data: For current sequencing techniques,
it is often infeasible (e.g., due to prohibitively high cost and labor) to directly sequence hap-
lotype data. Instead, genotype data is obtained, i.e., we know for certain sites that a SNP
occurs but cannot tell which haplotype actually shows which base. Given a whole set of
genotypes, however, it has been proposed to infer the haplotypes that probably cause the
observed genotypes by assuming that all haplotypes must have evolved according to a per-
fect phylogeny [Gusf02] (the reasons to justify this assumption are given in Section 7.3).
Analogously to the fragment removal problems, we analyze the complexity of the problems
that arise when dealing with reading errors and/or the case where some haplotypes have not
evolved in a perfect phylogeny. It will be shown that the Minimum Genotype Removal
problem (Definition 7.8) is at least as hard as Edge Bipartization (Theorem 7.9) and
the Minimum Site Removal problem (Definition 7.10) is parameter-equivalent to Ver-
tex Bipartization (Theorem 7.11). Due to analogue reasons as in the case of Minimum
SNP Removal, the existence of a parameterized or parameter-preserving reduction from
Minimum Genotype Removal to Edge Bipartization remains open.

Concluding this chapter, we test the algorithms for Vertex Bipartization that were
developed in the last chapter on some instances of Minimum Fragment Removal and
Minimum Genotype Removal, showing that these two problems can generally be effi-
ciently solved even if the corresponding Vertex Bipartization instance contains a few
hundred vertices.

7.2 SNP Haplotype Assembly

Current methods in DNA sequencing are not powerful enough to sequence a whole strand
of DNA but only fragments of at most 1 000 bases in length. In order to still be able
to sequence longer strands of DNA, a technique called shotgun sequencing—invented by
Sanger around 1980 (e.g., see [SCHHP82])—is employed.2 Shotgun sequencing proceeds
as follows: The source sequence is first copied many times using PCR3 and then more or
less randomly broken into fragments, e.g., using DNA cutting enzymes called endonucleases.
These fragments are then sequenced individually.4 Afterwards, the resulting small sequences
need to be reassembled to obtain the whole DNA strand’s sequence. Assembly is a com-
putationally quite involving task that has, e.g., to deal with read errors of the fragments
obscuring a correct alignment or with repeated regions in the DNA strand that produce
very similar fragments. In order to overcome some of this difficulties, fragments are often
generated in pairs and therefore contain some extra information concerning their relative
distance on the source sequence (this technique is known as double barrel shotgun sequencing
[RBWL95, WeMy97]).

Recall that the human genome is diploid. Therefore, when sequencing a human genotype,
due to the high similarity in the two chromosomes and errors in the sequencing and assembly
process, it is often not possible to directly infer the pair of haplotypes that gives rise to the
observed genotype from the given fragments. Since for a certain location on the genome,
a fragment can take at most two different values (e.g., in a heterozygous SNP site), a
fragment from the sequencing read will from now on be represented as a string over the
alphabet {0, 1, ?}. The symbols 0 and 1 will be used to represent the two different possibilities

2For more information on shotgun sequencing see, e.g., [WeMy97] or Chapter 7 of [Wate95].
3For more information on PCR, refer to the footnote concerning PCR on page 8.
4Details on the sequencing of individual fragments such as sequencing by restriction endonucleases, chem-

ical cleavage, or the chain-terminator method may be found, e.g., in Chapter 28 of [VoVo95].

7.2. SNP HAPLOTYPE ASSEMBLY 101

a

b

c

d

ef

g

h

a

b

c

d

ef

g

h

a

b

c

d

e

f

g

h

i i

i

0 1 1 0 0 1

000 0 1 0 111

0 0 1 0 111

0 1 1 0 1 0 11

0 0 1 1 0 1 0

000 0 1 0 ?1

000 0 0 011

0 00 0 11

00 11

?

?

???

???

???

??

??

?? ??

?? ?

? ?

?

?

?

0 1 1 0 0 1

000 0 1 111

11 0

0

⇒

⇒

1

0

Figure 7.1: An example for Minimum Fragment Removal on a set of fragments: The
upper left matrix represents the reads of 9 fragments a, . . . , f . From this matrix, the frag-
ment conflict graph GF is constructed (first arrow). Then, GF is bipartized by removing the
vertex g. From the resulting bipartite graph, we can directly infer which fragments belong
to which haplotype from the coloring of the respective vertices. The resulting haplotypes
when corresponding vertices are merged are shown below the conflict graphs (third arrow).

for a base at a certain SNP site. If a read for a certain site has not been made,5 it is
represented by a “?”. In order to obtain (infer) the underlying pair of haplotypes from a
set F of fragments, [LBILS01] introduces the so-called fragment-conflict graph GF .

Definition 7.1 (Fragment-Conflict Graph):
Given a set F of fragments, the fragment-conflict graph GF represents each fragment as a
vertex, and connects two fragments a and b by an edge if there exists a SNP site for which
a and b have explicitly different6 reads.

It is clear that in order to infer a pair of haplotypes from the given fragments, we must be
able to partition the set of vertices in GF into two subsets such that there exist no conflicts
(i.e., edges) between two vertices in the same subset. This is exactly the case when GF is
bipartite; which we shall use to expose the following two problems’ relationships to Graph
Bipartization:

Definition 7.2 (Minimum SNP Removal):
Given a set of fragments, what is the minimum number of SNP sites that need to be ignored
in order for the fragments to be resolvable into two haplotypes?

Definition 7.3 (Minimum Fragment Removal):
Given a set of fragments, what is the minimum number of fragments that need to be removed
from the set in order for the remaining fragments to be resolvable into two haplotypes?

An example for Minimum Fragment Removal and the resulting haplotypes is given in
Figure 7.1. We have already shown that in order to be able to reassemble the individual
fragments from the sequencing process, the corresponding conflict-graph must be bipartite.

5Note that this will be the case for many sites, as the length of a read is generally a lot shorter than that
of the actual sequence

6I.e., if either a or b is a “?”, the two fragments are not connected.

102 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

In the remaining part of this section, we show that this leads to a close linkage between
Graph Bipartization and Minimum SNP Removal/Minimum Fragment Removal,
using the following lemma:

Lemma 7.4 For any given graph G = (V,E), it is possible to construct a set F of fragments
over the alphabet {0, 1, ?} in polynomial time such that the conflict graph GF is isomorphic7

to G.

Proof Let V = {v1, . . . , vn} and E = {e1, . . . , em}. Then, we construct n fragments (each
one corresponding to a certain vertex) of length m, such that the ith site in the fragment
representing vi has value “1”, all fragments representing vertices to which vi is connected by
an edge take value “0” for site i, and all other vertices take value “?”. Then, if we construct
GF for the fragments, we obtain a graph with n vertices where two vertices are in conflict
(i.e., connected by an edge) if and only if they were connected by an edge in the original
graph. �

Theorem 7.5 Vertex Bipartization is parameter-preservingly reducible to Minimum
Fragment Removal. Edge Bipartization is parameter-preservingly reducible to Mini-
mum SNP Removal.

Proof In the reduction of Lemma 7.4, we obtain a set of fragments where there is exactly
one fragment for every vertex in the original graph and exactly one SNP site corresponding
to every edge in the graph. This “1:1-relationship” ensures that if the set of fragments can
be resolved into haplotypes by removing at most k fragments (SNP-sites) from it, then the
corresponding conflict graph (which is isomorphic to the graph we want to bipartize) can
be bipartized by deleting at most k vertices (edges) from it. Note that the reduction in
Lemma 7.4 is clearly computable in polynomial time with respect to the size of the input
graph. �

From the above theorem, we can deduce the following corollary:

Corollary 7.6 Minimum Fragment Removal is parameter-equivalent to Vertex Bi-
partization.

Proof The parameter-preserving reduction from Vertex Bipartization to Minimum
Fragment Removal is given by Theorem 7.5. For the reverse direction, note that each
fragment in a given Minimum Fragment Removal instance always corresponds to ex-
actly one vertex in the fragment-conflict graph. Therefore, if the conflict graph can be
bipartized by deleting at most k vertices from it, deletion of the corresponding fragments in
the given Minimum Fragment Removal instance allows the fragments of this instance to
be resolved into haplotypes. �

The above corollary 7.6 allows us to use the Vertex Bipartization-algorithm from Chap-
ter 6 to efficiently solve this problem, as will be shown later in Section 7.4.

Note that a result similar to Corollary 7.6 for Minimum SNP Removal (i.e., the reduction
to Edge Bipartization) is all but obvious and therefore remains an open problem in the

7Two graphs G1 = (V1, E1) and G2 = (V2, E2) are called isomorphic if there is a bijection Φ : V1 → V2

such that {va, vb} ∈ E1 ⇔ {Φ(va), Φ(vb)} ∈ E2.

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 103

scope of this work: E.g., observe the edge {b, g} in Figure 7.1. The 9th SNP site is “respon-
sible” for this conflict edge. However, observe how by ignoring this site for the construction
of the conflict graph (in order to delete {b, g}), we implicitly delete the edge {h, i} as well.
There are other problems as well, e.g., multiple SNP sites causing the same edge in the
conflict graph (e.g., the edge {b, g} is caused by the 3rd, 4th, and 7th SNP site).

7.3 Inferring Haplotypes from Genotypes

At the beginning of this work we have introduced SNPs, variations in a single nucleotide
along multiple copies of the same DNA segment of different organisms and within the hap-
lotypes of a diploid organism. Today, sequencing techniques that are commonly used in
practice yield genotype instead of haplotype information. The direct inference of haplo-
types is—although possible [PBH01]—often not considered for practical use due to cost and
speed considerations. The problem that arises with this is the following: Techniques that
only provide genotype instead of haplotype information give the bases for both SNPs at a
certain site but do not specify the chromosome on which each of them appears. This is no
problem if two haplotypes are homozygous (i.e., they contain the same base at the given
site). If, however, the genotype is heterozygous, problems arise as becomes clear from the
following example: Consider a genotype sequence TXXG, where X stands for a SNP in
the individual haplotypes that contains A in one haplotype and C in the other. Then, the
observed genotype can be resolved into haplotypes in four different ways:

TXXG −→
TAAG
TCCG

, TXXG −→
TCCG
TAAG

,

TXXG −→
TCAG
TACG

, or TXXG −→
TACG
TCAG

.

Observe that as in the above example, a SNP site in a single genotype may show at most
two different bases. We have already mentioned in Chapter 2 that even throughout a whole
set of genotypes, SNPs often occur in only two variations (this is confirmed by the data used
for practical tests in Section 7.4). For each SNP site, we shall therefore label one of the two
possible variations “0” and the other one “1”, allowing us to represent genotype information
for a SNP site by one of three states:

• “0” represents a site where a 0 occurs in both haplotypes,

• “1” represents a site where a 1 occurs in both haplotypes, and

• “2” represents a site where a 0 occurs in one haplotype and a 1 in the other.

A genotype representing m different SNP sites can then be written as a row vector (genome
vector) with m entries from the alphabet {0, 1, 2}. A haplotype vector (in this context, we
will often use the term “haplotype” for means of abbreviation) is a row vector with entries
from the alphabet {0, 1}. This section will deal with the problem that, given n genotypes of
length m, we would like to find the corresponding haplotypes to those genotypes such that
for each observed genotype the result provides two haplotypes that explain this genotype.
As has been illustrated above, this is not possible without any further constraints (recall
that there were four ways to resolve even a single genotype into two haplotypes). It has
been suggested as a reasonable constraint that the resulting haplotypes must obey a model
of perfect phylogeny [Gusf02]. This model will predict the correct haplotypes for the given
genotypes under two assumptions:

104 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

1. The most arguable assumption is that there is an absence of recombination. Under
this assumption, each haplotype sequence is derived from a single ancestor in the
previous generation and their evolutionary history will form a tree structure [Huds90].
The absence of recombination is justified by Gusfield by the biological observation
that often, in long blocks of genetic data, recombination seldomly occurs. It seems
that including recombination into the models for inferring haplotypes will make the
corresponding computational problems a lot harder to solve as a whole new multitude
of combinatorial unknowns (i.e., the sites of recombination) are introduced.

2. The so-called “infinite sites” assumption: Since we cannot detect multiple mutations
that occurred during evolution at a single SNP site, the assumption is made that
at most one mutation has occurred within the evolutionary timeline for that SNP.
According to [Gusf02], empirical data supports this assumption.

Gusfield [Gusf02] furthermore provides three reasons to justify a model of perfect phylogeny,
the most convincing of which is a success in practical applications: The program PHASE,
one of the first available programs for inferring haplotypes from genotypes, generates data
most effectively, i.e. the predicted haplotypes are often correct, if it is assumed that the
generated haplotypes obey a model of perfect phylogeny [SSD01].

An efficient algorithm to solve the problem of inferring haplotypes from genotypes in order to
obtain a perfect phylogeny was given by Eskin, Halperin, and Karp in [EHK03] (experimental
studies of the algorithms are given in [HaEs03]). This algorithm directly relates the inference
of haplotypes from genotypes to Graph Bipartization problems, as this section will show.
For a formal definition of the problem, we assume as was justified above that there are only
two possible nucleotides for any given SNP site8, one of these two possibilities is labeled 1,
the other 0. A genotype (made up of two haplotypes) is then represented as a row vector
representing m sites with entries from the alphabet {0, 1, 2} as already introduced above.
For example, if the haplotypes (0 1 0 1 1 1 0 1 0 0 1 0 1 1) and (1 0 0 1 1 0 0 0 1 1 1 1 1 0) occur in
a genome we would only see the row vector (1 2 0 1 1 2 0 2 2 2 1 2 1 2). Each pair of haplotype
vectors that generates the given genome vector is called compatible with that genome vector.
There is, as has been pointed out at the beginning of this section, quite a multitude of ways
to resolve a genome vector into two compatible haplotype vectors (hence the restriction to a
perfect phylogeny of the individual haplotypes). In this work, we will be seeking for a way
to solve the following problem:

Definition 7.7 (Perfect Phylogeny Haplotype Problem)
Input: A set of n genotype-representing row vectors, each of length m.
Question: Is it possible to resolve the genotype vectors into a set of haplotype vectors such
that the haplotypes have evolved according to a perfect phylogeny scheme?

For example, given the genotype vectors (2 0 1), (0 2 1), and (1 1 1), can the underlying
haplotypes have evolved according to a perfect phylogeny? As we will see later in this
chapter, this is not the case (see Footnote 9 on page 105). The algorithm from [EHK03] is
introduced in very much detail in the rest of this section because it will provide a basis for
the hardness proofs of Theorems 7.9 and 7.11. In order to present the algorithm, we will
start with some necessary terminology and observations.

If we are given n genome vectors of length m (i.e., representing m site), we may write
this input as an n×m matrix A (often referred to as “SNP matrix” in the literature). For

8According to the authors of [HaEs03], this is sufficient for most cases of polymorphic sites.

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 105

developing an algorithm to solve Perfect Phylogeny Haplotype on a given SNP matrix,
the following observations are crucial: Given the row vectors induced by two columns c1
and c2 (i.e., two SNP sites) in A. Based on the these row vectors, we can make the following
observations regarding c1 and c2:

1. A row vector that does not contain a 2 can unambiguously be resolved into two identical
haplotype vectors (e.g., (0 1) must be resolved into (0 1) and (0 1)).

2. A row vector (0 2) must be resolved into two haplotype vectors (0 0) and (0 1). The
analogue holds true for the row vectors (1 2), (2 0), and (2 1).

3. The row vector (2 2) can be resolved in exactly four ways, either

(2 2) −→
(1 1)

(0 0)
, (2 2) −→

(0 0)

(1 1)
, (2 2) −→

(0 1)

(1 0)
, or (2 2) −→

(1 0)

(0 1)
.

The first two ways are called equal resolution, the second two unequal resolution of c1
and c2.

Following [EHK03], instead of saying that a row vector “can be resolved into” certain vectors
we shall say that it induces those vectors from now on.

Due to the assumption that the inferred haplotypes have evolved according to a perfect
phylogeny, note that two columns cannot be resolved equally and unequally for two dif-
ferent genomes: If this were the case, the resulting haplotypes would induce the row vec-
tors (0 0), (0 1), (1 0), and (1 1)—meaning they would induce an EΣM (see Definition 5.8).
In Theorem 5.9, we have already shown that it would then be impossible to construct a per-
fect phylogeny for the haplotype vectors, even if inversion of the labels 0 and 1 were allowed.9

More generally, if the given row vectors imply in any way that the genotype vectors must be
resolved into haplotypes that induce the row vectors (0 0), (0 1), (1 0), and (1 1), there can
be no perfect phylogeny for the haplotypes underlying the given genotypes. For example,
this would be the case if two columns in the genotype matrix induce the row vectors (0 2)
and (1 2).

We will now introduce the actual algorithm for Perfect Phylogeny Haplotype, which
is proven in [EHK03] to run in O(nm2) time for n genotype vectors considering m sites.
Let the genotype vectors be given as an n×m input matrix A. First, it is checked whether
there are two columns in A that induce an EΣM. This must not be the case, since then is
no perfect phylogeny for the haplotypes. Following this check, each column where the first
row not containing a 2 contains a 1 is inverted—this inversion operation is done so that we
can assume a directed perfect phylogeny10 for the evolving of the haplotypes [EHK03]. The
main key to the algorithm in [EHK03] is the resolvance of genotypes into haplotypes by
determining where to place individual haplotypes with respect to each other in the perfect
phylogeny. For this placement, [EHK03] develops the following intuitive notation concerning
the relationship of two columns c1 and c2 in A:

• Column c1 is said to strongly dominate column c2 if c1 together with c2 induces the row
vectors (0 0), (1 0), and (1 1). The term “strong domination of c1 over c2” reflects the
fact that since we have a directed perfect phylogeny, the mutation represented in c1
took place in the evolutionary tree earlier than in c2. This relationship between c1
and c2 is designated by writing c1 ≻ c2 .

9This answers the question posed in the example on page 104, because the presented genotype vectors
induce an EΣM in the first two SNP sites.

10Recall the corresponding definitions in Section 5.2.

106 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

• Two columns c1 and c2 are called siblings if they induce the row vectors (0 0), (1 0)
and (0 1). A sibling relationship between two columns denotes the fact that the
mutation in site c1 and the one in site c2 took place independently, i.e. in different
branches of the evolutionary tree. A sibling relationship between c1 and c2 is written
as c1 ∼ c2.

• Column c1 is said to weakly dominate column c2 if c1 induces the row vectors (0 0)
and (1 0) with c2. For a weakly dominating c1, we cannot directly determine whether
the mutation in c1 took place before the one in c2 or in a different branch. However,
we do know that this mutation can not have taken place after the one in c2 in the same
evolutionary branch. A weak domination of c2 by c1 is designated by writing c1 � c2 .

Using these relationships, the algorithm proceeds on A as follows, either creating a matrix B
containing the haplotypes that explain the genotype matrix A or determining that A cannot
be resolved into haplotypes that follow a perfect phylogeny:

1. Delete any columns in A that have a 2 in exactly the same rows and moreover in-
duce (1 1). Call the matrix thus obtained A′. This may be done because the (2 2)
row vectors in these columns will have to be resolved equally in order to be able
produce a perfect phylogeny from the haplotypes.11

2. Choose a pivot column c̃ in A′ so that for each column c 6= c̃ in A, either c̃ ≻ c, c̃ ∼ c,
or c̃ � c holds (such a column can always be found [EHK03]).12

3. Resolve every column in A′ that is strongly dominated by c̃ equally with c̃ and every
column in A′ that is a sibling with c̃ unequally with c̃.

For resolving the weakly dominated columns, the following graph G = (V,E) with
labeled edges is constructed:

• The vertex set V is the set of sites.

• There is an edge labeled 1 between the vertex representing c̃ and every vertex
that represents a site that is weakly dominated by c̃.

• If there are two sites c1 and c2 different from c̃ such that these three columns
induce the row vector (2 2 2) and c1 and c2 induce (1 1), the vertices in V repre-
senting c1 and c2 are joined by an edge labeled 0.

• If there are two sites c1 and c2 different from c̃ such that these three columns
induce the row vector (2 2 2) and c1 and c2 are siblings, the vertices in V repre-
senting c1 and c2 are joined by an edge labeled 1.

The columns are then resolved equally if the two respective vertices in G are connected
by an edge labeled 0 and unequally if they are joined by an edge labeled 1. Conflicts
may only arise if G contains a cycle that has an odd number of edges labeled 1, in
which case the algorithm terminates with failure. Components in G from which there
is no path to the vertex representing c̃ may be resolved arbitrarily with respect to c̃. If
no columns can be resolved with respect to c̃ in this step, call the resulting matrix A′′

and proceed to the next step.

11Note how an unequal resolution leads to the appearance of a Σ-matrix in the resulting haplotype matrix.
12As mentioned above, the key to this algorithm is to determine how different haplotypes are related in

a perfect phylogeny due to comparison of different sites. The next step will now resolve individual columns
with respect to the pivot column.

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 107

4. If A′′ still contains unresolved haplotypes, the algorithm is recursively applied, starting
from Step 1. Otherwise, A′′ is put out as the resulting haplotype matrix B.

As mentioned above, the correctness of this algorithm as well as its running time is proven in
[EHK03]. We shall now illustrate the algorithm by an example, using the genotype matrix

A :=





2 0 2 0 0 1 0
2 2 1 2 0 1 2
2 0 1 2 2 2 0
0 2 1 0 2 2 2
1 0 1 2 0 1 0
0 0 1 0 1 2 0





as an input. The columns of A are referred to as c1, . . . , c7. Since c3 and c6 contain a 1 in
their first row not containing a 2, the first step is to invert c3 and c6, yielding

A′ :=





2 0 2 0 0 0 0
2 2 0 2 0 0 2
2 0 0 2 2 2 0
0 2 0 0 2 2 2
1 0 0 2 0 0 0
0 0 0 0 1 2 0



 .

No columns need to be deleted in Step 1. Now, for Step 2, c1 is chosen as the pivot column.
Using the terminology given on page 105, we have c1 ∼ c2, c1 � c3, c1 ≻ c4, c1 ∼ c5, c1 ∼ c6,
and c1 � c7.

13 Step 3 of the algorithm given above can immediately resolve the pivot c1
with c2 (unequally), with c4 (equally), with c5 (unequally) and with c6 (unequally), obtaining










2 0 2 0 0 0 0

ր 0 1 0 2 0 0 2
ց 1 0 0 2 0 0 2

2 0 0 2 2 2 0

0 2 0 0 2 2 2

1 0 0 2 0 0 0

0 0 0 0 1 2 0










, then











2 0 2 0 0 0 0

0 1 0 0 0 0 2
1 0 0 1 0 0 2

ր 0 0 0 0 2 2 0
ց 1 0 0 1 2 2 0

0 2 0 0 2 2 2

1 0 0 2 0 0 0

0 0 0 0 1 2 0











,

then










2 0 2 0 0 0 0

0 1 0 0 0 0 2
1 0 0 1 0 0 2

0 0 0 0 1 2 0
1 0 0 1 0 2 0

0 2 0 0 2 2 2

1 0 0 2 0 0 0

0 0 0 0 1 2 0










, and finally










2 0 2 0 0 0 0

0 1 0 0 0 0 2
1 0 0 1 0 0 2

0 0 0 0 1 1 0
1 0 0 1 0 0 0

0 2 0 0 2 2 2

1 0 0 2 0 0 0

0 0 0 0 1 2 0










.

The arrows indicate the resolvance of a genotype into two haplotypes.14 Moving on to the
graph construction in Step 3 of the algorithm, the following graph is constructed:

c1 c2 c3 c4 c5

1

1

c6 c7

This graph is bipartite, so we can resolve c1 unequally with c3 and then unequally with c7,
obtaining












ր 0 0 1 0 0 0 0
ց 1 0 0 0 0 0 0

0 1 0 0 0 0 2
1 0 0 1 0 0 2

0 0 0 0 1 1 0
1 0 0 1 0 0 0

0 2 0 0 2 2 2

1 0 0 2 0 0 0

0 0 0 0 1 2 0












, and then











0 0 1 0 0 0 0
1 0 0 0 0 0 0

0 1 0 0 0 0 1
1 0 0 1 0 0 0

0 0 0 0 1 1 0
1 0 0 1 0 0 0

0 2 0 0 2 2 2

1 0 0 2 0 0 0

0 0 0 0 1 2 0











13E.g., c1 and c7 induce the row vectors (1 0) (first row), (0 0) (seventh row), and (0 1) (fourth row).
14Note that a genotype is only explicitly splitted into two haplotypes if the respective columns used for

the resolvance induce the row vector (2 2).

108 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

After the first round of the algorithm, the resulting matrix still contains rows with more than
one 2. Hence, we have to apply the algorithm recursively to the last result and choose c2
as the pivot column. We then have c2 ∼ c4, c2 ∼ c5, c2 ∼ c6, and c2 ≻ c7. Using these
relationships, we can fully resolve our genotype matrix into













0 0 1 0 0 0 0
1 0 0 0 0 0 0

0 1 0 0 0 0 1
1 0 0 1 0 0 0

0 0 0 0 1 1 0
1 0 0 1 0 0 0

ր 0 0 0 0 1 2 2
ց 0 1 0 0 0 2 2

1 0 0 2 0 0 0

0 0 0 0 1 2 0













, then












0 0 1 0 0 0 0
1 0 0 0 0 0 0

0 1 0 0 0 0 1
1 0 0 1 0 0 0

0 0 0 0 1 1 0
1 0 0 1 0 0 0

0 0 0 0 1 1 2
0 1 0 0 0 0 2

1 0 0 2 0 0 0

0 0 0 0 1 2 0












, and finally












0 0 1 0 0 0 0
1 0 0 0 0 0 0

0 1 0 0 0 0 1
1 0 0 1 0 0 0

0 0 0 0 1 1 0
1 0 0 1 0 0 0

0 0 0 0 1 1 0
0 1 0 0 0 0 1

1 0 0 2 0 0 0

0 0 0 0 1 2 0












which implies the final haplotype matrix














0 0 1 0 0 0 0
1 0 0 0 0 0 0

0 1 0 0 0 0 1
1 0 0 1 0 0 0

0 0 0 0 1 1 0
1 0 0 1 0 0 0

0 0 0 0 1 1 0
0 1 0 0 0 0 1

1 0 0 0 0 0 0
1 0 0 1 0 0 0

0 0 0 0 1 0 0
0 0 0 0 1 1 0














or, with duplicate haplotypes removed, B :=








0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 1

1 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 1 1 0








Observe that the haplotypes in B explain all genotypes in A′:

2 0 2 0 0 0 0 = 0 0 1 0 0 0 0 + 1 0 0 0 0 0 0

2 2 0 2 0 0 2 = 0 1 0 0 0 0 1 + 1 0 0 1 0 0 0

2 0 0 2 2 2 0 = 0 0 0 0 1 1 0 + 1 0 0 1 0 0 0

0 2 0 0 2 2 2 = 0 0 0 0 1 1 0 + 0 1 0 0 0 0 1

1 0 0 2 0 0 0 = 1 0 0 0 0 0 0 + 1 0 0 1 0 0 0

0 0 0 0 1 2 0 = 0 0 0 0 1 0 0 + 0 0 0 0 1 1 0

Furthermore, the explaining haplotypes have evolved according to a directed perfect phylo-
geny:

0 0000
0 0000

00000
0 00000

0 00000

0 000000

0 000000

1 1

1
1

1 1
1

11

0 00000 0 000000

0 000000

0 0100 00

As we have seen, the algorithm given in [EHK03] provides a way to construct the haplotypes
from given genotypes in polynomial time. However, real biological data will often not fit the
model of a directed perfect phylogeny. If the algorithm determines that there exists no valid
resolution of the given haplotypes, we might therefore ask what minimum number of sites
or genotypes would have to be removed in order to fit the model of a perfect phylogeny. If
the input matrix is just binary, i.e., it contains no entry equal to 2, we know from Chapter 5
that the haplotypes will only form a perfect phylogeny if they do not induce an EΣM (see
Definition 5.8). If they do induce an EΣM, we have given some efficient fixed-parameter
algorithms for removing a minimum number of species (genotypes) or characters (sites)
from the input matrix so that we are able to infer a perfect phylogeny in Chapter 5. We
have already seen in this chapter that if the input matrix contains entries equal to 2, the

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 109

problem of being able to construct a perfect phylogeny can—besides the avoidance of an
induced EΣM—be related to a graph not containing a cycle of odd length15 (where an edge
may have a length of either zero or one). We can directly relate this problem to Graph
Bipartization by simply replacing each edge of length zero with a path of length two.16

We will show in the following two subsections that the problems Minimum Genotype Re-
moval and Minimum Site Removal are—from a parameterized point of view—at least
as hard as Edge Bipartization and Vertex Bipartization, respectively. For Minimum
Site Removal, we will even show that it is parameter-equivalent to Vertex Bipartiza-
tion.

7.3.1 Minimum Genotype Removal

Note that this subsection makes extensive use of the terminology introduced in Section 7.3.
The algorithm presented there to solve the Perfect Phylogeny Haplotype problem
(see Definition 7.7) was not always able to find a haplotype-resolution for the given geno-
types because a graph constructed from the input data proved not to be bipartite. We
therefore seek a minimal number of genotypes to be removed from the dataset in order for
the haplotypes to be constructible.

Definition 7.8 (Minimum Genotype Removal Problem)
Input: A ternary matrix A of dimension n×m and an integer k.
Question: Is it possible to delete at most k rows in A so that the genotypes represented in the
resulting matrix A′ can be resolved into haplotypes that have evolved according to a perfect
phylogeny?

In [EHK03], the authors give a proof for the MAX-SNP-hardness of the Minimum Geno-
type Removal problem on ternary matrices, meaning there is no PTAS for this problem
unless P = NP (see the footnote on page 71 for the definition of PTAS). Moreover, a proof is
given that an α-approximation algorithm for the Minimum Genotype Removal problem
implies the α-approximability of the Edge Bipartization problem, for which no such ap-
proximation is known (see Chapter 6). With some slight modifications, the approximation
preserving reduction from [EHK03] can be turned into a parameter-preserving reduction.

Theorem 7.9 Edge Bipartization is parameter-preservingly reducible to Minimum Ge-
notype Removal.

Proof The reduction relies on the following idea: The presented algorithm for Perfect
Phylogeny Haplotype constructs a graph from the given genotypes, where the vertices
of the graph correspond to sites and the edges to the relationship of the sites determined
by the individual genotypes. The graph was bipartite if and only if these genotypes could
be resolved into haplotypes that constitute a perfect phylogeny. Given an instance (G, k)
of Edge Bipartization, we will now simply build a matrix A consisting of genotypes that
will force the algorithm to construct a graph that is isomorphic17 to G. Furthermore, each

15These lengths are not to be confused with the edge-weights used in the opt-Edge Bipartization re-
duction rules.

16Note that this does not significantly increase the running time of the branch&bound algorithms from
the previous chapter due to Reduction Rule 2 presented on page 80.

17Two graphs G1 = (V1, E1) and G2 = (V2, E2) are called isomorphic if there is a bijection Φ : V1 → V2

such that {va, vb} ∈ E1 ⇔ {Φ(va), Φ(vb)} ∈ E2.

110 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

genotype in A that is suited for deletion will correspond to exactly one edge in G. Then,
removing a genotype from A corresponds directly to removing an edge from G.

For a given instance of Edge Bipartization, let G = (V,E) be its graph where V =
{v1, . . . , vn} and E = {e1, . . . , em} (note that n = |V | and m = |E|). An m(n+ 1)× (n+ 1)
matrix A = (ai,j) is now constructed, starting with a matrix of zeros and then applying the
following algorithm:

Algorithm: Edge Bipartization to Minimum Genotype Removal
Input: A graph G = (V,E) and a parameter k
Output: A parameter-equivalent instance A

of Minimum Genotype Removal

01 for i ← 1 . . .m(n+ 1) do
02 ai,n+1 ← 2
03 for i ← 1 . . . n do
04 for j ← 1 . . .m− 1 do
05 aim−j,i ← 2
06 for each edge ei = {va, vb} do
07 ai+mn,a ← 2
08 ai+mn,b ← 2

For illustration purposes, Figure 7.2 shows a graph and the corresponding matrix A gener-
ated by this algorithm, which works as follows: Lines 01 and 02 of the algorithm write a 2 into
every row of the last column of A. By lines 03 to 05, we ensure that each pair of the first n
columns induces the row vectors (1 0) and (0 1). Therefore, each of the first n columns are
pairwise siblings and will hence have to be resolved unequally according to the Perfect
Phylogeny Haplotype-algorithm. Lines 06-08 encode the actual graph into A. During
the following proof, we will say that an edge in G corresponds to a row in the matrix A if
two 2-entries were inserted in that row due to lines 06-08 of the algorithm.

As was mentioned above, the first n columns are pairwise siblings. Column (n+1) contains
just 2’s and weakly dominates all other columns, it will therefore be chosen as the pivot
column c for the Perfect Phylogeny Haplotype algorithm. The algorithm will then
proceed as follows: Since all columns are weakly dominated by c, the graph Galgo constructed
for resolving the weak domination relationship between c and the first n columns of A will
contain a vertex for each column. This includes a vertex for c, however, this vertex may be
omitted since it will not be connected to any other component in Galgo.

18 So, in total, we
have as many vertices in G as in the original graph G from which A was constructed. Two
vertices u and v are connected in Galgo if and only if they were connected in G, and the
corresponding columns have to be resolved unequally. Note that since for each edge in G,
we have a row in A, the constructed graph Galgo is isomorphic to G. Then, as is proven in
[EHK03], we can only resolve the graph if it does not contain any odd cycles, i.e., if it is
bipartite.

Now assume that there exists a fixed-parameter algorithm for the Minimum Genotype
Removal problem. For a given instance (G, k) of Edge Bipartization we can construct
the matrix A using the algorithm above in polynomial time, more precisely we need

O(|V |+ |V | · |E|+ |E|)

18Note that only strong domination or a sibling relationship will result in a connection.

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 111

e6

G = (V,E)

V = {v1, v2, v3, v4, v5}

E = {e1, e2, e3, e4, e5, e6}

n = |V | = 5

m = |E| = 6

2 0 0 0 0 2

2
0 0 2

0 0 0
0 0

0 0
0 0 0
0 0 0

0
0 2

2

2
2

022
22

22
2 2

2
2

2
2

m(n+ 1)

...
22 0 0 0 0

m

20 0 0 0 2...
220 0 0 0

m

200 0 0 2...
2200 0 0

m

200 0 0 2...
2200 0 0

m

200 00 2...
2200 00

m

m

n+ 1

v1 v2

v3v4

v5

e1

e3

e2e4

e5

Figure 7.2: Minimum Genotype Removal matrix A (right) to solve the Edge Biparti-
zation problem on the given graph G. Note how the correspondence between the elements
of G and the resulting genotype matrix have been emphasized by grey underlays: Edge e6
corresponds to the last row of A, since e6 connects v3 and v5, a 2 has been written into
the 3rd and 5th column of that row. Analogously, e1 connects v1 and v2. Each vertex of G
is represented by a column in A, emphasized in this figure by marking the second column
and showing its correspondence to v2. Note the interesting observation that we do not need
entries equal to 1 for the reduction.

time with respect to the input graph size. If there exists, as a solution to the Edge Biparti-
zation problem, a set I ⊆ {1, . . . ,m} with |I| ≤ k such that removing the edges {ei | i ∈ I}
will bipartize G, then deletion of the corresponding rows (genotypes) in A will lead to a
matrix A′ that can be resolved to fit the phylogenetic haplotype model. Conversely, if the
deletion of at most k rows in A yields a resolvable matrix then there are two cases to be
considered for each deleted row:

1. The row does not correspond to an edge. Since that row only contains at most two 2’s,
one in the pivot column and an additional one in some other row, deleting it will not
touch the construction of Galgo, and can thus be considered obsolete. Note that for
each column, there are at least m rows containing a 2 in that column and in the last
one. Thus, it is impossible to force two columns to be resolved equally by deleting
rows, since k < m− 2 in order for the original Edge Bipartization problem not to
be trivial.

2. The row corresponds to an edge e. Then Galgo will be isomorphic to G \ {e}.

Thus, if deletion of a certain set of rows yields a matrix A′ from A that fits the phylogenetic
model, then deletion of the corresponding edges will bipartize G. Note that the parameter k
is preserved by the reduction. �

112 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

Note that in the proof, we constructed the matrix A such that every genotype in A represents
at most one edge in Galgo. However, this must not be the case vice-versa,19 rendering
the existence of a parameter-preserving reduction from Minimum Genotype Removal to
Edge Bipartization an open problem (in close analogy to the existence of such a reduction
for Minimum SNP Removal as shown in the previous section).

Instead of removing genotypes from the input matrix to Perfect Phylogeny Haplo-
type, one might rather be interested in removing a minimum number of sites. This is
considered in the next subsection.

7.3.2 Minimum Site Removal

As a motivation for this subsection, we employ—in principle—the same reasons as in Sec-
tion 5.5. Again, only a few sites in the genotypes may be responsible for inhibiting the
construction of a phylogeny for the haplotypes. This directly leads to the Minimum Site
Removal problem.

Definition 7.10 (Minimum Site Removal Problem)
Input: A ternary genotype matrix M of size n×m and an integer k.
Question: Is it possible to delete at most k columns in M so that the resulting matrix can
be resolved into haplotypes that have evolved according to a perfect phylogeny?

We have shown in the last subsection that the analogue problem, i.e., removing genotypes
from a given Perfect Phylogeny Haplotype input matrix, is at least as hard as Edge
Bipartization. In the following Theorem 7.11, we will show that a similar result can
be obtained for Minimum Site Removal, which we show to be parameter-equivalent to
Vertex Bipartization.

Theorem 7.11 Vertex Bipartization is parameter-equivalent to Minimum Site Re-
moval.

Proof In the introduction of the Perfect Phylogeny Haplotype-algorithm it was
shown that the problem of resolving the genotypes of an input matrix A into haplotypes
depends on the bipartization of a graph Galgo that is constructed from the input data. This
graph was constructed so that every site in the genotype matrix was represented by a vertex
in Galgo. Hence, deleting a vertex in Galgo directly corresponds to the removal of a site
in A; thus, if Galgo can be bipartized by removing at most k vertices from it, removing the
corresponding sites in A will allow the genotypes in the resulting matrix to be resolved into
haplotypes by the Perfect Phylogeny Haplotype-algorithm.

We now give a reduction from Vertex Bipartization to Minimum Site Removal, anal-
ogously to the proof of Theorem 7.9.

The reduction is based on the following idea: Each of the first n columns in the constructed
matrix A will represent a vertex in the given graph G = (V,E) (with |V | = n and |E| = m)
that we wish to bipartize by vertex deletion. By the first n genotypes in A we will ensure
that the first n columns have to be resolved unequally with respect to each other, because

19E.g., observe in Step 3 of the Perfect Phylogeny Haplotype algorithm that if a single genotype is
responsible for making the pivot column weakly dominate a set of i columns, this genotype is responsible
for i edges in the corresponding graph Galgo.

7.3. INFERRING HAPLOTYPES FROM GENOTYPES 113

2 0 0 0 0 2
20 0 0 0 2

m

2
2

2
2

2
2

2
2
...

...
0 20 0 0

0 0
0 0 0
0 0

0 0
0 0 0
0 0 0

0
0

022
22

22
2 2

2
2

2
2

2 2 222

22 2 2
2

2
2222

...

n

e6

v1 v2

v3v4

v5

e1

e3

e2e4

e5

n n

Figure 7.3: Minimum Site Removal matrix to solve the Vertex Bipartization problem
on a given graph. To see the correspondence between columns in the matrix and vertices in
the graph as well as edges in the graph and rows in the matrix, the following relationships
have been marked: Edge e6 corresponds to the last row of the matrix; since it connects v3
and v5, a 2 has been written into the 3rd and 5th column of that row. In an analogue way, e1
(mth row from the bottom) connects v1 (first column) and v2 (second column). Each vertex
of the graph is represented by a column in the matrix, emphasized in this figure by marking
the second column and showing its correspondence to v2. Note the interesting property of
the reduction that it does not require any entries to be equal to 1.

they induce the row vectors (1 0) and (0 1), i.e., are pairwise siblings. With m further
genotypes, we represent the m edges of G such that the deletion of a column c in A will also
destroy any represented edges that have vertex corresponding to c as an endpoint.

Given a graph G = (V,E) that we wish to bipartize by deleting at most k vertices, a ternary
matrix A is constructed using an algorithm quite similar to the one given in the proof of
Theorem 7.9. Let V = {v1, . . . , vn} and E = {e1, . . . , em}. To an (m+ n)× 2n matrix A of
zeroes, the following algorithm is applied in order to perform the reduction

Algorithm: Vertex Bipartization to Minimum Site Removal
Input: A graph G = (V,E)
Output: A parameter-equivalent instance A

of Minimum Site Removal

01 for i ← 1 . . . n+m do
02 for j ← n+ 1 . . . 2n do
03 ai,j ← 2
04 for i ← 1 . . . n do
05 ai,i ← 2
06 for each edge ei = {vj , vk} do
07 ai+n,j ← 2
08 ai+n,k ← 2

In Figure 7.3, an example for the construction is given. The algorithm runs in

O(|V | · (|V |+ |E|) + |V |+ |E|)

time and is thus polynomially bounded by the size of the input graph. It functions as
follows: Lines 01 through 03 write a 2 into every row of the rightmost n columns of A. Lines
04 and 05 write 2’s diagonally in the upper n×n submatrix of A, causing each of the first n

114 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

columns to be siblings to each other—they will therefore have to be resolved unequally by
the Perfect Phylogeny Haplotype-algorithm. Lines 06-08 encode the actual graph G

into A.

In the matrix A, the first n columns are pairwise siblings and any of the n rightmost
columns contains just 2s. Thus, any one of these columns (we will refer to these columns
as “fill columns” from now on) weakly dominates all of the n leftmost columns. Now pick
a fill column c. With any of the first n columns, c only induces the pairs (2, 0) and (2, 2)
as row vectors (hence the weak domination). With any of the last columns, c only induces
the pair (2, 2), thus these columns may be resolved arbitrarily. Analogously to the proof
of Theorem 7.11, the graph Galgo constructed by the Perfect Phylogeny Haplotype-
algorithm in order to resolve the weakly dominated sites will therefore be isomorphic to G
and each one of the first n columns corresponds to a vertex in G.

The Perfect Phylogeny Haplotype-algorithm will then proceed as follows: Since all of
the first n columns are weakly dominated by c, the graph Galgo will contain a vertex for each
of these columns. Note that there will be n vertices for the last n columns in A, however,
these may be omitted since the resolvance between any two fill columns is arbitrary and a
fill column weakly dominates any column in the left half of A. Using the same arguments
as in the proof of Theorem 7.9, we can see that Galgo is isomorphic to G and the resulting
haplotype model can only be resolved if Galgo (alternatively G) is bipartite.

Assume that there exists a fixed-parameter algorithm for the Minimum Site Removal pro-
blem. For a given instance (G, k) of Vertex Bipartization we first construct A in poly-
nomial time (see above). Furthermore, let there exists a solution to the given Vertex
Bipartization instance, i.e., there exists a set I ⊆ {1, . . . , n} with |I| ≤ k such that re-
moving the vertices {vi | i ∈ I} will bipartize G. Then the deletion of the corresponding
columns {ci | i ∈ I} in A will lead to a matrix A′ that fits the phylogenetic haplotype model.
Conversely, if the deletion of at most k columns in A leads to a resolvable matrix then there
are two cases to be considered:

1. A column in the right half of A is deleted. Since this column does not contain any
additional information as it is identical to any other fill column this does not affect the
resolvability of the Minimum Site Removal problem on A. Note that there are n
fill columns, and since k < n− 2 we cannot delete all of these columns.

2. A column in the left half of A is deleted (let this be the ith column where 1 ≤ i ≤ n).
This removes a 2 from the ith row and any 2 in the lower half of A that indicated an
edge of vi. Removing the 2 from the ith row does not affect the solvability of A, since
that row directly induces the zero-root and does not have to be resolved. Removing a 2
in a column that corresponded to any edge e = {vi, vj} for any j causes this row to be
identical to the jth row in A. The deletion of a column removes a vertex from Galgo,
and therefore, if Galgo can be bipartized by column deletion in A, G is bipartizable by
deleting the corresponding vertices.

Concluding, if deletion of a certain set of columns yields a matrix A′ from A that fits the
phylogenetic model, then deletion of the corresponding vertices will bipartize G. Note that
the parameter k is directly preserved by the reduction. �

We have seen that Minimum Genotype Removal is at least as hard to solve as Edge
Bipartization—deeper research will be needed to determine the relative hardness of Mi-
nimum Genotype Removal to Minimum Site Removal and their possible/impossible
fixed-parameter tractability.

7.4. TESTING BRANCH&BOUND ON SNP DATA 115

20 30 40 50 60

av
er

ag
e

ru
n
n
in

g
ti

m
e

[s
]

10−1

100

102

101

number of fragments

0.5 1.0 1.5 2.0 2.5 3.0

av
er

ag
e

ru
n
n
in

g
ti

m
e

[s
]

5

10

20

15

sequence length [kilobases]

Minimum Fragment Removal Minimum Fragment Removal

103

Figure 7.4: Performance of the Vertex Bipartization algorithm on various Minimum
Fragment Removal instances. On the left, the average running time for Vertex Bipar-
tization on a fragment conflict graph is shown relative to the source sequence’s length ℓ (the
number of fragments is kept at ℓ

10). On the right, for a source sequence of length ℓ = 300, the
average running time of Vertex Bipartization on the fragment conflict graph is shown
relative to the total number of fragments.

7.4 Testing Branch&Bound on SNP Data

In this chapter, we have seen that the problems Minimum Site Removal and Minimum
Fragment Removal are parameter-equivalent to Vertex Bipartization. Using the
reductions presented in this chapter, instances for both problems were transformed into
Vertex Bipartization-instances, on which the bipartization-software package presented
in Section 6.4 could be tested. In general, the software performed quite well, being able to
solve instances for both problems that lead to graphs containing almost a hundred or (in
the case of Minimum Fragment Removal) even hundreds of vertices

Methodology Due to the inavailability of “raw” read data from genotype-sequencing ex-
periments, the Minimum Fragment Removal instances were generated artificially: Start-
ing with two copies s1 and s2 of a random sequence of length ℓ over the alphabet {A,C,G, T},
sequence s2 was altered in 5% of its bases in order to simulate the presence of SNPs. Then,
n fragments of length 50 were read randomly from both sequences, introducing read errors
at a rate of 0.5%. Two experiments were made:

• Varying ℓ between 100 and 3000 with n = ℓ
10 .

• Varying n between 20 and 60 with ℓ = 300.

Each measurement was performed on 10 different random graphs for each set of parameters.

In order to test the performance of the Vertex Bipartization algorithm for instances
of Minimum Site Removal, SNP-haplotype data from 50 samples of African Americans
and 42 samples of unrelated Japanese and Chinese origin (both available at [Whit03]) were
first converted into genotype data and then transformed into a graph using an algorithm
that basically follows the procedure of the Perfect Phylogeny Haplotype-algorithm

116 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

introduced in the last section. “Holes” in the data from [Whit03], i.e., SNPs for which the
state is specified as “unknown”, were simply discarded during the graph-construction.

The machine on which the results of this section were obtained is the same as in the exper-
iments from Section 6.4.

In some preliminary tests, all reduction rules except for Rule 6 (the rule involving vertex
separators of order two) could often be applied to the graph. Since Rule 6 has by far the
longest running time, it was switched off in the experiments. Performing measurements
for the average running time with reduction rules turned off was not possible: Although
sometimes, the same phenomenon as in the experiments of Section 6.4 occurred (i.e., the
program was faster with reduction rules switched off), some instances turned out to be
unsolvable in reasonable time with the reduction rules turned off. 20

Results Figure 7.4 shows the results from the Minimum Fragment Removal experi-
ments, Figure 7.5 shows the results from the Minimum Site Removal experiments. The
average reduction rule usage was measured as follows:

Rule Minimum Fragment Removal Minimum Site Removal
1 36.4% 15.9%
2 30.5% 66.7%
3 3.5% 0.2%
4 4.9% 0.3%
5 2.0% 2.1%
6 (off) (off)
7 10.72% 9.3%
8 10.5% 4.7%
9 1.5% 0.7%

Note that this usage does not reflect the relative gain in running time. Although Reduction
Rules 3 and 4 are not used very often, they should, as was discussed Subsection 6.3.2, provide
a majority of the gain in running time.

Discussion For Minimum Fragment Removal, problem instances based on sequences
of a few thousand base pairs in length can be solved in acceptable time on average—if the
relative number of fragments (compared to the sequence’s total length) is not too high (e.g.,
around 5 as in the experiments shown left in Figure 7.4): While the average running time
increases roughly linearly with a longer sequence, it grows exponentially when the ration n

ℓ

is increased.

It should be noted that the term “on average” must be used with care here: As the peak in
Figure 7.4 already indicates, the measured times had a very high variance, with some larger
instance being solvable in under a minute, others in many hours for the same parameters
of sequence and fragment length. However, note that in the average case, even instances
with a few hundred fragments (=vertices in the corresponding conflict graph) can be solved
efficiently. The reason why—compared to random graphs—the reduction rules are quite
effective for Minimum Fragment Removal-conflict graphs, lies in the structure of these
graphs: Note that each fragment covers only a rather small portion of the source sequence.

20E.g., one instance of Minimum Fragment Removal that could be solved in about an hour with reduction
rules could not be solved within a day when the reduction rules were switched off.

7.4. TESTING BRANCH&BOUND ON SNP DATA 117

size of
sample name population # vertices # edges optimal solution running time [s]

[vertices]
10a Japanese 57 117 3 11.3
11a Japanese 51 212 5 48.7
12b Japanese 48 91 1 0.8
13a Japanese 78 210 6 2 498.8
14a Japanese 72 107 4 7.1
15a Japanese 45 55 1 0.07
16a Japanese 14 10 0 0.03
17a Japanese 81 322 Not solvable in < 10 hours
18a Japanese 73 296 Not solvable in < 10 hours
19a Japanese 101 172 3 6.2
20a Japanese 241 640 Not solvable in < 10 hours
21a Japanese 33 102 9 2.1
22a Japanese 76 391 9 476.5
10a Afr.-American 45 143 5 6.2
11a Afr.-American 45 191 9 359.3
12b Afr.-American 19 14 1 0.02
13a Afr.-American 57 235 10 58.3
14a Afr.-American 63 397 Not solvable in < 10 hours
15a Afr.-American 47 139 6 224.2
16a Afr.-American 12 11 0 0.01

Figure 7.5: Performance of the Vertex Bipartization algorithm on various Minimum
Site Removal instances. The Minimum Site Removal instances were generated from
data freely available in [Whit03]. If the bipartization on the test machine took longer than
10 hours, it was canceled.

Fragments that cover different parts of the source sequence are never connected by an edge in
the conflict graph—this seems to significantly increase the likeliness of separators. Unless—
by chance—many fragments cover the same area of the source sequence, the corresponding
Minimum Fragment Removal problems should therefore be efficiently solvable in practice
using the Vertex Bipartization-algorithm from this work.

Due to the rather small sample size, it is hard to make a general statement about the solvabil-
ity of Vertex Bipartization instances derived from Minimum Site Removal problems.
Nevertheless many of the analyzed instances were solvable in under one hour, even some in
which the graph contained as much as 70 vertices. Referring to the results from Section 6.4,
this is a tremendous improvement. E.g., Sample 13a of the African-American population led
to a graph with 57 vertices and an average vertex degree of more than 4—from the results
of Section 6.4, we would have expected all but a bipartization in under a minute, especially
with the optimal solution containing as much as 10 vertices. Looking at the corresponding
usage of reduction rules, it seems that exactly those larger graphs were bipartizable, to which
Reduction Rules 3 and 4 could be applied. However, precisely characterizing the instances
of Minimum Site Removal which—although they lead to rather large graphs—can be
efficiently solved remains an open problem for future research. Overall, the results indicate
that the developed Vertex Bipartization algorithms are efficient enough to solve even
some larger instances of Minimum Site Removal and Minimum Fragment Removal.

118 CHAPTER 7. USING GRAPH BIPARTIZATION IN SNP ANALYSIS

Chapter 8

Conclusion

In this chapter, we give a brief recapitulation of this work, recalling the most important
results. This summary is followed by some suggestions for related future research.

8.1 Summary of Results and Future Extensions

In Chapters 2 and 3, we provided a basic introduction, the motivation, and necessary ter-
minology for this work—ranging from the prospects of SNPs in pharmacogenetics and phy-
logenetic analysis (Chapter 2) to a crash course in computational complexity, the analysis
of algorithms, and fixed-parameter tractability (Chapter 3). Briefly recalling the results of
the chapters following this bio-informatic introduction, we have shown that. . .

• . . . the problem of Submatrix Occurrence is solvable in polynomial time (Chap-
ter 4).

• . . . we can prove that the problem of Row Deletion(B) is NP-complete for subma-
trices B which have special σ-decompositions (Chapter 4).

• . . . the problem of Row Deletion(B) is fixed-parameter tractable and has a constant
approximation factor for any forbidden submatrix B (Chapter 4).

• . . . data correction in order to be able to construct a perfect phylogeny can be formu-
lated as a Row Deletion(B) or Column Deletion(B) problem with B being the
“extended Σ-matrix”—or EΣM, for short (Chapter 5).

• . . . data correction in order to be able to construct a perfect phylogeny is NP-complete
and fixed-parameter tractable (Chapter 5).

• . . . the search tree of a trivial algorithm for eliminating all EΣMs in a binary matrix
by row deletion has size O(3k) instead of the intuitively expected O(4k) (Chapter 5).

• . . . the problem of Vertex Bipartization is at least as hard as Edge Bipartiza-
tion, for there exists a parameter-preserving reduction from the latter to the former
(Chapter 6).

• . . . data reduction rules can be designed to efficiently solve Graph Bipartization-
problems on graphs related to SNP-analysis (Chapters 6 and 7).

119

120 CHAPTER 8. CONCLUSION

• . . . the reassembly of genotype-fragments into the underlying haplotypes is closely re-
lated to Graph Bipartization (Chapter 7).

• . . . data correction during the inference of haplotypes from genotypes is at least as
hard as Edge Bipartization (Chapter 7).

• . . . data correction on the SNP sites during the inference of haplotypes from genotypes
is parameter-equivalent to Vertex Bipartization (Chapter 7).

During the preparation of this work, some interesting questions arose for which time and
space did not allow a further investigation. However, they might serve as a starting point
for future research:

• We have shown forbidden submatrices to be a generalization of the Minimum Species
Removal and Minimum Character Removal problem. Since any forbidden sub-
structure problem on bipartite graphs can be stated as a forbidden submatrix problem
on the respective graphs adjacency matrix: What other problems can be related to
the removal of forbidden submatrices? Are there problems that can be related to the
removal of ℓ-ary matrices?

• Can problems related to k-Perfect Phylogeny be connected to forbidden subma-
trix problems?

• Is Conjecture 4.19 true? What are examples for matrices for which we do not yet know
whether this conjecture is true and how can they be characterized in general?

• Can the computational complexity of other submatrix-removal strategies (such as the
modification of individual entries or Row and Column Deletion) be determined
using the framework developed in this work?

• The problem of finding a minimum “feedback-vertex set” (a set that contains at least
one vertex from every cycle in the graph) is known to be fixed-parameter tractable
[DoFe99]—can it be connected to Graph Bipartization? Furthermore, we expect
the Minimum Feedback Vertex Set problem to have a lot of biological problems
closely related to it (e.g., finding key reactions in metabolic networks)—it therefore
deserve some further research of its own.

• The developed reduction rules are only efficient for the presented problems relating
to SNPs. The importance of Graph Bipartization in many areas of research (as
was mentioned in Chapter 6) could be a motivation to develop an efficient all-purpose
software package to solve Graph Bipartization (especially Vertex Bipartization)
problems.

As we have seen, bringing together biology and (theoretical) computer science is a fruit-
ful undertaking for both areas, with biological problems giving impulses for the systematic
analysis of previously unstudied computational problems (such as the Row Deletion pro-
blem in this work), and computer science providing tools and insights about chances and
limits in various areas of biological research. This is the core idea behind the field of bioin-
formatics, from which we can hope to see more of this mutual nourishment in the near future
as more and more people join in on connecting the life- and the computer sciences.

8.2. ACKNOWLEDGMENTS 121

8.2 Acknowledgments

My advisors Rolf Niedermeier, Jochen Alber, Jens Gramm, and Jiong Guo introduced me
to SNPs, spent many hours with me discussing my work, provided a lot of helpful advice,
time and again proof-read my drafts, always had some interesting material at hand, and
created a most friendly, memorable, and stimulating working atmosphere. I have benefited
from their efforts far beyond this work. Additionally, I wish to thank Eva Anderl for her
support, encouragement, countless waking and sleeping hours spent on reading my drafts,
and for giving me the relieving insight that even a studied linguist can sometimes despair
of the English relative clause and the commata it causes.

122 CHAPTER 8. CONCLUSION

List of Figures

2.1 Chemical structure of DNA and its abbreviated notation 6

2.2 Mapping SNPs by comparison of two individuals’ DNA sequence 7

2.3 Development of linkage disequilibria in SNP sites 10

2.4 SNP profiling in pharmacogenetics . 13

3.1 A function f(x) and its bounds in O-notation. 19

3.2 A graph G and an optimal vertex cover for G. 21

3.3 The search tree for finding a vertex cover of size k in a given graph 26

4.1 General scheme for the σ-decomposition of a matrix B 33

4.2 Finding all sets of rows that induce a forbidden submatrix. 36

4.3 Reduction from r-Hitting Set to Row Deletion(B) (Lemma 4.16) 42

4.4 Reduction from r′-Hitting Set to Row Deletion(B) (Theorem 4.13) . . . 43

4.5 Reduction from r′-Hitting Set to Row Deletion(B) (Theorem 4.14) . . . 45

4.6 Reduction from r′-Hitting Set to Row Deletion(B) (Theorem 4.11) . . . 48

4.7 Sorted decomposition of a binary matrix (Lemma 4.17) 50

4.8 The merge operation for the proof of Theorem 4.12 51

5.1 An example of a perfect phylogeny for a set of species 58

5.2 Parameterized reduction of 2-Hitting Set to Minimum Species Removal. 63

5.3 An instance of 2-Hitting Set and the corresponding Minimum Character
Removal problem. 68

6.1 A graph G and its optimal bipartization by edge and vertex deletion. 70

6.2 Construction of a Vertex Bipartization instance from an Edge Biparti-
zation instance. 73

6.3 Illustration of the recoloring heuristic for Edge Bipartization 77

6.4 Illustration of the heuristic for opt-Vertex Bipartization 79

6.5 Reduction Rules 3 and 4 . 81

6.6 Reduction Rules 5 and 6 . 84

123

124 LIST OF FIGURES

6.7 Reduction Rule 7 . 86

6.8 Reduction Rules 8 and 9 . 88

6.9 UML-diagram for the implementation of the branch&bound algorithm 91

6.10 Running time for Graph Bipartization on a graph with 20 vertices 94

6.11 Search tree size for Graph Bipartization on a graph with 20 vertices . . . 94

6.12 Running time for Graph Bipartization relative to the number of vertices . 95

6.13 Running time for Graph Bipartization relative to the number of de-bipar-
tizing elements (varying vertex degree) . 95

6.14 Running time for Graph Bipartization relative to the number of de-bipar-
tizing elements (varying number of vertices) 96

7.1 Minimum Fragment Removal on a set of fragments 101

7.2 Minimum Genotype Removal matrix to solve the Edge Bipartization
problem on a given graph . 111

7.3 Minimum Site Removal matrix to solve the Vertex Bipartization pro-
blem on a given graph . 113

7.4 Performance of the Vertex Bipartization algorithm on various Minimum
Fragment Removal instances . 115

7.5 Performance of the Vertex Bipartization algorithm on various Minimum
Site Removal instances . 117

Bibliography

[Aaro03] S. Aaronson. The Complexity Zoo. http://www.cs.berkeley.edu/∼aaronson/
zoo.html, 2003 → 23

[Abec01] G. R. Abecasis. Extent and distribution of linkage disequilibrium in three
genomic regions. American Journal of Humane Genetics, 68:191-197, 2001
→ 9

[ADF95] K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter
tractability and completeness IV: On completeness for W[P] and PSPACE
analogs. Annals of Pure and Applied Logic, 73:235-276, 1995 → 28

[AgFe93] R. Agarwala and D. Fernández-Baca. A polynomial-time algorithm for the
perfect phylogeny problem when the number of character states is fixed. SIAM
Journal on Computing, 23(6):1216-1224, 1993 → 59

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof verification
and the hardness of approximation problems. Journal of the ACM, 45:501-555,
1998 → 71

[Avis94] J. C. Avise. Molecular Markers, Natural History and Evolution, Chapman &
Hall, 1994 → 9

[BBNE03] R. Brumfield, P. Beerli, D. Nickerson, and S. Edwards. The utility of single
nucleotide polymorphisms in inferences of population history. Submitted for
publication, 2003 → 9

[BFW92] H. L. Bodlaender, M. R. Fellows, and T. J. Warnow. Two strikes against
perfect phylogeny. In Proceedings of the 19th ICALP, Springer-Verlag LNCS
623, 273-283, 1992 → 58, 59

[BJS02] J. M. Berg, J. L. Tymoczko, and L. Stryer. Biochemistry. W. H. Freeman,
2002 → 5

[BLM03] C. H. Bennett, M. Li, and B. Ma. Chain Letters & Evolutionary Histories.
Scientific American 6:64-69, 2003 → 57

[Bodl88] H. L. Bodlaender. Dynamic programming algorithms on graphs with bounded
treewidth. In Proceedings of the 15th ICALP, Springer-Verlag LNCS 317, 105-
119, 1988 → 59

[Bodl97] H. L. Bodlaender. Treewidth: algorithmic techniques and results. Mathemati-
cal Foundations of Computer Science ’97, 19-36, Springer, 1997 → 59

125

126 BIBLIOGRAPHY

[Brem01] J. G. Breman. The ears of the hippopotamus: manifestations, determinants,
and estimates of the malaria burden. American Journal of Tropical Medical
Hygiene, 64:1-11, 2001 → 11

[Bune74] P. Buneman. A characterization of rigid circuit graphs. Discrete Mathematics,
9:205-212, 1974 → 59

[CaJu01] L. Cai and D. Juedes. Subexponential parameterized algorithms collapse the
W-hierarchy. In Proceedings of the 28th ICALP, Springer-Verlag LNCS 2076,
273-284, 20011 → 28

[Carg99] M. Cargill et al. Characterization of single nucleotide polymorphisms in coding
regions of human genes. Nature Genetics, 22:231-238, 1999 → 7, 8

[Chak01] A. Chakravarti. . . . to a future of genetic medicine. Nature, 409:822-823, 2001
→ 1, 7

[CRS94] J. D. Cho, S. Raje, and M. Sarrafzadeh. Approximation algorithm on multi-
way maxcut partitioning. In Proceedings of ESA ’94, Springer-Verlag LNCS
855:148-158, 1994 → 69

[CKJ01] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and further
improvements. Journal of Algorithms, 41:280-301, 2001 → 26, 67

[CNR89] H. Cho, K. Nakajima, and C. S. Rim. Graph bipartization and via minimiza-
tion. SIAM Journal on Computing, 2(1), 38-47, 1989 → 70

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (Second Edition). MIT Press, 2001 → 21, 78, 85, 92

[DEKM98] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambridge University Press, 1998 → 55

[DeVa94] C. L. DeVane. Pharmacogenetics and drug metabolism of newer antidepressant
agents. Journal of Clinical Psychiatry, 55:38-47, 1994 → 12

[DoFe99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science, Springer-Verlag, 1999 → 27, 28, 33, 120

[DRSHL01] M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson, and E. S. Lander.
High-resolution haplotype structure in the human genome. Nature Genetics,
29(2):229-32, 2001 → 9

[DrSt92] A. Dress and M. Steel. Convex tree realizations of partition. Applied Mathe-
matics Letters 5:3-6, 1992 → 59

[Dunn00] A. M. Dunning et al. The extent of human linkage disequilibrium in four
populations with distinct demographic histories. American Journal of Humane
Genetics, 67:1544-1554, 2000 → 9

1Some major flaws in this work have been pointed out in R.G. Downey, M.R. Fellows, R. Niedermeier,
and P. Rossmanith (eds.). Parameterized Complexity. Dagstuhl-Report No. 316, 2001. A revised version of
this paper is to appear under the title “On the existence of subexponential-time parameterized algorithms”
in Journal of Computer and System Sciences.

BIBLIOGRAPHY 127

[EHK03] E. Eskin, E. Halperin, and R. M. Karp. Efficient reconstruction of haplotype
structure via perfect phylogeny. To appear in Journal of Bioinformatics and
Computational Biology (JBCB), 2003 → 2, 104, 105, 106, 107, 108, 109, 110

[EJM75] G. Estabrook, C. Johnson, and F. McMorris. An idealized concept of the true
cladistic character. Mathematical Bioscience, 23:263-272, 1975 → 61

[Esta78] G. F. Estabrook. Some concepts for the estimation of evolutionary relation-
ships in systematic botany. Systematic Botany, 3(2):146-158, 1978 → 57

[Fels03] J. Felsenstein. Inferring Phylogenetics, Sinauer Associates Incorporated, 2003
→ 55

[FeNi01] H. Fernau and R. Niedermeier. An efficient exact algorithm for constraint
bipartite vertex cover. Journal of Algorithms 38(2):374-410, 2001 → 33

[Fern01] D. Fernández-Baca. The perfect phylogeny problem. In Steiner Trees in In-
dustry, Kluwer Academic Press, 2001 → 56, 57, 59

[Flan02] D. Flanagan. Java in a Nutshell. A Desktop Quick Reference, O’Reilly Pub-
lishers, 2002 → 89

[FoFu62] L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks, Princeton University
Press, 1962 → 85

[GaJo79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman, San Francisco, 1979 → 23, 24

[Gard98] M. J. Gardner et al. Chromosome 2 sequence of the human malaria parasite
plasmodium falciparum. Science, 282:1126-1132, 1998 → 11

[Gavr74] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory Series B, 16:47-56, 1974 → 59

[GCS00] I. C. Gray, D. A. Campbell, and N. K. Spurr. Single nucleotide polymorphisms
as tools in human genetics. Human Molecular Genetics, 9(16):2403-2408, 2000
→ 7

[GGL02] A. J. F. Griffiths, W. M. Gelbart, and R. C. Lewontin. Modern Genetic Analy-
sis: Integrating Genes and Genomes, W. H. Freeman, 2002 → 5

[GHNR03] J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith. New worst-case
upper bounds for Max2Sat with application to MaxCut. Discrete Applied
Mathematics, 130(2):139-155, 2003. → 71

[GKP94] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics,
Addison-Wesley, 1994 → 64

[GMS00] A. J. F. Griffiths, J. H. Miller, and D. T. Suzuki. An Introduction to Genetic
Analysis, W. H. Freeman, 2000 → 5

[GrKu90] D. H. Greene and D. E. Knuth. Mathematics for the Analysis of Algorithms,
Birkhäuser Verlag, 1990 → 64

[Gusf91] D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks,
21:19-28, 1991 → 58, 60

128 BIBLIOGRAPHY

[Gusf02] D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and effi-
cient solutions [Extended Abstract]. Proceedings of the 6th ACM International
Conference on Computational Molecular Biology (RECOMB 2002), 166-175,
2002 → 100, 103, 104

[GVY96] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM Journal on Computing,
25:235-251, 1996 → 71

[HaCl97] D. L. Hartl and A. G. Clark. Principles of Population Genetics, Sinnauer,
1997 → 10

[Hadl75] F. O. Hadlock, Finding a maximum cut of a planar graph in polynomial time.
SIAM Journal on Computing 4(3), 221-225, 1975 → 70

[HaEs03] E. Halperin and E. Eskin. Large scale recovery of haplotypes from genotype
data using imperfect phylogeny. Technical Report, The Hebrew University of
Jerusalem, School of Engineering and Computer Science, 2003 → 104

[Heil03] R. Heilig et al. The DNA sequence and comparative analysis of human chro-
mosome 14. Nature, 421:601-607, 2003 → 1

[HGSC01] The International Human Genome Sequencing Consortium (approx. 100 au-
thors). Initial sequencing and analysis of the human genome. Nature, 409:860-
921 → 1

[Hold02] A. L. Holden. The SNP Consortium: Summary of a private consortium effort
to develop an applied map of the human genome. BioTechniques 32:22-26,
2002 → 8, 11

[Huds90] R. Hudson. Gene genealogies and the coalescent process. Oxford Survey of
Evolutionary Biology, 7:1-44, 1990 → 104

[Karp72] R. M. Karp. Reducibility among combinatorial problems. R. E. Miller and
J. W. Thatcher (eds.): Complexity of Computer Computations, 85-103, 1972
→ 70

[KaWa94] S. Kannan and T. Warnow. Inferring evolutionary history from DNA se-
quences. SIAM Journal on Computing, 23:713-737, 1994 → 59

[KaWa97] S. Kannan and T. Warnow. A fast algorithm for the computation and enumer-
ation of perfect phylogenies. SIAM Journal on Computing, 26(6):1749-1763,
1997 → 59

[KFHW98] I. J. Kitching, P. L. Forey, C. J. Humphries and D. M. Williams. Cladistics:
The Theory and Practice of Parsimony Analysis, Oxford University Press,
1998 → 55, 56

[Knut97] D. E. Knuth. The Art of Computer Programming, Volumes I-III Boxed Set:
Fundamental Algorithms, Seminumerical Algorithms, Sorting and Searching
(Third Edition). Addison-Wesley, 1997 → 21

[Knut03] D. E. Knuth. The Art of Computer Programming, Pre-Fascicle 2A: A draft of
Section 7.2.1.1: Generating all n-Tuples, Zeroth printing (revision 6), available
via http://www-cs-faculty.stanford.edu/∼knuth/taocp.html, 2003 → 21

BIBLIOGRAPHY 129

[KhRa02] S. Khot and V. Raman. Parameterized complexity of finding subgraphs with
hereditary properties. Theoretical Computer Science 289(2):997-1008, 2002 →
71

[Krug99] L. Kruglyak. Prospects for whole-genome linkage disequilibrium mapping of
common disease genes. Nature Genetics, 22:139-144, 1999 → 9

[KRW95] B. Klinz, R. Rudolf, and G. J. Woeginger. Permuting matrices to avoid for-
bidden submatrices. Discrete Applied Mathematics, 60:223-248, 1995 → 32

[Kull99] O. Kullmann. New methods for 3-Sat decision and worst-case analysis. The-
oretical Computer Science 223:1-72, 1999 → 64

[LBILS01] G. Lancia, V. Bafna, S. Istrail, R. Lippert and R. Schwartz. SNPs prob-
lems, complexity, and algorithms. In Proceedings of ESA 2001, Springer-Verlag
LNCS 2161, 182-193, 2001 → 2, 101

[LeYa80] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary
properties is NP-complete. Journal of Computer and System Sciences, 20:219-
230, 1980 → 70

[Ligg97] S. B. Liggett. Polymorphisms of the beta 2-adrenergic receptor and asthma.
American Journal of Respiratory Critical Care Medicine, 156:156-162, 1997
→ 13

[LPC98] J. Lazarou, B. H. Pomeranz, and P. N. Corey. Incidence of adverse drug
reactions in hospitalized patients. Journal of the American Medical Society.
279:1200-1205, 1998 → 12

[Mare97] D. Marez et al. Polymorphism of the cytochrome P450 CYP2D6 gene in a
European population: characterization of 48 mutations and 53 alleles, their
frequencies and evolution. Pharmacogenetics, 7:193-202, 1997 → 7

[Mart00] E. R. Martin et al. Analysis of association at single nucleotide polymorphisms
in the ApoE region. Genomics, 63:7-12, 2000 → 12

[Maso99] E. Masood. Glaxo Wellcome is already using map data, Nature, 398:546, 1999
→ 12

[Mate01] E. Mateu et al. Worldwide genetic analysis of the CFTR region. American
Journal of Humane Genetics, 68:103-117, 2001 → 11

[Meac83] C. A. Meacham. Theoretical and computational considerations of the com-
patibility of qualitative taxonomic characters. Nato ASI Series Vol. G1 on
Numerical Taxonomy, Springer, 1983 → 61

[MeEs85] C. A. Meacham and G. F. Estabrook. Compatibility methods in systematics.
Annual Review of Ecology and Systematics, 16:431-446, 1985 → 57

[MeNä99] K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geo-
metric Computing, Cambridge University Press, 1999 → 89, 92

[Morr77] F. McMorris. On the compatibility of binary qualitative taxonomic characters.
Bulletin of Mathematical Biology, 39:133-138, 1977 → 61

130 BIBLIOGRAPHY

[Mu02] J. Mu et al. Chromosome-wide SNPs reveal an ancient origin for plasmodium
falciparum.2 Nature, 418:323-326, 2002 → 7, 9, 10, 11

[NCBI03] National Center for Biotechnology Information (NCBI), information available
via http://www.ncbi.nlm.nih.gov/, 2003 → 1

[Nied02] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Habilitationss-
chrift, Universität Tübingen, 2002 → 29

[Niel00] R. Nielsen. Estimation of population parameters and recombination rates using
single nucleotide polymorphisms. Genetics, 154:931-942, 2000 → 9

[NiRo00] R. Niedermeier and P. Rossmanith. A general method to speed up fixed-
parameter-tractable algorithms. Information Processing Letters, 73:125-129,
2000 → 27, 33

[NiRo03a] R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm for
3-Hitting Set. Journal of Discrete Algorithms, to appear 2003 → 33, 63

[NiRo03b] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algorithms
for weighted vertex cover. Journal of Algorithms, 47:63-77, 2003 → 26, 67, 68

[NRO99] M. Nikaido, A. P. Rooney, and N. Okada. Phylogenetic relationships among
certiodactyls based on insertions of short and long interpersed elements. Hyp-
popotamuses are the closest extant relatives of whales. Proceedings of the Nati-
nal Academy of Sciences (USA), 96:10261-10266, 1999 → 57

[OMG03] The Object Management Group UML Ressource Page.
http://www.omg.org/uml/, 2003 → 90

[PaHo98] R. D. M. Page and E. C. Holmes. Molecular Evolution: A Phylogenetic Ap-
proach, Blackwell Science, 1998 → 56

[Papa94] C. H. Papadimitriou. Computational Complexity. Addsion-Wesley, 1994. →
16, 17, 71

[PaYa91] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation and
complexity classes. Journal of Computer and System Sciences, 43:425-440,
1991 → 71

[PBH01] N. Patil, A. J. Berno, D. A. Hinds et al. Blocks of limited haplotype diver-
sity revealed by high-resolution scanning of human chromosome 21. Science,
294:1719-1723, 2001 → 103

[Page99] M. Page-Jones. Fundamentals of Object-Oriented Design in UML, Addison-
Wesley, 1999 → 90

[PoTu95] S. Poljak and Z. Tusza. Maximum cuts and large bipartite subgraphs. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 20:181-244,
1995 → 71

[PrSl03] E. Prieto and C. Sloper. Either/or: Using vertex cover structure in designing
FPT-algorithms - the case of k-internal spanning tree. In Proceedings of WADS
2003, 2003 → 71

2A correction of some details appears in Nature 419:487, 2002.

BIBLIOGRAPHY 131

[PSS97] S. Parkkila, W. S. Sly, R. C. Schatzmann et al. The hemochromatosis founder
mutation in HLA-H disrupts 2-microglobulin interaction and cell surface ex-
pression. Journal of Biological Chemistry, 22:14025-14028, 1997 → 7

[PSS02a] I. Pe’er, R. Shamir, and R. Sharan. Incomplete directed perfect phylogeny. In
Proceedings of 11th CPM, Springer-Verlag LNCS 1848, 143-153, 2000 → 58,
60

[PSS02b] I. Pe’er, R. Shamir, and R. Sharan. On the generality of phylogenies from
incomplete directed characters. In Proceedings of 8th SWAT 2002, Springer-
Verlag LNCS 2368, 358-367, 2002 → 58

[RBIL02] R. Rizzi, V. Bafna, S. Istrail and G. Lancia. Practical algorithms and fixed-
parameter tractability for the single individual SNP haplotyping problem. In
Proceedings of WABI 2002, Springer-Verlag LNCS 2452, 29-43, 2002 → 99

[RBWL95] J. C. Roach, C. Boysen, K. Wang, and L. Hood. Pairwise end sequencing: a
unified approach to genomic mapping and sequencing. Genomics, 26(2):345-
353, 1995 → 100

[Reic01] D. E. Reich et al. Linkage disequilibrium in the human genome. Nature,
411:199-204, 2001 → 9, 10, 11

[RLHA98] S. M. Rich, M. C. Licht, R.R. Hudson, and F. J. Ayala. Malaria’s Eve: evi-
dence of a recent populational bottleneck throughout the world’s populations
of plasmodium falciparum. Proceedings of the National Academy of Sciences
(USA), 95:4425-4430, 1998 → 11

[RoRe52] F. W. Robertson and E. Reeve. Studies in quantitative inheritance. 1. The
effects of selection on wing and thorax length in Drosophila melanogaster.
Journal of Genetics 50:414-448, 1952 → 56

[Rose00] A. D. Roses. Pharmacogenetics and the practice of medicine. Nature, 405:857-
865, 2000 → 9, 12, 13

[SCHHP82] F. Sanger, A. R. Coulson, G. F. Hong, D. F. Hill, G. B. Petersen. Nucleotide
sequence of bacteriophage lambda DNA. Journal of Molecular Biology 162:729-
773, 1982 → 100

[SeSt03] C. Semple and M. Steel. Phylogenetics, Oxford Lecture Series in Mathematics
and Its Applications, Oxford University Press, 2003 → 55, 56

[Skie98] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, 1998 → 16,
17, 78, 89

[SMVS97] H. Schröder, A. E. May, I. Vrto, and O. Sýkora: Approximation algorithms
for the vertex bipartization problem. In Proceedings of the 24th SOFSEM,
Springer-Verlag LNCS 1338, 547-554, 1997 → 76, 77, 93

[SNP01] The International SNP Map Working Group (approx. 40 authors). A map of
human genome sequence variation containing 1.42 million single nucleotide
polymorphisms. Nature, 409:928-933 → 2, 7, 8

132 BIBLIOGRAPHY

[SSD01] M. Stephens, N. Smith, and P. Donnelly. A new statistical method for hap-
lotype reconstruction from population data. American Journal of Humane
Genetics, 68:978-989, 2001 → 104

[Stee92] M. Steel. The complexity of reconstructing trees from qualitative characters
and subtrees. Journal of Classification, 9:91-116, 1992 → 57

[Ston01] M. Stoneking. From the evolutionary past. . . . Nature, 409:821-822, 2001 →
1, 2

[SuMi03] The Sun MicrosystemsTMJava Technology Source, http://java.sun.com/, 2003
→ 89, 93

[Tish96] D. A. Tishkoff et al. Global patterns of linkage disequilibrium at the CD4 locus
and modern human origins. Science, 271:1380-1387, 1996 → 9, 11

[Tish00] D. A. Tishkoff et al. Short tandem-repeat polymorphism/Alu haplotype vari-
ation at the PLAT locus: Implications for modern human origins. American
Journal of Human Genetics, 67:901-925, 2000 → 9, 11

[Titc76] E. C. Titchmarsh. Theory of Functions, Oxford University Press, 1976 → 64

[VoVo95] D. Voet and J. Voet. Biochemistry. John Wiley & Sons, 1995 → 5, 6, 100

[Wate95] M. S. Waterman. Introduction to Computational Biology. Chapman & Hall,
1995 → 100

[Watt77] G. A. Watterson. Is the most frequent allele the oldest?. Theoretical Population
Biology, 11:141-160, 1977 → 10

[WeHu02] M. P. Weiner and T. J. Hudson. Introduction to SNPs: Discovery of markers
for disease. BioTechniques, 32:4-13, 2002 → 1

[WeMy97] J. Weber and E. Myers. Human whole genome shotgun sequencing. Genome
Research, 7:401-409, 1997 → 100

[Whit03] The Whitehead Institute - Center for Genome Research. The Struc-
ture of Haplotype Blocks in the Human Genome. http://www-
genome.wi.mit.edu/mpg/hapmap/hapstruc.html#data, 2003 → 115,
116, 117

[WHO03] The World Health Organization. Fact Sheet 94: Malaria. available via
http://www.who.int/inf-fs/en/fact094.html, 2003 → 11

[Yann78] M. Yannakakis. Node-and edge-deletion NP-complete problems. In Proceedings
of the 10th annual ACM Symposium on Theory of Computing, 253-264, 1978
→ 70

[Yann81] M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing,
10(2):297-309, 1981 → 69, 70, 72

