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Zusammenfassung

Die algorithmische Analyse biologischer Sequenzen war lange Zeit eine Triebfeder der
Bioinformatik und hat viel zum Verständnis biologischer Bausteine (wie etwa Gene und
Proteine) beigetragen. Es scheint, als ob sich das Augenmerk der Forschung nun vermehrt
auf die Interaktionsmuster dieser Bausteine richtet, das heißt auf ein tieferes Verständnis
biologischer Netzwerke. Jüngste Ergebnisse auf diesem Gebiet sind vielversprechend:
So können beispielsweise Krankheiten und die hierdurch ausgelösten Reaktionen des
Körpers sehr gut aus einer

”
Netzwerkperspektive“ heraus verstanden werden, die zu-

verlässige Konstruktion neuer synthetischer sowie synthetisierender Organismen wird er-
möglicht und für eine Vielzahl biologischer Phänomene ergeben sich neue Erklärungsan-
sätze. Diese beeindruckende Fülle an Erkenntnis- und Anwendungsmöglichkeiten hat
dazu geführt, dass die Analyse biologische Netzwerke mitunter sogar als eigenständiger
Forschungszweig betrachtet wird, nämlich der sogenannten

”
Systembiologie“ (im Engli-

schen:
”
Systems Biology“).

Biologische Netzwerke sind in der Regel überaus komplex strukturiert. Diese Komplexi-
tät ist einerseits die Voraussetzung für die Fülle an Informationen, welche biologische
Netzwerke enthalten, führt andererseits jedoch dazu, dass die algorithmischen Probleme,
die sich bei der Auswertung von Netzwerkdaten ergeben, in der Regel sehr schwierig sind.
Es müssen daher Wege gefunden werden, die Komplexität biologischer Netzwerke algo-
rithmisch effizient zu bewältigen. In der vorliegenden Arbeit wird untersucht, inwiefern
dies mit Hilfe von kombinatorischen Algorithmen bewerkstelligt werden kann, das heißt
mittels diskreter Algorithmen welche Informationen aus der Topologie eines biologischen
Netzwerks extrahieren. Hierbei werden im Wesentlichen vier Ansätze verfolgt:

• Modularisierung (Kapitel 3 und 4). Die Idee dieses Ansatzes ist es, ein gegebenes
Netzwerk in kleine Teilnetzwerke zu zerlegen, die als dessen

”
funktionale Mo-

dule“ angesehen werden können. Diese sind sowohl intuitiv als auch algorithmisch
wesentlich leichter zu handhaben als das gesamte Netzwerk in all seiner Komplexi-
tät und können als Ausgangsbasis für die Untersuchung größerer Strukturen dienen.

• Ausdünnung (Kapitel 5). Diesem Ansatz liegt die Idee zugrunde, die Komplexität
eines biologischen Netzwerkes durch ein Ausdünnen

”
unwichtiger“ Verbindungen

zu reduzieren. Dies wird dadurch erreicht, dass ein Netzwerk unter Erhalt biolo-
gisch relevanter Eigenschaften auf eine maximale Ausdünnung hin optimiert wird.

• Überwachung (Kapitel 6, 7 und 8). Die Idee dieses Ansatzes ist es, eine möglichst
kleine Knotenmenge in einem Netzwerk so auszuwählen, dass ihre Beobachtung
Rückschlüsse auf biologisch relevante Aspekte des gesamten Netzwerks erlaubt.

• Vergleich (Kapitel 9). In diesem Ansatz werden biologische Netzwerke miteinander
verglichen (ähnlich einem Alignment für biologische Sequenzen). Dies erlaubt es
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zum Beispiel, Rückschlüsse auf evolutionäre Gemeinsamkeiten zwischen Netzwer-
ken zu ziehen, Datenbanksuchen und -integrationen effizient auszuführen, und ver-
einfacht einen Wissenstransfer von bereits bekannten und gut untersuchten Netz-
werken auf neue Daten.

Sämtliche der algorithmischen Probleme mit denen sich diese Arbeit befasst sind kombi-
natorisch hart. Dennoch werden für viele von ihnen neue Algorithmen entwickelt, die es
erlauben, sie in der Praxis sowohl effizient als auch gleichzeitig optimal zu lösen. Für die
übrigen Probleme werden neue Komplexitätsresultate entwickelt, von denen ein Großteil
auf eine effiziente Lösbarkeit in der Praxis hinweist. Hierbei verfolgen wir oftmals den
Ansatz der sogenannten

”
Festparameteralgorithmen“, welcher die inhärente kombina-

torische Explosion der betrachteten Probleme auf einen problemgrößenunabhängigen Pa-
rameter beschränkt.

Im Folgenden wird ein kapitelweiser Überblick über die Arbeit und die erzielten Resultate
gegeben.

Kapitel 1 und 2 führen in die Thematik der biologischen Netzwerke ein. Hierbei wer-
den unter anderem jüngste Forschungsergebnisse auf diesem Gebiet und experimentelle
Methoden zur Gewinnung von Netzwerkdaten diskutiert. Kapitel 2 vermittelt außerdem
biologische und informatische Grundlagen, die für ein besseres Verständnis der Arbeit
von Bedeutung sind.

In Kapitel 3 wird ein neuer Algorithmus zur Suche nach sogenannten
”
Netzwerkmo-

tiven“ entwickelt. Hierbei handelt es sich um Teilnetzwerke in einem Netzwerk, die sig-
nifikant häufiger vorkommen als dies bei einer zufälligen Netzwerkstruktur zu erwarten
wäre. Das zugehörige kombinatorische Problem Network Motif Detection beinhal-
tet die kombinatorisch schwierigen Aufgaben der Aufzählung von Teilnetzwerken sowie
der Bestimmung von Teilgraphhäufigkeiten in Zufallsnetzwerken. Für beide Teilaufgaben
werden neue Algorithmen entwickelt, welche deren Lösung um mehrere Größenordnun-
gen beschleunigen. Genauer gesagt wird ein schnellerer Algorithmus zu Enumeration
und Stichprobennahme von Teilnetzwerken diskutiert und ein Algorithmus zur Bestim-
mung von Teilgraphhäufigkeiten in Zufallsnetzwerken entwickelt, welcher im Gegensatz
zu bisherigen Ansätzen keine explizite Erzeugung von Zufallsnetzwerken beinhaltet. Am
Ende des Kapitels wird ein benutzerfreundliches Werkzeug zur Motivsuche vorgestellt,
welches auf den neu entwickelten Algorithmen basiert.

Kapitel 4 befasst sich mit dem NP-harten Problem, einfache Pfade minimalen Gewichts
in einem gewichteten Netzwerk zu finden. Dieses kombinatorische Problem – genannt
Minimum-Weight Path – ist durch die Suche nach Signalpfaden in Proteininteraktions-
netzwerken motiviert und kann mittels einer algorithmischen Technik namens

”
Color-

Coding“ gelöst werden. Es werden verschiedene algorithmische Verbesserungen ent-
wickelt, welche das Color-Coding-Verfahren sowohl im Worst Case als auch heuris-
tisch signifikant beschleunigen. Es wird gezeigt, dass in einem Graphen mit m Kanten
ein einfacher Pfad der Länge k mit minimalem Gewicht mit Wahrscheinlichkeit 1 − ε

in O(| ln ε| · 4.32k ·m) Zeit gefunden werden kann. In der Praxis kann diese Laufzeit
durch Heuristiken noch weiter verbessert werden. Eine auf den diskutierten Verbesserun-
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gen basierende Implementierung des Color-Coding Verfahrens ist in der Lage, Signalpfade
in wenigen Sekunden zu finden, wohingegen bisherige Ansätze mehrere Stunden für diese
Aufgabe benötigen.

In Kapitel 5 wird die Komplexität der Probleme Minimum-Difference Spanning Tree
und Centrality-Approximating Spanning Tree untersucht. Bei beiden Problemen
besteht die Aufgabe darin, einen Spannbaum für einen Graphen derart zu konstruieren,
dass die Distanzen zwischen Knoten beziehungsweise deren Zentralitäten möglichst ähn-
lich zu denen des Ursprungsgraphen sind (die Ähnlichkeit wird hierbei durch verschiedene
Matrixnormen ausgedrückt). Es wird gezeigt, dass beide Probleme in einer Vielzahl von
Varianten NP-vollständig sind und teilweise nicht einmal polynomielle Approximations-
algorithmen mit konstanter Güte zulassen (es sei denn P = NP).

Kapitel 6 befasst sich mit der Überwachung von Kanten in einem Netzwerk. Dazu wird
ein Festparameteralgorithmus für das Capacitated Vertex Cover Problem – einer Vari-
ante des Vertex Cover Problems – entwickelt. Die Aufgabe dieses Problems besteht
darin, eine Knotenmenge der Kardinalität k in einem Graphen derart auszuwählen, dass
jede Kante mindestens einen Knoten aus dieser Menge als Endpunkt besitzt. Die hierbei
zugrundeliegende Motivation ist die effiziente Verifikation biologischer Netzwerkdaten.
Es wird gezeigt, dass ein Graph mit n Knoten in O(n2) Zeit derart reduziert werden
kann, dass höchstens O(4kk2) Knoten verbleiben (es wird argumentiert, dass die Daten-
reduktion in der Praxis weitaus effektiver sein dürfte, als es diese Worst-Case-Schranke
suggeriert). Zudem wird ein Festparameteralgorithmus für Capacitated Vertex Cover
mit Laufzeit O(1.2k2

+ n2) entwickelt.

Kapitel 7 betrachtet das kombinatorische Problem der Überwachung von Zyklen in einem
Netzwerk. Diese spielen aufgrund ihrer inhärenten Rückkopplungsfunktion eine wichtige
Rolle in der experimentellen Bestimmung biologischer Netzwerke und für deren Funk-
tion. Es wird ein Festparameteralgorithmus für das kombinatorische Problem Feedback
Vertex Set entwickelt, das heißt für die Suche nach einer Knotenmenge der Größe k in
einem Graphen so dass jeder Zyklus mindestens einen Knoten dieser Menge enthält. Für
einen Graphen mit n Knoten und m Kanten erhalten wir einen Algorithmus mit einer
Laufzeit von O(24.1k ·mn); es werden im Anschluß verschiedene Möglichkeiten disku-
tiert, diesen Algorithmus in der Praxis effizient anwendbar zu machen.

In Kapitel 8 werden Datenreduktionen und ein Festparameteralgorithmus für die kom-
binatorische Suche nach einem Spannbaum entwickelt, welcher die Anzahl von Knoten
maximiert, die ihren Grad im Vergleich zum ursprünglichen Netzwerk beibehalten. Die
Betrachtung dieses Problems ist durch die Suche nach einer effizienten experimentellen
Bestimmung von Reaktionsraten in einem metabolischen Netzwerk motiviert; überdies
bestehen zahlreiche Anwendungen außerhalb der Bioinformatik im Bereich von Wasser-
und Elektrizitätsnetzwerken. Für das Problem Minimum-Vertex Feedback Edge Set,
das heißt in einem Graph mit m Kanten wird ein Spannbaum gesucht, bei dem maxi-
mal k Knoten einen geringeren Grad haben als im Ursprungsgraphen, wird eine Daten-
reduktion angegeben, die den Eingabegraphen in O(m) Zeit auf eine Größe von maxi-
mal 4k reduziert. Es wird zudem gezeigt, dass Minimum-Vertex Feedback Edge Set
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in O(4kk2 + m) Zeit exakt gelöst werden kann. Für das Full-Degree Spanning Tree
Problem, welches in einem gegebenen Graph nach einem Spannbaum fragt, in welchem
mindestens k Knoten denselben Grad haben wie im Ursprungsgraphen, wird eine Da-
tenreduktion entwickelt, die einen planaren Eingabegraphen in polynomieller Zeit auf
eine Größe von O(k) reduziert. Dieses Ergebnis weist auf die allgemeine Effektivität der
Datenreduktion in dünnen Graphen (wie etwa biologischen Netzwerken) hin.

In Kapitel 9 wird ein neuer Algorithmus zum Vergleich von metabolischen Netzwerken
vorgestellt. Um einen effizienten Algorithmus für das zugrundeliegende Subgraph Iso-
morphism Problem zu erhalten, wird die sogenannte

”
lokale Diversität“ von metabo-

lischen Netzwerken beobachtet und algorithmisch ausgenutzt. Der resultierende Algo-
rithmus ist nicht nur um Größenordnungen schneller als bisherige Ansätze zum Vergleich
metabolischer Netzwerke, er besitzt zudem ein wesentlich breiteres Anwendungsspek-
trum, da bestehende Verfahren gravierende Einschränkungen bezüglich der Topologie
der Eingabenetzwerke machen (wie etwas die Voraussetzung von Zyklenfreiheit).

In Kapitel 10 werden die Ergebnisse der Arbeit kurz zusammengefasst und es wird ein
allgemeiner Ausblick auf offene Fragestellungen gegeben.

Die in den Kapiteln 3–9 vorgestellten Ergebnisse sind in [84, 117, 118, 119, 125, 266,
268, 269] publiziert worden.



Preface

This thesis covers the major part of my research on combinatorial graph algorithms,
focusing on their application to coping with the complexity of biological networks.

From February 2004 until December 2004, I conducted my research at the Fakultät für
Informatik of the Technische Universität München while being a research assistant with
Ernst W. Mayr. Starting January 2005, my research was done under the supervision
of Rolf Niedermeier at the Fakultät für Mathematik und Informatik of the Friedrich-
Schiller-Universität Jena.

In January 2005, I was financially supported by the Studienstiftung des deutschen Volkes.
Since February 2005, I received a generous scholarship from the Deutsche Telekom
Stiftung, which I owe sincere thanks for giving me great freedom of research and al-
lowing me to travel to many conferences where I met interesting people.

It is my pleasure to thank Rolf Niedermeier for being a remarkable mentor for more than
three years of research; I have greatly profited from his untiring efforts. He also initiated
and supported my application for a scholarship of the Deutsche Telekom Stiftung. Fur-
thermore, I want to thank all members of my working group in Jena: Jiong Guo and Falk
Hüffner, with whom I worked together closely on several projects and had many fruitful
discussions; Michael Dom, Jens Gramm, and Hannes Moser who further contributed to
a stimulating and fun environment to work in. Finally, I am in debt to my two student
research assistants Florian Rasche and Thomas Zichner, who continuously spoiled me
with their speed and quality of work, and the Deutsche Forschungsgemeinschaft, whose
project PEAL (Parameterized Complexity and Exact Algorithms), NI 369/1 provided the
necessary funding to hire them.

I would like to sincerely thank Ernst W. Mayr for accommodating me in his group in 2004
and for kindly providing me with an office space at the Technische Universität München
for the entire time that followed. I have learned a lot during my year in Munich last
but not least due to various discussions with my colleagues Stefan Eckhardt, Sven Kosub,
Moritz G. Maaß, Johannes Nowak, and Hanjo Täubig.

This thesis can be divided into six parts. The first part (Chapters 1 and 2) gives a general
introduction and provides preliminary background information. This is followed by the
four main parts of this work: “Coping by Modularization” (Chapters 3 and 4), “Coping
by Thinning Out” (Chapter 5), “Coping by Surveillance” (Chapters 6, 7, and 8), and
“Coping by Comparison” (Chapter 9). The sixth and final part (Chapter 10) contains a
brief summary and outlook. Most of the new results that are discussed in Chapters 3–9
have been obtained in collaborations with Stefan Eckhardt, Jens Gramm, Jiong Guo, Falk
Hüffner, Sven Kosub, Moritz G. Maaß, Rolf Niedermeier, Florian Rasche, Hanjo Täubig,
and Thomas Zichner; in the following, I therefore provide a detailed description of my
personal contributions to these results.
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Part I: Coping by Modularization

Chapter 3 presents new efficient algorithms that significantly speed up the detection of so-
called network motifs, that is, of small connected subgraphs which appear significantly
more often in a network than would be expected for a random network. All algorithms
in this chapter and their analysis were conceived and carried out by me; Rolf Nieder-
meier provided some additional insight in various discussions. The algorithms serve as
the foundation for a user-friendly motif detection tool called fanmod, for which I pro-
grammed the algorithmic kernel and carried out the experimental work. The graphical
user interface and the html converter were mostly written by Florian Rasche. The al-
gorithmic and experimental results have been published in the IEEE/ACM Transactions
on Computational Biology and Bioinformatics; an extended abstract appears in the pro-
ceedings of the 5th Workshop on Algorithms in Bioinformatics (WABI’05) [266]. The
fanmod tool is presented in an article in Bioinformatics [268].

Chapter 4 deals with the detection of minimum-weight simple paths in a graph by means
of an algorithmic technique known as color-coding. Various algorithmic improvements
are presented, the study of which was initiated by me. In particular, I devised the first
improvement that is presented—that is, the use of more colors in the random coloring
process—and carried out its mathematical analysis. This improvement is responsible for
the major part of the speedup that is achieved. All implementation work was done by my
collaborators Falk Hüffner and Thomas Zichner. The experiments—in particular those
on random graphs—were devised by me and mainly carried out by Thomas Zichner. An
extended abstract of the presented results will appear in the proceedings of the 5th Asia-
Pacific Bioinformatics Conference (APBC’07) [125].

Part II: Coping by Thinning Out

Chapter 5 presents a number of novel NP-completeness and inapproximability results for
the problem of finding a spanning tree of a graph that approximates its mutual vertex–
vertex distances or closeness centralities. The results are achieved by reductions from the
NP-complete problems Exact-3-Cover (X3C) and 2-Hitting Set (2-HS), instances of
which are encoded into special graph gadgets. My contribution to this work was coming
up with the 2-HS gadget and carrying out all the NP-completeness and inapproximability
proofs that make use of it. The development of this gadget was a decisive step forward
because some of the results cannot be achieved by using the X3C gadget or modifications
thereof; in particular, all inapproximability proofs rely on the 2-HS gadget. The results
that are based on the X3C gadget were mainly obtained by my collaborators Stefan Eck-
hardt and Sven Kosub; Moritz G. Maaß and Hanjo Täubig provided additional insight
in various discussions. An extended abstract of the results appears in the proceedings of
the 16th Int. Symposium on Algorithms and Computation (ISAAC’05) [84].

Part III: Coping by Surveillance

Chapter 6 considers the NP-complete Capacitated Vertex Cover (CVC) problem,
which is a variant of the classical Vertex Cover problem. The input for CVC is a
graph where each vertex is assigned a capacity, that is, a nonnegative integer. The task
is to find a minimum-size set of vertices that is capable of covering all edges where a
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vertex can cover any edge it is incident to, but only as many edges in total as its capacity
allows. A kernelization and a fixed-parameter algorithm for CVC are presented. I came
up with the fixed-parameter algorithm and its running time analysis, the kernelization
was conceived by my collaborator Jiong Guo. Along with several fixed-parameter re-
sults for other variants of Vertex Cover, to which also Rolf Niedermeier contributed
in various discussions, the results have been accepted for publication in Theory of Com-
puting Systems; an extended abstract appears in the proceedings of the 9th Workshop on
Algorithms and Data Structures (WADS’05) [118].

Chapter 7 presents a fixed-parameter algorithm for the NP-complete Feedback Vertex
Set (FVS) problem, that is, the problem of finding a minimum-size set of vertices in
a graph that meets all cycles. The original algorithm was devised by Jiong Guo; my
contribution was to improve its running time and to simplify the argumentation of the
proof. The further improvement of the analysis that is presented in this work was also de-
vised by me. Besides Jiong Guo, collaborators on the presented work were Jens Gramm,
Falk Hüffner, and Rolf Niedermeier. The results have been published in the Journal
of Computer and System Sciences; an extended abstract appears in the proceedings of
the 9th Workshop on Algorithms and Data Structures (WADS’05) [117].

Chapter 8 presents new fixed-parameter results for the task of finding a spanning tree
of a graph where a maximum number of vertices retain their degree. Minimum-Vertex
Feedback Edge Set (VFES) is the minimization variant of this problem (“minimize the
number of vertices that do not retain their degree”) and Full-Degree Spanning Tree
(FDST) is its maximization variant (“maximize the number of vertices that do retain
their degree”). For VFES, a linear-size problem kernel and an efficient fixed-parameter
algorithm are presented; both were devised by Jiong Guo and me in various discussions.
For FDST, a data reduction is presented and proved to yield a linear-size kernel on planar
graphs. In close cooperation with Jiong Guo, I came up with decisive parts of this quite
technical and involved proof, in particular concerning the upper bounds on the number
of vertices that lie inside and outside of so-called regions in the input graph. An extended
abstract of the presented results, to which also Rolf Niedermeier contributed in various
discussions, appears in the proceedings of the 2nd Int. Workshop on Parameterized and
Exact Computation (IWPEC’06) [119].

Part IV: Coping by Comparison

Chapter 9 presents a simple algorithm for the efficient alignment of metabolic path-
ways. I came up with the main observation that underlies this algorithm—namely that
metabolic pathways are “locally diverse”—and the algorithmic idea of how to exploit
this property in order to quickly compute metabolic pathway alignments. All imple-
mentation work was done by Florian Rasche. An extended abstract that contains the
presented results will appear in the proceedings of the 5th Asia-Pacific Bioinformatics
Conference (APBC’07) [269].

Jena, December 2006 Sebastian Wernicke
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Chapter 1

Introduction

The analysis of biological sequence data has been a major driver of bioinformatics since
many years and greatly helped us gain a better understanding of cellular entities such as
genes or proteins. It appears that the focus is now somewhat shifting toward elucidating
the highly complex and nonsequential interaction patterns of these cellular entities, that
is, biological networks [138, 258]. This shift is fueled by the hope that understanding bio-
logical networks and their “traffic patterns” [152] can explain how cells and organisms
function as a system and thus shed light on the causalities that underlie their observed
behavior. Indeed, some recently published research indicates that gaining deeper insight
into biological networks is valuable to many areas of biology, medicine, and chemistry:

• New Perspectives. From a “network perspective,” some biological phenomena
seem to be much easier to understand. For example, different evolution rates of
proteins can be explained by their different positions in the cellular protein interac-
tion network [201]. Similarly, the p53 protein—an important tumor suppressor—
can only be understood in its function “because of its position within a network of
transcription factors” [151]. More global cellular phenomena such as the bacterial
cell cycle [166] or the organization of gene expression control [127] also appear to
be best understood in the context of networks.

• Infectious Diseases. When a pathogen (such as a virus or bacterium) enters an
organism, it interacts with its cellular networks. For example, herpesviruses in-
tegrate into the human protein interaction network at multiple points during an
infection [18, 252]. Understanding these mechanisms provides new possible drug
targets as recently exemplified by progress in the development of drugs and vaccines
against malaria [101, 273]. Furthermore, responses of the body against infections
such as inflammatory reactions can be better understood through networks [49].

• Cellular Malfunctions. Protein networks and gene regulatory networks of dysfunc-
tional cells differ from their healthy counterparts. More knowledge about these per-
turbations can lead to novel approaches in predictive and preventive medicine as,
for example, shown by recent research on prostate cancer [124] and diabetes [192].

• Synthetic Biology. A number of organizations and ventures are currently trying to
create tools for the large-scale manufacturing and engineering of novel biological
functions and systems. The goal is to develop a standardized arsenal of biological

1
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Figure 1.1: Network of protein–protein interactions in the yeast Saccharomyces cerevisiae
(drawn with the pajek software [27] using data from [44].)

modules which can be linked together to create “microbes made to order” [96] that
perform complex synthetic functions such as drug production or material genera-
tion [22, 146, 174]. Another prospect of these engineering efforts is to be able to
create artificial “simplified” organisms that can be used as study objects in order
to better understand real-world organisms [13, 157, 189]. Gaining a better under-
standing of biological networks is believed crucial in order to “reliably engineer
biological systems that behave as expected” [87].

• Computational Models. Simulations with in silico models of cells—such as the
E-Cell software [247, 249]—offer many advantages over “wet” laboratory exper-
iments: They can be carried out at a large scale, precisely repeated at will, are rather
inexpensive, and can be slowed down or accelerated in order to study certain tem-
poral aspects. Developing accurate cell models and iteratively refining them requires
a deep understanding of the mutual interactions of cellular entities [12, 88, 152].

These examples illustrate that “tracing life’s circuitry” [208] by means of biological net-
works seems to be a promising undertaking—so promising in fact, that this field is often
referred to as systems biology in order to distinguish it as a self-contained academic field.1

But there is a major hurdle: As exemplified by Figure 1.1, biological networks are usually
very complex. Whereas this is a blessing with respect to the richness of the data it al-
lows a biological network to contain, it is also a curse with respect to mining these data.
Hence, we need to find ways to cope with the complexity of biological networks in order
to extract useful information and gain new insights from them.

1This name has rapidly caught on with many scientists: new journals [1, 132, 214] as well as many recent
books [9, 150, 202, 222, 223, 250, 271] carry it in their title. Critics of systems biology argue that some
biological networks—especially those of metabolism—have already been studied for more than fifty years and
hence a new name is not justified; advocates of systems biology hold against this argument that a solid basis for
this field has only recently been established by the availability of large-scale proteomic and genomic data.
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This thesis investigates approaches that cope with the complexity of biological networks
by means of combinatorial algorithms, that is, by discrete algorithms that extract bi-
ologically relevant and meaningful information from the topology of a given network.
Although all of the algorithmic tasks we encounter are combinatorially hard, we develop
efficient algorithms for several of these that allow them to be efficiently solved in prac-
tice. For the other problems, we obtain novel computational complexity results, many of
which indicate that they can be efficiently solved in practice by means of fixed-parameter
algorithms [78, 98, 195], that is, algorithms that confine the combinatorial explosion of
the solution space to a so-called parameter, which is usually small in practice (a detailed
introduction to this topic is given in Section 2.3.2).

Concretely, our investigation in this thesis consists of four parts, each of which considers
a different approach of coping with the complexity of biological networks: The first part
considers dealing with the complexity of a biological network by modularization, that
is, by decomposing it into small modules of biological relevance. This somewhat local
approach is complemented by the second part which considers the problem of thinning
out a network while conserving important global network features and thus maintaining
an overview of the global network organization. The third part also considers an ap-
proach to cope with the complexity of a biological network on a global level, only that
we do not thin out the network but rather select a small set of vertices whose surveillance
reveals interesting information about the network. Finally, considering the hardness of
understanding a biological network, the fourth part of this thesis considers a combina-
torial algorithm that aligns metabolic pathways in order to transfer knowledge from a
well-understood network to an unknown one by comparison.

The following gives a more detailed overview of the four parts of this thesis; they are
preceded by a presentation of background knowledge in biology and computer science in
Chapter 2. Note that this overview concentrates on the application of our algorithms in
the realm of biological networks; many of the problems we study are also of relevance in
the context of other kinds of networks (we mention some of these non-biological contexts
in the respective chapters).

Part I: Coping by Modularization (Chapters 3 and 4). The main idea of modularization
is to decompose a network into small subnetworks that act as functional modules. These
modules are much easier to deal with than the whole network in all of its complexity
and—once they are well understood—can be used as seed structures for the investigation
of more complex mechanisms. Based on a detailed analysis of previous approaches,
we develop faster algorithms for two combinatorial tasks that become important in this
context.

• Chapter 3 develops a faster algorithm for detecting network motifs, that is, small
connected subnetworks that occur in significantly higher frequencies than in ran-
dom networks. These have gained much attention as a useful tool to uncover struc-
tural design principles of complex biological networks. However, solving the com-
binatorial problem of Network Motif Detection involves the computationally
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hard tasks of subgraph enumeration and frequency estimation in random networks.
Based on a detailed analysis of previous approaches, we develop two novel algo-
rithms for these tasks; experiments show that they speed up the detection of net-
work motifs by orders of magnitude. We also present a user-friendly motif detection
tool that is based on our algorithms.

• Chapter 4 deals with the NP-hard problem of extracting minimum-weight simple
paths from a network (that is, paths where no vertex occurs more than once). Solv-
ing this combinatorial problem called Minimum-Weight Path is motivated by an
application to protein interaction networks: the paths we extract are candidates
for signaling pathways. We investigate how an existing algorithm for this task
that is based on the technique of “color-coding” [7] can be made faster by means
of algorithm engineering. We obtain various novel improvements—both from a
worst-case perspective as well as under practical considerations—which have been
implemented into a freely available tool. Experiments demonstrate that our im-
provements allow for finding signaling pathway candidates in seconds where, pre-
viously, hours were required.

Part II: Coping by Thinning Out (Chapter 5). The idea that we follow in this part is to
cope with the complexity of a biological network by thinning out its edges. The goal is
to thus obtain a subgraph that is easier to work with and yet at the same time conserves
biologically relevant features of the original network.

• Chapter 5 examines the computational complexity of finding a spanning tree for
a network that conserves its mutual distances or centralities. Unfortunately, all
but one variant of the resulting combinatorial problem Combinatorial Network
Sparsification turn out to be NP-hard. Even worse, some of them turn out to not
even be amenable to polynomial-time constant-factor approximation algorithms
unless P = NP.

Part III: Coping by Surveillance (Chapters 6, 7, and 8). The idea behind the surveillance
approach is to extract a minimum-size set of vertices from a biological network that
allows us to monitor or control some aspects of it. The three resulting optimization
problems that we consider in Chapters 6, 7, and 8 are all known to be NP-hard; we
investigate to what extent they are amenable to fixed-parameter algorithms, that is, to
deterministic exact algorithms that confine the exponential part of their running time to a
parameter that is usually small in practice. (As mentioned earlier, a detailed introduction
to fixed-parameter tractability is given in Section 2.3.2).

• Chapter 6 investigates the surveillance of edges. Motivated by the problem of ef-
ficiently verifying experimentally inferred network data, we study a variant of the
well-known Vertex Cover problem. The “basic” Vertex Cover problem is to
find a minimum-size set of vertices in a graph that covers all edges—a vertex covers
an edge if it is incident to it. In the variant that we study, a vertex is assigned a
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so-called capacity that limits the total number of edges it can cover. This is the NP-
complete Capacitated Vertex Cover problem, for which we provide a first-time
fixed-parameter algorithm and an effective data reduction.

• Chapter 7 investigates the surveillance of cycles, which are of great importance to
the dynamic behavior of a network due to their inherent feedback function. Finding
a minimum-size set of vertices such that each cycle in a graph contains at least one
vertex of this set is known as the NP-hard Feedback Vertex Set problem. We
describe a fixed-parameter algorithm for this problem and discuss how algorithm
engineering could make it practically applicable.

• Chapter 8 investigates the surveillance of flow rates in a network (for example, the
reaction rates in a metabolic network). More specifically, we want to find a small
set of vertices that can be used to monitor all flow rates in a network. This problem
is known as Minimum-Vertex Feedback Edge Set. We provide first-time fixed-
parameter algorithms and effective data reductions for this minimization problem
and a data reduction for its dual maximization variant, which is known as the
Full-Degree Spanning Tree problem.

Part IV: Coping by Comparison (Chapter 9). Comparing networks by network align-
ments is a very useful tool that, for example, points out evolutionary similarities, fa-
cilitates database searches and -integration, and allows for a knowledge transfer from
well-studied data to new data. Computing network alignments is an NP-complete pro-
blem. Existing algorithms try to circumvent this hardness by restricting the host and
pattern network to be acyclic.

• Chapter 9 proposes a novel algorithm for the alignment of metabolic pathways
that—in contrast to all previous approaches—does not restrict the topology of the
host or pattern network. Instead, we exploit what we call the local diversity prop-
erty of metabolic pathways in order to obtain a simple alignment algorithm that
experiments reveal to be much faster than the previously proposed, more restricted
approaches.

Chapter 10 concludes this work with a brief summary of results and gives an outlook on
future research directions.

For the practitioner, the most interesting chapters among the four main parts will prob-
ably be Chapters 3, 4, and 9: For each of the problems we discuss there, efficient al-
gorithms are developed that are orders of magnitude faster than previously suggested
approaches. Contrary to the lack of accessible software that is often complained about
in systems biology (for example, see [53]), all of these algorithms are implemented as
freely available tools. The remaining chapters may also be of some interest to the prac-
titioner: On the one hand, some of the hardness results presented in Chapter 5 suggest
that it is quite hard to efficiently solve the Combinatorial Network Sparsification
problem in practice. On the other hand, the fixed-parameter algorithms in Chapters 6, 7,
and 8 eagerly await to be implemented, subjected to some algorithm engineering, and
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tried out in practice—since these problems are also highly relevant to many fields outside
of computational biology, a broad and thankful audience for such tools is certain.

In most chapters of this work, theoreticians will find interesting material that may serve
as a starting point for further investigations—in fact, the results we present in Chapters 6
and 7 have already led to some follow-up work [45, 184, 185]. What makes a further
theoretical investigation of the problems we present in Chapters 3 to 9 quite worthwhile is
that each of them comes with a detailed motivation from research on biological networks
and hence there is much interest to learn more about them.

Combinatorial algorithms are an attractive approach to dealing with the complexity of
biological networks: First and foremost, we can rely on a large and powerful arsenal of
mathematical and algorithmic knowledge when developing them. Second—an advantage
that might not be obvious at first sight—combinatorial algorithms force us to exactly
specify our problems and define precisely what we are looking for in a network. This
meets the often stated criticism (for example, see [208]) that many analyses of networks
“poke around in the data” without a clearly defined goal.

Of course, the use of combinatorial algorithms also comes with some limitations. For
example, we must consider all networks to be static (their edge and vertex set does not
change) and hence do not allow for any functional or structural plasticity. Also, we
assume that the networks are fully known without any errors that would affect our re-
sults. Fortunately, these restrictions are not as severe as they might seem at a first glance:
First, if a network shows plasticity, then analyzing several discrete “snapshots” in time
can even be an advantage over a continuous monitoring process because it more clearly
points out various changes over time (for example, see [49]). Second, the assumption
of fully knowing a biological network is becoming more and more realistic every day as
better methods for experimental network inference are derived (we discuss some of these
methods in Section 2.2).

This work hitherto appears to be one of the first to systematically investigate the appli-
cation of combinatorial algorithms to cope with the complexity of biological networks.
Naturally, we cannot hope to address all possible and relevant approaches for this task;
for example, we do not discuss approaches that hierarchically organize networks or de-
tect clusters. Nevertheless, it seems that most combinatorial algorithms that cope with
the complexity of biological networks can be classified as one of the four types of ap-
proaches we consider, namely modularization, thinning out, surveillance, or comparison.
Hence, our classification might provide a starting point and scaffold for a further system-
atic investigation of this fascinating topic.

Review articles such as [152] assert that a key to the success of systems biology is a
close collaboration between computer science and biology. We sincerely hope that this
work can deliver useful contributions to this collaboration from the side of combinatorial
algorithms.



Chapter 2

Preliminaries

This chapter provides background information on biological networks, combinatorial al-
gorithms, and the mathematical notation that is relevant throughout this work. More
specifically, Section 2.1 reviews the biochemistry of the three cellular entities—proteins,
genes, and metabolites—that act as the vertices of the biological networks we consider.
Section 2.2 proceeds to discuss various types of biological networks that constitute the
interaction patterns of these entities; we give an overview of how the underlying inter-
actions are inferred in laboratory experiments and point to online resources where some
network data can be obtained. In Section 2.3, we turn our attention to combinatorial
algorithms. Perhaps most importantly, we introduce the concept of fixed-parameter al-
gorithms, a special type of combinatorial algorithm that is of relevance to many chapters
of this work. Concluding this chapter, Section 2.4 provides an overview and look-up
reference of the mathematical termini and notation that we use.

As a reading guide, biologically adept readers can safely skip the introduction to the
cell, proteins, genes, and metabolites in Section 2.1. In contrast, Section 2.2 may still
be of interest because biological networks and their experimental inference are not yet
“standard” biological knowledge and—apparently—very few overviews on this topic are
available in the literature. Concerning the background on computer science that is pre-
sented in Sections 2.3 and 2.4, readers with some basic knowledge in algorithmics and
graph theory might wish to consider only reading the introduction to fixed-parameter
algorithms and the first paragraph of Section 2.4, which points out some particularities
of our notation that are somewhat nonstandard.

2.1 Basic Biochemistry of Cellular Entities

This section contains an introduction to the cell and the biochemistry of proteins, genes,
and metabolites. Our main focus here is to provide readers that have little or no biological
background with the necessary knowledge to better understand the mechanisms that are
modeled by biological networks; since biochemical literature is vast, we can only present
selected and greatly simplified material. For a more thorough treatment, a whole arsenal
of accessibly written monographs is available (such as [175, 191, 213, 244, 259]); each
provides an in-depth coverage of the topics we present here (they differ mostly in their
didactic approach).

7
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Note that since the material presented in this section is standard biochemical knowledge
that can be found in any of the abovementioned monographs, we refrain from citing any
explicit sources for it.

2.1.1 The Cell

The cell is the basic unit of which all living things are composed. It can either be a
complete organism on its own (a bacterium, for example) or be part of a multicellular
organism (such as a plant or an animal). In the context of this work, it suffices to think of
a cell as a chemical processing facility that functions through the interactions of mainly
three entities: proteins, genes, and metabolites. While this extremely simplified model
ignores many essential topics from biochemistry and cell biology, it serves the purpose of
establishing a basic understanding of cellular function and helps to recognize the impor-
tance of the biological networks that we apply our methods to.

Typically, one distinguishes between two types of cells: eukaryotic cells (such as in plants
and animals), which possess a clearly defined compartment for their genetic material
called nucleus, and prokaryotic cells (such as bacteria and blue algae), which do not
have a nucleus. Considering the level at which this work studies biological networks,
the differences between these two cell types need not be of too much concern; it should
only be kept in mind that prokaryotes utilize a much simpler cellular machinery than we
encounter in eukaryotes. The two main model organisms that are currently used to study
biological networks are the bacterium Escherichia coli (a prokaryote) and the fungus
Saccharomyces cerevisiae (a unicellular eukaryote commonly known as yeast).

2.1.2 Proteins

The many different proteins that a cell contains play central roles in its function. For
instance, they facilitate biochemical reactions, transfer signals, function as antibodies
in the immune system, and actively transport other molecules. Structurally, proteins
consist of one or more polypeptide chains that are folded into a specific three-dimensional
structure such as the one shown in Figure 2.1. The building blocks of these polypeptide
chains are about 20 different amino acids, all of which have a common base structure1

to which a specific side chain is attached; they are linked together by peptide bonds:
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The side chain plays an important role for the function of a protein because it can have
many different chemical properties, for example, it can be charged or repel water; the

1There is one exception to this, namely the amino acid proline. But this is not of importance to this work.
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Figure 2.1: Illustration for the three-dimensional folding of a polypeptide chain. (The
protein is the Lysozyme C in chicken; the image was drawn with qmol [106]).

arrangement of different amino acids therefore lends a protein its function through a
specific combination of these chemical properties.

Of the many functions that proteins carry out in the cell, the following three are of special
relevance to the biological networks we consider:

1. Reaction Catalysis and Regulation. Proteins called enzymes act as catalysts, that
is, they facilitate chemical reactions in the cell to reach their equilibrium. Enzymes
are highly specific and usually catalyze only a single reaction with exactly defined
reactants. Their catalytic activity is actively regulated by the cell through the rate
of enzyme production and substances called enzyme regulators which structurally
or chemically modify the enzyme.

Often, enzymes are labeled with an Enzyme Commission number (EC number);
a four-level hierarchical scheme that classifies them on a functional basis. At the
top level, there are six broad classes of enzyme activity which are then refined at
the lower classes. Each class has its own number. In this way, an enzyme is clas-
sified by four numbers (as in “3.4.23.48”), the first one representing the top level
classification and the three following numbers the subsequent refinements thereof.

1 2

Oxidoreductases Transferases

3

Hydrolases

4 5

Lyases Isomerases

6

Ligases

1.1 1.2 1.3 · · ·
· · · · · · · · · · · ·· · ·

· · ·· · ·
1.1.1 1.1.2 1.1.3

· · ·1.1.1.1 1.1.1.2 1.1.1.3

· · ·
· · ·· · ·

1st level: Reaction class

2nd level: Reaction subclass

3rd level: Specifies acceptor

4th level: Identifies reaction

The more numbers—from left to right—the EC codes of two enzymes have in com-
mon, the more similar the reactions they catalyze are.

2. Regulation of Gene Expression. Proteins regulate the production of other proteins
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by controlling the rate at which genetic information is expressed (this mechanism
is treated in more detail in Section 2.1.3).

3. Signal Transduction. Cells need to react to various external and internal stimuli.
Therefore, these stimuli need to be transformed into signals that can be spread and
amplified within the cell. Proteins play a crucial role in this process as will be
further discussed in Section 2.2.1 and Chapter 4.

If several proteins perform a complex function in successive steps, they are often aggre-
gated into a protein complex. This has several advantages for the cell. For example,
reactions can be carried out faster because the product of a reaction is already close to
the enzyme that uses it as a substrate for some subsequent reaction.

The information on how to build proteins is encoded as genetic information. The decod-
ing of this information is discussed in the next section.

2.1.3 Genes

Every cell contains the construction plans for the proteins that are needed to build and
sustain it. This information is encoded in the form of deoxyribonucleic acid (DNA).
Structurally, DNA consists of two linear strands that are wound around each other in a—
nowadays quite famous—double-helical fashion ( ). Each strand is a long chain
that is built from four different nucleotides as its links.2 A nucleotide is a deoxyribose
sugar to which one of four possible bases is attached: adenine, guanine, cytosine, or
thymine. For abbreviation, the nucleotides in a DNA strand are denoted by the first
letter of their respective base, that is, adenine is denoted by “A”, guanine by “G”, cytosine
by “C”, and thymine by “T”. The two single strands in the DNA are held together by
hydrogen bonds—electrostatic bonds of somewhat medium strength—between the bases
of opposing nucleotides. These bonds specifically pair adenine with thymine and cytosine
with guanine; therefore, the two strands of a DNA molecule are complementary to each
other, that is, adenine always lies opposite to thymine and guanine always lies opposite
to cytosine in the double helix (the dotted lines denote the hydrogen bonds):3

TA CG

The complete DNA sequence of an organism is called its genome. A gene is a unit of
DNA that encodes hereditary information—in our context, the sequence of a protein.
(Note that the majority of DNA is presumed not to contain any genetic information and
that not all genes encode protein sequences.) The expression of a protein-encoding gene,
meaning that its encoded protein is produced by the cell, is a multi-step process:

2In reality, DNA has a lot less homogeneous buildup than what we describe here; but such modifications
will not have to concern us in this work.

3More precisely, the two strands are reverse complements because they run in opposite directions.
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1. Transcription. Transcription is the process of copying the DNA sequence of a gene
into a complementary sequence of ribonucleic acid (RNA). Basically, RNA is like
a single DNA strand with some slight chemical modifications.4 In prokaryotes,
transcription is initiated with an enzyme called RNA polymerase recognizing and
binding to a DNA region that is a few bases before a gene; eukaryotes have three dif-
ferent RNA polymerases that are more complex than their prokaryotic counterpart,
but the basic mechanisms are quite similar. The region to which RNA polymerase
binds is called the promoter region of a gene. After the binding, the DNA double
strand is unwound and the RNA polymerase transcribes (copies) the information
of the gene into a complementary RNA molecule called messenger RNA (mRNA).

2. Splicing. A prokaryotic gene always encodes one protein whereas a eukaryotic gene
may encode more than fifty different proteins. The multiple encoding in eukaryotes
is realized by alternative splicing that modifies the transcribed RNA. Here, so-
called introns, non-coding sequences in the RNA transcript, are cut out before the
resulting mRNA goes into translation. By cutting out not only introns but also
some of the coding sequences between them, the so-called exons, different mRNAs
can be obtained that encode different proteins.

3. Translation. Translation is the process of chaining together amino acids in a se-
quence that is specified by an mRNA. Again, there are some considerable differ-
ences between prokaryotes and eukaryotes for this process that we will not discuss
here. Suffice it to say that an mRNA encodes a sequence of amino acids for a pro-
tein as nucleotide triplets which are called codons. Using so-called transfer RNA
(tRNA)—that is, RNA molecules that specifically bind to a codon on one side and
carry the corresponding amino acid on the other—the mRNA is translated into the
amino acid sequence of the protein.

4. Folding and Posttranslational Modification. Following translation, the newly syn-
thesized amino acid sequence folds into its functional three-dimensional protein
structure. Usually, this folding is guided by so-called chaperone molecules. Often,
a protein is also chemically modified after translation, for example, by adding func-
tional groups, by adding other proteins or peptides, or by chemically modifying the
amino acids.

5. Targeting. Following the folding and posttranslational modification, the protein
is transported to the cellular location where it is to be active. For this purpose,
many proteins carry a signal sequence at one end of their polypeptide chain which
functions like a postal code and designates their target location.

The expression of genes is heavily regulated because a cell needs to be able to react to
different internal and environmental conditions by shutting down the production of pro-
teins that are not needed and activating the production of proteins that it needs. There
are many levels of expression control, including modifications of DNA accessibility, RNA

4Compared to DNA, RNA has an oxidated ribose sugar in its skeleton and the nucleotide thymine is replaced
by a chemically similar nucleotide called uracil.
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stability, and protein stability. Important to this work is the regulation of gene expres-
sion by special proteins called regulatory proteins or transcription factors. In prokary-
otes, negative regulatory control is achieved by blocking the transcription of a gene at
its operator, a region between the promoter and the gene. Positive regulatory control
is achieved by activating proteins that bind to the promoter and facilitate the binding
of RNA polymerase. In eukaryotes, the control of gene expression through regulatory
proteins is much more complex, for example, additional regulatory DNA sites called si-
lencers and enhancers lie at a considerable distance from the actual gene and modulate
gene expression by interacting with regulatory proteins.

An important tool for the detection and identification of DNA and RNA are microarrays.
A microarray is basically a rectangular slide on which so-called DNA spots are arranged
in a matrix-like fashion. Each spot contains a large number of identical DNA molecules
or identical single strands of nucleotides. When the extract of a cell is washed over a
microarray, the DNA or RNA fragments that it contains stick to complementary DNA
spots. By marking the DNA or RNA in the extract with a fluorescent dye, a laser can
scan over the microarray to determine which fragments were contained in the cell extract
and—to some extent—in what amount.

2.1.4 Metabolites

A cell is never at chemical equilibrium; it requires a constant intake of energy (so-called
free energy) from its environment in order to maintain its structure and function. Gain-
ing this energy is achieved by maintaining a balanced flow of high-energy chemical com-
pounds into the cell, which it then breaks down into low-energy compounds before re-
leasing them back into its environment. With metabolism, one refers to the sum of all
chemical reactions that take place within a cell in order to maintain its structure and
function by providing or using free energy. The reactants, intermediates and products of
these reactions are referred to as metabolites.

The building blocks of metabolism are so-called metabolic pathways, cascades of con-
secutive enzymatic reactions that take specific metabolites as an input to yield specific
products. Usually, metabolic pathways are divided into two categories, namely catabolic
pathways (also called degradation pathways) that break down high-energy compounds to
release their free energy and anabolic pathways (also called biosynthetic pathways) that
synthesize biomolecules from intermediate compounds, usually by using free energy. A
classic example for a catabolic pathway is the oxidation of glucose sugar into water and
carbon dioxide, which releases free energy at the amount of 2.87 · 106 Joule per mol:5

glucose

C O

C C

CC
OH

H

H

OH

CH2OH

H
OH

H
H

OH

+ 6 O2

oxygen

−→ 6 CO2 + 6 H2O + 2.87 · 106 J/mol

carbon water free energy
dioxide

5One mole (the SI symbol is “mol”) of a substance is approximately 6.022 · 1023 molecules of it.
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Table 2.1: Some examples for the mutual interactions of proteins, genes, and metabolites.

Proteins Genes Metabolites

Proteins

Many types of mutual in-

teraction, both direct and

indirect (for example, in

signal transduction).

Proteins are encoded as

genes, involved in the gene

expression process, and

regulate gene expression.

As enzymes, proteins cata-

lyze virtually all metabolic

reactions. Metabolites can

regulate enzyme activity.

Genes (See proteins–genes.)

A gene may express a pro-

tein that regulates the ex-

pression of other genes

(directly or indirectly).

The absence or presence

of metabolites often trig-

gers the activation or re-

pression of certain genes.

Metabolites (See proteins–metabolites.) (See genes–metabolites.)

Metabolites react with

each other in metabolism.

A reverse anabolic pathway which builds glucose from water and carbon dioxide takes
place in plants, using sunlight as the source of the free energy needed for this process.

The two main drivers of metabolism are enzymes—the protein catalysts that we discussed
in Section 2.1.2—and the compound adenosine triphosphate (ATP): The cell can coarsely
control the rate of its metabolic processes via the production of enzymes; fine tuning is
achieved by the regulation of their catalytic activity. ATP acts as the primary energy stor-
age compound. It releases energy when loosing its phosphate groups to become adenosine
diphosphate (ADP) or, as a second step, adenosine monophosphate (AMP). Reversibly,
energy can be “stored” by adding phosphate groups to AMP and ADP. The storage and
release of energy is achieved by a process called energy coupling, that is, a reaction that
would energetically not take place on its own can still be accomplished by coupling it to
the dephosphorylation of one or more ATP molecules. Complementary, a reaction that
has a high free energy can be coupled to the phosphorylation of AMP or ADP in order to
store this energy for use by other reactions.

Most reactions in metabolism function close to equilibrium, that is, they are reversible. A
quasi-exception to this are steps that involve the breakdown of ATP; the reverse reaction
virtually does not take place because its energy balance is too unfavorable.

This concludes our brief introduction to proteins, genes, and metabolites. It could already
be seen that these three entities permanently interact with each other directly or indirectly.
These mutual interactions can be collected and modeled as biological networks, various
types of which we discuss in the next section.

2.2 Biological Networks and Their Inference

In the previous section, we have given a brief introduction to proteins, genes, and metabo-
lites. We have seen that these three entities have relationships of mutual interactions as
summarized in Table 2.1. These interactions can be depicted as networks where pro-
teins, genes, and metabolites are the vertices and an edge between two entities denotes
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an interaction; more specifically, we can use undirected edges to denote mutual interac-
tions and directed edges for interactions that are of a regulatory fashion or otherwise
nonsymmetrical.

In this section, we give a short introduction to three types of biological networks that
are frequently dealt with in this work: protein interaction networks, gene regulatory
networks, and metabolic networks. Of course there are many more types of biological
networks, such as ecological food webs that model predator–prey relationships or neuron
networks that model nervous systems. However, these will only be sporadically encoun-
tered in some chapters of this work and do not play a central role; whenever they are
mentioned, we point to references that introduce them in more detail.

Whereas, a few years ago, biological network data was still at a stage where only “the
parts list but not the wiring diagram” [17] was known, the last years have seen a rapid
increase in both its quantity and quality. This is mainly due to the development of new ex-
perimental methods. The following sections review these experimental methods in some
detail—we think that this is important in order to better understand their capabilities
and limits and, as a consequence, to assess the quality of the data they yield. As a general
remark in this context, one problem that many of the currently available experimental
methods have to deal with is that they infer networks in vitro and it is hard to verify
whether the results also hold in vivo, that is, for living cells.

2.2.1 Protein Interaction Networks

A cell must adapt its internal processes to environmental stimuli such as the presence of
certain nutrients, growth factors, hormones, or temperature conditions. This demands a
coordination of, among others, metabolism, gene expression, and cell morphology. The
coupling of external and internal stimuli to such coordinative reactions is achieved in
a process called signal transduction which heavily involves mutual interactions of pro-
teins. Protein interaction networks—sometimes also called protein–protein interaction
networks—therefore play an important role in understanding the functioning of a cell.
Formally, they represent proteins by vertices and the mutual interactions between them
by edges. The probability or strength of an interaction is sometimes incorporated into a
protein interaction network by assigning a weight to each edge.

Whereas there are many different types of protein interactions—for example with perma-
nent or only temporary effects—all of these have in common that they require a physical
contact between the two interacting proteins. This can be used to detect interactions. The
most common methods (among a huge arsenal) for the experimental inference of protein
interaction networks are the following:6

• Yeast Two-Hybrid Assay. This approach is often used for large-scale testing of
protein interactions; it relies on gene expression as a detector and amplifier [97].
Given two proteins X and Y that we want to test for interaction, the first step is

6A comparative assessment concerning the quality of various detection methods can be found in [180].



Biological Networks and Their Inference 15

to create a fusion protein from each of them:7 The protein X is fused to a DNA
binding domain that binds to the promoter of a reporter gene, that is, a gene whose
protein product can be easily detected and measured.8 The protein Y is fused to
an activation domain that can activate transcription by facilitating the binding of
RNA polymerase to a promoter. The genetic codes of the two fusion proteins are
introduced into a yeast cell, upon where they are expressed. If X and Y interact,
then the expression of the reporter gene is activated:

XY

transcriptional activator

DNA binding domain promoter reporter gene

X

Y

RNA polymerase

transcription

Note that although the name might suggest it, the yeast two-hybrid assay is not
limited to detecting interactions between yeast proteins; in principle, the genetic
code of any fusion protein may be introduced into the yeast cell.

While suited for large-scale experiments (for example, see [253]), a major drawback
of the yeast two-hybrid assay is its poor reliability: For example, the fusion may
interfere with the interaction of the proteins or essential posttranslational mod-
ifications on the proteins may not be carried out in the yeast cell. Interactions
can also be falsely detected, for instance, when two proteins interact in the yeast
cell although they would not do so in the environments that they naturally occur
in [180]. Finally, certain proteins may be toxic for the yeast cell and thus prohibit
an interaction detection by the yeast two-hybrid assay.

• Immunoprecipitation. This technique is often used as a follow-up to the yeast two-
hybrid method in order to verify the detected protein interactions. Immunoprecipi-
tation requires an antibody that specifically binds to one of the proteins that we are
interested in; this protein is usually referred to as the bait protein. The antibody
that binds to the bait protein is attached to some insoluble protein or the surface of
specially prepared beads.

In the first step of immunoprecipitation, the cells where we want to detect pro-
tein interactions are destroyed. The resulting extract is mixed with the antibody-
carrying beads or proteins, causing the bait protein and those proteins that interact
with it to stick to them whereas the remaining contents of the cell can be washed
away. Standard methods such as mass spectrometry or western blotting can then
identify the remaining proteins that stick to the bait protein.9 Whereas immunopre-
cipitation is quite accurate, it also has some disadvantages: for example, it is much

7A fusion protein is a concatenation of the polypeptide chains of two distinct proteins, usually spaced by an
inert “buffer” chain.

8This is often the LacZ gene, the expression of which can be detected as a blue coloring of the cell.
9Recent developments in the area of protein identification are for example discussed in [149]. For an

overview of common protein identification methods, see [259].
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more time-intensive than the yeast-two hybrid method and requires the availability
of a specific antibody for the bait protein.10

• Novel Methods. Given the limitations of the yeast two-hybrid and immunopre-
cipitation methods, a number of techniques have recently been proposed to detect
protein interactions reliably at a large scale. Among the most promising ones for
a widespread application are protein arrays [230, 279] and fluorescence resonance
energy transfer microscopy (FRET microscopy) [274]. Protein arrays are basically
rectangular matrices in which each cell contains an antibody or protein. Apply-
ing a sample that contains a certain protein, this matrix can be used to directly
detect interactions. One advantage of this technique is that protein arrays can be
read out by fluorescence and are thus compatible to existing laboratory equipment
that is commonly used to read out DNA microarrays. A disadvantage—at least
currently—is that it seems to be quite hard to reliably manufacture protein arrays.
FRET microscopy attaches fluorophores to proteins, that is, molecules which res-
onate if they are close to each other. The advantage of this technique is that protein
interactions can be directly localized in vivo in the cell, but it is not (yet) suited for
a large-scale application.

• Text mining. Many protein interaction networks have been constructed not by
direct evaluation of laboratory experiments but rather indirectly by text-mining
existing scientific literature for known interactions (see [209] for an example).

Many databases of protein interactions are available online; a 2003 thesis by Bader [16]
already lists a few dozens of them. Some good starting points usually are bind (http://
bind.ca/), dip (http://dip.doe-mbi.ucla.edu/), IntAct (http://www.ebi.ac.uk/
intact/site/), and pim (http://pim.hybrigenics.com/).

2.2.2 Gene Regulatory Networks

As their name already suggests, gene regulatory networks—which are also referred to as
regulatory networks or gene networks—model the regulation of gene expression in a cell.
They do so by representing genes as vertices and drawing a directed edge from a gene that
encodes a transcription factor to any gene whose expression is regulated by that factor.
Due to the tight connection between genes and proteins—especially in prokaryotes, where
one gene always encodes one protein—gene regulatory networks can easily be integrated
with protein interaction networks as, for example, done in [277].

Various methods are commonly used to infer gene regulatory networks:

• Chromatin Immunoprecipitation. Also known as genome-wide location analysis
or ChIP-chip, chromatin immunoprecipitation is one of the most commonly used

10If no antibody is available, a workaround that is sometimes used is to create a fusion protein between the
bait protein and some other protein for which an antibody is available. However, this may cause the same
experimental errors as in the yeast-two hybrid assay, for example, due to an interference of the fusion with the
interaction.

http://bind.ca/
http://bind.ca/
http://dip.doe-mbi.ucla.edu/
http://www.ebi.ac.uk/intact/site/
http://www.ebi.ac.uk/intact/site/
http://pim.hybrigenics.com/
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methods for identifying the genes that a given bait protein binds to [221]. The un-
derlying idea of this approach is quite similar to the immunoprecipitation method
that we discussed in the previous section: Again, we start out with the lysis11 of a
cell, only that formaldehyde is additionally added to the extract in order to chem-
ically fix all proteins which are attached to some DNA segment to stay at this
segment. The DNA is then enzymatically broken into small pieces. Due to the
formaldehyde fixation, some of these fragments still have DNA-binding proteins
attached to them. Antibodies for the bait protein are then used to extract any
bait protein–DNA complexes. After reversing the formaldehyde linking, the DNA
pieces that were attached to the bait protein can be detected using a microarray.
One major disadvantage of Chromatin Immunoprecipitation is the requirement of
a specific antibody for each possible bait protein.12

• Protein Binding Microarray. This approach is a somewhat “simplified” and there-
fore faster variant of chromatin immunoprecipitation. Here, a purified protein
solution is brought into direct contact with a DNA microarray [188]. The main
weakness of this approach is that it only recognizes in vitro interactions whereas
chromatin immunoprecipitation finds in vivo interactions. Hence, protein binding
microarrays are very susceptible to a false detection of protein–DNA interactions.

• DNA Binding Motifs. If a genome is completely sequenced, computational meth-
ods can be used to identify likely binding sites (binding motifs) of DNA-binding
proteins. By comparing binding motifs with the DNA targets of known regulatory
proteins, one can infer new regulatory relationships (see, for example, [187]).

• Phylogenetic Profiling. The main idea of this approach is to infer regulatory rela-
tionships by comparing the genomes of different species with each other. Observa-
tions such as “gene Z is only present in a genome if the genes X and Y are present”
can give useful hints concerning their regulatory relationships [40, 68].

• Coexpression Analysis. Using microarrays, it is possible to determine the mRNA
concentrations in a cell under different environmental conditions. By analyzing
which genes show similar expression patterns, one may obtain hints as to their
regulatory relationships, for example, that the expression of a number of genes
appears to be regulated by the same transcription factor [241]. A quite problematic
assumption that underlies this approach is the correlation of mRNA concentrations
with the level of gene expression and the amount of produced protein in the cell;
this assumption is often false due to the many regulatory mechanisms in the cell at
the mRNA and protein level (see, for example, [114]).

A collection of pointers to online databases of gene regulatory networks can be found
at http://www.gene-regulation.com/pub/databases.html. Other useful sources of

11That is, its mechanical destruction.
12This can partly be overcome by the construction of fusion proteins where a protein that is recognized by

an antibody is fused to the bait protein. But this brings along many problems: for example, the fusion can
interfere with the DNA–protein interaction of the bait protein or the fused protein itself may bind to some
DNA fragments.

http://www.gene-regulation.com/pub/databases.html
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Figure 2.2: Two different ways to model a metabolic pathway as a graph; exemplified by
the breakdown of D-glucose into pyruvate: a) The metabolites are modeled as vertices
and enzymes that catalyze reactions between them are modeled as directed edges that are
labeled with their EC number. b) Enzymes are modeled as vertices and a directed edge
from one vertex to another signifies that the product of the reaction catalyzed by the first
enzyme is a substrate to the reaction catalyzed by the second one. Metabolites are not
incorporated into the model.

data are, among many others, GeneNet (http://wwwmgs.bionet.nsc.ru/mgs/gnw/
genenet/), GeNet (http://www.csa.ru/old/Inst/gorb_dep/inbios/genet/genet.
htm), and MINT (http://mint.bio.uniroma2.it/mint/Welcome.do).

2.2.3 Metabolic Networks

Metabolic networks are directed networks that represent metabolic pathways. As ex-
emplified in Figure 2.2, there are two different ways to represent these networks: The
probably more common representation that is found in many textbooks and metabolic
pathway databases is shown in Figure 2.2a: Metabolites are depicted by vertices and two
metabolites are connected by a directed edge if one is obtained as a direct product from
the other through a single enzymatic reaction; the edge represents the enzyme of that
reaction. An alternative to this is exemplified in Figure 2.2b. We depict the enzymes as
vertices and connect two vertices by a directed edge if the product of the reaction cat-
alyzed by the first enzyme is a substrate to the reaction catalyzed by the second. This
representation is somewhat more useful when we want to compare metabolic networks
on the basis of the involved enzyme functions—as is the case in Chapter 9—because it
emphasizes enzymatic interactions while ignoring individual metabolites.

There are various ways to infer metabolic networks. Most of them are based on a selective
perturbation of a cellular system and observing the effects that it has on the production
of metabolic intermediates, but there are also less invasive methods that are suitable for
studying the metabolism of higher animals. As a brief overview, the following methods
are commonly used to infer metabolic pathways (we follow [259]):

http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/
http://wwwmgs.bionet.nsc.ru/mgs/gnw/genenet/
http://www.csa.ru/old/Inst/gorb_dep/inbios/genet/genet.htm
http://www.csa.ru/old/Inst/gorb_dep/inbios/genet/genet.htm
http://mint.bio.uniroma2.it/mint/Welcome.do
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• Metabolic Inhibition. Certain substances are capable of blocking a metabolic path-
way at a specific point, usually by inhibiting or deactivating the enzyme that is
responsible for the blocked reaction. This causes the preceding intermediates to
accumulate, which can then be isolated and characterized. Note that this method is
not failsafe: The accumulation of a metabolite may cause the cell to use alternative
pathways that process it into yet another metabolite, which is then falsely detected.

• Genetic Manipulation. To find out how various hormones or the diet of an or-
ganism affect the production of an enzyme, one can introduce a so-called reporter
gene (which—just as in the yeast two-hybrid assay, is a gene whose product is easily
detected), into the cell such that it is under the control of the same promoter that
regulates the transcription of an enzyme. In this way the expression of the enzyme
can be monitored through the reporter gene.

Genetic manipulation can also be used to yield similar effects as metabolic in-
hibitors. This technique is also suitable for higher organisms such as mice.13

• Labeling with Isotopes. Metabolites can be labeled by replacing some of their
atoms with isotopes, that is, atoms with the same number of protons but a differ-
ent number of neutrons in their nucleus. The resulting molecules can be detected
noninvasively with nuclear magnetic resonance (NMR) techniques, but are chemi-
cally indistinguishable from their unlabeled counterparts. This technique can thus
be used to trace the fate of a certain substance in metabolism because the products
of the labeled metabolite—which use the same atoms—become labeled themselves.
Using radioactive isotopes that cause the products derived from the labeled metabo-
lite to quickly decay is an indispensable technique for establishing the precursor–
product relationships (that is, the order) of a metabolic pathway.

Metabolic pathway databases that are available online include the ecocyc, metacyc and
biocyc databases (all accessible via www.biocyc.org/), kegg (http://www.genome.ad.
jp/kegg/metabolism.html), the Roche Applied Science Pathways Chart (http://
www.expasy.ch/cgi-bin/search-biochem-index), and wit (http://www-unix.mcs.
anl.gov/compbio/). References for enzyme classification are brenda (http://www.
brenda.uni-koeln.de/) and expasy (http://www.expasy.org/enzyme/).

This concludes our brief introduction to biological networks and we now turn our atten-
tion to the aspects of computer science that are relevant to this work.

2.3 Combinatorial and Fixed-Parameter Algorithms

This section gives a short general introduction to combinatorial algorithms and intro-
duces fixed-parameter algorithms, a special type of combinatorial algorithms that is im-
portant to many chapters of this work. Note that we use some standard notation in this
section that is yet to be formally defined in Section 2.4; readers that are not familiar with
basic graph theory and computer science are referred to this section for reference.

13These mice are then often referred to as knockout mice because a gene has been “knocked out.”

www.biocyc.org/
http://www.genome.ad.jp/kegg/metabolism.html
http://www.genome.ad.jp/kegg/metabolism.html
http://www.expasy.ch/cgi-bin/search-biochem-index
http://www.expasy.ch/cgi-bin/search-biochem-index
http://www-unix.mcs.anl.gov/compbio/
http://www-unix.mcs.anl.gov/compbio/
http://www.brenda.uni-koeln.de/
http://www.brenda.uni-koeln.de/
http://www.expasy.org/enzyme/
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2.3.1 Combinatorial Algorithms

Broadly speaking, a combinatorial algorithm is an algorithm that deals with combinato-
rial structures, that is, structures built of discrete objects that can be combined with each
other according to a set of rules.14 In this work, the combinatorial structures that we deal
with are graphs. A useful scheme to classify combinatorial algorithms based on the type
of combinatorial task that is to be solved was proposed by Kreher and Stinson [163]. It
distinguishes three different types of combinatorial tasks:

• Search. Searching is the most commonly encountered combinatorial task in this
work; its objective is to find at least one representative of a certain structure. For
example, given a graph and a nonnegative integer k, the Vertex Cover problem
that we discuss in Section 2.3.2 asks us to find a size-k set of vertices in the graph
such that each edge is incident to at least one vertex of this set.

Alternatively to being phrased as a decision problem (“find if there is at least one
representative of a certain structure”), search tasks are also often phrased as opti-
mization problems (“given a scheme to calculate a cost for each representative of a
certain structure, find the minimum- or maximum-cost representative”).

• Generation. This task asks us to construct all combinatorial structures of a partic-
ular type. As an example for this, Chapter 3 discusses an algorithm that generates
all connected k-vertex subgraphs of a given graph for some nonnegative integer k.

• Counting.15 The task here is to count combinatorial structures of a particular type
without the need to explicitly list them. An example for this is given in Chapter 3
where we count the number of graphs that have a specified sequence of vertex
degrees. Note that counting is a restricted variant of the generation task: Whereas
generation always allows for counting, the converse does not have to be true.16

Given a combinatorial problem, one of the most important questions is of course whether
it can be solved efficiently. For search problems, the most common way to answer this
question stems from the landmark work of Garey and Johnson [107] and classifies prob-
lems as either belonging to the class P or as being NP-complete:17 A problem belongs to
the class P if and only if any size-n instance of it (for example, an n-vertex graph) can be
solved in polynomial time with respect to n. In contrast to this, it is widely believed that
solving a size-n instance of an NP-complete problem can only be done in exponential time
with respect to n. Similar classifications of “combinatorial hardness” exist for generation
and enumeration tasks, the details of which need not concern us here, however.

14Although many books have been written on the topic of “combinatorial algorithms” (for example, [50, 80,
111, 158, 163, 203, 242]), it is a peculiar fact that very few of these precisely state how they define this term.

15Note that [163] uses “enumeration” instead of “counting.” This is somewhat misleading because “enu-
meration ” is also commonly used to denote the task of combinatorial generation.

16A simple example for this observation is counting the number of permutations of n distinguishable objects:
We can easily determine this to be n! without explicitly generating each permutation.

17For optimization problems, using the term “NP-hard” is more appropriate, but we will sidestep this detail
for the sake of clarity here.
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Problems in P are usually treated as being “efficiently solvable” and NP-complete prob-
lems as being “combinatorially hard” or “intractable,” that is, not efficiently solvable.
Although this is ignorant of the fact that polynomials such as n10 lead to far worse run-
ning times than, say, an exponential term of 1.01n, such cases rarely occur in practice.

Many problems on graphs are NP-complete—consequently, so are virtually all of the
problems we discuss in this work. There are a number of commonly employed ways to
deal with NP-completeness in practice, mainly in the realm of optimization problems.
For example, one can use heuristic algorithms that “usually return a good solution in
practice” or use approximation algorithms [14, 254] that return a solution that is within
guaranteed bounds of the global optimum. But what if we want to obtain exact solutions
and still guarantee a somewhat efficient worst-case running time? Apparently, this is a
paradox demand concerning NP-complete problems in general—but not without some
notable exceptions, as the next section discusses.

2.3.2 Fixed-Parameter Algorithms

Assuming that P 6= NP—which we take for granted in this section—one must accept
exponential running times in order to solve an NP-complete problem by means of an
exact combinatorial algorithm.18 Classical complexity theory states that the exponen-
tial growth of the running time, which is caused by a “combinatorial explosion” of the
solution space, depends on the size n of the input. This implies that large instances of
NP-complete problems cannot be solved efficiently and optimally at the same time. Often
however, it is not the size of an instance that makes a problem hard to solve, but rather
its structure. This observation is reflected in the approach of fixed-parameter tractabil-
ity (FPT) and the corresponding fixed-parameter algorithms that we introduce in this
section. Both were introduced by Downey and Fellows [78]; two recent monographs
provide a detailed state-of-the-art treatment of fixed-parameter algorithmics [195] and
the related complexity theory [98].

FPT plays an important role in Chapters 4, 6, 7, and 8 of this work. We shall use the
NP-complete Vertex Cover problem as a running example to introduce its relevant
concepts; a variant of this problem will also be the main focus of Chapter 6.

Vertex Cover
Input: An undirected graph G = (V, E) and a nonnegative integer k.
Task: Find a size-k subset V ′ ⊆ V such that every edge in E has at least one
endpoint in V ′.

As an illustration, the following graph has a size-7 vertex cover, marked as black vertices:

18In this section, we will only consider decision problems, but most results easily carry over to optimization
problems.
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Figure 2.3: Example of a search tree to illustrate that Vertex Cover is fixed-parameter
tractable. Since the tree always branches into two subcases and its depth is upper-
bounded by k, its overall size is upper-bounded by 2k+1 − 1 = O(2k).

Solving Vertex Cover is of relevance to many bioinformatics applications such as the
analysis of microarray data [62] or the computation of multiple sequence alignments [57].
It also plays a special role in fixed-parameter research because many important discover-
ies that influenced the whole field originated from its study (see [118] for an overview).

In order to explain fixed-parameter tractability, consider the definition of Vertex Cover.
The input here consists of two parts because we are not only given the input graph but
also an integer k. This makes Vertex Cover a parameterized problem where k is the
parameter. The key observation concerning fixed-parameter tractability is that, while
exponential running times presumably cannot be avoided when solving Vertex Cover,
they can be confined to the parameter. More generally, any parameterized problem is
called fixed-parameter tractable if we can let the exponential part of the running time
that is required to solve it solely depend on the parameter k.

Definition 2.1. A parameterized problem with parameter k is called fixed-parameter trac-
table if there exists an algorithm that solves any given size-n instance in time f(k) · p(n)

where f is a function solely depending on k and p(n) is a polynomial in n.

It is relatively easy to show that our example problem Vertex Cover is fixed-parameter
tractable: For this purpose, consider an edge in the input graph. One of its two end-
points must be part of the solution set V ′ by definition of Vertex Cover. Thus, we
can construct a simple search tree algorithm to solve Vertex Cover on a graph G by
picking an arbitrary edge e = {v, w} and then recursively searching for a vertex cover of
size k−1 both in G− {v} and G− {w}. An illustration for this search tree strategy is given
in Figure 2.3; note how the depth of the search tree is upper-bounded by the parameter k.
Since each node of the search tree always branches into two subcases, the total size of
the tree is upper-bounded by 2k. At each node in the tree, the algorithm spends only
a polynomial amount of time to check if a vertex cover has already been found, so it
requires a maximum of O(2k · |V |O(1)) time in total. This shows that Vertex Cover is
fixed-parameter tractable.19

19The currently “best” search trees for Vertex Cover are of size O(1.28k) [55, 60] and mainly achieved
by more extensive case distinguishing than the “try putting either one of the two endpoints of an edge into the
cover” that we discussed here.
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So, what have we gained by this? We have “decoupled” the size of a Vertex Cover
instance from the exponential part of the running time that is required to solve it. That is,
as long as the parameter k is small, we can efficiently solve Vertex Cover independently
of the size of the input instance. More generally speaking, a fixed-parameter tractable
problem, even if it is NP-complete, can be solved efficiently as long as two conditions are
satisfied (which they are for many practically relevant problems):

• The exponential part of the running time that depends on k is not too bad (In
principle, Definition 2.1 would allow huge exponential components such as 100kk

).

• The parameter k is small.

Intriguingly, fixed-parameter algorithmics has even more to offer than confining the expo-
nential part of the running time to the parameter. It also allows us to construct so-called
kernelizations, that is, data reductions with guaranteed performance. The main idea be-
hind data reduction in general is that, before firing up an exponential-time algorithm to
solve a combinatorially hard problem, one should try to reduce the size of the input data
by quickly presolving those parts of it that are easy to cope with. This shrinks the in-
put data to those parts that are “really hard” and exponential-time algorithms then only
need to cope with these parts. Whereas most data reductions are of a heuristic nature,
fixed-parameter algorithmics mainly considers so-called kernelizations, that is, data re-
ductions with a performance guarantee. More precisely, a kernelization is guaranteed to
reduce any instance of a parameterized problem to an equivalent instance whose size only
depends on the parameter k and not on the original instance size.

Definition 2.2. Consider a parameterized problem L that consists of input pairs (I, k)

(where I is the problem instance and k is the parameter). A reduction to a problem kernel
(or kernelization) means to replace an instance (I, k) by a reduced instance (I ′, k ′) called
problem kernel such that

1. k ′ 6 k,

2. the size of I ′ is smaller than g(k) for some function g only depending on k, and

3. the instance (I, k) has a solution if and only if the reduced instance (I ′, k ′) has one.

The reduction from (I, k) to (I ′, k ′) must be computable in polynomial time. A problem
that has a kernelization is called kernelizable.

We will see examples of kernelizations in Chapters 6 and 8. A quite interesting aspect of
fixed-parameter algorithmics is that fixed-parameter tractable and kernelizable problems
are exactly the same, that is, every fixed-parameter tractable problem is kernelizable and
vice-versa [47]. Unfortunately, the practical use of this result is limited: the running
time of a fixed-parameter algorithm directly obtained from a kernelization is usually not
practical; and, conversely, there is no constructive scheme that automatically provides
us with a data reduction for a given fixed-parameter tractable problem. Nevertheless,
this result is very important to establish the fixed-parameter tractability or amenability
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to kernelization of a problem: For example, knowing that a problem is fixed-parameter
tractable may encourage the search for (effective) kernelizations.

Unfortunately—in a similar sense as it is generally assumed that P 6= NP—it is likely
that not all NP-complete problems are fixed-parameter tractable. In their monograph,
Downey and Fellow [78] introduced a whole hierarchy of computational complexity
classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] for which it is widely believed that the in-
clusions are strict, that is, problems that are complete for W[1] or any of the higher
classes are presumably not fixed-parameter tractable. Thus, showing that some problem
is W[1]-hard implies that it is “fixed-parameter intractable.” Analogous to classical com-
plexity theory, showing this hardness can be accomplished by a many–one reduction; the
main difference is that some care needs to be taken concerning the parameter:

Definition 2.3. A parameterized problem L1 ⊆ Σ∗1 × N is said to be fixed-parameter
reducible to another parameterized problem L2 ⊆ Σ∗2 × N if there exists a function that
can compute an instance (x ′, k ′) ∈ L2 from any given instance (x, k) ∈ L1 such that

1. for some function f and a polynomial p, the computation takes f(k) · p(|x|) time,

2. the value of k ′ only depends on the value of k and

3. (x, k) ∈ L1 ⇔ (x ′, k ′) ∈ L2.

The second condition marks the most important difference between a parameterized re-
duction and “classical” many–one reductions. To illustrate this, let us consider the Ver-
tex Cover problem and the Independent Set problem, that is, the problem of finding
a maximum-size set of mutually unconnected vertices in a graph. In classical complexity
theory, one can easily show the NP-hardness of Independent Set by noting that if a
graph G = (V, E) has a vertex cover V ′ of size k, then V \ V ′ constitutes an independent
set of size n−k. This, however, is not a parameterized reduction because “n−k” violates
the second condition of our definition above.

This completes our brief introduction to fixed-parameter algorithms. As mentioned at
the beginning of this section, a more thorough treatment can be found in [78, 98, 195].
The next section concludes this chapter with a review and reference of the mathematical
terminology and notation that we use in this work.

2.4 Notation and Agreements

This section introduces the terminology and notational conventions from mathematics
and computer science that are frequently used throughout this work. Note that while we
recapitulate and define all relevant concepts and terminology for the sake of completeness
and to avoid any ambiguities, it is assumed that the reader is already somewhat comfort-
able with handling them. For a more thorough introduction, it is recommended to consult
the monographs [66, 153, 237] (fundamental algorithmics and O-notation), [14, 123]
(approximation algorithms), and [73] (graph theory).
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Readers that are comfortable with the standard notation in computer science and algo-
rithmics might consider only reading the treatment of “conventions for directed graphs”
in Section 2.4.3, which introduces a somewhat nonstandard notation, and using the other
parts of this section solely for reference.

2.4.1 Numbers and Big-O-Notation

Numbers. We use the standard symbol N to denote the set {0, 1, 2, . . . } of all nonnegative
integers and the symbol N+ to denote all positive integers N \ {0}; likewise, the symbol R
denotes the set of real numbers and R+ denotes the set of positive real numbers. Since
a computer cannot work with arbitrarily precise real numbers, it is ensured that real
numbers are used in a “non-abusive” fashion, that is, we use no operations that rely
on arbitrary precision. For example, whenever we write x < y for two real numbers x

and y, it is implicitly assumed that there is some finite, precisely specified quantity z

such that x 6 y + z. In this context, we also often make use of the floor function that
is denoted bxc and rounds down a real number x to the next integer. Analogously the
ceiling function, which is denoted dxe, rounds up a real number x to the next integer.

Big-O-Notation. We use the well-known Big-O-Notation (also known as Landau sym-
bols in the literature) to upper-bound the running times of presented algorithms. More
specifically, for two functions f(x) and g(x) over R+, writing f(x) = O(g(x)) signifies that
there exist constant real numbers x ′, c > 0 such that for all x > x ′ we have f(x) 6 c ·g(x).
Complementing this notation, writing f(x) = Ω(g(x)) means that there exist constant
real numbers x ′, c > 0 such that for all x > x ′ we have f(x) > c · g(x). Finally, we
have f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).20 We use nO(1) to denote
polynomials in n where the precise value of the exponent—albeit being constant—is ei-
ther unknown or not of interest in a given context.

2.4.2 Computer Science

Model of Computation and Analysis. We adopt the Random Access Machine as defined
in [237] as our model of computation; in particular, we assume every basic operation
(such as addition, multiplication, taking a square root, an if-statement, a memory access,
etc.) to take constant time. Algorithms are described in pseudocode notation. As men-
tioned above, whenever a computation involves real numbers, it is implicitly assumed
that these can be used only up to some arbitrary but fixed precision. The running times
of the algorithms that we discuss are always given in terms of their worst-case complex-
ity, that is, in terms of an upper bound on the number of steps that they take for a certain
input size and—in the case of FPT—for a certain parameter.

Problem Formalization. The names of combinatorial problems are always set in small
caps. Whenever we give a formal definition of such a problem, this will be done in an
“input–task” fashion, stating the inputs of a problem and the task that is to be performed

20Intuitively, O signifies an upper bound, Ω a lower bound, and Θ a tight bound within constant factors.
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for the given input. We refrain from explicitly distinguishing between the decision variant
of a problem (“find if there exists a solution of cost at most x”) and the optimization vari-
ant of a problem (“find a minimum-cost solution with respect to the parameter y”), that
is, the concrete formulation will be only one or the other but the problem name stands
for both variants nevertheless. If it is not clear from the context how an optimization
problem can be derived from a certain decision problem, this is clarified explicitly.

Approximation Algorithms. A polynomial-time approximation algorithm is an algo-
rithm A that, when applied to a size-n instance of an optimization problem, computes
a value k in polynomial time that is guaranteed to be within a certain range of the op-
timum solution cost kopt of the given instance. This range is given by a function f(n)

that is called the approximation factor of A. For a minimization problem, the guarantee
is that kopt 6 k 6 f(n) · kopt. For a maximization problem, it is that kopt

f(n) 6 k 6 kopt.
If f is a constant function, then A is called a constant-factor approximation algorithm.
A polynomial-time approximation scheme (PTAS) is an algorithm that can compute a
factor-(1 + ε) approximation for any given real number ε > 0. The running time of a
PTAS is polynomial for any fixed ε, but the dependency of the running time on ε need
not be (for example, many PTASs have a running time of nO(1/ε)).

2.4.3 Graph Theory

As its title suggests, the main object of study in this work are biological networks. To
adopt the common nomenclature from both biology and computer science, we use the
term “network” whenever we discuss biological aspects and “graph” for discussing algo-
rithmics; in principle, both terms are used synonymously.

Graph Basics. Throughout this work, we denote a graph by G = (V, E) where V is the
set of its vertices and E is the set of its edges. Unless otherwise stated, we always let n

denote the number of vertices and m the number of edges in a given graph. Each edge
is a set of two vertices that we refer to as its endpoints; for directed graphs, this set is
ordered. A vertex that is endpoint of an edge is said to be incident to that edge and
adjacent to the other endpoint. An edge with two equal endpoints is called a loop, a
graph where every pair of vertices is connected by at most one edge (for directed graphs:
at most one edge in each of the two possible directions) is called simple. All graphs that
we deal with are loopless and simple. If a graph can be drawn on a plane in such a way
that no edges cross each other it is called planar; such a drawing is called embedding. A
planar graph with a given fixed embedding is called plane. All planar graphs satisfy the
Euler formula m 6 n − 6 (see, for example, [73] for a proof).

Conventions for Directed Graphs. As a default, graphs are presumed to be undirected;
exceptions to this—which are clearly marked—occur in Chapters 3, 4, and 9. In order
to simplify the presentation, however, edges in a graph are always identified using set
notation, regardless of whether the graph is directed or undirected (that is, the direction
of an edge is considered to be an additional attribute of it that does not affect the identifier
of the edge). In the case that G is directed and contains edges in both possible directions
between two vertices, these two edges become a single bidirectional edge in our notation.
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Neighborhood and Degree. For a vertex v ∈ V, we let N(v)
def
= {u ∈ V | {v, u} ∈ E}

be the (open) neighborhood of v. For directed graphs, this can be further subdivided
(not necessarily disjointly, though) into the set of outgoing neighborhood to which there
are edges from v and, likewise, the set of incoming neighborhood. The degree of a ver-
tex v ∈ V, also denoted by deg(v), is the cardinality of its neighborhood, analogously, its
outdegree and indegree are the cardinalities of its outgoing neighborhood and incoming

neighborhood. For a subset V ′ ⊆ V, we set N(V ′)
def
=
(⋃

v∈V ′ N(v)
)

\ V ′ (that is, the
neighborhood of all vertices in V ′, but no vertex from V ′ itself).

Subgraphs and Graph Operators. A subgraph of a graph G = (V, E) is a graph that has
as its vertices a subset V ′ ⊆ V and as its edges a subset of those edges in E that connect
vertices from V ′. For a vertex set V ′, the induced subgraph G[V ′] of G = (V, E) has V ′ as

its vertex set and E ′ def
= E ∩ {{u, v} | u, v ∈ V ′} as its edge set. We may also refer to G[V ′]

as a vertex-induced subgraph because it is induced by the vertices in V ′. The shorthand
notation G \ {v} is used to denote the subgraph of a graph G = (V, E) that is obtained
by removing a vertex v ∈ V from it (along with its incident edges). Analogously, for a
graph G and a subgraph G ′ of it, we use G \ G ′ to denote the graph that remains when
all vertices all edges of G ′ are removed from G.

Paths, Cycles, and Trees. A length-` path in a graph is a sequence u1, . . . , u`+1 of ` + 1
vertices such that two subsequent vertices are adjacent (for directed graphs, there must
exist edges from each vertex to its successor in the sequence, naturally with exception of
the last vertex). A path is called simple if its vertices are mutually different. A length-`
path where all vertices are mutually different except for the first and last one is called a
length-` cycle. An undirected graph that does not contain any simple cycles as a subgraph
is called a tree and is usually denoted T in this work. A collection of trees is called a
forest. Parts of this work use trees not only as special types of graphs, but rather to
visualize some algorithmic structure; in these cases, we refer to the vertices of the tree as
nodes for the sake of clarity.

Connectedness and Spanners. A graph is said to be connected if all vertices can reach
each other mutually by a series of edge traversals; for directed graphs, we adopt the
convention that edge directions are allowed to be ignored for these traversals.21 If a
graph can be divided into several subgraphs that are connected but have no edges between
them, these subgraphs are called the connected components of that graph. An edge in a
component whose removal would split it into two connected components is called a
bridge. A spanner of a connected graph G is a connected subgraph that is obtained by
removing some edges from G. If a spanner is a tree, it is called spanning tree.

Weighted Graphs and Distance. In some cases, the graphs that we work with are
weighted, that is, there exists a mapping w : E→ R+ that assigns each edge e in the
graph a nonnegative real weight w(e) or a mapping w : V → R+ that assigns each ver-
tex v a nonnegative real weight w(v). To simplify the presentation, we adopt the general

convention that w({u, v}) def
= ∞ if a graph does not contain the edge {u, v}. For directed

21If all vertices in a directed graph can reach each other mutually by a series of edge traversals that do adhere
to the edge directions, it is called strongly connected.
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graphs, each direction of an edge may be assigned a different weight, but this only oc-
curs in places within this work that do not affect our notation of weight assignment.
To unify the presentation in some parts of this work, we let, by default, each edge in
an unweighted graph have a weight of one. The weight of a path from a vertex u to a
vertex v is the sum of weights of the edges it contains, the distance from u to v in G,
denoted dG(u, v), is the minimum weight over all paths between u and v (note that for
undirected graphs, dG(u, v) = dG(v, u) and that for unweighted graphs, the weight of a
path is the same as its length).

Isomorphy and Homeomorphy. An isomorphism between a graph G = (V, E) and a
graph G ′ = (V ′, E ′) is a one-to-one mapping Φ : V → V ′ that causes the edges of E and E ′

to be mapped onto each other one-to-one, that is, {u, v} ∈ E⇔ {Φ(u), Φ(v)} ∈ E ′. (For
directed graphs, the directions of an edge and the edge between its mapped endpoints
must be the same). If there exists an isomorphism between two graphs, we call them
isomorphic. Two graphs are called homeomorphic if we can subdivide their edges—that
is, replace them by simple paths of arbitrary length—in such a way that the resulting
graphs are isomorphic; for directed graphs, each of these these paths must lead in the
same direction as the edge that it replaces. As an illustration, the graph is isomorphic
to and homeomorphic to .

Treewidth. When reviewing the algorithmic state of the art in some chapters, some
results that we mention are based on the concept of bounded treewidth. Sidestepping
a formal introduction here, the treewidth of a graph is an integer that measures how
similar a graph is to a tree: a tree has treewidth 1 whereas the most cycle-rich graph on n

vertices—a fully connected graph—has treewidth n − 1. Throughout this work, we use
the symbol ω to denote the treewidth of a graph. Detailed introductions to treewidth
and the closely related concept of tree decompositions can be found, for example, in [37]
and in Chapter 10 of [195].

This concludes our presentation of formal notations and agreements. As pointed out
at the beginning of this section, we have only presented those definitions that are rele-
vant throughout this work, most chapters contain a few more specific notations that are
relevant only to them.

Wherever possible in this work, the letters and symbols we have introduced here are used
in a consistent fashion; for instance, the symbol V always denotes a set of vertices in a
graph and we use sub- and superscripts to distinguish between various such sets.



Chapter 3

Coping by Modularization I:
Network Motifs

Given a complex network, one way to try to understand it is by using a bottom-up
approach, that is, understanding small functional modules first and then fitting these
into the context of the overall network behavior. Such an approach has also been sug-
gested to better understand biological networks: The concept of network motifs [183]—
small connected subgraphs that occur in significantly higher frequencies than in random
networks—has gained much attention as a useful tool to uncover the structural design
principles of complex biological networks. From an algorithmic point of view, however,
network motifs pose a major challenge because their detection involves three computa-
tionally hard tasks: determining the frequency of subgraph occurrences in a given graph,
detecting isomorphy between these subgraphs, and detecting which subgraphs are over-
abundant in comparison to random graphs.

This chapter discusses two novel algorithms that greatly speed up network motif detec-
tion. The first algorithm concerns the task of determining the frequency of subgraph
occurrences in a graph and overcomes some drawbacks of a subgraph sampling algo-
rithm that was previously proposed for this task by Kashtan et al. [143]. The second
algorithm that we present is an efficient new approach for estimating the frequency of
subgraphs in random graphs; in contrast to all previous methods, we do not rely on an
explicit generation of random graphs but rather on some deeper mathematical analysis.
Experiments on a testbed of biological networks show our two novel algorithms to be
orders of magnitude faster than any previous approaches, allowing for the detection of
larger motifs in bigger networks than previously possible and thus facilitating deeper in-
sight into the field. We also present a user-friendly motif detection tool that is based on
our algorithms.

3.1 Motivation

It has been found that many biological networks contain certain small subnetworks in
significantly higher frequencies than random networks. As an illustration, Figure 3.1
shows two biological networks in which certain subgraphs appear up to a hundred times
more often than would be expected if they were random. The assumption seems close
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Figure 3.1: The two graphs above compare the concentrations of all size-3 subgraphs
that occur in a) the transcriptional network of Saccharomyces cerevisiae [183] and b) the
neuronal network of Caenorhabditis elegans [143] with their respective concentrations
in random graphs that have the same sequence of vertex degrees as the original network.
More specifically, the (logarithmic) x-axis shows the concentration of a subgraph in the
original network and the (logarithmic) y-axis shows its average concentration in random
graphs with the same degree sequence. Note that each image of a subgraph is centered on
the actual datapoint; so, for example, the subgraph has a concentration of 3.38·10−2 in
the C. elegans network whereas it only occurs at an average concentration of 1.11 · 10−2

in random graphs that have the same degree sequence.

at hand that such overabundances are closely connected with the function of a biological
network. More specifically, one might assume that “evolution preserves modules that
define specific [. . . ] functions” [257]. Based on this idea, Milo et al. [183] proposed
to use overabundant subgraphs to elucidate the structural design principles of biological
networks, thereby coining the term network motifs for them.1

Since its widely-recognized appearance in [183], the network motif approach has received
quite some attention and it would go beyond the scope of this chapter to give an in-
depth overview of the current literature and related concepts such as found in [164, 216];
this kind of treatment can be found in a recent monograph by Alon [9]. To give an
idea about some of the discoveries that have been made through the analysis of network
motifs, interesting results have been obtained in the areas of protein–protein interaction
prediction [5], hierarchical network decomposition [130], and the analysis of temporal
gene expression patterns [137, 226, 235]. For example, the transcriptional network of
Escherichia coli displays motifs to which specific functionalities such as the generation
of temporal expression programs or the response to fluctuating external signals could be
attributed [183, 235], suggesting that network motifs play key information processing
roles in this type of network [143].

The same motifs as in the transcriptional interaction network of E. coli were also identi-

1Note that the term “network motif” has been used in other contexts as well and may also refer to a
common subnetwork in a set of given networks [200] or to any small labeled subnetwork without considering
connectivity or isomorphy [33].



Motivation 31

fied for the yeast Saccharomyces cerevisiae, possibly hinting that common network func-
tion implies the sharing of common motifs [167]. Also the converse assertion that com-
mon motifs imply a common network function has been made [182].

To put research on network motifs into proper perspective, it should be noted that it has
also been met with some criticism. For example, it has been demonstrated that global
network features such as the clustering coefficient influence the abundance of certain sub-
graphs [255]. Artzy-Randrup et al. [11] moreover found that certain random network
models—such as “preferential attachment” [25]—lead to a display of motifs although
there is no explicit selection mechanism for local structures;2 in a somewhat similar di-
rection, it has also been argued that motifs might just be artifacts of evolutionary mech-
anisms that do not carry much functional significance [240]. Finally, it also needs to be
kept in mind that network motifs are a purely topological approach to networks which
may not do justice to their dynamics-determined functions [128].

It is somewhat difficult to position oneself in the discussion about the validity and ap-
plicability of the network motif approach and we do not intend to do so here. Note,
however, that arguments can be made for both sides: On the one hand, the criticism put
forth seems valid from its perspective. On the other hand, many results obtained through
using network motifs appear convincing and it is questionable whether the criticism on
network motifs invalidates this approach as a whole or if it simply points out observa-
tions and caveats to keep in mind. For example, the criticism by Artzy-Randrup et al. [11]
could have been answered by pointing out that one has to carefully choose an appropri-
ate random background model in order to correctly determine whether a subgraphs is
overabundant.

However the discussion about the network motif approach turns out, it must be noted
that most research so far has been done only for small—mostly three- or four-vertex—
motifs. Somewhat more complex and larger motifs should be analyzed, one can argue,
in order to obtain richer data to base a discussion on. This has been difficult in the past,
however, because detecting network motifs is a computationally expensive task.

To put the task of network motif detection into more precise terms, let a connected
subgraph that is induced by a vertex set of cardinality k be called size-k subgraph. Then
the problem of detecting network motifs can be stated as follows:

Network Motif Detection
Input: A graph G and a nonnegative integer k.
Task: Find all size-k subgraphs in G that appear significantly more often than
would be expected for a random graph (under some given model that specifies
what we mean by “significant” and “random graph”).

We can break down this problem into three subtasks:

1. Find which subgraphs of a given size k occur in the input graph and in which
number.

2Milo et al. [181] answer this criticism by suggesting not only to look at the overabundance of individual
subgraphs but rather at a broader picture in the form of so-called “subgraph significance profiles” [182].
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2. Determine which of these subgraphs are isomorphic and group them into subgraph
classes accordingly.

3. Determine which subgraph classes are displayed at a much higher frequency than
in random graphs under the specified random graph model.

Two aspects remain to be discussed, namely what we mean by “significantly more often”
and what the random graph model should be. The first aspect—significance—somewhat
lies in the eye of the beholder and, for example, our motif detection tool fanmod that we
discuss in Section 3.6 offers a fairly large range of filters in order to accommodate various
notions of this term. It is most common, however, to accept a subgraph as a motif if it
occurs a few standard deviations more often than would be expected in the random graph
model. Concerning the second aspect—the random graph model—we focus on the model
of random graphs which preserve the degree sequence of the original network, that is, the
random graphs are chosen uniformly among all graphs that have the same degree (or, for
directed graphs, the same indegree and outdegree) as the original graph. This model is
very popular in the context of network motifs.3

All three subtasks of Network Motif Detection are computationally expensive to
solve in theory. In this chapter, we present two novel algorithms that significantly improve
the practical efficiency of solving the first and third subtask; fortunately, much work has
already been done concerning the second subtask and we can rely on McKay’s nauty
algorithm [178, 179] for efficiently solving it in practice.

The organization of this chapter is as follows: Section 3.2 surveys the current algorith-
mic literature that is of relevance to the three subtasks of Network Motif Detection.
As already mentioned, Kashtan et al. [143] propose an algorithm for efficiently estimat-
ing the number of subgraphs in a given graph. Based on a comprehensive analysis of
the drawbacks encountered when using this algorithm, Section 3.3 presents a new al-
gorithm for subgraph sampling which does not suffer from them. For the subtask of
determining subgraph significance, Section 3.4 proposes a new approach that—in con-
trast to all previously proposed algorithms—does not require the explicit generation of
random graphs, yielding a much faster algorithm with additional useful features such
as being able to focus on determining the significance of specific subgraphs. Our algo-
rithms have been implemented in C++; Section 3.5 discusses their experimental evalu-
ation on a testbed of biological networks. It is shown that our algorithms detect net-
work motifs by orders of magnitude faster than the algorithms of Kashtan et al. [143].
Hence, they allow for the analysis of larger and more complex network motifs than
previously possible and thus provide an opportunity for deeper insight in the field. Be-
fore concluding with a brief summary and statement of open questions in Section 3.7,
Section 3.6 presents a user-friendly and fast motif detection tool called fanmod that is
based on the presented algorithms; the tool and its source code are freely available online
at http://theinf1.informatik.uni-jena.de/motifs/.

3Other popular models in the literature, for example, additionally preserve the number of bidirectional edges
when working with directed graphs.

http://theinf1.informatik.uni-jena.de/motifs/
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3.2 State of the Art

Somewhat surprisingly for network motif detection—given its hardness and the attention
it has received—not much work has been done on improving the involved algorithmics.
To recapitulate from the last section: Network Motif Detection involves three com-
putationally expensive subtasks: counting or estimating subgraph occurrences, determin-
ing isomorphy between the found subgraphs, and comparing subgraph frequencies in
the original graph with those found in random graphs. This section surveys the existing
literature for these three subtasks.

Performing the first subtask of Network Motif Detection—counting or estimating
subgraph occurrences—by explicitly enumerating all subgraphs of a certain size can be
time consuming due to their potentially large number even in small, sparse networks.
While some work has been spent on enumerating certain subgraph classes (such as cy-
cles [8]), estimating the frequency of general size-k subgraphs has seemingly attracted
less consideration.4 For this reason, Kashtan et al. [143] proposed an algorithm that esti-
mates subgraph occurrences from a randomly sampled set of subgraphs. We discuss this
algorithm in full detail in Section 3.3, mentioning only in passing here that it has a sam-
pling bias which in turn leads to considerable drawbacks such as an inconsistent sampling
quality and the need for a computationally expensive bias correction. Besides [143], we
are only aware of the work by Duke et al. [81] on approximating the number of size-k
subgraphs in a given graph. However, their algorithm—which is based on Szemerédi’s
regularity lemma [246]—has no relevance in practice: In order to ensure a reasonable
quality of approximation, the input graph has to be astronomically large and contain far
more than ek65

vertices (which is more than 1028 already for the most trivial case k = 1
and more than 101019

for k = 2).

The second subtask of network motif detection involves the detection of graph isomor-
phy. This problem has been intensively studied in the literature not only because of its
practical importance but also because it is one of the very few problems for which neither
polynomial-time solvability nor NP-completeness have been established so far despite in-
tensive research. Various algorithms have been proposed to perform isomorphy detection
in practice (for a survey of these, see [99]). We chose to rely on McKay’s nauty algo-
rithm [178, 179] for our algorithm implementations mainly for two reasons: First, nauty
is the fastest known algorithm for detecting isomorphy and is freely available as highly
optimized code in the C programming language. Second, nauty allows us to avoid a
pairwise comparison of subgraphs when we sort them into subgraph classes: Given a set
of size-k graphs, nauty can efficiently assign each graph an integer such that two graphs
are assigned the same integer if and only if they are isomorphic (this task is known as
canonical graph labeling in the literature).

As to the third subtask—comparing the frequencies in the original graph with those found
in random graphs—the standard approach so far has been to explicitly generate an en-
semble of random graphs (typically at least a thousand) under a given random graph

4Note that the term “frequent subgraphs” is also used in the literature to denote common subgraphs in a set
of graphs [160].
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model and then determine subgraph frequencies in these just as it is done for the original
network. One advantage of this approach is that we can draw upon a huge arsenal of ex-
isting random graph models which, for example, are able to account for specific growth
mechanisms [10] or certain built-in topologies [264]. However, independently of the
random graph model, the approach of explicit generation is extremely time-consuming
since we need to determine subgraph concentrations in each single random graph just
as in the original network. Concerning our random graph model which preserves the
degree sequence of the original graph, there has been some research into the properties
of the resulting random graphs such as their average path length [194]; subgraph occur-
rences within such graphs, however, have so far only been studied for size-3 subgraphs in
directed sparse random graphs with expected degree sequences [131].5

3.3 A Faster Algorithm for Subgraph Sampling

This section deals with the task of efficiently estimating subgraph frequencies in a given
graph. For this problem, Kashtan et al. [143] proposed to use a subgraph sampling algo-
rithm that is based on the idea to start with a randomly selected edge in the input graph
and then to randomly extend this edge until we obtain a connected subgraph with the
desired number of vertices. Repeating this many times yields a sample set of subgraphs
from which the subgraph frequencies in the graph can be estimated. Section 3.3.1 dis-
cusses this approach in detail and points to some of its main drawbacks. Given these
drawbacks, Section 3.3.2 presents a new approach to subgraph sampling that is based on
randomized enumeration.

As to the notation used, in addition to the conventions introduced in Section 2.4 we
assume in this chapter that all vertices in the vertex set V of a graph G are uniquely
labeled by the integers 1, . . . , n. To abbreviate that the label of a vertex u is larger than
that of a vertex v, we write “u > v.”

For a given integer k, the set Sk of all size-k subgraphs in G can be partitioned into
sets Si

k(G) called subgraph classes where two size-k subgraphs belong to the same sub-
graph class if and only if they are isomorphic. The concentration Ci

k(G) of a subgraph
class Si

k(G) is defined as

Ci
k(G)

def
=

|Si
k(G)|

|Sk(G)|
.

For a graph G, an integer k, and a set S of size-k subgraphs that were randomly sampled
in G by some algorithm A, a mapping Ĉi

k : (S, G)→ [0, 1] is called an estimator for Ci
k(G).

We say that Ĉi
k(S, G) is unbiased (with respect to A) if the expected value of Ĉi

k(S, G)

equals Ci
k(G); otherwise, we call the estimator Ĉi

k(S, G) biased.6

5As a remark, we have observed in our research that the equations presented in Section 3.4.2 can be used to
yield correction factors that would improve the accuracy of the approach used in [131].

6Sidestepping a formal definition, by “expected value” we mean the average estimated subgraph concentra-
tion over a large number of runs of the sampling algorithm A.
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3.3.1 The Previous Approach: Edge Sampling

For a given graph G = (V, E) and an integer k > 2, Kashtan et al. [143] suggest to sample
a random subgraph by using a seed-and-extend approach: Starting with a randomly
chosen edge as a seed, a subgraph is iteratively extended by neighboring vertices until a
subgraph of the desired size k is obtained. A pseudocode description of this algorithm,
which we call esa (as an abbreviation for edge sampling), is the following:7

Algorithm: Edge Sampling(G, k) (esa)
Input: A graph G = (V, E) and an integer 2 6 k 6 |V |.
Output: Vertices of a randomly chosen size-k subgraph in G.

01 {u, v}← random edge from E

02 V ′ ← {u, v}
03 while |V ′| 6= k do
04 {u, v}← random edge between V ′ and N(V ′)

05 V ′ ← V ′ ∪ {u, v}
06 return V ′

As already noted in [143], esa has a bias for sampling certain subgraphs more often than
others. Consider the following example we have constructed to illustrate this:

G1 G2

The total number of connected size-3 subgraphs is the same in G1 and G2, namely 28.
Hence, we should expect that esa samples the subgraph —which occurs exactly once
each in G1 and G2—with the same probability of

Pr[Sampling in G1] = Pr[Sampling in G2] =
1

28
.

However, we actually have

Pr[esa samples in G1] =
1
9
· 1 +

2
9
· 2

8
=

1
6

and
Pr[esa samples in G2] =

3
12
· 2

8
=

1
16

. 8

This illustrates some crucial problems of (naïvely) using the esa algorithm: The sub-
graph is oversampled and—as a direct consequence—the only other occurring size-3

7Recall from Section 2.4.3 that we always use set notation to identify an edge, even in a directed graph.
8To arrive at these two probability calculations, one must first consider the probability that esa starts out

by sampling one of the three edges of the subgraph in line 01. Then, in order to sample , this edge must be
extended in line 04 by one of the two remaining edges from the subgraph . The probability of this extension
depends on the number of edges that are incident to the endpoints of the already sampled edge and hence may
vary depending on the first edge that we chose.
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subgraph is undersampled. The oversampling of is worse for G1 than it is for G2

and it is possible to show (using an adaptation of the above example) that the amount
of the sampling bias cannot be estimated simply from the number of edges neighboring
the oversampled subgraph. There is a way to correct this bias: For a given set S of size-k
subgraphs that were randomly sampled using esa, the following constitutes an unbiased
estimator [143]:

Ĉi
k(S, G)

def
=

∑
G′∈(S∩Si

k(G))(Pr[G ′ is sampled by esa])−1∑
G′∈S(Pr[G ′ is sampled by esa])−1 . (3.1)

The main idea here is that each subgraph is (ex post facto) scored inversely propor-
tional to the probability that esa samples it (although [143] gives no explicit proof, it
is straightforward to calculate that the expected value of this estimator is precisely the
actual subgraph concentration). While it is possible to correctly estimate Ci

k(G) in this
way, several disadvantages remain:

1. The bias itself remains. Although the estimator in (3.1) in some sense “calculates
it away,” certain subgraphs are still (much) more likely to be sampled than others.
This is especially problematic for subgraphs which appear in low concentration and
are at the same time undersampled by esa; they are hardly ever found. Whereas
Kashtan et al. [143] observe that their esa algorithm can accurately estimate the
concentration of Si

k(G) with far less than (Ci
k(G))−1 samples for those subgraphs

which tend to be oversampled, they somewhat sidestep a discussion that other sub-
graphs might be missed completely for far more than (Ci

k(G))−1 samples. These
would consistently be overlooked as motif candidates (keep in mind here that low-
concentration subgraphs can very well be motifs as long as their concentration in
random graphs is even lower).

2. Computing (3.1) is expensive since the calculation of each single probability can
require as much as O(kk) time [143]. The reason for this is that the computation
involves the enumeration of all possible ways in which esa could have obtained the
sampled subgraph, that is, all possible seed edges and all possible ways of extend-
ing them have to be considered. This makes the computation of (3.1) also rather
complicated to implement and, moreover, needs care to avoid numerical errors.

3. Using esa, we never have an estimate as to what fraction of subgraphs has been
sampled. This prohibits a statistical estimate about the sampling quality that can
be used to determine when enough subgraphs have been sampled.

4. esa can sample the same subgraph multiple times, spending time without gathering
new information.

The next subsection discusses a novel approach to subgraph sampling that overcomes all
of these problems.
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3.3.2 The New Approach: Randomized Enumeration

The idea of our new approach is to start with an algorithm that efficiently enumerates all
size-k subgraphs. This algorithm is then modified so that it randomly skips some of these
subgraphs during its execution, yielding an unbiased subgraph sampling algorithm.

Enumerating All Size-k Subgraphs.

In order to enumerate all size-k subgraphs in a given graph G = (V, E), this section de-
vises an algorithm called esu (as an abbreviation for enumerate subgraphs).9 To better
describe this algorithm, we use the following definition.

Definition 3.1. Given a vertex v and a set of vertices V ′ in a graph G = (V, E), the

exclusive neighborhood of v with respect to V ′ is defined as Nexcl(v, V ′)
def
= N({v})\N(V ′).

(Informally, the exclusive neighborhood is the set of those vertices that are a neighbor
to v, but not adjacent to any vertex from V ′.)

Using this definition, the pseudocode for esu is as follows:

Algorithm: EnumerateSubgraphs(G, k) (esu)
Input: A graph G = (V, E) and an integer 1 6 k 6 |V |.
Output: All size-k subgraphs in G.

01 for each vertex v ∈ V do
02 VExtension ← {u ∈ N({v}) | u > v}

03 call ExtendSubgraph({v}, VExtension, v)
04 return

ExtendSubgraph(VSubgraph, VExtension, v)
E1 if |VSubgraph| = k then output G[VSubgraph] and return
E2 while VExtension 6= ∅ do
E3 Remove an arbitrarily chosen vertex w from VExtension

E4 V ′
Extension ← VExtension ∪ {u ∈ Nexcl(w, VSubgraph) | u > v}

E5 call ExtendSubgraph(VSubgraph ∪ {w}, V ′
Extension, v)

E6 return

The basic idea of this algorithm is to not consider all neighboring vertices of a subgraph as
candidates to extend it (as esa does), but rather to add only those vertices to the VExtension

set that have two properties: Their label must be larger than that of v and they may only
be adjacent to the newly added vertex w but not to a vertex already in VSubgraph, that is,
they must be in the exclusive neighborhood of w with respect to VSubgraph. Some more
insight into the structure of esu can be gained by the following tree structure.10

9One of the reviewers of this thesis pointed out to the author that a very similar subgraph enumeration
algorithm has been independently devised by White et al. [270] in the context of VLSI design.

10Recall from Section 2.4 that we refer to the vertices of this structure as “nodes” in order to avoid confusion
with the vertices of the input graph.
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({1}, {2, 3, 4, 5}) ({2}, {3, 6, 7}) ({3}, {8, 9})
({4},∅) ({6},∅)

({7},∅)
({8},∅)

({9},∅)

({2, 3}, {6, 7, 8, 9})

({2, 6}, {7})
({2, 7},∅)

({3, 8}, {9})

({3, 9},∅)

({1, 2}, {3, 4, 5, 6, 7})
({1, 3}, {4, 5, 8, 9})

({1, 4}, {5})
({1, 5},∅)

({5},∅)

Root

1 2
3

2 4
1

2 5
1

1 6
2

1 7
2

3 4
1

3 5
1

1 8
3

1 9
3

4 5
1

3 6
2

3 7
2

2 8
3

2 9
3

6 7
2

9 8
3

1 2

3

4

5 6

7

8 9
G

Figure 3.2: Given the labeled graph in the left upperhand corner, the above esu-tree corre-
sponds to calling EnumerateSubgraphs(G, 3). The tree has 16 leaves which correspond
to the 16 size-3 subgraphs of G. Note how, due to lines 02 and E4 of esu, the VExtension

set of a tree node never includes a vertex with a label that is smaller than the smallest
label in the set VSubgraph. Furthermore, observe how, from left to right, the VExtension sets
of the children of a tree node have less and less vertices in common with the VExtension set
of their parent node; this is due to line E3 of esu.

Definition 3.2. A call to EnumerateSubgraphs(G, k) is associated with a tree of recur-
sive function calls called esu-tree. The root node of the esu-tree is located at depth zero
and represents the function EnumerateSubgraphs(G, k). Each call of the subroutine
ExtendSubgraph(VSubgraph, VExtension, v) is represented by an edge from the node repre-
senting the caller function to a node representing the callee. The callee node is labeled
with (VSubgraph, VExtension) and located at depth |VSubgraph|.

The structure of the esu-tree is illustrated in Figure 3.2. It is the basis to establish the
correctness of esu in Theorem 3.4.

Before we prove the correctness of esu, it is useful to introduce some additional nota-
tion: For a node w in the tree, we use Sub(w) and Ext(w) to denote the sets VSubgraph

and VExtension of its label, respectively. Furthermore, it is assumed that the nodes of the
esu-tree are ordered in the same order in which the subroutines they represent are called.
If a node w1 precedes a node w2 in this order, we designate this by writing w1 ≺ w2.
Given a set of tree nodes, a node is called minimal in this set if it precedes all other nodes
in the set.

The next lemma states two properties of the esu-tree that we then use to prove the cor-
rectness of esu in Theorem 3.4.

Lemma 3.3. The esu-tree has the following properties:

1. Let w1 be a node distinct from the root. For every vertex u ∈ Ext(w1), w1 has a
child node w2 such that u ∈ Sub(w2).

2. Consider two nodes w1 and w2 in esu-tree that have a common parent node and
satisfy w1 ≺ w2. Then, Sub(w1) contains a vertex u1 which is not contained in
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Sub(w2) and vice versa. Furthermore, every node w ′ whose path to the root con-
tains w2 satisfies u1 6∈ Sub(w ′).

Proof. Property 1 follows from the fact that lines E3 to E5 are carried out for every
vertex u in the original VExtension set (basically, VExtension can be viewed as a stack from
which we pop the vertices u until it is empty).

To show Property 2, it is useful to observe that for each node w in the esu-tree that
is distinct from the root and for each vertex u ∈ Ext(w), we have u > v where v is the
smallest-label vertex in Sub(w), this follows directly from lines 02 and E4 of the algorithm,
where one condition for a vertex in order to be added to VSubgraph is that its label is larger
than the label of the vertex v and hence v is the smallest-label vertex in Sub(w).

A proof of Property 2 follows from the consideration of two cases. In the first case, let
the common parent of w1 and w2 be the root of the esu-tree. Then Property 2 holds
because line 03 of esu is executed exactly once for each vertex v of the input graph
and our observation made in the last paragraph ensures that every node w ′ that is a
descendant of w2 satisfies Sub(w ′)∩Sub(w1) = ∅. Assume now as the second case that the
common parent of w1 and w2 is distinct from the root. Then the existence of a vertex u1

as claimed becomes clear from the fact that once u1 has been considered for addition
to the VSubgraph set, it is removed from VExtension by line E3 of the esu algorithm. The
claim that once the call to ExtendSubgraph(VSubgraph ∪ {u1},VExtension) in line E5 has been
completed, no subgraph containing u1 is output until we reach line E6 again is proved
by observing that u1 must be neighbor to some vertex in VSubgraph since it is in VExtension.
Then, however, there exists no vertex u ′ ∈ V for which u1 ∈ Nexcl(u

′, VSubgraph) and
hence once u1 is removed from VExtension it is not added to this set by any recursive call
of ExtendSubgraph until we reach line E6 again.

Theorem 3.4. Given a graph G and k > 2, esu enumerates all size-k subgraphs in G, that
is, each size-k subgraph is output exactly once.

Proof. Given a graph G and an integer k > 2, we show that every size-k subgraph in G

is output at least once and at most once.

“At least once.” Calling EnumerateSubgraphs(G, k) for a graph G = (V, E), let T be
the corresponding esu-tree. Assume for the purpose of contradiction that there exists a
size-k subgraph G ′ = (V ′, E ′) with vertex set {v1, . . . , vk} in G that is not output by esu.
Without loss of generality, we assume v1 to be the smallest-label vertex in G ′. Because
line 03 of the esu algorithm is called for every vertex v ∈ V, including v1, the root of T has
exactly one child node w1 with Sub(w1) = {v1}. All neighbors of v1 in G ′ are in Ext(w1)
by line 02 of esu, considering the assumption that v1 is the smallest-label vertex. Then, by
Property 1 of the esu-tree in Lemma 3.3, w1 has a child node w2 with Sub(w2) = {v1, v ′}
for each neighbor v ′ of v1 in G ′. Let w ′

2 be the minimal one of these child nodes and
assume that, without loss of generality, the respective neighbor of v1 added to Sub(w1)
is v2 (that is, assume that Sub(w ′

2) = {v1, v2}).

We now claim that Ext(w ′
2) contains all neighbors that v1 and v2 have in G ′: Assume
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for the purpose of contradiction that there exists a neighbor which is not contained
in Ext(w ′

2). This could only be for three reasons, all of which we can rule out, yield-
ing the desired contradiction:

1. Its label could be smaller than that of v1, which can be ruled out because v1 is the
smallest-label vertex in G ′.

2. It could be neither a neighbor of v1 nor in the exclusive neighborhood of v2, which
can be ruled out because in G ′ it is a neighbor of either v1, v2, or both.

3. It could already have been taken from Ext(w ′
2), which can be ruled out because we

assumed w ′
2 to be minimal.

Inductively carrying out the above argument for the vertices v3, . . . , vk leads to a leaf
node wk in the esu-tree for which Sub(wk) = V ′, a contradiction to our assumption
that G ′ is not output by the algorithm.

“At most once.” Assume for the purpose of contradiction that a subgraph G ′ is enu-
merated twice. This means that there are two leaves w1 and w2 in the corresponding
esu-tree for which Sub(w1) = Sub(w2). The path p1 from w1 to the root must differ
at least partly from the path p2 from w2 to the root. Call the greatest-depth node in
the tree that p1 and p2 share the split node. Due to Property 2 of Lemma 3.3, the exis-
tence of the split node implies that Sub(w1) and Sub(w2) differ by at least one element, a
contradiction.

Besides being useful for the above correctness proof, the esu-tree exposes some additional
interesting properties. For example, we can quickly estimate the total number of size-k
subgraphs in the input graph using a technique by Knuth [155] that randomly explores
paths in the esu-tree: For each such path, the product of the number of children over all
path nodes is an (unbiased) estimator for the number of leaves; taking the average over
many such estimates gives a good estimate for the overall tree size (this is very fast to
compute, a million estimates can be made in under a second on our testing machine, an
AMD Athlon 64 3400+). With such an estimate at hand, it is, for example, possible to
see if a total enumeration of subgraphs is expected to be feasible, to estimate the running
time of the esu algorithm (which can also be used to implement a progress indicator [34]),
and to make statistical error estimates about the sampling error if no exact enumeration
seems feasible. Probably the most important feature of the esu-tree, however, is that we
can use it to efficiently sample subgraphs uniformly at random—that is, without bias.
This is explored in the next section.

Uniformly Sampling Size-k Subgraphs.

The esu algorithm completely traverses its corresponding esu-tree. Given the potentially
vast number of size-k subgraphs in a graph, this complete traversal is often very time-
expensive. Whenever a complete traversal would consume too much time, the idea we
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follow here is to explore only parts of the esu-tree such that each leaf is reached with
equal probability, that is, we obtain a uniform sampling algorithm for size-k subgraphs.

To obtain the sampling algorithm from the enumerative esu algorithm, we introduce a
probability 0 < pd 6 1 for each depth 1 6 d 6 k in the esu-tree. Using pd, it is deter-
mined for each child vertex at depth d whether esu traverses the subtree that is rooted at
it. This is implemented by replacing lines 03 and E5 of the algorithm with

“With probability pd, call ExtendSubgraph(. . . )”

where d
def
= 1 in line 03 and d

def
= |VSubgraph| + 1 in line E5. We call this new algorithm

rand-esu; to simplify the discussion, we will also use this name when all pd are set to 1,
in which case rand-esu is equivalent to esu.

As we now show, rand-esu visits each leaf of the esu-tree with equal probability and
hence estimating subgraph concentrations from its output is straightforward.

Lemma 3.5. rand-esu visits each leaf in the esu-tree with probability
∏

d pd.

Proof. Let wk be a leaf node in the esu-tree and wk−1, . . . , w1 the nodes that lie on the
path from wk to the root. Then

Pr[wk is reached] = Pr[wk reached | wk−1 reached] · Pr[wk−1 reached]

= pk · Pr[wk−1 reached] = pk · pk−1 · Pr[wk−2 reached]

= · · · = pk · pk−1 · . . . · p1 =
∏

16d6k

pd .

Proposition 3.6. Given a graph G, an integer k, and 0 < pd 6 1 for 1 6 d 6 k, let S be
a set of size-k subgraphs obtained by running rand-esu on G using the probabilities pd.
Then, an unbiased estimator for Ci

k(G) is given by

Ĉi
k(S, G)

def
=

|{G ′ ∈ S | G ′ ∈ Si
k(G)}|

|S|
.

Proof. The proof follows directly from Lemma 3.5: If the input graph contains exactly N

subgraphs and N ′ of these are representatives of a subgraph class Sk
i , the fraction of leaves

in the esu-tree that correspond to representatives of Sk
i equals N ′/N. Since each leaf in

the esu-tree is reached with equal probability, the expected fraction of subgraphs in R

that correspond to representatives of Sk
i is precisely N ′/N = Ci

k(G).

It remains to discuss how the values pd should be chosen. If we wish to sample an
expected fraction 0 < q < 1 of all size-k subgraphs using rand-esu, then it is obvious
from Lemma 3.5 that we have to ensure

∏
16d6k pd = q. However, this still leaves us to

choose the individual values, that is, do we uniformly set every pd equal to q1/k or are
there better choices? Some general observations are:

• Choosing whether or not to explore a subtree whose root is close to the root of
the esu-tree generally has a higher influence on the total number of explored leaves
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than for a subtree whose root is farther from it because the subtrees tend to become
larger the closer their root is to the root of the esu-tree.

• The parameters pd influence the distribution of the sampling, that is, if pd is small
for small d, some local neighborhoods in the input graph are likely not to be ex-
plored at all while others will be explored extensively.

• The running time is influenced from an amortized point of view: The larger the pd

values are for small values of d the more of the esu-tree is explored in order to
sample a certain expected number of leaves.

As a general rule from these observations, the parameters pd should be larger for small d

and become smaller as d increases—as long as the sacrifice made with respect to the
amortized running time per sample is acceptable. Although we explore the effect of
different parameter choices to some extent in Section 3.5, some further analysis will be
required to arrive at a systematic scheme for them.

We now turn our attention to another aspect of rand-esu, namely the variance in its
running time and in the number of sampled subgraphs, which of course we would like to
keep as low as possible. To somewhat quantify this variance without too much technical
expenditure, we consider as a model the randomized traversal of a random tree using
a set of pd values.11 For this purpose, consider a random tree Tk of height k where—
independently—the number of children for each node at depth d is determined by a

random variable Xd with expected value Ed
def
= E(Xd) and variance Vard

def
= Var(Xd). We

now use the following result shown by Knuth [112, page 577]:

Theorem 3.7. Consider two discrete random variables X and Y that may take nonneg-
ative integer values and assume that we use these two variables to determine a random
variable Z as follows: First, we choose a nonnegative integer i according to the distribu-
tion of X. Second, we build the sum of i independent random variables that are chosen
according to the distribution of Y. Then, the expected value of Z is E(Z) = E(X)E(Y)

with a variance of Var(Z) = Var(X)(E(Y))2 + E(X)Var(Y).

For a random traversal of Tk with given parameters pd (just the way rand-esu traverses
the esu-tree), an iterative application of Theorem 3.7 shows that the expected number of
visited leaves in Tk is

ETk
=

∏
16d6k

(pd · Ed) .

(Note how this should come as no surprise given Lemma 3.5 and the fact that the tree Tk

has an expected number of
∏

16d6k Ed leaves.) The variance for the number of explored
leaves is

VarTk
=

∑
16d6k

(( ∏
16i<d

pi ·Ei

)
·
(
pd ·Vard +(pd −p2

d) ·Ed

)
·
( ∏
d<i6k

(pi ·Ei)
2)) . (3.2)

11Of course a random tree is only a very coarse model for the esu-tree, but it allows us to emphasize the main
points we wish to make here. Furthermore, we have found in our studies that a more precise model does not
generate significant additional insight while being much more complex to handle mathematically.
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In accordance with our discussion above, this shows that VarTk
is reduced if pd is small

for larger values of d.

The term “(pd − p2
d) · Ed” found in the middle of (3.2) is the variance for the number

of child nodes that we choose to explore further. For rand-esu, its origin lies in the
randomization found in lines 03 and E5 which gives rise to a binomial distribution for the
number of children that are explored. We can now use this insight to reduce the variance
of rand-esu: Let wd be a node at depth d in the tree with x children. Then, instead of
deciding independently with probability pd for each of the x children whether it is to be
explored further, we randomly choose x ′ of the x children where

x ′ =

dx · pde with probability (x · pd − bx · pdc)
bx · pdc with probability (1 − (x · pd − bx · pdc))

and explore exactly these.12 This procedure does not change the probability of an in-
dividual child being explored (we still have Pr[wd+1 is reached | wd is reached] = pd)
while, as an advantage, it reduces the variance from Ed · (pd − p2

d) to

max{(x · pd − bx · pdc)2, (dx · pde− x · pd)2} < 1 .

Further analysis will be required to see if any other improvements can be derived for the
algorithm. For example, one might consider to reduce Varj in (3.2) for rand-esu by a
certain labeling of the vertices in the input graph that yields a very well-balanced esu-tree.

Concluding this section, while rand-esu—as compared to esa—requires a choice of sam-
pling parameters and only allows for controlling the expected number of samples, it has a
lot to offer in return. Most importantly it is unbiased, which rules out the respective dis-
advantages of esa. Also, it is much faster (see the experiments in Section 3.5) and easier
to implement since we do not require any bias-correcting parts. Contrary to esa, our new
algorithm never samples more subgraphs than the input graph contains and its results be-
come exact as the number of samples reaches the total number of size-k subgraphs in the
input graph.

3.4 Fast Determination of Subgraph Significance

As already mentioned in the introduction, network motif detection may spend consider-
able amounts of time for the subtask of determining subgraph significance. Traditionally,
this task involves the explicit generation of an ensemble of random graphs and then
determining subgraph concentrations within each of these. Here, we propose a new ap-
proach to determining subgraph significance that does not rely on an explicit random
graph generation and offers some additional advantages such as being able to focus on
the estimation of significance for specific subgraphs.

12The idea is to always explore at least bx·pdc children; if x·pd is not an integer, one more child than bx·pdc
is explored with a certain probability, ensuring that exactly x · pd children are reached on average.
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3.4.1 A New Approach to Calculating Subgraph Concentrations

Let us consider the case where the significance of a subgraph is determined by compar-
ing its concentration in the given graph G to its mean concentration 〈Ci

k(G)〉 in random
graphs with the same degree sequence [143, 183]. It is suggested in [143, 183] to es-
timate

〈
Ci

k(G)
〉

by generating a large ensemble of random graphs (typically at least a
thousand) with the same degree sequence as the original graph and then determining sub-
graph concentrations within each of these random graphs. We shall refer to this approach
as explicit. Using the explicit approach has mainly three problems:

• In order to reliably estimate the average concentrations of subgraphs that appear
very seldom, a huge number of random graphs has to be generated and analyzed.

• We are likely to spend lots of computational effort for estimating the concentrations
of subgraph classes we are not interested in (this is especially important for sparse
networks where most subgraphs are trees; these, however, are often considered to
be uninteresting motifs [33]).

• explicit generates the random graphs from the original graph by randomly switch-
ing endpoints between graph edges. This requires a lot of switching operations
while at the same time it is never certain when proper randomization has been
reached.

To obtain an alternative approach to explicit that does not suffer from these drawbacks,
it is helpful to take a closer look at how this algorithm chooses random graphs. More
precisely, explicitly generating a random graph and then estimating its subgraph concen-
trations can be seen as a random experiment where we first choose a random graph with
the same degree sequence as the original graph and then choose subsets of k vertices that
induce a connected subgraph. In their supplementary online material to [182], Milo et al.
observe that the total number of size-k subgraphs within a set of large random graphs that
have the same degree sequence does not vary much. Hence, we could estimate

〈
Ci

k(G)
〉

also by a differently ordered random experiment where we first select a subset of k ver-
tices and then determine the ratio of graphs with the same degree sequence where these
vertices induce a subgraph from a given subgraph class Si

k(G). More precisely, we have

〈Ci
k(G)〉 ≈ 〈Ĉi

k(G)〉 def
=

∑
G′∈ Seq(G) |Si

k(G ′)|∑
G′∈ Seq(G)

∑
i |Si

k(G ′)|
(3.3)

where Seq(G) is the set of all graphs G ′ that have the same degree sequence as G. All
graphs G ′ are graphs over the same set of vertices, they differ only in their edge sets.
Hence, in the right part of (3.3), the summations in the numerator and denominator
can also be written to sum over all cardinality-k subsets of vertices instead over all
graphs G ′ ∈ Seq(G):

〈Ĉi
k(G)〉 =

∑
{v1,...,vk}⊆V |{G ′ ∈ Seq(G) | G ′[{v1, . . . , vk}] ∈ Si

k}|∑
{v1,...,vk}⊆V |{G ′ ∈ Seq(G) | G ′[{v1, . . . , vk}] is connected}|

. (3.4)
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Our new approach to estimating subgraph concentrations in random graphs, which we
refer to as direct throughout the remainder of this work, works as follows: Observe that
both the numerator and denominator of (3.4) could efficiently be estimated in a Monte
Carlo approach by randomly sampling size-k subsets of the graph vertices—as long as we
are able to efficiently solve the following problem:

Input: A graph G, a subset of vertices {v1, . . . , vk}, and a subgraph class Si
k.

Task: Determine the cardinality of {G ′ ∈ Seq(G) | G ′[{v1, . . . , vk}] ∈ Si
k}, that

is, determine the number of graphs G ′ that have the same degree sequence
as G and induce a subgraph from Si

k between the vertices {v1, . . . , vk}.

As will be discussed in the next subsection, this problem can indeed be solved efficiently
and we thus obtain our new approach direct.

3.4.2 The Concentration of a Fixed Induced Subgraph

In 1974, Bender [30] proved a powerful theorem that allows for an asymptotic estimation
of the number of directed graphs with a prescribed degree sequence. This was later
extended to a theorem about undirected graphs together with Canfield [31].13 The power
behind both theorems lies in the fact that we can not only estimate the number of graphs
with a prescribed degree sequence but also, using a bitmask-matrix M, specify pairs of
vertices that are not to be connected in the graphs we are counting. We describe how
this works in more detail following a formal (and alas quite technical) recapitulation of
Bender and Canfield’s theorems.

Definition 3.8. Given functions f, g, h : Ω→ R, we say “g ∼ h uniformly as f→∞” if

lim
k→∞ sup

{ω∈Ω|f(ω)=k}

∣∣∣∣g(ω)

h(ω)
− 1
∣∣∣∣ = 0.

In the scope of this work, we can treat this definition as follows: Given a set of ob-
jects Ω and a function f that measures the “size” of these objects, the functions g and h

asymptotically approximate each other as the size of the objects becomes larger.

Theorem 3.9 (Number of undirected graphs, adapted from [31]). Let M = (mij) be a
binary symmetric n× n-matrix where mii = 0 for all i and the number of zeros per row
is bounded by a constant. Given a length-n vector r = (r1, . . . , rn) over {0, 1, . . . , d},
let G(M, r) be the number of binary symmetric n × n-matrices (gij) that satisfy the

implication mij = 0⇒ gij = 0 and
∑

j gij = ri. Then, with f(r)
def
=

∑
i ri,

G(M, r) ∼

√
2(f(r)/e)(f/2)

exp(a2 + a + b) ·
∏

i(ri!)

uniformly as f(r)→∞ where a
def
=

∑
i

r2
i−ri

2f(r) and b
def
=

∑
mij=0, i<j

rirj

f(r) .

13It is interesting to note that this is one of the few examples where undirected graphs are somewhat more
difficult to handle than directed graphs.
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While this theorem is concerned with binary matrices, these can be interpreted as ad-
jacency matrices for undirected graphs. Hence, the theorem can be used to count the
number of graphs with a certain degree sequence. As an additional useful feature, ob-
serve that we can “forbid” an edge between two vertices vi and vj in the counted graphs
by setting the corresponding entries mij and mji in the matrix M to zero.

To illustrate Theorem 3.9, assume that we wish to know the number of five-vertex graphs
that have the degree sequence (1, 1, 2, 2, 2), that is, graphs with two degree-1 vertices and
three degree-2 vertices. To count the number of such graphs using Theorem 3.9, observe

that setting r
def
= (1, 1, 2, 2, 2) yields f(r) = 8 and a = 6

16 . We set

M
def
=

( 0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

)

to ensure by the diagonal zeros that we only count loopless graphs. This yields b = 0
and, finally,

G(M, r) ≈
√

2(f/e)(f/2)

exp(a2 + a + b) ·
∏

i(ri!)
=

√
2(8/e)4

exp( 33
64 ) · (1!)2 · (2!)3

≈ 7.92

which is already somewhat close—more precisely, within a 13% error—to the number of
graphs that have the degree sequence (1, 1, 2, 2, 2), namely seven (note that the vertices
are ordered according to the degree sequence):

As f increases, the approximation of Theorem 3.9 becomes better; for example, if we
add an additional degree-two vertex to the degree sequence, the error already decreases
to 9%.14 In practice—for example, for the biological networks that we use as a testbed
in Section 3.5—the value of f is typically larger than one thousand and yields a much
better approximation than seen in our example.

The analogue to Theorem 3.9 for directed graphs is the following:

Theorem 3.10 (Number of directed graphs, main theorem in [30]). Let M = (mij) be
a binary symmetric n × n-matrix where mii = 0 for all i and the number of zeros per
row is bounded by a constant. Given two length-n vectors r = (r1, . . . , rn) and c =

(c1, . . . , cn) over {0, 1, . . . , d} such that
∑

i ri =
∑

j cj, let G(M, r, c) be the number of
binary symmetric n × n-matrices (gij) that satisfy mij = 0⇒ gij = 0,

∑
j gij = ri, and

14We have only chosen a small sequence of low degrees here so as to be able to explicitly depict all possible
graphs; with the additional two, the number of graphs already increases from 7 to 31.
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∑
i gij = ci. Then, with f(r)

def
=

∑
i ri =

∑
j cj,

G(M, r, c) ∼
f(r)!

exp(a + b) ·
∏

i(ri!) ·
∏

j(cj!)

uniformly as f(r)→∞, where a
def
=

(
∑

i r2
i−ri)·(

∑
j c2

j−cj)

2(f(r))2 and b
def
=

∑
mij=0

ricj

f(r) .

Similarly to Theorem 3.9, the binary matrices that are counted in Theorem 3.10 corre-
spond to the adjacency matrices of directed graphs with a certain given degree sequence.

We now know how to estimate the number of graphs that have a given degree sequence.
Looking back at our discussion at the end of Section 3.4.1, however, this is not enough
for our purpose. Rather, we need to be able to count the number of graphs with a given
degree sequence given that a certain subgraph is fixed. Although Bender and Canfield
do not explicitly mention it in [30] or [31], their theorems actually allow us to do so by
using the “bitmask matrix” M: In our example for Theorem 3.9, we used this matrix to
avoid counting graphs that contain loops. More precisely, by setting the diagonal entries
in M to zero, we forbid all loop edges to appear in any of the counted graphs. The use
of M is not restricted to loops only, however—for example, had we set

M =

( 0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

)
,

then the two additional zeros would have caused us to count only those graphs in which
the two degree-one vertices are not connected by an edge. Hence, using the bitmask
matrix M, we can forbid any edge to appear in the counted graphs. (Note that the theo-
rems provide good approximations only if the number of forbidden edges is considerably
smaller than f.)

Besides forbidding edges, fixing a certain subgraph also requires us to be able to fix
certain edges to appear in every counted graph. Intriguingly, the process of forbidding
edges can be abused to fix edges in the counted graphs. While this might sound paradox
at first, consider what fixing an edge between two vertices u and v means for our counting
process: It has the same effect as forbidding the edge between u and v and additionally
decreasing the degree of u and v by one each. This way, only graphs are counted in
which u and v are not connected and have one incident edge less than the degree sequence
demands them to have. Since the edge {u, v} does not appear in any of the counted graphs,
this is the same as if u and v are always connected by an edge in every graph that is
counted.

Being able to forbid and fix edges in the counted graphs, it is easy to see that we can force
whole subgraphs to be induced in them. This is schematically illustrated in Figure 3.3.

For directed graphs, Theorem 3.10 can be applied analogously to Theorem 3.9. The only
two differences are that we are dealing with two degree sequences (one for the indegrees
and one for the outdegrees) and that M need not be symmetric, which allows us to force
and forbid edges with consideration of their direction.
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Figure 3.3: Theorem 3.9 allows us to count the number of graphs with a given degree
sequence under the constraint that certain edges must be present. On the left, the bitmask
matrix M causes every graph with a given degree sequence to be counted by the equation
in Theorem 3.9 since no edge is forbidden by a zero-entry. On the right, we force the
subgraph to be induced by u, v, and w in all counted graphs by decreasing the degrees
of these vertices by two each (for example, ru = 5 becomes r ′u = 3) and using the bitmask
matrix M ′ in order to avoid the forced edges to be counted.

Observe that we are not completely done yet: So far we have only discussed how to fix
a certain labeled subgraph between a set of k vertices. However, there are often several
possibilities how a subgraph might be induced between a set of vertices. For example,
three vertices can induce the subgraph in three different ways, namely as , , and .
Hence, in order to calculate the numerator in (3.4), one must generally consider all (at
most k!) ways in which a given set of k vertices can induce a given subgraph. This
can be accomplished by permuting the vertex labels and taking those permutations into
account that yield mutually different ways of inducing the desired subgraph (mathemat-
ically speaking, one must enumerate all so-called non-automorph isomorphisms of the
fixed subgraph).

To calculate the denominator in (3.4), there exist several possibilities. If we have calcu-
lated the numerator for all subgraph classes Si

k for some fixed k, then the obvious way
to calculate the denominator is to simply sum all these numerators. If we have calcu-
lated the numerator of (3.4) only for a few subgraph classes, however, then a different
approach should be taken, the key idea of which is that we do not have to explicitly
fix every possible subgraph between the vertices {v1, . . . , vk} but only ensure that these
vertices are connected. This can be achieved by forcing a spanning tree between the
vertices and ensuring—through forbidding certain edges—that no connected subgraph
between {v1, . . . , vk} is considered twice. To avoid any double-counting of subgraphs, we
can use the following (straightforward) observation:

Observation 3.11. Every edge-weighted graph with mutually distinct edge weights has a
unique minimum spanning tree, that is, a unique spanning tree that minimizes the total
weight of its edges.
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Assume that we assign each edge {vi, vj} (where, without loss of generality, i < j) in a
size-k subgraph a weight of i + k · j. Then, every potential edge in the graph has a unique
weight. Hence—since there are kk−2 different trees over k labeled vertices [54]—we
require the enumeration of kk−2 trees to estimate the denominator of (3.4) for undirected
graphs, assuming each of these trees to be the minimum spanning tree of the subgraph
that is induced by the vertices {v1, . . . , vk} and forbidding exactly those edges that would
contradict this minimality.

For the directed case, the argument is similar as above, only that for each spanning tree
we have to consider all ways of assigning one of two states to the k−1 edges, one meaning
“directed edge is forced from vertex with lower label to vertex with higher label” and the
other one meaning “directed edge is forced from vertex with higher label to vertex with
lower label and directed edge is forbidden from vertex with lower label to vertex with
higher label”. This yields a total of 2k−1 · kk−2 = 2 · (2k)k−2 trees to consider.

A first glance at the running times that are involved in our direct approach might be dis-
couraging. After all, it involves quantities such as k! or (2k)k. However, a second glance
reveals that the new approach is all but prohibitively expensive—rather, it promises a
huge gain in efficiency for a number of reasons:

1. Consider a subgraph that appears only seldom in the graphs that realize a given
degree sequence. Using explicit, a huge number of random graphs has to be gen-
erated in order to obtain a sufficient number of samples. For example, a random
graph with the same degree sequence as the network coli (shown in Table 3.1 in
the next section) contains roughly 5 000 size-3 subgraphs. However, as Table 3.2
in the next section reveals, there are some subgraphs which occur at an average
concentration of less than 10−8 in these graphs. Hence, 108 subgraphs need to be
sampled (corresponding—as a back-of-the-envelope estimation—to the generation
of 20 000 random graphs) on average just to find this subgraph once, let alone re-
liably estimate its average concentration. In contrast to this, direct always yields
a subgraph concentration for any set of vertices where a given subgraph can poten-
tially be induced, which saves a lot of time for low-concentration subgraphs.

2. For small k, we can precalculate all non-automorph isomorphisms of a subgraph
(typically far less than the worst-case k!) and store them for fast lookup.

3. The denominator in (3.4) is the same for all subgraph classes and hence has to be
calculated only once. Moreover, it is conceivable that deeper mathematical analysis
can estimate this number simply from the degree sequence of the input graph. Even
if the denominator is not calculated, we have a mutual ratio of subgraph concen-
trations by the various numerators. Comparing this ratio to the ratio in the original
network might already suffice to show the significance of a subgraph as a motif.

4. The number of subgraph classes is often considerably smaller than the total number
of subgraphs (see Table 3.1) and we can focus our analysis directly on them.

The experiments that the next section discusses confirm this expected performance gain.
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Table 3.1: Number of size-k subgraphs and the number of respective subgraph classes
that occur in our test instances for 3 6 k 6 6. All instances are directed graphs.

coli yeast elegans ythan

number of nodes 423 688 306 135
number of edges 519 1 079 2 345 597

average node degree 1.2 1.6 7.7 4.4

subgraphs

size-3 5 206 13 150 47 322 9 487
size-4 83 893 183 174 1 394 259 169 733
size-5 1 433 502 2 508 149 43 256 069 2 908 118
size-6 22 532 584 32 883 898 1 309 307 357 45 889 039

subgraph classes

size-3 4 7 13 8
size-4 17 33 197 57
size-5 83 173 7 071 629
size-6 390 888 286 375 9 339

3.5 Experimental Comparison with Existing Approaches

In the previous two sections, we have proposed two new algorithms to speed up the
detection of network motifs in comparison to previous approaches. In order to test the
validity of our claim that rand-esu and direct are faster than previous approaches, both
algorithms have been implemented in C++. The source code is freely obtainable online
at http://theinf1.informatik.uni-jena.de/motifs/ (the same website that hosts
the motif detection tool fanmod which we introduce in Section 3.6). As a comparison
to our implementation, we used the mfinder 1.1 tool by Kashtan et al. [142] which
implements the esa algorithm. The source for this tool has been made available online at
http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html.

3.5.1 Method and Results

We performed our experiments on an AMD Athlon 64 3400+ with 2.4 GHz, 512 KB
cache, and 1 GB main memory running under the Debian GNU/Linux 3.1 operating sys-
tem. All source codes were compiled with the GNU gcc/g++ 3.3.4 compiler using the
option “-O3.”

The network instances that were used for testing the algorithms were up-to-date ver-
sions of the motif detection testbed used by Kashtan et al. [143]. The testbed consists
of four instances, namely coli (transcriptional network of Escherichia coli [235]), yeast
(transcriptional network of Saccharomyces cerevisiae [183]), elegans (neuronal network
of Caenorhabditis elegans [143]), and ythan (ecological food web of the Ythan estu-
ary [272]).15 Some basic properties of these networks are summarized in Table 3.1.

In order to compare rand-esu with esa for speed, we measured the sampling speed
of both algorithms on the four testbed instances for 3 6 k 6 8. Since the relative sam-
pling speed of rand-esu depends on the sampling parameters (recall the discussion in

15An ecological food web is a network where each vertex is a species in an ecosystem and a directed edge
from a vertex u to a vertex v signifies a predator-prey relationship.

http://theinf1.informatik.uni-jena.de/motifs/
http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html
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Figure 3.4: Subgraph sampling speed for different subgraph sizes on a semi-log scale.
Independently of the network, rand-esu (represented by the top four curves) is much
faster than esa and scales much better as the subgraph size increases. Details as to the
exact experimental setting are given in the text.

Section 3.3.2), we determined the speed of rand-esu to be its mean speed for three
different settings of (p1, . . . , pk), namely (1, . . . , 1,

√
0.1,
√

0.1), (1, . . . , 1, 0.5, 0.2), and
(1, . . . , 1, 0.1). All of these settings lead to sampling an expected 10% of all subgraphs.
The results are shown in Figure 3.4. The speed of the deterministic esu algorithm is not
shown in the figure; it proved to be slightly faster than that of rand-esu (most likely
because it avoids any randomization-related overhead). Also note that, in order to get
comparable results for rand-esu and esa, our time measurements do not include the
grouping of sampled subgraphs into mutually nonisomorphic classes—mfinder 1.1 uses
a much less efficient canonical labeling routine than the nauty algorithm that we use.

To compare rand-esu with esa for sampling quality, we first need a formal definition of
what precisely is meant by “sampling quality.” We chose to define the sampling quality
to be the percentage of subgraph classes Sk

i for which Ck
i is estimated with at most 20%

relative error. In doing so, for a given number of subgraph samples we consider only
those subgraph classes that we would expect to sample at least 10 times. Our choice of
defining the sampling quality in this way is based on two considerations: First, allow-
ing at most 20% relative error means that the error is confined to a range that usually
does not affect whether a graph is classified as a motif or not. Second, in a real-case sce-
nario, one would not want to rely on too few sampled subgraphs to estimate the overall
concentration of the respective class.

As in the speed measurements, for measuring the sampling quality of rand-esu we ran
the algorithm with different settings of the sampling parameters (p1, . . . , pk) in order to
sample an expected percentage p of subgraphs in the input network. We refer to these
settings as “coarse” (1, . . . , 1,

√
p,
√

p) and “fine” (1, . . . , 1, p). Note that for p = 10%,
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Figure 3.5: Sampling quality for size-5 subgraphs (size-4 for ythan) versus the percent-
age of sampled subgraphs (semi-log scale). For our ythan instance, mfinder 1.1 repro-
ducibly failed to report results for more than 100 samples, hence this curve is not shown.
The top figure shows the results for esa versus rand-esu using the sampling parameter
setting “coarse,” the bottom figure shows the results using the sampling parameter setting
“fine.” Further details on the experimental setting are given in the text.

this yields the same settings that were used in the speed measurements. The obtained
results are shown in Figure 3.5.

Concerning our direct algorithm from Section 3.4 that calculates subgraph significances
without the explicit generation of random graphs, two sets of experiments were carried
out on the four testbed instances:

The first set of experiments measured how close the subgraph concentrations determined
by explicit are to those calculated by direct (recall that we should expect them to only
approximate each other). In order to do this, we calculated the subgraph concentration of
all 13 nonisomorphic directed size-3 subgraphs both by explicitly generating 10 million
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Table 3.2: For directed size-3 subgraphs, the table shows the approximate subgraph
concentrations in random graphs based on the methods discussed in Section 3.4. The
concentrations 〈Ci

k(G)〉 were determined with explicit by generating 10 million random
graphs with the same degree sequence as the original network (observe that even with
this large number of random graphs, the subgraph was never found in coli and yeast
although the degree sequences of both networks theoretically allow for its presence). The
concentrations 〈Ĉi

k(G)〉 were calculated by direct, evaluating (3.4) from Section 3.4.2
for 100 million random size-3 vertex subsets.

coli yeast elegans ythan
〈Ci

k(G)〉 〈Ĉi
k(G)〉 〈Ci

k(G)〉 〈Ĉi
k(G)〉 〈Ci

k(G)〉 〈Ĉi
k(G)〉 〈Ci

k(G)〉 〈Ĉi
k(G)〉

9.12 E−1 9.07 E−1 9.00 E−1 8.99 E−1 2.00 E−1 2.00 E−1 4.15 E−1 3.72 E−1

4.95 E−2 5.11 E−2 7.13 E−2 7.07 E−2 3.65 E−1 3.74 E−1 2.16 E−1 2.28 E−1

3.65 E−2 4.05 E−2 2.79 E−2 2.93 E−2 3.17 E−1 3.23 E−1 2.17 E−1 2.42 E−1

2.83 E−4 2.22 E−4 1.43 E−4 1.03 E−4 3.44 E−2 2.74 E−2 4.02 E−2 3.65 E−2

4.36 E−5 3.20 E−5 1.68 E−5 1.20 E−5 3.69 E−2 2.94 E−2 4.35 E−2 4.66 E−2

1.44 E−7 7.38 E−8 3.31 E−8 1.72 E−8 2.49 E−3 1.58 E−3 4.05 E−3 3.67 E−3

1.44 E−3 1.33 E−3 1.09 E−3 1.06 E−3 3.23 E−2 3.45 E−2 4.79 E−2 5.29 E−2

2.90 E−6 3.33 E−6 9.46 E−7 9.94 E−7 4.08 E−3 4.45 E−3 1.71 E−3 2.59 E−3

2.11 E−6 1.60 E−6 1.34 E−6 9.52 E−7 2.13 E−3 1.79 E−3 3.47 E−3 3.36 E−3

7.60 E−7 4.59 E−7 1.95 E−7 1.34 E−7 1.65 E−3 1.43 E−3 6.04 E−3 6.73 E−3

1.98 E−7 1.50 E−7 5.38 E−8 3.71 E−8 2.41 E−3 2.07 E−3 3.21 E−3 3.94 E−3

3.82 E−9 1.72 E−9 6.80 E−10 3.26 E−10 5.78 E−4 4.12 E−4 1.59 E−3 1.58 E−3

— 1.73 E−12 — 1.96 E−13 2.87 E−5 1.68 E−5 9.76 E−5 7.74 E−5

random graphs as well as by sampling 100 million size-3 subsets of vertices.16 The results
are given in Table 3.2.

The second set of experiments compares the speed of direct with explicit. Here, we
measured the standard deviation of the output subgraph concentrations with respect to
time.17 Since both algorithms converge to slightly different values—as determined by
the first set of experiments and shown in Table 3.2—the standard deviations have been
made comparable by normalizing them to 〈Ci

k(G)〉 and 〈Ĉi
k(G)〉 for direct and explicit,

respectively. A representative subset of the obtained results is given in Figure 3.6, they
are further discussed in the next section.

16We used the rather small value of k = 3 in order to make such a large number of samples feasible and
because this enables us to gain an overview over all subgraph classes.

17Measuring the standard deviation with respect to some machine-independent variable such as “number of
samples” does not seem feasible, unfortunately, because of the very different nature of the two algorithms.
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Figure 3.6: Representative examples for the speed comparison of direct with explicit
(the earlier a low standard deviation is achieved, the better). The name of the network
is given in the lower lefthand corner, the subgraph class in the lower righthand corner of
each graph. Details as to the experimental setting are given in the text.
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3.5.2 Discussion

Most notable in Figure 3.4, rand-esu turns out to be much faster than the esa sam-
pling in mfinder 1.1. This amounts to several orders of magnitude for larger sub-
graphs (k > 5). For small sampling quantities, the “coarse” variant of rand-esu proved
to be faster than the “fine” variant (not explicitly shown in Figure 3.4)—this was to be
expected from our observation in Section 3.3.2 because the “coarse” variant explores less
of the esu-tree than the “fine” variant. Figure 3.5a shows, however, that the resulting
sampling quality from using “coarse” settings for the pd values is relatively low when
compared to that of esa. The qualities are roughly equal for the “fine” variant (see Fig-
ure 3.5b) with esa having a slight advantage for sampling sizes above 1% and close to
100%. (Note that for 100%, rand-esu is equivalent to esu and the results are exact.)
Two things are to be noted in this respect, though:

1. Since rand-esu is much faster than esa, it can, for example, fully enumerate all
size-5 subgraphs in roughly the same time that esa needs to sample 1% of them.

2. The sampling quality of the “fine” variant appears to be more consistent for dif-
ferent networks, that is, in some percentage ranges esa has a very good sampling
quality for elegans and a comparably fair one for coli. The “fine” rand-esu,
on the contrary, remains at a much more consistent quality. This consistency is
very important in practice because if a subgraph sampling algorithm is applied to
a network, we have no way of knowing in advance whether it is well-behaved
with respect to the sampling consistency. It should also be noted that—contrary
to esa—statistical estimates about the achieved sampling quality can be made with
rand-esu because of its unbiasedness (especially with the “fine” variant where in-
dividual samples are fully independent of each other) and the ability to estimate
the total number of subgraphs. Finally, contrary to esa the sampling quality of
rand-esu becomes perfect as the percentage of sampled subgraphs reaches 100%
(this also underpins the advantage of controlling the percentage of sampled sub-
graphs instead of their absolute number).

As to the estimation of subgraph significance, Table 3.2 shows that our new algorithm
direct from Section 3.4 yields subgraph concentrations that are generally very close to
those output by explicit. These concentrations often appear to be closer for the denser
instances elegans and ythan than for the sparse instances coli and yeast; most of
the significant deviations occur for subgraph classes that appear in very low concentra-
tions of 〈Ci

k(G)〉 < 10−6 (observe from Table 3.1 that this is far less than one over the
total number of size-3 subgraphs in these networks). Overall, the direct calculation of
subgraph significance thus does not seem to have an impact on which subgraphs in the
given network would be classified as motifs, making direct a valid tool for determining
subgraph significance.

As to the convergence speed of explicit and direct, our experiments show that explicit
is generally faster than direct for subgraphs which occur in high concentrations. Exam-
ples for this are given in Figures 3.6c, 3.6e, and 3.6f. This particular speed advantage
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of explicit does not appear to be relevant for practical purposes, however, because both
algorithms quickly reach a very low normalized standard deviation (< 1%) in all of the
cases where explicit is faster than direct. In contrast to this, as is exemplified by Fig-
ures 3.6a, 3.6b, and 3.6d, our new approach direct is considerably more efficient than
explicit for subgraphs which have a very low concentration in random graphs. Here, an
acceptable standard deviation is achieved many orders of magnitude faster with direct
than with explicit. With our new approach, it is even possible to estimate the concen-
tration of subgraphs for which explicit does not give any results due to an extremely
low average concentration in the explicitly generated random graphs (two examples for
this are given in the bottommost row of Table 3.2).

Summarizing, it seems justified to say that direct provides an accurate and much faster
alternative to explicit for determining subgraph significance, assuming that the random
graph model is that of preserved degree sequence. Given its advantages, it would of
course be very interesting—we also point this out in the conclusion of this chapter—to
extend direct to incorporate a wider range of random graph models in future research.

3.6 Fanmod: Fast and User-Friendly Motif Detection

The implementation we used for the experiments in the last section was programmed
for the purpose of making many experimental measurements (that is, it is quite ver-
bose but not too user-friendly). To make the rand-esu algorithm and its capabilities
accessible to a wider audience, including communities outside of computer science, the
experimental implementation was—with much work put in by Florian Rasche (a stu-
dent research assistant at the Friedrich-Schiller-Universität Jena who worked under the
author’s supervision)—turned into a user-friendly motif-detection tool. We named this
tool fanmod (as an acronym for fast network motif detection) [268]. It is freely avail-
able online at http://theinf1.informatik.uni-jena.de/motifs/ and has been quite
well received in the motif detection community. Within the first three months after being
introduced in [268], it has been downloaded well over 200 times.

In this section, we introduce the main features of fanmod and compare it to other motif
detection tools. Note that we only give an overview of the main program features here;
for details concerning the usage of fanmod we refer to its manual which is available
from the same website as the program itself.

3.6.1 Main Features and Usage

In summary, fanmod is a tool for fast network motif detection that makes the rand-esu
algorithm available via a graphical user interface (see the screenshot in Figure 3.7) and
facilitates the processing of subgraph data after it has been gained.

For reasons of efficiency, fanmod is written in the C++ programming language. It consists
of approximately seven thousand lines of non-library code. The graphical user interface
and other system-dependent features are implemented using the open-source wxWidgets

http://theinf1.informatik.uni-jena.de/motifs/
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Figure 3.7: Screenshot showing the main window of our motif detection tool fanmod
(Windows version). The interface is divided into three areas that—from top to bottom—
reflect the typical workflow of motif detection: algorithm setup, algorithm execution, and
processing the obtained results.

framework [238]. Although fanmod is not platform independent, it is available for the
three most popular end-user platforms, namely Linux, Mac OS, and Windows

The main concept behind the user-interface—as shown in Figure 3.7—is to reflect the
typical workflow of detecting network motifs by dividing it into three main areas. From
top to bottom, these are:

1. The setup area where the user sets up the parameters for the rand-esu algorithm
and chooses a random network model. Besides choosing an input file and an output
file name, this area allows the user to set the pd values for rand-esu (recall from
Section 3.3.2 that these influence how subgraphs are skipped in the randomized
enumeration) and an appropriate random graph model.

2. The algorithm area where the algorithm can be started and paused. The progress
of the algorithm can be tracked by two progress bars that show the total progress
and the progress of processing the current network (original or random).

3. The results area where a summary of results is shown. This area also features an
“export to html” button that allows further processing of the results obtained (see
below for details).
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Concerning the random graph model, fanmod includes only the explicit algorithm
so far and not our novel direct algorithm. The reason for this is that explicit can
incorporate a broad range of random graph models that are all compatible to each other
and thus can be processed in the same way to, for example, yield Z-Scores and p-Values
(see below for an explanation of these).

In our various random graph models, the random graphs are always generated by ran-
domly switching edges between the vertices of the original input graph:

switch

The switches are performed such that the degree sequence of the original graph is con-
served. For directed graphs, the user can select various random graph models that affect
how bidirectional edges are handled:

• In the first model, the number of incident bidirectional edges remains locally con-
stant for every vertex.

• In the second model, the number of bidirectional edges is conserved globally, that
is, it remains constant for the overall graph but a specific vertex may lose or gain
incident bidirectional edges.

• In the third model, no attention is paid to the number of bidirectional edges (choos-
ing this model usually increases the number of bidirectional edges compared to
the original graph, which is often unwanted because it makes unidirectional edges
falsely appear significant).

One unique ability of fanmod in comparison to other motif detection tools (see Sec-
tion 3.6.2 for a more thorough comparison) is that it is able to handle colored networks,
that is, edges and vertices can be assigned certain colors so as to make them mutually dis-
tinguishable to some extent (for example, to differentiate between activating and inhibit-
ing interactions). For these networks, additional randomization options are available.
For example, the user can choose to conserve for each vertex the number of incident
edges that have a certain color or the number of adjacent vertices that have a certain
color; in this case, certain switching operations become forbidden (the fanmod manual
explains this in more detail):

regard edge colors regard vertex colors

After the algorithm has completed its run, the results are written to a file either as comma-
separated values (which are easy to handle by computational processing, for example, in
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Figure 3.8: Screenshot showing the html export window of fanmod. In the above
example, an uncolored network is processed; if a colored network is processed, the tool
additionally allows the user to choose colors for the vertices and edges that are used to
create the subgraph pictures.

a spreadsheet application) or as a human-readable text file. These results can be further
processed by using the integrated html export- and filter tool shown in Figure 3.8. This
tool allows the user to specify the exact requirements for a subgraph in order to be
significant as a motif. More precisely, the following filters can be specified:

• Z-Score. The Z-Score is the number of standard deviations that a subgraph ap-
pears more often or less in the original graph than in the random graphs that were
generated. Usually in the literature, a Z-Score above 2 makes a subgraph significant
as a motif.

• p-Value. For a given subgraph, the p-Value is the percentage of random graphs
that have at least the same concentration as the original graph. This means that the
lower the p-Value, the higher the significance of a subgraph becomes. Usually in
the literature, a subgraph must be assigned a p-Value below 5% to be considered
as a motif. Setting the p-Value switch filters all motifs above a certain p-Value.

• Frequency. By selecting this filter, only those motifs are shown that occur above a
certain frequency (that is, concentration) in the original graph.

• Absolute Occurrence. Here the user can specify that a subgraph can only be a
motif if it occurs at least a certain number of times (say, five times) in the original
graph.

• Dangling Edges. A “dangling edge” in a subgraph is an edge that is incident to
a degree-one vertex. These subgraphs are sometimes considered as uninteresting
motifs because the dangling edge does not add much information to the subgraph.
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Figure 3.9: Example for an html export of colored size-4 motifs in the network coli.

A subgraph with more than one dangling edge, however, might be a path and there-
fore again be interesting. For this reason, the user can specify an upper bound and
a lower bound on the number of dangling edges that a subgraph may have in order
to be considered as a motif.

After the filters have been specified, the results are exported to an html file that shows
all those subgraphs that pass every filter.18 An example output is shown in Figure 3.9.

3.6.2 Comparison to Other Tools

There exist two other tools that perform somewhat similar tasks as fanmod and allow
for the detection and analysis of network motifs in directed and undirected networks,
namely mfinder [142] (the esa implementation that we already used in the experimental
section) and mavisto [229]. A specialized tool for detecting motifs in labeled protein
interaction networks is blunt [207]. Some works also mention pajek [27] in the con-
text of network motif detection, a multi-functional tool for network analysis. However,
pajek is of limited use in network motif analysis; while it supports the search for all oc-
currences of a certain pattern in a network, the enumeration of subgraphs and statistical
comparison to random graphs are not sufficiently supported.

Both mfinder and mavisto support the detection of network motifs consisting of up to
eight vertices, but otherwise these tools have a different focus: mfinder is a command-

18As a remark, the user has some additional options in the export filter dialog that we have not discussed
here, such as whether to show the subgraphs as adjacency matrices or as pictures in the html file.



Fanmod: Fast and User-Friendly Motif Detection 61

line tool that is concerned with the detection of network motifs, that is, it performs
the tasks we have been discussing in this chapter. It also incorporates a broad range of
random graph models for determining the frequency of subgraphs in random graphs. The
other tool, mavisto, is more concerned with the visualization of motif occurrences within
a network by using a force-directed graph layout algorithm. To give mfinder some
visualization capabilities, a tool named mdraw has been released in order to visualize the
output of mfinder; it is available from the same website as mfinder.

Compared to mfinder and mavisto, we find that fanmod offers a number of advantages
to the user:

1. First of all—by using the rand-esu algorithm—fanmod is much faster than the
other two tools. As an example, on a laptop equipped with a 1.5 GHz Pentium M
processor and 512 MB RAM, enumerating all 1.4 ·106 size-5 subgraphs in the coli
instance requires 620 seconds with mavisto, 180 seconds with mfinder, and only
ten seconds with fanmod. Also, fanmod is the only tool that provides accurate
running time estimates via a progress bar.

2. The analysis of colored networks is becoming more and more important in motif
research (see, for example, [277]), that is, there is a research trend toward the
analysis of networks in which edges and vertices are assigned certain colors so as to
distinguish, for example, inhibiting from activating interactions or various vertex
types such as proteins and genes from each other. So far, fanmod is the only motif
detection tool that can analyze colored networks.

3. fanmod has a number of options and filters that can be used to process the sub-
graphs that are found. In this way, it accommodates a very broad range of possible
notions of “subgraph significance” and also separates the data processing from the
data mining step. As discussed in the last section, the processed data can be out-
put to html with graphical representations of the motifs found, making the results
much easier to read than the adjacency-matrices output by mfinder.

4. Compared to the command-line tool mfinder, fanmod presents all algorithm op-
tions in a much more accessible manner through its graphical user interface.

One disadvantage of fanmod compared to the other two tools is that it does not offer
any direct means of visualizing motif occurrences in the input graph. However, it offers
the option to export a list of all subgraphs found and it should, in principle, be possible
to make this list readable to the mdraw visualization module or some other network
visualization tool.

Overall, the number of downloads of fanmod and the amount of positive user feedback
that we received indicates that fanmod seems indeed to fulfill a need within the research
community for a motif detection tool that is both powerful (meaning efficient and rich
in options) as well as user-friendly (meaning it integrates well into the workflow and au-
tomates tedious processes such as filtering subgraphs for significance or drawing pictures
of motifs).
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3.7 Summary and Open Questions

This chapter looked at a modularization approach—network motifs—in order to cope
with the complexity of a biological network. We have outlined how, in spite of some on-
going discussion, this approach has attracted a lot of interest and led to some interesting
and useful results. Based on a detailed analysis of previous approaches, we then presented
two new algorithms rand-esu and direct which allow for a much faster detection of
network motifs than previous approaches. Additionally, the proposed algorithms offer
useful features such as unbiased subgraph sampling and a specifically targeted detection
of subgraph significance. The rand-esu algorithm has been made accessible as a fast and
user-friendly motif detection tool called fanmod.

Overall, the work presented in this chapter enables motif detection for larger networks
and more complex motifs than previously possible, facilitating future research in the field.

There remain a number of interesting algorithmic questions and challenges for future
research:

• Can the sampling of rand-esu be improved, possibly by examining how the la-
beling of the vertices in the input graph affects the sampling quality or seeing if
rand-esu can be tweaked to selectively sample “interesting” parts of the input
graph?

• Do certain labeling schemes for the input graph yield a more balanced esu-tree?

• How can the direct approach be extended to include random graph models that
preserve the number of adjacent bidirectional edges for each vertex or globally?

• Are there more efficient ways to calculate the denominator in (3.4), other than the
ones proposed?

• Are there fast ways to derive subgraph concentrations from the degree sequence
of a graph if this degree sequence has a certain structure (for example, if it has a
power-law distribution)?

There also remains a more general challenge, namely to extend the concept of network
motifs to larger subgraph sizes: Due to their sheer number, it is generally not feasible
to enumerate or sample generic subgraphs (that is, without topological restrictions) that
consist of more than eight vertices. But this is much smaller than the networks that
are typically analyzed, so there is a need to devise concepts for “topological modules”
of intermediate size, say, 20 or 30 vertices, that are still algorithmically feasible to find.
Possible starting points for this might be the approaches we discuss in the next chapter
and in Chapter 9, namely considering only certain graph classes in the search (which
enables the detection of larger structures) or, alternatively, looking for structures that are
already known to be significant from previous research on similar networks.



Chapter 4

Coping by Modularization II:
High-Scoring Pathways

The network motif approach that we discussed in the previous chapter—dealing with the
complexity of a biological network by mining it for significant subnetworks—is rather
generic because it makes no restrictions as to what the subnetworks that we extract
should look like (except for their size and connectedness). This chapter considers a some-
what more specialized approach, namely seeking after simple paths in a network. This is
motivated by an application to protein interaction networks: Mining these networks for
signaling pathways can be modeled as the problem of extracting minimum-weight simple
paths of a fixed length. Based on an algorithmic technique known as color-coding [7],
Scott et al. [231] devised and implemented an algorithm to solve this NP-hard problem.
Given a few hours of time, their implementation can extract candidates for linear signal-
ing pathways that consist of up to 10 proteins.

In this chapter, we investigate how the algorithm of Scott et al. [231] can be improved
by algorithm engineering. We obtain various novel improvements for color-coding, both
from a worst-case perspective as well as under practical considerations. Experiments
demonstrate that these speed up the algorithm by orders of magnitude; finding paths of
up to 13 proteins can even be done in seconds. In this way, we reduce the time that is
required for signaling pathway detection to a point where interactive exploration and
evaluation become possible.

4.1 Motivation

Various approaches have been proposed in order to datamine protein interaction net-
works for biologically meaningful substructures—such as dense groups of interacting
proteins [51, 108, 129] or loops [19]—because it is a quite tedious and expensive task
to identify these by means of laboratory experiments (for example, see [251]). Conse-
quently, there have also been some efforts to automatically infer signaling pathways by
computational means, either discovering them directly or at least by getting good candi-
dates for which further laboratory experiments are likely to yield new insights.

A special role among signaling pathways in protein interaction networks is played by the

63



64 Coping by Modularization II: High-Scoring Pathways

most simply structured ones, namely linear pathways.1 The sequentiality of their interac-
tions makes them easy to understand and analyze and, furthermore, linear pathways can
serve as a seed structure to investigate more complex mechanisms as was demonstrated
by Ideker et al. [126] in the field of metabolic pathway analysis: For the yeast galactose
metabolism, they started out with a simple linear pathway and then measured how per-
turbations to it affect other closely connected pathways, thus obtaining a better overall
picture of the galactose metabolism.

The study of algorithms to automatically identify linear signaling pathways was initiated
by Steffen et al. [243], who proposed a two-step approach for finding these. For this
purpose, a protein interaction network is modeled as an unweighted graph. In the first
step, a large set of linear pathway candidates is generated that consists of all length-8
paths in the graph that start at a vertex that corresponds to a membrane protein and end
at a vertex that corresponds to a transcription factor. In the second step, these paths are
scored based on the gene expression profiles of their proteins; a path receives a high score
if all of its proteins have common gene expression profiles. Using their approach, Steffen
et al. [243] were able to automatically reconstruct known pathways in yeast, which hints
that the algorithm is also capable of reconstructing unknown pathways (this claim has
not yet been verified, though).

Motivated by the work of Steffen et al. [243], Scott et al. [231] proposed an alternative
approach for the automated detection of signaling pathways that models the protein in-
teraction network as a weighted graph. The weight of each edge denotes the probability
that the two connected proteins interact in a signaling pathway. Scott et al. [243] refer to
this probability as interaction reliability. The interaction reliabilities are based on three
sources of information, namely the correlation of gene expression profiles, the observa-
tion of the interaction in laboratory experiments, and the clustering coefficient.2 Thus,
the interaction reliabilities use two more sources of information than the approach of
Steffen et al. [243], which is solely based on gene expression profiles.

Using their weighted graph model, Scott et al. [231] propose to find candidates for linear
signaling pathways by finding k-vertex paths that maximize the interaction reliabilities
over their edges. More formally, this means that they propose to detect signaling pathway
candidates by solving the following combinatorial problem:

Maximum-Reliability Path
Input: An undirected edge-weighted graph G and a positive integer k.
Task: Find a k-vertex simple path in G which maximizes the product over its
edge weights.

Note that this problem is only concerned with finding one high-scoring pathway and
not a collection of high-scoring pathway candidates as we would normally like. The
extension to more paths is discussed at the end of Section 4.3, but for now it is more

1Note that although being called pathway, a pathway can contain cycles; with linear pathways we mean
those that are simple paths.

2The clustering coefficient is, basically, the probability that two interacting proteins have common neighbors
with which they both interact.
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convenient to use the formalization that only seeks after one path.

Since it is somewhat easier and more intuitive to work with additive instead of multi-
plicative edge weights, we consider the following equivalent formulation of Maximum-
Reliability Path from now on; it can be obtained by replacing every interaction relia-
bility by its negative logarithm:

Minimum-Weight Path
Input: An undirected edge-weighted graph G and an integer k.
Task: Find a k-vertex path in G with a minimum sum of edge weights.

Scott et al. [231] demonstrated that solving Minimum-Weight Path for a given pro-
tein interaction network yields biologically meaningful results, that is, it can indeed be
used to find promising candidates for signaling pathways. There is a problem, however:
Minimum-Weight Path is NP-complete [107] because for k = n, it becomes equiva-
lent to the NP-complete Traveling Salesman problem (that is, the task of finding a
minimum-length tour in a graph that visits every vertex exactly once). Fortunately, there
exists an elegant algorithmic technique called color-coding—which Section 4.3 introduces
in detail—that can be used to efficiently solve Minimum-Weight Path as long as the
length of the path that we are seeking is short, that is, as long as the parameter k is small.
This is the case for signaling pathway detection, where k usually lies between 8 and 13,
their typically encountered lengths.

Scott et al. [231] devised and implemented a color-coding based algorithm to solve
Minimum-Weight Path. For k = 10, their algorithm requires some hours; larger values
of k quickly become infeasible. This limits the general applicability of their implemen-
tation and makes it somewhat inconvenient to use because pathway candidates cannot
be explored interactively. In this chapter, we propose novel algorithmic improvements—
both from a worst-case perspective as well as heuristical—that speed up the algorithm by
orders of magnitude; signaling pathway candidates of length up to 13 proteins can even
be found in seconds, allowing for an interactive exploration and evaluation.

This chapter is organized as follows: In the next section, we give a review of the liter-
ature on color-coding. This is followed in Section 4.3 by a detailed introduction to the
color-coding technique and its application to solving Minimum-Weight Path. Our al-
gorithmic improvements are presented in Section 4.4. They have been implemented in
the C++ programming language; the resulting tool is available online as free software at
http://theinf1.informatik.uni-jena.de/colorcoding/. Experiments that evaluate
our implementation and demonstrate the speedup over the implementation of Scott et al.
are discussed in Section 4.5. Section 4.6 concludes this chapter with a brief summary and
a statement of open questions.

4.2 State of the Art

Concerning the theoretical side of color-coding, the original paper by Alon et al. [7] shows
that this technique can not only be used to determine whether a graph contains a k-vertex

http://theinf1.informatik.uni-jena.de/colorcoding/
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path, but also yields fixed-parameter algorithms that determine whether a graph contains
a k-vertex cycle or a given subgraph of bounded treewidth3. Building upon the work of
Alon et al. [7], several authors have developed and improved fixed-parameter algorithms
for the problems of Set Packing (given a number of sets, the task is to find a mutually
disjoint collection of these that is as large as possible) and Graph Packing (given a
graph, the task is to determine how many vertex- or edge-disjoint occurrences of a given
subgraph can be fit into it as subgraphs) [94, 159, 176, 215].

Very recently, color-coding has also inspired a new algorithmic technique that is based
on randomly partitioning a graph into subgraphs and then solving subproblems on these
partitions—a randomized divide-and-conquer approach, so to say [61, 154]. This ap-
proach has basically the same applications as color-coding (that is, finding and packing
subgraphs), but two advantages to offer over the original color-coding technique: First,
the algorithms can be derandomized more efficiently, that is, turned into deterministic
fixed-parameter algorithms (the resulting running time is still infeasible for practical ap-
plications, however). Second, these algorithms achieve a better worst-case bound of 4k

for finding simple k-vertex paths. It would be interesting to find out—see the open ques-
tions at the end of this chapter—whether this better worst-case bound carries over to the
performance in practice (which is not clear as we point out in Section 4.6).

On the practical side, it seems somewhat surprising that not much work has been spent
so far on implementing algorithms that are based on color-coding, despite the elegance
of this technique and its wide range of applicability to practically important problems.
Besides the implementation of Scott et al. [231], we are only aware of two somewhat
related implementations. First, Raymann [219] discusses a color-coding implementation
that determines whether an unweighted graph contains a simple k-vertex path, which, in
practice, is an easier problem than the one we consider here because the algorithm can
terminate after it has found a single such path and there are generally many of them to be
found. Second, Shlomi et al. [236] implemented color-coding to find signaling pathways
that are similar to a given query-pathway; the performance of their implementation is
similar to that of Scott et al. [231] (both works have an author in common). To the best
of our knowledge, the improvements presented Section 4.4 are novel and have not yet
been considered by any existing color-coding implementation.

4.3 Using Color-Coding to Find High-Scoring Paths

This section introduces the color-coding technique and how it can be used to solve
Minimum-Weight Path as well as some application-relevant generalizations thereof.
The purpose of this detailed introduction is twofold: First, the color-coding technique
may not be widely known and, second, the original paper by Alon et al. [7] only consid-
ers the problem of finding any simple k-vertex path in a graph, irrespective of any edge
weights. Furthermore, Alon et al. [7] and Scott et al. [231] state a slightly weaker bound
on the running time than we discuss here (see the footnote to Theorem 4.2 for details).

3Recall from the definition in Section 2.4.3 that the treewidth is a measure of how treelike a graph is.
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To better understand color-coding, it is helpful to first consider a rather straightforward
dynamic programming approach to solve Minimum-Weight Path. This algorithm is
based on the following observation:

Observation 4.1. Given a weighted graph G = (V, E) and some positive integer i < k,
assume that for every vertex v ∈ V and cardinality-i subset of vertices V ′ ⊆ V we know
the minimum weight W(v, V ′) of a path that uses every vertex in V ′ exactly once and ends
in v. We can use these weights to compute the weights W(v, V ′) for all cardinality-(i+ 1)

subsets V ′ ⊆ V because a simple (i + 1)-vertex path that ends in v can be decomposed
into a simple i-vertex path that ends in a neighbor of v (and does not use v itself) and the
edge that connects this neighbor with v.

More precisely, this observation tells us that we can set

W(v, V ′) = min
{{u,v}∈E|u∈V ′}

(
W(u, V ′ \ {u}}) + w({u, v})

)
(4.1)

to calculate the weights W(v, V ′) for subsequently larger subsets V ′. As an example
of how this is algorithmically applied, assume that we want to find a minimum-weight
simple four-vertex path in the graph

v1

v2

v3

v4

v5

1

1

2 2

21

1 2 .

The dynamic programming algorithm is initialized with the weights of the graph, set-
ting W(v, V ′) = ∞ if a certain combination of v and V ′ does not realize a simple path:

W(v1, {v2}) = 2 , W(v1, {v3}) = 1 , W(v1, {v4}) = 1 , W(v1, {v5}) = ∞ ,
W(v2, {v1}) = 2 , W(v2, {v3}) = 1 , W(v2, {v4}) = ∞ , W(v2, {v5}) = 2 ,
W(v3, {v1}) = 1 , W(v3, {v2}) = 1 , W(v3, {v4}) = 1 , W(v3, {v5}) = 2 ,
W(v4, {v1}) = 1 , W(v4, {v2}) = ∞ , W(v4, {v3}) = 1 , W(v4, {v5}) = 2 ,
W(v5, {v1}) = ∞ , W(v5, {v2}) = 2 , W(v5, {v3}) = 2 , W(v5, {v4}) = 2 .

Following this initialization, the algorithm determines the W(v, V ′) values for two-vertex
subsets V ′ by using (4.1):

W(v1, {v2, v3}) = min { W(v2, {v3}) + w({v2, v1}) , W(v3, {v2}) + w({v3, v1}) } = 3 ,

W(v1, {v2, v5}) = min { W(v2, {v5}) + w({v2, v1}) , W(v5, {v2}) + w({v5, v1}) } = 4 ,

...

W(v5, {v3, v4}) = min { W(v3, {v4}) + w({v3, v5}) , W(v4, {v3}) + w({v4, v5}) } = 3 .
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Finally, it proceeds to three-vertex subsets V ′ (which yield four-vertex paths) and obtains

W(v1, {v2, v3, v4}) = min{ W(v2, {v3, v4}) + w({v2, v1} , W(v3, {v2, v4}) + w({v3, v1} ,

W(v4, {v2, v3}) + w({v4, v1} } = 3 ,

W(v1, {v2, v3, v5}) = min{ W(v2, {v3, v5}) + w({v2, v1} , W(v3, {v2, v5}) + w({v3, v1} ,

W(v5, {v2, v3}) + w({v5, v1} } = 4 ,

...

W(v5, {v2, v3, v4}) = min{ W(v2, {v3, v4}) + w({v2, v5} , W(v3, {v2, v4}) + w({v3, v5} ,

W(v4, {v2, v3}) + w({v4, v5} } = 4 .

In this final step, the algorithm finds that the minimum-weight four-vertex path in the
example graph has weight 3. This weight turns out to be realized by five solution val-
ues, namely W(v1, {v2, v3, v4}), W(v1, {v3, v4, v5}), W(v2, {v1, v3, v4}), W(v5, {v1, v3, v4}),
and W(v5, {v1, v3, v4}). The path that corresponds to a certain weight W(v, V ′) can be
retrieved by storing not only the individual values W(v, V ′) in the course of the dynamic
programming but also a corresponding simple path for each value that realizes it.

The main problem with the dynamic programming that we have just exemplified lies in
its efficiency. This becomes clear when we take a look at the worst-case running time,
which is naturally lower-bounded by the maximum number of different W(v, V ′) values
that can be obtained, that is, by n ·

(
n−1
k−1

)
(there are n possibilities to choose the vertex v

and
(
n−1
k−1

)
possibilities to choose the set V ′). For our application, the size k of the paths

that we seek is much less than the number of graph vertices n, so we obtain a running time
of roughly O(nk) for the dynamic programming, which is usually infeasible in practice.4

This is where the idea of color-coding comes into play.

In 1995, Alon et al. [7] proposed a technique called color-coding to determine whether
a graph contains a simple k-vertex path. The main idea is to randomly color the vertices
in the input graph with k colors and then search for colorful paths in them, that is, paths
where no color occurs twice. Clearly, colorful paths are simple—no color occurs more
than once. While many random colorings have to be tried to ensure that the k-vertex
path we seek becomes colorful, the coloring offers a major algorithmic advantage, namely
that colorful paths can be found much more efficiently than simple paths. This is accom-
plished by dynamic programming.

The dynamic programming algorithm to find colorful paths proceeds analogously to the
dynamic programming algorithm we have derived from Observation 4.1. The only dif-
ference is that instead of the values W(v, V ′) we now compute values W(v, S) where S is
not a subset of the graph vertices, but a subset of the k colors that were used to color the
graph.5 More precisely, we rely on the following equation, which is quite similar to (4.1):

W(v, S) = min
{{u,v}∈E|color(u)∈S}

(
W(u, S \ {color(u)}) + w({u, v})

)
. (4.2)

4As an illustration, consider the two realistic values k = 8 and n = 4000, for which nk > 1028.
5Note that S must not contain the color of v.
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To illustrate the dynamic programming algorithm that finds a minimum-weight colorful
path, consider again the five-vertex graph we have already used above; this time, how-
ever, the vertices are colored with four different colors , , , and (note how the
vertices v2 and v3 have the same color):

v1

v2

v3

v4

v5

1

1

2 2

21

1 2

The dynamic programming using (4.2) would start out with

W(v1, { }) = 1 , W(v1, { }) = 1 , W(v2, { }) = 2 , W(v2, { }) = 2 ,

W(v3, { }) = 1 , W(v3, { }) = 2 , W(v3, { }) = 1 , . . . ,

and then, analogously to the dynamic programming on uncolored graphs we exemplified
above, determine the W(v, S) values for two-color sets S to be

W(v1, { , }) = 3 , W(v1, { , }) = 3 , W(v1, { , }) = 2 , W(v2, { , }) = 3 ,

W(v2, { , }) = 4 , W(v3, { , }) = 2 , W(v3, { , }) = 3 , W(v4, { , }) = 2 ,

W(v4, { , }) = 3 , W(v5, { , }) = 3 , W(v5, { , }) = 3 , W(v5, { , }) = 3 .

Finally, the algorithm proceeds to three-color sets and obtains

W(v1, { , , }) = 4 , W(v2, { , , }) = 5 , W(v3, { , , }) = 4 ,

W(v4, { , , }) = 4 , W(v5, { , , }) = 4 .

In the final step, the algorithm finds that the minimum-weight colorful path in the exam-
ple graph has weight 4, that is, due to the coloring the minimum-weight colorful path is
not the same as the minimum-weight simple path. Before we discuss in more detail how
to address this problem by multiple random colorings, let us consider the running time
for the dynamic programming first. As it turns out, finding a minimum-weight colorful
path is much more efficient than the O(nk) dynamic programming for uncolored graphs.

Theorem 4.2. Given a graph G = (V, E) with vertices colored by k different colors, a
minimum-weight colorful k-vertex path can be found in O(2km) time.6

Proof. For each vertex v, we let our algorithm maintain a table of the possible W(v, S)

values called color table. Starting with one-element color sets S, we perform k−1 dynamic
programming iterations using (4.2) such that the i-th iteration considers all W(v, S) values

6Literature usually states the weaker bound O(2kkm) for the running time because it considers the color
sets to be explicitly represented as a list; here, we consider instead an implicit representation by memory ad-
dresses, which is somewhat more realistic for a practical implementation.
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for cardinality-(i + 1) color-sets S. In this way, we obtain the minimum-weight colorful
k-vertex path in a graph after the (k−1)-th iteration is complete. The worst-case running
time for this approach is

O

(
k−1∑
i=1

(
k

i

)
·m

)
= O((2k − 2) ·m) = O(2km) (4.3)

if we implement it as follows: In each iteration, we consider all graph edges. For each
edge, we update the color sets of the vertices that are incident to it. Such a vertex update
is performed by enumerating and updating all

(
k
i

)
cardinality-i color sets that do not

contain the color of the opposite vertex of the current edge. The overall running time
as claimed in (4.3) follows if two conditions are fulfilled: The

(
k
i

)
color sets can be

enumerated in amortized constant time per subset and an entry in a color set can be
accessed in constant time.

Enumerating all size-i subsets of k elements can indeed be accomplished in amortized
constant time, see Knuth [156] for a detailed discussion of this. To ensure constant-time
access to the entries of a color set, these are stored in a random-access array of size 2k

that we call color array. A color array is accessed by interpreting a color set as a binary
number; for example, if k = 5 then a color set that contains the first and third color
would correspond to the binary number 00101. By an offset calculation, this binary
number is used to provide the address where the value of W(v, S) is stored, that is, there
is a base address for every vertex and the storage address of W(v, S) is given by adding
the offset. This allows constant-time access to any specific color set.

Whenever a minimum-weight length-k simple path in the input graph is colored with k

colors (that is, when every vertex of this path has a different color), then Theorem 4.2 tells
us that it can efficiently be found by dynamic programming. The problem that remains to
be dealt with, of course, is that the coloring of the input graph is random and thus does
not guarantee that the path we seek is colorful. (We have already seen this in the example
above where the colorful path had a greater weight than the minimum-weight simple
path.) More precisely, there are kk ways to arbitrarily color k vertices with k colors
and k! ways to color them such that no color is used more than once. Hence, using the
asymptotic approximation k! >

(
k
e

)k
, the probability of any length-k path being colorful

is lower-bounded by

pc =
k!
kk

>

√
2πk

(
k
e

)k
kk

=
√

2πke−k . (4.4)

In order to ensure that the path we seek is found with a high probability, we need to per-
form a number of coloring trials, each one with a new random graph coloring. Within j

trials, the path we seek is found with probability 1 − (1 − pc)j. To ensure that this prob-
ability is greater than 1 − ε for some 0 < ε 6 1, this means that at least

⌈
ln ε

ln(1−pc)

⌉
trials

have to be performed. Using the inequality ln(1 − pc) < −pc (which is valid because
the probability pc satisfies 0 < pc < 1 and actually turns out to be quite good because pc

is rather small), the number of necessary trials to ensure an error probability of less
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than 1 − ε can be estimated as ⌈
ln ε

ln(1 − pc)

⌉
6

⌈
ln ε

−pc

⌉
. (4.5)

Combining this time with the time needed for the dynamic programming in each trial
according to (4.3), we obtain an upper-bound for the total running time of our color-
coding algorithm to solve Minimum-Weight Path:⌈

ln ε

−pc

⌉
·O(2k ·m) = O(| ln ε| · ek · 2k ·m) = O(| ln ε| · 5.44k ·m) . (4.6)

(As a remark, this shows that Minimum-Weight Path is randomized fixed-parameter
tractable with respect to the parameter k.)

Using a color-coding-based algorithm to solve Minimum-Weight Path quite consid-
erably improves upon the O(nk) dynamic programming algorithm that we saw at the
beginning of this section. Observe that we do not need to worry too much about the
algorithm being randomized instead of deterministic—the error probability is only a log-
arithmic factor in the running time and hence can be chosen very small without losing
much efficiency. As a remark to this, Alon et al. [7] even show that the algorithm can
be derandomized, that is, turned into a deterministic fixed-parameter algorithm. The
resulting worst-case bounds are impractical, however, and only of theoretical interest.

Going back to our application, that is, the detection of linear signaling pathway can-
didates, we have already hinted in the introduction that the Minimum-Weight Path
formulation does not fully incorporate all aspects of this scenario:

1. It makes sense in our context to restrict the set of vertices where a path can start
and end (this is useful for detecting signaling pathways that start at a membrane
protein and end in a transcription factor).

2. We usually want to find not only one minimum-weight path but rather a set of low-
weight candidates; following Scott et al. [231], we would also like these to differ in
a certain amount of vertices in order to ensure that they are mutually diverse and
not small modifications of the global minimum-weight path.

Fortunately, it is easy to adapt color-coding to meet these two demands: The restriction
of start and end vertices can be accomplished by initializing the dynamic programming
only with start vertices and considering only those paths in the output that finish in an
end vertex. As to finding more than one minimum-weight path, this can be accomplished
simply by maintaining a list of low-weight paths that were found in the trials; filtering this
list after the completion of all trials allows us to ensure that the paths that are output by
the algorithm differ among each other in a certain amount of vertices in order to ensure
their “diversity.”

Unless otherwise noted, the precise problem we consider throughout the remainder of
this chapter is the following (which matches the experiments by Scott et al. [231]): With
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an error probability of ε = 0.1%, we seek 100 minimum-weight paths which must differ
from each other in at least 30% of their vertices.

4.4 Algorithm Engineering to Speed Up Color-Coding

While the theoretical analysis of color-coding shows it to be more efficient than a straight-
forward dynamic programming algorithm, the exponential factor of 5.44k in the running
time still confines the algorithm to values of k < 10 (consider that the number of edges is
more than 14 000 in the networks we consider and that the 5.44k ·m factor in the running
time then becomes 5.4410 · 14 000 > 1011). This section presents a number of improve-
ments that we have devised to improve color-coding both from a worst-case perspective
(Section 4.4.1) as well as heuristically (Section 4.4.2).

4.4.1 Worst-Case Speedup by Using More Colors

In order to find a k-vertex path using color-coding, we obviously need at least k colors
for the random graph coloring. Consider the tradeoff that happens when we use more
colors than that: On the one hand, using more colors means that the paths we seek are
more likely to become colorful in a single trial and, hence, that fewer trials have to be
performed. On the other hand, using more colors means that the dynamic programming
during each trial takes longer and requires more memory. Somewhat surprisingly, all
literature that we are aware of implicitly assumes that the tradeoff is optimally balanced
by choosing k colors. In this section, we show that this is not so from a running time
perspective. More specifically, we prove that the worst-case running time can be improved
to O(| ln ε| · 4.32k ·m) by using approximately 1.3k colors instead of k. We also argue
that in practice, even more than 1.3k colors should be used.

To put the tradeoff of using more colors in precise terms, assume that we want to detect
a k-vertex path by color-coding and use k+x colors for this purpose for some nonnegative
integer x ∈ N. Then, the probability pc that a path becomes colorful in the input graph
increases according to the following generalization of (4.4):7

pc =

(
k+x

k

)
· k!

(k + x)k
=

(k + x)!
x!(k + x)k

=

k∏
i=1

i + x

k + x
. (4.7)

Using k + x colors, the running time of a single trial becomes 2k+xm in analogy to our
discussion in Section 4.3. Again, we need at least ln ε

ln 1−pc
6 ln ε

−pc
trials to ensure an error

probability of at most 1 − ε for some positive ε < 1. Thus, the overall running time tA

7To elaborate on this equation, there are (k + x)k different ways to color k vertices with k + x colors
and

(k+x
k

)
·k! of these use mutually different colors. Observe how pc increases and approaches 1 as x becomes

larger, that is, the more colors we use, the more likely it becomes that a simple path is colorful.
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for solving Minimum-Weight Path with an error probability of 1 − ε becomes

tA =

⌈
ln ε

−pc

⌉
·O(2k+xm) . (4.8)

Setting x = 0 in this equation nicely demonstrates that it is a generalization of (4.6).

The common choice in the literature of setting x = 0 can be argued for with respect to the
minimum memory requirements it has for a single trial—these are a major bottleneck for
virtually any dynamic programming algorithm, including color-coding. It is not optimal,
however, concerning the running time tA. Unfortunately, it seems somewhat difficult to
algebraically solve for the value of x that minimizes the right-hand side of (4.8)—it is
hard to find a root for the first derivative without any too-coarse approximations and
the ceiling function complicates matters even further. Numerical evaluation, however,
suggests that setting x close to 0.3k is an optimal choice to minimize the worst-case
running time of a color-coding algorithm. (In practice, numerical evaluation of (4.8) can
be used to determine whether to round the number 1.3k up or down.) This considerably
improves the overall running time of the algorithm:

Theorem 4.3. The worst-case running time of finding simple k-vertex paths by color-
coding can be improved to O(| ln ε| · 4.32k ·m) by using 1.3k colors.

Proof. We can use the double inequality
√

2πnn+1/2 · exp(−n + 1/(12n + 1)) < n! <√
2πnn+1/2 · exp(−n + 1/(12n)), which is derived from Stirling’s approximation [224],

in order to estimate the factorials in (4.7). This yields

pc >

√
2π(k + x)k+x+1/2 · exp

(
−k − x + 1

12k+12x+1

)
√

2πxx+1/2 · exp
(
−x + 1

12x

) · (k + x)−k

=

(
k

x
+ 1
)x+1/2

· exp
(

−k −
1

12x
+

1
12k + 12x + 1

)
.

Setting x := 0.3k in (4.8), we obtain

tA = O

(
|ε|

pc
· 21.3k ·m

)
= O

(
|ε|

pc
· 2.463k ·m

)

where, using our above estimation of (4.7),

1
pc

< 4.33−0.3k−1/2 · exp
(

k +
1

12x

)
= O

(
ek

1.552k

)
= O(1.752k) .

This finally yields the running time claimed by the theorem:

tA = O(| ln ε| · 1.752k · 2.463k ·m) = O(| ln ε| · 4.32k ·m) .

In practice, it is usually beneficial to choose x even larger than our worst-case analysis
suggests: Various algorithmic tweaks (including the lower bounds that we introduce in
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Figure 4.1: Running times for finding 20 minimum-weight paths of different lengths in
the yeast protein interaction network of Scott et al. [231]. No lower bound function
(Section 4.4.2) was used. The highlighted point of each curve marks the optimal choice
for the number of colors when each trial requires the worst-case running time.

the next section) and the commonly encountered sparseness of biological networks usu-
ally keep the running time of a single trial significantly below the worst-case estimate
of O(2k+x ·m). This in turn causes a balance shift for the tradeoff: the increase in run-
ning time per trial that is caused by using more colors is not as bad as the worst-case
estimate suggests and, hence, it is even better compensated by the decrease in the total
number of trials needed. The experimental measurements with our color-coding imple-
mentation that are depicted in Figure 4.1 confirm this. In fact, they suggest that for a
small path size of 8–10 vertices we can choose the number of colors even to be the max-
imum that our implementation allows (that is, 31) and get by with a very small number
of trials (≈15–30). Based on these observations, the implementation uses an adaptive
approach to the number of colors, starting with the maximum of 31 and decreasing this
whenever a trial runs out of memory.

4.4.2 Heuristic Speedup by Lower Bounds

Using k + x colors as discussed in the last section, every color-coding trial must main-
tain up to 2k+x color sets for each vertex. As k or x increase, this quickly becomes a
problem both from the perspective of running time as well as memory consumption. Al-
though the 2k+x upper-bound does not seem avoidable in a worst-case scenario, we can
usually do better in practice: Recall how each color set represents a path in the graph.
These paths are iteratively built up by the dynamic programming, that is, we start out
with two-vertex paths, then consider three-vertex paths, and so on, until we obtain the
desired k-vertex paths. For some of the shorter paths that contain less than k vertices,
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it might be clear that these can impossibly lead to a k-vertex path that we are interested
in. For example, assume that we are seeking after one minimum-weight path and have
already had a trial that found a k-vertex path of weight w. Then, no color set that rep-
resents a path of weight greater than w is of interest to us because all edge weights are
nonnegative—we can therefore throw these uninteresting color sets away, so to say.

Because each color set may get expanded to an exponentially large collection of new
entries in the course of dynamic programming, it is important to the efficiency of our
algorithm that we identify uninteresting color sets as early as possible. The heuristic that
we use for this purpose proceeds as follows:

• Given a user-specified integer d, a preprocessing step calculates the minimum-
weight simple paths of length 1, . . . , d that start in any given graph vertex. Al-
gorithmically, this preprocessing is accomplished by the deterministic O(nd−1m)

dynamic programming algorithm that we discussed at the beginning of Section 4.3.

• For a given (k − `)-vertex path (` > 0) that ends in a vertex v, our pruning heuris-
tic considers the remaining length-` path that starts in v to be divided into three
segments, the size of which segments is determined by d:

v
· · ·

k − ` vertices d edges

· · ·

` − 2d edges

known path remaining path

d edges

start segment middle segment end segment

Using the minimum weights that were calculated in the preprocessing step, we can
determine a separate lower bound for the weight of each of these three segments,
which in turn gives us a rather good lower bound on the weight of any k-vertex path
that the known (k − `)-vertex path can be extended to. If this lower bound turns
out to be larger than the paths we have already found, then the color set cannot
be expanded to yield a path with an interesting weight—we can omit it from any
further considerations by the color-coding algorithm.

Note that the heuristic obtains better lower bounds as d increases. This leads to a trade-
off: On the one hand, better lower bounds are obtained with a larger value of d, which
allows us to prune more uninteresting color sets and thus speed up the main color-coding
algorithm. On the other hand, calculating these lower bounds in the preprocessing step
becomes more expensive.

For the yeast network of Scott et al. [231], we have found that as the length of the paths
that we seek increases, so does the optimum value of d: If the number of path vertices k

is less than 8, then the heuristic yields no significant savings. For longer paths with up
to 20 vertices, values of d = 1 and d = 2 yield an up to tenfold speedup.
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Table 4.1: Some basic properties of our two real-world network instances yeast (due to
Scott et. al. [231]) and drosophila (due to Giot et. al. [109]).

|V | |E|
clustering average maximum
coefficient degree degree

yeast 4 389 14 319 0.067 6.5 237
drosophila 7 009 20 440 0.030 5.8 175

4.5 Experimental Comparison and Evaluation

To see how good the worst-case and heuristic improvements we proposed in the last
section perform in practice, they were implemented in the C++ programming language
by Falk Hüffner and Thomas Zichner who collaborated with the author on the work
presented in this chapter. The source of the resulting color-coding tool is available online
at http://theinf1.informatik.uni-jena.de/colorcoding/.8 This section reports an
experimental evaluation of this tool on two real-world protein interaction networks as
well as on a testbed of random networks. Thankfully, Jacob Scott was able to provide us
with the yeast dataset from [231] for this purpose.

Our results indicate that the improvements we discussed in the last section speed up
color-coding by many orders of magnitude for the yeast network when compared to
the results reported by Scott et al. [231]. Experiments on a protein interaction network
of Drosophila melanogaster and various random networks indicate that this speedup
is likely to hold for protein interaction networks in general, opening the possibility to
investigate larger pathways and to analyze shorter pathway candidates in an interactive
fashion.

4.5.1 Method and Results

As in the previous chapter, the testing machine that we used for our experiments is an
AMD Athlon 64 3400+ with 2.4 GHz, 512 KB cache, and 1 GB main memory running
under the Debian GNU/Linux 3.1 operating system. The program was compiled with the
GNU g++ 4.2 compiler using the options “-O3 -march=athlon.”

The two real-world network instances that were used for speed measurements were the
yeast protein interaction network used by Scott el al. [231] and the D. melanogaster
protein interaction network described by Giot et al. [109]. Some properties of these net-
works, which we will refer to as yeast and drosophila from now on, are summarized
in Table 4.1. The results we obtained for them and some details as to the experimental
setting are given in Figure 4.2a and 4.2b. Concerning the curve in Figure 4.2a that shows

8In order to minimize its memory consumption, the implementation relies on various tweaks that we do
not describe here. For example, to efficiently maintain the color sets, these are stored as bit-vectors in a data
structure known as a Patricia tree (see [66] for details on this data structure). Overall we have found that—
not surprisingly for an exponential-space dynamic programming algorithm—memory consumption is a major
bottleneck for practical applications of color-coding and hence memory saving techniques are quite important.

http://theinf1.informatik.uni-jena.de/colorcoding/


Experimental Comparison and Evaluation 77

a)

YEAST, Scott et al. (adjusted)

YEAST, this work

4 6 8 10 12 14 16 18 20 22
Number of path vertices

1

101

102

103

104

105

R
un

ni
ng

 t
im

e 
[s

ec
on

d
s]

b)

DROSOPHILA, 20 best paths

DROSOPHILA, 100 best paths

YEAST, 20 best paths

YEAST, 100 best paths

4 6 8 10 12 14 16 18 20 22
Number of path vertices

1

101

102

103

104

105

R
un

ni
ng

 t
im

e 
[s

ec
on

d
s]

Figure 4.2: a) Running times for yeast as reported by Scott et al. [231] and measured
with our implementation. In both cases, paths must start at a membrane protein, and
end at a transcription factor. Note that the results of Scott et al. were obtained on a
testing machine that is possibly slower than ours and are hence shown divided by a factor
of 1.2 (see text for details). b) Comparison of the running times of our implementation
when applied to yeast and drosophila for various path lengths, seeking after either 20
or 100 minimum-weight paths that mutually differ in at least 30% of their vertices. There
were no restrictions as to the sets of start and end vertices.

the running times reported by Scott et al. [231], it is important to note that the corre-
sponding data was obtained on a different machine than ours, namely a dual-processor
Intel Xeon system with 3.0 GHz.9 Unfortunately, Scott et al. could not provide us with
their implementation. Therefore, to make the results somewhat comparable, the curve
does not show the values reported in [231] but divides these values by 1.2. This is based
on the estimate that the machine of Scott et al. is at most 20% slower than our test-

9Note that the clock speed cannot be directly used to infer the relative speed of this machine to ours due
to different processor architectures. Since the code by Scott et al. was not parallelized, the availability of two
processors should not affect the running time.
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ing machine (which is very conservative in favor of Scott et al., that is, it most likely
underestimates the speed of their testing machine).

In order to explore how sensitive the running time of our implementation is to various
graph parameters, we also tested it on a testbed of random graph instances. These were
generated using an algorithm described by Volz [260] that takes as input a certain degree
sequence and a clustering coefficient10 and outputs a graph that fits these parameters.

The graph parameters we considered in our evaluation were the number of vertices, the
clustering coefficient, the degree distribution, and the distribution of edge weights. As
a default for these parameters, we used values that we empirically found to result in
networks that are similar to yeast: the network contains 4 000 vertices; the degree dis-
tribution is a power law with exponential cutoff, that is, the fraction pj of vertices with
degree j satisfies pj ∼ jα · e−j/1.3 · e−45/j with a default value of α = −1.6;11 the edge
weights are distributed as in yeast; and the clustering coefficient is 0.1. Varying these
four graph parameters, we obtained the following results:

• Testing graphs with up to 12 000 vertices, the running time increases linearly with
their number as is to be expected from the theoretical analysis.

• The running time is insensitive to the clustering coefficient, regardless of its value
(note that the clustering coefficient always lies between 0 and 1).

• Varying the parameter α in the degree distribution between −3 and 0, the imple-
mentation became slower as α approached 0. This means that the program is faster
on graphs with unevenly distributed vertex degrees.

• The running time was insensitive to the distribution of edge weights when using the
following three distributions: 1) The same distribution as in the yeast network.
2) The same distribution as in the yeast network under consideration of vertex
degree, that is, higher-degree vertices have another distribution of edge weights
than lower-degree vertices. 3) A uniform [0, 1]-distribution.

4.5.2 Discussion

Compared to the running times reported by Scott et al. [231], our implementation was
faster between one and three orders of magnitude on yeast (see Fig. 4.2a). When given
a few hours of time, the implementation of Scott et al. can find paths of up to 10 vertices
whereas with our implementation, these can be found within seconds. This opens the
possibility for interactive queries and displays of paths with this size or smaller. Within
the time limit of a few hours, the range of feasible path lengths is more than doubled by
our implementation, allowing larger biological pathways to be sought after.

10The clustering coefficient is a measure of how evenly the density of the network is distributed; more pre-
cisely, it is defined as the probability that {u, v} ∈ E for u, v, w ∈ V if it is known that {u, w} ∈ E
and {w, v} ∈ E.

11To elaborate the distribution, the factor jα ensures a power law whereas the two exponential factors quickly
approach zero as j becomes smaller than 1.3 or greater than 45; they thus ensure that there are not too many
degree-1 and degree-greater-than-45 vertices.
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Figure 4.2b shows that the running times for both yeast and drosophila are roughly
equal, with one notable exception that is encountered in the search for the best 100 paths
within yeast: This search not only takes unexpectedly long but also displays unusual
step-like structures for the increase in running time as the path length increases. Most
likely, these two phenomena can be attributed to the fact that certain path lengths allow
for much fewer well-scoring paths than others in yeast; the lower-bound heuristic is less
effective when not enough well-scoring paths are found.

Figure 4.2b also demonstrates that a major factor in the running time is actually the
number of paths that is sought after. This has mainly two reasons, namely that, as the
number of paths increases, the lower bound of the heuristic becomes worse and cannot
cut off as many partial solutions and, moreover, that maintaining the list of paths and
checking the “at least 30% of vertices must differ” criterion becomes more involved the
more paths are searched for.

Concerning our experiments on random networks, these strongly lead us to expect that
our implementation performs just as well on other real-world instances than the ones
tested: The only parameter that was rather critical for the speed was whether the vertex
degrees are evenly distributed or not. However, protein networks are known to have
rather unevenly distributed vertex degrees with only a few “sticky proteins” that have a
high degree and many proteins that have very specific interactions with only one or two
other proteins [26].

Summarizing, it appears that our color-coding implementation is a very efficient tool for
extracting minimum-weight paths from a protein interaction network. The insensitivity
to varying the parameters of the random networks indicates that the algorithm should
work well for a broad range of differently structured instances.

4.6 Summary and Open Questions

Motivated by the detection of signaling pathways in protein interaction networks, this
chapter investigated novel improvements for extracting minimum-weight paths of a fixed
length k from a graph. The algorithm that we used is based on an elegant and powerful
technique known as color-coding.

An implementation of our proposed improvements into a freely available color-coding
tool shows that these speed up the algorithm by some orders of magnitude compared to
existing implementations and worst-case estimates. From a practical applications point
of view, this enables the detection of signaling pathways that are twice as large than
previously possible and—perhaps even more importantly—the interactive detection of
pathway candidates that consist of up to 13 proteins. To some extent, our work also
closes a gap that Niedermeier [195, p. 180] draws attention to, namely that there is very
little “substantial practical experience with [color-coding]” so far.

There remain a number of interesting open questions for future research:

• Scott et al. [231] also discuss dynamic programming algorithms that find minimum-
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weight structures other than simple paths (such as trees). The improvements we
have discussed in this chapter could also be adapted to work for these structures—
how effective are they?

• The recently devised randomized divide-and-conquer algorithms [61, 154] have a
better worst-case bound than our color-coding algorithm. Does this carry over in
practice? (This is not clear because the randomized divide-and-conquer approach
has the exponential part of the running time “hard-coded” into recursive function
calls whereas color-coding is more dependent on the input graph structure, which
usually is favorable in this respect.)

• Are there ways to derandomize our color-coding algorithm so efficiently that it can
be used in practice?

In this and the previous chapter, we have developed, improved, and investigated efficient
algorithms to cope with the complexity of biological networks by means of modular-
ization, that is, to cope with them by means of extracting small subgraphs that are of
significance to their function. We have argued that this approach leads to biologically
meaningful results which indeed help to understand a network, and our algorithmic de-
velopments have made the corresponding tasks more efficiently solvable.

There is, however, one disadvantage with modularization approaches, namely that they
do not consider the global perspective over a network: Whereas we can find small struc-
tures that can be analyzed in detail, we do not gain much information about how they
interact with each—about their global organization in the network, so to say. In the next
chapter, we therefore consider an approach that copes with the complexity of a network
from a more global perspective.



Chapter 5

Coping by Thinning Out:
Combinatorial Network

Sparsification

The previous two chapters studied approaches that cope with the complexity of a biologi-
cal network by decomposing it into small modules. This chapter considers an alternative
approach that retains a somewhat more global view of the overall network organization.
The idea is to thin out the edges of a network in order to reduce its complexity, while
at the same time trying to conserve as much as possible of some characteristics that are
essential for its function.1

Concretely, we examine the computational complexity of computing spanning trees (the
sparsest possible subgraphs which maintain connectivity) that conserve the distances or
centralities of a network. We argue that this network sparsification approach would
indeed yield useful representations of a network because trees are nice algorithmic struc-
tures to work with and because mutual distances and centrality measures have been ex-
hibited as important and telling properties of biological networks. Unfortunately, it turns
out that the resulting combinatorial problems are all NP-hard and that some of them are
not even amenable to polynomial-time constant-factor approximations unless P = NP;
their amenability to other algorithmic techniques such as fixed-parameter algorithms thus
poses an interesting challenge for future research.

5.1 Motivation

Broadly speaking, the task of reducing the complexity of a network by thinning out its
edges can be formalized as searching for a subnetwork that, on the one hand, is as simple
as possible and, on the other hand, as much as possible reflects certain network aspects
that are of interest. The quest for simplicity can be formalized by demanding that the
subnetwork belong to a certain (sparse) graph class G, whereas the quest for retaining
aspects of the original network can be formalized by a distance measure ρ that maps a

1Similar means of complexity reduction by thinning out are already a known and tested way, for instance,
in multidimensional data analysis (see [135] for an example).
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graph and a subgraph of it to some real number that reflects their (dis)similarity.

Combinatorial Network Sparsification
Input: A graph G, a graph class G, and a distance measure ρ between G and
those subgraphs of G which belong to G.
Task: Find a subgraph G ′ of G that belongs to G and minimizes the dis-
tance ρ(G, G ′).

An example for a Combinatorial Network Sparsification problem would be to take
as input a connected edge-weighted graph, let G be the class of trees, and take as the
distance measure ρ the sum of weights over all edges that are not retained in the sub-
graph G ′. The solution would be a maximum-weight spanning tree for the input graph.

There are many graph classes G that might seem appealing to plug into our definition of
Combinatorial Network Sparsification—such as trees, planar graphs, or bipartite
graphs. Here, we restrict ourselves to trees as the class of pattern graphs for mainly two
reasons. First, trees are a very “friendly” structure to deal with—for instance, they are
easy to visualize elegantly— and thus a desirable structure to seek after. Second, many
results we derive for trees seem to easily carry over to related structures such as spanning
subgraphs with a restricted number of edges.2

As to the distance measure ρ, we consider two aspects in this chapter—namely retaining
mutual vertex–vertex distances and retaining closeness centralities—because they have
been exhibited as important properties of biological networks and, hence, conserving
them in a sparsified network representation seems worthwhile (of course, this is only a
choice among several such properties):

• The organization of many complex networks—including biological networks—can
be derived from the distances between vertices [148]. For example, it is known
that vertices which are closely connected to each other in a signal transduction
network (in the sense that signals are quickly transduced between them) act as
“on” and “off” switches which in turn are dynamically stabilized by more distant
connections [41]. Similar results are known for metabolic networks, which are
organized into closely interconnected pathway modules that regulate each other
through slower, more distant connections [6, 103].

• Vertex centralities are known to play an important role in biological networks (for
example, see [83, 133, 171, 276]).3 For instance, the removal of vertices from a
protein interaction network that have a high centrality is closely connected to lethal-
ity [133] (notably, this correlation is much higher than with local sources of infor-
mation such as vertex degrees). In metabolic networks, centrality measures can help
to identify important substrates and shed light on the evolution of various network

2For example, one can add some dense subgraphs to the graph gadgets that we use in our proofs. Thinning
out these dense graphs “uses up” so many edges that the actual gadget has to be thinned out to a tree.

3Roughly speaking, a centrality measure quantifies some notion as to how “central” a vertex is in a network;
since there are many such notions, the list of centrality measures that one can find in the literature is vast (see,
for example, [83, 193] for a discussion of different centrality measures and pointers to literature).
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components [93, 134, 262]. In this chapter, we investigate the Combinatorial
Network Sparsification problem with respect to closeness centrality [28, 227],
a measure which has proven itself to be especially useful for understanding the
structure and function of metabolic networks [171].

Concretely, this chapter studies the following two problems:

• Finding a spanning tree that minimizes the differences between the mutual vertex–
vertex distances in the tree and their corresponding distances in the original graph.

• Finding a spanning tree that minimizes the differences between the closeness cen-
tralities of the vertices in the tree and their corresponding closeness centralities in
the original graph.

It remains to discuss how to choose the distance measure ρ in order to do these problems
justice. In particular, the aspect of “minimization” in the above list can have different
flavors—for instance, do we seek a tree that minimizes the average differences of vertex–
vertex distances or one that minimizes the maximum difference? As it turns out, we can
capture all of these aspects in a unified framework that is based on matrices and matrix
norms. To this end, we make use of a matrix ∆ that relates to the differences in mutual
vertex–vertex distances and a vector C that relates to the closeness centralities of a graph
and its spanning trees.

Definition 5.1. Let G = (V, E) be a connected and undirected n-vertex graph with ver-
tices V = {v1, . . . , vn}. Given a spanning tree T of G, the distance difference between two

vertices vi and vj is defined as δT (vi, vj)
def
= dT (vi, vj) − dG(vi, vj) . The corresponding

difference matrix ∆T is defined as ∆T (i, j) def
= δT (vi, vj).

Definition 5.2. Let G = (V, E) be a connected and undirected n-vertex graph with ver-
tices V = {v1, . . . , vn}. For a vertex v ∈ V, its closeness centrality cG(vi) is defined as

cG(v)
def
=
( n∑

i=1

dG(v , vi)
)−1

.4

Given a spanning tree T for G, the corresponding centrality approximation vector CT is
defined as CT (i) = cG(vi) − cT (vi) for all 1 6 i 6 n. (Observe that the entries of CT

will always be nonnegative because, in a spanning tree, a vertex cannot become closer to
another vertex than it is in the original graph.)

As an illustration for this definition, let G
def
= with the vertices labeled v1, . . . , v6 from

left to right and top to bottom. Considering the spanning tree T
def
= of G, we have

∆T =

 0 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 0 2
2 0 0 0 0 0
0 0 0 0 0 0
0 0 2 0 0 0

 , cG =


1/9
1/7
1/9
1/9
1/7
1/9

 , cT =


1/11
1/7

1/11
1/11
1/7

1/11

 , and CT = cT − cG =


2/99

0
2/99
2/99

0
2/99

 .

4The intuition here is that the closeness centrality of a vertex v is large if the sum of its distances to the other
vertices in the graph is small, that is, if it is “close” to all other vertices in the graph.
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To obtain the distance measure ρ that tells us how similar a spanning tree is to the graph
it is derived from, we apply standard matrix norms to the matrix ∆ and the vector C.
Concretely, the matrix norms we use on a given n×m matrix M are

• the p-norm ‖M‖L,p
def
= (

∑n
i=1

∑m
j=1(M(i, j))p)1/p for any fixed p ∈ N+,5

• the maximum entry norm ‖M‖L,∞ def
= maxi,j∈{1,...,n} M(i, j), and

• the maximum column-sum norm ‖M‖1
def
= maxj∈{1,...,m}

∑n
i=1 M(i, j).

(Note that the maximum column-sum norm can only be sensibly applied to the matrix ∆

and not the vector C. Furthermore, observe that we can omit the maximum row-sum
norm in our considerations because the difference matrix ∆T is symmetric and thus makes
this norm equivalent to the maximum column-sum norm.)

As an example for our norms, consider once more the difference matrix ∆T for the span-
ning tree T = of the graph G = . For this matrix, we have

‖∆T‖L,1 = 8 , ‖∆T‖L,2 = 4 , ‖∆T‖L,∞ = 2 , and ‖∆T‖1 = 2 .

Each of our three norms emphasizes a different aspect of the matrix it is applied to.
Hence, the resulting distance measures ρ emphasize different aspects of the sparsification:

• The value of the norm ‖M‖L,p depends on the average value of the entries in a
matrix; as p increases, the larger matrix entries dominate this value. For instance,
a small value of ‖∆T‖L,p means that the mutual vertex–vertex distances in T are on
average quite similar to the distances in G, that is, we might accept a few larger
deviations as long as the distance differences remain small in general.

• The value of the norm ‖ · ‖L,∞ depends on the largest entry of a matrix, so for
instance a small value of ‖∆T‖L,∞ means that all distances in T are very close to
those in G. While such a tree of course seems desirable, there are many graphs
where this cannot be obtained. As an example, consider a graph G that is a length-`
cycle: Every spanning tree T of this graph is a length-(` − 1) simple path that
yields ‖∆T‖L,∞ = ` − 2.

• The value of the norm ‖ · ‖1 depends on the maximum column-sum in a matrix and
thus falls somewhat inbetween the norms ‖ · ‖L,p and ‖ · ‖L,∞. For example, when
applied to a difference matrix ∆T , it considers the average distance difference of all
vertices individually, which is not as restrictive as the norm ‖ · ‖L,∞ and yet at the
same time does not allow individual vertices to have a too large distance difference.

We can now formally define the Combinatorial Network Sparsification problems
that we consider in this chapter:

5We use the uppercase L to distinguish the p-norm from the maximum column-sum norm in the case
of p = 1 and from the maximum row-sum norm in the case of p = ∞. Using this letter is motivated by the
fact that, together with Rn, the p-norm forms a so-called “Lp space.”
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Minimum-Difference Spanning Tree (M∆ST)
Input: A connected graph G and a difference constraint γ ∈ R+.
Task: Find if G has a spanning tree T that satisfies the difference constraint γ

with respect to a matrix norm ‖ · ‖, that is, the tree T satisfies ‖∆T‖ 6 γ.

Centrality-Approximating Spanning Tree (CAST)
Input: A connected graph G and a centrality constraint γ ∈ R+.
Task: Find if G has a spanning tree T that satisfies the centrality constraint γ

with respect to a matrix norm ‖ · ‖, that is, the tree T satisfies ‖CT‖ 6 γ.

Wherever we are discussing both problems at the same time, we refer to γ simply as
“constraint γ.” For M∆ST, this chapter also consider its fixed-edge variant fe-M∆ST
where the input additionally contains a set Efix of edges in G and we demand that these
edges must be contained in the spanning tree T (obviously, the edges in Efix must not
induce a cycle in G). The motivation for this is twofold: On the one hand, considering
the fixed-edge variant before the less restricted variant allows for an easier-to-understand
proof in Section 5.4. On the other hand, being able to fix edges to be in the spanning
tree also makes sense from an applications viewpoint: when sparsifying a network, it
is conceivable that one may wish to incorporate expert knowledge about which edges
should not be lost in the sparsification process.

The novel hardness results we obtain in this chapter are as follows:6

• M∆ST is NP-complete with respect to the norms ‖ · ‖L,p (for any integer p ∈ N+),
‖ · ‖1, and ‖ · ‖L,∞ (Theorem 5.7).

• Unless P = NP, there exists no polynomial-time constant-factor approximation
algorithm for fe-M∆ST with respect to the norms ‖ · ‖L,p (for any integer p ∈ N+),
‖ · ‖1, and ‖ · ‖L,∞ (Theorem 5.8).

• CAST is NP-complete with respect to the norm ‖ · ‖L,p (for any integer p ∈ N+)
(Theorem 5.19).

As already mentioned above, it does not make sense to consider CAST with respect to
the norm ‖ · ‖1. With respect to the norm ‖ · ‖L,∞, its hardness remains an open problem.

Note that sparsifications of biological networks will certainly involve edge-weighted
graphs. However, we will restrict our discussion to unweighted graphs in this chapter
since all NP-hardness results that we establish for unweighted graphs directly carry over
to (uniformly) weighted graphs. For analogous reasons, we consider only undirected
graphs.

The organization of this chapter is as follows: In Section 5.2 we survey previous work
that has been done on the problems we consider. Section 5.3 introduces two graph gad-
gets that form the toolbox for our hardness results in Sections 5.4 and 5.5. A brief
recapitulation and statement of open questions for future research conclude this chapter
in Section 5.6.

6The only previously known result is the NP-completeness of M∆ST with respect to the norm ‖ · ‖L,1 [136].
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5.2 State of the Art

The problem of finding a spanning tree that approximates the mutual vertex–vertex dis-
tances of a graph as good as possible has already received quite some attention in the
literature; in contrast, we are not aware of any such studies concerning centralities.

Introduced by Peleg and Ullman [206] in the area of asynchronous network synchroniza-
tion, finding spanning trees that minimize the mutual vertex–vertex distance differences
in comparison to the original graph has a wide range of applications (besides computa-
tional biology and network sparsification) that include broadcasting, routing, robotics,
and communication network design [15, 205, 239, 256]. In some of these applications,
M∆ST with respect to the norm ‖ · ‖L,1 is known as the NP-complete Network De-
sign [136] problem and, recently, also as the MAD-Tree [67] problem. There is a rather
well-known PTAS for this problem due to Wu et al. [275].

Generally, there are two main approaches in the literature to formalize the concept of
minimizing distance differences, namely seeking after so-called multiplicative tree span-
ners [42, 48] and seeking after additive tree spanners [162, 169]; a combination of both
concepts has recently been studied in [79, 86]. Using the difference matrix ∆ corre-
sponds to seeking additive tree spanners. The difference of multiplicative tree spanners
to this approach is that, instead of the additive difference constraint γ, these consider the
stretch dT (vi, vj)/dG(vi, vj) over all vertices. If the stretch of a tree is at most γ, then it
is often referred to as γ-multiplicative tree spanner in the literature. Finding a tree that
minimizes the maximum stretch cannot be approximated by a factor better than 1.61
unless P = NP [204] and remains NP-hard even for unweighted planar graphs [92]. The
problem of finding the minimum average-stretch tree is also NP-hard [136].

The problem of finding spanning subgraphs (that is, not only trees) with certain bounds
on the occurring distance differences has also been intensively studied since the pioneer-
ing work in [15, 63, 206]. The most general formulation of such a problem has been
provided by Liestman and Shermer [169]: they call a spanning subgraph G ′ of a graph G

an f(x)-spanner if (and only if) dG′(vi, vj) 6 f(dG′(vi, vj)) for all vertices vi and vj in G.
For example, in our setting, a tree that satisfies the difference constraint γ with respect to

the norm ‖ · ‖L,∞ is an f(x)-spanner when we set f(x)
def
= γ + x.

Given a function f(x), the computational problem that Liestman and Shermer consider
in [169] is to find an f(x)-spanner with the minimum number of edges. Note that this
problem is somewhat dual to M∆ST since it fixes a bound on the distance increase and
then tries to minimize the size of the subgraphs, whereas we fix the size of the subgraph
and try to minimize the bound. The problem considered by Liestman and Shermer is NP-
complete [169]; in the case that m = n − 1 is fixed, it becomes the M∆ST problem with
respect to the norm ‖ · ‖L,∞. However, the respective NP-completeness proof in [169]
relies heavily on the number of edges in the instance and hence an easily conceivable
adaptation to an NP-completeness proof for M∆ST can be doubted.7

7Note that this subtlety has led some authors into falsely claiming that some of the M∆ST variants that we
consider here are NP-complete due to the work of Liestman and Shermer [169].
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Figure 5.1: Example of an X3C graph gadget Gi,j(S, C) and a corresponding solu-
tion tree (all bold edges). Details as to the construction are given in the text; ob-
serve that the number of vertices in VA and VB is specified by the two parameters i

and j in the subscript of the graph gadget. The shown gadget encodes an instance of
X3C with six elements in S and four subsets in the collection C, namely S = {s1, . . . , s6}

and C = {{s1, s3, s4}, {s2, s3, s5}, {s3, s4, s6}, {s2, s5, s6}}. This instance has a solution set
consisting of the first and fourth subset of C; accordingly, the vertices c1 and c4 have
degree four in the solution tree.

5.3 A Toolbox for the Hardness Proofs

In order to prove our NP-completeness results for M∆ST and CAST, we rely on two
graph gadgets that are introduced and explained in this section. The second one of these
gadgets, which is discussed in Section 5.3.2, is also used to prove the inapproximability
results for fe-M∆ST in Section 5.4.2.

5.3.1 Graph Representation of Exact-3-Cover Instances

To prove the NP-completeness of M∆ST with respect to the norms ‖ · ‖L,p and ‖ · ‖1 and
the NP-completeness of CAST with respect to the norm ‖ · ‖L,p, we rely on a reduction
from the NP-complete Exact-3-Cover problem.

Exact-3-Cover (X3C)
Input: A finite set S = {s1, . . . , s3n} and a collection C = {c1, . . . , cm} that
contains cardinality-3 subsets of S.
Task: Find if it is possible to select a solution set that consists of n mutually
disjoint subsets from C such that the union of their elements is S.

Throughout this chapter, whenever we deal with X3C, we use 3n to denote the number
of elements in S and m to denote the number of subsets in C.

To encode instances of X3C into instances of M∆ST or CAST, we use a graph gadget that
is denoted Gi,j(S, C). As shown in Figure 5.1, our gadget consists of five layers of vertices;
from top to bottom, these are denoted VA, VX, VC, VS, and VB. Edges between these
layers exclusively connect adjacent layers and we use two-letter subscripts to denote the
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respective edge sets EAX, EXC, ECS, and ESB. Additionally, there is a set of edges ESS that
connect the vertices in the layer VS with each other. More precisely, the vertex sets VX, VC

and VS are defined as follows (note how the vertices in VC and VS represent the elements
in C and S):

VX
def
= {x} , VC

def
= C = {c1, . . . , cm} , and VS

def
= S = {s1, . . . , s3n} .

Using the integers i and j, the purpose of which is discussed in more detail below, the
sets VA and VB are flexibly specified as

VA
def
= {a1, . . . , ai} and VB

def
=

3n⋃
k=1

{bk1, . . . , bkj} .

Every vertex in VA and VC is connected to the vertex x by an edge:

EAX
def
= {{a1, x}, . . . , {ai, x}} and EXC = {{x, c1}, . . . , {x, cm}} .

The memberships of the elements from S in specific subsets of the collection C are encoded
by the edges in ECS; an edge connects a vertex sα ∈ VS with a vertex cβ ∈ VC if and
only if sα is a member of the subset cβ (note that this causes every vertex in VC to have
a degree of four in Gi(S, C)). The edges in ESS connect all vertices in VS and each vertex
in VS is connected to a group of j vertices from VB.

ECS
def
=
⋃

cβ∈VC

{{cβ, sα} | sα ∈ cβ} , ESS
def
=
⋃

16k63n
k<k′63n

{sk, sk′ } , and ESB
def
=

3n⋃
k=1

j⋃
l=1

{sk, bkl} .

To outline the origin of our construction, a similar gadget without the vertices in VB and
without the edge set ESS was used by Johnson et al. [136] to prove that M∆ST is NP-
complete with respect to the ‖ · ‖L,1 norm, that is, the p-norm for the special case p = 1.8

Our two modifications seem to be necessary, however, to achieve the hardness proofs for
the norms ‖ · ‖L,p, p > 2 and ‖ · ‖1. As a further remark, the general proof strategy of
Johnson et al. [136] does not appear to trivially carry over to the problems we consider.

The main idea that underlies the construction of the graph gadget Gi,j(S, C) is that a
solution set to a given instance of X3C can be represented as a certain spanning tree
of Gi,j(S, C) that we refer to as solution tree.

Definition 5.3. For a gadget Gi,j(S, C) that encodes a given instance (S, C) of X3C, a
solution tree is a spanning tree of Gi(S, C) that contains all edges from EXC, no edge
from ESS, and where every vertex in VC has either degree one or degree four.

The vertices in VC that have degree four in a solution tree correspond exactly to those
sets from C that constitute a solution for the encoded X3C instance.

8To be precise, Johnson et al. [136] did not explicitly consider minimizing the distance differences in a
spanning tree but only the distances themselves. However, these two problems are equivalent with respect to
the norm ‖ · ‖L,1.
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Lemma 5.4. A solution tree of a gadget graph Gi,j(S, C) one-to-one corresponds to a
solution set of the encoded X3C instance (S, C).

Proof. Select every subset from C to be in the solution set whose corresponding vertex
from VC has degree four. Then, first, every vertex in VS is connected to at least one
vertex from VC because T is connected and, second, no vertex from VS can be connected
to more than one vertex from VC in T because otherwise, a cycle would be induced.
Hence, if there exists a solution tree for Gi(S, C), this tree corresponds to a selection of
subsets from C such that each element from S is contained in exactly one such subset.

Conversely, if we are given a solution set to the instance (S, C), then we can construct a
solution tree from this by setting every vertex in VC to keep its degree of four if it is part
of the solution set and have degree one otherwise by only keeping its edge to x. Then
it is clear from the definition of an X3C solution set that the remaining graph is a tree
because every vertex in VS is connected to exactly one vertex in VC.

Our hardness proofs rely on using the constraint γ in order to ensure that any spanning
tree that satisfies this constraint must also be a solution tree. This is possible because,
as the following observation points out, it can be determined whether a tree is a valid
solution tree by looking at the mutual distances of the vertices in VS to each other:

Observation 5.5. In a solution tree for an X3C gadget Gi,j(S, C) that encodes the X3C
instance (S, C), every vertex sα ∈ VS has distance difference one to exactly two other
vertices from VS and distance difference three to exactly 3n − 3 vertices from VS. In any
other tree that includes all edges from EXC but where some vertices in VC have degree
two or three, every vertex sα ∈ VS has distance difference three to at least 3n − 3 vertices
from VS and there exists at least one vertex that has distance difference three to 3n − 2
vertices from VS.

In addition to the distance constraint γ, our proofs also need the two integers i and j

in order to “amplify” certain distances in a spanning tree of the gadget graph. More
specifically, increasing the parameter i amplifies the distances between the vertex x and
vertices in the layers VS and VC and, similarly, increasing the integer j amplifies the
mutual distances of the vertices in VS to each other.

We now have an intuition of the function and use of the X3C gadget graph. This gadget
will allow us to achieve all but one of our NP-completeness results. The exception is
encountered with the norm ‖ · ‖L,∞: Here, the X3C gadget fails because we cannot make
use of Observation 5.5 anymore—the information about the mutual distances of vertices
in VS is lost, so to say, by considering only the maximum distance difference. Hence, for
the norm ‖ · ‖L,∞, an additional gadget is needed, which is introduced in the next section.

5.3.2 Graph Representation of 2-Hitting Set Instances

To prove the NP-completeness of M∆ST with respect to the norm ‖ · ‖L,∞, we rely on a
reduction from the NP-complete 2-Hitting Set problem.
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Figure 5.2: Construction of the graph gadget G(S, C) for a 2-HS instance with element set
S = {s1, s2, s3, s4} and collection C = {{s1, s3}, {s2, s4}, {s1, s4}, {s3, s4}}. The dotted parts
of the safety paths and collection paths stand for 2n(2 + m) − 1 = 47 vertices of each
respective path that are not explicitly shown.

2-Hitting Set (2-HS)
Input: A finite set S = {s1, . . . , sn}, a collection C = {c1, . . . , cm} that contains
cardinality-2 subsets of S, and an integer k.
Task: Find a size-at-most k subset S ′ ⊆ S such that each set in C contains at
least one element from S ′.

This problem is more widely known in its graph-theoretic formulation as the Vertex
Cover problem, which we already encountered in our introduction to fixed-parameter
algorithms in Section 2.3.2. However, because our gadget for encoding 2-HS instances
is a graph gadget, this chapter will use the 2-HS formulation instead in order to avoid
overloading the terms “vertices” and “edges.”

This section introduces a graph gadget G(S, C) that encodes any given instance (S, C, k) of
2-HS. The quintessence of this gadget, which is exemplified in Figure 5.2, is to represent
every element of sα ∈ S as two paths of different length that are joined at their ends
to form a cycle. The longer one of these paths is called the elongation path, the shorter
one the element path. The idea is that choosing an element sα to be in S ′ corresponds to
destroying an element path, leaving behind the longer elongation path and thus penalizing
the choice of an element to be in S ′ by an increase in distance between the joint endpoints
of the elongation path and the element path.

Formally, our graph gadget G(S, C) consists of the following components:

• Three vertices a, a ′, and b.

• For each sα ∈ S, the graph G(S, C) contains an element gadget Gα, that is, two
connection vertices vα and v ′α that are connected via an element path vαvα

1 . . . vα
mv ′α

of length m + 1 and via an elongation path of length m + 2. (Recall that m denotes
the number of subsets in C.) The vertex a ′ is connected to the connection vertex v1

by an edge and b is connected to the connection vertex v ′n by an edge. (Recall that n

denotes the number of elements in S.) For 1 6 i < n, the connection vertices v ′i
and vi+1 are connected by an edge.
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• For each subset cβ = {sα, sκ} ∈ C, the graph G(S, C) contains a path of length
2n(m + 2) called collection path that connects the vertex vα

β from the element path
of Gα with the vertex vκ

β from the element path of Gκ. Additionally, a path of
length 2n(m + 2), called safety path connects vα

β with a ′ (for this to be sound, we
assume that the elements of the subsets in C have some arbitrary but fixed ordering).

To see how the gadget works, consider a spanning tree T of a gadget graph G(S, C). In T ,
all cycles that occur in G(S, C) must be broken. For now, let us restrict ourselves to
consider only those spanning trees where no collection path is broken, that is, all edges
from the collection paths are also contained in T (getting rid of this restriction will be the
main technical challenge in Section 5.4). Then, the cycles induced by the collection paths
can only be broken by destroying element paths.

Observe that the elongation paths are “tuned” such that each such destruction of an
element path causes the distance between a and b to increase by exactly one. Once an
element path is destroyed, however, all cycles that lead over some edge of this element
path can be destroyed at no additional cost. Hence, there is a penalty for destroying
an element path—which corresponds to choosing an element to be in S ′—but once this
penalty has been paid, all cycles that use edges of the destroyed path can be destroyed
without any further penalties. The following lemma formalizes this idea.

Lemma 5.6. Consider an instance (S, C, k) of 2-HS and let G(S, C) be the corresponding
graph gadget. Then, (S, C, k) has a solution set S ′ if and only if G(S, C) has a spanning tree
that contains all edges of the collection paths and satisfies dT (a, b) 6dG(S,C)(a, b) + k.

Proof. It is helpful for our proof to first show that dG(S,C)(a, b) = 2 + (n(m + 2)). This
is easy to see because any path between a and b that uses a collection path or safety path
has length at least 2 + 2n(m + 2) and because the shortest path between a and b that
uses the element paths of the element gadgets G1, . . . , Gn has length 2 + n(m + 2).

Using this distance, we now prove the two directions of the lemma separately:

(⇒) Let S ′ be a given cardinality-at-most-k solution set for (S, C, k). Construct a spanning
tree T for G(S, C) by removing edges from the gadget graph as follows:

1. For each sα ∈ S do the following: If sα ∈ S ′, then remove the edge {vα
m, v ′α};

otherwise, remove the edge {vα, uα
1 }.

2. For each cβ = {sα, sκ} ∈ C do the following: If sα ∈ S ′, then remove the edge
{vα

β−1, vα
β}. Likewise, if sκ ∈ S ′, then remove the edge {vκ

β−1, vκ
β}. (For the collection

subset c1, that is, in the case β = 1, let vα
0 ≡ vα and vκ

0 ≡ vκ.) If only one of sα

and sκ is in S ′, then remove an edge from the safety path that connects sα with a ′.9

To illustrate this construction of a spanning tree T , Figure 5.3 shows this tree for the
gadget graph from Figure 5.2. Note that the construction removes no edge from a col-
lection path. Moreover, the remaining graph is connected and acyclic (that is, T is indeed

9The possibility that both sα and sκ could be in S ′ is the reason for including the safety paths: without
them, our edge removal scheme might leave a collection gadget disconnected in T .
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Figure 5.3: Construction of a spanning tree T for the gadget graph from Figure 5.2
as described in the proof of Lemma 5.6 (recall that the original gadget graph en-
codes the 2-HS instance with element set S = {s1, s2, s3, s4} and subset collection C =
{{s1, s3}, {s2, s4}, {s1, s4}, {s3, s4}}). The solution set used for the construction is S ′ =
{s3, s4}. The shortest path between the vertices a and b is emphasized by bold edges;
note that T completely includes every collection path.

a tree): The first step of the spanning tree construction ensures that each cycle induced
by an element gadget is broken. The cycles induced by the collection and safety paths
are broken in conjunction with the second step: For each subset cβ = {sα, sκ} ∈ C,
at least one of its elements must be in S ′. Hence, at least one of {{vα

β−1, vα
β}, {vα

m, v ′α}}

and {{vκ
β−1, vκ

β}, {vκ
m, v ′κ}} is removed in the construction of T . Consequently, it is ei-

ther the case that vα
β is not reachable via the collection path from vα or v ′α; or it is the

case that vκ
β is not reachable via the collection path from vκ or v ′κ. For each subset

in C, the construction of T removes an edge from the corresponding safety path except if
both {{vα

β−1, vα
β}, {vα

m, v ′α}} and {{vκ
β−1, vκ

β}, {vκ
m, v ′κ}} are removed; in that case, neither vα

β

nor vκ
β is reachable via the collection path from any of vα, v ′α, vκ, and v ′κ. Finally, there

cannot be a cycle in T that is induced by multiple collection paths because for each such
path, at least one connection to its element gadgets is broken (at the element paths that
correspond to the elements in S ′).

Having established that T is a spanning tree for G(S, C), it remains to look at the length
of a shortest path between a and b in T . It can easily be seen from the construction of T

that this path leads via either the length-(m + 3) elongation path (in case that sβ ∈ S ′) or
the length-(m + 2) element path (in case that sβ 6∈ S ′) of the element gadgets. By means
of construction, the distance via an element path is shorter by one than the distance via
an elongation path and, therefore, we have

dT (a, b) = 2 + |S ′| · (m + 3)︸ ︷︷ ︸
Cases “sβ ∈ S′”

+ (n − |S ′|) · (m + 2)︸ ︷︷ ︸
Cases “sβ 6∈ S′”

= 2 + 2n(m + 2) + |S ′| 6 dG(C,S,k)(a, b) + k .

(⇐) Let T be a spanning tree of G(C, S, k) that completely contains all collection paths
and satisfies dT (a, b) 6 dG(C,S,k)(a, b) + k. Since

dG(C,S,k)(a, b) + k 6 2 + n(m + 3) < 2 + 2n(m + 2) ,

the shortest path between a and b cannot lead via any collection or safety paths. Hence,



Minimizing Distance Differences Is Hard 93

this path must lead via element and elongation paths only. The length of any (intact)
elongation path is m + 2, the length of any (intact) element path is m + 1. Therefore, the
path between a and b leads over at most k elongation paths. Let S ′ be the set of elements
sβ for which the path between a and b leads from vβ to v ′β via an elongation path. Here,
the element path must be broken due to the minimality of the path length. Conversely,
for every sβ 6∈ S ′, the element path is not broken, that is, (vβ, vβ

1 , . . . , vβ
m, v ′β) is a path

in the spanning tree T .

To show that S ′ is a solution to the original 2-HS instance, assume that some subset
cβ = {sα, sκ} ∈ C (where α < κ) satisfies cβ ∩ S ′ = ∅. Then, there is a collection path
between vα

β and vκ
β and—since sα, sκ 6∈ S ′—the vertex vα

β is connected to v ′α, which in
turn is connected to vκ, which in turn is connected to vκ

β. But then there is a cycle in T , a
contradiction.

The strategy of our hardness proofs that rely on the 2-HS gadget is to force the respective
matrix norm to “measure” the distance between the vertices a and b. The main challenge
here lies in the requirement of Lemma 5.6 that the spanning tree must incorporate all
collection paths: While this is no problem for the fixed-edge variant of M∆ST, it poses
a challenge for proving the hardness of the problem when no such edges are given. (The
next section shows how this can be handled.)

One advantage the 2-HS gadget offers over the X3C gadget is that 2-HS can easily be
formulated as an optimization problem (where the parameter to be optimized is k, that
is, the cardinality of the solution set); this problem has been well-studied in terms of
its inapproximability and allows us not only to prove the NP-completeness, but even
some stronger inapproximability results concerning the fixed-edge variants of M∆ST (see
Section 5.4.2).

5.4 Minimizing Distance Differences Is Hard

This section considers the hardness of M∆ST and its fixed-edge variant fe-M∆ST with re-
spect to the matrix norms ‖ · ‖L,p, ‖ · ‖1, and ‖ · ‖L,∞. For M∆ST, we show the following
result through a series of lemmas in Section 5.4.1:

Theorem 5.7. M∆ST is NP-complete with respect to the norms ‖ · ‖L,p (for any fixed
integer p ∈ N+), ‖ · ‖1, and ‖ · ‖L,∞.

In Section 5.4.2, we show that this result can be somewhat strengthened for the fixed-
edge variant fe-M∆ST, which turns out to not only be NP-hard but even admits no
polynomial-time constant factor approximation algorithm unless P = NP:

Theorem 5.8. Unless P = NP, there exists no polynomial-time constant-factor approx-
imation algorithm for fe-M∆ST with respect to the norms ‖ · ‖L,p (for any fixed inte-
ger p ∈ N+), ‖ · ‖1, and ‖ · ‖L,∞.

As we have discussed in the introduction of this chapter, it would be very useful to find
network sparsifications through solving M∆ST or fe-M∆ST. However, our results indi-
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cate that these problems are quite demanding to solve. This poses a challenge for future
research to investigate the amenability of M∆ST and fe-M∆ST to algorithmic techniques
such as data reduction and fixed-parameter algorithms.

5.4.1 NP-Completeness Results

The NP-completeness results in Theorem 5.7 are derived through a series of lemmas in
this section (one lemma for every norm, to be specific). For the norms ‖ · ‖L,p and ‖ · ‖1,
our proofs use the X3C gadget Gi,j(S, C). As outlined at the end of Section 5.3.1, the NP-
completeness for the norm ‖ · ‖L,∞ cannot be shown with this gadget; it therefore relies on
the 2-HS gadget instead. The corresponding proof turns out to be somewhat demanding
because the 2-HS gadget crucially relies on the use of fixed edges and it requires a bit of
effort to get rid of them.

The following two lemmas use the X3C gadget in order to prove the NP-completeness of
M∆ST for the norms ‖ · ‖L,p and ‖ · ‖1.

Lemma 5.9. M∆ST with respect to the norm ‖ · ‖L,p is NP-complete for any p ∈ N+.

Proof. We prove the lemma by a reduction from X3C. Given an instance (S, C) of this
problem, we encode it using the graph gadget Gi,j(S, C) and show that we can set the dif-
ference constraint γ and the parameters i and j such that a spanning tree T for Gi,j(S, C)

satisfies the difference constraint γ if and only if T is a solution tree.

It turns out that we do not need the layer VB of the gadget, that is, we can set j
def
= 0.

To define the appropriate values for i and γ, let Gi,0(S, C) be a given X3C gadget with
solution tree T and define the constant

N
def
= (‖∆T‖L,p)p = (‖DGi,0(S,C) − DT‖L,p)p .

By Definition 5.3, only the vertices in VS and VC contribute to N. Furthermore, using
Observation 5.5, it is possible to calculate N without explicit knowledge of T or even if

the X3C gadget admits no such tree. We now set i
def
= N and γ

def
= N1/p. By this definition,

a solution tree T for Gi,0(S, C) always satisfies the constraint γ.

To prove the converse direction, assume that we are given a spanning tree T for Gi,0(S, C)

that satisfies the difference constraint γ. By Definition 5.3 we need to show that T con-
tains all edges from EXC, no edge from ESS, and has the property that every vertex in VC

either has degree one or four. We show these three properties by contradiction:

First, assume for the purpose of contradiction that there is an edge {x, cβ} ∈ EXC that
is not contained in T . Then, δT (x, cβ) > 2 and for every vertex aα ∈ VA, 1 6 α 6 i, we
have dT (aα, cβ) > 2. We obtain (‖∆T‖L,p)p > (i+1) ·2p = (N+1) ·2p > γp +1, which
is a contradiction to T satisfying the difference constraint.

Second, assume for the purpose of contradiction that there is an edge {sk, sk′ } ∈ ESS that
is contained in T . Then either dT (x, sk) > 2 or dT (x, sk′) > 2; otherwise, the edge would
be part of a length-5 cycle in T . But this means that either δT (x, sk) > 1 or δT (x, sk′) > 1
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and we obtain the contradiction (‖∆T‖L,p)p > (i + 1) · 1p = N + 1 = γp + 1.

Third, assume for the purpose of contradiction that there is a vertex cβ in T that has
degree one or two. We already know that T contains every edge from EXC and no edge
from ESS. By Observation 5.5, when we sum over the distance differences between
vertices in VS to each other, there appears at least one more pair of difference-three
vertices than in a solution tree and we obtain our third and final contradiction to T

satisfying the difference constraint, namely (‖∆T‖L,p)p > γp − 1p + 3p > γp + 2.

Lemma 5.10. M∆ST with respect to the norm ‖ · ‖1 is NP-complete.

Proof. As in the previous proof, we encode a given instance (S, C) of X3C into a gadget
graph Gi,j(S, C, ) and show that this gadget graph has a solution tree T that satisfies a
difference constraint γ with respect to the norm ‖ · ‖1 if and only if the encoded X3C
instance has a solution.

In our proof, we let h(α) denote the number of edges that a vertex sα ∈ VS has to the
vertices in VC. Furthermore, we use hmax to denote the maximum value of h(α) over
all 1 6 α 6 3n. We now set the difference constraint and our gadget parameters to

γ
def
= m + hmax + 9n2 + 11n − 16 , i

def
= γ + 1 , and j

def
= n + 1

(recall that |S| = 3n and |C| = m). Given a solution tree T for Gi(S, C, ), the column sum
for the distance differences of a vertex v in T is as follows:

∑
u∈VA∪VX∪VC∪VS

δT (v, u) =


0 if v ∈ VA or v ∈ VX

(3n + 3) · (n + 2) if v ∈ VC and v has degree one in T

(3n − 3) · (n + 2) if v ∈ VC and v has degree four in T

γ − hmax + h(α) if v = sα ∈ VS or {v, sα} ∈ ESB

.

Inspecting these values reveals that ‖∆T‖1 = γ−hmax +hmax = γ, that is, a solution tree T

satisfies the difference constraint γ as desired.

In the converse direction, a spanning tree T for Gi,j(S, C, ) that satisfies ‖∆T‖1 6 γ also
contains all edges from EXC, none of the edges from ESS, and has the property that every
vertex in VC either has degree one or four:

• If T did not contain some edge {x, cβ} ∈ EXC, then it could not satisfy the difference
constraint because ‖∆T‖1 >

∑
v∈VA

δT (v, cβ) > 2i > γ.

• If T contained an edge {sk, sk′ } ∈ ESS, then either dT (x, sk) > 2 or dT (x, sk′) > 2.
Otherwise, the edge would be part of a length-5 cycle in T . Without loss of gen-
erality, we consider the case dT (x, sk) > 2. Then δT (x, sk) > 1, leading to the
contradictory ‖∆T‖1 >

∑
v∈VA

δT (v, sk) > i = γ + 1 > γ.

• Finally, if there is a vertex cβ ∈ VC that has degree deg(cβ) ∈ {2, 3}, consider one
of its neighbors sα ∈ VS in T . Clearly, ‖∆T‖1 >

∑
v δT (v, sα) and we can use
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· · ·
Paths of length � each

c

· · ·

d

Figure 5.4: Construction for proving the NP-completeness of fe-M∆ST with respect to
the norm ‖ · ‖L,∞.

Observation 5.5 to again obtain a contradiction, namely∑
v∈VA∪VX∪VC

∪VS∪VB

δT (v, sα) = m + h(sα) − 2 + deg(cβ) − 2 + 3 · (3n − deg(cβ) + 1) · (j + 1)

= γ + 10n + 18 + (h(sα) − hmax) − deg(cβ) · (3n + 5) > γ + 4 .

In conclusion, any spanning tree for Gi,j(S, C) that satisfies the difference constraint γ

with respect to the norm ‖ · ‖1 must be a solution tree.

We now turn our attention to the norm ‖ · ‖L,∞. Proving the NP-completeness of M∆ST
with respect to this norm is straightforward as long as we are allowed to fix edges to be
in the spanning tree, that is, it is straightforward to show for fe-M∆ST:

Lemma 5.11. The fe-M∆ST problem with respect to the norm ‖ · ‖L,∞ is NP-complete.

Proof. Given an instance (S, C, k) of 2-HS, we construct the gadget graph G(S, C) and
modify it as illustrated in Figure 5.4 by adding two additional vertices c and d, two
additional edges {a, c} and {b, d}, and two length-(` + 2) paths p1 and p2, where ` is the
number of edges in the gadget graph G(S, C), the path p1 connects a with c, and the
path p2 connects b with d. All edges of p1 and p2 are added to the set of fixed edges
along with all edges of the collection paths in G(S, C). This implies that no spanning tree
for G(S, C) that contains all fixed edges can contain the edges {a, c} and {b, d}, because
this would induce a cycle. It is hence easy to see that the paths p1 and p2 are long enough
such that any spanning tree T for G(S, C) that includes all fixed edges satisfies ‖∆T‖L,∞ =

δT (c, d) = 2`+δT (a, b). Using Lemma 5.6, this means that the encoded instance of 2-HS
has a solution if and only if a spanning tree T for G(S, C) that includes all fixed edges and
satisfies ‖∆T‖L,∞ 6 2` + k.

The harder-to-prove part that remains is getting rid of the fixed edges. In order to achieve
this, we replace the fixed edges by large cycles such that deleting a fixed edge will cause
the distance between two cycle vertices to increase by more than the allowed threshold γ.

Lemma 5.12. Consider a graph G with an edge {v, w} that is neither a bridge nor con-
tained in a length-3 cycle. For an odd integer γ > 3, let G ′ be the graph that results from
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adding a length-γ path p = v, u1, . . . , uγ−1, w to G. Then, there exists a spanning tree T

of G which includes the edge {v, w} and satisfies ‖∆T‖L,∞ 6 γ if and only if there exists a
spanning tree T ′ of G ′ that satisfies ‖∆T ′‖L,∞ 6 γ.

Proof. The proof can be found in Section A.1 of the appendix of this work. A somewhat
similar technique with two cycles was used by Cai [46, Lemma 3] to guarantee that any
minimum multiplicative γ-spanner—that is, a spanning subgraph for a graph G = (V, E)

with a minimum number of edges such that dG(u, v) 6 γ · dT (u, v) for all u, v ∈ V—
contains a certain edge.

As a remark, it is possible to show a somewhat stronger variant of Lemma 5.12 that
does not require γ to be odd [85]. However, our weaker variant already suffices to turn
the NP-completeness proof from Lemma 5.11 into an NP-completeness proof for M∆ST
with respect to the norm ‖ · ‖L,∞.

Lemma 5.13. M∆ST with respect to the norm ‖ · ‖L,∞ is NP-complete.

Proof. Using Lemma 5.11, we prove the NP-hardness by a reduction from 2-HS. For a
given instance of 2-HS, let (G, Efix, γ) be the graph that is obtained by the construction
from Lemma 5.11. This construction allows us to assume without loss of generality that
the integer γ is odd—otherwise, we can simply elongate the path p1 from the construction
by one edge. Note that, by construction, there is no edge in Efix that is a bridge and that no
edge in Efix participates in a length-3 cycle. Hence, we can iteratively apply Lemma 5.12
to transform (G, Efix, γ) into an equivalent instance of M∆ST: for each edge {v, w} ∈ Efix,
we add a path (v, u1, . . . , uγ−1, w) (with new vertices u) to G and remove {v, w} from Efix.
Let G ′ be the resulting graph, which of course can be constructed in polynomial time
with respect to the size of G. Using Lemma 5.12, a straightforward induction on the size
of Efix (which we do not carry out explicitly here) shows that G has a spanning tree T

containing all edges of Efix such that ‖∆T‖L,∞ 6 γ if and only if G ′ has a spanning tree T ′

such that ‖∆T ′‖L,∞ 6 γ.

As the next section shows, the 2-HS gadget is not only useful for proving the NP-hardness
of M∆ST with respect to the norm ‖ · ‖L,∞, it even allows us to carry some deep inap-
proximability results from 2-HS over to fe-M∆ST.

5.4.2 Inapproximability Results for Fixed-Edge Variants

In this section, we develop an extended variant of the 2-HS gadget and use it to prove
Theorem 5.8, which states that fe-M∆ST cannot be polynomial-time approximated to
within a constant factor unless P = NP. Here, polynomial-time approximating an in-
stance (G, Efix, γ) of fe-M∆ST to within a constant factor c means to find a spanning
tree T for G in polynomial time such that

1. the tree T contains all edges from Efix
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2. the tree T is guaranteed to satisfy the difference constraint c · γopt, where γopt is the
minimum difference constraint that can be satisfied by any spanning tree of G.

The inapproximability proofs are based on a result by Håstad [122], which states that
2-HS cannot be polynomial-time approximated to within a factor of 1.16 unless it holds
that P = NP.10 To this end, we make use of a recursive extension of the 2-HS graph
gadget (recall its original definition in Section 5.3.2). The main idea of the recursive
extension is as follows: In Lemma 5.6, it was shown that the solution size k of a 2-HS
instance (S, C, k) equals the number of element paths that are opened in a spanning tree T

for the graph gadget G(S, C). This was because the destruction of each element path is
penalized by an increase of the distance between a and b by exactly one.

The goal now is to increase the penalty in a way such that any constant-factor approx-
imation of the optimal distance difference between the vertices a and b can be used to
obtain a better-than-factor-1.16 approximation algorithm for the encoded 2-HS instance.
To achieve this, we increase the penalty for destroying an element path by recursively re-
placing elongation paths with graph gadgets (see Figure 5.5 for an illustration). Hence,
the penalty for destroying an element path is determined by the size of an optimum so-
lution to the encoded 2-HS instance. Given a positive integer i, this leads to a graph
gadget Gi(S, C) and a set of fixed edges Efix such that Gi(S, C) has a spanning tree T that
contains all edges from Efix and satisfies dT (a, b) 6 dGi(S,C)(a, b) + ki if and only if the
encoded 2-HS instance has a solution of size k.

Formally, for a given instance (S, C, k) of 2-HS and a positive integer i, the gadget Gi(S, C)

is recursively defined as follows: for i = 1, it is the same as the basic graph gadget G(S, C).

For i > 1, we define `i−1
def
= dGi−1(S,C))(a, b) and let the graph gadget Gi(S, C) consist of

the following components:

• Three vertices a, a ′, and b.11

• For each sα ∈ S, the graph Gi(S, C) contains two connection vertices vα and v ′α
that are connected via an element path (vα, vα

1 , . . . , vα
`i−1−1v

′
α) of length `i−1.

• Each pair vα, v ′α of connection vertices is connected to an elongation gadget Gα,
that is, a copy of the graph Gi−1(S, C) whose vertex a is replaced by vα and whose
vertex b is replaced by v ′α. The vertex a ′ of the elongation gadget is renamed to a ′

α.

• For each subset cβ = {sα, sκ} ∈ C, the graph Gi(S, C) contains a path of length
2n`i−1 called collection path that connects the vertex vα

β with the vertex vκ
β. Ad-

ditionally, a path of length 2n`i−1 called safety path connects vα
β with a ′ (as with

the basic gadget G(S, C), for this to be sound we assume that the elements of the
subsets in C have some arbitrary but fixed ordering).

The construction is illustrated in Figure 5.5. To see how the gadget works, consider a
spanning tree T of a gadget graph Gi(S, C) that contains the edges of all collection paths

10The currently “best” lower bound for the inapproximability of 2-Hitting Set is 1.36 [74].
11These are not to be confused with the vertices a, a ′, and b of Gi−1(S, C).
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a a ′

Elongation gadgetElement path

· · ·· · ·· · ·· · ·

Safety paths of
length 2n�i−1 each

b

· · · · · ·· · ·· · ·

Collection paths of length 2n�i−1 each

· · ·· · ·· · ·· · ·

Gi−1(S, C) Gi−1(S, C) Gi−1(S, C) Gi−1(S, C)

Figure 5.5: Scheme for the construction of the recursive graph gadget Gi(S, C); details
are given in the text.

(including those within the elongation gadget). Analogously to the gadget G(S, C), if the
2-HS instance (S, C) has a solution of size k, this corresponds to breaking k element paths
in Gi(S, C), leading to k penalties in form of an increase in distance between the vertices a

and b. In contrast to G(S, C), however, this penalty is not always exactly one but rather
determined by the size of a solution to the 2-HS instance (S, C, k).

Lemma 5.14. Let (S, C, k) be an instance of 2-HS and i ∈ N+. Then we have

dGi(S,C)(a, b) = 3
ni+1 − 1

n − 1
+ ni(m − 1) − 1

and there exists a solution set S ′ ⊆ S for (S, C, k) if and only if there exists a span-
ning tree T of Gi(S, C) that contains all edges from the collection paths of all instances
Gi′(S, C) (for i ′ 6 i) and that satisfies dT (a, b) 6 dGi(S,C)(a, b) + ki.

Proof. The proof can be found in Section A.1 of the appendix of this work. It is based
on an induction over i and otherwise quite similar to the proof of Lemma 5.6.

Using the “polynomial amplification” of k that is caused by the parameter i in the gad-
get Gi(S, C), we can now show that any constant-factor approximation for the distance
difference between two vertices a and b in a graph yields a better-than-factor-1.16 ap-
proximation for the encoded 2-HS instance. That is, the following problem has no
polynomial-time constant-factor approximation algorithm unless P = NP:

Difference-Optimizing Spanning Tree (∆-OST)
Input: A connected graph G = (V, E), two vertices a, b ∈ V, and a sub-
set Efix ⊆ E.
Task: Find a spanning tree T of G that includes all edges from Efix ⊆ E and

minimizes the distance difference γ
def
= δT (a, b). (For the optimization variant,

the minimum possible distance difference is denoted γopt.)

Lemma 5.15. Unless P = NP, there is no polynomial-time constant-factor approximation
algorithm A for ∆-OST.
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Proof. Assume for the purpose of contradiction that there exists an algorithm A that
computes c · γopt for some fixed c > 0 in polynomial time. We show that this would
imply P = NP by using A to polynomial-time approximate any given instance of 2-HS to
within a constant factor better than 1.16.

Consider an instance (S, C, k) of 2-HS with optimum solution kopt and construct the

graph gadget Gi(S, C) for this instance with i
def
= b log c

log 1.16c. Let Efix be the set of edges
in Gi(S, C) that participate in collection paths. Then, according to our assumption, the
algorithm A can find a spanning tree T for the graph gadget Gi(S, C) that includes all
edges from Efix and approximates the optimum distance difference γopt between the gad-
get vertices a and b to within a factor of c. Using Lemma 5.14, this means that

b(δT (a, b))1/ic 6 (c · γopt)
1/i = (c · ki

opt)
1/i = c1/i · kopt 6 c

log 1.16
log c · kopt = 1.16 · kopt .

Of course, we also have kopt 6 b(δT (a, b))1/ic and thus, we have obtained a polynomial-
time factor-1.16 approximation algorithm for 2-HS from the algorithm A. As mentioned
at the beginning of this section, this implies P = NP according to [122].

We are now ready to prove Theorem 5.8 in a series of three lemmas (one for each norm).
The basic idea of all three proofs is to use the difference constraint γ in order to “mea-
sure” the distance between two given vertices a and b in a graph, thus solving ∆-OST.

Lemma 5.16. Unless P = NP, there is no polynomial-time constant-factor approximation
algorithm A for fe-M∆ST with respect to the norm ‖ · ‖L,p (for any fixed p ∈ N+).

Proof. We prove the lemma by showing that the algorithm A can be used to obtain a
constant-factor approximation algorithm for a given instance (G, a, b, Efix) of ∆-OST.
To this end, let n denote the number of vertices and m the number of edges in G and add
two cardinality-n3p vertex sets VA and VB to G. Every vertex in VA is connected to the
gadget vertex a and every vertex in VB is connected to the gadget vertex b:

Ga b

...
...

VA VB

Let Topt be a spanning tree for G that minimizes ‖∆T‖L,p. Observe that

(‖∆Topt‖L,p)p =
∑

v,w∈VA∪VB

(δTopt(v, w))p +
∑
v∈V

w∈VA∪VB

(δTopt(v, w))p +
∑

v,w∈V

(δTopt(v, w))p

= (n3p)2 · (δTopt(a, b))p +
∑
v∈V

w∈VA∪VB

(δTopt(v, w))p +
∑

v,w∈V

(δTopt(v, w))p
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and, hence, (‖∆Topt‖L,p)p is lower-bounded by n6p · (δTopt(a, b))p as well as—assuming
without loss of generality that n > 2—upper-bounded by

(‖∆Topt‖L,p)p 6 (n3p)2 · (δTopt(a, b))p + |V | · |VA ∪ VB| · np + |V |2 · np

= n6p · (δTopt(a, b))p + 2n4p+1 + np+2 6 n6p · (δTopt(a, b))p + 1)

6 2n6p · (δTopt(a, b))p .

Since the algorithm A computes a value γA that satisfies ‖∆Topt‖L,p 6 γA 6 c · ‖∆Topt‖L,p,
we obtain from our above bounds that δTopt(a, b) 6

⌊
γA

n6

⌋
6 2c · δTopt(a, b), that is,

we can use the algorithm A to obtain a polynomial-time constant-factor approximation
algorithm for ∆-OST.

Lemma 5.17. Unless P = NP, there is no polynomial-time constant-factor approximation
algorithm A for fe-M∆ST with respect to the norm ‖ · ‖L,∞.

Proof. As in the previous proof, we show the lemma by a reduction from ∆-OST. Given
an instance (G, a, b, Efix) of ∆-OST, let n denote the number of vertices in G. We build an
instance of fe-M∆ST by chaining together n2 copies of the graph G, that is, we take n2

copies G1 = (V1, E1), . . . , Gn2 = (Vn2 , En2) of the graph G and attach each vertex bi—
that is, the vertex b of the copy Gi—to the vertex ai of the copy Gi+1 by an edge
for 1 6 i < n2:

G1 G2 G3 Gn2

· · ·
a1 a2b1 b2 a3 b3 an2 bn2

The resulting graph is denoted G ′. The set of fixed edges is the union over the fixed edges
of the copies of G.

In a spanning tree T ′ for G ′, any two vertices v ∈ Vi and w ∈ Vj with i 6 j satisfy
δT ′(v, w) = δT ′(v, bi) + δT ′(bi, aj) + δT ′(aj, w) if i < j. If Topt is a spanning tree for G

that minimizes the distance difference between a and b, this implies that for i < j we
have

δT ′(v, w) > δT ′(v, bi) + (j − i − 1) · δTopt(a, b) + δT ′(aj, w) .

Assuming without loss of generality that δTopt(a, b) > 1, it must hold that ‖∆T ′‖L,∞ >

δT ′(v, w) for two vertices v ∈ V1 and w ∈ Vn2 , that is,

‖∆T ′‖L,∞ > (n2 − 1) · δTopt(a, b) .

At the same time, there exists a spanning tree T ′ for G ′ that satisfies

‖∆T ′‖L,∞ 6 n + (n2 − 2) · δTopt(a, b) + n ,

namely a tree where every copy of G in G ′ is replaced by Topt.
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Assume that we have a polynomial-time constant-factor approximation algorithm A for
fe-M∆ST with respect to the norm ‖ · ‖L,∞. This algorithm outputs a value γA which
satisfies ‖∆T ′

opt
‖L,∞ 6 γA 6 c · ‖∆T ′

opt
‖L,∞, where c > 0 is a constant and T ′

opt the spanning
tree with minimum ‖∆T ′

opt
‖L,∞. Using our observations above—and assuming without

loss of generality that n > 3—this means that

δTopt(a, b) 6
γA

n2 − 1
6 c ·

(
2n

n2 − 1
+

n2 − 2
n2 − 1

δTopt(a, b)

)
,

from which we obtain δTopt(a, b) 6
⌊

γA

n2−1

⌋
6 c · (1 + δTopt(a, b)) 6 2c · δTopt(a, b).

Hence—analogously to the previous proof—we have used the algorithm A to obtain a
polynomial-time constant-factor approximation algorithm for ∆-OST.

Lemma 5.18. Unless P = NP, there is no polynomial-time constant-factor approximation
algorithm A for fe-M∆ST with respect to the norm ‖ · ‖1.

Proof. The proof can be found in Section A.1 of the appendix of this work. It relies on a
reduction from ∆-OST and uses the same “chain graph” as the proof of Lemma 5.17.

5.5 Approximating Closeness Centralities is Hard

Concluding the series of computational hardness proofs in this chapter, we now turn our
attention from spanning trees that minimize distance differences to trees that approximate
the closeness centralities (as defined in Definition 5.2) of a given graph.

Theorem 5.19. CAST is NP-complete with respect to the norm ‖ · ‖L,p (for any fixed
integer p ∈ N+).

Proof. We prove the theorem by a reduction from X3C using the graph gadget Gi,j(S, C).
As it turns out, we do not need the vertices in VB and the edges in ESS, that is, for a
given instance (S, C) of X3C, we construct the graph gadget Gi,0(S, C) and remove the
edges ESS from it. Call the resulting graph G and let Tsol be a solution tree for it. We
define N to be the closeness centrality of a vertex v ∈ VA in G (note that this value is the
same no matter what vertex from VA we choose) and set

i
def
=

⌈( γ

N

)p

+
1
N

⌉
and γ

def
= ‖CTsol

‖L,p .

As in previous proofs, by making use of Observation 5.5 the parameter i and the con-
straint γ can be calculated without explicit knowledge of Tsol and even if no solution
tree exists. Obviously, any solution tree T for G satisfies ‖CT‖L,p 6 γ. It remains to
prove that a tree T that satisfies ‖CT‖L,p 6 γ is always a solution tree. We show this by
contradiction:

First, assume that there is some edge {x, cβ} ∈ EXC in G that is not contained in T . Then
all vertices in VA have distance 4 to cβ in T as opposed to distance 2 in G and we obtain
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the contradiction

(‖CT‖L,p)p =
∑

v∈VA

(CG(v) − CT (v))p +
∑

v∈VX∪VC∪VS

(CG(v) − CT (v))p

>
∑

v∈VA

(CG(v) − CT (v))p >
∑

v∈VA

(CG(v) − ((CG(v))−1 − 2 + 4)−1)p

= i ·
(

N −
1

N−1 + 2

)p

= i ·
(

2N2

1 + 2N

)p

> i ·Np > γp + 1 .

Second, assume there is a vertex cβ ∈ VC that has degree one or two. Let sα ∈ VS be one
of its neighbors in T ; we then have

(‖CT‖L,p)p > γp − (cG(sα) − cTsol
(sα))p + (cG(sα) − cT (sα))p .

Making use of the implication x > y⇒ xp − yp > x − y for any p ∈ N+, this yields

(‖CT‖L,p)p > γp − (cG(sα) − cTsol
(sα)) + (cG(sα) − cT (sα))

= γp + cTsol
(sα) − cT (sα) .

Since the closeness centrality of a vertex is calculated as the inverse of the sum of distances
it has to all other vertices in a graph, it is possible to infer by Observation 5.5 that

cTsol
(sα) = (3i + 3m + 12n − 8)−1

and
cT (sα) 6 (3i + 3m + 12n − 6)−1 < cTsol

(sα) ,

which leads to the contradiction (‖CT‖L,p)p > γp.

For p → ∞, the norm ‖ · ‖L,p converges to the norm ‖ · ‖L,∞. Hence, Theorem 5.19
strongly hints that CAST is also NP-complete with respect to the norm ‖ · ‖L,∞. It seems
somewhat difficult, however, to make the 2-HS gadget work for this problem, especially
when no fixed edges are allowed. We hence leave it open for future research to prove the
NP-completeness of CAST with respect to the norm ‖ · ‖L,∞.

5.6 Summary and Open Questions

This chapter motivated and formalized the problem of Combinatorial Network Spar-
sification. Concretely, we studied the computational complexity of finding spanning
trees of a graph that have similar vertex–vertex distances or similar closeness centralities
as the original graph, integrating these problems into a unifying framework that is based
on matrix norms. Unfortunately, from an application point of view, all of the problems
that we studied turned out to be NP-complete and we even found that some of them are
not amenable to constant-factor approximations. This suggests a general hardness for
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the problem of thinning out a network in such a way that global properties are retained
and leads to an important open question for future research:

• In how far are the Combinatorial Network Sparsification problems that we
studied in this chapter amenable to algorithms that deal with solving NP-complete
problems in practice, such as (integer) linear programming, data reductions, fixed-
parameter algorithms, or constant-factor approximation algorithms (wherever our
results indicate that these are possible)?

On a more positive side, especially from a theoretician’s point of view, this chapter intro-
duced two graph gadgets that can be put to use rather flexibly and may therefore lend
themselves for further complexity analyses of problems that are related to M∆ST and
CAST. The following questions appear to be of particular interest in this respect:

• We have only considered one centrality measure in this chapter, namely closeness
centrality, but there are many other such measures (such as, for example, between-
ness centrality [102]). What is the computational complexity of the resulting CAST
problems? Is there a (biologically useful) centrality measure for which CAST is
efficiently solvable?

• Our results indicate that finding a meaningful network sparsification in polynomial
time might be somewhat difficult to achieve: From a bird’s eye view, the more
similarity we demand between a graph and its spanning tree, the more difficult the
respective problems seem to be (in particular, fe-M∆ST seems to be much harder
than M∆ST). Are there counterexamples to this intuition?

Concluding, while our hardness results for M∆ST and CAST might seem somewhat dis-
couraging from a practical perspective, these problems appear to point to a rich field for
future algorithmic research and theoretical investigations. Such investigations might in
particular point to the “source of hardness” for the problems that we studied, and thus
enable the computation of some useful network sparsifications in practice, despite the
general hardness that we encountered in this chapter.



Chapter 6

Coping by Surveillance I:
Meeting All Interactions

So far in this work, we have discussed two general approaches to cope with the complex-
ity of biological networks by means of combinatorial algorithms, namely “modulariza-
tion” and “thinning out.” In this and the following two chapters, we investigate a third
approach: coping by surveillance. The underlying idea here is to select a minimum-size set
of vertices in a biological network that allows us to monitor or control its properties and
behavior. The resulting combinatorial problems—all of which are NP-hard—are dealt
with by making use of the fixed-parameter technique that we introduced in Section 2.3.2.
We obtain effective polynomial-time data reductions (kernelizations) and fixed-parameter
algorithms that confine the exponential part of the running time to the size of the solu-
tion that we seek. This paves a way toward future applications that can efficiently and
optimally solve the combinatorial problems we study.

This chapter studies the problem of selecting a minimum-size set of vertices in a biological
network that can be used to efficiently verify all of the interactions that its edges encode.
This leads to a generalization of the Vertex Cover problem that we encountered in
Section 2.3.2: Recall that Vertex Cover is the task of finding a minimum-size set of
vertices that is capable of covering all edges—a vertex can cover all edges that it is incident
to. We study the generalization where a vertex cannot necessarily cover all of its incident
edges, but has a capacity that may limit this number. This problem is called Capacitated
Vertex Cover and has two variants called Hard Capacitated Vertex Cover and Soft
Capacitated Vertex Cover. We present a kernelization for all three problems and show
that they can be solved in O(1.2k2

+ n2) time on an n-vertex graph, where k is the size
of the capacitated vertex cover that we seek.

6.1 Motivation

When we discussed the inference of protein interaction networks in Section 2.2.1, we
saw that there generally is a tradeoff between the scale at which interactions can be
tested and the accuracy of the results: High throughput methods such as the yeast two-
hybrid assay are suited for a large-scale testing, but in return they usually have a lower
accuracy than more time-consuming approaches such as immunoprecipitation or FRET
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microscopy. Experimental methods for inferring other types of biological networks, such
as gene regulatory networks, have to deal with a similar tradeoff.

One problem of high-throughput experiments is the detection of false positives, that is,
the detection of interactions that do not actually occur. These cause edges to appear in
a biological network that do not correspond to any biological interaction. The combi-
natorial problems that we discuss in this chapter model the task of efficiently “cleaning
up” a biological interaction network from its false positives. More specifically, the task
is to devise a minimum-size set of experiments that allows us to verify all interactions of
a biological network as efficiently as possible.

To see how we can phrase the efficient detection of false positives in an interaction net-
work as a combinatorial problem, recall from Section 2.2.1 that protein interactions are
usually detected by choosing a protein to be the bait protein and then bringing various
other proteins in contact with it in order to test for interactions. Since protein interac-
tions are of a symmetrical nature, an interaction can be verified from “both sides,” that
is, we can in principle choose either one of two interacting proteins to be the bait protein.
We can therefore minimize the experimental expenditure by minimizing the number of
different bait proteins that are used. As it turns out, this is precisely the Vertex Cover
problem that we encountered in our introduction of fixed-parameter tractability in Sec-
tion 2.3.2: Using all those proteins as bait proteins that correspond to the vertices of a
minimum-size vertex cover, we can verify all interactions of a given network.

Vertex Cover
Input: An undirected graph G = (V, E) and a nonnegative integer k.
Task: Find a size-k subset V ′ ⊆ V such that every edge in E has at least one
endpoint in V ′.

Since Vertex Cover is a well-studied problem for which many efficient exact algorithms
and even linear-size problem kernels exist, this would be a very nice problem formaliza-
tion to work with. Unfortunately, however, this model has two major flaws that make it
somewhat unrealistic:

1. We are assuming that each bait protein has the same cost when it is used (be it time-
or money-wise). This is usually not the case: For example, some bait proteins might
be readily available and hence much less expensive to use than others that would
have to be manufactured.

2. Given a certain bait protein, we usually cannot infer all of its interactions in a single
experiment but only a certain number of them due to limitations of the detection
method that would otherwise compromise the accuracy of the verification process.

The first issue can be dealt with by considering the weighted variant of Vertex Cover,
that is, each vertex v ∈ V of the input graph is assigned a positive real weight w(v) that
reflects the cost of using it as a bait protein in an experiment. To deal with the second
issue, we capacitate the input graph, meaning that each vertex v ∈ V is assigned an
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Figure 6.1: The lefthand part of the figure shows a capacitated graph; the individual
capacities are drawn inside of each vertex. For the sake of simplicity, we assume that the
graph is unweighted. The middle part of the figure shows a minimum-size capacitated
vertex cover for the lefthand graph; the vertices that belong to the cover have a bold
outline and each edge thickens at the vertex that is covering it. The righthand side of the
figure shows that without the vertex capacities, a smaller vertex cover of size 4 instead of
size 6 can be found for the graph.

integer capacity c(v) > 1 that limits the number of edges it can cover when being part of
the vertex cover.1 The combinatorial problem we consider thus becomes the following:

Definition 6.1. Given a capacitated graph G = (V, E) with capacity function c : V → N
and a vertex cover V ′ for G, we call V ′ a capacitated vertex cover if there exists a map-
ping f : E→ V ′ which maps each edge in E to one of its two endpoints such that the total
number of edges mapped by f to any vertex v ∈ V ′ does not exceed c(v).

Capacitated Vertex Cover (CVC)
Input: A vertex-weighted (with positive real numbers), undirected, and ca-
pacitated graph G, an integer k > 0, and a real number W > 0
Task: Find a capacitated vertex cover V ′ for G that contains at most k vertices
and satisfies

∑
v∈V ′ w(v) 6 W.

This problem is exemplified in Figure 6.1. Note that solving CVC becomes equivalent to
solving Vertex Cover if every vertex has a capacity that is at least its degree.

CVC was introduced by Guha et al. [115] in the context of studying interactions between
proteins and polysaccharides (sugars). Two special flavors of CVC exist in the literature
that arise by allowing “copies” of a vertex to be in the capacitated vertex cover [64, 104,
115]: In that context, taking a vertex x-times into the capacitated vertex cover causes the
vertex to have x-times its original capacity. The number of such copies is unlimited in
the Soft Capacitated Vertex Cover (Soft CVC) problem while it may be restricted
for each vertex individually in the Hard Capacitated Vertex Cover (Hard CVC)
problem.

For our application of verifying the interactions of a given protein interaction network,
the Soft CVC problem appears to be the most sensible model because we can choose to
use the same bait protein in multiple experiments by simply “paying” the weight for it
multiple times.

1Of course we can do multiple experiments with a single bait protein in order to verify more interactions
than are specified by its capacity; we consider this case in form of the so-called Soft Capacitated Vertex
Cover problem.
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Answering an open problem from [115], this chapter shows that Capacitated Vertex
Cover as well as its variants Hard Capacitated Vertex Cover and Soft Capacitated
Vertex Cover are fixed-parameter tractable when the parameter is the size of the ca-
pacitated vertex cover; to this end, we provide kernelizations as well as fixed-parameter
algorithms. Note that these results seem to be hard to obtain by easily conceivable adap-
tations of an existing algorithm for Vertex Cover: A key of the known kernelizations
and fixed-parameter algorithms for Vertex Cover is that if a vertex is chosen to be in
the vertex cover, then all of the edges that it is incident to can be removed from the graph.
This does not hold for the capacitated variants: If a vertex is chosen to be part of the co-
ver and its capacity is lower than its number of neighbors, then we have to decide which
of these neighbors are covered and which are not. Since the number of neighbors that a
vertex has is not upper-bounded by a function of the parameter k, this is not trivial to
accomplish in “fixed-parameter-time.”

The remainder of this chapter is organized as follows: The next section reviews the exist-
ing literature on CVC and its variants Hard CVC and Soft CVC. Section 6.3 presents
our new algorithmic results: The kernelization for CVC and its variants is discussed in
Section 6.3.1, followed by a fixed-parameter algorithm in Section 6.3.2. We conclude
this chapter in Section 6.4 with a brief summary and a statement of open questions.

6.2 State of the Art

In a sense, one could consider Vertex Cover to be the Drosophila of fixed-parameter re-
search: Beside a long list of continuous improvements on the running time—the currently
“best” algorithms for Vertex Cover involve an exponential factor of O(1.28k) for un-
weighted graphs [55, 60] and of O(1.38k) for weighted graphs [196]—many important
discoveries that influenced the whole field originated from studies of this problem (see the
introduction of [118] for an extensive listing of these). Concerning biological networks,
fixed-parameter algorithms and, especially, kernelizations for Vertex Cover play an im-
portant role in solving clustering problems [32, 261, 62, 278], making use of the fact that
an n-vertex graph contains a size-(n − k) clique (that is, a fully connected size-(n − k)

subgraph) if and only if its complement graph2 has a size-k minimum vertex cover.

Given the importance and intensive studies of Vertex Cover, it is somewhat surprising
that the self-suggesting variants CVC, Hard CVC, and Soft CVC have so far only been
studied in terms of their polynomial-time approximability and received little attention in
fixed-parameter research.

Guha at el. [115] provide factor-2 polynomial-time approximation algorithms for CVC
and Soft CVC. For Hard CVC on unweighted graphs, the best known polynomial-
time approximation algorithm also achieves a factor of 2 [104]. On weighted graphs,
this problem is much harder, namely at least as hard to approximate as the Set Cover
problem [64]; this means that not even logarithmic-factor approximation algorithms can
be expected for Hard CVC [91]. Finally, Grandoni et al. [113] present a factor-(2 + ε)

2That is, the “edgewise inverse” graph that contains exactly those edges the original graph does not contain.
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approximation algorithm for a relaxed variant of Hard CVC on weighted graphs where
the vertex capacities are “semi-hard,” that is, the number of copies we can make of
a vertex in order to increase its capacity is not individually restricted, but globally set
to (4 + ε) for every vertex in the graph.3

6.3 Algorithms for Capacitated Vertex Cover

This section starts out by presenting a kernelization for CVC, Hard CVC, and Soft
CVC. We then complement this result with a fixed-parameter algorithm for these prob-
lems that is based on an enumerative approach and significantly improves the running
time complexity compared to an exhaustive exploration of the problem kernel.

6.3.1 Data Reduction and Problem Kernel

The main result we establish in this section is a data reduction that yields a problem
kernel for CVC, Hard CVC, and Soft CVC.

Theorem 6.2. Consider a weighted and capacitated n-vertex graph and a parameter k

that are given as an instance of CVC, Hard CVC, or Soft CVC. An O(4kk2)-vertex
problem kernel for either of these problems can be computed in O(n2) time.

We prove this theorem in three steps: We start out with a data reduction for an instance
of CVC, Hard CVC, or Soft CVC. The correctness and O(n2) running time of this data
reduction are subsequently shown in Lemma 6.4; Lemma 6.5 proves the claimed size
bound of O(4kk2) and thus shows that our data reduction is a kernelization. Concluding
this section, we discuss how the polynomial factor of the size bound can be improved in
the case of Soft CVC or if the graph is unweighted.

The basic idea that underlies our data reduction is the following: If there are two un-
connected vertices that have different weights but the same neighborhood and the same
capacity, then there is no reason to let the larger-weight vertex be part of a capacitated
vertex cover unless the lower-weight vertex is also part of it. The following observation
formalizes this idea:

Observation 6.3. Consider a weighted graph G = (V, E). If two vertices u, v ∈ V in G

have the same set of neighbors, the same capacity, and the weight of u is less than the
weight of v, then v is only part of a minimum capacitated vertex cover if u is as well.

We can use this observation to obtain the following data reduction:

Data Reduction. Given an instance (G = (V, E), k, W) of CVC, Hard CVC, or Soft
CVC, carry out the following four steps:

3As a remark, the algorithm of Grandoni et al. [113] does not “strictly” run in polynomial time because its
running time depends on the ratio of the maximum to the minimum vertex weight in the graph.
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1. Compute a Vertex Cover. There is a well-known linear-time factor-2 approxima-
tion algorithm for the Vertex Cover problem on unweighted graphs.4 Using this
algorithm, we compute a vertex cover V ′ for G that has cardinality at most 2k ′,
where k ′ is the size of a minimum vertex cover for G (not necessarily of a mini-
mum capacitated vertex cover, though). Note that k ′ 6 k because a minimum-size
capacitated vertex cover contains at least as many vertices as a minimum-size “un-
capacitated” vertex cover. If |V ′| > 2k, then there is no size-k capacitated vertex
cover for G and we can mark it as “unsolvable” and abort the data reduction.

2. Reduce Capacities. Since V ′ is a vertex cover, the induced subgraph G[V \ V ′]

contains no edges. Therefore, every vertex in V \ V ′ has at most 2k neighbors.
If a vertex u ∈ V \ V ′ has a capacity greater than 2k, we eliminate its redundant
capacity by setting c(u) := 2k.

3. Partition. The vertices of V \ V ′ are partitioned into subsets: Two vertices belong
to the same subset if they have the same capacity and the same set of neighbors.

4. Reduce. If a subset of the partition we have computed in the previous step contains
more than k vertices, then we delete all of the vertices of this subset from G except
for the k + 1 lowest-weight ones. For each vertex u that we delete, the capacity of
each of its neighbors is decreased by one.

Lemma 6.4. The data reduction is correct and can be carried out in O(n2) time for
an n-vertex graph.

Proof. The correctness of the data reduction follows directly from Observation 6.3 and
the fact that we can choose at most k vertices to be in the capacitated vertex cover that
we seek: First, none of the vertices that we remove in the fourth step is part of a minimum
capacitated vertex cover due to Observation 6.3. Second, decreasing the capacity of the
neighbors of a removed vertex correctly accounts for the fact that each neighbor of the
removed vertex has to cover the edge that they share.5

It remains to justify the O(n2) running time: First, the factor-2 approximation algo-
rithm runs in O(|E|) = O(n2) time. The second step can be done in O(n) time. For the
third step, we need O(|V \ V ′| · |V ′|) = O(n2) time to successively partition the vertices
in V \ V ′ according to their neighborhoods in V ′. The fourth and final step can be done
in O(n log n) time by first sorting the vertices in each subset of the partition according to
their weights and then keeping only those vertices with the k lowest weights.

Let us call a graph reduced if the data reduction has been applied to it. To show that the
data reduction actually yields a kernelization for CVC, Soft CVC, and Hard CVC, it
remains to give an upper bound on the size of a reduced graph.

4This algorithm is straightforward and it is hard to attribute it to some source. It proceeds as follows: We
choose an edge in the input graph, take both of its endpoints into the cover, and remove these endpoints; this is
iteratively repeated until we obtain the empty graph. Since at least one endpoint of every edge is in a minimum
vertex cover anyway and we have just chosen both of these endpoints, we obtain an approximation factor of 2.

5If a vertex is removed in the fourth step of the data reduction, then there remain at least k+1 vertices with
the same neighborhood in the reduced graph. Hence, all vertices in this neighborhood have degree at least k+1
in the reduced graph, which means that they must be contained in any size-at-most-k vertex cover for it.
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Lemma 6.5. A reduced graph contains at most O(4k · k2) vertices.

Proof. After the first step of the data reduction, the set V ′ contains at most 2k vertices.
There are at most 2|V ′| = 22k = 4k different kinds of neighborhoods that a vertex of V\V ′

can have. Since the second step of the data reduction causes every vertex in V \V ′ to have
a capacity between 0 and 2k, the partition in the third step yields at most 4k · (2k + 1)

subsets of V \ V ′. After the fourth step, each of these subsets contains at most k + 1
vertices, which shows the claim of the lemma.

Note that the polynomial factor in the upper bound on the kernel size can be improved
if the input graph is either unweighted or given as an instance of Soft CVC:

• If the input graph is unweighted, it suffices to only partition the vertices according
to their common neighborhood in the third step of the data reduction (that is, no
partitioning is required concerning their capacities). In the fourth step, we then
keep those k + 1 vertices of each partition that have the highest capacity. This
improves the worst-case kernel size to O(4k · k).

• In the case of Soft CVC, the fourth step only needs to retain the lowest-weight ver-
tex, as long as its neighbors are marked to be included into any capacitated vertex
cover of the reduced graph. This improves the worst-case kernel size to O(4k · k).

• In the case of Soft CVC on unweighted graphs, we can combine the abovemen-
tioned improvements and obtain an O(4k) upper bound on the kernel size.

From a practitioner’s point of view, our data reduction might not seem too attractive—
clearly, a kernel with size polynomial or even linear in k would be much more attractive
than the exponential-size kernel we have provided. One should keep in mind, though,
that we only made a worst-case analysis and it seems quite unlikely that a reduced graph
becomes as large in a practical scenario as is suggested by our worst-case bound on
the kernel size. Moreover, it is conceivable that the effectiveness of the data reduction
can be significantly improved in practice and, possibly, also in a worst-case scenario by
strengthening Observation 6.3 to consider not only pairs of vertices that have the same
neighborhood but also pairs where one vertex has a subset of the neighbors of the other.

6.3.2 A Fixed-Parameter Algorithm

Clearly, performing exhaustive searches within the problem kernels that we have pre-
sented in the previous section already yields fixed-parameter algorithms for CVC, Soft
CVC, and Hard CVC. However, given that these kernels have a worst-case size of at
least 4k (even in the case of Soft CVC on unweighted graphs), an exhaustive algorithm
would explore at least

(4k

k

)
= O(4k2

) possible solutions in a worst-case scenario. The
main result of this section is that we can do better than that concerning the running time:

Theorem 6.6. CVC, Soft CVC, and Hard CVC can be solved in O(1.2k2
+ n2) time.
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Figure 6.2: An illustration for the concept of capacity profiles: In the above graph, only
the vertices v2 and v3 match the capacity profile 1101 because they have a capacity of
at least three and are adjacent to the first, second, and fourth vertex of the vertex cover.
All other vertices lack either the neighborhood or the capacity to match the profile: The
vertex v1 lacks adjacency to the fourth vertex of the vertex cover, the vertex v4 only has a
capacity of two, and the vertex v5 lacks adjacency to the first vertex of the vertex cover.

The theorem is shown in three steps: We first give an algorithm for CVC and show its
correctness in Lemma 6.8. This is followed by a proof of the claimed running time in
Lemmas 6.9 and 6.10. Finally, Lemma 6.11 shows how the algorithm for CVC can easily
be modified to solve Soft CVC or Hard CVC.

The basic idea behind our algorithm is as follows: Assume that we are given a vertex
cover V ′ for a capacitated graph G = (V, E). If we wish to construct a capacitated vertex
cover that contains V ′ as a subset—assuming, of course, that V ′ is not a capacitated
vertex cover on its own—then we must add some additional vertices from V \ V ′ to V ′

in order to provide additional capacities for the covering of edges. Since all neighbors of
a vertex u ∈ (V \ V ′) must be from V ′ (because V ′ is a vertex cover), adding u to V ′

can be seen as “freeing” exactly one unit of capacity for as many as c(u) neighbors of u.
When |V ′| = i, this means that we can use a length-i binary string to precisely describe
these freed units of capacity. We hence refer to such a binary string as capacity profile.

Definition 6.7. Given a graph G = (V, E) and a vertex cover V ′ = {v1, . . . , vi} ⊆ V for G,
a capacity profile of length i is a binary string s = s[1] · · · s[i] ∈ {0, 1}i. A vertex u ∈ V\V ′

is said to match a capacity profile s if it is adjacent to each vertex vj ∈ V ′ with s[j] = 1
and its capacity is at least the number of 1’s in s.

The concept of a capacity profile and matching a capacity profile are exemplified in Fig-
ure 6.2. Using this concept, we can obtain an algorithm for CVC that is based on an
enumerative search: Given an instance (G = (V, E), k, W) of CVC, we enumerate all
minimal size-at-most-k vertex covers of this graph. For each of these minimal vertex cov-
ers V ′, we enumerate all possible multisets6 of k − |V ′| capacity profiles and, for each of
these multisets, compute the cheapest set of k − |V ′| vertices from V \ V ′ that matches all
the profiles that it contains.

6In contrast to a normal set, a multiset can contain the same element more than once.
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The following pseudocode describes our algorithm more precisely:

Algorithm: Capacitated Vertex Cover
Input: A capacitated and weighted graph G = (V, E), k ∈ N+, W ∈ R+

Output: “Yes” if G has a capacitated vertex cover of size at most k

with weight 6 W; “No” otherwise

01 Perform the kernelization from Theorem 6.2 on G

02 for every minimal vertex cover V ′ of G with size i 6 k do
03 if V ′ is a capacitated vertex cover with weight 6 W then return “Yes”
04 for each multiset M consisting of (k − i) length-i capacity profiles do
05 remove the all-zero profiles from M

06 find the cheapest size-(k − i) set V̂ ⊆ (V \ V ′) so that there exists
a bijective mapping f : V̂ →M where each v̂ ∈ V̂ matches
the capacity profile f(v̂). Set V̂ ← ∅ if no such set exists

07 if V̂ 6= ∅, the weight of V ′ ∪ V̂ is 6 W, and V ′ ∪ V̂ is a
capacitated vertex cover for G then return “Yes”

08 return “No”

The next two lemmas prove the correctness of this algorithm and give an upper bound
on its worst-case running time.

Lemma 6.8. The algorithm that we have given for CVC is correct.

Proof. Preprocessing the graph in line 01 is correct according to Theorem 6.2. Since a
capacitated vertex cover for a graph G = (V, E) is also a vertex cover, its vertices can be
partitioned into two sets V ′ and V̂ such that V ′ is a minimal vertex cover for G, that is,
the vertex set V ′ is a vertex cover and does not contain a subset that is a vertex cover
for G by itself. Assume the vertices in V ′ to be ordered (arbitrarily but fixed). Each
vertex in V̂ gives additional capacity to a subset of the vertices in V ′, that is, for every
vertex v̂ ∈ V̂, we can construct a capacity profile sv̂ where sv̂[j] = 1 if and only if v̂ uses
its capacity to cover the edge to the j-th vertex in V ′. The correctness of the algorithm
now follows from its exhaustive nature: It tries all minimal vertex covers, all possible
combinations of capacity profiles and for each combination it determines the cheapest
possible set V̂ such that V ′ ∪ V̂ is a capacitated vertex cover for G.

Lemma 6.9. The algorithm that we have given for CVC runs in O(1.2k2
+ n2) time.

Proof. The preprocessing in line 01 can be carried out in O(n2) time according to The-
orem 6.2. This leads to a new graph that contains at most ñ := O(4k · k2) vertices.
Line 02 of the algorithm causes the subsequent lines 03–07 to be called at most 2k times
and causes only polynomial delay between two such calls.7

Due to Chuzhoy and Naor [64, Lemma 1], we can decide in ñO(1) time whether a given
vertex cover is also a capacitated vertex cover (lines 03 and 07). For line 04, note that for

7Fully traversing the search tree for Vertex Cover that we have discussed in Section 2.3.2 enumerates all
size-at-most k vertex covers of a graph.
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a given nonnegative integer i < k, there exist 2i different capacity profiles of that length.
Furthermore, it is well-known that, given a set A with |A| = a, there exist exactly

(
a+b−1

b

)
b-element multisets with elements drawn from A. Hence, line 04 causes lines 05–07 to be
executed

(2i+(k−i)−1
k−i

)
times. The delay between the enumeration of two multisets can

be kept constant [56, 156]. As will be shown in Lemma 6.10, line 06 takes ñO(1) time.
Thus, the overall running time TCVC of the algorithm is upper-bounded by

TCVC 6 O(n2) + 2k · ñO(1) · max
16i<k

((
2i + (k − i) − 1

k − i

)
· ñO(1)

)
= O(n2) + 2k · max

16i<k

(
(2i + (k − i) − 1)!
(2i − 1)!(k − i)!

)
· ñO(1)

= O(n2) + 2k · max
16i<k

(
2i + (k − i) − 1

k − i
· . . . · 2i

1

)
· ñO(1)

(∗)
< O(n2) + 2k · max

16i<k

(
(2i)k−i

)
· ñO(1) 6 O(n2) + 2k ·

(
2(k2−1)/4

)
· ñO(1)

= O(n2) + 2k ·O(1.189k2
) · ñO(1) = O(n2) + 2k ·O(1.189k2

) · (4k · k2)O(1)

= O(n2 + 1.2k2
) ,

where (∗) is due to the fact that for any j > 1, we have 2i+j−1
j < 2i.

It remains to show the running time for line 06 of the algorithm that we just used in the
proof of Lemma 6.9.

Lemma 6.10. Consider a weighted and capacitated n-vertex graph G = (V, E), a vertex
cover V ′ for G of size i 6 k, and a multiset M of k − i capacity profiles of length i. It
takes nO(1) time to find the cheapest size-(k−i) subset V̂ ⊆ (V \V ′) (or determine that no
such set V̂ exists) such that there exists a bijective mapping f : V̂ →M where each v̂ ∈ V̂

matches the capacity profile f(v̂).

Proof. Construct a bipartite graph Gbip = ((VA ∪ VB), Ebip) as follows:8 Each vertex

in VA represents a capacity profile from M, the set VB is defined as VB
def
= V \ V ′, and

two vertices v ∈ VA, u ∈ VB are connected by an edge in Ebip if and only if the vertex
represented by u matches the profile represented by v; the weight of such an edge is set
to w(u). The problem of finding the cheapest size-(k − i) subset V̂ ⊆ (V \ V ′) as claimed
in the lemma or determining that no such set V̂ exists is the same problem as finding a
minimum-weight maximum bipartite matching (that is, a bipartite matching of minimum
weight among those of maximum cardinality) on the bipartite graph Gbip.9 This is well-
known to be solvable in polynomial time [66].10

8A bipartite graph is a graph whose vertex set can be partitioned into two subsets VA and VB such that no
edge connects two vertices in VA or two vertices in VB with each other.

9A bipartite matching is a subset of edges in a bipartite graph where no two edges have an endpoint in
common.

10More precisely, a minimum-weight maximum bipartite matching for a graph G = (V , E) can be computed
in O(|E||V | log |V |) time. This can be improved to O(|E|

√
|V |) time if the edge weights are uniform or if the

graph is unweighted, in which case the task is simply to find a maximum-cardinality bipartite matching.
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It is possible to obtain a fixed-parameter algorithm for Soft CVC and Hard CVC by
adapting the given algorithm for CVC: Observe that if we choose multiple copies of a
vertex into the cover, each of these copies will have its own individual capacity profile.
Thus, only line 06 of the CVC algorithm has to be modified in order to obtain an algo-
rithm for Soft CVC or Hard CVC.

Corollary 6.11. Soft CVC and Hard CVC are solvable in O(1.2k2
+ n2) time.

Proof. According to Theorem 6.2, the kernelization in line 01 is also correct for Soft
CVC and Hard CVC. Hence, it only remains to show how to change line 06 of the CVC
algorithm.

For Soft CVC, the algorithm for line 06 as given in Lemma 6.10 can be replaced by a
simple greedy-strategy that always takes the cheapest candidate for each profile. In this
way, the algorithm becomes faster than the original CVC algorithm because we do not
have to compute a bipartite matching.

For Hard CVC, basically the same bipartite matching algorithm as in Lemma 6.10 can
be employed. The only modification is that the vertex set VB in the bipartite graph Gbip

contains as many representatives of each vertex v ∈ V \ V ′ as we are allowed to make
copies of it.

As with the kernelization that we presented in the last section, the algorithm for CVC
and its two variants might not seem too attractive from a practitioner’s point of view:
The running time of O(1.2k2

+ n2) is by itself quite large and, moreover, a closer look
at the calculation in the proof of Lemma 6.9 shows that we have somewhat abusively
hidden some exponential factors and polynomials in the O-notation. The underlying
cause of the rather unattractive worst-case running time is that our algorithm is based
on a combination of two expensive enumerative steps, namely the enumeration of vertex
covers and the even more expensive enumeration of combinations of capacity profiles.
It is conceivable that the worst-case running time we have given here can be drastically
improved upon by a more “direct” algorithm that does not rely on a combination of two
enumerations. If such a direct algorithm seems hard to come by, the most promising way
to achieve a better running time would certainly be to try and improve or even replace
the costly enumeration of capacity profiles.

6.4 Summary and Open Questions

Motivated by the problem of efficiently verifying the interactions in a protein interaction
network, this chapter studied a generalization of Vertex Cover called Capacitated
Vertex Cover (CVC) and two variants thereof called Hard CVC and Soft CVC. For all
three problems, we provided a data reduction that yields an O(4kk2) problem kernel and
a fixed-parameter algorithm with running time O(1.2k2

+n2), where k is the cardinality of
the capacitated vertex cover. Notably, whereas the fixed-parameter tractability of Vertex
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Cover immediately follows from a simple search tree strategy, this does not appear to be
the case for Capacitated Vertex Cover and its variants.

As a remark, along with the results discussed in this chapter, further fixed-parameter
results for other variants of Vertex Cover can be found in [118]. These results have led
to some follow-up work by Mölle et al. [184, 185] and Moser [186].

There remain three open questions for future research concerning an improvement and
further investigation of the results that we have presented in this chapter:

• Is it possible to obtain a polynomial-size kernel for CVC and its two variants Soft
CVC and Hard CVC? Are all three problems essentially “equally hard” or is the
Soft CVC variant easier than the other two (because we can somewhat more easily
overcome the vertex capacities)?

• Is there an algorithm for CVC or any of its two variants that only has an expo-
nential factor of ck for some constant c in its running time? In particular, is it
possible to efficiently circumvent the exhaustive enumeration of capacity profiles in
our algorithm?

• Do restricted graph classes such as planar graphs or graphs with bounded treewidth
admit more efficient algorithms for CVC and its variants? (For graphs of bounded
treewidth, the studies by Moser [186] provide a starting point.)

Given the importance of accurate protein interaction data and the relative inefficiency of
accurate interaction testing, being able to efficiently solve the problems we have studied—
especially the Soft CVC problem, as we have outlined previously—would certainly be of
potential utility to the field and thus welcomed by experimental biologists.



Chapter 7

Coping by Surveillance II:
Meeting All Cycles

The previous chapter discussed approaches that cope with the complexity of a biological
network by surveillance of its edges. In this chapter, we take more of a bird’s eye view by
turning our attention to the surveillance of one of the most fundamental and important
structures that these edges form, namely cycles. Due to their inherent feedback function,
cycles play a decisive role in the dynamic behavior of biological networks and, thus,
their surveillance can elucidate the organization of these dynamics. Furthermore, dealing
with cycles is also useful in the context of inferring of biological networks by means of
so-called Bayesian inference.

Formally, this chapter studies the problem of finding a minimum-size feedback vertex set
for a graph, that is, a set of vertices that contains at least one vertex of every cycle. This
is known as the NP-complete Feedback Vertex Set problem. We present a deterministic
fixed-parameter algorithm for it with running time O(24.1k ·nm) where the parameter k

is the cardinality of a minimum-size feedback vertex set of the input graph. Various ideas
are discussed for improving this running time in practice so as to pave a way toward
future implementations of an efficient, deterministic solver.

7.1 Motivation

While a cell must constantly adapt its internal processes in order to react to various stim-
uli, it must at the same time ensure its dynamic stability and proper functioning. This bal-
ance between adaptability and self-control is reliably achieved through feedback [41, 52].
In the biological networks of a cell, feedback functionality is realized by means of cycles,
which—consequently—are gaining more and more attention in systems biology; this goes
so far as to advancing the opinion that “the realization of the importance of cycles is
slowly but inevitably changing our view of living systems” [105]. Not surprisingly along
these lines, feedback structures are probably the most intensively studied among the net-
work motifs we discussed in Chapter 3 [165, 172, 173].

Formally, the problem that we consider in this chapter is to find a minimum-size feedback
vertex set in a graph, that is, to find a set of vertices that meets every cycle:
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Feedback Vertex Set (FVS)
Input: An undirected graph G and a nonnegative integer k.
Task: Find a size-k feedback vertex set in G, that is, a subset V ′ of the vertices
such that each cycle in G contains at least one vertex of V ′. (The induced
graph G[V \ V ′] is therefore a forest.)

As an example, the black vertices in the graph are a size-3 feedback vertex set.

Solving FVS has many practical applications—outside of computational biology, Dehne
et al. [70] mention circuit testing, deadlock resolution and the analysis of manufacturing
processes. Considering biological networks, there are two applications that are of interest
in the context of this work. First—given the importance of feedback cycles to network
dynamics—a minimum-size feedback vertex set can tell us something about the organiza-
tion of a biological network, for example, if there are many disjoint cycles or if all cycles
can be met by choosing only a few vertices that act as “control hubs” of the overall
network dynamics. Second, finding feedback vertex sets plays an important role in the
inference of biological networks (mainly gene regulatory networks) by approaches that
rely on Bayesian inference [24, 29] (see [190] for a recent primer on Bayesian inference
in the area of biological networks).

The currently “best” fixed-parameter algorithms for Feedback Vertex Set achieve a
running time of the form O(ck · mn) for an n-vertex and m-edge graph, albeit with
different constants c (the author contributed to [117]):

• Dehne et al. [70, 71] show the constant c ≈ 10.6

• Guo et al. [116, 117] show the constant c ≈ 37.7.

Surprisingly, both algorithms—although discovered independently of each other—are
very similar and differ mainly in their analysis: At the cost of a rather involved proof,
Dehne et al. achieve a better worst-case bound. Guo et al., on the contrary, show a worse
bound but the proof is comparably easy and accessible. This section presents a refined
variant of the analysis by Guo et al. that somewhat combines the advantages of both
analyses:1 On the one hand, we retain the simplicity of the analysis by Guo et al. while,
on the other hand, we achieve an improved running time of O(24.1k · nm) that is closer
to the result Dehne et al.

One drawback of all known fixed-parameter algorithms for Feedback Vertex Set is of
course the large exponential factor in their running times, be it 10.6k, 24.1k, or 37.7k.
However, as we will show at the end of Section 7.3, there is some hope that this can be
significantly reduced by means of algorithm engineering.

With respect to biological networks, another issue of the currently known algorithms
is that they can only solve FVS optimally on undirected graphs. This is not much of a
problem for metabolic networks, which may be treated as undirected because all reactions
are at a chemical equilibrium, but the algorithm cannot find minimum-size feedback
vertex sets for other interesting biological networks such as gene regulatory networks.

1The differences between our analysis and that of Guo et al. are highlighted after the proof of Lemma 7.3.
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Table 7.1: Improvements of deterministic fixed-parameter algorithms for Feedback Ver-
tex Set that followed the 1992 fixed-parameter tractability result of Downey and Fel-
lows [77]. The nω factor denotes the time required to multiply two n× n matrices.

Worst-case running time Year Source

O(f(k) ·m) (non-constructive) 1994 [36]

O((2k + 1)k · n2) 1999 [78]

O(max{12k, (4 log k)k} · nω) 2002 [217]

O((2 log k + 2 log log k + 18)k · n2) 2004 [139]

O((12 log k/log log k + 6)k · nω) 2005 [218]

O(ck ·mn)

{
c = 37.7
c = 10.6

2005

{
[116, 117]
[70, 71]

(It can of course find minimum-size feedback vertex sets that are of suboptimal size by
treating all edges as undirected.) Unfortunately, it remains a long-standing open problem
whether FVS on directed graphs is fixed-parameter tractable.

The remainder of this chapter is organized as follows: The next section reviews the algo-
rithmic state of the art concerning the FVS problem. This is followed in Section 7.3 by the
discussion of our O(24.1k ·nm)-time fixed-parameter algorithm for FVS. We also present
several observations that could make this algorithm practically applicable. Section 7.4
concludes this chapter with a brief summary of results and a statement of open questions
for future research.

7.2 State of the Art

The FVS problem has been intensively studied both from the perspective of approxima-
tion algorithms as well as exact algorithms. There also exists a very simple and elegant
randomized algorithm due to Becker et al. [29] that solves FVS in O(c · 4k · kn) time with
an error probability of at most (1 − 4−k)c4k

for an arbitrary constant c.2

Concerning the approximability of FVS, a minimum-size solution can be polynomial-time
approximated to within a factor of 2 [20] and linear-time approximated to within a factor
of 4 [24]. Since the problem is MaxSNP-hard [170], there is no hope for a PTAS. Fur-
thermore, any lower approximability bound for Vertex Cover—such as the factor-1.36
lower bound of Dinur and Safra [74]—directly carries over to FVS because any instance
of Vertex Cover can easily be reduced to an instance of FVS by replacing each edge with
two length-2 paths. In directed graphs, FVS is APX-hard [140] (that is, no PTAS exists
for this problem unless P = NP), approximable within a factor of O(log n log log n) in
general [90], and approximable within a factor of 2.25 in the case of planar graphs [110].

2Thus, by choosing an appropriate value c, one can achieve an exponentially small error probability with
only a linear increase in running time.
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Downey and Fellows [77] were the first to show that (undirected) FVS is fixed-parameter
tractable. Since then, there have been a number of improvements over the past decade
which are summarized in Table 7.1. The central question left open for many years was
whether FVS is solvable by an O(ck · nO(1)) time algorithm for some constant c; as men-
tioned in the previous section, this question was positively answered independently by
Guo et al. [117] and Dehne et al. [70] who came up with basically the same algorithm,
but different analyses thereof. Guo et al. [117] also showed that all size-at-most-k feed-
back vertex sets of a graph can be enumerated in O(ck ·m) time, albeit with a very large
constant c involved. The currently best “non-parameterized” exact algorithm for FVS
includes an exponential factor of O(1.76n) [100].

Somewhat motivated by the algorithmic advancements presented in [70, 117], the ques-
tion of finding a kernelization for FVS has also recently been investigated. Burrage
et al. [45] were the first to provide a kernelization that yields a kernel with polynomial
size in k, namely an O(k11) kernel. Very recently, Bodlaender [38] stated the discovery of
an improved O(k3) kernelization.

7.3 Toward Efficiently Solving Feedback Vertex Set

This section discusses an O(24.1k ·mn) algorithm to solve FVS and states various ob-
servations and ideas that might make it applicable in practice. As mentioned in the
introduction, we improve the analysis of Guo et al. [116, 117] so as to obtain an upper
bound on the running time of our algorithm that—while not quite as good as that of
Dehne et al. [70, 71]—is comparably easy to show and accessible.

The differences between our proof and that of Guo et al. lie in the analysis and proof of
Lemma 7.3; following its proof is a short discussion that highlights these differences.

The core of our algorithm is the following proposition that allows us to “compress” a
given feedback vertex set for a graph:

Proposition 7.1. Consider a graph G and a size-k feedback vertex set V ′ for G. There
exists an algorithm that can determine in O(24.1k ·m) time whether G has a size-(k − 1)

feedback vertex set and—if so—constructs one.

Before we proceed to prove this proposition, let us first show how it can be used to yield
an O(24.1k ·mn) algorithm for FVS:

Theorem 7.2. Given a graph G = (V, E), we can find a minimum-size feedback vertex
set V ′ for it in O(24.1k ·mn) time.

Proof. Proposition 7.1 allows us to construct an algorithm with the claimed running
time by using an “iterative compression” strategy [70, 117, 116, 195, 220]: Let the
vertices in V be labeled v1, . . . , vn. The idea is to iteratively consider the increasingly

larger subgraphs G1
def
= G[{v1}] , G2

def
= G[{v1, v2}] , . . . , Gn

def
= G[{v1, . . . , vn}] one after

another. During this process, we maintain a minimum-size feedback vertex set for each
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subgraph Gi by using the “compression algorithm” from Proposition 7.1: A minimum-
size feedback vertex set for G1 obviously is the empty set. Given a minimum-size feedback
vertex set V ′

i for a graph Gi, (1 6 i 6 n − 1), the set V ′
i ∪ {vi+1} is a feedback vertex set

for the graph Gi+1 that contains at most one more vertex than a minimum-size feedback
vertex set V ′

i+1 would. Hence, we can apply the compression algorithm from Proposi-
tion 7.1 using Gi+1 and V ′

i ∪ {vi+1} as input and obtain a minimum-size feedback vertex
set for the graph Gi+1 in O(24.1k ·m) time. Since we apply the compression exactly n

times, the claimed running time follows.

It remains to prove Proposition 7.1. We do so by first proving the following, slightly
weaker variant of this proposition which considers computing a feedback vertex set that
is disjoint to the given one (notice the slightly lower exponential factor).

Lemma 7.3. Consider a graph G and a size-k feedback vertex set V ′ for G. There exists an
algorithm that can determine in O(23.1k ·m) time whether G has a size-(k − 1) feedback
vertex set V ′

new that is disjoint from V ′ and—if so—constructs one.

Proof. We prove the lemma by giving an algorithm that has the claimed running time.
After checking that the vertices in V ′ do not induce a cycle (in which case there does not
exist a disjoint feedback vertex set), we first perform a well-known and standard data
reduction on the input graph G that can be exhaustively applied in O(m) time:

• All degree-1 vertices in V \ V ′ are removed from G. This is correct because, clearly,
these vertices cannot be part of a minimum-size feedback vertex set.

• Every degree-2 vertex in V \ V ′, except if both of its neighbors lie in V ′, is con-
tracted, that is, it is replaced by an edge between its two neighbors. Note that this
can lead to sets of two edges between the same endpoints (one of these endpoints is
always contained in V ′ because V ′ is a feedback vertex set).

Consider the reduced graph G = (V, E). We are seeking after a size-(k − 1) feedback
vertex set V ′

new ⊆ V \ V ′ for G. We now show that this search can be fruitful only
if |V \ V ′| < 9k. For this purpose, we partition the vertices of V \ V ′ into three subsets
based on their neighborhoods:

• VA contains all vertices from V \ V ′ that have at least two edges into V ′.

• VB contains all vertices from V \ (V ′ ∪ VA) with at least three neighbors in V \ V ′.

• VC contains all the remaining vertices from V \V ′, that is VC
def
= V \ (V ′∪VA∪VB).

This partition is illustrated in the following figure:

VA

VB

VC

V
′
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We now separately upper-bound the cardinality of each of these three sets.

To upper-bound |VA|, consider the induced subgraph G[VA ∪ V ′]. Each vertex in VA

connects at least two vertices of V ′. Therefore, since |V ′| = k, any subset V ′
A ⊆ VA

with |V ′
A| > k − 1 has the property that the induced graph G[V ′

A ∪ V ′] contains a cycle.
This implies that the new feedback vertex set that we seek can contain at most k − 1
vertices from VA, and it follows directly that |VA| < k − 1 + zA for some nonnegative
integer zA 6 k − 1 or otherwise there exists no size-(k − 1) feedback vertex set for G that
is disjoint from V ′.

To upper-bound |VB|, observe that G[V \ V ′] is a forest. All leaves of the trees in this
forest are from VA due to the data reduction. By definition, each vertex in VB has at least
degree three in the forest G[V \ V ′]. Thus, we have |VB| < |VA|.

Finally, consider the vertices in VC. By the definitions of VA and VB and because G is
reduced, each vertex in VC has degree three in G and exactly one neighbor in V ′. Hence,
the induced graph G[VC] is a forest that consists of paths and isolated vertices. Two
observations can be made for G[VC]:

• Each path or isolated vertex in G[VC] connects two vertices from VA ∪ VB in the
forest G[V \ V ′]. Hence, the graph G[VC] consists of no more than |VA ∪ VB| − 1 =

|VA| + |VB| − 1 < 2k − 2 + 2zA connected components.

• Each edge in G[VC] creates a path between two vertices in V ′ or connects a vertex
with itself. This implies that any subset of k − 1 edges in G[VC] must induce a cycle
in G[VC ∪ V ′]. Removing a vertex from G[VC] destroys at most two such edges.
Considering the size of the set VA, the disjoint feedback vertex set that we seek can
contain at most k − (|VA| − (k − 1)) 6 k − zA + 1 vertices from VC. Hence, there
must be less than k − 1 + 2 · (k − zA + 1) = 3k − 2zA + 1 edges in G[VC].

The number of vertices in a graph is upper-bounded by the sum of the number of con-
nected components and the number of edges that it contains. Hence, our observations
for G[VC] allow us to conclude that |VC| < (2k − 2 + 2zA) + (3k − 2zA + 1) < 5k.

Summarizing, we have now shown that if the input graph is to have a size-(k−1) feedback
vertex set V ′

new that is disjoint from the given feedback vertex set V ′, then

|V \ V ′| = |VA| + |VB| + |VC| < (k + zA) + (k + zA) + 5k = 7k + 2zA − 5 < 9k

must hold after the data reduction. If this is satisfied, we can search for the set V ′
new

by using an exhaustive algorithm that enumerates all size-(k − 1) subsets of the vertices
in V \ V ′ and, for each of these, checks whether it constitutes a feedback vertex set
for the input graph. Overall, this approach takes O(m) time for the data reduction
and

( 9k
k−1

)
· O(m) time for the exhaustive search. This proves the lemma because we

can upper-bound the binomial coefficient
( 9k
k−1

)
by 23.1k using a variant of Stirling’s

approximation [224] to estimate its factorials.

As mentioned at the beginning of this section, the proof of Lemma 7.3 given by Guo et
al. [116, 117] uses basically the same strategy as presented here; that is, a partitioning of
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the vertices in V \ V ′ into three subsets. The two main differences to our proof concern
the upper bound on the set VC: First, Guo et al. do not use the variable zA and therefore
assume that it is always possible to choose k − 1 vertices from this set to be in the new
feedback vertex set. Second, they consider the isolated vertices and paths in the induced
graph G[VC] independently of each other, yielding two separate upper bounds that, when
combined, are worse than our “holistic” view.

With Lemma 7.3 established, we can now proceed to prove Proposition 7.1:

Proof. [Proposition 7.1] The main idea is that a feedback vertex set V ′
new that is smaller

than the provided feedback vertex set V ′ can be seen as a modification of it. More
precisely, the new feedback vertex set V ′

new—provided it exists—retains between 0 and k−

2 of the vertices from V ′ while the remaining vertices from V ′ are “exchanged” with
vertices from V \ V ′. We can use this observation to construct an algorithm that solves
FVS as follows: All partitions of the set V ′ into two subsets V ′

keep and V ′
out are enumerated

exhaustively. For each such partition, we consider the induced graph G ′ def
= G[V \ V ′

keep].
The set V ′

out is a feedback vertex set for G ′ and, if G is to have a feedback vertex set of
size k − 1 that contains all vertices from V ′

keep, we must find a size-(|V ′
out| − 1) feedback

vertex set for G ′ that is disjoint from V ′
out. But this is exactly the task that the algorithm

from Lemma 7.3 solves, which implies that the time required to check whether the input
graph G has a smaller feedback vertex set than V ′ and—if so—construct one is upper-
bounded by the sum

∑k
i=2

(
k
i

)
·O(23.1i ·m) = O(24.1k ·m).

While the fixed-parameter algorithms for FVS of which we have described a variant in
this chapter were of high theoretical interest at their time of publication, their large expo-
nential factor does not allow for a useful application in practice—the randomized fixed-
parameter algorithm due to Becker et al. [29] (see Section 7.2) is much more efficient.
However, some observations can be made that could possibly lead to an efficient deter-
ministic solver for FVS that is based on the presented algorithm:

• The recently discovered kernelizations [38, 45] can be applied to the original input
graph and to the graphs that the compression algorithm is applied to.

• The decisive factor in the running time shown in Lemma 7.3 is that we do not need
to perform a compression if the reduced graph contains more than 9k vertices.
The better running time of Dehne et al. [70, 71] is based on a proof that already 4k

vertices in a reduced graph make a compression unfruitful. Interestingly, this bound
can be combined with our analysis concerning the size of the set VA in Lemma 7.3,
that is, we know that a compression must fail if either |V \ V ′| > 4k or if |VA| >

2k − 3. This combination could be very effective in order to minimize the number
of calls to the exponential-time part of the compression algorithm.

• Our compression routine (which is the same as that of Dehne et al. [70, 71]) per-
forms an exhaustive brute-force search of all possible subsets of the induced for-
est G[V \ V ′]. This could be done more efficiently: For example, we know from
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our considerations that at least max{0, |VA|−(k−1)} vertices from the set VA must
be put into the new feedback vertex set that the compression algorithm constructs.
Also, our compression routine does not make use of the fact that there can only
exist a size-(k − 1) feedback vertex set, but no smaller one for the input graph due
to the construction of the algorithm, that is, the compression routine could try to
avoid the exploration of feedback vertex sets that would become “too good to be
true.”

• The iterative compression in our algorithm considers the increasingly larger sub-
graphs of the input graph in no particular order and therefore must assume that the
compression step is called for every one of these subgraphs. However, it might be
possible to construct the sequence of subgraphs such that the number of calls to the
compression routine is minimized, for example, by greedily adding all vertices that
will have degree one or two in the resulting subgraph.

Overall, the high practical relevance of FVS certainly makes it worthwhile to consider
these and other ideas for an algorithm engineering approach that—based on the fixed-
parameter algorithm we have presented—leads to an efficient solver for FVS.

7.4 Summary and Open Questions

In this chapter, we have discussed the practical relevance of the Feedback Vertex Set
problem and presented one of the so-far most efficient fixed-parameter algorithms to
solve it. While our algorithm still involves an impractically large exponential factor (even
if the analysis is refined as done by Dehne et al. [70]), we have shown that there are many
points where the problem might be “attacked” by an algorithm engineering approach
and, thus, could be made applicable in practice. This raises the first of two important
questions to be answered by future research:

• Is it possible to develop an efficient, deterministic, and exact solver for FVS based
on the presented algorithm? Are there approaches that have an exponential part in
their running time which is comparable to the 4k factor of the randomized algo-
rithm by Becker et al. [29]?

The second question we state has been open for many years now and—despite intensive
research—only some results for very special graph classes are known [75].

• Is the FVS problem on directed graphs fixed-parameter tractable?

Given that many networks where feedback plays an important role are directed, a further
investigation seems worthwhile.

This concludes our discussion of FVS. Having discussed the problem of efficiently meet-
ing all edges and cycles in this and the previous chapter, the next chapter considers the
problem of efficiently inferring the dynamic flows over the edges of a network.



Chapter 8

Coping by Surveillance III:
Meeting All Flows

As the final of our three chapters that investigate approaches of coping with the complex-
ity of a biological network by means of surveillance, this chapter studies the problem of
selecting a minimum number of vertices in a network such that their surveillance allows
us to infer the flow rates along all of its edges. While mainly studied in the area of wa-
ter distribution networks, we argue that this problem is also of relevance to the efficient
inference of reaction rates in metabolic networks.

The two problems that we study in this chapter are motivated by the observation that,
in order to infer the flow rates of all edges in a network, it suffices to consider some
spanning tree of this network and only keep those vertices under surveillance that have
a lower degree in the spanning tree than in the original network—the surveillance of
vertices that retain their original degree turns out to be superfluous.

The task of finding a spanning tree that minimizes the number of vertices that do not re-
tain their degree is known as the NP-hard Minimum-Vertex Feedback Edge Set (VFES)
problem. This chapter studies the amenability of VFES to fixed-parameter techniques and
obtains a linear-size problem kernel as well as an efficient fixed-parameter algorithm for
it. The dual problem to VFES (with respect to the parameterization) is to maximize the
number of vertices that do retain their degree. This is known as the NP-hard Full-
Degree Spanning Tree (FDST) problem. Although it is W[1]-hard in general—and,
hence, supposedly not fixed-parameter tractable or kernelizable—we are able to show a
linear-size problem kernel for this problem when it is restricted to planar graphs. As we
will argue, this suggests a high effectiveness of the data reduction in practice concerning
sparse graphs in general, even when they are not planar.

8.1 Motivation

The in vivo quantification of reaction rates in a metabolic network—the metabolic fluxes,
as they are commonly called in the literature—has long been recognized as a key element
for the effective and efficient engineering of metabolic pathways [21]. For example, it
allows for a detailed investigation of the behavior that is exhibited by modified or newly
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engineered pathways and suggests possible improvements thereof. However, whereas
the importance of metabolic flux analysis is almost self-evident, it is a very hard task to
actually carry out in practice.

The main problem with the experimental inference of metabolic fluxes is that these are
“per se [. . . ] non-measurable quantities” [228] that have to be measured by indirect
means, that is, by measuring metabolite concentrations inside and outside of a cell.1

Whereas the outside of a cell poses no big challenge, measuring metabolite concentrations
inside of the cell in vivo is a somewhat daunting task. There are two ways to achieve
this measurement in practice: First, fluxes can be measured by labeling metabolites with
isotopes such as 13C and then tracing the fate of these labeled metabolites by means
of nuclear magnetic resonance (NMR) spectroscopy or similar techniques (for example,
see [228]). Second, one can measure only the flow of metabolites into and out of a cell
and try to use the stoichiometric equations2 of its metabolism in order to infer the internal
fluxes; this approach is known as flux balance analysis [39, 144]. Both techniques have
their respective advantages and disadvantages according to [39]:

• Isotopic tracer methods are well-established and rather accurate, but cannot be used
on a large-scale basis due to cost and labor constraints.

• Flux balance analysis has the advantage that metabolite flows into and out of a cell
are easy to measure, but it often leads to ambiguous results concerning the actual
quantitative flows that are inferred because different combinations of internal flow
rates may be responsible for the same net flow into and out of a cell.

In this chapter, we investigate a combinatorial approach that is somewhat a compromise
between these two techniques. It considers the task of finding a minimum-size set of
metabolites such that knowing their concentrations inside of the cell allows us to infer
all metabolic fluxes in conjunction with the easy-to-measure flow of metabolites into and
out of a cell. This problem has been known for a while in the field of water distribution
networks, where one wishes to install pressure meters so as to monitor all flows in the
distribution network [147, 198, 199].3 Using the terminology from fluid networks—
which might be more intuitive than the corresponding biological terminology for the
non-expert reader—there are two key observations concerning the efficient inference of
all flow rates in a network by means of vertex surveillance:

• In order to infer all flows in a network, it suffices to know the flow into and out
of the network and the flow over a set of edges that belongs to a cotree of the
network [212]. A cotree basically is the complement of a spanning tree, that is,
deleting the edges of a cotree in a graph yields a spanning tree of it (see Figure 8.1).

• Instead of monitoring the flow over the edges of a cotree, it alternatively suffices to
install pressure meters at the endpoints of these edges [198, 199].

1An underlying assumption is that the cell is at steady state, that is, all flow rates remain constant.
2Stoichiometric equations state the proportions in which molecules react with one another.
3Unlike metabolic fluxes, it is of course possible to directly measure the flow through a pipeline by means of

flow-meters. However, these are far more expensive than pressure meters.
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G T

Figure 8.1: The above illustration shows a graph G (left) and a spanning tree T of G

(solid edges in the right part). Notice how the dashed edges shown in the drawing of T

constitute a cotree of G. In the spanning tree T , the five gray vertices have a lower degree
than in G, that is, they are reduced-degree vertices. The four black vertices retain their
degree and are hence full-degree vertices.

The latter observation allows us to formulate the efficient inference of flows or fluxes in
a dynamic network as a combinatorial problem:

Minimum-Vertex Feedback Edge Set (VFES)4

Input: An undirected graph G = (V, E) and a nonnegative integer k.
Task: Find a spanning tree T of G that contains at most k reduced-degree
vertices, that is, at most k vertices that have a lower degree in T than in G.

In this chapter, we study the parameterized complexity of VFES using the minimum at-
tainable number of reduced degree vertices as a parameter. We obtain a simple data
reduction that yields a problem kernel for VFES of size linear in k (concerning the num-
ber of vertices) and an efficient O(4kk2 + m)-time algorithm to solve this problem on
an m-edge graph.

Naturally, a key to the effectiveness and efficiency of the kernelization and the algorithm
for VFES is that the parameter k actually turns out to be small. If, however, the param-
eter is large with respect to the problem size, then it suggests itself to consider the dual
problem to VFES in order to obtain a small parameter, that is, instead of minimizing the
number of reduced-degree vertices, we should rather consider maximizing the number of
vertices that retain their degree:

Full-Degree Spanning Tree (FDST)
Input: An undirected graph G = (V, E) and a nonnegative integer k.
Task: Find a spanning tree T of G that contains at least k full-degree vertices,
that is, at least k vertices that have the same degree in T as in G.

Unfortunately, it turns out that FDST is W[1]-hard and hence not amenable to fixed-
parameter algorithms. However, we are able to give data reduction rules for this pro-
blem which—by quite some technical expenditure—are shown to yield a linear-size ker-
nel when the input graph G is planar. This can be seen as a rather strong hint for their
effectiveness in practice on sparse graphs, even when these are not planar.

4The name of the Minimum-Vertex Feedback Edge Set problem can be explained as follows: The edges
of a cotree are a feedback edge set for the input graph because deleting them leaves us with a tree. We are
seeking a feedback edge set such that the number of vertices that are incident to one or more of its edges is
minimized.
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The remainder of this chapter is organized as follows: Section 8.2 reviews the current
literature on VFES and FDST. This is followed by our investigation of the fixed-parameter
tractability of VFES in Section 8.3. More specifically, the linear problem kernel is shown
in Section 8.3.1 and serves as a basis for our O(4kk2 + m) fixed-parameter algorithm in
Section 8.3.2. Section 8.4 presents the data reduction for FDST and shows—in a quite
involved proof—that this yields a linear kernel for FDST on planar graphs. Section 8.5
concludes this chapter with a brief summary and a statement of open questions.

8.2 State of the Art

As we have outlined in the previous section, solving VFES and FDST appears to be a quite
interesting problem in the context of efficiently analyzing metabolic networks. Moreover,
both problems are relevant to various practical applications in water networks and elec-
trical networks [35, 43, 147, 168, 198, 199, 212]. Not surprisingly therefore, VFES
and FDST have been intensively studied in terms of their approximability and tractabil-
ity. Their parameterized complexity, however, has so far been unexplored (although, as
we discuss at the beginning of Section 8.4, an inapproximability proof for FDST due to
Bhatia et al. [35] also shows this problem to be W[1]-hard).

Concerning VFES, Khuller et al. [147] prove it to be APX-hard, meaning that no PTAS
exists for this problem unless P = NP. They also provide an approximation algorithm
that, for any fixed ε > 0, approximates an instance of VFES to within a factor of (2 + ε)

in O(n3 + n2 ·
(8/ε

1/ε

)
) = O(n3 + n2 · 20.41/ε) time. Finally, they show the existence of a

PTAS in planar graphs, albeit nonconstructively and with large hidden constants.

Generally speaking, FDST seems to be the harder problem when compared to its dual
problem VFES. As such, Bhatia et al. [35] showed that it is not polynomial-time approx-
imable within a factor of O(n1/2−ε) for any ε > 0 unless NP-complete problems can
be solved by randomized algorithms that run in polynomial time.5 This bound is almost
tight in that there exists a simple polynomial-time algorithm for FDST that achieves an
approximation factor of Θ(n1/2) [35]. The FDST problem remains NP-complete in pla-
nar graphs but admits polynomial-time approximation schemes there [35, 43]; as with
VFES, these results are shown nonconstructively and do not seem to be applicable in
practice. Broersma et al. [43] present further tractability and intractability results when
VFES is restricted to various special graph classes.

8.3 Algorithms for Minimum-Vertex Feedback Edge Set

This section presents a simple linear-time data reduction for VFES that yields a linear-size
kernel.6 Based on this kernel, we also develop an efficient fixed-parameter algorithm for

5Although not quite as strong as the P 6= NP conjecture, the existence of randomized polynomial-time
algorithms for NP-complete problems is deemed very unlikely.

6Strictly speaking, only the number of vertices is linear in the parameter whereas the number of edges may
be quadratic.
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VFES where the parameter is the minimum attainable number of reduced-degree vertices
in any spanning tree of the input graph.

8.3.1 Data Reduction and Problem Kernel

In order to reduce a given instance of VFES to a problem kernel of linear size, we make
use of a very simple data reduction that was already used by Khuller et al. [147] in their
studies of this problem.

Data Reduction. Consider a graph G that is an instance of VFES. First, remove all degree-
one vertices. Second, perform the following reduction exhaustively: for any pair of adja-
cent degree-two vertices that do not have a common neighbor, replace one vertex of this
pair by an edge between its two neighbors.

Notice how the data reduction is very similar to the one that the previous section used
in the context of Feedback Vertex Set (see Lemma 7.3). Hence, it is easy to verify that
the given data reduction for VFES is correct and can be carried out in O(m) time on
an m-edge graph—we therefore omit an explicit proof here.

Let us call an instance of VFES reduced if the data reduction has been exhaustively applied
to it. The following theorem shows that a reduced graph turns out to be a problem kernel
for VFES.

Theorem 8.1. If there exists a spanning tree for a reduced n-vertex graph G = (V, E)

that has at most k reduced-degree vertices, then it must hold that n < 4k.

Proof. Let T be a spanning tree for the graph G and let Vred denote the set of vertices that
do not retain their degree in T . We partition the vertices in V according to their degree
in T , namely V1 contains all degree-one vertices, V2 contains all degree-two vertices,
and V>3 contains all vertices of degree at least three. Furthermore, we let V red

2 := V2∩Vred

and VG
2 := V2 \V red

2 . As an example for this partition, consider the following illustration:

vertices in V1

vertices in V
red
2

vertex in V
G

2

vertices in V>3

Since G is a reduced graph, it does not contain any degree-one vertices and, thus, every
leaf in T is a reduced-degree vertex. This means that T can have at most k leaves and
that |V1| 6 |Vred| 6 k. Since T is a tree, this directly implies |V>3| 6 k − 2.

As for V2, the vertices in V1 ∪ V>3 are either directly connected to each other or via
a path p that consists of vertices from V2. Because the data reduction contracts edges
between two degree-two vertices that have no common neighbor in the input graph,
at least one of every two neighboring vertices of p has to be a reduced-degree vertex.
Clearly, V red

2 ∪V1 ⊆ Vred. Since T is a tree, this means |VG
2 | 6 |V1∪V>3∪V red

2 |−1 6 2k−3.
Overall, we thus have |V | = |V1 ∪ V red

2 ∪ VG
2 ∪ V>3| < 4k as claimed.
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Based on this kernelization, the next section develops an efficient fixed-parameter algo-
rithm for VFES.

8.3.2 A Simple Fixed-Parameter Algorithm

Naïvely, we can obtain a fixed-parameter algorithm for VFES by exhaustively explor-
ing the problem kernel that we obtained in the previous section: For i = 1, . . . , k, this
algorithm considers all

(4k
i

)
size-i subsets Vred of kernel vertices. For each of these sub-

sets Vred, all edges between the vertices in Vred are removed from the input graph; we
thus obtain at most i reduced-degree vertices.7 If the remaining graph is a forest, we
have found a solution.8 The correctness of this algorithm is obvious by its exhaustive
nature, but notice that its running time is quite expensive, requiring the consideration
of

∑k
i=1

(4k
i

)
> 9.45k vertex subsets. The next theorem shows that we can considerably

improve this based on the idea that an exhaustive approach does not need to consider all
vertices of the problem kernel but only those that have degree at least three.

Theorem 8.2. Given an m-edge graph G = (V, E), a spanning tree which has a minimum
number k of reduced-degree vertices can be found in O(4k · k2 + m) time.

Proof. We start out by performing the kernelization from the previous section on G.
This takes O(m) time. By Theorem 8.1, we know that the remaining graph contains
less than 4k vertices. The algorithm now considers the vertices in V to be partitioned
according to their degree, namely the vertices in the set V=2 have degree two and the
set V>3 contains all vertices with degree at least three. For every size-i subset V red

>3 ⊆ V>3,
1 6 i 6 k, the following two steps are performed:

1. Remove all edges between vertices in V red
>3 . Call the resulting graph G ′ = (V, E ′).

2. For each edge e ∈ E ′ we assign it a weight of w(e) = m + 1 if it is incident to
a vertex in V>3 \ V red

>3 and a weight of 1, otherwise. We then compute minimum-
weight cotrees for every connected component of G ′. If the total sum of edge
weights in these cotrees is at most k − i, then the given instance of VFES has a
size-k solution and the algorithm can terminate.

To justify Step 2, observe that a cotree has a weight of at least m + 1 > k − i if one of
its edges has a vertex of V>3 \ V red

>3 as an endpoint. Therefore, a cotree with weight at
most k − i can only destroy cycles in a connected component of G ′ by containing edges
between V red

>3 and V=2. Removing such an edge results in exactly one more reduced-degree
vertex. Thus, searching for a minimum-weight cotree in Step 2 leads to spanning trees
with at most k reduced-degree vertices in total (the connected components can easily be
reconnected to a single component by adding some edges between vertices in V red

>3).

The running time of the algorithm is composed of the linear time that is required for
the kernelization, the number of subsets that need to be considered, and the time needed

7Note that a vertex in Vred becomes a reduced-degree vertex only if it is adjacent to some vertex in Vred.
8Since the input graph must be connected, we can add some edges from G between the vertices in Vred in

order to reconnect the various connected components and obtain a spanning tree from the forest.
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for Steps 1 and 2. By Theorem 8.1, a reduced graph contains less than 4k vertices and,
hence, at most O(k2) edges. Thus, the time needed for Steps 1 and 2 is upper-bounded
by O(k2).9 By the proof of Theorem 8.1, we know that V>3 6 2k, and hence the overall
running time is upper-bounded by O(m +

∑
16i6k

(2k
i

)
k2) = O(4k · k2 + m).

Note that due to its exhaustive nature, it is likely that algorithm engineering techniques
can improve the practical running time of our algorithm significantly below our worst-
case estimate of O(4k · k2 + m).

Intriguingly, as long as the parameter k is small, its worst-case running time makes our
exact fixed-parameter algorithm a very attractive alternative to the factor-(2 + ε) approx-
imation algorithm of Khuller et al. [147] with its O(20.41/εn2 + n3) worst-case running
time. If, however, the parameter k turns out to be large compared to the input size (that
is, most vertices will become reduced vertices in a spanning tree of the input graph), then
from a “parameterized point of view” one should consider to take the maximum number
of full-degree vertices as a parameter instead of the minimum number of reduced-degree
vertices. This is what we investigate in the next section by studying FDST.

8.4 Data Reduction for Full-Degree Spanning Tree

To show the lower approximability for FDST that we mentioned in Section 8.2, Bhatia
et al. [35] use a reduction from the Independent Set problem, that is, the problem
of finding a maximum-size set of mutually disconnected vertices in a graph. A little
inspection reveals that this reduction is parameterized and hence—because Independent
Set is known to be W[1]-hard—it follows that FDST supposedly is not fixed-parameter
tractable or admits a kernelization with respect to the number k of full-degree vertices.10

The hardness result does not carry over to the case of planar graphs, however. Indeed,
this section shows that FDST on planar graphs even admits a linear-size problem kernel.

Unfortunately, in contrast to our studies of VFES, the constants involved in the linear
upper bound on the size of the problem kernel are too large for directly obtaining an
efficient fixed-parameter algorithm from the kernelization by means of an exhaustive ex-
ploration. On the positive side, however, the fact that our data reduction yields a linear
kernel on planar graphs strongly hints that, in practice, it should be very effective on
sparse graphs in general, even when they are not planar. Furthermore, the data reduc-
tion can be efficiently performed in O(n3) time on any n-vertex graph and thus seems
a useful preprocessing step for any algorithmic approach to solve FDST, be it exact or
approximative.

While the proof of the linear upper-bound on the kernel size is quite technical and in-
volved, the data reduction itself is fairly easy to describe. Intuitively, its goal is to upper-
bound the number of neighbors that two vertices can have in common; this is important
because at most two vertices of a set of vertices {v, w} ∪ (N(v) ∩ N(w)) can retain their

9Computing a minimum-weight cotree is equivalent to computing a maximum-weight spanning tree, which
can be accomplished in O(n2) time on an n-vertex graph [66].

10Parameterized reductions and W[1]-hardness were introduced in Section 2.3.2.
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Figure 8.2: Illustration for the five cases of the data reduction for Full-Degree Spanning
Tree that yield a linear-size problem kernel on planar graphs.

full degree in a spanning tree of a graph (any graph that contains more than two of these
vertices induces a cycle).

Data Reduction. Consider a graph G = (V, E) that is part of an instance of FDST. For
any two vertices v 6= w ∈ V that have at least three common neighbors (that is, v and w

satisfy |N(v) ∩N(w)| > 3), perform the following reductions:

1. Consider three vertices u1, u2, u3 ∈ N(v) ∩N(w): If N(u1) = {v, w} and addition-
ally either N(u2) = {v, w} or N(u2) = {u3, v, w}, then remove u2 (Case 1.1). If
N(u1) = {u2, v, w}, N(u2) = {u1, u3, v, w}, and N(u3) = {u2, v, w}, then remove u3

(Case 1.2).

2. Consider four vertices u1, u2, u3, u4 ∈ N(v)∩N(w): If N(u1) = {u2, v, w}, N(u2) =

{u1, v, w}, N(u3) = {u4, v, w}, and N(u4) = {u3, v, w}, then remove u3 and u4 (Case
2.1). If N(u2) = {u1, u3, v, w}, N(u3) = {u2, u4, v, w}, and there is no edge {u1, u4},
then remove the edge {u2, u3} (Case 2.2).

3. Consider five vertices u1, u2, u3, u4, u5 ∈ N(v) ∩ N(w). If N(u2) = {u1, u3, v, w},
N(u3) = {u2, v, w}, N(u4) = {u5, v, w}, and N(u5) = {u4, v, w}, then remove u3.

Definition 8.3. A graph to which the data reduction has been exhaustively applied is
called reduced.

The five cases of the data reduction are illustrated in Figure 8.2. Note that they can
be applied to any graph irrespective of whether it is planar or not; the planarity is only
required to guarantee that a linear-size kernel is obtained. The correctness and running
time requirements of the data reduction can be established as follows:
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Theorem 8.4. The data reduction is correct and can be carried out in O(n3) time.

Proof. The main observation underlying the data reduction is that if there is a span-
ning tree for the input graph where a vertex u has full degree and a vertex u ′ with
N(u ′) ⊆ N(u) has reduced degree, then there always exists a spanning tree for G where u ′

has full degree instead of u (the full-/reduced-degree status for all other vertices does not
change). This observation can be used to show the correctness of all five cases of the data
reduction.

We only show the correctness of Case 1.1 in detail here because the correctness of the
other four cases can very easily be shown by analogous means. To do so, we show that
the graph G has a spanning tree T with k full-degree vertices if and only if a graph G ′

that results from a single application of Case 1.1 on G has a spanning tree T ′ with k

full-degree vertices.

“⇒” Let T be a spanning tree for the (unreduced) input graph G that contains k full-
degree vertices. To prove the correctness of Case 1.1, observe that at most one of the
three vertices u1, u2, u3 can have full degree in T : otherwise, there would be a cycle.
If u2 does not preserve its degree in T then—simply by deleting u2—we can construct a
spanning tree T ′ for the reduced graph G ′ that has the same number of full-degree vertices
as T . If u2 does have full degree, then u1 must be a reduced-degree vertex or there would
be a cycle in T . Therefore, we can construct a spanning tree for the reduced graph that
preserves the degree of k vertices by letting u1 have full degree instead of u2; if there is
an edge {u2, u3} in G, then we additionally attach u3 to v by an edge in T .

“⇐” Let T ′ be a spanning tree for the reduced graph G ′ with k full-degree vertices. The
only problematic case where we cannot simply add u2 to T ′ to obtain a spanning tree T

for G is when u3 has full degree in T ′. But in that case we can easily modify T ′ to let u1

have full degree instead of u3 by letting u1 keep all of its incident edges and removing the
edge {v, u3} in return.

This concludes our correctness proof for Case 1.1 of the data reduction.

It remains to show the claimed running time. For this purpose, consider the following
algorithm: For every vertex of degree between two and four, we assume it to be the
vertex u2 (that is, temporarily assign it the label “u2”). There is a constant number of
cases to distinguish on how to assign the labels “v,” “w,” “u1,” and “u3” or any subset
thereof to the neighbors of the designated vertex u2. Given one such assignment, at
most two additional vertices have to be found in order to identify a structure to which
one of the data reduction cases applies; for example, in Case 3 of the data reduction,
we must still find the vertices u4 and u5. To efficiently find the at most two remaining
vertices, observe that one of these vertices has degree at most four and must already
have all but one of its neighbors labeled by “v,” “w,” “u1,” and “u3.” Hence, the
remaining two vertices can be identified in O(n) time by checking for each graph vertex
of constant degree whether it already has all but one labeled neighbor; if this is the case,
the unlabeled neighbor constitutes the remaining second vertex. For every designated
vertex u2, the reduction rules are performed at most O(n) times because each reduction
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removes either one of its neighbors or one of its incident edges. The cubic running time
follows: We iterate over all graph vertices of degree at most four, which takes O(n)

time. There are O(1) possible combinations to assign its neighbors the labels “v,” “w,”
“u1,” and “u3.” As outlined above, the remaining vertices of the data reduction can be
identified in O(n) time, and each case is applied at most O(n) times, leading to a total
of O(n3) time.

As mentioned above, the main result that we establish in this section is that the data
reduction—which, as we have just seen, can be performed in O(n3) time—yields a linear-
size kernel for FDST if the input graph is planar. (Note that there are arbitrarily large
planar graphs which are not reduced and only admit a solution of size k = 2, as the
graph · · · exemplifies.)

Theorem 8.5. Consider a planar graph G = (V, E) for which any spanning tree contains
at most k full-degree vertices. If G is reduced, then |V | = O(k).

Together with Theorem 8.4, this means that we can compute a linear-size problem kernel
for FDST on an n-vertex planar graph in O(n3) time.

The proof of Theorem 8.5 is quite involved and spans the next three sections from Sec-
tion 8.4.1 to 8.4.3. Basically, it is achieved by contradiction, that is, we assume to
be given a maximum-size solution Vfull ⊆ V to FDST on G and then show that ei-
ther |V | = O(|Vfull|) holds or Vfull cannot be of maximum size.11 The following gives
a detailed overview of the individual steps that lead to the proof of Theorem 8.5:

1. Section 8.4.1 starts out with the observation that every reduced-degree vertex has at
most distance two to at least one full-degree vertex (Lemma 8.6). This observation
is the motivation for a so-called region decomposition of the input graph which
groups some of the graph vertices into regions, that is, areas that contain two full-
degree vertices and a subset of their two-neighborhood.12

2. In Section 8.4.2, we show that there is a region decomposition such that the number
of resulting regions is linear in |Vfull| (Lemma 8.11). We then proceed to show that
the number of vertices in each region is upper-bounded by a constant if the graph
is reduced (Lemma 8.16). Proposition 8.17 sums up Lemma 8.11 and Lemma 8.16
into the main result of Section 8.4.2, namely that the number of vertices that lie
inside of regions is upper-bounded by O(|Vfull|).

3. Section 8.4.3 complements Section 8.4.2 by considering the vertices that lie outside
of regions. By making use of the O(|Vfull|) upper bound on the number of regions
from Section 8.4.2, Proposition 8.20 establishes an O(|Vfull|) upper bound on the
number of vertices that lie outside of regions.

4. Together, Propositions 8.17 and 8.20 prove Theorem 8.5, upper-bounding the num-
ber of vertices in a reduced graph by O(|Vfull|).

11This type of proof strategy has first been used in work dealing with the Maximum Leaf Spanning Tree
problem [89, 95].

12By “two-neighborhood” of a vertex v, we mean the set of vertices that have distance at most two to it.
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Throughout our proofs in the next sections, we denote the planar graph that we are given
as an instance of FDST by G = (V, E); the maximum-size set of full-degree vertices in G

is denoted Vfull and we use k to denote its size. Finally, we assume that we are working
with an arbitrary but fixed embedding of G in the plane; whenever this embedding is of
relevance, we refer to G as being plane instead of planar.

8.4.1 Decomposing the Graph by Regions

This section prepares the proof of the size-O(k) upper bound on the number of vertices
of a reduced planar graph by introducing a so-called region decomposition for it. The
basic idea behind the decomposition is derived from the following lemma:

Lemma 8.6. Consider a maximum-size set Vfull of full-degree vertices. Every reduced-
degree vertex has distance at most two to at least one full-degree vertex.

Proof. Assume for the purpose of contradiction that a reduced-degree vertex v has dis-
tance at least three to every vertex in Vfull. Let T denote a spanning tree that corresponds
to Vfull, that is, a vertex has full degree in T if and only if it is in Vfull. We now show
how to iteratively transform T into a spanning tree T ′ that has one more full-degree ver-
tex than T , namely v, which contradicts the maximum size of Vfull. The transformation
works as follows: Let e be an edge in G that has v as an endpoint and is not contained
in T . To transform T into T ′, we add e to T . This induces a single cycle C in the resulting
graph and we proceed by distinguishing two cases:

1. If C has length three, delete the cycle’s edge between the neighbors of v.

2. If C contains more than three edges, delete one of the two cycle edges in C that are
incident to a neighbor of v, but not v itself.

We now have a spanning tree T ′ for G where the vertex v has one more edge incident
to it than in T . Also, all full-degree vertices of T remain full-degree in T ′ because v has
distance at least three to every full-degree vertex whereas the transformation only affects
the degree of vertices with distance one and two to v. After repeating the operation for
all edges which are incident to v but not contained in T , we obtain a spanning tree for G

with k + 1 full-degree vertices, thus contradicting the optimality of Vfull.

It is possible to strengthen this lemma, which will be very useful for some proofs.

Lemma 8.7. Consider a maximum-size set Vfull of full-degree vertices. From every reduced-
degree vertex, there are at least two edge-disjoint length-at-most-2 paths into the set of
full-degree vertices.

Proof. Assume for the purpose of contradiction that there exists a reduced-degree ver-
tex v for which every length-at-most-2 path to a full-degree vertex uses the same edge e.
Let T be a spanning tree of the input graph corresponding to Vfull. If we add to T all edges
from the input graph that have v as an endpoint, then v becomes a full-degree vertex but
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Full-degree vertex
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Figure 8.3: Schematic illustration for using the set of full-degree vertices Vfull to partition
parts of the plane input graph into regions. Not all vertices must lie inside of a region
and can also lie in the “outside” area of the decomposition.

this also induces some cycles. Each of these cycles has length at least three, meaning that
each of them contains a length-2 path v, u1, u2 that starts in v and where {v, u1} 6= e.
Since we assumed that every length-at-most-2 path to a full-degree vertex uses the same
edge e, this implies that u1 and u2 are reduced-degree vertices. Hence, we can destroy all
occurring cycles without changing the full-/reduced-degree status of any vertex by delet-
ing the edge “{u1, u2}” in every cycle. In this way, we obtain a spanning tree for the
input graph that has the same full-degree vertices as T and, additionally, the full-degree
vertex v. This contradicts Vfull being of maximum size.

Lemma 8.6 and its stronger variant Lemma 8.7 are the foundation of our strategy to
prove Theorem 8.5: We divide the reduced-degree vertices into two categories based on
whether they lie in the vicinity of either at least two vertices of Vfull or only one vertex
of Vfull. The former vertices will form so-called regions leading to a decomposition that
is illustrated in Figure 8.3. We then separately bound the number of vertices inside of
regions and outside of regions.13 To put this strategy in more precise terms, let us start
with a formal definition of regions:

Definition 8.8. A region R(v, w) between two vertices v, w ∈ Vfull is a closed subset14 of
the plane with the following properties:

1. The boundary of R(v, w) is formed by two length-at-most-5 paths between v and w.
(Note that these two paths do not need to be disjoint or simple.)

2. All vertices which lie on the boundary or strictly inside of the region R(v, w) have
distance at most two to at least one of the vertices v and w.

3. With the exception of v and w, none of the vertices which lie inside of the re-
gion R(v, w) are from Vfull.

The vertices v and w are called the anchor vertices of R(v, w). A vertex is said to lie inside
of R(v, w) if it is either a boundary vertex of R(v, w) or if it lies strictly inside of R(v, w).
We use V(R(v, w)) to denote the set of vertices that lie inside of a region R(v, w).

13This strategy is somewhat similar to the technique used by Alber et al. [4] for proving a linear-size kernel
for the Dominating Set problem on planar graphs.

14A subset of the plane is called closed if it contains all the points that lie on its border.
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Using this definition, the graph can be partitioned by a so-called region decomposition.

Definition 8.9. A Vfull-region decomposition of G is a set of regions R such that there
is no vertex that lies strictly inside of more than one region from R (the boundaries of
regions may touch each other, however.)

For a Vfull-region decomposition R, we let V(R) :=
⋃

R∈R V(R). A Vfull-region decomposi-
tion R is called maximal if there is no region R /∈ R such that R ′ := R∪{R} is a Vfull-region
decomposition with V(R) ( V(R ′).

An example of a maximal Vfull-region decomposition is the following (just as in Fig-
ure 8.3, the full-degree vertices are colored black and the gray areas are the regions; for
the sake of clarity, vertices that strictly lie inside of the regions are not shown):

In the next section, we upper-bound the number of vertices that lie inside of the regions
of a certain maximal Vfull-region decomposition.

8.4.2 Upper-Bounding the Number of Vertices Inside of Regions

In this section, we show that there exists a maximal Vfull-region decomposition R for the
reduced input graph G that consists of O(k) regions and has O(1) vertices in each region.
The proof of this is achieved in several steps: First, Lemma 8.11 shows how to construct a
region decomposition where the total number of regions is O(k). Then, Proposition 8.14
upper-bounds the number of length-2 paths that can occur between two vertices in G;
this proposition is heavily made use of in Lemma 8.16 in order to prove that every region
contains at most O(1) vertices. Finally, Proposition 8.17—which directly follows from
Lemmas 8.11 and 8.16—upper-bounds the number of vertices that lie inside of regions
by O(k).

Definition 8.10. A maximal Vfull-region decomposition that consists of at most O(k)

regions is called linear.

Lemma 8.11. There exists a linear Vfull-region decomposition R for the input graph G.

Proof. The proof essentially follows Alber et al. [4] and can be found in Section A.2 of
the appendix of this work.
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v
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w

Figure 8.4: The only two possible five-facet diamonds (the worst-case diamonds, so to
say) that a reduced plane graph can induce.

It remains to prove that there is only a constant number of vertices inside of each re-
gion. To show this, graph structures that we call diamonds are of great importance (see
Figure 8.4 for two examples of a diamond).

Definition 8.12. Let v and w be two vertices in a planar embedding of the input graph G.
A diamond D(v, w) is a closed area of the plane that is bounded by two length-2 paths
between v and w such that every vertex that lies inside this area is a neighbor of both v

and w. If i vertices lie strictly inside a diamond, then it is said to have (i + 1) facets.

It is vital that the data reduction eliminates those diamonds that have arbitrarily many
facets: at most two vertices of any diamond can retain a full degree in any spanning tree
and hence the possibility of arbitrarily large diamonds would prohibit a provable upper
bound on the size of the reduced graph.

Lemma 8.13. A reduced plane graph G = (V, E) does not contain a vertex-induced
diamond with more than five facets, that is, we cannot find a subset of vertices V ′ ⊆ V

such that the induced graph G[V ′] is a diamond with more than five facets.

Proof. Assume for the purpose of contradiction that G contains a vertex-induced six-
facet diamond D(v, w). Let u1, . . . , u7 denote the common neighbors of v, w such that u1

and u7 are the two vertices on the outer boundary of D(v, w). Due to Case 1.1 of the
data reduction, we have N(ui) \ {v, w} 6= ∅ for 2 6 i 6 6. By Case 2.2, there cannot be a
length-3 path induced by any three of the vertices u1, . . . , u7. Call two vertices ui, ui+1

that are connected by an edge or three vertices ui, ui+1, ui+2 that induce a length-2 path a
block. The seven vertices u1, . . . , u7 are divided into several blocks, each block containing
at most three vertices and having no edge to another block. Since G is reduced, only the
blocks that contain u1 or u7 can have more than two vertices (Case 1.2) and there is
at most one block that contains neither u1 nor u7 (Case 2.1). But then Case 3 of the
data reduction applies, a contradiction to the input graph being reduced. We can thus
conclude that a diamond in a reduced graph can have at most five facets.

The only two possible five-facet diamonds that can occur in a reduced graph are shown in
Figure 8.4. For the same reason that we must avoid arbitrarily large diamonds by means
of the data reduction (namely that no more than two of the vertices can retain a full degree
in any spanning tree), it is important that there cannot be arbitrarily many length-2 paths
between two vertices of the input graph. Thus, we now generalize Lemma 8.13 in order
to obtain an upper bound on the number of length-2 paths between two vertices.
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Proposition 8.14. Let v and w be two vertices in the reduced plane graph G such that
an area A of the plane is enclosed by two length-2 paths between v and w. If neither
the middle vertices of the enclosing paths nor the vertices lying strictly inside of A are
contained in Vfull, then the following holds:

1. If v, w 6∈ Vfull, then at most eight length-2 paths from v to w lie inside of A.

2. If v 6∈ Vfull or w 6∈ Vfull (that is, at most one of v and w is a full-degree vertex), then
at most sixteen length-2 paths from v to w lie inside of A.

Proof. We use Lemma 8.13 to show that the presence of more length-2 paths than
claimed contradicts that Vfull has maximum size. For the first case, that is, neither v

nor w is contained in Vfull, assume that there are nine length-2 paths between v and w

that lie inside of A. Without loss of generality, let these be embedded as follows:

. . .

v

w

u1 u9u2 u3 u4

Recall that none of the vertices u1, . . . , u9 is in Vfull by the prerequisites of the lemma.
Consider the six-facet diamond induced by {v, w, u2, . . . , u8}. By Lemma 8.13, there
must be a vertex u ′ that lies inside this induced diamond but is not adjacent to both v

and w. Since u ′ lies inside the induced diamond, it cannot be adjacent to u1 and u9. By
Lemma 8.6, there must be at least one full-degree vertex in the two-neighborhood of u ′.
But since u ′ it is not adjacent to both v and w, all length-2 paths from u ′ to a full-degree
vertex use the same edge, which violates Lemma 8.7.

Proving the second case is based on having proved the first one: Assume for the purpose
of contradiction that there are seventeen length-2 paths between v and w. Without loss
of generality, we let v ∈ Vfull and w /∈ Vfull. The outermost paths form the bound of
an induced sixteen-facet diamond. The middle path in an embedding further separates
this diamond into two induced six-facet diamonds. Assume that we remove v from Vfull.
Then, using the same argument as in the first case, each six-facet diamond encloses a
vertex that can be made full-degree. Thus, removing v from Vfull and adding these two
vertices, we have a larger solution than the original Vfull, a contradiction to its maximum
size.

This upper bound on the number of length-2 paths between two vertices in a reduced
graph plays a crucial role in upper-bounding the total number of vertices that lie inside
and outside of a region. However, before we can proceed to show the main result of this
section—namely an upper bound on the number of vertices that lie inside of a region—we
furthermore require one more lemma to help us upper-bound the number of neighbors
that a boundary vertex of a region can have.
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Lemma 8.15. Consider a vertex u in the input graph that is adjacent to at least 81
reduced-degreee vertices v1, . . . v81 ∈ V \ Vfull. Then, in the graph G \ {u}, there are at
least three full-degree vertices that are reachable from vertices in the set {v1, . . . v81} via
length-at-most-two paths.

Proof. Let Gu denote the graph G \ {u}. Without loss of generality, we assume that the
vertices v1, . . . , v81 are embedded in a clockwise fashion around the vertex u, that is, v1

is followed by v2, v2 is followed by v3, and so on.

Our strategy to prove the lemma is to show that we can always find at least three ver-
tices vh, vh′ , and vh′′ among the 81 vertices v1, . . . , v81 ∈ V \ Vfull that have a mutual
distance of a least three to each other in Gu. This suffices to show the lemma be-
cause, if there are at most two full-degree vertices that are reachable from vertices in
the set {v1, . . . , v81} via length-at-most-two paths in the graph Gu, then we can remove
these vertices from Vfull and make vh, vh′ , and vh′′ have full degree instead by employing
the same construction that we used in the proof of Lemma 8.7. This would contradict
that Vfull is of maximum size.

We now prove the following claim: If two vertices vi and vi+26, where 1 6 i 6 55, have
distance at most two in Gu, then there exists a vertex vh with i < h < i + 26 that has
distance at least three to all vertices vj with j < i or j > i + 26. To see this claim, assume
that there are two vertices vi and vi+26, 1 6 i 6 55, that have distance at most two to
each other in Gu. This implies the following enclosure of the 25 vertices vi+1, . . . , vi+25

in the plane:

u

u′

vi+26vi · · ·vi+1 vi+25

Without loss of generality,15 let us assume that vi and vi+26 have distance exactly two
to each other, that is, we assume that there exists a path viu

′vi+26 with u ′ 6= u in G.
Due to Lemma 8.14, at most eight of the vertices vi+1, . . . , vi+25 can be adjacent to vi, at
most eight to vi+26, and at most eight to u ′. By a pigeonhole argument (24 < 25), this
means that there is a vertex vh among the 25 vertices vi+1, . . . , vi+25 that is not adjacent
to any of vi, vi+26, and u ′, which in turn implies that vh has distance at least three to all
vertices vj with j < i or j > i + 26 in Gu.

With the claim proved, we can now proceed to show the lemma. For this purpose, we
start out by considering the two neighbors v1 and v27 of u and distinguish two cases
based on whether these two vertices have distance at most two to each other in Gu:

1. As the first case, assume that v1 and v27 have distance at least three to each other
in Gu. Consider the vertex v53: If this vertex has distance at least three to both v1

and v27 in Gu, then we are done because we have found three neighbors of u—
namely v1, v27, and v53—that mutually have distance at least three to each other

15The distance-1 case is much easier to show.
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in Gu. Otherwise, if v53 has distance at most two to either v1 or v27, then we know
by our above claim that there exists a vertex vh, 1 < h < 53, with distance at least
three to all vertices vj, j > 53, in Gu. Now consider the vertices v54 and v80. If
these have distance at least three to each other, then together with vh they form
a set of three neighbors of u with mutual distance at least three in Gu. Finally,
if v54 and v80 have distance at most two to each other in Gu, then there exists a
vertex vh′ with 54 < h ′ < 80 that has distance at least three in Gu to all vertices vj

with j < 54 or j > 80. This implies that vh, vh′ , and v81 have a mutual distance of
at least three in the graph Gu.

2. As the second case, assume that v1 and v27 have distance at most two to each other
in Gu. Then our claim from above tells us that there exists a vertex vh, 1 < h < 27,
that has distance at least three in Gu to all vertices vj with j > 27. We now consider
the vertices v28 and v54: If they have distance at least three to each other in Gu, then
together with vh we have again a set of three vertices with distance at least three to
each other in Gu. Otherwise, there exists a vertex vh′ with 28 < h ′ < 54 that has
distance at least three in Gu to all vertices vj with j < 28 or j > 54, which means
that vh, vh′ , and v55 form a set of three vertices with mutual distance at least three
in Gu.

Using the upper bound from Lemma 8.14 on the number of length-2 paths between two
vertices and the upper bound on the number of neighbors that we have just established,
we can finally obtain a constant upper bound on the number of vertices that lie inside of
a region.

Lemma 8.16. The number of vertices in every region R(v, w) of a Vfull-region decompo-
sition R is upper-bounded by a constant.

Proof. To show the lemma, we partition the vertices that lie strictly inside of a re-
gion R(v, w) into two disjoint subsets VA and VB and separately upper-bound their car-
dinality. (Observe that the number of boundary vertices is automatically upper-bounded
by 10 due to Definition 8.8.)

• The subset VA contains all vertices that are adjacent to a boundary vertex.

• The subset VB contains all vertices that are not adjacent to a boundary vertex.

To upper-bound the size of VA, we partition this set into two subsets VA
1 and VA

>2 de-
pending on the number of adjacent boundary vertices: The subset VA

1 contains all vertices
that are adjacent to one vertex of the boundary and the subset VA

>2 contains all vertices
that are adjacent to at least two vertices of the boundary of R(v, w).

To upper-bound the number of vertices in VA
1 , consider a boundary vertex vb of R(v, w).

Every vertex in VA
1 that is adjacent to vb in the graph G has distance at least three in

the graph G \ {vb} to all full-degree vertices except for, possibly, the two anchor vertices v

and w. By Lemma 8.15, this implies that a boundary vertex must not be adjacent to more
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than 80 vertices from VA
1 . Thus, we have |VA

1 | 6 800 = O(1) because a region has at
most ten boundary vertices.

To upper-bound |VA
>2|, consider the subgraph induced by the boundary vertices of the

region R(v, w). Every vertex in VA
>2 connects at least two vertices of the boundary by a

length-2 path. If we replace each vertex in VA
>2 by one edge between two of its neighbors

that lie on the boundary R(v, w), merging multiple edges in the process, then the resulting
graph clearly must be planar.16 By the well-known Euler formula, a planar graph with n

vertices contains at most 3n − 6 edges, that is, at most 24 edges in our case because the
region has at most n = 10 boundary vertices. By Proposition 8.14, each edge can only
stand for a constant number of length-2 paths, and hence we have shown that |VA

>2| is
upper-bounded by 24 ·O(1) = O(1).

Note that each vertex in VB must be adjacent to some vertex in VA because, otherwise,
it would have distance at least three to all boundary vertices and violate Lemma 8.6.
To upper-bound the size of VB, observe that each vertex in this set must be adjacent
to at least two vertices of VA due to Lemma 8.7. This means that every vertex in VB

connects at least two vertices from VA by a length-2 path. Replacing, for each vertex
in VB, exactly one such path by an edge and merging any multiple edges that emerge
in this process, we obtain a planar graph17 that contains at most 3|VA| − 6 edges. By
Proposition 8.14, each such edge can stand for at most 8 length-2 paths, which in turn
bounds |VB| by (3 · |VA| − 6) · 8 = O(1).

Overall, we have shown that the vertices that lie strictly inside of R(v, w) can be parti-
tioned into two sets VA and VB where |VA| = O(1) and |VB| = O(1). Thus, as claimed,
only O(1) vertices lie inside of any region R(v, w).

Having established the linear upper bound on the number of regions and the constant
upper bound on the number of vertices each of these contains, we obtain the main result
of this section, namely an O(k) upper-bound on the number of vertices that lie inside of
regions.

Proposition 8.17. Given a linear Vfull-region decomposition R for the input graph G, the
number of vertices that lie inside of regions is O(k).

Proof. A linear Vfull-region decomposition contains O(k) regions, each of which has O(1)

vertices lying inside of it by Lemma 8.16.

We now turn our attention to upper-bounding the number of vertices that lie outside of
the regions of a linear Vfull-region decomposition.

8.4.3 Upper-Bounding the Number of Vertices Outside of Regions

The last section gave an upper bound on the number of vertices that lie inside of the
regions of a linear Vfull-region decomposition R. In this section, we upper-bound the

16More precisely, it must even be outerplanar, that is, it has a crossing-free embedding in the plane such that
all vertices are on the same face, but this detail does not need to concern us here.

17Analogously to above, this graph is actually outerplanar.
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number of vertices that lie outside of regions of a linear Vfull-region decomposition. Our
proof strategy is—similar to the previous section—to partition the vertices that lie outside
of regions into two sets based on their adjacency to the full-degree vertices in Vfull and
separately upper-bound the size of each of the two sets. As the first of these two sets, we
consider those vertices outside of regions that are adjacent to some full-degree vertex.

Lemma 8.18. Given a linear Vfull-region decomposition R, the number of vertices that lie
outside of regions and are adjacent to a full-degree vertex is O(k).

Proof. Let VA denote the set of vertices that lie outside of regions and are adjacent to a
full-degree vertex, that is, the lemma claims |VA| = O(k). Note that a vertex u ∈ VA can
be adjacent to at most one full-degree vertex v: If it is adjacent to two full-degree vertices,
these would form a region together with u that could be added to R, thus contradicting
the maximality of the region decomposition. To upper-bound the size of VA, we partition
this set into two subsets, namely a subset Vb

A that contains all vertices from VA that
are adjacent to a boundary vertex other than v (which, as just observed, must not be
contained in Vfull) and a subset V

6b
A that contains the remaining vertices.

To upper-bound the size of Vb
A, consider a vertex u ∈ Vb

A that is adjacent to a full-
degree vertex v. By definition of the set Vb

A, the vertex u is adjacent to some boundary
vertex w 6∈ Vfull. The main observation now is that this boundary vertex w must be
adjacent to v: otherwise, the vertices u, v, w and a part of the boundary on which w

lies form a region which could be added to R, contradicting the maximality of the region
decomposition. It is now easy to see that |Vb

A| = O(k): Since the region decomposi-
tion R is linear, the number of boundary vertices that are adjacent to a full-degree vertex
is O(k). Furthermore, by Proposition 8.14, at most 16 vertices that are adjacent to a
full-degree vertex can be connected to the same boundary vertex. Hence, we obtain the
upper bound |Vb

A| = 16 ·O(k) = O(k).

It remains to upper-bound |V
6b
A|. Consider a vertex u ∈ V

6b
A that is adjacent to a full-degree

vertex v. Recall that by now we already know u to be adjacent to exactly one full-degree
vertex and to no boundary vertex except v. This means that, with the exception of v,
all neighbors of u lie outside of a region. Furthermore, none of these neighbors can
be adjacent to a full-degree vertex because this would lead to a region that could be
added to R, contradicting its maximality. We have thus established that every path from
a vertex u ∈ V

6b
A to a full-degree vertex either contains v or has length at least three.

This allows us to upper-bound |V
6b
A ∩ N(v)| by 80 (Lemma 8.15), which directly implies

that |V
6b
A| 6 80 · k = O(k).18

Overall, we have thus shown that |VA| = O(k) as claimed.

We now turn our attention to upper-bounding the remaining vertices that lie outside of
regions, that is, those vertices that are not adjacent to a full-degree vertex.

18Note that this bound could easily be improved by strengthening Lemma 8.15 for the case where no full-
degree vertices are reachable from the reduced-degree neighbors of a vertex v via a length-at-most-three path
in the graph G \ {v}.
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Lemma 8.19. Given a linear Vfull-region decomposition R, the number of vertices that lie
outside of regions and are not adjacent to a full-degree vertex is O(k).

Proof. Let VB denote the vertices that lie outside of regions and are not adjacent to a
full-degree vertex. Furthermore, let Vb denote the set of boundary vertices in the given
region decomposition and—as in the previous proof—let VA denote the set of all vertices
that lie outside of regions and are adjacent to one or more full-degree vertices.

The key idea of the proof is that, in order to show the upper bound |VB| = O(k), it suffices
to prove that every vertex in VB is adjacent to at least two vertices of VA ∪ Vb. To show

this sufficiency, define a graph G ′ = (V ′, E ′) with vertex set V ′ def
= VA ∪ Vb and the edge

set E ′ constructed as follows: For each vertex in VB that has at least two adjacent vertices
in VA ∪ Vb, add an edge that connects any two of these vertices, merging any multiple
edges in the process. Clearly, the graph G ′ is planar because the input graph G is planar
and we have simply replaced some of its degree-at-least-2 paths by edges. As in previous
proofs, we can use the Euler formula to obtain

|E ′| 6 3|V ′| − 6 < 3|VA ∪ Vb| < 3 ·O(k) = O(k) .

By Lemma 8.14, every edge in E ′ can stand for at most eight vertices in VB. Hence, if
every vertex in VB is adjacent to at least two vertices from VA ∪ Vb, this also means
that |VB| = 8 ·O(k) = O(k).

It remains to show that every vertex in VB is indeed adjacent to at least two vertices
of the set VA ∪ Vb. Using Lemma 8.7, we know that each vertex in VB has at least
two edge-disjoint length-2 paths to at least one full-degree vertex. In other words, each
vertex u ∈ VB is adjacent to two vertices v and w that themselves are adjacent to some
full-degree vertex. If one of these two vertices lies outside of a region, it belongs to
the set VA; if it lies inside of a region, then—since u does not lie inside of a region—
it is a boundary vertex and thus belongs to the set Vb. Hence, every vertex in VB is
adjacent to at least two vertices from the set VA ∪ Vb, which—as argued above—proves
the lemma.

Proposition 8.20. Given a linear Vfull-region decomposition R, the number of vertices
that do not lie inside of a region is upper-bounded by O(k).

Proof. Lemma 8.18 gives an O(k) upper bound on the number of vertices that lie outside
of regions and are adjacent to one or more full-degree vertex; Lemma 8.19 gives an O(k)

upper bound on the number of vertices that lie outside of regions and are not adjacent to
any full-degree vertex.

With this proposition established, we have finally completed our proof of Theorem 8.5,
namely that the data reduction at the beginning of Section 8.4 yields a linear-size problem
kernel for FDST on planar graphs. To briefly recapitulate this proof in one sentence: We
have shown in Lemma 8.11 that the input graph can be decomposed into O(k) so-called
regions such that both the number of vertices that lie inside of regions is upper-bounded
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by O(k) (Proposition 8.17) and the number of vertices that lie outside of regions is upper-
bounded by O(k) (Proposition 8.20), leading to the overall O(k) upper bound that is
claimed by Theorem 8.5.

Certainly, the linear kernel for FDST on planar graphs is interesting in various respects.
For example, it is one of the so far few examples where both a problem and its dual
possess linear-size problem kernels.19 But it also has two weak spots: First, the constant
that is hidden by the O-notation in the linear upper bound of the kernel size is rather
large (a few thousand). Second, we motivated the study of FDST by an application
in metabolic networks, which are usually not planar. As to the large hidden constant,
it should be noted that our analysis was primarily focused on establishing the linear
bound on the size of the kernel, so a refined analysis is likely to significantly improve the
hidden constant. Concerning the non-planarity of metabolic networks, recall that our
data reduction is applicable to any input graph; the planarity is only required to obtain
the kernel. There are very encouraging results from the study of the Dominating Set
problem which suggest that in practice, reduction rules that yield a linear problem kernel
for planar graphs perform extremely well on sparse graphs in general [2, 3, 4]. But of
course, this remains to be tested.

8.5 Summary and Open Questions

This chapter considered the combinatorial problem of efficiently inferring the dynamic
flows in a network by surveillance of its vertices. This led us to the study of the two dual
problems VFES and FDST. We were able to show that VFES admits a linear-size kernel
that can be used as a basis for an efficient fixed-parameter algorithm; for FDST, we
discovered that the problem is W[1]-hard in general but were—by significant technical
expenditure—able to give a set of five data reduction rules that lead to a linear kernel
when the input graph is planar.20

There remain a number of interesting questions for future research which we mainly see
in the area of implementing and testing the algorithms of this chapter:

• How do implementations of our fixed-parameter algorithm for VFES perform, es-
pecially when compared to the existing approximation algorithms of Khuller et
al. [147]? How does the practical running time compare with the O(4kk2 + m)

worst-case upper bound we have given and can it be improved by algorithm en-
gineering techniques? Note that in a practical implementation, the data reduction
we have given for FDST can also be applied to instances of VFES, only that when
deleting a vertex, we have to remember it in order to add it back to the solution set
of reduced-degree vertices after solving VFES on the reduced instance.

19Other examples—again restricted to planar graphs—are Vertex Cover and its dual Independent Set [59]
and Dominating Set and its dual Nonblocker [4, 58, 69].

20As a remark, the linear kernels that we obtained in this chapter can be used to show that VFES is solvable
in O(2O(

√
k log k) + k5 + n) time and FDST in O(2O(

√
k log k) + k5 + n3) time by making use of tree decom-

positions for planar graphs [119]. However, the constants that are hidden in the O-notation of the exponent
are impractically large.
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• How effective in practice is the data reduction that we have given for FDST? Is there
a significant difference between planar graphs and other types of graphs that are
practically relevant? How well are metabolic networks amenable to this reduction?

• Is it possible to significantly improve the constant in our upper bound on the kernel
size for FDST on planar graphs? Can this improved bound be shown by a refined
analysis of our data reduction or are new data reduction rules necessary for that
purpose?

• Does our data reduction yield a kernel for FDST on other graph classes such as
graphs of bounded genus?21

As we have outlined in the introduction of this chapter, the efficient inference of flow rates
in a network is a key to a better understanding and improved engineering of it. Therefore,
it certainly seems worthwhile to assess the practical applicability and performance of
the algorithms we have developed in this chapter. Especially for the kernelizations, this
could open the door to a fruitful dialog between practitioners and theoreticians: the
kernelizations can explain and prove why certain data reductions work well in practice
and the quest for new kernelizations can lead to new and powerful data reduction rules.

This chapter concludes our investigation of approaches that cope with the complexity of
a biological network by means of surveillance. Thus far in this work, we have seen that
inferring information about a biological network and elucidating its functional principles
leads to many hard problems to be solved. For this reason, it seems clear that once such
knowledge is gained, we will want to use it as much and as effectively as possible. One
approach to do so is to transfer knowledge from well-studied networks to other, similar
networks that are not that well understood. This is the approach of network comparison,
which we investigate in the next chapter.

21Intuitively, a graph of bounded genus is a graph that is “almost” planar, that is, it can be embedded on
surfaces that are topologically similar to a plane; see, for example, [73] for details.



Chapter 9

Coping by Comparison:
Metabolic Pathway Alignment

As we have seen in the previous chapters, analyzing and understanding biological net-
works is often a quite tedious task. Once a biological network is somewhat well-studied
and -understood, however, this knowledge can be used to facilitate the analysis of similar
networks by computing and inspecting network alignments: These allow for a knowledge
transfer from well-studied data to new data, point out evolutionary similarities, and fa-
cilitate database searches and -integration. Consequently, a number of algorithms has
been proposed for computing biological network alignments.

Unfortunately, aligning two graphs is computationally hard because it involves solving
the NP-complete Subgraph Isomorphism problem or some generalization thereof. For
metabolic pathway alignments, existing algorithms try to circumvent this hardness by
restricting the topology of the host and pattern network to be cycle-free. In particular,
Pinter et al. [210] proposed an algorithm for the alignment of metabolic pathways that
demands that the host and pattern network be trees. This restriction, however, severely
limits the applicability of their algorithm because many metabolic pathways do contain
cycles which must be dealt with.

This chapter proposes a novel algorithm for the alignment of metabolic pathways that
does not restrict the topology of the host or pattern network. Instead, we observe what
we call the local diversity property of metabolic networks and exploit it to obtain a very
fast and simple alignment algorithm. A testbed of pathways extracted from the BioCyc
database [141] reveals our algorithm to be much faster than the approach of Pinter et
al. [210], and yet—since it does not impose any topological restrictions—it is easier to
use, has a wider range of applicability, and can therefore yield new biological insights.

9.1 Motivation

Comparative studies of biological sequences are fruitful in many areas of bioinformatics,
ranging from the analysis and prediction of molecular function to large-scale evolution-
ary studies [82, 187].1 Similarly, using the rich nonlinear data of biological networks

1A thorough treatment of the involved algorithmics can be found in [120].

147
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for comparative studies promises to have many important applications as well; a recent
survey even advances the opinion that “network comparison techniques promise to take
a leading role in bioinformatics [. . . ] in elucidating network organization, function and
evolution” [232].

Concretely, some of the possible applications for large-scale network alignments of pro-
tein interaction networks and metabolic networks are the following:

• Developing a better understanding of (relatively) unknown networks through a
knowledge transfer from well-studied networks [145, 232].

• Highlighting differences between various organisms, between the same network at
different points in time, or between different pathways. This is useful in order to,
for example, uncover hidden similarities between different pathways [210] or study
the effect of external perturbations such as an infection [49].

• Classifying and predicting the function of unknown proteins based upon similarities
of their interaction patterns [23, 234].

• Integrating biological network databases and checking their consistency.

• Querying databases for network components. This is likely to become very impor-
tant in the context of metabolic networks given the emerging efforts to reengineer
and reinvent these as we outlined at the beginning of Chapter 1.

Interesting and important as these applications may be, there is a downside: Algorith-
mically, aligning networks is very hard because virtually any practically relevant formal-
ization of this task can be traced back to the NP-complete Subgraph Isomorphism
problem, that is, an algorithm that aligns networks in a biologically meaningful way can
usually also solve Subgraph Isomorphism.2

Subgraph Isomorphism
Input: Two graphs G (the pattern) and H (the host).
Task: Find whether H contains a subgraph that is isomorphic to G.

Since Subgraph Isomorphism is a generalization of many NP-complete problems such
as Clique or Hamilton Cycle it is as hard as any of these to solve—which essentially
means very hard, even for an NP-complete problem. Subgraph Isomorphism is NP-
complete even when restricted to graph classes that often render NP-complete problems
tractable, for instance, if the pattern is a forest and the host is a tree or if the pattern is
a tree and the host has bounded treewidth [107]. Polynomial-time algorithms are only
known if the host graph has bounded treewidth ω and the pattern graph has either a high
connectivity or bounded degree; in these cases, Subgraph Isomorphism can be solved
in O(nω+1

P · nH) time for an nP-vertex pattern and nH-vertex host [72, 121, 177].

2For example, this section formalizes metabolic pathway alignment to the task of finding a high-scoring
homeomorphic subgraph; by setting a very high gap penalty so as to avoid the edge splitting that is allowed for
homeomorphism, the scoring scheme in Section 9.3.1 can be tuned so that we find only isomorphic subgraphs.
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Various algorithms have been proposed for aligning metabolic networks, which the next
section reviews in detail. Interestingly, all of these algorithms basically take the same ap-
proach to overcome the hardness of Subgraph Isomorphism: they restrict the topology
of the host and pattern network to be cycle-free, that is, to be a simple path or a tree. But
since metabolic pathways usually do contain cycles, all of the existing algorithms in turn
suffer from at least one of the following severe drawbacks:

1. Limited Applicability. If cycles are not dealt with at all, many biological networks
of interest simply cannot be aligned.

2. Long Running Time. To deal with cycles, the networks can be automatically de-
composed into one or more cycle-free subgraphs. Whether these decompositions
are randomized or deterministic, many of them are necessary to ensure that all
good matches for the pattern are found. This leads to exponential running times
that limit the applicability of the algorithm: For example, the PathBlast algo-
rithm [145] that we describe in the next section requires O(`!) runs for a pattern
network that is a simple length-` path, effectively limiting the size of this pattern to
about six vertices.

3. Requirement of Manual Labor and Expert Knowledge. As an alternative to auto-
matic decompositions, one can use expert knowledge and manually decompose the
input networks into cycle-free subgraphs. Such an approach was chosen, for ex-
ample, by Pinter et al. [210] to obtain the dataset for their alignment tool (besides
simply excluding some of the pathways that contain cycles [225]). It is clear, how-
ever, that such a process is tedious, error prone, and not always applicable because
we must be somewhat certain what the result should look like.

There is another, rather surprising property that all existing algorithms that are suitable
for metabolic pathway alignment have in common: They do not algorithmically exploit
the fact that vertices or edges in metabolic networks are functionally labeled by the en-
zymes they represent; rather, these labels are only used for similarity scoring.

This chapter proposes a novel algorithm for metabolic pathway alignments that takes an
alternative approach to the existing algorithms: Instead of making the alignment task
algorithmically tractable by restricting the topology of the host and pattern network,
we make use of their labeling. More specifically, we observe that metabolic pathways
often possess a so-called local diversity property that can be exploited in order to obtain
an algorithm for metabolic pathway alignments that is simple, fast, and does not suffer
from the abovementioned drawbacks because it does not need to restrict the topology of
the pathways that it is applied to.

The remainder of this chapter is structured as follows: The next section reviews the
algorithmic state of the art concerning alignment algorithms for metabolic pathways.
Section 9.3 introduces our novel alignment algorithm for metabolic pathways by devel-
oping it in three steps: First, Section 9.3.1 formalizes our network alignment problem and
presents a simple—yet impractical—algorithm for it called match. Second, Section 9.3.2
introduces the local diversity property of metabolic networks which, third, is exploited in
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Section 9.3.3 by slightly modifying the match algorithm so as to obtain our new pathway
alignment algorithm fit-match. Section 9.4 reports experiments with an implementation
of fit-match on a testbed of metabolic pathways from the BioCyc database [141]. These
show that our implementation is very fast and—because it does not restrict the topology
of the input networks—has a wider range of applicability. Section 9.5 concludes this
chapter with a brief summary and a statement of open questions.

9.2 State of the Art

Graph alignments are important to many areas of computer science such as pattern recog-
nition, database applications, and computer vision. Consequently, It is not surprising that
a vast amount of literature is available on this topic which is impossible to cover here. We
therefore defer to a survey by Conte et al. [65] for a general overview and a recent article
by Sharan and Ideker [232] that surveys alignment algorithms for biological networks
and their importance to bioinformatics. Here, we focus our review on algorithms that
are suited for the alignment of metabolic pathways.

Two algorithms that have originally been devised for protein interaction networks but
are also applicable to metabolic pathway alignment are the following; both assume that
the pattern graph is a simple path:

• Kelley et al. [145] presented an algorithm called PathBlast that, when given a lin-
ear length-` pathway as a query, randomly decomposes the host graph into linear
pathways which are then aligned against the pattern using standard sequence align-
ment algorithms. The algorithm requires O(`!) random decompositions to ensure
that no significant alignment is missed, effectively limiting the size of the query to
about six vertices.

• Shlomi et al. [236] recently proposed an algorithm that aligns a linear pattern graph
to a host graph by making use of the color-coding technique that we discussed in
Chapter 4. Even with the algorithmic improvements that we discussed there, this
approach is limited to simple paths that consist of about ten vertices.3

Some works also mention the work of Tohsato et al. [248] in this context who also
studied the alignment of linear metabolic pathways, but their approach is somewhat too
restrictive because it demands that both the pattern and the host be simple paths.

In 2005, Pinter et al. [210] presented an algorithm called MetaPathwayHunter that is
specifically conceived for aligning metabolic pathways. Their approach restricts the host
and pattern graph to be trees, in which case the alignment task becomes polynomial-
time solvable [211]. As we discussed in the previous section, this is a quite problematic
restriction because many metabolic pathways do contain cycles. While Pinter et al. [210]

3Note that the running times when we use color-coding to align a length-` path to a network are different
to those we present in Chapter 4. The reason is that a length-` pattern path could be aligned to a longer path
in the host network if we allow gaps in the alignment.
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state that many pathways “can be easily cast [. . . ] or transformed” to cycle-free graphs,
it does not appear to be fully clear how this can be accomplished convincingly.4

For the sake of completeness, it should be noted that a number of alignment algorithms
have been proposed for protein interaction networks that are not suited for aligning
metabolic pathways: These use highly conserved protein complexes (recall from Sec-
tion 2.1.2 that many proteins which perform related functions bind to each other to form
complexes) as seed structures for the alignment and then greedily extend these [161,
197, 233, 245]. Since metabolic networks lack such “reliable” seeds—especially when
enzymes are considered on a purely functional basis—such algorithms do not seem app-
licable to metabolic networks.

In the next section, we develop an algorithm that solves the same problem formalization
as Pinter et al. [210], but does not require the host and pattern to be a tree. It thus
solves the most general variant of metabolic pathway alignment and, nevertheless, our
experiments show it to be much faster than the approach of Pinter et al. [210].

9.3 A New Fast and Simple Pathway Alignment Algorithm

This section presents our novel algorithm for metabolic pathway alignment. We begin in
Section 9.3.1 by formalizing the problem of metabolic pathway alignment and presenting
a simple (but impractical) combinatorial algorithm “match” to solve it. This is followed
by an introduction to the concept of local diversity in Section 9.3.2. Finally, Section 9.3.3
shows how local diversity can be used to modify match in order to obtain a fast and
simple alignment algorithm for metabolic pathways that we call fit-match.

In the remainder of this chapter, we model metabolic networks as connected directed
graphs. Each vertex represents an enzyme and is labeled with the EC number of that
enzyme. (Recall from Section 2.2.3 that the EC number is a four-number hierarchical
classification scheme that is based on enzyme function.) Two vertices u and v are con-
nected by a directed edge (u, v) if a product of the reaction catalyzed by u is a substrate
of the reaction catalyzed by v. To simplify our discussion, we call a vertex with exactly
one outgoing and one incoming edge (not counting self loops) a path vertex; all other
vertices are called branch vertices.5

Concerning notation, the pattern graph is always denoted GP = (VP, EP) and the host
graph is denoted GH = (VH, EH). It is assumed that the reader is somewhat familiar with
the concepts of graph isomorphism and homeomorphism as introduced in Section 2.4.

4By personal correspondence with one of the authors [225] and through our own experiments, we found
out that the experimental dataset for the paper of Pinter et al. was created by manual construction: for some
pathways, they omitted certain edges, other pathways that are rich in cycles appear to have been removed
completely.

5Although somewhat counterintuitive, we chose to use the term “branch vertex” also for vertices with degree
one for the sake of simplicity.
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9.3.1 Formalization and a Simple Backtracking Algorithm

In order to formalize the alignment problem we are trying to solve, we must define two
things, namely what we mean by “alignment” and what we view as a “good” or “high-
scoring” alignment. Concerning a formalization of alignments, Pinter et al. [210] argue
that subgraph homeomorphism is well-suited for aligning metabolic networks because
branch vertices are well-conserved whereas paths may be elongated or shortened. We
follow this by using the notion of an embedding to formalize an alignment.

Definition 9.1. An embedding of a pattern graph GP into a host graph GH is a tu-
ple (G ′

H, ϕ) where G ′
H is a subgraph of GH that is homeomorphic to GP and ϕ is a

homeomorphism between G ′
H and GP.

As an illustration for this definition, consider a pattern graph GP and a host graph GH as
shown below:

u

v w xGP GH

Three possible embeddings of GP into GH would be the following (the four branch ver-
tices in GP are marked for clarification):

uv

w x

u
v

w x

u v

w

x

We can use the notion of an embedding to phrase metabolic pathway alignment as a
combinatorial problem called Maximum-Score Embedding.

Maximum-Score Embedding
Input: Two directed labeled graphs GP = (VP, EP) and GH = (VH, EH).
Task: Find the maximum-score embedding of GP into GH.

It remains of course to define the scoring scheme that we plug into this problem defi-
nition. Again, we follow Pinter et al. [210] and make use of a scoring scheme due to
Tohsato et al. [248] that is based on mutual vertex–vertex similarities (observe that topo-
logical similarity is already ensured by relying on homeomorphisms). The similarity of
two enzymes is calculated from the functional EC numbers that we introduced in Sec-
tion 2.1.2—the more of the code two enzymes have in common, the more similar they
are considered to be.6 The scoring scheme also incorporates an information-theoretic
consideration, namely that the similarity of two enzymes due to a common prefix in their
EC numbers is the more significant the less this prefix occurs among all enzymes.

Definition 9.2. Let the vertices u and v represent two enzymes e1 and e2, respectively.
If the lowest common enzyme class of e1 and e2 as determined by their EC numbers
contains h enzymes, then the similarity of u and v is defined as sim(u, v) := − log2 h.

6For some applications, a purely functional classification might be suspect and one might want to addition-
ally include genetic similarity information for the enzymes; we do not consider this here, however.
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As an example consider two enzymes with the EC numbers 2.8.1.2 and 2.8.1.7. Their
lowest common enzyme class is 2.8.1, which currently contains seven enzymes. So the
similarity of the enzymes would be − log2 7 ≈ −2.81. More generally, identical enzymes
have a similarity score of 0 in our scoring scheme and different enzymes always yield a
negative similarity score.

Using the scoring for pairwise similarity, we can define a similarity score for two simple
paths that is based on the notion of a sequence alignment:

Definition 9.3. A sequence alignment between a given length-x sequence u1u2 · · ·ux and
a given length-y sequence v1v2 · · · vy, both over an alphabet Σ, is defined to be a set of
pairs S = {(ui1 , vi1), (ui2 , vi2), . . . , (uij

, vij
)} such that every sequence element occurs in

at most one pair and there are no two pairs that are crossing, that is, there are no two
pairs (ua, vb), (uc, vd) ∈ S with a < c and b > d. Given an alignment S, a similarity
function sim : Σ × Σ → R, and a number g ∈ R called gap penalty, the score of an
alignment is defined as

(x + y − |S| · 2) · g +
∑

(ua,vb)∈S

sim(ua, vb) .

Every sequence element that does not occur in a pair in S is said to be aligned to a gap.

Definition 9.4. Given two simple paths p1 = u1 . . . ux, p2 = v1 . . . vy and a negative gap
penalty g, their similarity sim(p1, p2, g) is defined as the maximum possible score of a
sequence alignment between p1 and p2 using g as the gap penalty.

There exist various algorithms to efficiently calculate a maximum-score sequence align-
ment in O(x · y) time for two sequences of lengths x and y (for example, see [82, 263]).
Naturally, these can also be used to compute sim(p1, p2, g) for two simple paths p1

and p2.

To score an embedding of a pattern GP into a host GH, we sum over the similarity scores
of branch vertices that are mapped onto each other and the similarity of the simple paths
that connect them. Two special cases need to be dealt with:

1. If two or more paths connect a pair of branch vertices, it is ambiguous how these
paths are to be mapped onto each other. We resolve this by mapping them so as to
maximize the overall score of the embedding; this is a maximum bipartite matching
problem which can be solved in polynomial time [66].

2. If the pattern is a simple cycle, then there are no branch vertices where a simple
path could start or end. We resolve this issue by letting two path vertices in the
pattern graph and two vertices in the subgraph G ′

H of the host graph artificially be
“branch vertices” so as to maximize the resulting alignment score.

For the sake of simplicity in our presentation, let us assume from now on that there is
at most one simple path between any two branch vertices and that neither the pattern
nor the host is a simple cycle. Our implementation in Section 9.4 does not impose any of
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these restrictions, but handling them explicitly in the remainder of this section obfuscates
the main ideas. To render the scoring of an embedding precise, we use the following
definition:

Definition 9.5. Given an embedding (G ′
H, ϕ) of a pattern graph GP in a host graph GH,

let B(GP) denote the branch vertices of GP. For two branch vertices u and v let p(u, v)
be the simple path between u to v; if no such path exists, then p(u, v) is the empty graph.
Given a gap penalty g < 0, the score of (G ′

H, ϕ) is defined as

score(G ′
H, ϕ) :=

∑
v∈B(GP)

sim(v, ϕ(v)) +
∑

u,v∈B(GP)

sim
(
p(u, v), p(ϕ(u), ϕ(v) ) , g

)
.

Naïvely, Maximum-Score Embedding can be solved by a simple backtracking algorithm
that exhaustively explores all possible embeddings of a given pattern graph GP into a host
graph GH. Formally, this algorithm is best described by using the notions of a partial
embedding and extensions thereof.

Definition 9.6. A partial embedding of a pattern graph GP into a host graph GH is an
embedding of a connected subgraph G ′

P of GP into GH. It is denoted by (G ′
P, G ′

H, ϕ)

(where ϕ is the homeomorphism between G ′
P and G ′

H). Consider a simple path p in GP

that connects two branch vertices u and v such that at least one of these branch vertices is
in G ′

P but no path vertex of the path p. An extension of a partial embedding (G ′
P, G ′

H, ϕ)

by p is a partial embedding of the subgraph induced in GP by G ′
P, u, v, and p that is

identical to (G ′
P, G ′

H, ϕ) when restricted to the vertices of G ′
P.

To illustrate the concept of a partial embedding and its extensions, consider the example
graphs GP and GH we used above to illustrate the notion of an embedding:

v
w

u

v w x

GP GH Partial embedding of GP into GH

The shown partial embedding has ten possible extensions by the path from u to v:
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We can now describe our naïve backtracking algorithm for solving Maximum-Score
Embedding. This algorithm, which we call match, starts out by aligning a branch vertex
of the pattern to a branch vertex in the host graph and then uses a recursive subprocedure
extend that takes as input a partial embedding and tries all possible extensions for it,
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thus enumerating all embeddings of the pattern graph into the host graph.

Algorithm: match(GP,GH,g)
Input: Two labeled graphs GP = (VG, EG), GH = (VH, EH) and a gap penalty g.
Output: A maximum-score embedding of GP into GH, if one exists.
Global variables: Graphs GP and GH, score maxscore, and embedding best.

01 best← null ; maxscore← −∞
02 u← arbitrary vertex from VG

03 for each v ∈ VH do
04 (G ′

P, G ′
H, ϕ)← partial embedding by mapping u to v

05 call extend(G ′
P, G ′

H, ϕ)

06 return best

extend(G ′
P, G ′

H, ϕ)

E1 if G ′
P 6= GP then

E2 p← simple path in GP not contained in G ′
P such that at

least one of the connected branch vertices is in G ′

E3 for each extension (G ′′
P , G ′′

H, ϕ ′) of (G ′
P, G ′

H, ϕ) by p do
E4 call extend(G ′′

P , G ′′
H, ϕ ′)

E5 else if score(G ′
P, G ′

H, ϕ) > maxscore then
E6 best← (G ′

P, G ′
H, ϕ); maxscore← score(G ′

P, G ′
H, ϕ)

E7 return

The running time of match is primarily determined by the size of the search tree that is
investigated (somewhat akin to the esu-tree that we analyzed in Chapter 3). This size is
in turn determined by the number of recursive calls that are made in lines 05 and E4 of
the algorithm. While the number of recursive calls that are made in these lines is upper-
bounded by a constant—both the maximum path length and the maximum degree of a
metabolic pathway are naturally bounded by some constant for biological reasons—this
is rather large. In our experiments, we have found it to be around 6 on average and up to
about 20 for larger hosts.7 Thus, if the pattern graph consists of k simple paths, then the
size of the search tree that is explored by match is, on average, around 6k. Considering
that our dataset from the BioCyc database contained a considerable amount of pathways
with more than ten paths, this leads to a very long running time for match.

In the next two sections, we show how a property of metabolic networks that we call
“local diversity” can be used to modify match such that the size of the corresponding
search tree is greatly reduced.

9.3.2 The Concept of Local Diversity

As a typical example for a metabolic pathway, consider the anaerobic respiration pathway
of Escherichia coli that is shown in Figure 9.1. The following observation can be made

7Note that all paths and not only simple paths in the host graph must be considered for an extension because
a branch vertex in the host may become a path vertex in its subgraph.
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1.2.1.-2.7.1.40

-.-.-.-
1.3.5.-

4.1.1.31

2.3.3.1

1.1.1.37

4.2.1.11

4.2.1.2
2.3.1.54

1.1.1.42

4.2.1.3

Figure 9.1: Anaerobic respiration pathway of Escherichia coli that illustrates the local
diversity property. The label “-.-.-.-” denotes an unclassified enzyme.

for this pathway which seems to hold for most metabolic pathways and is hence crucial
to our approach:

Observation 9.7. Two paths that have the same starting vertex often carry out very dif-
ferent biological functions. More precisely, for a vertex v with more than one outgoing
edge, consider two paths that leave this vertex and that have no other vertex besides v in
common: the sequence of enzyme functions that is encountered is usually quite different
along these paths.

As an example, compare the path 4.2.1.11 → 2.7.1.40 → 2.3.1.54 → -.-.-.- → 4.1.1.31
with the path 4.2.1.11 → 4.1.1.31 → 2.3.3.1 → 4.2.1.3 → 1.1.1.42: Except for the
starting vertex, only the two “2.3.. . . ” enzymes are similar.

Observation 9.7 describes what we refer to as the local diversity property of metabolic
networks. There are plausible reasons why a metabolic network is expected to generally
have this property: First, most metabolic products offer only very few possibilities where
a certain reaction can chemically take place. Second, identical reactions for a certain
substrate within a pathway are usually carried out by only one enzyme for reasons of
efficiency, that is, it normally does not make sense to have two different enzymes that
catalyze exactly the same reaction.

Local diversity is an important property for the algorithmic alignment of metabolic path-
ways: Intuitively, Subgraph Isomorphism is hard because even very different graphs
might appear similar based on local information. The local diversity property, however,
means that metabolic pathways usually provide very rich and diverse local information
that can be exploited to overcome this phenomenon. This is the main idea of our modifi-
cation to match that we propose in the next subsection in order to render the algorithm
efficient in practice.

9.3.3 Exploiting Local Diversity

Consider the implications of local diversity for match: When we compute all extensions
of a partial embedding by a path p, some of these might not make sense from a biological
perspective because the biological function of the pattern path p does not fit the biological
function of the host path that it is aligned to. The key to making match more efficient
is to observe that the local diversity property implies that usually a lot of extensions of
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a partial embedding do not make sense from a biological perspective. Thus, to exploit
local diversity and make match more efficient, we need to devise a formal definition of
“fitting biological function” for two given paths and then modify match such that it
only explores fitting embeddings. Two observations are helpful for arriving at this formal
definition:

• It does not make sense to align a path in the pattern graph with a path in the host
that is much longer or much shorter—the biological function that is performed will
be totally different.

• The order and type of enzyme functions should be somewhat similar in two paths
that are aligned to each other.

To capture these two observations in a formal way, we use the following definition:

Definition 9.8. Given a real number 0 6 f 6 1, a gap score g, a simple x-vertex path p1

and a simple y-vertex path p2, we say that p1 and p2 fit if a maximum-score alignment
between them aligns at most min{d(1− f) ·xe, d(1− f) ·ye} vertices to a gap. An extension
of a partial embedding (G ′

P, G ′
H, ϕ) fits if every simple path between two branch ver-

tices u, v ∈ V ′
G fits its corresponding simple path between the vertices ϕ(u), ϕ(v) ∈ V ′

H.

So, for example, if we have a fitting parameter of f = 0.50, then a four-vertex path fits no
path that consists of seven or more vertices; a higher fitting parameter of f = 0.75 would
cause it to fit no path that consists of six or more vertices.8

To exploit local diversity, we now modify match so that it only explores fitting em-
beddings. For this purpose, lines 05 and E4 need to be modified so that the Extend-
subprocedure is only called for fitting extensions. We name the resulting algorithm of
this modification fit-match. Exploring only fitting extensions does not only filter out bi-
ologically meaningless embeddings. Even more importantly, it is a very effective pruning
strategy due to the local diversity property of metabolic networks, that is, by exploring
only fitting embeddings we implicitly exploit this property and gain efficiency: Because of
local diversity there is only a small number of fitting extensions for any given path. More
precisely, experiments show that whereas match explored a search tree of size around 6k

to align a k-path pattern, even a conservative fitting parameter of x = 0.5 reduces this
to around 2.5k, “conservative” meaning that we found no meaningful alignment in our
experiments that is missed by this setting.

As we experimentally demonstrate in the next section, exploiting local diversity, even in a
very conservative manner, makes fit-match a very fast algorithm for aligning metabolic
pathways in practice.

8For some applications, Definition 9.8 might be considered too strict in its handling of very short paths: In
particular, a one-vertex path never fits a length-3 path, regardless of the fitting parameter. While we have not
found this property to be an issue in practice, one can easily circumvent it by introducing a minimum number
of gaps that is always allowed regardless of the path lengths or fitting parameter.
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9.4 Experimental Evaluation and Comparison

To test the practical performance of fit-match, it was implemented in C++ by Florian
Rasche, a student research assistant at the Friedrich-Schiller-Universität Jena. The source
consists of approximately 1600 lines of non-library code and is freely available online at
http://theinf1.informatik.uni-jena.de/graphalignments/.9

9.4.1 Method and Results

Our testing machine is an AMD Athlon 64 3400+ with 2.4 GHz, 512 KB cache, and 1 GB
main memory running under Debian GNU/Linux 3.1. Sources were compiled with the
GNU g++ 4.2 compiler using the option “-O3.”

To obtain the dataset for our experimental evaluation, we wrote a tool in the Java pro-
gramming language that extracts metabolic pathways from the BioCyc database [141]
and converts them into the same format as required by the MetaPathwayHunter tool of
Pinter et al. [210]. The resulting testbed consists of metabolic pathways for five different
organisms, namely 145 pathways of Bacillus subtilis, 220 pathways of Escherichia coli,
190 pathways of Homo sapiens, 176 pathways of Saccharomyces cerevisiae, and 267
pathways of Thermus thermophilus. If the full EC number of an enzyme was not spec-
ified in the database, the unknown part of the code was treated as a don’t care symbol,
which we denote by a dash (as in “3.4.-.-”).10 To measure the performance of the fit-
match implementation, all 25 possible all-against-all inter- and intra-species alignments
between the five datasets where performed, resulting in a total of 996 004 instances of
Maximum-Score Embedding to be solved.

Following the suggestion of Pinter et al. [210] to set the gap score to about one third
of the worst vertex–vertex similarity score, we set g = −4.5. The fitting parameter x

was set to 0.50. This is a conservative choice; we performed some preliminary exper-
iments to see which parameter setting is sure to never miss any interesting alignment
and x = 0.50 satisfies this with a safety margin (in our experiments, we found that even a
setting of x = 0.75 does not appear to miss any biologically relevant alignments). The ob-
tained running times are shown in Table 9.1; Figure 9.2 shows four exemplary alignments
that were found by the fit-match algorithm. These are novel and, without considerable
effort, cannot be discovered with the tool of Pinter et al. [210] because they contain many
cycles.

9.4.2 Discussion.

The experiments show that our fit-match implementation is capable of quickly aligning
metabolic pathways; the almost one million instances of Maximum-Score Embedding

9Although fit-match is rather simple to describe in pseudocode, the implementation is somewhat more
subtle because some special cases such as the pattern being a simple cycle—in which case there exist no branch
vertices—require some consideration.

10This means that the unknown part of an EC number is treated as if it were identical to anything it is
presented with.

http://theinf1.informatik.uni-jena.de/graphalignments/
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Table 9.1: Running times of our fit-match implementation for all-against all alignments
between the five datasets described in the text. For every pairing of datasets, we show the
total time needed by our fit-match implementation to align all pathways contained in
the pattern dataset against all pathways contained in the host dataset. Running times are
given as two values, the first one including and the second one excluding the I/O overhead
(meaning the time that is needed to read the pattern graph, read the host graph, and to
write the obtained alignments to an output file).

Pattern
Run time of fit-match in seconds (incl. / excl. IO overhead)

B. subtilis E. coli H. sapiens S. cerevisiae T. thermoph.

B. subtilis 82 / 0.41 120 / 2.25 102 / 2.25 95 / 0.29 147 / 2.28
E. coli 120 / 0.02 121 / 0.22 112 / 0.19 151 / 0.02 227 / 0.20

H. sapiens 107 / 0.02 120 / 0.19 89 / 0.20 130 / 0.02 190 / 0.29
S. cerevisiae 93 / 0.06 141 / 0.09 121 / 0.09 114 / 0.08 172 / 0.10

T. thermophilus 140 / 0.02 135 / 0.22 107 / 0.23 167 / 0.03 264 / 0.24

can be solved in under an hour on our testing machine. This includes the I/O overhead,
which turned out to consume far more time than the algorithm itself—only about ten
seconds are consumed by the algorithmic kernel, that is, the fit-match algorithm.

Our tool is much faster than the MetaPathwayHunter alignment tool of Pinter et
al. [210] which requires some hours alone to align the E. coli and S. cerevisiae path-
ways that are supplied with it. These contain less pathways which are simplified to trees;
fit-match can align the corresponding complete and unsimplified data in roughly seven
minutes.11

Concerning the practical use of our fit-match implementation, the alignments shown in
Figure 9.2 exemplify some scenarios that our tool can efficiently handle:

• Pathway Comparison. Figure 9.2a shows the highlighting of alternative metabolic
pathways by comparing the classical TCA cycle with a more complex variant. (The
TCA cycle is a pathway that takes some products from the breakdown of sugar and
breaks them further down, yielding a large amount of energy.) Note how the com-
plex variant uses more pathways and the succinate dehydrogenase enzyme 1.3.99.1
instead of the enzyme 1.3.5.1.

• Enzyme Classification. In Figure 9.2b, our results align two unclassified enzymes
(denoted “-.-.-.-”) with already known enzymes, possibly hinting at their function.

• Identifying Enzyme Complexes. The pathways that are shown in Figure 9.2c are
almost identical, except that B. subtilis (the top pathway) does not possess the
enzyme 2.3.1.157 (an acyltransferase) but is rather aligned to a gap. The preceding
enzyme is unclassified in both organisms. We can derive from the alignment that

11It would of course be nice to compare our algorithm with the running time of the MetaPathwayHunter
algorithm without any I/O overhead, but unfortunately MetaPathwayHunter is neither open source nor do
the authors plan to incorporate any time measurement capabilities into their tool [225].
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Figure 9.2: Four examples for the alignments that were found by the fit-match algo-
rithm. In all graphs, the vertices are not split if they have the same label in the host and
the pattern, otherwise, the pattern enzyme is shown at the top and the host enzyme at
the bottom. A dashed top half indicates that a vertex is only present in the host graph.
The four alignments (pattern/host) that are shown are a) the superpathway of glycolysis,
pyruvate dehydrogenase, TCA, and glyoxylate bypass versus Embden-Meyerhof pathway
in B. subtilis, b) the anaerobic respiration pathway of E. coli versus the same pathway
in B. subtilis, c) the peptidoglycan and lipid A precursor biosynthesis in B. subtilis versus
the same pathway in T. thermophilus, and d) the superpathway of leucine, valine, and
isoleucine biosynthesis in E. coli versus the same pathway in T. thermophilus.

the unclassified enzyme in B. subtilis fulfills a task that requires two enzymes in
T. thermophilus, one of which we already know.

• Checking Database Consistency. Figure 9.2d shows an example where we can use
fit-match to detect inconsistencies in a database: The two enzyme classification
numbers that are seemingly totally different are the result of a change in the official
EC nomenclature for the respective enzyme.



Summary and Open Questions 161

The results that we found moreover demonstrate that the restriction to acyclic pathways
imposed by the algorithm of Pinter et al. [210] causes relevant alignments to be missed in
several cases. For example, if the methylglyoxal pathway and the chorismate superpath-
way of E. Coli are aligned, MetaPathwayHunter does not produce any results whereas
fit-match finds an alignment. Or, as a second example, MetaPathwayHunter misses
the possible alignment between the cobalamin biosynthesis and the KDO2 lipid biosyn-
thesis superpathway of E. coli, which in contrast was found by fit-match.

9.5 Summary and Open Questions

Computing alignments between metabolic pathways has many important practical ap-
plications, but is a very hard task. This section presented a simple algorithm called
fit-match that efficiently aligns metabolic pathways by making use of the observation
that metabolic pathways often have a so-called “local diversity property,” that is, the
neighborhoods of a vertex usually display many different labels. Experiments show that
our fit-match-based alignment tool is much faster than previous approaches. Moreover,
it is more generally applicable because—contrary to all previous approaches—it does not
restrict the topology of the host or pattern network to be cycle free.

There remain a number of interesting open questions for future research:

• Is it possible to develop an alignment algorithm for protein interaction networks
that is based on a similar concept of local diversity as we have done here for
metabolic networks?

Note that the concept of local diversity is not directly transferable to protein in-
teraction networks because of their high density, that is, there are not many long
simple paths and the fitting parameter as we have defined it here does not seem
appropriate. Developing a local diversity concept for protein interaction networks
would offer a considerable advantage over the currently employed seed-and-extend
approaches: It takes the approach of explicitly considering beforehand which kind
of alignments are not meaningful from a biological standpoint whereas the seed-
and-extend approaches that we reviewed in Section 9.2 somewhat “hope” or “ex-
pect” that no such alignments are missed.

• Can our algorithm be extended to efficiently find subgraphs of the pattern that lead
to high-scoring embeddings?

• Can the seemingly impractical tree decomposition-based algorithms from [72, 121,
177] be made practically applicable for the alignment of biological networks by
using local diversity?

• We have used a rather simple scoring scheme for our alignment algorithm. Al-
though there has already been some research into developing sophisticated scoring
schemes for biological network alignments (for example, see [161]), this does not
match the wealth of similiarity scores that are available for sequence alignments.
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What possibilities are there to score pathway alignments and what are their respec-
tive strengths and weaknesses?

• For sequence alignments, it is common to not only report an alignment score but
also the significance of an alignment (similarly to our scoring of network motifs in
Chapter 3). Pinter et al. [210] propose to score the significance of a metabolic path-
way alignment by generating a large number of random graphs over the vertex set
of the host graph, aligning the pattern graph with these, and reporting the percent-
age of random hosts that yield a better-scoring alignment. This, however, does not
seem to be a very convincing approach because we can expect this percentage to be
very low. What are alternative approaches to determining alignment significance?
Can the subgraph significance calculations that we discussed in Section 3.4.1 be
applied here?

• The color-coding technique that we discussed in Chapter 4 can not only be used
to detect linear paths in a graph, but also other subgraph types such as cycles or
graphs of bounded treewidth. To what extent can color-coding be used to efficiently
align biological networks?

As mentioned in the introduction of this chapter, the ability to align biological networks
is expected to be of high relevance in the future of bioinformatics. This certainly makes
a further investigation of this topic worthwhile, especially concerning the practical ap-
plicability of advanced techniques that have been developed in the field of combinatorial
algorithms: These are capable of overcoming the hardness of Subgraph Isomorphism
not only in a heuristic manner but with a guarantee of optimum solutions.

This chapter concludes our investigation of combinatorial algorithms that cope with the
complexity of biological networks through modularization, thinning out, surveillance,
and comparison. The next chapter recapitulates the results we have achieved and gives
an outlook toward future research.



Chapter 10

Summary and Future Research
Directions

This thesis investigated the use of combinatorial algorithms in order to cope with the
complexity of biological networks. We have structured this investigation into four ap-
proaches: modularization, thinning out, surveillance, and comparison. Let us briefly
recapitulate the ideas that underlie each of these approaches, the concrete problems that
we studied, and the main new results that were achieved:

• Modularization. The underlying idea of this approach is to cope with the complex-
ity of a biological network by decomposing it into small subnetworks that are of
significance to its function. These subnetworks are easier to understand than the
whole network and can also be used as seed structures to understand more complex
aspects. Concretely, we considered the problems Network Motif Detection and
Minimum-Weight Path and devised improved combinatorial algorithms for them
that are orders of magnitude faster than previous approaches.

• Thinning Out. The underlying idea of this approach is to reduce the complexity of a
biological network by thinning out its edges while retaining biologically important
features. Concretely, we considered the problems Minimum-Distance Spanning
Tree, Minimum-Difference Spanning Tree, and Centrality-Approximating
Spanning Tree, showing that virtually all of them are NP-complete or do not even
admit a polynomial-time constant-factor approximation algorithm unless P=NP.

• Surveillance. The underlying idea of this approach is to cope with the complexity
of a biological network by selecting a small set of vertices whose surveillance allows
us to monitor or control biologically relevant aspects of a network. Concretely, we
studied the combinatorial problems of efficiently meeting all edges, all cycles, or
all flows in a network and obtained effective data reductions that lead to problem
kernels as well as new or improved fixed-parameter algorithms.

• Comparison. The underlying idea of this approach is to cope with the complexity
of a biological network by a knowledge transfer from well-understood networks to
less understood ones. Concretely, we devised a very simple and efficient algorithm
for the problem of aligning metabolic pathways.
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As already mentioned in Chapter 1, it is of course impossible for this work to address all
possible and relevant approaches for coping with the complexity of biological networks
by means of combinatorial algorithms. However, most of these approaches should fall
into one of our four “approach categories” that we used to structure our presentation;
this structure might therefore serve as a scaffold for further systematic investigations.

Notably, our results cover the full range of development stages for combinatorial algo-
rithms, ranging from complexity analyses to algorithm engineering and the implementa-
tion into user-friendly tools. These various stages also suggest the general directions of
future research for the problems we have considered (since each chapter concluded with
a list of concrete open questions, we only give a very general overview):

• Where problems have been proved NP-hard, it should be investigated whether there
are ways to confine the underlying combinatorial explosion in practice, for exam-
ple, by devising fixed-parameter algorithms and effective data reductions.

• Where algorithms have seemingly impractical worst-case bounds, it should be in-
vestigated if and where these bounds are actually met in practice and if they can be
improved by new algorithmic ideas.

• Where efficient algorithms have been devised for a problem, these should be imple-
mented, tested, and subjected to algorithm-engineering in order to further improve
their performance and thus open new possibilities, for example, in terms of inter-
active applications or by extending the general scope of applicability.

• Where algorithms have been implemented and engineered, they should be made
accessible as user-friendly tools, preferably with a graphical user interface.

Naturally, not all of these investigations will lead to success. But given the importance
of biological networks and the huge attention that they receive in biological research, it
would be wasteful not to try and contribute as much as possible to their analysis from the
huge arsenal of ideas and results that have been developed in the context of combinatorial
graph algorithms over the last decades. This is also beneficial for computer scientists as
the challenges posed by the complexity of biological networks are certain to motivate
many new ideas and research directions in theoretical and practical computer science.
Overall, we hope that this work makes a good case for combinatorial algorithms as a
powerful tool to model and attack relevant questions that arise when coping with the
complexity of biological networks.



Appendix A

Omitted Proofs

A.1 Omitted Proofs from Chapter 5

Proof of Lemma 5.12

Proof. Together, the path p and the edge {v, w} induce a length-(γ + 1) cycle C in G ′. To
obtain the spanning tree T ′, this cycle has to be broken either by removing the edge {v, w}

or by removing an edge from p.

(⇒) Let T ′ be a spanning tree of the graph G ′ that satisfies ‖∆T ′‖L,∞ 6 γ. Assume that
the edge {v, w} is not part of T ′. Then, the path p must be contained completely in T ′;
otherwise, if an edge {uβ, uβ+1} from p is not contained in T ′, we would have

‖∆T ′‖L,∞ > dT ′(uβ, uβ+1) − 1 = dT ′(uβ, v) + dT ′(v, w) + dT ′(w, uβ+1)

> dT ′(uβ, v) + 2 + dT ′(w, uβ+1) = (dT ′(uβ, v) + 1 + dT ′(w, uβ+1)) + 1

= γ + 1 .

Being contained completely in T ′, the path p divides T ′ into two subtrees. Since {v, w}

is not a bridge in G, there must be two vertices v ′ and w ′—one in each subtree such
that either v ′ 6= v or w ′ 6= w—that are connected by an edge in G and, consequently,
in G ′. Schematically, we have the following situation in T ′ (the dashed line represents the
deleted edge {v ′, w ′} and the bold lines the path between v ′ and w ′ in T ):

· · ·
p

v w

v ′ w′

Furthermore, since the lemma demands that the edge {v, w} is not part of a length-3 cycle,
we have dT ′(v ′, v) + dT ′(w, w ′) > 2. But then

‖∆T ′‖L,∞ > dT ′(v ′, w ′) − 1 = dT ′(v ′, v) + γ + dT ′(w, w ′) − 1 > γ + 1 ,

a contradiction. Hence, if T ′ satisfies ‖∆T ′‖L,∞ 6 γ it must contain the edge {v, w}.

It is straightforward to construct a spanning tree T for G by removing all parts of p

from T ′; this does not increase the maximum distance difference.
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(⇐) Let T be a spanning tree for G that satisfies ‖∆T‖L,∞ 6 γ. We can construct a span-
ning tree T ′ for G ′ by adding the path p to T except for its “middle” edge {uγ−1

2
, uγ+1

2
}.

Since γ is odd, the cycle C that is thus destroyed has even length in G ′, which in turn
means that removing the edge {uγ−1

2
, uγ+1

2
} does not increase the distance of a vertex in

the path p to any vertex in G \ G ′. Furthermore, since C has length (γ + 1), no two
vertices in p are more than γ edges apart from each other. Overall, this means that if T

satisfies ‖∆T‖L,∞ 6 γ, then our construction ensures that T ′ satisfies ‖∆T ′‖L,∞ 6 γ.

Proof of Lemma 5.14

Proof. We prove the lemma by induction over i. For i = 1, the claim holds due to
Lemma 5.6. Now suppose that i > 1 and that the lemma holds for Gi−1(S, C). As in the

definition of the gadget, let `i−1
def
= dGi−1(S,C)(a, b). Analogously to the gadget G(S, C),

the shortest path connecting a and b does not use a safety path or collection path because
these are longer than the path between a and b that uses a ′ and all element paths (re-
placing element paths by their counterpart elongation gadgets yields the same distance).
Hence, using the induction hypothesis for `i−1,

dGi(S,C)(a, b) = 2 + n · (`i−1 + 1) = 3
ni+1 − 1

n − 1
+ ni(m − 1) − 1

as claimed. For the second claim, we prove the two directions separately.

(⇒) For a given cardinality-at-most-k solution set S ′ to (S, C, k), we construct a spanning
tree T of Gi(S, C) as follows:

1. Replace each elongation gadget Gα by a spanning tree Tα for Gi−1(S, C) such that
the shortest path between the connection vertices vα and v ′α that uses only vertices
of Gα is at most ki−1 edges longer in Tα than in Gα. Such a tree exists due to the
induction hypothesis.

2. For each sα ∈ S do the following: If sα ∈ S ′, then remove the edge {vα
`i−1−1, v ′α}

(opening the element path); otherwise, remove the edge {vα, a ′
α} (opening the elon-

gation gadget).

3. The edge removals caused by the collections in C are the same as in Lemma 5.6.

Since we replace each elongation gadget Gα by one of its spanning trees, it follows by
analogy to Lemma 5.6 that we have indeed constructed a spanning tree for Gi(S, C). As
a result, there is a path in T between a and b that leads via elongation gadgets (whenever
the corresponding sα ∈ S ′) and element paths (whenever the corresponding sα 6∈ S ′). As
mentioned above, the penalty for traversing an elongation gadget is at most ki−1 by the
induction hypothesis. Since the path between a and b uses |S ′| 6 k elongation gadgets,
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we obtain

dT (a, b) 6 2 + |S ′|(`i−1 + 1 + ki−1)︸ ︷︷ ︸
Cases “sα ∈ S′”

+ (n − |S ′|)(`i−1 + 1)︸ ︷︷ ︸
Cases “sα 6∈ S′”

= 2 + n(`i−1 + 1) + |S ′|ki−1 6 dGi(S,C)(a, b) + ki.

(⇐) Suppose that T is a spanning tree of Gi(S, C) that contains all edges of the clause
paths and satisfies dT (a, b) 6 dGi(S,C)(a, b) + ki. Since

dGi(S,C)(a, b) + ki = 3
ni+1 − 1

n − 1
+ ni(m − 1) − 1 + ki < 2 + 2n · `i−1 ,

the path between a and b cannot lead via any collection or safety paths. Hence, it must
lead via element paths and elongation gadgets only. The length of any path traversing an
elongation gadget is lower-bounded by `i−1 +ki−1 according to the induction hypothesis.
The length of any element path is likewise lower-bounded by `i−1. Therefore, the path
between a and b can lead over no more than k elongation gadgets.

Let S ′ be the set of elements sα ∈ S for which the shortest path between a and b uses the
elongation gadget Gα. As we just observed, |S ′| 6 k. We now claim that S ′ constitutes
a solution set to the encoded 2-HS instance (S, C, k). Assume for the purpose of contra-
diction that there is a subset cβ = {sα, sκ} ∈ C (where α < κ) such that cβ ∩ S ′ = ∅.
In Gi(S, C), the clause path corresponding to cβ connects vα

β with vκ
β. Since sα, sκ 6∈ S ′,

the vertex vα
β is connected to bα, which is connected to aκ, which is in turn connected

to vκ
β, thus inducing a cycle. This is a contradiction to T being a tree.

Proof of Lemma 5.18

Proof. We show the lemma by a reduction from ∆-OST using the same “chain graph” G ′

and terminology as in the proof of Lemma 5.17. Furthermore, we assume without loss
of generality that n > 4. Looking at a vertex v ∈ V1, it is on the one hand clear that any
spanning tree T ′ for G ′ satisfies

‖∆T ′‖1 >
n2∑
i=3

∑
w∈Vi

δT ′(v, w) >
n2−2∑
i=1

n · i · δTopt(a, b) = (
1
2

n5 −
3
2

n3 + n) · δTopt(a, b) .

On the other hand, replacing every copy of G in G ′ by Topt, we obtain a spanning tree T ′

for G ′ that for some i satisfies

‖∆T ′‖1 = max
v∈Vi

∑
w∈Vi

δT ′(v, w) +
∑
j 6=i

∑
w∈Vj

δT ′(v, w)

6 n2 + max
v∈Vi

∑
j6=i

∑
w∈Vj

δT ′(v, w)

6 n2 +
∑
j6=i

n · ((|j − i| − 1) · δTopt(a, b) + n) .
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Setting i = 1 maximizes the sum and we obtain

‖∆T ′‖1 6 n2 +

n2∑
j=2

n · (n + (|j − 1| − 1) · δTopt(a, b) + n)

= 2n4 − n2 + (
1
2

n5 −
3
2

n3 + n) · δTopt(a, b) .

A polynomial-time constant-factor approximation algorithm A for fe-M∆ST with re-
spect to the norm ‖ · ‖1 computes a value γA such that ‖∆T ′

opt
‖1 6 γA 6 c · ‖∆T ′

opt
‖1,

where c > 0 is a constant and T ′
opt the spanning tree with minimum ‖∆T ′

opt
‖1. Using

our bounds on ‖∆T ′‖1 yields

(
1
2

n5 −
3
2

n3 + n) · δTopt(a, b) 6 γA 6 c · (2n4 − n2 + (
1
2

n5 −
3
2

n3 + n) · δTopt(a, b))

which—analogously to the other two inapproximability proofs—simplifies to

δTopt(a, b) 6

⌊
γA

1
2n5 − 3

2n3 + n

⌋
6 c · (1 + δTopt(a, b)) 6 2c · δTopt(a, b) .

and shows that A implies the existence of a polynomial-time constant-factor approxima-
tion algorithm for ∆-OST.

A.2 Omitted Proof from Chapter 8

Proof of Lemma 8.11

Proof. We use the following greedy algorithm to constructively prove the existence of a
linear Vfull-region decomposition R as claimed.

Algorithm: Maximal Vfull-region decomposition.
Input: A graph G = (V, E) and a maximum-size set Vfull of full-degree vertices.
Output: A maximal Vfull-region decomposition R.

01 R← ∅, Vused ← ∅
02 for each vertex u ∈ V do
03 if u 6∈ Vused and there exists a region R(v, w) with u ∈ V(R(v, w))

such that R ∪ {R} is a Vfull-region decomposition then
04 S← set of all regions R(v, w) with u ∈ V(R(v, w))

for which R ∪ {R} is a Vfull-region decomposition
05 Rnew(v, w)← region from S that is space-maximal

(that is, no region in S is a proper superset of it)
06 R← R ∪ {Rnew(v, w)}, Vused ← Vused ∪ V(Rnew(v, w))

07 return R

As a remark, this algorithm is quite the same that Alber et al. [4] used for their proof of



Omitted Proof from Chapter 8 169

a linear-size kernel for Dominating Set in planar graphs; the only difference is that our
regions are bounded by length-at-most-5 paths instead of length-at-most-3 paths.

Clearly, the given algorithm outputs a Vfull-region decomposition for G. To see the maxi-
mality of this decomposition, observe that for every vertex u that is not in a region (that
is, it has not been put into Vused) we check whether there is a region containing u that can
be added to the existing region decomposition.

It remains to show the claimed upper-bound on the number of regions in R. For this
purpose, consider a graph GR that has the vertex set Vfull and the edge set

ER
def
=
⋃

R(v,w)∈R

{
{v, w}

}
,

that is, it contains an edge {v, w} for every region R(v, w) ∈ R. It is clear that GR is
planar because the input graph G is planar and regions do not intersect. We now claim
that GR has the following thinness property: If there are four edges e1, e2, e3, e4 between
two vertices v, w, then there exist two further vertices u1 and u2 in Vfull, each one sitting
in one of the four areas enclosed by e1, e2, e3, e4. Once we have established the thinness
property, the claimed size-bound follows by a result of Alber et al. [4] who showed that
a plane graph G = (V, E) with multiple edges satisfies |E| 6 3|V | − 6 for |V | > 3 if each
of the two areas enclosed by two edges e1 and e2 with the same endpoints contains at
least one vertex; we just replace the two-edge enclosure by a four-edge enclosure of four
areas.1

To show the thinness property of GR, suppose that there are four edges in ER between two
vertices v and w; these divide the plane into four areas A1, . . . , A4. Assume for the pur-
pose of contradiction that at most one of the areas A1, . . . , A4 contains a vertex u ∈ Vfull.
Without loss of generality, let this be the area A1 as shown below:

v w

A1
u

A2

A4

A3 .

Consider the area A3. By construction of GR, the two edges that enclose this area
correspond to two regions R1(v, w) and R2(v, w) in the input graph G. But then G

must have at least one vertex u ′ lying inside of this area because, otherwise, the re-
gions R1(v, w) and R2(v, w) could be joined into a single, larger region, which contra-
dicts the space-maximality that we demand in line 05 of the construction algorithm. The
space-maximality also tells us that u ′ must have distance at least three to both v and w.
This, however, implies that u ′ has distance at least three to every vertex in Vfull because
the areas A2 and A4 contain no vertex from Vfull. This contradicts Lemma 8.6 and we
have thus shown that GR has the claimed thinness property.

1For |V | = 2, it is easy to see that there can be at most one single region and hence the lemma holds.
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