On Making Directed Graphs Transitive'”

Mathias Wellet*, Christian Komusiewic Rolf Niedermeier, Johannes Uhim&nn
Institut fir Softwaretechnik und Theoretische InformafiU Berlin, Germany

Abstract

We present a first thorough theoretical analysis of thexditiviry Eprring problem on
digraphs. Herein, the task is to make a given digraph tigadity a minimum number
of arc insertions or deletionsrAnsitivity Epiting has applications in for the detection
of hierarchical structure in molecular characteristicdiséases.

We demonstrate that if the input digraph does not contaiarteinds”, then there
is an optimal solution that performs only arc deletions.sTaict helps us construct a
first proof of NP-hardness, which also extends to the réetticases in which the input
digraph is acyclic or has maximum degree three.

By providing anO(k?)-vertex problem kernel, we answer an open question from
the literature. In case of digraphs with maximum degteanO(k - d)-vertex problem
kernel can be shown. Moreover, we improve previous fixe@pater algorithms, now
achieving a running time dd(2.57%+ n%) for ann-vertex digraph ik arc modifications
are stficient to make it transitive.

Our hardness as well as algorithmic results transfertadiriviry DeLeTiON, Where
only arc deletions are allowed.

Keywords: Graph modification problem, NP-hardness, Hadmiaal structure detec-
tion, Fixed-parameter tractability, Kernelization andedieeduction

1. Introduction

A directed graph (digraph for shorf) = (V, A) is calledtransitiveif (u,v) € A
and {, w) € Aimply (u,w) € A (also cf. [1, Section 4.3]).

To make a digraph transitive by a minimum number of arc maalifims has re-
cently been identified to have important applications iredég hierarchical structure
in molecular characteristics of diseases [20, 3.

U A preliminary version of this work appeared in the procegdinf the 1 Algorithms and Data Struc-
tures Symposium (WADS’09), volume 5664 in LNCS, pages 583;-Springer 2009.
B The main part of this work was done while the authors were thighFriedrich-Schiller-Universitat Jena.
*Corresponding author
Email addressesnathias.weller@tu-berlin.de (Mathias Weller),
christian.komusiewicz@tu-berlin.de (Christian Komusiewicz),
rolf.niedermeier@tu-berlin.de (Rolf Niedermeier) johannes.uhlmann@campus.tu-berlin.de
(Johannes Uhlmann)
1Supported by a PhD fellowship of the Carl-Zeiss-Stiftund tire DFG, research project PABI, NI 369
2Supported by the DFG, research project PABI, NI/369
SSupported by the DFG, research project DARE, GU 10281 36911.

Preprint submitted to Elsevier July 26, 2011

Here, a group of patients is analyzed and a hierarchicasifilzetion of diseases
in a scheme of sub-diseases based on molecular charécﬁeiﬂsixtractedﬂS]. Due
to measurement errors and noise in this data, the resultlagan is often not com-
pletely correct. By restoring transitivity to the relatioone hopes to reconstruct the
real relation to a fair extent. Hence, the task is to find a isteist disease hierarchy
that is closest to the measured data. Obviously, one mustasthe error to be small,
otherwise, one may reconstruct almost any hierarchicattire from the data. One
interprets the data as a directed graph and inserts aneegl@sts until transitivity is
achieved. The vertices of the graph are diseases and theamais &, b) from vertexa
to vertexb if the experimental data suggests that disérise sub-disease of disease
The central problem under consideratioma¥sirivity Epiting, thus asks whether a
given digraph can be transformed into a transitive digrapmberting or deleting no
more than some given numbeof arcs.

We provide a first thorough theoretical study afaksrrivity Epiting, complement-
ing previous work that focused on heuristics, integer liragramming, and simple
fixed-parameter algorithm@dﬂ, 3]. We also study the speaie where only arc dele-
tions (Transitivity DeLeTION) are allowed and restricted classes of digraphs (acyclic
and bounded-degree). Note thataksitiviry CompLETION (Where only arc insertions
are allowed) is nothing but the well-studied problem of cotimm the transitive clo-
sure of a digraph; this is solvable in polynomial tirhel [23].

Previous work.. Transitivity EpiTiNng can be seen as the “directed counterpart” of the
so far much more extensively studied problemu&Ger Epiting on undirected graphs
(see @mﬂsﬂd:iﬂﬂl 26]). Indeed, both problemasakso referred to as
TransITIVE APPROXIMATION Problem on directed and undirected graphs, respectively.
Unfortunately, this was perhaps a reason why the NP-hasdofeSransitivity Epit-

NG has erroneously been claimed to be pro [ﬂZO, 3] by refgpitdrwork that only
considers problems on undirected graphs, includingster Epiting. On the posi-
tive side, however, the close correspondence betweesr Eprring and TRANSITIV-

iy Epiting helped Bocker et aIDS] transfer their previous results@ouster Eprr-

NG [4] to Transimivity Eprring, delivering the currently fastest implementations that
exactly solve kansrrivity Epiting (by means of integer linear programming and fixed-
parameter algorithms). In particular, their computatl@x@eriments demonstrate that
their exact algorithms are by far moréieient in practice than the previously used
purely heuristic approach by Jacob ethll [20].

Our contributions.. We start by deriving the helpful observation that any digréat
does not contain a so-called “diamond” has an optimal smiutor TransiTIVITY EDIT-
NG that only deletes arcs. Hence, in these casesysItivity Epiting and TRANSITIVITY
DeLerion coincide. This observationis useful for both algorithmiddardness results.

We continue byprovingthe so far onlyclaimedNP-hardness of Ransitivity Epir-
ING, also extending this result torEnsitivity DeLerion. Moreover, we show that both
problems remain NP-hard when restricted to acyclic digsaphdigraphs whose un-
derlying undirected graphs have maximum vertex degree tfifieese proofs also pro-
vide exponential lower bounds on the running time for aldponis solving RansrTvity
EprtiNG Or TRANSITIVITY DELETION.

Eventually, we provide a polynomial-time data reductioattiields anO(k?)-
vertex problem kernel for Aansitivity Epiting and Transrrivity Decerion. This an-
swers an open question of Bocker et al. [3]. In the specis¢ cd digraphs with max-
imum vertex degred, we show arO(k - d)-vertex kernel. In addition, we develop an

improved search tree forrRnsitivity Epiting. That is, whereas the fixed-parameter
algorithm of Bocker et aIHS] runs i®(3* - n®) time onn-vertex digraphs, our new
algorithm runs inO(2.57¢ + n°) time (note that in our algorithm the cubic temf is
additive instead of multiplicative due to our kernelizati@sult). Finally, we observe
that Transmivity DeLETION can be solved i©(2¢ + n®) time.

Organization of the paper.In Section2, after agreeing on some necessary prelimi-
naries, we make a very helpful observation about digrapblsiding certain substruc-
tures. Sectiofll3 is the most technical section containimg\&®+hardness results. We
split Sectio B into two parts, dealing with digraphs whoseéerlying undirected graph
has bounded degree and acyclic digraphs, respectiveli. tAdse NP-hardness proofs
established, we present our algorithmic results in Se#idfve first show a kerneliza-
tion for both TransiviTy Epiting and Transitivity DeLetion and then present a way of
improving the standard search tree algorithm fesNsitivity Eprring. Finally, in the
concluding Sectiohl5, we summarize our findings and pose qpestions for future
work.

2. Preliminaries and a Structural Result

Parameterized complexityOur algorithmic results are in the context of parameter-
ized complexity, which is a two-dimensional framework fardying the computational
complexity of problemd [d, 11, 24]. One dimension is the ingigen (as in classical
complexity theory), and the other one is tharameter k A problem is calledixed-
parameter tractabléfpt) if it can be solved irf (k) - n®®Y time, wheref is a computable
function only depending ok. This means that when solving a combinatorial problem
that is fpt, the combinatorial explosion can be confined toghrameter. A core tool
in the development of fixed-parameter algorithms is polyiabtime preprocessing by
data reduction Here, the goal is for a given problem instancwith parametek to
transform it into a new instanceé with parametek’ < k such that the size of is
upper-bounded by some function only dependindg@md the instancex(k) is a yes-
instance if and only if X', k') is a yes-instance. The reduced instance, which must be
computable in polynomial time, is calledpgoblem kerneland the whole process is
calledreduction to a problem kernelr simplykernelization(see [6]_16] for surveys).

Graph-theoretic conceptsA directed graptor digraphis a pairD = (V, A) with A C
V xV. The seV contains theverticesof the digraph, whiléA contains tharcs Unless
stated otherwise, let:= |V|. ForV’ C V, letD[V'] := (V',An (V' x V")) denotes the
subgraph oD that isinducedby V’. Furthermore, we writ® — ufor D[V \ {u}]. The
symmetric dferenceof two arc setsA andA’ is AAA" ;= (AU A) \ (AN A). In this
work, we only consider simple digraphs, that is digraphsauit self-loops and double
arcs.

For anyu € V, pred(u) := {ve V| (v,u) € A} denotes the set gredecessorsf u
with respect toA (the number of predecessors is caliadegred, while suca(u) :=
{veV](uv) e Al denotes itsuccessorgthe number of successors is calleatde-
gree. The vertices in pregu) U suc(u) are said to badjacent to u The transitive
and reflexive closure of the successor relation is¢faehabilityrelation.

Thedegreeof a vertex is the sum of its indegree and its outdegree andabece
of a digraph is the maximum over the degrees of its vertices.

lulv]x]|y
u|-]011|1
v | * I R
X[*[1]-1*
y* 11 * -

Figure 1: The diamond structure and its adjacency matrixcoAding to the definition of diamonds, the
solid arcs must be present and the dashed arc must be abdenthek arcs may or may not be present.
In the adjacency matrix, the endpoints of each vertex’ dagarcs are determined by its row. Asterisks
represent wildcards, that is, these entries do not mattéhéodefinition.

Definition 1. A digraphD = (V, A) is calledtransitiveif
Yu,v,weV ((u,v) e AA(v,w) € A) = (u,w) € A

In other wordsD is transitive ifA is a transitive relation on x V). The central
problem of this work is defined as follows.

TRANSITIVITY EDITING:
Input: A digraphD = (V, A) and an integek > 0.
Question Is there a digrapb’ = (V, A’) that is transitive anfAAA’| < k?

Analogously, Ransrrivity Decetion is defined by disallowing arc insertions. Also note
that, although we focus on the decision variants of the k| our algorithms can
also solve the corresponding minimization problems.

To derive our results, we make use of the fact that transitigeaphs can be char-
acterized by “forbidderiPss” [E]. In our setting, thePss of a digraph are all vertex
triples U, v, w) such thatg,v) € A, (v,w) € A and (,w) ¢ A. When saying that a
digraphD “contains” aP3 (u, v, w), we mean that, v, w are vertices irD and the arcs
(u,v) and {, w) are present iD while (u, w) is not. Note that this diiers from both
the notions of induced subgraphs and subgraphs since aeqlbgjnaracterization does
not enable us to forbid arcs of the host graph and an indudsgtaph characterization
cannot have “don’t care”-arcs (arcs marked with an astémiste table irf Figure]1).

meaning a slight abuse of standard notation. We say tha4lfe, v, w) contains
the arcs(, v) and {, w) and the vertices, v, andw. As also noted by Bocker et all [3],
transitive digraphs can be characterized as the digraghswiiPss, that is, a digraph
is transitive if and only if it does not containRy.

Lemma 1 (Folklore) A digraph D = (V, A) is transitive if and only if it does not
contain a RB.

Diamonds in digraphs. Many of our combinatorial studies are based on the considera
tion of “diamonds”. The absence of diamonds in a given digisimplifies the Ransi-
Tivity Eprring problem and helps us in proving both NP-hardness and ouritiigoc
results. Adiamondin a digraphD = (V, A) is a triple @, {x, y},V), whereu, x,y,Vv €
V, (u,v) ¢ A, and (1,2, (z v) € Afor ze {x,y} (see FigurEI]ﬂ. If D does not contain a
diamond, then it is said to ldiamond-free

4This is not a standard definition and should not be mixed ujnfstance with diamonds in undirected
graphs.

A setS C V x V is asolution setof Transitivity Eprting for the digraph ¥, A)
if (V,AAS) is transitive. A solution se§ is optimal if there is no solution se§’
with |S’| < |S|. For each solution s& we consider its two-partitio® = Spg. W Siys,
whereSpe. := S N A denotes the set of arc deletions &\gs denotes the set of arc
insertions.

The following lemma shows that the property of being diaménee is preserved
by deleting the arcs of a solution set.

Lemma 2. Let D = (V, A) be a diamond-free digraph and let S be a solution set for D.
Then Dyer = (V, A\ SpeL) is diamond-free.

Proof. Suppose thdDpg, contains a diamondi({X, y}, v). Note that, sinc® is diamond-
free, (,v) € SpeL. SinceSins is a solution set foDpg, both thePss (U, x, V)
and @, y, v) are destroyed by arc insertions.

Hence, @, V) € Sins, contradictingSins N SpeL = 0. m|

The following result shows that when solvingAksitivity Epiring on diamond-
free digraphs, it is optimal to only perform arc deletions.

Lemma 3. Let(D, k) with D = (V, A) be a diamond-free input instance DkansiTivitTy
Epiting. Then, there is an optimal solution set S for D that insertar that is, S=

SpEL.

Proof. Let S’ be any optimal solution set fdb. By Lemmd2, we can apply all arc
deletions of a given solution set without destroying diadkieeness. Hence, we as-
sume the solution s&’ to only consist of arc insertions. We constr&cfrom S’:

S:={(ab)|dceV: (ac)eS A(ab)cAA(bc)eA.

SinceD is diamond-free, for eacla(c) ¢ A, there is at most onk € V meeting the
criteria @ b) € Aand p,c) € A. Therefore, for each ar@a(c) € S’, there is at most
one arc § b) € S and hencéS| < |S'|.

LetD* := (V, A") with A* := A\S. We show tha$§ is a solution set foD by proving
thatD* is transitive: Assume that there ifPg p = (X, Y, 2) in D*. SinceS = Spg, we
know that §,y) € Aand §/, 2) € Aand, sinces’ is a solution set fob, we know thatp
is not aP3 in (V, AAS’), implying either & 2) € S’ or (x,2) € S. However, K, 2) ¢ S’,
because otherwisex(y) € S, contradictingp being aPs in D*. Hence, &2 € A
and , 2) € S. By definition ofS, this implies that there is a vertex V with (z v) € A
and & v) € S’. Also, (y,v) ¢ A, since, otherwise,Xq z Vv) and .y, Vv) would form
a diamond inD. Hence,q = (y,zV) is aP3 in D. As p, alsoq cannot be &P
in (V, AAS’). However,S’ does only contain insert operations, which impligs/ €
S’. Since §,2) € Aand V) € A, this implies §,2) € S, contradictingp being aP3
in D*. m]

3. NP-Hardness Results

In this section, we prove the NP-hardness @ikNsitivity Epiting and TRANSITIVITY
DeLetion in degree-three digraphs and in acyclic digraphs. On thehand, it seems
not very surprising that both problems are NP-hard, sineg& tndirected “sisters”
Cruster Eprting and Guster DeLETION have been shown to be NP-hard (see, €., [22,
@]). On the other hand, the hardness proofs for the undidgmtoblems do not carry
over to digraphs so easily (in fact, we were unable to sahagghing from these

proofs). It is also worth mentioning that we show NP-hardnfes very restricted
classes of digraphs. Essential ideas of our hardness pgrae¢salready been reused to
prove NP-hardness of MDiCur, Maxmum Tree OrientaTION, @nd GusTer EpiTiNG
for very restricted cases as well [8] 21].

3.1. NP-hardness on Bounded-Degree Digraphs

Our NP-hardness result for bounded-degree digraphs sy a reduction from
3SAT.

3SAT:

Input: A Boolean formulay in conjunctive normal form witm vari-
ablesxo, ..., Xp-1 andm clausesCy, ...,Cn-1, €ach consisting of three
literals.

Question Is there a truth assignment for allvariables such that evalu-
ates to true?

Construction.. Given an input instancg of 3SAT in which, without loss of generality,
every clause contains each variable at most once, we cehstrpolynomial time an
equivalent instance of rRansiTivity Epiting as follows. For each of tha Boolean
variables inp, we construct avariable cycle that is, a directed cycle of lengthn8
with m being the number of clauses ¢n More specifically, for each variable, the
corresponding variable cycle consists of the vertiés:= {io, .. ., igm-1}. The vertices

in V"*" are connected to form a cycle by adding the a{¥ := {(ip,ip:1) |0 < p <
8m-1} (for the ease of presentation, igt = ip). Each variable cycle can be partitioned
into m consecutive subpaths of eight vertices each. Weigal < j < m, apositive j-
connection verteandigj,, thenegative j-connection vertex

Depending on whetheg appears negated in the claWSgeor not, we use either the
negative or the positivg-connection vertex to connect the variable cycle to thesdau
gadget of claus€;.

The collection of all variable cycles is then referred to @§(A¥?") with V&' :=
U Vi@ andAva” = (J A", Inthe following, we refer to the arci(iy), (i, i), .. ., (ism-2, igm-1)
aspositive arcsand to the remaining arcs in the variable cycleagative arcs

The basic idea behind the construction is as follows. Sineari@ble cycle con-
tains 4n arc-disjointP3s, making it transitive requires at leash4nodifications. If we
are restricted to arc deletions (we will show that there igjtimal solution that only
deletes arcs), this is clearly possilolely if we delete every second arc. Hence, in this
case, there are exactly two ways of making a variable cyalesttive with at most #h
arc modifications, namely either deleting all positive dnagative arcs.

Observation 1. Making a variable cycle transitive by deleting arcs reqaiie least
4m arc deletions. This can only be achieved by either deletihgositive arcs or all
negative arcs.

We use these two optimal solutions to represent the trutrevafithe corresponding
variable and vice versa. If the variable cycle fgris made transitive by deleting all
positive arcs, ther; is considered to be assigned true, otherwjse considered to be
assigned false.

Next, consider a clausg; containing the variables,, X;, andx,. For each €
{p.q,r}, let
8] if X, occurs negated i@;,
8j+1 if x; occurs nonnegated (@;.

dockg, j) := {

Figure 2: The clause gadget of claw@gcontaining the variablegy, Xq, andx; . It consists of a length-three
cycle that is connected to the variable cyclesRia. Bold arcs represent docking arcs.

For each claus€; and each variablg that occurs irC;, we define thalocking arc
;. j of the clauseC; in the variable gadget of as the uniquely determined arc that is
incoming toigockg, j)- Note that the vertedgock,j) Is the negative or positiveconnection
vertex ofx;, depending on whetheg occurs negated i@; or not.

Observation 2. Let C; be a clause of, and let x be a variable that occurs in CThe
docking arce; j is a positive arc if and only ifixoccurs nonnegated in,C

We continue the construction by addinglause gadgethat consists of a length-
three cycle {p, jg, jr) which we connect to the variable cycles xf, xq, andx, by
adding thePs (igockq.j)- Ji» Ji) for alli € {p, g, r}. We refer to the arcs in this clause gad-
get asA%s and to the arcs of all clause gadgets?8& For an illustration, see Figué 2.
In the following paragraph, we show the correctness of tksgmted construction, that
is, the constructed instance okAnsirivity Epiting is a yes-instance if and only if the
original instance of 3SAT is a yes-instance.

Correctness..Let D(¢) denote the digraph that results from this constructiomstFi
observe that two vertices of a variable cycle that are coathin diferent clause cy-
cles have distance at least seven. Therefore, the coresirdigraph is diamond-free.
Second, observe thBX(y) is a degree-threehas maximum degree three.

Consider a clause gadget. Obviously, a cycle of length tba@ebe made transi-
tive with two arc deletions. Since each clause gadget comtaich a cycle and three
additionalPss, it is clear that we need at least five arc deletions for ellse gadget.

Observation 3. Let S denote a solution set for(@) with S = Spg, . Then, for each
clause G of g, it holds thatS N AJ?'SI > 5.

If the three docking arcs of a gadget are not deleted, thercthuse gadget together
with these docking arcs contains six arc-disjdias. Hence, six modifications are
required to make this structure transitive in this case[fsgere 3).

Note that the docking arcs are chosen such that this occanslibnly if all literals
in the clause corresponding to this gadget evaluate to.faidhe following, “making
the clause gadget @; transitive” refers to destroying aftss that contain at least one
arc of A,

Lemma 4. Let S denote a solution fofV, A*®), let C; be some clause ip, and
let xp, Xq, and % denote the variables occurring in;CThen, the clause gadget of C

Ve

Figure 3: If none of the three docking arcs is deleted, thearsi deletions are required to make this structure
transitive. Here, bold arcs are docking arcs and dashedegaieleted.

can be made transitive by deleting five arcs iﬁﬁ\and only if there is somed {p, q, r}
with aij € svar,

Proof. Let j* denote the successor pfin the clause gadget @f;.

“=": We show the contraposition. Assume that all docking arfc€pare not
in SY&". Then, for each € {p,q,r}, the Pss (igockg,j)-1- idocke. j)> i) @and (i, ji, j;7) are
destroyed by deleting arcs 8. Since these siRss are arc-disjoint, at least six arc
modifications are necessary (§ee Figyre 3).

“<": Without loss of generality, let,j € S¥*. Then, we can make the clause
gadget oC; transitive by deleting the arc8dock.j)- i5): (Jp» ja): (Gaocka.py» i): (q» Jr)»
and (;, jr) (seq Figure|4). o

With these observations at hand, we now show the NP-conmasseof Ransi-
Tivity Epiting, even if the maximum degree of the input is three and thera@itber
sources nor sinks, that is, the indegree and outdegree bfveatex is either one or
two.

Theorem 1. TransiTivity Epiting on degree-three digraphs is NP-complete.

Proof. Obviously, one can verify in polynomial time that a digraphriansitive. This
implies that Ransitivity Epiting is in NP. We now show that it is NP-hard by reducing
from 3SAT. LetD(p) = (V, A@UA®S) be a digraph constructed as described above from
a given instance of 3SAT. Clearly, the construction can be performed in potyial
time. We show that

@ is satisfiable= (D(¢), 5m+4mn) is a yes-instance forrRansirivity Epir-
ING.

“=": Let B be a satisfying assignment @f Then, we can makB(yp) transitive in
the following way: First, for each variable, if 8(x;) = true, then we delete all negative
arcs of the variable cycle of. Otherwise, we delete all positive arcs of the variable
cycle ofx;. Allin all, by deleting 4n arcs for each of tha variable cycles (which is a
total of 4mnarc deletions), we destroyed &is in variable cycles.

It remains to destroy thBss in clause gadgets. To this end, consider an arbitrary
clauseCj, and letx,, X4, andx, denote the variables occurring @y. Sincep is a
satisfying assignment far, some literal ofC; evaluates to true. Le{ be the variable

AT

Figure 4: A solution for the clause gadget of cla@§econtaining the variablegy, Xq, andx. This solution

deletes only five arcs fromj?'S which is only possible if at least one of the correspondingkda arcs is
deleted (in this casey,j). This situation represents that the literal correspapdirk; in C; evaluates to true
and, thus, thaC; evaluates to true. Here, bold arcs are docking arcs and dasbe are deleted.

corresponding to this literal. Them; is deleted and, thu§_Temmh 4 implies that
the clause gadget can be made transitive with five arc daketibor all clauses, this
requires Bn arc deletions in total. In summary, it is possible to méke) transitive
with 5m+ 4mnarc deletions.

“<". Let S be a solution set foD(y) such thaiS| < 5m + 4mn SinceD(y) is
diamond-free[Lemmad 3 allows us to assume Bat A" U A%, We show thaiS
contains exactly five arcs of each clause gadget amdrés from each variable cycle.
First, by[Observation|3, making ath clause cycles transitive requires at leastdrc
deletions. Second, Hy Observatidn 1 making a variable cyalesitive requires at
least 4 arc deletions. Since the variable cycles and clause gadgetsc-disjointS
contains exactly five arcs from each clause gadget amdrds from each variable cy-
cle. Moreover, by Observafion 1, either athgositive arcs or all h negative arcs are
in S.

In the following, we show thag with

B(x) = true if all positive arcs of the variable cycle gfare inS
"7 lfalse otherwise

is a satisfying assignment fer For the sake of contradiction, assume that there is some
clauseC; that evaluates to false. L&}, xq, andx, denote the variables occurring@;.
Since all literals ofC; evaluate to false, the definition pand’Observafion 2 imply that
none of the docking arcs @fj are inS. Then, howevef, Lemma3 4 impIi@mA]?'ﬂ > 6,

a contradiction. o

In the above proof, we never employ arc insertions. Thisiesghat Ransitivity
DeLetioN is also NP-complete.

Corollary 1. Transrrivity DeLETION ON degree-three digraphs is NP-complete.

By slightly modifying the construction of therknsitivity Epiting instance, we
can also obtain exponential-time lower bounds. Consideénstance of Ransitiviry
Epitine that is constructed as described above with the followirggptons: Instead
of creating for each variablg a cycle of length B8, we create a variable cycle of
length 8#§;) with #(x) denoting the number of clauses that containFurthermore,

for the docking of the clauses, we assume that for each \‘arathere is an arbitrary
but fixed ordering of the clauses that contajn Let pos{, j) denote the position of
clauseC; containingx; in this ordering. Then, we define dock|) = 8- posg, j) if x;
occurs negated i€, and docki, j) = 8- pos{, j) + 1 if x; occurs nonnegated i@;.
Finally, we sek := 5m+4- Y"1 #(x). In complete analogy to the prooflof Theorem 1,
we can show the equivalence of the 3SAT amdnErrivity EpitinG instances.

Observe that in the constructed instanadé 4), k) we havek = O(m) and alsgV| =
O(m) sincezi"z‘ol #(x)) = 3m(as each clause contains exactly three variables). Hence, a
algorithm with running time 29-poly(|V|) or O(2°I")) for TransiTiviTy EpiTinG implies
an0(2°M) time algorithm for solving 3SAT instances withvariables. The existence
of such an algorithm implies subexponential-time algonistfor many other NP-hard
problems as WeII|I;Il9]. It is therefore conjectured that 3Ahnot be solved in this
running time; this conjecture is commonly referred teaponential-time hypothesis

Theorem 2. Transimivity Epiming on degree-three digraphs cannot be solve@f -
poly(V]) time or Q2°)) time unless the exponential-time hypothesis fails.

As in the case of the NP-hardness, our results also tramsfBransitiviry DELE-
TION.

Corollary 2. Transrrivity DeLETION ON degree-three digraphs cannot be solve2P(R -
poly(\V]) time or Q2°1VD) time unless the exponential-time hypothesis fails.

3.2. NP-Hardness on Acyclic Digraphs

TransiTIviTY EpITiNG'S Undirected “sister” problemi@ster Epiting becomes poly-
nomial-time solvable when the input is a forest, that is,cﬁcﬁ It is thus natural to
study the complexity of #ansrrivity Epiting on acyclic digraphs. Somewhat surpris-
ingly, we find that Ransirivity Eprting remains NP-hard for acyclic digraphs, unlike
for example DssoiNt Paths,

which is NP-hard in general [112], but polynomial-time sdiieon acyclic di-
graphsl[20].

The construction ifLSection 3.1 relies heavily on varialyiges and there are also
cycles in the clause gadgets. To replace the variable cyelediave to find acyclic
gadgets that have exactly two optimal ways of being madeitie®. Furthermore, we
have to come up with replacements for the clause gadgetsakdtmore modifications
if the corresponding clause evaluates to false. Unforeipawe could not realize these
gadgets without giving up the bounded-degree constraititeoprevious construction.

In the following, we present a many-one reduction from thedéfplete Bsitive-
Not-ArL-EquarL-3SAT pr0b|em|_L_2|7].

Posrtive-Not-ALL-EquaL-3SAT (PNAE-3SAT):

Input: A Boolean formulap with n variablesxo, . . ., X,-1 Which is a con-
junction ofm clause<C, ..., Cn-1, €ach consisting of three positive liter-
als.

Question Is there a truth assignment for allvariables such that for each
clauseC; exactly one or two of its variables are assigned true, thdibis
no clause the truth values of its variables are all equal?

5In the context of @uster EpiTing, it is common knowledge that assuming each vertex to be euljgin
the input graph) to at least half of the vertices in its clugevalid. Hence, in trees, each cluster contains at
most two elements, implying thatGster Eprring in trees degenerates to maximum matching.

10

iO,l @]

O @, O
12,16m+1 13,16m+1 l4,16m+1

Figure 5: The variable gadget &f. The bold arcs show potential docking arcs (more detailsbeafound
in FiguredY anf18), while the additional arc-disjoR¥s (i1,i2¢,i3,) and (s, ias,is) with £ > 3m ensure
that optimally making this structure transitive requiree tleletion of eitherig,,i1) for each 0< ¢ < 8m
or (is,ig,) for each 0< ¢ < 8m.

Similarly to the approach described in Secfion 3.1, we cansvariable gadgets that
can optimally be made transitive in exactly two ways and s¢agadgets that require
more maodifications if and only if the corresponding clausaleates to false under a
certain assignment. In the following, we present a formatdption of the reduction.

Construction.. Given an instance of PNAE-3SAT, we construct a directed acyclic
graphD(y) := (VY@ U VO, A"y A%S) as follows. For each of theBoolean variables
of ¢, we construct aariable gadge{see Figuréls) that has exactly two ways of being
made transitive using at most#@-5 arc modifications, which will represent assigning
true or false, respectively, to the corresponding variable

For each Boolean variable, we construct the vertex set

8m 16mil
V=i is) U U{io,j,ie,j} U U {inj.izj,1aj}
j=0 j=0

and connect these vertices with the arcs

16m+1

8m
var ._ inner outer
A= U A UUALK , where
=0 =0

gt {(in.120), (ize, 130). (i3, 1ar), (iae, 15)} and

Uer = {(ioe i1), (s, ige))

The collection of all variable gadgets i¥'¢", A®) = (Uj—g VW&, Uz A@). The
following arc-disjointPss are contained in each variable gadyef{ A'"):

1. (oe in,i2e), (izes 136, 1a¢), (i, 15, 16¢) forall 0 < £ < 8m, and
2. 01, iz,g, ig,f), (ig,f, i4,f, |5) forall8m< ¢ < 16m+ 1.

Allin all, there are 3(8m+ 1)+ 2- (8m+ 1) = 40m+ 5 arc-disjointPss in each variable
gadget.

Observation 4. For each variable gadget, at leagdm + 5 arc modifications are re-
quired to make it transitive.

11

Figure 6: Part O of the clause gadget of clausg = {Xp,Xq,%}. The three docking arcs
are (s, Pa6), (A26,dz6), and (26, 36)-

We introduce the following notation for the vertices andsartthe variable-gadgets.
For each variable;, the vertices,, is andis, with £ < 16m+ 1 arenegative vertices
All other vertices inv¥®" arepositive verticesWe refer to an arcy, v) asnegative arc
if uis negative, otherwisel(Vv) is called gpositive arc In analogy t¢-Secfion 3.1, delet-
ing all positive or all negative arcs corresponds to asaigtiue or false, respectively,
to ;.

In the following, we construct thelause gadgets=or each claus€; = {Xp, Xg, X}
in the formulay, we construct three gadget parts (part 0, 1, and 2) such xaatlg
one of them can be made transitive with exactly four arc meatifbons if and only
if the variable gadgets o%,, Xq, and x, are not made transitive in the same way.
Let part(p) := 0, par{(q) := 1, and par{(r) := 2. For part¢ of the clause gadget of

clauseC;, we construct the vertex s\i‘f';' = {u) o, W, o, U}, W), }. The two vertices!)

andugyl are then connected to the variable gadgets, dependifig on

AcS ((asjee U), (iagjers Ul)} if party(i) = ¢
e {(i23j+¢5 U},O),(is,sjm Ué,l)}, if part;(i) # ¢.

Similarly, we define thelocking arcof part¢ of the clause gadget &f; in the variable
gadget ok as (s 3j+s, i43j+¢) if partj(i) = £, and asig 3., iz3j+¢) Otherwise, and denote
it by «i ¢ (see Figurélé for an example).

Informally, the docking arcs are the three arcs of the cpording variable gad-
gets (one arc for each variable gadget), whose start- angbéricire connected to the
clause gadget part. Furthermore, for each {p,q,r}, the arcy; ;, denotes the arc
in A’ that is incoming to the vertex that j (is outgoing from (that is, the arc that pre-
cedesy; j, in the variable gadget). Paftof the clause gadget is completed by adding
the two arcs ilA™ := {(u; o, W, o), (U 1. W; 1)} For each claus€;, we thus have the arc

.0
set
2

A = U

=0

cls cls
Ai,f U A j,é’] .
i€{p.a.r}

The idea behind the construction of the clause gadget pattsat we save one arc
modification in a clause gadget part if and only if all or noriét® docking arcs are
deleted in the variable gadgets. If this is possible for caré @f the clause gadget, then
the three variable gadgets corresponding to the variabldsei corresponding clause
are not made transitive in the same way, hinting at the veagabot being assigned
equal values.

With (Vs A%) 1= (UTg Ufo VO, ULy AS) denoting the collection of all clause
gadgets, we finally sdd(¢) := (V'& U VS, A" U A%S). Note thatD(y) is acyclic and

12

diamond-free.

Correctness..By the construction of the clause gadgets, it is clear thah emdget
part requires at least two arc modifications to be made tra@si

Observation 5. For each clause gadget, at least six arc modifications arelireqd to
make it transitive.

Furthermore, by the construction Aﬂsg, each part of a clause gadget docks over
the negative ard4sj., i43j+¢) in case paq(l) = ¢ and over the positive artij.¢, i33j+¢),
otherwise.

Observation 6. Each clause gadget part docks over one negative arc and tsitiye
arcs.

In order to show that the construction B{y) yields a many-one reduction, we
need the following lemmas.

First, we show that in order to make each variable gadgesitra@ without using
too many arc modifications, either all arcs that are incontinig or all arcs that are
outgoing fromis must be deleted, but not both.

Lemmab. Let S be a solution set for(p) with |S| < n-(40m+5)+14mand S= Spg, .
Then for each variablejf ¢, either

YO<{£<8m (io,g, |1) eSjorvy0<¢<8m (i5, i6,g) €S,
where § := Sn A"

Proof. Let D’ denote the result of applyirgto D(¢).
First, we show that at most one of the two statements in thenkeis true. For the
sake of contradiction, assume that

Y0 < € <8m{(ioy, 1), (is.i60)} € Si.

This leaves 2(16m+ 2) arc-disjointPss in the center of the gadget. Henceg(@n+ 1)+
2-(16m+2) = 48m+6 arc deletions are then required for this gadget. By Obsienid,
we need at least 40+ 5 arc deletions for each of the other 1 variable gadgets and by
Observatio b, we need at least six arc deletions for eadeofitlause gadgets. The
overall number of arc deletions needed is thus at least)- (40m+5)+48m+6+6m =
n- (40m+5)+ 14m+ 1, a contradiction.

Next, we show that at least one of the two statements is true. thHe sake of
contradiction, assume that

A0 < € < 8mM(ipy,i1) ¢ Si andd0 < £ < 8m(is, igr) ¢ Si.

Foreach O< ¢ < 16m+1, we havei, i) € S since otherwise there isR (ioz, i1,12.¢)

in D’. Similarly, the arcsig,, is), 0 < ¢ < 16m+1, are deleted. This requires already 2
(16m+ 2) modifications and leaves &6+ 2 arc-disjointPss in the center of the gadget.
Hence, 2 (16m+ 2) + 16m+ 2 = 48m+ 6 arc deletions are required for this gadget.
Again, this leads t¢5| > (n— 1) - (40m+5)+ 48m+ 6+ 6m=n- (40m+ 5) + 14m+1,

a contradiction. m]

13

Since there is either an arc incomingitothat is not deleted or there is an arc
outgoing fromis that is not deleted, we know that either all arcs that are @nty
fromi, are deleted or all arcs incomingitpare deleted.

For the following consideration, we introduce the notiorfmoper” solution sets
and show that we can assume for an optimal solution that ibiggy. We call a solution
setS for D(y) propery, if for all variable gadgetsS contains either all positive arcs and
none of the negative arcs or vice versa.

Lemma 6. If there is an optimal solution set S for(®) with |S| < n- (40m+5)+ 14m,
then there is also a proper optimal solution set fofidR

Proof. SinceD(y) is diamond-fred, Lemma 3 allows us to assume $hebntains only
arc deletions. LeD’ denote the result of applyirfg to D(y).

If Sis proper, then we are done. Hence, assume that there isabbeagiof ¢ such
thatS does not delete exactly the positive arcs or the negatigaditbe variable gadget
of x;. We show tha& can be modified such that either the positive arcs or the ivegat
arcs of the variable gadget are deleted without increasiagize of the solution set.
By Lemmab, either allig,,i1) or all (is,ig,) with 0 < ¢ < 8mare deleted. Since the
proof works analogously for both cases, we only considercdse {y,i1) € S for
all0 < ¢ < 8mand (s,igr) ¢ S for some 0< ¢* < 8m. More precisely, we show
that in this case, there is an optimal solution that deletastéy the positive arcs of the
variable gadget o;.

Clearly, (4¢,15) € Sforall 0 < ¢ < 16m+ 1 since otherwisei{,, is, i) is aP3
inD’.

In the following, we show that for each clau€g and each part of the clause
gadget ofC;, we can modifyS such that it is optimal and

Sn !Eirg = {(i23j+¢> 133j+0), (ia3j+¢- 15))- (1)

Recall that the docking axg j, of part¢ of the clause gadget of clau€g is either the
arc (23j+¢. ia3j+¢) Or the arc {3 3j+. ia3j+¢) and consider both cases:

Case L = (i23j+¢»133)+0)-

First, suppose thatixzj.¢,iz3j+¢) ¢ S. Then, {33j+¢ 143j+¢) € S. Note that the
arc (33j+¢. 1a3j+¢) is only contained in twaPss in D(p), one of which is destroyed
by the deletion ofi 3j.¢, is). Hence, we can replace §j.¢, i43j+¢c) With (i23j.e, i33j+¢)
in S without creating @3 in D’. This lets us assume th&@tcontains iz 3j+¢, 133j+¢)-

It remains to show that there is an optimal solution that dueslelete it i»3j.¢).
Sinceiy is a source irD” and 23j+¢,i33j+¢) € S, we can deleteifsj., u}’o) instead
of (i1,i23j+¢), satisfying[(1) in this case.

Case 2. j¢ = (i33j+¢,143)+¢)-

In this case, we can assume thats(.c,i33j+¢) € S, since otherwise, we can re-
place (1, i23j+¢) With (231, i33j+¢) iIN S because, is a source iD” andi, 3j+, has only
one outgoing arc i(¢). Then, however, deletingaij.¢, is) and 23j+¢, i33j+¢) al-
ready destroys two of the thr&gs containing i@ zj.c, i43j+¢). Hence, if (3:3j+¢, i43j+¢) €
S, then we deletei{sj.., u}’l) instead of (3 3¢, 143j+¢), Satisfying[1) in this case.

Finally, note that if we delete all positive arcs of a vareaghdget, then it becomes
transitive and, hence, additional arc deletions imply atreatiction to the optimality
of S.

Since the presented modificationsflo not modify any other variable gadgets or
arcs that are incident to other variable gadgets, we carategly apply these modifi-
cations and eventually obtain a proper optimal solution set m]

14

Figure 7: Part O of the clause gadget of cla@se= {xp, Xq, %} with all or no docking arcs being deleted.
Dashed lines indicate arcs that are deleted. Here, four elatiahs sffice. This situation corresponds

t0 B(Xp) # B(Xq) = B(x) for an assignmerg.

Having established this knowledge about variable gadgegscontinue by con-
sidering clause gadgets. In particular, we show that foringakach clause gadget
transitive without using too many arc modifications, thengstrbe a part such that
either all or none of the docking arcs of parre deleted.

Lemma 7. Let S be an optimal solution set for(®), let Cj = {Xp, Xg, X} be a clause
of ¢ and let¢ be a part of its clause gadget. Furthermore, for each {p,q,r} let
exactly one of; j, andy; j, bein S. If

Vie{p,qg,rtaijeS orVie{p,qr}vyij€S,
then|S N AJ?"[S| = 4. Otherwise|S N Ai'?l =B5.

Proof. SinceD(yp) is diamond-free, Lemnid 3 allows us to assume $ebntains only
arc deletions.

Suppose that the premise is true, that/iss a gadget part of the clause gadget
corresponding t&; such that alk; ;. or all y; ;. are deleted. We show only the case
that all ¢; j, are deleted, the case that @l , are deleted can be shown analogously.
Since for each € {p, q,r}, exactly one of the arcs; j, andy; j is deleted, we know
thaty; j. is not deleted for each € {p,q,r}. Figure[T shows that it is possible to
make part/ of the clause gadget corresponding to claGgeransitive with four arc
deletions. As also shown in FiguI® 7, applyBg (AU Uic(pqr AP, to D(¢) leaves
four arc-disjointP3s. Hence, four arc deletions are also required.

Suppose that the premise is false, thatfiss a gadget part for which there is
somea; j, that is not deleted and there is also somg, | # i that is not deleted.
Figure[8 shows that it is possible to make the gadget{aftthe clause gadget cor-
responding to clausg; transitive with five arc deletions. As also shown in Figure 8,
applyingS \ (A]9'€s U Uicipar) A)) to D(y) leaves five arc-disjoirss. Hence, at least
five arc deletions are requirei:i’. m|

Next, we us¢ Lemmad 7 to make a similar statement for clausgegsds a whole.
Namely, we can observe that if there is some part of a clausgegahat can be made

15

Figure 8: Part O of the clause gadget of cla@e= {xp, Xg, X} with some but not all docking arcs being
deleted. Dashed lines indicate arcs that are deleted. ldeteast five arc deletions are required. This
situation corresponds f&(xp) = B(Xq) = B(%) for an assignment of all variables.

transitive with four arc deletions, then we need five arc titahs for each of the other
two parts.

Lemma 8. Let S be a proper optimal solution set fof{&) and let G = {Xp, Xg, %} be
a clause ofp. If there is a gadget part such tha{S n Ai'§| =4,

then|S N A‘]."S| = 14. Otherwise|S N A?'Sl =15

Proof. SinceD(y) is diamond-free, Lemnid 3 allows us to assume $hebntains only
arc deletions.

Suppose that the premise is true, that is, there is a gadgef pach that all its
docking arcs are deleted or none of its docking arcs areatkl®y Lemmal7, four arc
deletions are required to make pérransitive. Since two parts of any clause gadget
share exactly one docking arc andfeli in two docking arcs, there can be no second
part ¢’ of the same gadget such that either all or none of the dockicgy af ¢ are
deleted. By Lemmf]7, we thus need five arc deletions each fkingn¢éhe other two
parts transitive. Overall, the total number of requiredd®letions is 14.

Now suppose that the premise is false, that is, for each gguges, there is
somei € {p,q.r} and somé’ € {p,q,r}, i’ # i, such thatw .,y jc ¢ S. Then,
by CemmaY, each of the three parts requires five arc delettbos all three parts
require a total of 15 arc deletions. m]

With Lemmag® anfll8 at hand, we can show that the construatiserithed above
is indeed a many-one reduction from PNAE-3SAT towsitivity EpiTinG.

Theorem 3. TransiTivity Epiting on acyclic digraphs is NP-complete.

Proof. Obviously, one can verify in polynomial time that a digraghtriansitive and,
thus, containmentin NP is clear.

Next, we show that Fansirivity Epiting is also NP-hard. Lep be an instance of
PNAE-3SAT and leD(¢) be as described above. Clearly, the constructidd(g) runs
in polynomial time and(y) is acyclic. It is thus sflicient to show the following:

¢ is a yes-instance of PNAE-3SA®& (D(¢),n - (40m+ 5) + 14m) is a
yes-instance of Fansitivity EpITING.

“=": Let 8 be a satisfying assignment, that is, an assignment to thables ofy
such that there is no clause whose variables are all assigasdame truth value. From
this assignment, we can construct a solution of tRe~gitivity Epiring instance as
follows. First, for each variable gadgef;¢', A’®"), we delete all positive arcs of the
variable gadget iB(x;) = true, and all negative arcsg{x;) = false. This clearly makes

16

each variable gadget transitive and requineg40m + 5) arc modifications overall.
It remains to make the clause gadgets transitive. Shnisea satisfying assignment,
there is no clause whose variables are assigned the saimegdtué. Thus, each clause
gadget docks to at least one variable gadget whose negattvar@ deleted and at least
one variable gadget whose positive arcs are deleted. Hirarg, is exactly one part
of each clause gadget for which either all or none of its dogldrcs are deleted. By
[CemmaB®, we can make each clause gadget transitive with 1dedetions. Overall,
we can thus makB(y) transitive with a total oh - (40m+ 5) + 14marc deletions.

“<". Let S be an optimal solution set fdd(¢) such thaiS| < n- (40m+ 5) +
14m. SinceD(y) is diamond-fred, Temmad 3 allows us to assume $haobntains only
arc deletions. LeD’ denote the result of applying to D(¢). By Lemma®, we can
assumes to be proper.

In the following, we construct a satisfying assignmgrfor the variables of the
given formulap from S:

true, if 00,0, Il) €S
false, otherwise.

B(x) = {

Since|S| < n- (40m+ 5) + 14m,[Observation4 and Lemma 8 imply tH&tN AJ?'S| =14
forall 0 < j < mand, thus, that for each clause gadget there is some partrsicil or
none of its docking arcs are deleted. Since, in each vargdilget, either all negative
arcs or all positive arcs are deleted, Observaflon 6 imgtiasout of the three variable
gadgets that the clause gadget is connected to, there isswimgtall its positive arcs
in S and one having all its negative arcsSn Hence g is a satisfying assignment for
the variables of.

Allin all, the given instance of PNAE-3SAT is a yes-instaif@nd only if (D(¢), n-
(40m+ 5) + 14m) is a yes-instance of RnsiTiviTy EDITING. m|

In the proof of Thearem|3, we never employ arc insertions wiritplies that it can
be used to prove thatkknsimivity DeLerion is NP-complete on dags.

Corollary 3. Transimivity DeLETION ONn acyclic digraphs is NP-complete.

Note that the construction employed here does not allowitkerisubexponential
lower bounds on the running time forAnsitivity Epiting and TransiTiviTy DELETION
on acyclic digraphs, as we did for bounded-degree digragBgction 3.11.

4. Fixed-Parameter Tractability Results

In this section, we complement the NP-hardness resultseopthvious section
with encouraging algorithmic results. Bocker et al. [3kebved that in many applica-
tions the input graphs are “almost transitive”. Consedyeas Bocker et all[3], we
study how the parametér(denoting the number of arc modifications) influences the
computational complexity. We deliver improved fixed-paeden tractability results;
in particular, we positively answer Bocker et all’s [3] gtien for the existence of a
polynomial-size problem kernel. In the following, we firstwetlop kernelization re-
sults, and then we present an improved search tree straféayether yielding the so
far fastest fixed-parameter algorithm fokaRsirivity Epiting. Furthermore, we also
provide similar results for dansirivity Decetion. In this section, we use andm to
denotgV| and|A|, respectively.

17

First, observe that/ansitivity Epiting is easily classified as fixed-parameter tract-
able with respect to the paramekeiThe task is simply to destroy ds. Note that, by
inspecting all pairsu, (v, w)) € V x A and testing fori,v) € Aand {4, w) ¢ A, all P3s
can be found irO(nm) time .

Once aP; is found, there are exactly three possibilities to destrBy. aither delete
one of the two arcs or insert the “missing” one. This yieldgarsh tree of siz&(3%)

(cf. ﬂﬂ]), which indeed can be used to enumegdteninimal solutions of size at mokt
because it exhaustively tries all possibilities to destgs.

4.1. Kernelization

In this section, we show a problem kernel fokaksirivity Epiting consisting
of O(k?) vertices on general graphs and a problem kern€(&j vertices on digraphs
with bounded degree. In the latter case, already the fatigwlata reduction rule suf-
fices.

Rule 1. Let(D = (V, A), k) be an input instance of ransitivity Epitine. If there is a
vertex ue V that does not take part in anyfh D, then delete u and all arcs that are
incident to u.

In order to prove the correctnessof Rule 1, we observe thagdch arci, v) that
is inserted by an optimal solution set, the ventds reachable fronu in the original
digraph.

Lemma 9. Let D = (V, A) be a digraph and let S be an optimal solution set for D such
that there is an arqu,Vv) € S\ A. Then, v is reachable from u in D.

Proof. Let V, € V denote the vertices that are reachable froin D (includingu

itself). For the sake of contradiction, assume tha V,. Since (,Vv) € S andS is

optimal, we know tha®’ := S\ (Vyx (V\ W)) is not a solution set foD. Hence, there

isaPs3 (X,y,2) in (V, AAS’) that is not in ¥/, AAS), implying x € V, andze V \ V,.
This is a contradiction to the fact tha&4S’) N (Vy x (V \ V) = 0.

With this lemma, we can now prove the correctnegs of Rule 1.
Lemma 10. [Rule is correct and can be exhaustively applied (ni@) time.

Proof. Let D = (V, A) be a digraph and ldd’ = (V’, A’) denote the result of applying
[Rule 1 toD. In the following, we show that

(D, K) is a yes-instance> (D', k) is a yes-instance.

“=": This direction follows directly from the fact thdd’ is an induced subgraph
of D and that transitivity is a hereditary property, that is,sitclosed under vertex
deletion.

“<" Let S denote an optimal solution set f@'. We show that there is also a
size{S| solution set foD. If S is a solution set foD, then we are done. Otherwise,
there is aPs (u,v,w) in (V, AAS) that is not in ¥/, AAS). Hence, applying Rulel 1
deleted eitheu, v, orw. We consider these cases individually.

Case 1{Rule 1 deletedh.

Sinceu is not a vertex oD’, we can assume that,(v) ¢ S and since i, w) ¢ AAS,
it is clear that ¢, w) ¢ A. Likewise, i, v) € A and since,v,w) is not aP3 in D, we
know that {, w) € S\ A. By[Lemma®, we thus know that is reachable fronu in D.

18

However,u not taking part in anyP; in D implies (u,w) € A, a contradiction. Note
that the case thaw is deleted by Rulell is completely analogous to this case find i
therefore omitted.
Case 2{Rule] deleted.
Then,v not taking part in anyP;3 in D implies that, inD, all vertices from whichv is
reachable are predecessors of all vertices that are rdadhaimv. By[Lemma 9, this
extends fronD to (V, AUS|ys). LetS’ denote the result of deleting frogall arcs from
predecessors afto successors ofin D. Since (1, w) € Spg|, we know thatS’| < |S|
and sinceS is optimal, there is ®3 (X, Y, 2) in (V, AAS’) wherex is a predecessor of
andzis a successor ofin D. This, however, implies thak(z) € A\S’, a contradiction.
Finally, the running time can be seen as follows. We enuraalapairs @, (v, w)) €
V x A and marku, v, andw if (u,v,w) is a P3. Afterwards, we delete all unmarked
vertices. This procedure can be performe®inm) time. m]

Clearly, the proof of Lemma 10 also works withgut Lemnha Si§s = 0, proving
correctness 1 also forANSITIVITY DELETION.

In the following, we show thafRulé 1 already implies a profblernel with a linear
number of vertices if the maximum degree of the given digiiaponstant.

Theorem 4. For TransiTiviTy EpiTiNG restricted to degree-d digraphs, we can compute
admits a problem kernel containing at m@&t- (d + 1) vertices that can be computed
in O(nm) time.

Proof. LetD = (V, A) be a digraph that is reduced with respect to Riile 1 anfl bt a
solution set foD with |S| < k. We show thafV| < 2k(d+1). Consider the two-partition
ofVintoY:={veV|3ueV (uVv) e SV (v,u) e SfandX := VY. Since|S| < k,
we havelY| < 2k. Note that, sincd is reduced with respect to RU¢ 1, everye X
is contained in &3 q. It is clear that the other two vertices qgfare inY and thus
everyx € X is adjacent to at least one vertex¥n However, each vertex iM has at
mostd neighbors and thy¥X| < d|Y|, implying|V| = |X|+|Y| < 2k+d-2k = 2k(d+1). O

In the proof of the kernel bound, we actually only need thaheamaining vertex
is in someP3, and sincé Rulell is also correct foraksitivity DeLETION, the bound
still holds for TrRansITIVITY DELETION.

Corollary 4. TransrmiviTy DeLETION restricted to degree-d digraphs admits a problem
kernel containing at mogik - (d + 1) vertices that can be computed ir{r®n) time.

Next, we prove aiD(k?)-vertex kernel for general digraphs.

The following data reduction rule roughly follows an idea®uster Eprring [14]:
If there is some vertex paiufv) such that not modifyingy, v) results in a solution size
of at leask + 1, then every solution of size at mdsinust containy, v).

Rule 2. Let(D = (V, A), k) be an input instance of ransiTiviTY EDITING.

1. Let(u,v) ¢ Aand let Z:= suc(u) Npred,(v). If |Z| > k, then inser{u, v) into A
and decrease k by one.

2. Let(u,v) € A, let Z, := pred,(u) \ predy(v) and let Z := suca(v) \ suca(u).
If |Zy] + 124 > k, then deletéu, v) from A and decrease k by one.

Lemma 11. Rule2 is correct and can be exhaustively applied (n®{ptime.

19

Proof. Let (D*, k—1) with D* = (V, A*) denote the instance that is obtained by applying
Rulel2 to the given instanc®(k) with D = (V, A). Furthermore, lety, v) be the arc
that is modified by RulEl2. For the correctness of the rule, vesvghat every solution
setS for D with |S| < k contains @, V). Assume that there is a solution sefor D
with (u,v) ¢ S. We show thalS| > k.

If (u,v) is an arc insertion, then fat := suc@(u) N predy\(v) we havelZ| > k.
Hence, for eaclv € Z, (a,w,b) is aP3 in D. Since é,b) ¢ S, at least one of the two
arcs @, w) and (v, b) is modified for eachv € Z. Since|Z| > k, we havegS| > k.

If (u, V) is an arc deletion, then we ha\&| + |Z,| > k for Z,, := pred,(u) \ predy(v)
andz, := suca(v) \ suca(u). Hence, for allw € Z,, (w,u,V) is aP3z in D and for
allze Z,, (u,v,2) is aP3z in D. Since (,,v) ¢ S, for eachw € Z, U Z,, at least one arc
incident tow has to be inserted or deleted. Singg + |Z,| > k and sinceZ, andz, are
disjoint,|S| > k follows.

It remains to show the running time. We show that, given anggfasertices, we
can execute Rulgl 2 i@(n) time. Letu,v € V. If (u,v) ¢ A, then we compute the
size of sucg(u) N predy(v), which can be done i®(n) time. If (u,v) € A, then we
compute the sizes of preg) \ predy(v) and sucg(v) \ suca(u), which can also be
done inO(n) time. Obviously, inserting or deletingl,(v) can be done i©(n) time as
well. O

Finally, we show that the exhaustive application of Rlead[Zleads to a problem
kernel containingd(k?) vertices.

Theorem 5. Transimivity Epiting admits a problem kernel containing at moét k 2)
vertices and it can be computed if{r®) time.

Proof. Assume that there is a digraph= (V, A) with |V| > k(k + 2), thatD is reduced
with respect to Rules| 1 afidl 2, and that it is possible to nizakeansitive by applying
at mostk arc modifications. LeD’ = (V, A’) denote a transitive digraph obtained by
the application ok arc modifications and €6 := AAA’ denote the corresponding
solution set. Consider a two-partitiok,(Y) of V, whereY :={ve V| Jue V (u,V) €
SV (v,u) € S}andX := V\ Y. Note that all vertices irX are adjacent to at least
one vertex inY becauseD is reduced with respect to RUlé 1. Also note that in order
to destroy aP; p in D, the solution se§ must contain an arc incident to two of the
vertices ofp, hence for eacP; p in D at most one of the vertices gfis in X.

Since we assume thBtcan be made transitive with at mdsirc modifications, we
know thatlS| < kand consequently| < 2k. Clearly,|V| = |X|+]Y], hencgV| > k(k+2)
implies|X| > k?. With the above observation, it follows that there are mhesk? Pss
in D.

Foreachd b) € S, letZuy) = {p | modifying (a b) destroys thé>; pin D}. Since
there are more thak? P3s in D but |S| < k, we know that there is au(v) € S
with |Zyy| > k. We show that Rulg]2 applies to,{/) contradicting the fact thad
is reduced.

If (u,v) is an arc insertion, then the set®fs destroyed by addingi(v) is Z) =
{(u,w,v) | w e suca(u) N predy(v)}. Since|Zyyl > k, we havelZ| > k for Z :=
sucq(u) N predy(v) . Hence[RUleI2 applies in this case.

If (u,v) is an arc deletion, then thess destroyed by deletingu(v) is Zyy) =
{(u,w, V) | w e predy(u) \ predy(v) vV w e suca(v) \ suca(u)}. SincelZyyl > k, we
have|Z| +|Z,| > k for Z, := predy(u) \ pred,(v) andZ, := suc(v) \ suca(u). Hence,
[Rule 2 applies.

20

It remains to show the running time. Note thalif Rule 2 hasnbeehaustively
applied, then the exhaustive applicatiof of Rule 1 does reztte any vertex paiu(v)
to which[Rule ? applies. Therefore, exhaustively applyindel®@2 in O(n°) time and
then exhaustively applyirig Rulé 1 ®(n°) time yields an instance that is reduced with
respect to both rules. m|

[Rule 2 also works for ansitivity DeLerion if Case 1 is omitted. The analysis of
the kernel size is similar to the proof[of Theorem 5.

Corollary 5. Transrrivity DeLeTION admits a problem kernel containing at moét k
2) vertices and it can be computed ir(r®) time.

4.2. Search Tree Algorithm

As mentioned before, a straightforward algorithm that fiad®ptimal solution set
for a given digraph branches on edeh(u, v, w) in the digraph, trying to destroy it by
either deletion of i, v), deletion of ¢, w), or insertion of ¢, w). This directly gives a
search tree algorithm solvingansitivity Eprring on ann-vertex digraph ir0(3¢ - n®)
time (cf. [3]).

For TransrriviTy DELETION, the search only needs to branch into two cases, yielding
an algorithm running i©(2¢ - n3) time. Using the so-called interleaving technidf/E [25,
@] together with the polynomial-size problem kernel resuhowever, one actually
can achieve running time3(3¢ + n%) andO(2X + nd), respectively.

In the following, we shrink the search tree size farafsmviry Eprring from 3¢
to 257¢ by applying our combinatorial result on diamond-freenéssi(ma3).

Theorem 6. TransiTiviTy Epiming and Transmivity DeLETION can be solved in @.57%+
n) and Q(2¥ + n®) time, respectively.

Proof. The modified algorithm employs the following search struetWpon finding
a diamond @, {x, y}, V) in the given digraptD = (V, A), the algorithm recursively asks
whether

1. (V, A\ {(u, x), (u,y)}) can be made transitive with k — 2 operations,
2. (V, A\ {(u, %), (y,v)}) can be made transitive with k — 2 operations,
3. (M, A\ {(X, V), (u,y)}) can be made transitive with k — 2 operations,
4. (V, A\ {(x,V),(y,V)}) can be made transitive with k — 2 operations, or
5

(V, AU {(u,Vv)}) can be made transitive with k — 1 operations.

Thus, the search branches into five cases and the recurrentieef corresponding
search tree size reads Bs= O(1) + 4 - Tx_2 + Tk_1, whereTy = T; = 1. Resolving
this recurrence yield®(2.57¢) for the search tree size under the assumption that the
branching is always performed in this way. Since all otheysvaf destroying an en-
countered diamond include all modifications of one of thevalmases, this branching
strategy is correct. If there are no diamonds in the inpuplgréhen the straightfor-
ward search tree forrhnsitivity DeLetion iS used to solve the problem, which runs
in O(2¢ - n®) time. The correctness of the overall search tree algoréhsily follows.

Applying the interleaving techniqu@Z@Zél], and making a$ the polynomial-
size problem kernels (s€e_Theareim 5) results in algorithuiving) TransiTiviTy Epre
NG in O(2.57¢ + n®) time and Ransmivity DeLETION in O(2% + n®) time.]

21

5. Conclusion

We studied Ransitivity Epiting and some related problems. Whil@ ARsrriviTy
CowmpLETION iS Solvable inO(n?378) time [23], we have seen that botkARsrriviry
Epiring and Transitivity DeLerion are NP-complete, even when restricted to dags or
degree-three digraphs. We have shown that both problem# adpnoblem kernel
containing at mosi(k + 2) vertices and that this kernel can be compute@(in®) time.
Furthermore, we presented a fixed-parameter algorithm dakstrivitry Epiting that
runs inO(2.57¢ + n%) time, improving on the obviou®(3* - n%) time algorithm.

Two immediate challenges arising from our work are to deteemvhether there
is an O(k)-vertex problem kernel for Hansitivity EpiTing Or TRANSITIVITY DELETION
in the case of general digraphs (s@ @,BS, 7] for corredipgrresults in the case
of undirected graphs, that is,@ter EpiTing) or to improve the running time of the
kernelization, which so far takes cubic time in the numbevatices (for Custer
Ebiting, even linear-time kernelization is possitle![26]).

Another interesting open question is whether there is arfotyal-time approxi-
mation algorithm for Ransiriviry Epiting andor TRANSITIVITY DELETION.

Finally, note that we focused on arc modifications to makeergdigraph transitive—
it might be of similar interest to start an investigationtod flransitivity VErTEx DELE-
TION problem, where the graph shall be made transitive by asveex deletiongs
possible (sedﬂ?] for corresponding results in the casendfrected graphs, that is,
Cruster VErTEX DELETION). Finally, from a more general point of view, there seems to
be arich field of studying further modification problems ogrdphs. For instance, the
concept of quasi-transitivity is of considerable inteiedhe theory of directed graphs
(cf. [E|]), hence one might start investigations on problensh as @asi-TRANSITIVITY
EprTiNG.

References

[1] J. Bang-Jensen and G. Gutiigraphs: Theory, Algorithms and Applicatians
Springer, 2nd edition, 2009.

[2] S. Bocker. A golden ratio parameterized algorithm fduster editing. In
Proceedings of the 22nd International Workshop on Combiit Algorithms
(IWOCA '11) 2011. To appear.

[3] S. Bocker, S. Briesemeister, and G. W. Klau. On optin@hparability edit-
ing with applications to molecular diagnosticBMC Bioinformatics 10(Suppl
1):S61, 2009.

[4] S.Bocker, S. Briesemeister, and G. W. Klau. Exact atanrs for cluster editing:
Evaluation and experimentalgorithmica 60(2):316—-334, 2011.

[5] S. Bocker and P. Damaschke. Even faster parameterinstiec deletion and
cluster editingInformation Processing Letterd11(14):717-721, 2011.

[6] H. L. Bodlaender. Kernelization: New upper and lower bduiechniques. In
Proceedings of the 4th International Workshop on Paranieterand Exact Com-
putation (IWPEC '09)volume 5917 o£ NCS pages 17-37. Springer, 2009.

[7] J. Chen and J. Meng. AkXernel for the cluster editing problemlournal of
Computer and System Scienc2811. In press.

22

[8] B. Dorn, F. Hiffner, D. Kruger, R. Niedermeier, and J. Uhlmann. Exploiting
bounded signal flow for graph orientation based on cati&etepairs. InPro-
ceedings of the 1st international ICST conference on Thaondypractice of al-
gorithms in (computer) systems (TAPAS;1lgcture Notes of ICST, pages 104—
115. ICST, Springer, 2011. A long version of this work is tgegr inAlgoithms
for Molecular Biology

[9] R. G. Downey and M. R. FellowsRarameterized Complexitypringer, 1999.

[10] M. R. Fellows, M. A. Langston, F. A. Rosamond, and P. ShBfficient parame-
terized preprocessing for cluster editing.Aroceedings of the 16th International
Symposium on Fundamentals of Computation Theory (FCTW@R)me 4639 of
LNCS pages 312-321. Springer, 2007.

[11] J. Flum and M. GroheParameterized Complexity Theorgpringer, 2006.

[12] S. Fortune, J. Hopcroft, and J. Wyllie. The directedgralph homeomorphism
problem.Theoretical Computer Scienck0(2):111-121, 1980.

[13] J. Gramm, J. Guo, F. Hiner, and R. Niedermeier. Automated generation of
search tree algorithms for hard graph modification problenddgorithmica
39(4):321-347, 2004.

[14] J. Gramm, J. Guo, F. Hiner, and R. Niedermeier. Graph-modeled data clus-
tering: Exact algorithms for clique generatioitheory of Computing Systems
38(4):373-392, 2005.

[15] J. Guo. A more flective linear kernelization for cluster editinglheoretical
Computer Scien¢é&10(8-10):718-726, 2009.

[16] J. Guo and R. Niedermeier. Invitation to data reductiod problem kerneliza-
tion. ACM SIGACT News38(1):31-45, 2007.

[17] F. Hiftner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixethkpeeter
algorithms for cluster vertex deletiomheory of Computing Systepds’(1):196—
217, 2010.

[18] M. Hummel, S. Bentink, H. Berger, W. Klapper, S. WessamidT. F. Barth, H.-
W. Bernd, S. B. Cogliatti, J. Dierlamm, A. C. Feller, M.-L. hemann, E. Har-
alambieva, L. Harder, D. Hasenclever, M. Kuhn, D. Lenzelithter, J. I.
Martin-Subero, P. Mbller, H.-K. Miller-Hermelink, G. OtR. M. Parwaresch,
C. Pott, A. Rosenwald, M. Rosolowski, C. Schwaenen, B. Ztlihofecker,
M. Szczepanowski, H. Trautmann, H.-H. Wacker, R. Spang, Mefier,
L. Trimper, H. Stein, and R. Siebert. A biologic definitidrBurkitt's ymphoma
from transcriptional and genomic profilindNew England Journal of Medicine
354(23):2419-2430, 2006.

[19] R. Impagliazzo, R. Paturi, and F. Zane. Which probleragehstrongly expo-
nential complexity?Journal of Computer and System Scien&3{4):512-530,
2001.

[20] J. Jacob, M. Jentsch, D. Kostka, S. Bentink, and R. Sp@etecting hierarchical
structure in molecular characteristics of disease usiagsitive approximations
of directed graphsBioinformatics 24(7):995-1001, 2008.

23

[21] C. Komusiewicz and J. Uhlmann. Alternative parameigions for cluster edit-
ing. In Proceedings of the 37th Conference on Current Trends in fijhaod
Practice of Computer Science (SOFSEM " glume 6543 ol ecture Notes in
Computer Scien¢g@ages 344-355. Springer, 2011.

[22] M. Kfivanek and J. Moravek. NP-hard problems in hiehical-tree clustering.
Acta Informatica23(3):311-323, 1986.

[23] J. I. Munro. Hiicient determination of the transitive closure of a diredeabh.
Information Processing Letterd(2):56-58, 1971.

[24] R. Niedermeier.Invitation to Fixed-Parameter AlgorithmsOxford University
Press, 2006.

[25] R. Niedermeier and P. Rossmanith. A general method &edpp fixed-
parameter-tractable algorithmdnformation Processing Letters3(3—-4):125—
129, 2000.

[26] F. Protti, M. D. da Silva, and J. L. Szwarcfiter. Applyingodular decomposi-
tion to parameterized cluster editing problen&heory of Computing Systems
44(1):91-104, 2009.

[27] T. J. Schaefer. The complexity of satisfiability prable InProceedings of the
10th Annual ACM Symposium on Theory of Computing (STOGC péjes 216—
226. ACM Press, 1978.

[28] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modiifiagproblemsDiscrete
Applied Mathematigsl44(1-2):173-182, 2004.

[29] Y. Shiloach and Y. Perl. Finding two disjoint paths beam two pairs of vertices
in a graph.Journal of the ACM25(1):1-9, 1978.

24

	Introduction
	Preliminaries and a Structural Result
	NP-Hardness Results
	NP-hardness on Bounded-Degree Digraphs
	NP-Hardness on Acyclic Digraphs

	Fixed-Parameter Tractability Results
	Kernelization
	Search Tree Algorithm

	Conclusion

