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Abstract

We present a first thorough theoretical analysis of the Transitivity Editing problem on
digraphs. Herein, the task is to make a given digraph transitive by a minimum number
of arc insertions or deletions. Transitivity Editing has applications in for the detection
of hierarchical structure in molecular characteristics ofdiseases.

We demonstrate that if the input digraph does not contain “diamonds”, then there
is an optimal solution that performs only arc deletions. This fact helps us construct a
first proof of NP-hardness, which also extends to the restricted cases in which the input
digraph is acyclic or has maximum degree three.

By providing anO(k2)-vertex problem kernel, we answer an open question from
the literature. In case of digraphs with maximum degreed, anO(k · d)-vertex problem
kernel can be shown. Moreover, we improve previous fixed-parameter algorithms, now
achieving a running time ofO(2.57k+n3) for ann-vertex digraph ifk arc modifications
are sufficient to make it transitive.

Our hardness as well as algorithmic results transfer to TransitivityDeletion, where
only arc deletions are allowed.

Keywords: Graph modification problem, NP-hardness, Hierarchical structure detec-
tion, Fixed-parameter tractability, Kernelization and data reduction

1. Introduction

A directed graph (digraph for short)D = (V,A) is calledtransitive if (u, v) ∈ A
and (v,w) ∈ A imply (u,w) ∈ A (also cf. [1, Section 4.3]).

To make a digraph transitive by a minimum number of arc modifications has re-
cently been identified to have important applications in detecting hierarchical structure
in molecular characteristics of diseases [20, 3].
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Here, a group of patients is analyzed and a hierarchical classification of diseases
in a scheme of sub-diseases based on molecular characteristics is extracted [18]. Due
to measurement errors and noise in this data, the resulting relation is often not com-
pletely correct. By restoring transitivity to the relation, one hopes to reconstruct the
real relation to a fair extent. Hence, the task is to find a consistent disease hierarchy
that is closest to the measured data. Obviously, one must assume the error to be small,
otherwise, one may reconstruct almost any hierarchical structure from the data. One
interprets the data as a directed graph and inserts and deletes arcs until transitivity is
achieved. The vertices of the graph are diseases and there isan arc (a, b) from vertexa
to vertexb if the experimental data suggests that diseaseb is a sub-disease of diseasea.
The central problem under consideration, Transitivity Editing, thus asks whether a
given digraph can be transformed into a transitive digraph by inserting or deleting no
more than some given numberk of arcs.

We provide a first thorough theoretical study of Transitivity Editing, complement-
ing previous work that focused on heuristics, integer linear programming, and simple
fixed-parameter algorithms [20, 3]. We also study the special case where only arc dele-
tions (Transitivity Deletion) are allowed and restricted classes of digraphs (acyclic
and bounded-degree). Note that Transitivity Completion (where only arc insertions
are allowed) is nothing but the well-studied problem of computing the transitive clo-
sure of a digraph; this is solvable in polynomial time [23].

Previous work..Transitivity Editing can be seen as the “directed counterpart” of the
so far much more extensively studied problem Cluster Editing on undirected graphs
(see [2, 4, 5, 10, 13, 14, 15, 21, 26]). Indeed, both problems are also referred to as
Transitive Approximation problem on directed and undirected graphs, respectively.
Unfortunately, this was perhaps a reason why the NP-hardness of Transitivity Edit-
ing has erroneously been claimed to be proven [20, 3] by referring to work that only
considers problems on undirected graphs, including Cluster Editing. On the posi-
tive side, however, the close correspondence between Cluster Editing and Transitiv-
ity Editing helped Böcker et al. [3] transfer their previous results for Cluster Edit-
ing [4] to Transitivity Editing, delivering the currently fastest implementations that
exactly solve Transitivity Editing (by means of integer linear programming and fixed-
parameter algorithms). In particular, their computational experiments demonstrate that
their exact algorithms are by far more efficient in practice than the previously used
purely heuristic approach by Jacob et al. [20].

Our contributions..We start by deriving the helpful observation that any digraph that
does not contain a so-called “diamond” has an optimal solution for Transitivity Edit-
ing that only deletes arcs. Hence, in these cases, Transitivity Editing and Transitivity
Deletion coincide. This observation is useful for both algorithmic and hardness results.

We continue byprovingthe so far onlyclaimedNP-hardness of Transitivity Edit-
ing, also extending this result to Transitivity Deletion. Moreover, we show that both
problems remain NP-hard when restricted to acyclic digraphs or digraphs whose un-
derlying undirected graphs have maximum vertex degree three. These proofs also pro-
vide exponential lower bounds on the running time for algorithms solving Transitivity
Editing or Transitivity Deletion.

Eventually, we provide a polynomial-time data reduction that yields anO(k2)-
vertex problem kernel for Transitivity Editing and Transitivity Deletion. This an-
swers an open question of Böcker et al. [3]. In the special case of digraphs with max-
imum vertex degreed, we show anO(k · d)-vertex kernel. In addition, we develop an
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improved search tree for Transitivity Editing. That is, whereas the fixed-parameter
algorithm of Böcker et al. [3] runs inO(3k · n3) time onn-vertex digraphs, our new
algorithm runs inO(2.57k + n3) time (note that in our algorithm the cubic termn3 is
additive instead of multiplicative due to our kernelization result). Finally, we observe
that Transitivity Deletion can be solved inO(2k + n3) time.

Organization of the paper..In Section 2, after agreeing on some necessary prelimi-
naries, we make a very helpful observation about digraphs excluding certain substruc-
tures. Section 3 is the most technical section containing our NP-hardness results. We
split Section 3 into two parts, dealing with digraphs whose underlying undirected graph
has bounded degree and acyclic digraphs, respectively. With these NP-hardness proofs
established, we present our algorithmic results in Section4: We first show a kerneliza-
tion for both Transitivity Editing and TransitivityDeletion and then present a way of
improving the standard search tree algorithm for Transitivity Editing. Finally, in the
concluding Section 5, we summarize our findings and pose openquestions for future
work.

2. Preliminaries and a Structural Result

Parameterized complexity..Our algorithmic results are in the context of parameter-
ized complexity, which is a two-dimensional framework for studying the computational
complexity of problems [9, 11, 24]. One dimension is the input sizen (as in classical
complexity theory), and the other one is theparameter k. A problem is calledfixed-
parameter tractable(fpt) if it can be solved inf (k) ·nO(1) time, wheref is a computable
function only depending onk. This means that when solving a combinatorial problem
that is fpt, the combinatorial explosion can be confined to the parameter. A core tool
in the development of fixed-parameter algorithms is polynomial-time preprocessing by
data reduction. Here, the goal is for a given problem instancex with parameterk to
transform it into a new instancex′ with parameterk′ ≤ k such that the size ofx′ is
upper-bounded by some function only depending onk and the instance (x, k) is a yes-
instance if and only if (x′, k′) is a yes-instance. The reduced instance, which must be
computable in polynomial time, is called aproblem kernel, and the whole process is
calledreduction to a problem kernelor simplykernelization(see [6, 16] for surveys).

Graph-theoretic concepts..A directed graphor digraph is a pairD = (V,A) with A ⊆
V×V. The setV contains theverticesof the digraph, whileA contains thearcs. Unless
stated otherwise, letn := |V|. ForV′ ⊆ V, let D[V′] := (V′,A∩ (V′ × V′)) denotes the
subgraph ofD that isinducedby V′. Furthermore, we writeD − u for D[V \ {u}]. The
symmetric differenceof two arc setsA andA′ is A∆A′ := (A ∪ A′) \ (A∩ A′). In this
work, we only consider simple digraphs, that is digraphs without self-loops and double
arcs.

For anyu ∈ V, predA(u) := {v ∈ V | (v, u) ∈ A} denotes the set ofpredecessorsof u
with respect toA (the number of predecessors is calledindegree), while succA(u) :=
{v ∈ V | (u, v) ∈ A} denotes itssuccessors(the number of successors is calledoutde-
gree). The vertices in predA(u) ∪ succA(u) are said to beadjacent to u. The transitive
and reflexive closure of the successor relation is thereachabilityrelation.

Thedegreeof a vertex is the sum of its indegree and its outdegree and thedegree
of a digraph is the maximum over the degrees of its vertices.

3



u

v

x y

u v x y
u - 0 1 1
v * - * *
x * 1 - *
y * 1 * -

Figure 1: The diamond structure and its adjacency matrix. According to the definition of diamonds, the
solid arcs must be present and the dashed arc must be absent. All other arcs may or may not be present.
In the adjacency matrix, the endpoints of each vertex’ outgoing arcs are determined by its row. Asterisks
represent wildcards, that is, these entries do not matter for the definition.

Definition 1. A digraphD = (V,A) is calledtransitiveif

∀u, v,w ∈ V ((u, v) ∈ A∧ (v,w) ∈ A)⇒ (u,w) ∈ A.

In other words,D is transitive ifA is a transitive relation on (V × V). The central
problem of this work is defined as follows.

Transitivity Editing:
Input : A digraphD = (V,A) and an integerk ≥ 0.
Question: Is there a digraphD′ = (V,A′) that is transitive and|A∆A′| ≤ k?

Analogously, Transitivity Deletion is defined by disallowing arc insertions. Also note
that, although we focus on the decision variants of the problems, our algorithms can
also solve the corresponding minimization problems.

To derive our results, we make use of the fact that transitivedigraphs can be char-
acterized by “forbiddenP3s” [3]. In our setting, theP3s of a digraph are all vertex
triples (u, v,w) such that (u, v) ∈ A, (v,w) ∈ A, and (u,w) < A. When saying that a
digraphD “contains” aP3 (u, v,w), we mean thatu, v, w are vertices inD and the arcs
(u, v) and (v,w) are present inD while (u,w) is not. Note that this differs from both
the notions of induced subgraphs and subgraphs since a subgraph characterization does
not enable us to forbid arcs of the host graph and an induced subgraph characterization
cannot have “don’t care”-arcs (arcs marked with an asteriskin the table in Figure 1).

meaning a slight abuse of standard notation. We say that theP3 (u, v,w) contains
the arcs (u, v) and (v,w) and the verticesu, v, andw. As also noted by Böcker et al. [3],
transitive digraphs can be characterized as the digraphs withoutP3s, that is, a digraph
is transitive if and only if it does not contain aP3.

Lemma 1 (Folklore). A digraph D = (V,A) is transitive if and only if it does not
contain a P3.

Diamonds in digraphs..Many of our combinatorial studies are based on the considera-
tion of “diamonds”. The absence of diamonds in a given digraph simplifies the Transi-
tivity Editing problem and helps us in proving both NP-hardness and our algorithmic
results. Adiamondin a digraphD = (V,A) is a triple (u, {x, y}, v), whereu, x, y, v ∈
V, (u, v) < A, and (u, z), (z, v) ∈ A for z ∈ {x, y} (see Figure 1).4 If D does not contain a
diamond, then it is said to bediamond-free.

4This is not a standard definition and should not be mixed up forinstance with diamonds in undirected
graphs.
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A set S ⊆ V × V is a solution setof Transitivity Editing for the digraph (V,A)
if (V,A∆S) is transitive. A solution setS is optimal if there is no solution setS′

with |S′| < |S|. For each solution setS we consider its two-partitionS = SDEL ⊎ SINS,
whereSDEL ≔ S ∩ A denotes the set of arc deletions andSINS denotes the set of arc
insertions.

The following lemma shows that the property of being diamond-free is preserved
by deleting the arcs of a solution set.

Lemma 2. Let D= (V,A) be a diamond-free digraph and let S be a solution set for D.
Then DDEL := (V,A \ SDEL) is diamond-free.

Proof. Suppose thatDDEL contains a diamond (u, {x, y}, v). Note that, sinceD is diamond-
free, (u, v) ∈ SDEL. SinceSINS is a solution set forDDEL, both theP3s (u, x, v)
and (u, y, v) are destroyed by arc insertions.

Hence, (u, v) ∈ SINS, contradictingSINS ∩ SDEL = ∅. �

The following result shows that when solving Transitivity Editing on diamond-
free digraphs, it is optimal to only perform arc deletions.

Lemma 3. Let (D, k) with D = (V,A) be a diamond-free input instance ofTransitivity
Editing. Then, there is an optimal solution set S for D that inserts noarc, that is, S=
SDEL.

Proof. Let S′ be any optimal solution set forD. By Lemma 2, we can apply all arc
deletions of a given solution set without destroying diamond-freeness. Hence, we as-
sume the solution setS′ to only consist of arc insertions. We constructS from S′:

S :=
{

(a, b) | ∃c ∈ V : (a, c) ∈ S′ ∧ (a, b) ∈ A∧ (b, c) ∈ A
}

.

SinceD is diamond-free, for each (a, c) < A, there is at most oneb ∈ V meeting the
criteria (a, b) ∈ A and (b, c) ∈ A. Therefore, for each arc (a, c) ∈ S′, there is at most
one arc (a, b) ∈ S and hence|S| ≤ |S′|.

Let D∗ := (V,A∗) with A∗ := A\S. We show thatS is a solution set forD by proving
thatD∗ is transitive: Assume that there is aP3 p = (x, y, z) in D∗. SinceS = SDEL, we
know that (x, y) ∈ A and (y, z) ∈ A and, sinceS′ is a solution set forD, we know thatp
is not aP3 in (V,A∆S′), implying either (x, z) ∈ S′ or (x, z) ∈ S. However, (x, z) < S′,
because otherwise (x, y) ∈ S, contradictingp being aP3 in D∗. Hence, (x, z) ∈ A
and (x, z) ∈ S. By definition ofS, this implies that there is a vertexv ∈ V with (z, v) ∈ A
and (x, v) ∈ S′. Also, (y, v) < A, since, otherwise, (x, z, v) and (x, y, v) would form
a diamond inD. Hence,q = (y, z, v) is a P3 in D. As p, also q cannot be aP3

in (V,A∆S′). However,S′ does only contain insert operations, which implies (y, v) ∈
S′. Since (y, z) ∈ A and (z, v) ∈ A, this implies (y, z) ∈ S, contradictingp being aP3

in D∗. �

3. NP-Hardness Results

In this section, we prove the NP-hardness of Transitivity Editing and Transitivity
Deletion in degree-three digraphs and in acyclic digraphs. On the onehand, it seems
not very surprising that both problems are NP-hard, since their undirected “sisters”
Cluster Editing and Cluster Deletion have been shown to be NP-hard (see, e.g., [22,
28]). On the other hand, the hardness proofs for the undirected problems do not carry
over to digraphs so easily (in fact, we were unable to salvageanything from these
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proofs). It is also worth mentioning that we show NP-hardness for very restricted
classes of digraphs. Essential ideas of our hardness proofshave already been reused to
prove NP-hardness of MaxDiCut, Maximum Tree Orientation, and Cluster Editing
for very restricted cases as well [8, 21].

3.1. NP-hardness on Bounded-Degree Digraphs

Our NP-hardness result for bounded-degree digraphs is derived by a reduction from
3SAT.

3SAT:
Input : A Boolean formulaϕ in conjunctive normal form withn vari-
ablesx0, . . . , xn−1 and m clausesC0, . . . ,Cm−1, each consisting of three
literals.
Question: Is there a truth assignment for alln variables such thatϕ evalu-
ates to true?

Construction..Given an input instanceϕ of 3SAT in which, without loss of generality,
every clause contains each variable at most once, we construct in polynomial time an
equivalent instance of Transitivity Editing as follows. For each of then Boolean
variables inϕ, we construct avariable cycle, that is, a directed cycle of length 8m,
with m being the number of clauses inϕ. More specifically, for each variablexi , the
corresponding variable cycle consists of the verticesVvar

i := {i0, . . . , i8m−1}. The vertices
in Vvar

i are connected to form a cycle by adding the arcsAvar
i := {(ip, ip+1) | 0 ≤ p ≤

8m−1} (for the ease of presentation, leti8m = i0). Each variable cycle can be partitioned
into mconsecutive subpaths of eight vertices each. We calli8 j , 0 ≤ j < m, apositive j-
connection vertexandi8 j+1 thenegative j-connection vertex.

Depending on whetherxi appears negated in the clauseC j or not, we use either the
negative or the positivej-connection vertex to connect the variable cycle to the clause
gadget of clauseC j .

The collection of all variable cycles is then referred to as (Vvar,Avar) with Vvar :=
⋃n−1

i=0 Vvar
i andAvar :=

⋃n−1
i=0 Avar

i . In the following, we refer to the arcs (i0, i1), (i2, i3), . . . , (i8m−2, i8m−1)
aspositive arcsand to the remaining arcs in the variable cycle asnegative arcs.

The basic idea behind the construction is as follows. Since avariable cycle con-
tains 4m arc-disjointP3s, making it transitive requires at least 4m modifications. If we
are restricted to arc deletions (we will show that there is anoptimal solution that only
deletes arcs), this is clearly possibleonly if we delete every second arc. Hence, in this
case, there are exactly two ways of making a variable cycle transitive with at most 4m
arc modifications, namely either deleting all positive or all negative arcs.

Observation 1. Making a variable cycle transitive by deleting arcs requires at least
4m arc deletions. This can only be achieved by either deletingall positive arcs or all
negative arcs.

We use these two optimal solutions to represent the truth value of the corresponding
variable and vice versa. If the variable cycle forxi is made transitive by deleting all
positive arcs, thenxi is considered to be assigned true, otherwisexi is considered to be
assigned false.

Next, consider a clauseC j containing the variablesxp, xq, and xr . For eachi ∈
{p, q, r}, let

dock(i, j) :=















8 j if xi occurs negated inC j ,

8 j + 1 if xi occurs nonnegated inC j .
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jr
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j′q

j′r

Figure 2: The clause gadget of clauseC j containing the variablesxp, xq, andxr . It consists of a length-three
cycle that is connected to the variable cycles viaP3s. Bold arcs represent docking arcs.

For each clauseC j and each variablexi that occurs inC j , we define thedocking arc
αi, j of the clauseC j in the variable gadget ofxi as the uniquely determined arc that is
incoming toidock(i, j). Note that the vertexidock(i, j) is the negative or positivej-connection
vertex ofxi , depending on whetherxi occurs negated inC j or not.

Observation 2. Let Cj be a clause ofϕ, and let xi be a variable that occurs in Cj . The
docking arcαi, j is a positive arc if and only if xi occurs nonnegated in Cj .

We continue the construction by adding aclause gadgetthat consists of a length-
three cycle (jp, jq, jr ) which we connect to the variable cycles ofxp, xq, and xr by
adding theP3 (idock(i, j), j′i , j i) for all i ∈ {p, q, r}. We refer to the arcs in this clause gad-
get asAcls

j and to the arcs of all clause gadgets asAcls. For an illustration, see Figure 2.
In the following paragraph, we show the correctness of the presented construction, that
is, the constructed instance of Transitivity Editing is a yes-instance if and only if the
original instance of 3SAT is a yes-instance.

Correctness..Let D(ϕ) denote the digraph that results from this construction. First,
observe that two vertices of a variable cycle that are contained in different clause cy-
cles have distance at least seven. Therefore, the constructed digraph is diamond-free.
Second, observe thatD(ϕ) is a degree-threehas maximum degree three.

Consider a clause gadget. Obviously, a cycle of length threecan be made transi-
tive with two arc deletions. Since each clause gadget contains such a cycle and three
additionalP3s, it is clear that we need at least five arc deletions for each clause gadget.

Observation 3. Let S denote a solution set for D(ϕ) with S = SDEL. Then, for each
clause Cj of ϕ, it holds that|S ∩ Acls

j | ≥ 5.

If the three docking arcs of a gadget are not deleted, then this clause gadget together
with these docking arcs contains six arc-disjointP3s. Hence, six modifications are
required to make this structure transitive in this case (seeFigure 3).

Note that the docking arcs are chosen such that this occurs ifand only if all literals
in the clause corresponding to this gadget evaluate to false. In the following, “making
the clause gadget ofC j transitive” refers to destroying allP3s that contain at least one
arc ofAcls

j .

Lemma 4. Let Svar denote a solution for(V,Avar), let Cj be some clause inϕ, and
let xp, xq, and xr denote the variables occurring in Cj . Then, the clause gadget of Cj
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Figure 3: If none of the three docking arcs is deleted, then six arc deletions are required to make this structure
transitive. Here, bold arcs are docking arcs and dashed arcsare deleted.

can be made transitive by deleting five arcs in Acls
j if and only if there is some i∈ {p, q, r}

with αi, j ∈ Svar.

Proof. Let j+i denote the successor ofj i in the clause gadget ofC j .
“⇒”: We show the contraposition. Assume that all docking arcs of C j are not

in Svar. Then, for eachi ∈ {p, q, r}, the P3s (idock(i, j)−1, idock(i, j), j′i ) and (j′i , j i , j
+
i ) are

destroyed by deleting arcs ofAcls
j . Since these sixP3s are arc-disjoint, at least six arc

modifications are necessary (see Figure 3).
“⇐”: Without loss of generality, letαr, j ∈ Svar. Then, we can make the clause

gadget ofC j transitive by deleting the arcs (pdock(p, j), j′p), ( jp, jq), (qdock(q, j), j′q), ( jq, jr ),
and (j′r , jr ) (see Figure 4). �

With these observations at hand, we now show the NP-completeness of Transi-
tivity Editing, even if the maximum degree of the input is three and there areneither
sources nor sinks, that is, the indegree and outdegree of each vertex is either one or
two.

Theorem 1. Transitivity Editing on degree-three digraphs is NP-complete.

Proof. Obviously, one can verify in polynomial time that a digraph is transitive. This
implies that Transitivity Editing is in NP. We now show that it is NP-hard by reducing
from 3SAT. LetD(ϕ) = (V,Avar∪Acls) be a digraph constructed as described above from
a given instanceϕ of 3SAT. Clearly, the construction can be performed in polynomial
time. We show that

ϕ is satisfiable⇔ (D(ϕ), 5m+4mn) is a yes-instance for Transitivity Edit-
ing.

“⇒”: Let β be a satisfying assignment ofϕ. Then, we can makeD(ϕ) transitive in
the following way: First, for each variablexi , if β(xi) = true, then we delete all negative
arcs of the variable cycle ofxi . Otherwise, we delete all positive arcs of the variable
cycle ofxi . All in all, by deleting 4m arcs for each of then variable cycles (which is a
total of 4mnarc deletions), we destroyed allP3s in variable cycles.

It remains to destroy theP3s in clause gadgets. To this end, consider an arbitrary
clauseC j , and letxp, xq, and xr denote the variables occurring inC j . Sinceβ is a
satisfying assignment forϕ, some literal ofC j evaluates to true. Letxk be the variable
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Figure 4: A solution for the clause gadget of clauseC j containing the variablesxp, xq, andxr . This solution
deletes only five arcs fromAcls

j which is only possible if at least one of the corresponding docking arcs is
deleted (in this case,αr, j ). This situation represents that the literal corresponding to xr in C j evaluates to true
and, thus, thatC j evaluates to true. Here, bold arcs are docking arcs and dashed arcs are deleted.

corresponding to this literal. Thenαk, j is deleted and, thus, Lemma 4 implies that
the clause gadget can be made transitive with five arc deletions. For all clauses, this
requires 5m arc deletions in total. In summary, it is possible to makeD(ϕ) transitive
with 5m+ 4mnarc deletions.

“⇐”: Let S be a solution set forD(ϕ) such that|S| ≤ 5m+ 4mn. SinceD(ϕ) is
diamond-free, Lemma 3 allows us to assume thatS ⊆ Avar ∪ Acls. We show thatS
contains exactly five arcs of each clause gadget and 4m arcs from each variable cycle.
First, by Observation 3, making allm clause cycles transitive requires at least 5m arc
deletions. Second, by Observation 1 making a variable cycletransitive requires at
least 4m arc deletions. Since the variable cycles and clause gadgetsare arc-disjoint,S
contains exactly five arcs from each clause gadget and 4m arcs from each variable cy-
cle. Moreover, by Observation 1, either all 4m positive arcs or all 4m negative arcs are
in S.

In the following, we show thatβ with

β(xi) :=















true if all positive arcs of the variable cycle ofxi are inS

false otherwise

is a satisfying assignment forϕ. For the sake of contradiction, assume that there is some
clauseC j that evaluates to false. Letxp, xq, andxr denote the variables occurring inC j .
Since all literals ofC j evaluate to false, the definition ofβ and Observation 2 imply that
none of the docking arcs ofC j are inS. Then, however, Lemma 4 implies|S∩Acls

j | ≥ 6,
a contradiction. �

In the above proof, we never employ arc insertions. This implies that Transitivity
Deletion is also NP-complete.

Corollary 1. Transitivity Deletion on degree-three digraphs is NP-complete.

By slightly modifying the construction of the Transitivity Editing instance, we
can also obtain exponential-time lower bounds. Consider aninstance of Transitivity
Editing that is constructed as described above with the following exceptions: Instead
of creating for each variablexi a cycle of length 8m, we create a variable cycle of
length 8#(xi) with #(xi) denoting the number of clauses that containxi . Furthermore,
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for the docking of the clauses, we assume that for each variable xi there is an arbitrary
but fixed ordering of the clauses that containxi . Let pos(i, j) denote the position of
clauseC j containingxi in this ordering. Then, we define dock(i, j) = 8 · pos(i, j) if xi

occurs negated inC j , and dock(i, j) = 8 · pos(i, j) + 1 if xi occurs nonnegated inC j .
Finally, we setk := 5m+4 ·

∑n−1
i=0 #(xi). In complete analogy to the proof of Theorem 1,

we can show the equivalence of the 3SAT and Transitivity Editing instances.
Observe that in the constructed instance ((V,A), k) we havek = O(m) and also|V| =

O(m) since
∑n−1

i=0 #(xi) = 3m(as each clause contains exactly three variables). Hence, an
algorithm with running time 2o(k)·poly(|V|) orO(2o(|V|)) for TransitivityEditing implies
anO(2o(m)) time algorithm for solving 3SAT instances withmvariables. The existence
of such an algorithm implies subexponential-time algorithms for many other NP-hard
problems as well [19]. It is therefore conjectured that 3SATcannot be solved in this
running time; this conjecture is commonly referred to asexponential-time hypothesis.

Theorem 2. Transitivity Editing on degree-three digraphs cannot be solved in2o(k) ·

poly(|V|) time or O(2o(|V|)) time unless the exponential-time hypothesis fails.

As in the case of the NP-hardness, our results also transfer to Transitivity Dele-
tion.

Corollary 2. TransitivityDeletion on degree-three digraphs cannot be solved in2o(k) ·

poly(|V|) time or O(2o(|V|)) time unless the exponential-time hypothesis fails.

3.2. NP-Hardness on Acyclic Digraphs

Transitivity Editing’s undirected “sister” problem Cluster Editing becomes poly-
nomial-time solvable when the input is a forest, that is, acyclic.5 It is thus natural to
study the complexity of Transitivity Editing on acyclic digraphs. Somewhat surpris-
ingly, we find that Transitivity Editing remains NP-hard for acyclic digraphs, unlike
for example Disjoint Paths,

which is NP-hard in general [12], but polynomial-time solvable on acyclic di-
graphs [29].

The construction in Section 3.1 relies heavily on variable cycles and there are also
cycles in the clause gadgets. To replace the variable cycles, we have to find acyclic
gadgets that have exactly two optimal ways of being made transitive. Furthermore, we
have to come up with replacements for the clause gadgets thatneed more modifications
if the corresponding clause evaluates to false. Unfortunately, we could not realize these
gadgets without giving up the bounded-degree constraint ofthe previous construction.

In the following, we present a many-one reduction from the NP-complete Positive-
Not-All-Equal-3SAT problem [27].

Positive-Not-All-Equal-3SAT (PNAE-3SAT):
Input : A Boolean formulaϕ with n variablesx0, . . . , xn−1 which is a con-
junction ofm clausesC0, . . . ,Cm−1, each consisting of three positive liter-
als.
Question: Is there a truth assignment for alln variables such that for each
clauseCi exactly one or two of its variables are assigned true, that is, for
no clause the truth values of its variables are all equal?

5In the context of Cluster Editing, it is common knowledge that assuming each vertex to be adjacent (in
the input graph) to at least half of the vertices in its cluster is valid. Hence, in trees, each cluster contains at
most two elements, implying that Cluster Editing in trees degenerates to maximum matching.
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i1 i5

i0,0

i0,1

i0,1
i6,0
i6,1

i6,8m

i2,0 i3,0 i4,0
i2,1 i3,1 i4,1

i2,3m−1 i3,3m−1 i4,3m−1

i2,3m i3,3m i4,3m

i2,16m+1 i3,16m+1 i4,16m+1

Figure 5: The variable gadget ofxi . The bold arcs show potential docking arcs (more details canbe found
in Figures 7 and 8), while the additional arc-disjointP3s (i1, i2,ℓ , i3,ℓ) and (i3,ℓ , i4,ℓ , i5) with ℓ ≥ 3m ensure
that optimally making this structure transitive requires the deletion of either (i0,ℓ , i1) for each 0≤ ℓ ≤ 8m
or (i5, i6,ℓ) for each 0≤ ℓ ≤ 8m.

Similarly to the approach described in Section 3.1, we construct variable gadgets that
can optimally be made transitive in exactly two ways and clause gadgets that require
more modifications if and only if the corresponding clause evaluates to false under a
certain assignment. In the following, we present a formal description of the reduction.

Construction..Given an instanceϕ of PNAE-3SAT, we construct a directed acyclic
graphD(ϕ) := (Vvar∪ Vcls,Avar∪ Acls) as follows. For each of then Boolean variables
of ϕ, we construct avariable gadget(see Figure 5) that has exactly two ways of being
made transitive using at most 40m+5 arc modifications, which will represent assigning
true or false, respectively, to the corresponding variable.

For each Boolean variablexi , we construct the vertex set

Vvar
i := {i1, i5} ∪

8m
⋃

j=0

{i0, j , i6, j} ∪
16m+1
⋃

j=0

{i2, j , i3, j, i4, j}

and connect these vertices with the arcs

Avar
i :=

16m+1
⋃

ℓ=0

Ainner
i,ℓ ∪

8m
⋃

ℓ=0

Aouter
i,ℓ , where

Ainner
i,ℓ := {(i1, i2,ℓ), (i2,ℓ, i3,ℓ), (i3,ℓ, i4,ℓ), (i4,ℓ, i5)} and

Aouter
i,ℓ := {(i0,ℓ, i1), (i5, i6,ℓ)}.

The collection of all variable gadgets is (Vvar,Avar) := (
⋃n−1
ℓ=0 Vvar

i ,
⋃n−1
ℓ=0 Avar

i ). The
following arc-disjointP3s are contained in each variable gadget (Vvar

i ,A
var
i ):

1. (i0,ℓ, i1, i2,ℓ), (i2,ℓ, i3,ℓ, i4,ℓ), (i4,ℓ, i5, i6,ℓ) for all 0 ≤ ℓ ≤ 8m, and

2. (i1, i2,ℓ, i3,ℓ), (i3,ℓ, i4,ℓ, i5) for all 8m< ℓ ≤ 16m+ 1.

All in all, there are 3· (8m+1)+2 · (8m+1)= 40m+5 arc-disjointP3s in each variable
gadget.

Observation 4. For each variable gadget, at least40m+ 5 arc modifications are re-
quired to make it transitive.
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p2,6 p3,6 p4,6

q2,6 q3,6 q4,6

r2,6 r3,6 r4,6

u2
0,0 w2

0,0

u2
0,1 w2

0,1

αp,2,0

αq,2,0

αr,2,0

Figure 6: Part 0 of the clause gadget of clauseC2 = {xp, xq, xr }. The three docking arcs
are (p3,6, p4,6), (q2,6,q3,6), and (r2,6, r3,6).

We introduce the following notation for the vertices and arcs of the variable-gadgets.
For each variablexi , the verticesi1, i5 andi3,ℓ with ℓ ≤ 16m+ 1 arenegative vertices.
All other vertices inVvar arepositive vertices. We refer to an arc (u, v) asnegative arc
if u is negative, otherwise (u, v) is called apositive arc. In analogy to Section 3.1, delet-
ing all positive or all negative arcs corresponds to assigning true or false, respectively,
to xi .

In the following, we construct theclause gadgets: For each clauseC j = {xp, xq, xr }

in the formulaϕ, we construct three gadget parts (part 0, 1, and 2) such that exactly
one of them can be made transitive with exactly four arc modifications if and only
if the variable gadgets ofxp, xq, and xr are not made transitive in the same way.
Let partj(p) := 0, partj(q) := 1, and partj(r) := 2. For partℓ of the clause gadget of

clauseC j , we construct the vertex setVcls
j,ℓ := {u j

ℓ,0,w
j
ℓ,0, u

j
ℓ,1,w

j
ℓ,1}. The two verticesu j

ℓ,0

andu j
ℓ,1 are then connected to the variable gadgets, depending onℓ:

Acls
i, j,ℓ :=















{(i3,3 j+ℓ, u
j
ℓ,0), (i4,3 j+ℓ, u

j
ℓ,1)}, if partj(i) = ℓ

{(i2,3 j+ℓ, u
j
ℓ,0), (i3,3 j+ℓ, u

j
ℓ,1)}, if partj(i) , ℓ.

Similarly, we define thedocking arcof partℓ of the clause gadget ofC j in the variable
gadget ofxi as (i3,3 j+ℓ, i4,3 j+ℓ) if partj(i) = ℓ, and as (i2,3 j+ℓ, i3,3 j+ℓ) otherwise, and denote
it by αi, j,ℓ (see Figure 6 for an example).

Informally, the docking arcs are the three arcs of the corresponding variable gad-
gets (one arc for each variable gadget), whose start- and endpoint are connected to the
clause gadget part. Furthermore, for eachi ∈ {p, q, r}, the arcγi, j,ℓ denotes the arc
in Avar

i that is incoming to the vertex thatαi, j,ℓ is outgoing from (that is, the arc that pre-
cedesαi, j,ℓ in the variable gadget). Partℓ of the clause gadget is completed by adding
the two arcs inAcls

j,ℓ := {(u j
ℓ,0,w

j
ℓ,0), (u

j
ℓ,1,w

j
ℓ,1)}. For each clauseC j , we thus have the arc

set

Acls
j :=

2
⋃

ℓ=0



















Acls
j,ℓ ∪

⋃

i∈{p,q,r}

Acls
i, j,ℓ



















.

The idea behind the construction of the clause gadget parts is that we save one arc
modification in a clause gadget part if and only if all or none of its docking arcs are
deleted in the variable gadgets. If this is possible for one part of the clause gadget, then
the three variable gadgets corresponding to the variables in the corresponding clause
are not made transitive in the same way, hinting at the variables not being assigned
equal values.

With (Vcls,Acls) := (
⋃m−1

j=0
⋃2
ℓ=0 Vcls

j,ℓ ,
⋃m−1

j=0 Acls
j ) denoting the collection of all clause

gadgets, we finally setD(ϕ) := (Vvar∪ Vcls,Avar∪ Acls). Note thatD(ϕ) is acyclic and
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diamond-free.

Correctness..By the construction of the clause gadgets, it is clear that each gadget
part requires at least two arc modifications to be made transitive.

Observation 5. For each clause gadget, at least six arc modifications are required to
make it transitive.

Furthermore, by the construction ofAcls
i, j,ℓ, each part of a clause gadget docks over

the negative arc (i3,3 j+ℓ, i4,3 j+ℓ) in case partj(i) = ℓ and over the positive arc (i2,3 j+ℓ, i3,3 j+ℓ),
otherwise.

Observation 6. Each clause gadget part docks over one negative arc and two positive
arcs.

In order to show that the construction ofD(ϕ) yields a many-one reduction, we
need the following lemmas.

First, we show that in order to make each variable gadget transitive without using
too many arc modifications, either all arcs that are incomingto i1 or all arcs that are
outgoing fromi5 must be deleted, but not both.

Lemma 5. Let S be a solution set for D(ϕ) with |S| ≤ n·(40m+5)+14mand S= SDEL.
Then for each variable xi of ϕ, either

∀0 ≤ ℓ ≤ 8m (i0,ℓ, i1) ∈ Si or ∀0 ≤ ℓ ≤ 8m (i5, i6,ℓ) ∈ Si ,

where Si := S ∩ Avar
i .

Proof. Let D′ denote the result of applyingS to D(ϕ).
First, we show that at most one of the two statements in the lemma is true. For the

sake of contradiction, assume that

∀0 ≤ ℓ ≤ 8m {(i0,ℓ, i1), (i5, i6,ℓ)} ⊆ Si .

This leaves 2·(16m+2) arc-disjointP3s in the center of the gadget. Hence, 2·(8m+1)+
2·(16m+2) = 48m+6 arc deletions are then required for this gadget. By Observation 4,
we need at least 40m+5 arc deletions for each of the othern−1 variable gadgets and by
Observation 5, we need at least six arc deletions for each of them clause gadgets. The
overall number of arc deletions needed is thus at least (n−1)·(40m+5)+48m+6+6m=
n · (40m+ 5)+ 14m+ 1, a contradiction.

Next, we show that at least one of the two statements is true. For the sake of
contradiction, assume that

∃0 ≤ ℓ ≤ 8m(i0,ℓ, i1) < Si and∃0 ≤ ℓ ≤ 8m(i5, i6,ℓ) < Si .

For each 0≤ ℓ ≤ 16m+1, we have (i1, i2,ℓ) ∈ Si since otherwise there is aP3 (i0,ℓ, i1, i2,ℓ)
in D′. Similarly, the arcs (i4,ℓ, i5), 0 ≤ ℓ < 16m+1, are deleted. This requires already 2·
(16m+2) modifications and leaves 16m+2 arc-disjointP3s in the center of the gadget.
Hence, 2· (16m+ 2)+ 16m+ 2 = 48m+ 6 arc deletions are required for this gadget.
Again, this leads to|S| ≥ (n− 1) · (40m+ 5)+ 48m+ 6+ 6m= n · (40m+ 5)+ 14m+ 1,
a contradiction. �

13



Since there is either an arc incoming toi1 that is not deleted or there is an arc
outgoing fromi5 that is not deleted, we know that either all arcs that are outgoing
from i1 are deleted or all arcs incoming toi5 are deleted.

For the following consideration, we introduce the notion of“proper” solution sets
and show that we can assume for an optimal solution that it is proper. We call a solution
setS for D(ϕ) proper, if for all variable gadgets,S contains either all positive arcs and
none of the negative arcs or vice versa.

Lemma 6. If there is an optimal solution set S for D(ϕ) with |S| ≤ n · (40m+5)+14m,
then there is also a proper optimal solution set for D(ϕ).

Proof. SinceD(ϕ) is diamond-free, Lemma 3 allows us to assume thatS contains only
arc deletions. LetD′ denote the result of applyingS to D(ϕ).

If S is proper, then we are done. Hence, assume that there is a variablexi of ϕ such
thatS does not delete exactly the positive arcs or the negative arcs of the variable gadget
of xi . We show thatS can be modified such that either the positive arcs or the negative
arcs of the variable gadget are deleted without increasing the size of the solution set.
By Lemma 5, either all (i0,ℓ, i1) or all (i5, i6,ℓ) with 0 ≤ ℓ ≤ 8m are deleted. Since the
proof works analogously for both cases, we only consider thecase (i0,ℓ, i1) ∈ S for
all 0 ≤ ℓ ≤ 8m and (i5, i6,ℓ∗) < S for some 0≤ ℓ∗ ≤ 8m. More precisely, we show
that in this case, there is an optimal solution that deletes exactly the positive arcs of the
variable gadget ofxi .

Clearly, (i4,ℓ, i5) ∈ S for all 0 ≤ ℓ ≤ 16m+ 1 since otherwise (i4,ℓ, i5, i6,ℓ∗) is a P3

in D′.
In the following, we show that for each clauseC j and each partℓ of the clause

gadget ofC j , we can modifyS such that it is optimal and

S ∩ Ainner
i,3 j+ℓ = {(i2,3 j+ℓ, i3,3 j+ℓ), (i4,3 j+ℓ, i5)}. (1)

Recall that the docking arcαi, j,ℓ of partℓ of the clause gadget of clauseC j is either the
arc (i2,3 j+ℓ, i3,3 j+ℓ) or the arc (i3,3 j+ℓ, i4,3 j+ℓ) and consider both cases:

Case 1:αi, j,ℓ = (i2,3 j+ℓ, i3,3 j+ℓ).
First, suppose that (i2,3 j+ℓ, i3,3 j+ℓ) < S. Then, (i3,3 j+ℓ, i4,3 j+ℓ) ∈ S. Note that the
arc (i3,3 j+ℓ, i4,3 j+ℓ) is only contained in twoP3s in D(ϕ), one of which is destroyed
by the deletion of (i4,3 j+ℓ, i5). Hence, we can replace (i3,3 j+ℓ, i4,3 j+ℓ) with (i2,3 j+ℓ, i3,3 j+ℓ)
in S without creating aP3 in D′. This lets us assume thatS contains (i2,3 j+ℓ, i3,3 j+ℓ).

It remains to show that there is an optimal solution that doesnot delete (i1, i2,3 j+ℓ).
Sincei1 is a source inD′ and (i2,3 j+ℓ, i3,3 j+ℓ) ∈ S, we can delete (i2,3 j+ℓ, u

j
ℓ,0) instead

of (i1, i2,3 j+ℓ), satisfying (1) in this case.
Case 2:αi, j,ℓ = (i3,3 j+ℓ, i4,3 j+ℓ).

In this case, we can assume that (i2,3 j+ℓ, i3,3 j+ℓ) ∈ S, since otherwise, we can re-
place (i1, i2,3 j+ℓ) with (i2,3 j+ℓ, i3,3 j+ℓ) in S becausei1 is a source inD′ andi2,3 j+ℓ has only
one outgoing arc inD(ϕ). Then, however, deleting (i4,3 j+ℓ, i5) and (i2,3 j+ℓ, i3,3 j+ℓ) al-
ready destroys two of the threeP3s containing (i3,3 j+ℓ, i4,3 j+ℓ). Hence, if (i3,3 j+ℓ, i4,3 j+ℓ) ∈
S, then we delete (i4,3 j+ℓ, u

j
ℓ,1) instead of (i3,3 j+ℓ, i4,3 j+ℓ), satisfying (1) in this case.

Finally, note that if we delete all positive arcs of a variable gadget, then it becomes
transitive and, hence, additional arc deletions imply a contradiction to the optimality
of S.

Since the presented modifications ofS do not modify any other variable gadgets or
arcs that are incident to other variable gadgets, we can repeatedly apply these modifi-
cations and eventually obtain a proper optimal solution set. �
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Figure 7: Part 0 of the clause gadget of clauseC2 = {xp, xq, xr } with all or no docking arcs being deleted.
Dashed lines indicate arcs that are deleted. Here, four arc deletions suffice. This situation corresponds
to β(xp) , β(xq) = β(xr ) for an assignmentβ.

Having established this knowledge about variable gadgets,we continue by con-
sidering clause gadgets. In particular, we show that for making each clause gadget
transitive without using too many arc modifications, there must be a partℓ such that
either all or none of the docking arcs of partℓ are deleted.

Lemma 7. Let S be an optimal solution set for D(ϕ), let Cj = {xp, xq, xr } be a clause
of ϕ and letℓ be a part of its clause gadget. Furthermore, for each i∈ {p, q, r} let
exactly one ofαi, j,ℓ andγi, j,ℓ be in S . If

∀i ∈ {p, q, r} αi, j,ℓ ∈ S or∀i ∈ {p, q, r} γi, j,ℓ ∈ S,

then|S ∩ Acls
j,ℓ | = 4. Otherwise,|S ∩ Acls

j,ℓ | = 5.

Proof. SinceD(ϕ) is diamond-free, Lemma 3 allows us to assume thatS contains only
arc deletions.

Suppose that the premise is true, that is,ℓ is a gadget part of the clause gadget
corresponding toC j such that allαi, j,ℓ or all γi, j,ℓ are deleted. We show only the case
that allαi, j,ℓ are deleted, the case that allγi, j,ℓ are deleted can be shown analogously.
Since for eachi ∈ {p, q, r}, exactly one of the arcsαi, j,ℓ andγi, j,ℓ is deleted, we know
that γi, j,ℓ is not deleted for eachi ∈ {p, q, r}. Figure 7 shows that it is possible to
make partℓ of the clause gadget corresponding to clauseC j transitive with four arc
deletions. As also shown in Figure 7, applyingS \ (Acls

j,ℓ ∪
⋃

i∈{p,q,r} A
cls
i, j,ℓ) to D(ϕ) leaves

four arc-disjointP3s. Hence, four arc deletions are also required.
Suppose that the premise is false, that is,ℓ is a gadget part for which there is

someαi, j,ℓ that is not deleted and there is also someγl, j,ℓ, l , i that is not deleted.
Figure 8 shows that it is possible to make the gadget partℓ of the clause gadget cor-
responding to clauseC j transitive with five arc deletions. As also shown in Figure 8,
applyingS \ (Acls

j,ℓ ∪
⋃

i∈{p,q,r} A
cls
i, j,ℓ) to D(ϕ) leaves five arc-disjointP3s. Hence, at least

five arc deletions are required. �

Next, we use Lemma 7 to make a similar statement for clause gadgets as a whole.
Namely, we can observe that if there is some part of a clause gadget that can be made
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Figure 8: Part 0 of the clause gadget of clauseC2 = {xp, xq, xr } with some but not all docking arcs being
deleted. Dashed lines indicate arcs that are deleted. Here,at least five arc deletions are required. This
situation corresponds toβ(xp) = β(xq) = β(xr ) for an assignmentβ of all variables.

transitive with four arc deletions, then we need five arc deletions for each of the other
two parts.

Lemma 8. Let S be a proper optimal solution set for D(ϕ) and let Cj = {xp, xq, xr } be
a clause ofϕ. If there is a gadget partℓ such that|S ∩ Acls

j,ℓ | = 4,

then|S ∩ Acls
j | = 14. Otherwise,|S ∩ Acls

j | = 15.

Proof. SinceD(ϕ) is diamond-free, Lemma 3 allows us to assume thatS contains only
arc deletions.

Suppose that the premise is true, that is, there is a gadget part ℓ such that all its
docking arcs are deleted or none of its docking arcs are deleted. By Lemma 7, four arc
deletions are required to make partℓ transitive. Since two parts of any clause gadget
share exactly one docking arc and differ in two docking arcs, there can be no second
part ℓ′ of the same gadget such that either all or none of the docking arcs of ℓ′ are
deleted. By Lemma 7, we thus need five arc deletions each for making the other two
parts transitive. Overall, the total number of required arcdeletions is 14.

Now suppose that the premise is false, that is, for each gadget part ℓ, there is
somei ∈ {p, q, r} and somei′ ∈ {p, q, r}, i′ , i, such thatαi, j,ℓ, γi′, j,ℓ < S. Then,
by Lemma 7, each of the three parts requires five arc deletions, thus all three parts
require a total of 15 arc deletions. �

With Lemmas 6 and 8 at hand, we can show that the construction described above
is indeed a many-one reduction from PNAE-3SAT to Transitivity Editing.

Theorem 3. Transitivity Editing on acyclic digraphs is NP-complete.

Proof. Obviously, one can verify in polynomial time that a digraph is transitive and,
thus, containment in NP is clear.

Next, we show that Transitivity Editing is also NP-hard. Letϕ be an instance of
PNAE-3SAT and letD(ϕ) be as described above. Clearly, the construction ofD(ϕ) runs
in polynomial time andD(ϕ) is acyclic. It is thus sufficient to show the following:

ϕ is a yes-instance of PNAE-3SAT⇔ (D(ϕ), n · (40m+ 5) + 14m) is a
yes-instance of Transitivity Editing.

“⇒”: Let β be a satisfying assignment, that is, an assignment to the variables ofϕ
such that there is no clause whose variables are all assignedthe same truth value. From
this assignment, we can construct a solution of the Transitivity Editing instance as
follows. First, for each variable gadget (Vvar

i ,A
var
i ), we delete all positive arcs of the

variable gadget ifβ(xi) = true, and all negative arcs ifβ(xi) = false. This clearly makes
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each variable gadget transitive and requiresn · (40m+ 5) arc modifications overall.
It remains to make the clause gadgets transitive. Sinceβ is a satisfying assignment,
there is no clause whose variables are assigned the same truth value. Thus, each clause
gadget docks to at least one variable gadget whose negative arcs are deleted and at least
one variable gadget whose positive arcs are deleted. Hence,there is exactly one part
of each clause gadget for which either all or none of its docking arcs are deleted. By
Lemma 8, we can make each clause gadget transitive with 14 arcdeletions. Overall,
we can thus makeD(ϕ) transitive with a total ofn · (40m+ 5)+ 14marc deletions.

“⇐”: Let S be an optimal solution set forD(ϕ) such that|S| ≤ n · (40m+ 5) +
14m. SinceD(ϕ) is diamond-free, Lemma 3 allows us to assume thatS contains only
arc deletions. LetD′ denote the result of applyingS to D(ϕ). By Lemma 6, we can
assumeS to be proper.

In the following, we construct a satisfying assignmentβ for the variables of the
given formulaϕ from S:

β(xi) :=















true, if (i0,0, i1) ∈ S

false, otherwise.

Since|S| ≤ n · (40m+ 5)+ 14m, Observation 4 and Lemma 8 imply that|S∩ Acls
j | = 14

for all 0 ≤ j < mand, thus, that for each clause gadget there is some part suchthat all or
none of its docking arcs are deleted. Since, in each variablegadget, either all negative
arcs or all positive arcs are deleted, Observation 6 impliesthat out of the three variable
gadgets that the clause gadget is connected to, there is one having all its positive arcs
in S and one having all its negative arcs inS. Hence,β is a satisfying assignment for
the variables ofϕ.

All in all, the given instance of PNAE-3SAT is a yes-instanceif and only if (D(ϕ), n·
(40m+ 5)+ 14m) is a yes-instance of Transitivity Editing. �

In the proof of Theorem 3, we never employ arc insertions which implies that it can
be used to prove that Transitivity Deletion is NP-complete on dags.

Corollary 3. Transitivity Deletion on acyclic digraphs is NP-complete.

Note that the construction employed here does not allow deriving subexponential
lower bounds on the running time for Transitivity Editing and Transitivity Deletion
on acyclic digraphs, as we did for bounded-degree digraphs in Section 3.1.

4. Fixed-Parameter Tractability Results

In this section, we complement the NP-hardness results of the previous section
with encouraging algorithmic results. Böcker et al. [3] observed that in many applica-
tions the input graphs are “almost transitive”. Consequently, as Böcker et al. [3], we
study how the parameterk (denoting the number of arc modifications) influences the
computational complexity. We deliver improved fixed-parameter tractability results;
in particular, we positively answer Böcker et al.’s [3] question for the existence of a
polynomial-size problem kernel. In the following, we first develop kernelization re-
sults, and then we present an improved search tree strategy,altogether yielding the so
far fastest fixed-parameter algorithm for Transitivity Editing. Furthermore, we also
provide similar results for Transitivity Deletion. In this section, we usen andm to
denote|V| and|A|, respectively.
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First, observe that Transitivity Editing is easily classified as fixed-parameter tract-
able with respect to the parameterk: The task is simply to destroy allP3s. Note that, by
inspecting all pairs (u, (v,w)) ∈ V × A and testing for (u, v) ∈ A and (u,w) < A, all P3s
can be found inO(nm) time .

Once aP3 is found, there are exactly three possibilities to destroy aP3: either delete
one of the two arcs or insert the “missing” one. This yields a search tree of sizeO(3k)
(cf. [3]), which indeed can be used to enumerateall minimal solutions of size at mostk
because it exhaustively tries all possibilities to destroyP3s.

4.1. Kernelization

In this section, we show a problem kernel for Transitivity Editing consisting
of O(k2) vertices on general graphs and a problem kernel ofO(k) vertices on digraphs
with bounded degree. In the latter case, already the following data reduction rule suf-
fices.

Rule 1. Let (D = (V,A), k) be an input instance ofTransitivity Editing. If there is a
vertex u∈ V that does not take part in any P3 in D, then delete u and all arcs that are
incident to u.

In order to prove the correctness of Rule 1, we observe that for each arc (u, v) that
is inserted by an optimal solution set, the vertexv is reachable fromu in the original
digraph.

Lemma 9. Let D= (V,A) be a digraph and let S be an optimal solution set for D such
that there is an arc(u, v) ∈ S \ A. Then, v is reachable from u in D.

Proof. Let Vu ⊆ V denote the vertices that are reachable fromu in D (including u
itself). For the sake of contradiction, assume thatv < Vu. Since (u, v) ∈ S andS is
optimal, we know thatS′ := S \ (Vu× (V \Vu)) is not a solution set forD. Hence, there
is aP3 (x, y, z) in (V,A∆S′) that is not in (V,A∆S), implying x ∈ Vu andz ∈ V \ Vu.

This is a contradiction to the fact that (A∆S′) ∩ (Vu × (V \ Vu)) = ∅.
�

With this lemma, we can now prove the correctness of Rule 1.

Lemma 10. Rule 1 is correct and can be exhaustively applied in O(nm) time.

Proof. Let D = (V,A) be a digraph and letD′ = (V′,A′) denote the result of applying
Rule 1 toD. In the following, we show that

(D, k) is a yes-instance⇔ (D′, k) is a yes-instance.

“⇒”: This direction follows directly from the fact thatD′ is an induced subgraph
of D and that transitivity is a hereditary property, that is, it is closed under vertex
deletion.

“⇐”: Let S denote an optimal solution set forD′. We show that there is also a
size-|S| solution set forD. If S is a solution set forD, then we are done. Otherwise,
there is aP3 (u, v,w) in (V,A∆S) that is not in (V′,A′∆S). Hence, applying Rule 1
deleted eitheru, v, or w. We consider these cases individually.

Case 1:Rule 1 deletedu.
Sinceu is not a vertex ofD′, we can assume that (u,w) < S and since (u,w) < A∆S,
it is clear that (u,w) < A. Likewise, (u, v) ∈ A and since (u, v,w) is not aP3 in D, we
know that (v,w) ∈ S \ A. By Lemma 9, we thus know thatw is reachable fromu in D.
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However,u not taking part in anyP3 in D implies (u,w) ∈ A, a contradiction. Note
that the case thatw is deleted by Rule 1 is completely analogous to this case and is
therefore omitted.

Case 2:Rule 1 deletedv.
Then,v not taking part in anyP3 in D implies that, inD, all vertices from whichv is
reachable are predecessors of all vertices that are reachable from v. By Lemma 9, this
extends fromD to (V,A∪SINS). LetS′ denote the result of deleting fromS all arcs from
predecessors ofv to successors ofv in D. Since (u,w) ∈ SDEL, we know that|S′| < |S|
and sinceS is optimal, there is aP3 (x, y, z) in (V,A∆S′) wherex is a predecessor ofv
andz is a successor ofv in D. This, however, implies that (x, z) ∈ A\S′, a contradiction.

Finally, the running time can be seen as follows. We enumerate all pairs (u, (v,w)) ∈
V × A and marku, v, andw if (u, v,w) is a P3. Afterwards, we delete all unmarked
vertices. This procedure can be performed inO(nm) time. �

Clearly, the proof of Lemma 10 also works without Lemma 9 ifSINS = ∅, proving
correctness of Rule 1 also for Transitivity Deletion.

In the following, we show that Rule 1 already implies a problem kernel with a linear
number of vertices if the maximum degree of the given digraphis constant.

Theorem 4. For Transitivity Editing restricted to degree-d digraphs, we can compute
admits a problem kernel containing at most2k · (d + 1) vertices that can be computed
in O(nm) time.

Proof. Let D = (V,A) be a digraph that is reduced with respect to Rule 1 and letS be a
solution set forD with |S| ≤ k. We show that|V| ≤ 2k(d+1). Consider the two-partition
of V into Y := {v ∈ V | ∃u ∈ V (u, v) ∈ S ∨ (v, u) ∈ S} andX := V \ Y. Since|S| ≤ k,
we have|Y| ≤ 2k. Note that, sinceD is reduced with respect to Rule 1, everyx ∈ X
is contained in aP3 q. It is clear that the other two vertices ofq are inY and thus
everyx ∈ X is adjacent to at least one vertex inY. However, each vertex inY has at
mostd neighbors and thus|X| ≤ d|Y|, implying |V| = |X|+|Y| ≤ 2k+d·2k = 2k(d+1). �

In the proof of the kernel bound, we actually only need that each remaining vertex
is in someP3, and since Rule 1 is also correct for Transitivity Deletion, the bound
still holds for Transitivity Deletion.

Corollary 4. Transitivity Deletion restricted to degree-d digraphs admits a problem
kernel containing at most2k · (d+ 1) vertices that can be computed in O(nm) time.

Next, we prove anO(k2)-vertex kernel for general digraphs.
The following data reduction rule roughly follows an idea for Cluster Editing [14]:

If there is some vertex pair (u, v) such that not modifying (u, v) results in a solution size
of at leastk+ 1, then every solution of size at mostk must contain (u, v).

Rule 2. Let (D = (V,A), k) be an input instance ofTransitivity Editing.

1. Let(u, v) < A and let Z:= succA(u)∩predA(v). If |Z| > k, then insert(u, v) into A
and decrease k by one.

2. Let (u, v) ∈ A, let Zu := predA(u) \ predA(v) and let Zv := succA(v) \ succA(u).
If |Zu| + |Zv| > k, then delete(u, v) from A and decrease k by one.

Lemma 11. Rule 2 is correct and can be exhaustively applied in O(n3) time.
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Proof. Let (D∗, k−1) with D∗ = (V,A∗) denote the instance that is obtained by applying
Rule 2 to the given instance (D, k) with D = (V,A). Furthermore, let (u, v) be the arc
that is modified by Rule 2. For the correctness of the rule, we show that every solution
setS for D with |S| ≤ k contains (u, v). Assume that there is a solution setS for D
with (u, v) < S. We show that|S| > k.

If (u, v) is an arc insertion, then forZ := succA(u) ∩ predA(v) we have|Z| > k.
Hence, for eachw ∈ Z, (a,w, b) is aP3 in D. Since (a, b) < S, at least one of the two
arcs (a,w) and (w, b) is modified for eachw ∈ Z. Since|Z| > k, we have|S| > k.

If (u, v) is an arc deletion, then we have|Zu| + |Zv| > k for Zu := predA(u) \ predA(v)
andZv := succA(v) \ succA(u). Hence, for allw ∈ Zu, (w, u, v) is a P3 in D and for
all z ∈ Zv, (u, v, z) is aP3 in D. Since (u, v) < S, for eachw ∈ Zu ∪ Zv, at least one arc
incident tow has to be inserted or deleted. Since|Zu| + |Zv| > k and sinceZu andZv are
disjoint, |S| > k follows.

It remains to show the running time. We show that, given any pair of vertices, we
can execute Rule 2 inO(n) time. Let u, v ∈ V. If (u, v) < A, then we compute the
size of succA(u) ∩ predA(v), which can be done inO(n) time. If (u, v) ∈ A, then we
compute the sizes of predA(u) \ predA(v) and succA(v) \ succA(u), which can also be
done inO(n) time. Obviously, inserting or deleting (u, v) can be done inO(n) time as
well. �

Finally, we show that the exhaustive application of Rules 1 and 2 leads to a problem
kernel containingO(k2) vertices.

Theorem 5. Transitivity Editing admits a problem kernel containing at most k(k+ 2)
vertices and it can be computed in O(n3) time.

Proof. Assume that there is a digraphD = (V,A) with |V| > k(k+ 2), thatD is reduced
with respect to Rules 1 and 2, and that it is possible to makeD transitive by applying
at mostk arc modifications. LetD′ = (V,A′) denote a transitive digraph obtained by
the application ofk arc modifications and letS := A∆A′ denote the corresponding
solution set. Consider a two-partition (X,Y) of V, whereY := {v ∈ V | ∃u ∈ V (u, v) ∈
S ∨ (v, u) ∈ S} andX := V \ Y. Note that all vertices inX are adjacent to at least
one vertex inY becauseD is reduced with respect to Rule 1. Also note that in order
to destroy aP3 p in D, the solution setS must contain an arc incident to two of the
vertices ofp, hence for eachP3 p in D at most one of the vertices ofp is in X.

Since we assume thatD can be made transitive with at mostk arc modifications, we
know that|S| ≤ k and consequently|Y| ≤ 2k. Clearly,|V| = |X|+ |Y|, hence|V| > k(k+2)
implies|X| > k2. With the above observation, it follows that there are more thank2 P3s
in D.

For each (a, b) ∈ S, letZ(a,b) := {p | modifying (a, b) destroys theP3 p in D}. Since
there are more thank2 P3s in D but |S| ≤ k, we know that there is a (u, v) ∈ S
with |Z(u,v)| > k. We show that Rule 2 applies to (u, v) contradicting the fact thatD
is reduced.

If (u, v) is an arc insertion, then the set ofP3s destroyed by adding (u, v) is Z(u,v) :=
{(u,w, v) | w ∈ succA(u) ∩ predA(v)}. Since|Z(u,v)| > k, we have|Z| > k for Z :=
succA(u) ∩ predA(v) . Hence, Rule 2 applies in this case.

If (u, v) is an arc deletion, then theP3s destroyed by deleting (u, v) is Z(u,v) :=
{(u,w, v) | w ∈ predA(u) \ predA(v) ∨ w ∈ succA(v) \ succA(u)}. Since|Z(u,v)| > k, we
have|Zu| + |Zv| > k for Zu := predA(u) \ predA(v) andZv := succA(v) \ succA(u). Hence,
Rule 2 applies.
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It remains to show the running time. Note that if Rule 2 has been exhaustively
applied, then the exhaustive application of Rule 1 does not create any vertex pair (u, v)
to which Rule 2 applies. Therefore, exhaustively applying Rule 2 in O(n3) time and
then exhaustively applying Rule 1 inO(n3) time yields an instance that is reduced with
respect to both rules. �

Rule 2 also works for Transitivity Deletion if Case 1 is omitted. The analysis of
the kernel size is similar to the proof of Theorem 5.

Corollary 5. Transitivity Deletion admits a problem kernel containing at most k(k+
2) vertices and it can be computed in O(n3) time.

4.2. Search Tree Algorithm

As mentioned before, a straightforward algorithm that findsan optimal solution set
for a given digraph branches on eachP3 (u, v,w) in the digraph, trying to destroy it by
either deletion of (u, v), deletion of (v,w), or insertion of (u,w). This directly gives a
search tree algorithm solvingtransitivity Editing on ann-vertex digraph inO(3k · n3)
time (cf. [3]).

For Transitivity Deletion, the search only needs to branch into two cases, yielding
an algorithm running inO(2k ·n3) time. Using the so-called interleaving technique [25,
24] together with the polynomial-size problem kernel results, however, one actually
can achieve running timesO(3k + n3) andO(2k + n3), respectively.

In the following, we shrink the search tree size for Transitivity Editing from 3k

to 2.57k by applying our combinatorial result on diamond-freeness (Lemma 3).

Theorem 6. TransitivityEditing andTransitivityDeletion can be solved in O(2.57k+

n3) and O(2k + n3) time, respectively.

Proof. The modified algorithm employs the following search structure. Upon finding
a diamond (u, {x, y}, v) in the given digraphD = (V,A), the algorithm recursively asks
whether

1. (V,A \ {(u, x), (u, y)}) can be made transitive with≤ k− 2 operations,

2. (V,A \ {(u, x), (y, v)}) can be made transitive with≤ k− 2 operations,

3. (V,A \ {(x, v), (u, y)}) can be made transitive with≤ k− 2 operations,

4. (V,A \ {(x, v), (y, v)}) can be made transitive with≤ k− 2 operations, or

5. (V,A∪ {(u, v)}) can be made transitive with≤ k− 1 operations.

Thus, the search branches into five cases and the recurrence for the corresponding
search tree size reads asTk = O(1)+ 4 · Tk−2 + Tk−1, whereT0 = T1 = 1. Resolving
this recurrence yieldsO(2.57k) for the search tree size under the assumption that the
branching is always performed in this way. Since all other ways of destroying an en-
countered diamond include all modifications of one of the above cases, this branching
strategy is correct. If there are no diamonds in the input graph, then the straightfor-
ward search tree for Transitivity Deletion is used to solve the problem, which runs
in O(2k · n3) time. The correctness of the overall search tree algorithmeasily follows.

Applying the interleaving technique [25, 24], and making use of the polynomial-
size problem kernels (see Theorem 5) results in algorithms solving Transitivity Edit-
ing in O(2.57k + n3) time and Transitivity Deletion in O(2k + n3) time. �
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5. Conclusion

We studied Transitivity Editing and some related problems. While Transitivity
Completion is solvable inO(n2.376) time [23], we have seen that both Transitivity
Editing and Transitivity Deletion are NP-complete, even when restricted to dags or
degree-three digraphs. We have shown that both problems admit a problem kernel
containing at mostk(k+2) vertices and that this kernel can be computed inO(n3) time.
Furthermore, we presented a fixed-parameter algorithm for Transitivity Editing that
runs inO(2.57k + n3) time, improving on the obviousO(3k · n3) time algorithm.

Two immediate challenges arising from our work are to determine whether there
is an O(k)-vertex problem kernel for Transitivity Editing or Transitivity Deletion
in the case of general digraphs (see [10, 15, 7] for corresponding results in the case
of undirected graphs, that is, Cluster Editing) or to improve the running time of the
kernelization, which so far takes cubic time in the number ofvertices (for Cluster
Editing, even linear-time kernelization is possible [26]).

Another interesting open question is whether there is a polynomial-time approxi-
mation algorithm for Transitivity Editing and/or Transitivity Deletion.

Finally, note that we focused on arc modifications to make a given digraph transitive—
it might be of similar interest to start an investigation of the Transitivity Vertex Dele-
tion problem, where the graph shall be made transitive by as fewvertex deletionsas
possible (see [17] for corresponding results in the case of undirected graphs, that is,
Cluster Vertex Deletion). Finally, from a more general point of view, there seems to
be a rich field of studying further modification problems on digraphs. For instance, the
concept of quasi-transitivity is of considerable interestin the theory of directed graphs
(cf. [1]), hence one might start investigations on problemssuch as Quasi-Transitivity
Editing.
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[3] S. Böcker, S. Briesemeister, and G. W. Klau. On optimal comparability edit-
ing with applications to molecular diagnostics.BMC Bioinformatics, 10(Suppl
1):S61, 2009.
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