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Abstract. In this paper, we consider the Target Set Selection prob-
lem: given a graph and a threshold value thr(v) for each vertex v of the
graph, find a minimum size vertex-subset to “activate” s.t. all the ver-
tices of the graph are activated at the end of the propagation process. A
vertex v is activated during the propagation process if at least thr(v) of
its neighbors are activated. This problem models several practical issues
like faults in distributed networks or word-to-mouth recommendations
in social networks. We show that for any functions f and ρ this prob-
lem cannot be approximated within a factor of ρ(k) in f(k) · nO(1) time,
unless FPT = W[P], even for restricted thresholds (namely constant and
majority thresholds). We also study the cardinality constraint maximiza-
tion and minimization versions of the problem for which we prove similar
hardness results.

1 Introduction

Diffusion processes in graphs have been intensively studied [1, 4, 6, 7, 14, 16,
21, 22]. One model to represent them is to define a propagation rule and choose
a subset of vertices that, according to the given rule, activates all or a fixed
fraction of the vertices where initially all but the chosen vertices are inactive.
This models problems such as the spread of influence or information in social
networks via word-of-mouth recommendations, of diseases in populations, or of
faults in distributed computing [14, 16, 21]. One representative problem that
appears in this context is the Influence Maximization problem introduced
by Kempe et al. [16]. Given a directed graph and an integer k, the task is to
choose a vertex subset of size at most k such that the number of activated vertices
at the end of the propagation process is maximized. The authors show that the
problem is polynomial-time ( e

e−1 + ε)-approximable for any ε > 0 under some

stochastic propagation rules, but NP-hard to approximate within a ratio of n1−ε

for any ε > 0 for general propagation rules.



In this paper, we use the following deterministic propagation model. We are
given an undirected graph, a threshold value thr(v) associated to each vertex
v, and the following propagation rule: a vertex becomes active if at least thr(v)
many neighbors of v are active. The propagation process proceeds in several
rounds and stops when no further vertex becomes active. Given this model,
finding and activating a minimum-size vertex subset such that all the vertices
become active is known as the Target Set Selection problem and was in-
troduced by Chen [7].

Target Set Selection has been shown NP-hard even for bipartite graphs
of bounded degree when all thresholds are at most two [7]. Moreover, the prob-
lem was shown to be hard to approximate in polynomial time within a ratio
O(2log

1−ε n) for any ε > 0, even for constant degree graphs with thresholds at
most two and for general graphs when the threshold of each vertex is half its
degree (called majority thresholds) [7]. If the threshold of each vertex equals its
degree (unanimity thresholds), then the problem is equivalent to the vertex cover
problem [7] and, thus, admits a 2-approximation and is hard to approximate with
a ratio better than 1.36 [11]. Concerning the parameterized complexity, the prob-
lem is shown to be W[2]-hard with respect to (w.r.t.) the solution size, even on
bipartite graphs of diameter four with majority thresholds or thresholds at most
two [19]. Furthermore, it is W[1]-hard w.r.t. each of the parameters “treewidth”,
“cluster vertex deletion number”, and “pathwidth” [4, 9]. On the positive side,
the problem becomes fixed-parameter tractable w.r.t. each of the single param-
eters “vertex cover number”, “feedback edge set size”, and “bandwidth” [9, 19].
If the input graph is complete, has a bounded cliquewidth, or has a bounded
treewidth and bounded thresholds then the problem is polynomial-time solv-
able [4, 10, 19].

Motivated by the hardness of approximation and parameterized hardness
we showed in previous work [3] that the cardinality constraint maximization
version of Target Set Selection, that is to find a fixed number k of ver-
tices to activate such that the number of activated vertices at the end is max-
imum, is strongly inapproximable in fpt-time w.r.t. the parameter k, even for
restricted thresholds. For the special case of unanimity thresholds, we showed
that the problem is still inapproximable in polynomial time, but becomes r(n)-
approximable in fpt-time w.r.t. the parameter k, for any strictly increasing func-
tion r.

Continuing this line of research, we study in this paper Target Set Se-
lection and its variants where the parameter relates to the optimum value.
This requires the special definition of “fpt cost approximation” since in param-
eterized problems the parameter is given which is not the case in optimization
problems (see Section 2 for definitions). Fpt approximation algorithms were in-
troduced by Cai and Huang [5], Chen et al. [8], Downey et al. [12], see also
the survey of Marx [17]. Besides this technical difference observe that Target
Set Selection can be seen as a special case of the previously considered prob-
lem, since activating all vertices is a special case of activating a given number
of vertices. Strengthening the known inapproximability results, we first prove
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in Section 3 that Target Set Selection is not fpt cost ρ-approximable, for
any computable function ρ, unless FPT = W[P], even for majority and constant
thresholds. Complementing our previous work, we also study in Section 4 the
cardinality constraint maximization and minimization versions of Target Set
Selection. We prove that these two problems are not fpt cost ρ-approximable,
for any computable function ρ, unless FPT = W[1]. Due to space limitation,
some proofs are deferred to a full version of the paper.

2 Preliminaries and basic observations

In this section, we provide basic backgrounds and notation used throughout
this paper and define Target Set Selection. For details on parameterized
complexity we refer to the monographs of Downey and Fellows [13], Flum and
Grohe [15], Niedermeier [20]. For details on parameterized approximability we
refer to the survey of Marx [17].

Graph terminology. Let G = (V,E) be an undirected graph. For a subset S ⊆ V ,
G[S] is the subgraph induced by S. The open neighborhood of a vertex v ∈ V in
G, denoted byNG(v), is the set of all neighbors of v inG. The closed neighborhood
of a vertex v in G, denoted NG[v], is the set NG(v)∪{v}. The degree of a vertex
v is denoted by degG(v) and the maximum degree of the graph G is denoted
by ∆G. We skip the subscripts if G is clear from the context.

Parameterized complexity. A parameterized problem (I, k) is said fixed-
parameter tractable (or in the class FPT) w.r.t. parameter k if it can be solved
exactly in f(k) · |I|c time, where f is any computable function and c is a
constant. The parameterized complexity hierarchy is composed of the classes
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P]. A W[1]-hard problem is not fixed-parameter
tractable (unless FPT = W[1]) and one can prove the W[1]-hardness by means of
a parameterized reduction from a W[1]-hard problem. Such a reduction between
two parameterized problems A1 and A2 is a mapping of any instance (I, k) of A1

in g(k) · |I|O(1) time (for some computable function g) into an instance (I ′, k′)
for A2 such that (I, k) ∈ A1 ⇔ (I ′, k′) ∈ A2 and k′ ≤ h(k) for some function h.

Parameterized approximation. An NP-optimization problem Q is a tuple
(I, Sol, val, goal), where I is the set of instances, Sol(I) is the set of feasible
solutions for instance I, val(I, S) is the value of a feasible solution S of I, and
goal is either max or min. We assume that val(I, S) is computable in polynomial
time and that |S| is polynomially bounded by |I| i.e. |S| ≤ |I|O(1).

Let Q be an optimization problem and ρ : N → R be a function such that
ρ(k) ≥ 1 for every k ≥ 1 and k ·ρ(k) is nondecreasing (when goal = min) and k

ρ(k)

is unbounded and nondecreasing (when goal = max). The following definition
was introduced by Chen et al. [8].

A decision algorithm A is an fpt cost ρ-approximation algorithm for Q (when
ρ satisfies the previous conditions) if for every instance I of Q and integer k,
with Sol(I) 6= ∅, its output satisfies the following conditions:
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1. If opt(I) > k (when goal = min) or opt(I) < k (when goal = max), then A
rejects (I, k).

2. If k ≥ opt(I) · ρ(opt(I)) (when goal = min) or k ≤ opt(I)
ρ(opt(I)) (when goal =

max), then A accepts (I, k).

Moreover the running time of A on input (I, k) is f(k) · |I|O(1). If such a decision
algorithm A exists then Q is called fpt cost ρ-approximable.

The notion of a gap-reduction was introduced in [2] by Arora and Lund. We
use in this paper a variant of this notion, called fpt gap-reduction.

Definition 1 (fpt gap-reduction). A problem A parameterized by k is called
fpt gap-reducible to an optimization problem Q with gap ρ if for any instance
(I, k) of A we can construct an instance I ′ of Q in f(k) · |I|O(1) time while sat-

isfying the following properties: (i) If I is a yes instance then opt(I ′) ≤ g(k)
ρ(opt(I′))

(when goal = min) or opt(I ′) ≥ g(k)ρ(opt(I ′)) (when goal = max), (ii) If I is
a no instance then opt(I ′) > g(k) (when goal = min) or opt(I ′) < g(k) (when
goal = max), for some function g. The function ρ satisfies the aforementioned
conditions.

The interest of the fpt gap-reduction is the following result that immediately
follows from the previous definition:

Lemma 1. If a parameterized problem A is C-hard and fpt gap-reducible to an
optimization problem Q with gap ρ then Q is not fpt cost ρ-approximable un-
less FPT = C where C is any class of the parameterized complexity hierarchy.

Problem statement. Let G = (V,E) be an undirected graph and let thr : V → N
be a threshold function such that 1 ≤ thr(v) ≤ deg(v), ∀v ∈ V . The definition
of Target Set Selection is based on the notion of “activation”. Let S ⊆ V .
Informally speaking, a vertex v ∈ V gets activated by S in the ith round if at
least thr(v) of its neighbors are active after the previous round (where S are the
vertices active in the 0th round). Formally, for a vertex set S, letAiG,thr(S) denote

the set of vertices of G that are activated by S at the ith round, with A0
G,thr(S) =

S and Ai+1
G,thr(S) = AiG,thr(S)∪{v ∈ V : |N(v)∩AiG,thr(S)| ≥ thr(v)}. For S ⊆ V ,

the unique positive integer r with Ar−1G,thr(S) 6= ArG,thr(S) = Ar+1
G,thr(S) is called

the number rG(S) of activation rounds. It is easy to see that rG(S) ≤ |V (G)|
for all graphs G. Furthermore, we call AG,thr(S) = ArG(S)

G,thr (S) the set of vertices
that are activated by S. If AG,thr(S) = V , then S is called a target set for G.
Target Set Selection is formally defined as follows.

Target Set Selection
Input: A graph G = (V,E) and a threshold function thr : V → N.
Output: A target set for G of minimum cardinality.

We also consider the following cardinality constrained version.
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Max Closed k-Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and an integer
k.
Output: A subset S ⊆ V with |S| ≤ k maximizing |AG,thr(S)|.

The Max Open k-Influence problem asks for a set S ⊆ V with |S| ≤ k
such that |AG,thr(S) \ S| is maximum. We remark that this difference in the
definition is important when considering the approximability of these problems.
Finally, Min Closed k-Influence (resp. Min Open k-Influence) is also
defined similarly, but one ask for a solution S ⊆ V with |S| = k such that
|AG,thr(S)| is minimum (resp. |AG,thr(S) \ S| is minimum).

Directed edge gadget. We will use the directed edge gadget as used by Chen [7]
throughout our work: A directed edge gadget from a vertex u to another vertex v
consists of a 4-cycle {a, b, c, d} such that a and u as well as c and v are adjacent.
Moreover thr(a) = thr(b) = thr(d) = 1 and thr(c) = 2. The idea is that the
vertices in the directed edge gadget become active if u is activated but not if v
is activated. Hence, the activation process may go from u to v via the gadget
but not in the reverse direction.

3 Parameterized inapproximability of Target Set
Selection

Marx [18] showed that the Monotone Circuit Satisfiability problem ad-
mits no fpt cost ρ-approximation algorithm for any function ρ unless FPT =
W[P]. In this section we show that we can transfer this strong inapproximability
result from Monotone Circuit Satisfiability to Target Set Selection.

Before defining Monotone Circuit Satisfiability, we recall the following
notations. A monotone (boolean) circuit is a directed acyclic graph. The nodes
with in-degree at least two are labeled with and or with or, the n nodes with
in-degree zero are input nodes, and due to the monotonicity there are no nodes
with in-degree one (negation nodes in standard circuits). Furthermore, there is
one node with out-degree zero, called the output node. For an assignment of the
input nodes with true/false, the circuit is satisfied if the output node is evaluated
(in the natural way) to true. The weight of an assignment is the number of input
nodes assigned to true. We denote an assignment as a set A ⊆ {1, . . . , n} where
i ∈ A if and only if the ith input node is assigned to true. The Monotone
Circuit Satisfiability problem is then defined as follows:

Monotone Circuit Satisfiability
Input: A monotone circuit C.
Output: A satisfying assignment of minimum weight, that is, a satisfying
assignment with a minimum number of input nodes set to true.

By reducing Monotone Circuit Satisfiability to Target Set Selec-
tion in polynomial time such that there is a “one-to-one” correspondence be-
tween the solutions, we next show that the inapproximability result transfers to
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Fig. 1. Illustration of the reduction described in Theorem 1. All arrows of the right
graph represent a directed edge gadget. Thresholds are represented inside each vertex.

Target Set Selection. First, we show one reduction working with general
thresholds and then describe, using further gadgets, how to achieve constant or
majority thresholds in our constructed instance.

3.1 General thresholds

As mentioned above, we will reduce from Monotone Circuit Satisfiability,
and thus derive the same inapproximability result for Target Set Selection
as for Monotone Circuit Satisfiability.

Theorem 1. Target Set Selection is not fpt cost ρ-approximable, for any
computable function ρ, unless FPT = W[P].

Proof. Let C be an instance of Monotone Circuit Satisfiability. We con-
struct an instance of Target Set Selection as follows. Initialize G = (V,E)
as a copy of the directed acyclic graph C where each directed edge is replaced
by a directed edge gadget. We call a vertex in G an input vertex (resp. output
vertex, and-vertex, or-vertex) if it corresponds to an input node (resp. output
node, and-node, or-node). Next, for each and-node in C with in-degree d set the
threshold of the corresponding and-vertex in G to d and for each or-vertex in G
set the threshold to 1. Set the threshold of each input vertex in G to n+1. Next,
add n copies to G and “merge” all vertices corresponding to the same input
node. This means, that for an input node v with an outgoing edge (v, w) in C
the graph G contains n+1 vertices w1, . . . , wn+1 and n+1 directed edges from v
to wi, 1 ≤ i ≤ n + 1. Finally, add directed edges from each output vertex to
each input vertex. This completes our construction (see Figure 1).To complete
the proof, it remains to show that

(i) for every satisfying assignment A for C there exists a target set of size |A|
for G, and

(ii) for every target set S for G there exists a satisfying assignment of size |S|
for C.
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(i) Let A ⊆ {1, . . . , n} be a satisfying assignment for C. We show that the
set S of vertices of G that correspond to the input nodes in A form a target set.
Clearly, |S| = |A|. First, observe that by construction, all the n+1 output vertices
of G become active. Hence, also all input vertices that are not in S become
active. Thus, all remaining vertices in G are activated since thr(v) ≤ deg(v) for
all v ∈ V .

(ii) Let S ⊆ V be a target set for G. First, observe that we can assume
that |S| < n since otherwise the satisfying assignment simply sets all input
nodes to true. Next, observe that we can assume that S is a subset of the input
vertices. Indeed, since G contains n+1 copies of the circuit (excluding the input
vertices), there is at least one copy without vertices in S and, hence, the output
vertex in that copy becomes active solely because of the input vertices in S.
Finally, assume by contradiction that the set of input nodes that correspond to
the vertices in S do not form a satisfying assignment. Hence, the output node
of C is evaluated to false. However, due to the construction, this implies that
the vertices corresponding to the output node are not activated, contradicting
that S is a target set for G. ut

3.2 Restricted thresholds

In this subsection, we enhance the inapproximability results to variants of Tar-
get Set Selection with restricted threshold functions. To this end, we use the
construction desbribed in Lemma 2 of Nichterlein et al. [19] which transforms in
polynomial time any instance I = (G = (V,E), thr) of Target Set Selection
into a new instance I ′ = (G′ = (V ′, E′), thr′) where thr′ is the majority function
such that

(i) for every target set S for I there is a target set S′ for I ′ with |S′| ≤ |S|+ 1,
and

(ii) for every target set S′ for I ′ there is a target set S for I with |S| ≤ |S′| − 1.

Hence, the next corollary follows.

Corollary 1. Target Set Selection with majority thresholds is not fpt
cost ρ-approximable, for any computable function ρ, unless FPT = W[P].

Next, we show a similar statement for constant thresholds.

Lemma 2. Let I = (G = (V,E), thr) be an instance of Target Set Se-
lection. Then, we can construct in polynomial time an instance I ′ = (G′ =
(V ′, E′), thr′) of Target Set Selection where thr′(v) ≤ 2 for all v ∈ V ′ and
G′ is bipartite such that

(i) for every target set S for I there is a target set S′ for I ′ with |S′| = |S|, and
(ii) for every target set S′ for I ′ there is a target set S for I with |S| ≤ |S′|.
Theorem 1 and Lemma 2 imply the following.

Corollary 2. Target Set Selection with thresholds at most two is not fpt
cost ρ-approximable even on bipartite graphs, for any computable function ρ,
unless FPT = W[P].
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4 Parameterized inapproximability of Max and Min
k-Influence

We consider in this section the cardinality constraint maximization and mini-
mization versions of Target Set Selection.

Theorem 2. Max Closed k-Influence and Max Open k-Influence are
not fpt cost ρ-approximable even on bipartite graphs, for any computable function
ρ, unless FPT = W[1].

We remark that the proof of Theorem 2 shows a stronger result: Unless FPT =
W[1], there is no fpt cost ρ-approximation for Max Closed k-Influence and
Max Open k-Influence, for any computable function ρ, even if the running
time is of the form f(k, `) · nO(1). Here ` is the cost-parameter passed as an
argument to the algorithm, that is, ` indicates the number of activated vertices.

As the reductions behind Corollaries 1 and 2 are not fpt gap-reductions,
we cannot use them to prove the same cost inapproximability results for Max
Closed k-Influence or Max Open k-Influence with majority thresholds
and thresholds at most two.

Minimization variants. In contrast with the maximization versions, we can show
that the problems are polynomial-time solvable for unanimity thresholds.

Proposition 1. Min Open k-Influence and Min Closed k-Influence are
solvable in polynomial time for unanimity thresholds.

The next result shows that Min Closed k-Influence and Min Open k-
Influence are also computationally hard even for thresholds bounded by two.
To this end, we consider the decision version of Min Closed k-Influence (resp.
Min Open k-Influence) denoted by Closed k-Influence≤ (resp. Open k-
Influence≤) and defined as follows: Given a graph G = (V,E), a threshold
function thr : V → N, and integers k and `, determine whether there is a subset
S ⊆ V , |S| = k such that |AG,thr(S)| ≤ ` (resp. |AG,thr(S) \ S| ≤ `).

Theorem 3. Closed k-Influence≤ is W[1]-hard w.r.t. parameter (k, `) even
for threshold bounded by two and bipartite graphs. Open k-Influence≤ is NP-
hard even for threshold bounded by two, bipartite graphs and ` = 0.

We remark that the previous theorem rules out the possibility of any fixed-
parameter algorithm with parameter ` for Open k-Influence≤ assuming P 6=
NP. Moreover, due to its NP-hardness when ` = 0, Min Open k-Influence is
not at all fpt cost approximable, unless P = NP.

In the following, we provide a final result regarding fpt cost approximation
of Min Closed k-Influence.

Theorem 4. Min Closed k-Influence with thresholds at most two is not
fpt cost ρ-approximable even on bipartite graphs, for any computable function ρ,
unless FPT = W[1].
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Proof. We provide a fpt gap-reduction with gap ρ from Independent Set to
Min Closed k-Influence Given an instance (G = (V,E), k) of Independent
Set, we construct an instance (G′ = (V ′, E′), k′) of Min Closed k-Influence
by considering the incidence graph, that is G′ is a bipartite graph with two
vertex sets V and E and for each edge e = uv ∈ E, there is ue, ve ∈ E′. We
define thr(u) = 1,∀u ∈ V and thr(e) = 2,∀e ∈ E. We choose the function h such
that h(k) is an integer and k + h(k) + 1 ≥ kρ(k). Then, we add h(k) additional
vertices F of threshold 1 in G′ and a complete bipartite graph between E and
F . Define k′ = k, g(k) = k+h(k)+1. If G contains an independent set of size at
least k then, by activating the same k vertices in G′, we obtain a solution that

activates no more vertex in G′ and thus opt(I ′) = k ≤ g(k)
ρ(k) = g(k)

ρ(opt(I′)) .

If there is no independent set of size k, if one activate only two vertices from
F , it will activate the whole vertex set E on the next step, and then the whole
graph. Moreover, activating a vertex from the vertex set E will also activate the
whole set F on the next step, and then the whole graph. Finally, activating k
vertices of V will activate at least one vertex of E since there is no independent
set of size k. Note that activating k− 1 vertices from V and 1 from F will result
not be better since vertices of F are connected to all vertices of E. Therefore,
opt(I ′) ≥ k + h(k) + 1 = g(k).

The result follows from Lemma 1 together with the W[1]-hardness of Inde-
pendent Set [13]. ut

5 Conclusion

Despite the variety of our intractability results, some questions remains open.
Are Max Closed k-Influence and Max Open k-Influence fpt cost ap-
proximable for constant or majority thresholds? We believe that these problems
remain hard, but the classical gadgets used to simulate these thresholds changes
does not work for this type of approximation. Similarly, is Min Closed k-
Influence fpt cost approximable for majority thresholds?

Finally, the dual problem of Target Set Selection (i.e. find a target set
of size at most |V | − k) seems unexplored. Using the fact that Target Set
Selection with unanimity thresholds is exactly Vertex Cover, we know that
the dual problem is therefore W[1]-hard, even with unanimity thresholds. But
it is still the case for constant or majority thresholds? Moreover, is the dual of
Target Set Selection fpt cost approximable?
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