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Abstract. We study the (parameterized) complexity of a combinatorial
problem, motivated by the desire to publish elections-related data, while
preserving the privacy of the voters (humans or agents). In this problem,
introduced and defined here, we are given an election, a voting rule,
and a distance function over elections. The task is to find an election
which is not too far away from the original election (with respect to
the given distance function) while preserving the election winner (with
respect to the given voting rule), and such that the resulting election is
k-anonymized; an election is said to be k-anonymous if for each voter in
it there are at least k − 1 other voters with the same preference order.
We consider the problem of k-anonymizing elections for the Plurality
rule and for the Condorcet rule, for the Discrete distance and for the
Swap distance. We show that the parameterized complexity landscape
of our problem is diverse, with cases ranging from being polynomial-time
solvable to Para-NP-hard.

1 Introduction

We consider privacy issues when publishing preferences-related (or, election-
related) data. Assume being given data consisting of a set of records, where
each record (corresponding to a human or an agent) contains preferences-related
information as well as some private (side) information. The task is to publish this
data (for example, to let researchers analyze it) while preserving the privacy of
the entities in it. Two of the most well-studied approaches for achieving privacy
when publishing information is differential privacy (see, for example, Dwork
and Roth [12]) and k-anonymity (and l-diversity ; see, for example, Sweeney [25]
and Machanavajjhala et al. [20]). Here we follow the k-anonymity framework
(see Clifton and Tassa [9] for a recent comparison between these two approaches).

We say that an election is k-anonymous if each preference order in it appears
at least k times (where a preference order is an order over a set of predefined
alternatives). Given an input election , the goal is to generate an election which
is k-anonymous but still preserves some properties of the original election.
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It is natural to consider the distance between the original election and the
resulting anonymized election (in a similar way as done when k-anonymizing
graphs; there, one can define the distance as the symmetric difference of the
edge set, for example). Therefore, we consider distances over elections. We study
the Discrete distance (where each preference order can be transformed into any
other preference order at unit cost) and the Swap distance (where each two
consecutive alternatives can be swapped at unit cost), as these are the most
basic and well-studied distances defined on elections (see, for example, [14]).
The idea is that if the distance is small, then the anonymized election does not
differ too much from the original election; this is, arguably, more apparent in
the Swap distance.

Besides requiring that the original election and the resulting k-anonymized
election will be close (with respect to the considered distance), we would like to
preserve some specific properties of the original election (in this, we follow ideas
presented by Bredereck et al. [5], who considered preserving graph properties,
such as the connectivity, the relative distances, and the diameter). Here, we
require that the winner of the election will be preserved. For this, we need to fix
a voting rule. We study two voting rules, the Plurality rule and the Condorcet
rule, as these are the most basic and well-studied voting rules, which are also
good representative rules (specifically, the Plurality rule, albeit simple, can be
seen as a representative scoring rule, while the Condorcet rule can be seen as a
representative tournament-based rule).

In what follows, we study the parameterized complexity of k-anonymizing
elections, under the Plurality rule and under the Condorcet rule, for the Discrete
distance and for the Swap distance. We consider two election-related parame-
ters, specifically, the number of voters and the number of alternatives, and one
anonymity-related parameter, the anonymity level k. We show that the parame-
terized complexity landscape of our problem is diverse, with cases ranging from
being polynomial-time solvable to Para-NP-hard.

In a way, this paper can be seen as bringing the well-studied field of k-
anonymity to the well-studied field of voting systems and social choice, with
the hope of better understanding complexity issues of preserving privacy when
publishing election-related data. We view our definition of k-anonymous elections
as being a natural adaptation of the concept of k-anonymity to preferences-
related (or, election-related) data.

1.1 Related Work

There is a big body of literature on security of elections and on preserving
privacy of voters participating in (digital) elections. Chaum [7], Nurmi et al. [24],
and Cuvelier et al. [10], among others, considered cryptographic mechanisms to
encrypt the votes, while Chen et al. [8], among others, considered differential
privacy. Ashur and Dunkelman [1] showed how to breach the privacy of voters
for the Israeli parliament when an adversary can look at the publicly-available
nation-wide election statistics. This work is of some relevance to us as it considers
privacy with respect to (publicly-available) published data.



Sweeney [25] introduced the concept of k-anonymity as a way to preserve
privacy over published data, after demonstrating how to identify many indi-
viduals by mixing publicly-available medical data with publicly-available voter
lists (interestingly, Sweeney [25] already somewhat focuses on election-related
data, specifically on the party affiliation; informally speaking, party affiliation
corresponds to the Plurality rule, since only the first choice counts, while for the
Condorcet rule we would need the complete preference orders publicly available).
Much work has been done on k-anonymizing tables (for example, Meyerson and
Williams [22], Bredereck et al. [4], and Bredereck et al. [6]; some of these concen-
trate on parameterized complexity), on k-anonymizing graphs (for example, Liu
and Terzi [19], Hartung et al. [17], and Bredereck et al. [5]; some of these con-
centrate on parameterized complexity). Here, we consider neither general tables
nor graphs, but instead we consider elections. Indeed, elections can be described
as tables, but here we require to preserve the winner and allow different, election
specific, operations. Specifically, while the Discrete distance can be natural also
for general tables, this is not the case for the Swap distance.

For general information about social choice, elections, voting systems, and
voting rules, we point the reader to any textbook on social choice, for example
the book by Brandt et al. [3].

2 Preliminaries

Considering distances over elections, we follow some notation from Elkind et al.
[14]. We assume familiarity with standard notions regarding algorithms, compu-
tational complexity, and graph theory. For a non-negative integer z, we denote
the set {1, . . . , z} by [z].

2.1 Elections and Distances

An election E is a pair (C, V ) where C = {c1, . . . , cm} is the set of alternatives
and V = (v1, . . . , vn) is the collection of voters. Each voter vi is represented by a
total order �vi over C (her preference order; we use voters and preference orders
interchangeably). A voter which prefers c to all other alternatives is called a c-
voter. For reading clarity, we refer to the voters as females, while the alternatives
are males. A voting rule R is a function that, given an election E = (C, V ),
returns a set R(E) ⊆ C of election winners (indeed, we use the non-unique
winner model). We consider the following voting rules:

1. the Plurality rule. Each alternative receives one point for each voter which
ranks him first, and the winners are the highest-scoring alternatives.

2. the Condorcet rule. An alternative c is a (weak) Condorcet winner if for
each other alternative c′ ∈ C \ {c}, it holds that |{v ∈ V : c �v c′} ≥ |{v ∈
V : c′ �v c}|, that is, if he beats (or ties with) all other alternatives in head-
to-head contests. The Condorcet rule elects the Condorcet winners if some
exist, returning an empty set otherwise.



Given a set V ′ of preference orders, we say that a function d : V ′ × V ′ → N is a
distance function over preference orders if it is a metric over preference orders.
Given a distance function over preference orders d and two elections (over the
same set of alternatives), E = (C, (v1, . . . , vn)) and E′ = (C, (v′1, . . . , v

′
n)), the

above definition can be naturally extended by fixing an arbitrary order for the
voters of E, that is, [v1, . . . , vn], considering all the possible permutations for the
voters of E′, that is, [v′π(1), . . . , v

′
π(n)], and defining the d-distance between E and

E′ to be d(E,E′) = minπ∈Sn

∑
i∈[n] d(vi, v

′
π(i)), where Sn is the set containing

all the possible permutations of [n]. We define the following distance functions:

1. Discrete distance. ddiscr(v1, v2) = 0 if and only if v1 = v2, while otherwise
ddiscr(v1, v2) = 1. Indeed, for two elections, E = (C, (v1, . . . , vn)) and E′ =
(C, (v′1, . . . , v

′
n)), it holds that ddiscr(E,E′) = |{i : vi 6= v′i}| (hence, the

Hamming distance).
2. Swap distance. dswap(v1, v2) = |{(c, c′) ∈ C × C : c �v1 c′ ∧ c′ �v2 c}|.

Indeed, the swap distance dswap(v1, v2) (also called the Dodgson distance) is
the minimum number of swaps of consecutive alternatives needed for trans-
forming the preference order of v1 to that of v2.

Clearly, both the Discrete distance and the Swap distance are distance functions.

2.2 Anonymization

A group of voters with the same preference order is called a block. Using this
notion, we have that an election is k-anonymous if and only if each block in it
is of size at least k. We denote the number of voters in block B by |B| and say
that a block is bad if 0 < B < k (as it is not yet anonymized in this case). Since
all voters in a block have the same preference order, it is valid to consider the
preference order of the voters in the block. Specifically, a block of c-voters is
called a c-block.

2.3 Parameterized Complexity

An instance (I, k) of a parameterized problem consists of the “classical” problem
instance I and an integer k being the parameter [11, 15, 23]. A parameterized
problem is called fixed-parameter tractable (FPT) if there is an algorithm solving
it in f(k)·|I|O(1) time, for an arbitrary computable function f only depending on
the parameter k. In difference to that, algorithms running in |I|f(k) time prove
membership in the class XP (clearly, FPT ⊆ XP).

One can show that a parameterized problem L is (presumably) not fixed-
parameter tractable by devising a parameterized reduction from a W[1]-hard
problem (for example, the Clique problem, parameterized by the solution size)
or a W[2]-hard problem (for example, the Set Cover problem, parameterized by
the solution size) to L. A parameterized problem which is NP-hard even for
instances for which the parameter is a constant is said to be Para-NP-hard.



Discrete distance Swap distance

Plurality rule P (Theorem 1)
NP-h even when n = k = 4

(Theorem 3)

FPT wrt. m (Theorem 5)

Condorcet rule

NP-h (Theorem 2)
NP-h even when n = k = 4

(Theorem 3)
para. complexity wrt. k is open

FPT wrt. n (Theorem 4)
FPT wrt. m (Theorem 5) FPT wrt. m (Theorem 5)

Table 1: (parameterized) Complexity of EA.

2.4 Main Problem and Overview of Our Results

The main problem we consider in this paper is defined as follows.

R-d-Election Anonymization (R-d-EA)
Input: An election E = (C, V ) where C = {c1, . . . , cm} is the set of
alternatives and V = (v1, . . . , vn) is the collection of voters, anonymity
level k, and a budget s.
Question: Is there a k-anonymous election E′ such that R(E) = R(E′)
and d(E,E′) ≤ s (where R is a voting rule, d is a distance function over
elections, and an election is said to be k-anonymous if for each voter in
it there are at least k − 1 other voters with the same preference order)?

We study the (parameterized) complexity of R-d-Election Anonymiza-
tion, where we consider both the Plurality rule and the Condorcet rule as
the voting rule R, and where we consider both the Discrete distance and the
Swap distance as the distance d (that is, we consider the following four vari-
ants: Plurality-Discrete-EA, Condorcet-Discrete-EA, Plurality-Swap-EA, and
Condorcet-Swap-EA). Our results are summarized in Table 1. Due to the lack
of space, some proof details are deferred to the full version.

3 Results

Intuitively, from all variants considered in this paper, Plurality-Discrete-EA
should be the most tractable, as the Plurality rule is conceptually simpler than
the Condorcet rule and the Discrete distance is conceptually simpler than the
Swap distance. This intuition is correct: it turns out that Plurality-Discrete-EA
is polynomial-time solvable, while all other variants are NP-hard. We begin by
describing a polynomial-time algorithm, based on dynamic programming, for
Plurality-Discrete-EA.



Theorem 1. Plurality-Discrete-EA is polynomial-time solvable.

Proof. We describe an algorithm based on applying dynamic programming twice,
in a nested way. To understand the general idea, consider an alternative c and
its corresponding c-voters. We have two cases to consider with respect to the
solution election: either (1) some of the c-voters are transformed to be c′-voters
(for some, possibly several, other alternatives c′ 6= c), or (2) some c′-voters (for
some, possibly several, other alternatives c′ 6= c) are transformed to be c-voters.
The crucial observation is that, with respect to anonymizing the c-voters, we
do not need to remember the specific c′-voters discussed above, but only their
number. Therefore, we define a first (outer) dynamic program, iterating over the
alternatives, and computing the most efficient way of anonymizing the c-voters,
while considering all possible values for these numbers of c′-voters, and while
making sure that the initial winner of the election stays the winner. In order
to compute how to anonymize the c-voters we define a second (inner) dynamic
program, considering the c-blocks one at a time. For each c-block, the inner
dynamic program decides whether to make the respective c-block empty (with
zero voters) or full (with at least k voters), by considering the possible ways
of transforming other c-voters or other c′-voters, similarly in spirit to the first
(outer) dynamic programming. The full proof is deferred to the full version. ut

For the Condorcet rule, still considering the Discrete distance, we can show
that EA is NP-hard, by a reduction from a restricted variant of the Exact
Cover by 3-Sets problem.

Theorem 2. Condorcet-Discrete-EA is NP-hard.

Proof. We reduce from the following NP-hard problem [16], defined as follows.

Restricted Exact Cover by 3-Sets
Input: Collection S = {S1, . . . , Sn} of sets of size 3 over a universe
X = {x1, . . . , xn} such that each element appears in exactly three sets.
Question: Is there a subset S ′ ⊆ S such that each element xi occurs in
exactly one member of S ′?

We assume, without loss of generality, that {{x1, x2, x3}, . . . , {xn−2, xn−1, xn}} =
{{x3l−2, x3l−1, x3l} : l ∈ [n/3]} 6⊆ S, and that n = 0 (mod 3). Given an in-
stance for Restricted Exact Cover by 3-Sets, we create an instance for Condorcet-
Discrete-EA, as follows.

We create two alternatives, p and d, and, also, for each element xi ∈ X, we
create an alternative xi, such that the set of alternatives is {X, p, d}. We create
a set of n/3 voters, called jokers, such that the ith joker (for i ∈ [n/3]) has
preference order x3i−2 � x3i−1 � x3i � p � d � X \{x3i−2, x3i−1, x3i}. For each
set Sj , we create k voters, each with preference order Sj � p � d � Sj . We refer
to these voters as the set voters. We create another set of (n− 6)k + ((n/3)− 2)
voters, each with preference order d � X � p, called the init voters. Finally, we
set s to n/3 and k to (n/3) + 2. This finishes the construction.



Let us first compute the winner in the input election. Notice that the set
voters and the jokers prefer p to d, while the init voters prefer d to p. As there
are kn set voters, n/3 jokers, but only (n−6)k+((n/3)−2) init voters, p defeats d.
Consider an element xi. There is exactly one joker which prefers xi to p, and
exactly three set voters which prefer xi to p (as xi appears in exactly three sets),
and all the init voters prefer xi to p. Other than these, all other voters prefer p
to xi. Therefore, there are (n/3)− 1 + k(n− 3) voters which prefer p to xi and
1 + 3k + (n− 6)k + ((n/3)− 2) = (n/3)− 1 + k(n− 3) voters which prefer xi to
p, so p and xi are tied (we use the weak Condorcet criterion, but the reduction
can be changed to work for the strong Condorcet criterion as well). Finally, it
is not hard to see that d defeats xi. Summarizing the above computations, we
see that p is the winner in the input election. Thus, in an anonymized solution
election, p shall be the winner as well. Given an exact cover S ′, we move all jokers
to the set voters corresponding to the exact cover, that is, we move all jokers
such that, for each set S ∈ S ′, we will have one joker in the block of set voters
corresponding to S. Notice that initially the jokers form an exact cover. Notice
further that they still form an exact cover in the solution, as we moved them
to blocks of set voters corresponding to the sets of S ′. Specifically, considering
only the jokers, the relative score of p and the xi’s did not change between the
input and the solution. Therefore p is still the winner. Moreover, it is not hard
to see that the election is anonymized. For the other direction, notice that the
jokers are not anonymized (that is, their blocks are bad; specifically, each joker
forms its own block) while all other blocks are anonymized. It is not possible to
anonymize the jokers by moving other voters (or other jokers) to their blocks, as
the budget is too small for that. Therefore, in a solution, all jokers should move
to other blocks. There are two possibilities for each joker, either to move to the
init voters or to move to some set voters. It is not a good idea to move some
voters to the init voters, as the init voters prefer X to p. More formally, if in a
solution, some jokers move to the init voters, then we can instead move them
to an arbitrarily-chosen set voter. Therefore, we can assume that, in a solution,
all jokers move to set voters. If the jokers move to set voters in a way that does
not correspond to an exact cover, than at least one xi would win over p (as
at least one xi would be covered twice, that is, at least two jokers would move
to set voters preferring xi to p; therefore, the relative score between xi and p
would change in such a way that xi would win over p in a head-to-head contest).
Therefore, a solution must correspond to an exact cover, and we are done. ut

Moving further to the Swap distance, we show that EA is NP-hard for both
voting rules considered, and even for elections with only four voters (and there-
fore, also for elections with anonymity level only four; indeed, any input with
k > n is a trivial no-instance). Technically, in the corresponding reduction, from
Kemeny Distance, we set both n and k to four. We mention that the next
theorem actually holds for all voting rules which are unanimous (a voting rule
is unanimous if for all elections where all voters prefer the same alternative c, it
selects the preferred alternative c; see, for example, [14]).



Theorem 3. For R ∈ {Plurality,Condorcet}, R-Swap-EA is NP-hard even if
the number n of voters is four and the anonymity level k is four.

Proof. We reduce from the Kemeny Distance problem.

Kemeny Distance
Input: An election E′ = (C ′, V ′) and a positive integer h.
Question: Is the Kemeny distance of E′ = (C ′, V ′) at most h (where the
Kemeny distance is the minimum total number of swaps of neighboring
alternatives needed to have all voters vote the same; such a similar vote
is called a Kemeny vote)?

Kemeny Distance is NP-hard already for four voters [13, 2]. Given an input
election for Kemeny Distance, we create an instance for EA, as follows. We
initialize our election E = (C, V ) with the election given for Kemeny Distance
and create another alternative c (that is, we set C = C ′ ∪ {c}). For each voter
in the election, we place c as the first choice of the voter, that is, for each voter
v′ ∈ V ′, we create a voter v ∈ V with the same preference order as v′ while
preferring c to all other alternatives. We set k to n and s to h. This finishes the
construction.

It is clear that originally c is the winner of the election (both under the
Plurality rule and under the Condorcet rule; indeed, for this theorem, we only
require the rule to be unanimous; see, for example, [14]). The crucial observation
is that there is no need to swap the new alternative c; this follows because all
voters already agree on him, as they place him first in their preference orders.
More formally, as k is set to n, it follows that if in a solution c is swapped in
some voters, then he must be swapped in all voters. Therefore, we can simply
“unswap” these swaps to get a cheaper solution.

Finally, since k is set to n, it follows that all voters should vote the same in
the resulting k-anonymous solution election. Thus, the best way to anonymize
the election is by finding a Kemeny vote, and transforming all voters to vote
as this Kemeny vote. Therefore, the election can be k-anonymized by at most s
swaps if and only if the Kemeny distance of the input election is at most h, and
we are done. ut

With respect to the parameter number n of voters, the situation for the Dis-
crete distance is different than the situation for the Swap distance. Specifically,
it turns out that Condorcet-Discrete-EA is FPT wrt. n.

Theorem 4. Condorcet-Discrete-EA is FPT wrt. the number n of voters.

Proof. The crucial observation here is that there is no need to create new blocks,
besides, perhaps, one arbitrarily-chosen p-block. To see this, consider a solution
that adds a new block B which is not a p-block (recall that a p-block is a
block of p-voters). Change the solution by moving the voters in B to a new
arbitrarily-chosen p-block (instead of the block B). While using the same budget,
the election is still anonymized and p is still a Condorcet winner. It follows that
no new blocks, besides, perhaps, one additional arbitrarily chosen new p-block,



are needed. We mention that an additional p-block might be needed when there
are no p-voters (and, therefore, no p-blocks) in the input election.

The above observation suggests the following simple algorithm. We begin by
guessing whether we need a new p-block. Then, for each voter, we guess whether
(1) it will stay the same, (2) it will move to some other original block (out of
the possible n− 1 other original blocks), or (3) it will move to the new p-block
(if we guessed that such a new block p-block exists).

Correctness follows by the observation above and by the brute-force nature
of the algorithm. Fixed-parameter tractability follows since we guess for each
voter (out of the n original voters), where it will end up (out of n or n + 1
possibilities), resulting in running time O(m · nn). ut

We move on to consider the number m of alternatives. Similarly to numerous
other problems in computational social choice, all variants of EA considered in
this paper are FPT with respect to this parameter. This follows by applying
the celebrated result of Lenstra [18] after formulating the problem as an integer
linear program where the number of variables is upper-bounded by a function
dependent only on the number m of alternatives.

Theorem 5. For R ∈ {Plurality, Condorcet} and d ∈ {Discrete, Swap}, R-d-
EA is FPT wrt. the number m of alternatives.

Proof. The crucial observation is that the number of different preference orders is
m!, therefore upper-bounded by a function depending only on the parameter, m.
We enumerate the set of m! different preference orders and create a variable xi,j ,
for each i, j ∈ [m!], with the intended meaning that xi,j will represent the number
of voters with preference order i in the input and preference order j in the
solution.

We add a budget constraint:∑
i,j∈[m!]

xi,j · d(i, j) ≤ s.

(Note that we can precompute all the distances, in polynomial time.)
For preference order i, we denote the number of voters with preference order

i in the input by starti and the number of voters with preference order i in the
solution by endi. For each i, it holds that:

endi = starti +
∑
j∈[m!]

xj,i −
∑
j∈[m!]

xi,j .

We guess a set Z ⊆ [m!] of preference orders with the intent that these will
be the preference orders that will be present in the solution. For each preference
order i ∈ Z we add a k-anonymity constraint, and, similarly, for each preference
order i /∈ Z we require that its endi will be 0, as follows:

∀i ∈ Z : endi ≥ k

∀i /∈ Z : endi = 0



Differently for the Plurality rule and the Condorcet rule, we add more con-
straints to make sure that the winner will not change, as follows.

For the Plurality rule, we guess the highest score z in the solution (that is,
the winning score), and we check that the initial winner p gets exactly z points,
by adding the following constraint:∑

{i : p is at the first position of i}

endi = z.

Similarly, for each non-winning alternative c 6= p, we add a non-winning con-
straint: ∑

{i : c is at the first position of i}

endi ≤ z.

For the Condorcet rule, for the initial Condorcet winner p (if it exists), we check
that he indeed beats all other alternatives in the solution:

∀c 6= p :
∑

i∈[m!] and p�ic

endi ≥
∑

i∈[m!] and c�ip

endi.

Since the number of variables and the number of constraints is upper-bounded
by the parameter, fixed-parameter tractability follows by applying the result of
Lenstra [18]. ut

4 Conclusion

Motivated by privacy issues when publishing election-related data, we initiated
the study of k-anonymizing preference orders, investigating its computational
complexity for the Plurality rule and the Condorcet rule, while considering the
Discrete distance and the Swap distance. We showed a wide diversity of the
(parameterized) complexity of EA, with respect to several natural parameters.

There are numerous opportunities for future research, some of which we
briefly discuss next. Most immediately, there are still some open questions, as Ta-
ble 1 suggests, and one might also consider other parameterizations as well as
approximation algorithms for coping with the NP-hard cases. It is also natu-
ral to extend this line of research to other voting rules (for example, can the
polynomial-time algorithm presented in Theorem 1 be extended to the Borda
rule? what happens for Approval voting? what happens for multi-winner rules?).
Similar in spirit, it is natural to consider other distances besides the Discrete
distance and the Swap distance. While we considered a minmax approach, as
we compute the distance between two elections as the sum of distances between
their voters (and allow to permute the voters), it might also be interesting to
study a minmax approach, where, roughly speaking, we would not allow any
individual voter to change its vote by too much. This could be of particular
interest as it might preserve the original election more closely. On a similar note,
it is worth studying how to preserve more properties of the original election;
while we only require to preserve the winner, one might require to preserve the



full relative ranking of the alternatives (that is, fixing some scoring rule, and
considering two alternatives c′ and c′′ such that c′ is achieving a greater score
than c′′ in the original election, we might require c′ to achieve greater score
than c′′ in the resulting election as well). Somehow related, one might consider
some stronger notions of k-anonymity, for example l-diversity, which might be
interesting to explore in the context of elections. Finally, one might experiment
with real-world preference-data (for example, from PrefLib [21]) to evaluate the
quality of the algorithms presented in this paper.
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